WO2010137437A1 - 樹脂組成物およびその製造方法 - Google Patents

樹脂組成物およびその製造方法 Download PDF

Info

Publication number
WO2010137437A1
WO2010137437A1 PCT/JP2010/057407 JP2010057407W WO2010137437A1 WO 2010137437 A1 WO2010137437 A1 WO 2010137437A1 JP 2010057407 W JP2010057407 W JP 2010057407W WO 2010137437 A1 WO2010137437 A1 WO 2010137437A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
average particle
resin composition
particle diameter
Prior art date
Application number
PCT/JP2010/057407
Other languages
English (en)
French (fr)
Inventor
塚本 奈巳
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to CN201080023123.7A priority Critical patent/CN102449074B/zh
Priority to JP2011515959A priority patent/JPWO2010137437A1/ja
Publication of WO2010137437A1 publication Critical patent/WO2010137437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a resin composition and a method for producing the same, and more specifically, relates to a resin composition in which composite particles having inorganic fine particles attached to the particle surface are blended and a method for producing the same.
  • Patent Document 1 discloses a method for improving mechanical strength by adding calcium carbonate and / or magnesium carbonate to an aliphatic polyester resin.
  • particles or the like are also added as a filler to the resin composition.
  • the greater the amount of particles and the like the smaller the linear expansion coefficient of the molded body, but when the amount of particles and other resins added is increased, the particles aggregate in the composition, Since there is a problem in that the physical properties of the obtained resin molding are reduced, the amount of addition is limited, and it cannot be said that the linear expansion coefficient can be sufficiently reduced to the target level.
  • the present invention has been made in view of such circumstances, and a resin composition in which particles contained therein are well dispersed and can give a molded article having a low coefficient of linear expansion, and a method for producing the same The purpose is to provide.
  • the present inventor has found that composite particles composed of predetermined particles and inorganic fine particles adhering to the surface are well dispersed in the resin.
  • the present inventors have found that a molded product obtained from a resin composition containing the composite particles has a low linear expansion coefficient, and completed the present invention.
  • the present invention 1. Resin (A), particles (B1) having an average particle size of 100 nm to 50 ⁇ m, and inorganic fine particles (B2) having an average particle size of 1 to 300 nm attached to the surface (wherein the average particle size of particles (B1)> inorganic particles) (B2) average particle diameter) and a composite particle (B) composed of the resin composition, 2. 1 resin composition in which the particles (B1) are inorganic particles; 3. The resin composition according to 1 or 2, wherein the particle (B1) is a scaly particle, 4). The resin composition according to any one of 1 to 3, wherein the composite particles (B) are surface-treated with an organic compound, 5).
  • Method, 8). The dispersion method of 7, wherein the composite particles (B) are surface-treated with an organic compound, 9.
  • a method of suppressing expansion by blending particles into a resin or resin composition and reducing the linear expansion coefficient of the resulting resin molded product comprising particles (B1) having an average particle diameter of 100 nm to 50 ⁇ m as the particles, Use of composite particles (B) composed of adhering inorganic fine particles (B2) having an average particle size of 1 to 300 nm (wherein the average particle size of particles (B1)> the average particle size of inorganic fine particles (B2)).
  • a method for suppressing expansion comprising particles (B1) having an average particle diameter of 100 nm to 50 ⁇ m as the particles,
  • the composite particles (B) contained in the resin composition of the present invention are composed of particles (B1) having an average particle diameter of 100 nm to 50 ⁇ m and inorganic fine particles (B2) having an average particle diameter of 1 to 300 nm attached to the surface. Therefore, the inorganic fine particles (B2) act as spacers for the particles (B1). Therefore, compared with the case where the particles (B1) are used alone, aggregation of the particles (B1) is suppressed, so that more composite particles (without adding a dispersant or surface treatment) ( B) can be easily highly dispersed in the resin (A).
  • the composite particles (B) are highly dispersible as described above, and can be blended in the same amount as the surface treatment even in a state where the surface treatment is not performed. It becomes possible to obtain a simple resin molded body.
  • the molded object obtained from the resin composition of this invention has a low linear expansion coefficient compared with the resin molded object which mix
  • the composite particles (B) have a larger surface area than the particles (B1), the effects of the particles in the resin molded body such as suppression of the linear expansion coefficient, flame retardancy and catalytic effect are enhanced. Can do. Moreover, since it can disperse
  • the inorganic fine particles (B2) constituting the composite particles (B) have a high transparency regardless of the refractive index of the inorganic fine particles (B2) because the average particle diameter is not more than the wavelength in the visible light region.
  • the resin molding which has can be obtained.
  • the resin composition according to the present invention comprises resin (A), particles (B1) having an average particle size of 100 nm to 50 ⁇ m, and inorganic fine particles (B2) (provided that particles ( B1) average particle diameter> inorganic fine particles (B2) average particle diameter).
  • the average particle diameter and particle thickness are values measured by a particle size distribution meter (MICROTRACHRA 9320-X100, manufactured by Nikkiso Co., Ltd.).
  • the average particle diameter of the particles (B1) can be about 100 nm to 100 ⁇ m, but considering the transparency and linear expansion coefficient of the resulting resin molded body, about 100 nm to 50 ⁇ m as described above.
  • the thickness is preferably 200 nm to 50 ⁇ m, more preferably 200 nm to 20 ⁇ m, and particularly preferably 300 nm to 10 ⁇ m.
  • the material of the particles (B1) is not particularly limited, and may be inorganic particles or organic particles, but inorganic particles are preferable in view of the heat resistance and linear expansion coefficient of the obtained resin molding.
  • inorganic particles include metal silicates such as calcium silicate, barium silicate, magnesium silicate, zinc silicate, aluminum silicate, and copper silicate, and metal phosphorus such as calcium phosphate, barium phosphate, and magnesium phosphate.
  • Metal sulfates such as acid salts, calcium sulfate, barium sulfate, magnesium sulfate, silicon oxide (silica), magnesium oxide, aluminum oxide, zinc oxide, iron oxide, titanium oxide, cobalt oxide, nickel oxide, manganese oxide, antimony oxide, Metal oxides such as tin oxide, calcium oxide, potassium oxide, silicon oxide, chromium oxide, iron hydroxide, nickel hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, potassium hydroxide, hydroxide Metal hydroxide such as zinc, silicon nitride, aluminum nitride, Metal nitrides such as boron fluoride, metal carbonates such as zinc carbonate, aluminum carbonate, cobalt
  • Examples include silicate minerals, talc, mica, hydrotalcite, potassium titanate, calcium titanate, glass, etc., graphite particles such as carbon and graphite, and metal powders such as iron, copper, gold, and silver. These can be used alone or in combination of two or more. What is necessary is just to select the optimal thing suitably according to the function etc. which are provided to a resin composition.
  • silicon oxide silicon oxide (silica), magnesium oxide, aluminum oxide, zinc oxide, iron oxide, titanium oxide, cobalt oxide, Metal oxides such as nickel oxide, manganese oxide, antimony oxide, tin oxide, calcium oxide, potassium oxide, silicon oxide, chromium oxide, iron hydroxide, nickel hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, water Metal hydroxides such as chromium oxide, potassium hydroxide and zinc hydroxide, metal nitrides such as silicon nitride, aluminum nitride and boron nitride, metal fluorides such as boron fluoride, silicate minerals such as wollastonite and zonotonite , Talc, mica, hydrotalcite, potassium titanate, calcium titanate, glass It is preferable to use metal hydroxide, silicon oxide, and glass, which are usually used industrially in order to reduce the thermal expansion coefficient of the resin composition and to impart flame retardancy. Particular
  • organic particles various conventionally known polymer particles can be used.
  • examples thereof include particles based on resins such as vinyl resins, vinyl resins, olefin resins, ester resins, amide resins, imide resins, carbodiimide resins, alkyd resins, and copolymers thereof.
  • the shape of the particles (B1) is arbitrary, such as spherical, elliptical, needle-like, plate-like, scale-like, pulverized, concavo-convex, etc.
  • the scale-like particles are used. What is necessary is just to select an optimal shape suitably according to a use, such as using.
  • the scale-like particles are thin plate-like particles such as scales, and the planar shape is not particularly limited, such as a circle, an ellipse, a square, and an indefinite shape.
  • the thickness is preferably 1 nm to 10 ⁇ m from the viewpoint of the transparency of the obtained resin molding and the suppression of the thermal expansion coefficient. More preferably, it is 2 nm to 5 ⁇ m, particularly 3 nm to 3 ⁇ m.
  • the aspect ratio (average particle diameter / thickness) of the scaly particles is preferably from 2 to 50 in terms of transparency and suppression of the thermal expansion coefficient. More preferably, it is 3 to 30, particularly 5 to 20.
  • the inorganic fine particles (B2) are particles adhering to the surface of the particles (B1), and the average particle diameter thereof is smaller than that of the particles (B1), specifically 1 to 300 nm. More preferably, it is 1 to 200 nm, particularly 1 to 100 nm. Thus, since the average particle diameter of inorganic fine particles (B2) is smaller than the wavelength of visible light, transparency is not affected even when a transparent resin composition is obtained.
  • the inorganic fine particles include silica, talc, mica, glass, borosilicate glass, synthetic hydrotalcite, potassium titanate, wollastonite, zonotlite, magnesium oxide, magnesium hydroxide, aluminum hydroxide, titanium oxide, ferrite, Graphite particles such as boron fluoride, carbon and graphite, metal powders such as cobalt oxide, potassium hydroxide, calcium hydroxide, nickel hydroxide, chromium hydroxide, aluminum nitride, boron nitride, iron, copper, gold, silver
  • the particles (B1) are inorganic particles, the same material or different materials may be used.
  • the shape of the inorganic fine particles (B2) is not particularly limited, and spherical, elliptical, needle-like, plate-like, scale-like, pulverized, concavo-convex particles and the like can be appropriately selected.
  • the method for attaching the inorganic fine particles (B2) to the surface of the particles (B1) is not particularly limited.
  • the particles (B1) are surface-treated and the inorganic fine particles (B2) are chemically bonded thereto.
  • (2) A method of surface-treating inorganic fine particles (B2) and chemically bonding them to the surface of particles (B1),
  • (3) A method of depositing and growing inorganic fine particles (B2) on the surface of particles (B1), (4 ) Mixing and stirring the particles (B1) and the inorganic fine particles (B2), (5) Mixing and stirring the particles (B1), the inorganic fine particles (B2), and the silane coupling agent.
  • the usage ratio of the particles (B1) and the inorganic fine particles (B2) varies depending on the average particle diameter, material, etc. of each particle used, and thus cannot be specified unconditionally, but the resin of the composite particles (B)
  • the non-adherent particles can be easily separated from the composite particles (B) by a technique such as washing away with a solvent.
  • the composite particles (B) used in the present invention are excellent in dispersibility in the resin (A) by themselves, and without conventional addition of a dispersant or surface treatment of the particles. It can be used by blending in the resin (A) at a higher ratio than the particles, but the surface is treated with an organic compound for the purpose of further improving dispersibility and improving affinity with the resin (A). May be. By performing surface treatment to improve dispersibility, it becomes possible to mix more composite particles (B) into the resin (A). Further, by improving the affinity with the resin (A), the resin (A) and the composite particles (B) are firmly adhered, and as a result, an improvement in physical strength of the obtained molded body can be expected.
  • the surface treatment of the composite particles (B) means a surface treatment performed after the particles (B1) and the inorganic fine particles (B2) are attached, and the particles (B1) and / or the inorganic fine particles before the attachment. This is different from the processing applied to (B2).
  • the organic compound used for the surface treatment examples include fatty acids, fatty acid amides, fatty acid salts, fatty acid esters, aliphatic alcohols, silane coupling agents, titanium coupling agents, silicone polymers, and phosphoric acid esters. If it does not impair the effect of, it will not specifically limit.
  • the polymer layer may be formed by performing graft polymerization or the like on the surface of the composite particle (B).
  • the organic compound is preferably bonded to the composite particle (B) by a chemical bond such as a covalent bond.
  • a method of chemically bonding the organic compound and the composite particle (B) for example, a method of reacting and bonding an organic compound having a functional group capable of reacting with a functional group on the surface of the composite particle (B), or JP Examples include a method of forming an organic compound layer (polymer layer) on the composite particles (B) by graft polymerization as described in JP-A-2005-179576 and International Publication WO2006 / 137430.
  • the resin (A) used in the resin composition of the present invention is not particularly limited, and urethane resin, urea resin, melamine resin, acrylic resin, epoxy resin, styrene resin, silicone resin, fluorine Resin, polycarbonate resin, vinyl resin, olefin resin, ester resin, amide resin, imide resin, carbodiimide resin, alkyd resin, and copolymers thereof, etc. What has the characteristic according to this should just be selected suitably.
  • grains (B1) it is preferable to make the refractive index of resin (A) and particle
  • the refractive index difference is within 0.1, preferably within 0.07, more preferably within 0.05, even when a large amount of the composite particles (B) are added to the resin (A), the difference is high. A resin molded body having transparency is obtained.
  • the resin composition of the present invention can be obtained by mixing the composite particles (B) and the resin (A) described above and dispersing the composite particles (B) in the resin (A).
  • the mixing ratio of the two is arbitrary as long as the molded body can be molded, but in the present invention, the composite particle (B) is preferably 25 to 5000 parts by mass with respect to 100 parts by mass of the resin (A). Is more preferably 3 to 3500 parts by mass, and still more preferably 100 to 2000 parts by mass.
  • additives such as a flame retardant, a low elasticity agent, an adhesion-imparting agent, a diluent, an antifoaming agent, and a coupling agent are provided as long as the object of the present invention is not impaired. May be added.
  • the method of blending the composite particles (B) with the resin (A) is arbitrary. Even if the composite particles (B) are added to the resin (A), the resin (A) is added to the composite particles (B). Also good. In that case, the above-mentioned optional additives may be added at any stage.
  • the mixing / dispersing method of the resin (A) and the composite particles (B) is arbitrary, and various conventionally known methods capable of preparing a uniform resin composition can be used.
  • an organic solvent may be added as necessary.
  • examples of such an organic solvent include, but are not limited to, methyl ethyl ketone, N, N-dimethylformamide, and the like.
  • the molding method is not particularly limited, and various conventionally known molding methods can be used. Specific examples thereof include blow molding, injection molding, extrusion molding, and compression molding. Alternatively, the resin composition may be applied to form a film.
  • the obtained molded body or film can be suitably used as an optical material, an electronic material, a building material, an electrode material, a pharmaceutical cosmetic material, an automobile part, a clothing item, and the like.
  • Refractive index The refractive index was measured by a refractometer (model 2010 prism coupler, manufactured by Sekiteclon Co., Ltd.).
  • Hardness Measured according to JIS K 6911.
  • Mold Shrinkage Ratio A test piece having a width of 5 mm, a length of 15 mm, and a thickness of 150 ⁇ m was measured for a shrinkage ratio when heat-treated at 100 ° C. for 200 seconds.
  • Bending strength Measured according to JIS K 6911.
  • the obtained silica particles were again dispersed in 100 g of methyl ethyl ketone. Subsequently, 100 g of magnesium hydroxide (Kisuma 5: manufactured by Kyowa Chemical Co., Ltd.) having an average particle diameter of 700 nm, a thickness of 100 nm, and a refractive index of 1.56 is well dispersed in 150 g of dimethylformamide (manufactured by Aldrich Japan Co., Ltd.). The silica particle dispersion solution was added, and the mixture was further stirred at 70 ° C. for 3 hours to chemically bond the silica particles to magnesium hydroxide. The obtained dispersion solution was separated into particles and a solvent by a centrifuge, and the particles were collected.
  • Example 1 Obtained in Synthesis Example 1 in 100 parts by mass of epoxy resin (main agent: Pernox ME-540 CLEAR, curing agent: Percure HV-540, blending ratio 100: 60, manufactured by Pernox Co., Ltd., refractive index 1.55, the same applies hereinafter) 150 to 300 parts by mass of particles and 30 parts by mass of methyl ethyl ketone were added, and the mixture was stirred with a rotation / revolution mixer (Awatori Neritaro, manufactured by Shinkey Co., Ltd., the same applies hereinafter) so that the particles were uniformly dispersed. I got a thing. The obtained resin composition was heated and cured at 150 ° C. for 16 hours to obtain a transparent resin molded body. The size and thickness of the test piece were prepared according to each evaluation method.
  • Example 2 A resin composition and a transparent resin molded body were obtained in the same manner as in Example 1 except that the particles obtained in Synthesis Example 2 were used.
  • Example 3 To 100 parts by mass of urethane resin (F-42R, manufactured by Nisshinbo Chemical Co., Ltd., the same shall apply hereinafter), 43 to 150 parts by mass of particles of Synthesis Example 1 and 1500 parts by mass of dimethylformamide are added so that the particles are uniformly dispersed. The mixture was stirred with a rotation / revolution mixer to obtain a resin composition. The obtained resin composition was heated and dried at 80 ° C. for 2 hours to obtain a resin molded body. The size and thickness of the test piece were prepared according to each evaluation method.
  • Example 4 A resin composition and a resin molded body were obtained in the same manner as in Example 3 except that the particles obtained in Synthesis Example 3 were used.
  • Examples 1 to 4 the particles can be filled higher than in the comparative example. Further, when Examples 1 and 2 and Comparative Examples 1 and 2 are compared with the same addition amount, the molded bodies obtained in Examples 1 and 2 have a smaller linear expansion coefficient and are less likely to expand. Moreover, it turns out that it is excellent in intensity
  • Example 1 As can be seen from a comparison between Example 1 and Comparative Examples 7 and 8, in the case where magnesium hydroxide and spherical silica are simply mixed instead of composite particles, the amount of particles filled is not improved, and the resulting molded product is obtained. It can be seen that the strength of the film is not improved and the linear expansion coefficient is not reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nm(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)の無機微粒子(B2)とから構成される複合粒子(B)を含む樹脂組成物。これにより、その中に含まれる粒子が分良好に分散しているとともに、線膨張率の低い成形体を与え得る樹脂組成物を提供すること。

Description

樹脂組成物およびその製造方法
 本発明は、樹脂組成物およびその製造方法に関し、さらに詳述すると、粒子表面に無機微粒子が付着してなる複合粒子が配合された樹脂組成物およびその製造方法に関する。
 近年、樹脂成形体の物性改良を目的として、樹脂に粒子等の充填剤を添加する方法が種々検討されている。
 例えば、特許文献1には、脂肪族ポリエステル樹脂に対して炭酸カルシウムおよび/または炭酸マグネシウムを添加して機械的強度を向上させる方法などが開示されている。
 また、線膨張率を小さくして寸法安定性の高い樹脂成形体を得る目的で、樹脂組成物中に充填剤として粒子等を加えることも行われている。
 この場合、粒子等の添加量が多いほど、成形体の線膨張率を小さくすることができるが、粒子等の樹脂への添加量を増大させると、組成物中で粒子が凝集してしまい、得られる樹脂成形体の物性の低下を招くという問題があるため、添加量が制限され、目的とするレベルまで線膨張率を十分に低下し得ているとは言えなかった。
 そこで、樹脂組成物中に分散剤を添加したり、配合する粒子を表面処理剤で処理したりして粒子の分散性を高めることで、樹脂中での粒子の添加量を増やす試みが広く行われている。
 しかし、この場合、用いる分散剤や表面処理剤によっては、樹脂との反応性が問題となることがある。
 また、分散剤を添加したり、表面処理粒子を用いたりすることで、得られる樹脂成形体の耐熱性、線膨張率、曲げ強度、引張強度、電気伝導性等の物理的性質の悪化や、耐薬品性、耐水性等の化学的性質の低下、透明性の低下(着色)を招くことがあり、さらに表面処理に伴って粒子が高価になるという問題もあった。
 これらの問題点から、分散剤や表面処理剤による処理以外の方法により、樹脂中での粒子の分散性を向上させる方法が求められている。
特開平4-146952号公報
 本発明は、このような事情に鑑みてなされたものであり、その中に含まれる粒子が良好に分散しているとともに、線膨張率の低い成形体を与え得る樹脂組成物、およびその製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、所定の粒子およびこの表面に付着した無機微粒子とから構成される複合粒子が、樹脂中で良好に分散することを見出すとともに、この複合粒子を配合した樹脂組成物から得られた成形体が、低い線膨張率を有することを見出し、本発明を完成させた。
 すなわち、本発明は、
1. 樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を含むことを特徴とする樹脂組成物、
2. 前記粒子(B1)が、無機粒子である1の樹脂組成物、
3. 前記粒子(B1)が、鱗片状粒子である1または2の樹脂組成物、
4. 前記複合粒子(B)が、有機化合物で表面処理されている1~3のいずれかの樹脂組成物、
5. 前記樹脂(A)と前記粒子(B1)との屈折率の差が、0.1以内である1~4のいずれかの樹脂組成物、
6. 樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)、および樹脂(A)を混合することを特徴とする樹脂組成物の製造方法、
7. 樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)、および樹脂(A)を混合し、前記複合粒子(B)を樹脂(A)に分散させることを特徴とする粒子の分散方法、
8. 前記複合粒子(B)が、有機化合物で表面処理されている7の分散方法、
9. 樹脂または樹脂組成物に粒子を配合し、この粒子を前記樹脂または樹脂組成物中へ分散させる粒子の分散方法であって、前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする粒子の分散方法、
10. 樹脂または樹脂組成物に粒子を配合し、この粒子を前記樹脂または樹脂組成物内で分散させた樹脂組成物の製造方法であって、前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする樹脂組成物の製造方法、
11. 樹脂または樹脂組成物に粒子を配合し、得られる樹脂成形体の線膨張率を低減させる膨張抑制方法であって、前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする膨張抑制方法
を提供する。
 本発明の樹脂組成物に含まれる複合粒子(B)は、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)とから構成されるものであるから、無機微粒子(B2)が粒子(B1)のスペーサーとして作用する。
 そのため、粒子(B1)を単独で用いた場合に比べて粒子(B1)同士の凝集が抑制されるから、分散剤を添加したり、表面処理をしたりしなくとも、より多くの複合粒子(B)を、樹脂(A)に容易に高分散させることができる。
 その結果、従来問題となっていたような、表面処理剤や分散剤等が与える物性への悪影響、例えば、耐熱性および透明性の低下、線膨張率の悪化などを起こすことなく、配合した粒子の性能を十分に発揮し得る樹脂成形体を得ることができる。
 しかも、複合粒子(B)は、上述のとおり高分散し易いものであって、表面処理をしていない状態でも表面処理をしたのと同等程度の量で配合することができるから、より高性能な樹脂成形体を得ることが可能となる。
 また、本発明の樹脂組成物から得られた成形体は、従来の充填剤を同程度の量で配合した樹脂成形体に比べて低い線膨張率を有しており、熱膨張しにくい。
 この理由は、本発明の樹脂組成物では、複合粒子(B)を構成する無機微粒子(B2)の間に樹脂(A)が入り込む、すなわち、複合粒子(B)が樹脂を局所的に封止することによるものと推測される。
 さらに、複合粒子(B)は、粒子(B1)に比べて表面積が増えているので、線膨張率の抑制、難燃効果、触媒効果等の樹脂成形体中で粒子が発揮する効果を高めることができる。また、表面処理を行わなくても高分散することができるため、表面処理を行わない場合はこれら樹脂成形体中で粒子が発揮する効果を損なうことがない。
 また、粒子(B1)に鱗片状粒子を用い、樹脂(A)と粒子(B1)の屈折率を同一とするか、屈折率の差を小さくすることにより、樹脂組成物に複合粒子(B)を多量に添加した場合においても、高い透明性を有する樹脂成形体が得られる。
 この場合、複合粒子(B)を構成する無機微粒子(B2)は、平均粒子径が可視光線領域の波長以下のサイズであるため、無機微粒子(B2)の屈折率とは無関係に高い透明性を有する樹脂成形体を得ることができる。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る樹脂組成物は、樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を含むものである。
 なお、本発明において、平均粒子径および粒子の厚みは、粒度分布計(MICROTRACHRA 9320-X100,日機装(株)製)による測定値である。
 本発明において、粒子(B1)の平均粒子径は、100nm~100μm程度とすることができるが、得られる樹脂成形体の透明性や線膨張率等を考慮すると、上記のように100nm~50μm程度とすることが好ましく、200nm~50μmがより好ましく、200nm~20μmがより一層好ましく、300nm~10μmが特に好ましい。
 また、粒子(B1)の材質としては特に制限はなく、無機粒子でも有機粒子でもよいが、得られる樹脂成形体の耐熱性や線膨張率等を考慮すると、無機粒子が好適である。
 無機粒子としては、例えば、ケイ酸カルシウム,ケイ酸バリウム,ケイ酸マグネシウム,ケイ酸亜鉛,ケイ酸アルミニウム,ケイ酸銅等の金属ケイ酸塩、リン酸カルシウム,リン酸バリウム,リン酸マグネシウム等の金属リン酸塩、硫酸カルシウム,硫酸バリウム,硫酸マグネシウム等の金属硫酸塩、酸化ケイ素(シリカ),酸化マグネシウム,酸化アルミニウム,酸化亜鉛,酸化鉄,酸化チタン,酸化コバルト,酸化ニッケル,酸化マンガン,酸化アンチモン,酸化スズ,酸化カルシウム,酸化カリウム,酸化ケイ素,酸化クロム等の金属酸化物、水酸化鉄,水酸化ニッケル,水酸化アルミニウム,水酸化マグネシウム,水酸化カルシウム,水酸化クロム、水酸化カリウム、水酸化亜鉛等の金属水酸化物、窒化ケイ素、窒化アルミニウム、窒化ホウ素等の金属窒化物、炭酸亜鉛,炭酸アルミニウム,炭酸コバルト,炭酸ニッケル,炭酸カルシウム、塩基性炭酸銅等の金属炭酸塩等、フッ化ホウ素等の金属フッ化物、ウォラストナイト、ゾノトナイト等の珪酸塩鉱物、タルク、マイカ、ハイドロタルサイト、チタン酸カリウム、チタン酸カルシウム等、ガラス等、カーボン,グラファイト等の黒鉛粒子、鉄,銅,金,銀等の金属粉末等が挙げられ、これらは1種単独で、または2種以上組み合わせて用いることができる。これらは、樹脂組成物に付与する機能等に応じて最適なものを適宜選択すればよい。
 これらの中でも、本発明の樹脂組成物に要求される好適な機能性を付与することを考慮すると、酸化ケイ素(シリカ),酸化マグネシウム,酸化アルミニウム,酸化亜鉛,酸化鉄,酸化チタン,酸化コバルト,酸化ニッケル,酸化マンガン,酸化アンチモン,酸化スズ,酸化カルシウム,酸化カリウム,酸化ケイ素,酸化クロム等の金属酸化物、水酸化鉄,水酸化ニッケル,水酸化アルミニウム,水酸化マグネシウム,水酸化カルシウム,水酸化クロム、水酸化カリウム、水酸化亜鉛等の金属水酸化物、窒化ケイ素、窒化アルミニウム、窒化ホウ素等の金属窒化物、フッ化ホウ素等の金属フッ化物、ウォラストナイト、ゾノトナイト等の珪酸塩鉱物、タルク、マイカ、ハイドロタルサイト、チタン酸カリウム、チタン酸カルシウム、ガラスなどを用いることが好ましく、特に、樹脂組成物の熱膨張率を低下させるためや、難燃性を付与するために、通常工業的に使用されている、金属水酸化物、酸化ケイ素、ガラスが好適であり、特に、金属水酸化物および酸化ケイ素がもっとも好適である。
 一方、有機粒子としては、従来公知の各種ポリマー粒子を用いることができ、例えば、ウレタン系樹脂、ウレア系樹脂、メラミン系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、シリコーン系樹脂、フッ素系樹脂、ビニル系樹脂、オレフィン系樹脂、エステル系樹脂、アミド系樹脂、イミド系樹脂、カルボジイミド系樹脂、アルキド系樹脂やこれらの共重合体を成分とする粒子等が挙げられる。
 粒子(B1)の形状は、球状、楕円状、針状、板状、鱗片状、粉砕状、凹凸状等任意であり、透明な樹脂組成物(成形体)を得る場合には鱗片状粒子を用いる等、用途に応じて最適な形状を適宜選択すればよい。
 なお、鱗片状粒子とは、鱗のような薄板状の粒子であって、その平面形状は、円形、楕円形、角形、不定形等特に限定されない。
 粒子(B1)が鱗片状である場合の厚みは1nm~10μmであることが、得られる樹脂成形体の透明性と熱膨張率の抑制の点から好ましい。より好ましくは2nm~5μm、特に3nm~3μmが好適である。鱗片状粒子のアスペクト比(平均粒径/厚み)は2~50が透明性と熱膨張率の抑制の点で好ましい。より好ましくは3~30、特に5~20が好適である。
 無機微粒子(B2)は、粒子(B1)の表面に付着する粒子で、その平均粒子径は粒子(B1)のそれよりも小さく、具体的には1~300nmである。より好ましくは1~200nm、特に1~100nmが好ましい。
 このように無機微粒子(B2)の平均粒子径は、可視光線の波長よりも小さいので、透明な樹脂組成物を得る場合においても透明性に影響を与えることがない。
 無機微粒子としては、例えば、シリカ、タルク、マイカ、ガラス、ホウケイ酸ガラス、合成ハイドロタルサイト、チタン酸カリウム、ウォラストナイト、ゾノトライト、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、酸化チタン、フェライト、フッ化ホウ素、カーボン,グラファイト等の黒鉛粒子、酸化コバルト、水酸化カリウム、水酸化カルシウム、水酸化ニッケル、水酸化クロム、チッ化アルミニウム、チッ化ホウ素、鉄,銅,金,銀等の金属粉末等が挙げられ、粒子(B1)が無機粒子の場合、これと同一材料でも異種材料でもよい。
 特に、工業的な入手容易性や、得られる樹脂成形体の線膨張率の低減化を図るという点から、シリカを用いることが好ましい。
 無機微粒子(B2)の形状は、特に限定されず、球状、楕円状、針状、板状、鱗片状、粉砕状、凹凸状粒子などを適宜選択することができる。
 粒子(B1)の表面に無機微粒子(B2)を付着させる方法としては、特に限定されるものではなく、(1)粒子(B1)を表面処理し、そこに無機微粒子(B2)を化学結合させる方法、(2)無機微粒子(B2)を表面処理し、粒子(B1)の表面に化学結合させる方法、(3)粒子(B1)の表面で無機微粒子(B2)を析出成長させる方法、(4)粒子(B1)と無機微粒子(B2)とを混合撹拌して付着させる方法、(5)粒子(B1)と無機微粒子(B2)とシランカップリング剤を混合撹拌して付着させる方法、などが挙げられる。
 この場合、粒子(B1)と無機微粒子(B2)との使用割合は、使用する各粒子の平均粒子径や材質などによって変わるものであるため一概には規定できないが、複合粒子(B)の樹脂(A)中での分散性を向上させること、および得られる樹脂成形体の線膨張率を低減させることを考慮すると、上述した本発明の粒子(B1)と無機微粒子(B2)との平均粒子径の範囲では、質量比で(B1):(B2)=1:1~10000:1程度とすることができる。
 なお、未付着粒子は、溶媒で洗い流す等の手法によって、複合粒子(B)と容易に分離することができる。
 本発明で用いる複合粒子(B)は、上述のとおり、それ単独でも樹脂(A)への分散性に優れているものであって、分散剤の添加や粒子の表面処理を行わずに従来の粒子よりも高い割合で樹脂(A)中に配合して用いることができるものであるが、さらなる分散性向上や樹脂(A)との親和性向上などの目的で、その表面を有機化合物で処理してもよい。
 表面処理を行って分散性を向上させることで、より多くの複合粒子(B)を樹脂(A)中に配合することが可能となる。また、樹脂(A)との親和性を向上させることで、樹脂(A)と複合粒子(B)とが強固に密着する結果、得られる成形体の物理的強度の向上も期待できる。透明な樹脂成形体を得る場合は、粒子と樹脂との密着性が上がることで空隙が生じなくなるので、透明性も向上する。
 なお、複合粒子(B)の表面処理とは、粒子(B1)と無機微粒子(B2)とを付着させた後に行う表面処理を意味し、それらの付着前に粒子(B1)および/または無機微粒子(B2)に施す処理とは異なるものである。
 表面処理に用いられる有機化合物としては、例えば、脂肪酸、脂肪酸アミド、脂肪酸塩、脂肪酸エステル、脂肪族アルコール、シランカップリング剤、チタンカップリング剤、シリコーンポリマー、リン酸エステル等が挙げられ、本発明の効果を損なわないものであれば特に限定されない。
 また、複合粒子(B)の表面でグラフト重合等を行ってポリマー層を形成してもよい。
 なお、有機化合物は、複合粒子(B)と共有結合等の化学結合により結合していることが好ましい。有機化合物と複合粒子(B)とを化学結合させる方法としては、例えば、複合粒子(B)の表面の官能基と反応可能な官能基を有する有機化合物を反応させて結合させる方法、あるいは特開2005-179576号公報や国際公開WO2006/137430号パンフレット記載のように、複合粒子(B)に有機化合物層(ポリマー層)をグラフト重合により形成する方法などを挙げることができる。
 本発明の樹脂組成物に用いられる樹脂(A)としては、特に限定されず、ウレタン系樹脂、ウレア系樹脂、メラミン系樹脂、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリカーボネート系樹脂、ビニル系樹脂、オレフィン系樹脂、エステル系樹脂、アミド系樹脂、イミド系樹脂、カルボジイミド系樹脂、アルキド系樹脂やこれらの共重合体などが挙げられ、樹脂組成物の用途に応じた特性を有するものを適宜選択すればよい。
 透明な樹脂成形体を得る場合は、樹脂(A)と粒子(B1)の屈折率を同一とするか、屈折率の差を小さくすることが好ましい。
 特に、屈折率差を0.1以内、好ましくは0.07以内、さらに好ましくは0.05以内とすることにより、樹脂(A)に複合粒子(B)を多量に添加した場合においても、高い透明性を有する樹脂成形体が得られる。
 本発明の樹脂組成物は、上述した複合粒子(B)と樹脂(A)とを混合し、複合粒子(B)を樹脂(A)中に分散させて得ることができる。
 この場合、両者の混合割合は成形体を成形し得る限りにおいて任意であるが、本発明においては樹脂(A)100質量部に対して、複合粒子(B)25~5000質量部が好ましく、40~3500質量部がより好ましく、100~2000質量部がさらに好ましい。
 この範囲の配合割合とすることで、得られる成形体において、機械的強度の低下等を引き起こさずに、線膨張率の低下効果などの複合粒子(B)を配合する効果が十分に発揮される。
 なお、本発明の樹脂組成物には、本発明の目的を損なわない範囲で、難燃剤、低弾性化剤、密着性付与剤、希釈剤、消泡剤、カップリング剤等のその他の添加剤を加えてもよい。
 樹脂(A)に複合粒子(B)を配合する手法は任意であり、樹脂(A)中に複合粒子(B)を添加しても、複合粒子(B)に樹脂(A)を添加してもよい。その際、上記任意の添加剤は、いずれの段階で添加してもよい。
 樹脂(A)および複合粒子(B)の混合・分散手法は任意であり、均一な樹脂組成物を調製し得る従来公知の各種方法を用いることができる。
 具体例としては、撹拌型の分散機による混合・分散法、ビーズミル、ボールミルによる混合・分散法、3本ロールによる混合・分散法、自転・公転ミキサーによる混合・分散法などが挙げられる。
 なお、混合・分散の際には、必要に応じて有機溶媒を添加してもよい。このような有機溶媒としては、例えば、メチルエチルケトン、N,N-ジメチルホルムアミド等が挙げられるが、これらに限定されるものではない。
 以上のようにして調製された樹脂組成物を成形することで複合粒子(B)がその内部で高度に分散した、低線膨張率を有する樹脂成形体を得ることができる。すなわち、複合粒子(B)を、樹脂(A)または樹脂組成物へ添加することは、得られる樹脂成形体の線膨張率を抑制する方法であるとも言える。
 この場合、成形方法としては、特に限定されるものではなく、従来公知の各種成形方法を用いることができる。その具体例としては、ブロー成形、射出成形、押出成形、圧縮成形などが挙げられ、また、上記樹脂組成物を塗布し、膜を形成してもよい。
 得られた成形体や膜は、光学材料、電子材料、建築材料、電極材料、医薬化粧品材料、自動車部品、衣料品等として好適に用いることができる。
 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、原料、樹脂組成物および樹脂成形体の評価は下記の方法により行った。
[1]線膨張係数
 熱分析により測定した。具体的には、各実施例および比較例で得られた成形体より、幅5mm、長さ15mm、厚さ150μmの試験片について、熱分析装置(TMA8310,(株)リガク製)を用い、荷重:98mN、昇温速度10℃/minで30~200℃の範囲を測定した。
[2]透明性(ヘーズ)
 JIS K 7136に準拠し、ヘーズメーター(NDH-500 日本電色工業(株)製)を用いて測定した。
[3]透明性(透過率)
 JIS K 7361-1に準拠し、ヘーズメーター(NDH-500 日本電色工業(株)製)を用いて測定した。
[4]成形性試験
 試験片の厚みを約150μmとした以外は、JIS K 7104の評価方法に準拠し、成形体を下記基準により評価した(手触り、目視)。
○:硬化物の表面が滑らか
△:硬化物の表面の一部に凹凸がある
×:硬化物の表面全体に凹凸がある
[5]難燃性試験
 UL94V「垂直難燃性試験方法(プラスチック材料の燃焼規格)」に準拠し、試験片の厚みを150μmとして燃焼試験の評価を行った。その結果を、判定基準に従い、V-0、V-1、V-2、燃焼の4基準で評価した。
[6]粒子径および厚み
 平均粒子径および粒子の厚みは、粒度分布計(MICROTRACHRA 9320-X100,日機装(株)製)を用いて測定した。
[7]屈折率
 屈折率計(モデル2010プリズムカプラ,セキテクロン(株)製)により測定した。
[8]硬度
 JIS K 6911に準拠して測定した。
[9]成形収縮率
 幅5mm、長さ15mm、厚さ150μmの試験片について、100℃で200秒間、熱処理したときの収縮率を測定した。
[10]曲げ強度
 JIS K 6911に準拠して測定した。
[合成例1]
 500mLのナスフラスコ中でメチルエチルケトン(三洋化成品(株)製)100.0gに平均粒子径20nmの球状シリカ(日本アエロジル(株)製)10gをよく分散させた。続いてテトラエトキシシラン(シランカップリング剤、チッソ(株)製)0.3gを添加し、70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒とシリカ粒子とを分離した。得られたシリカ粒子を再度、メチルエチルケトン100gに分散させた。
 続いて、平均粒子径700nm、厚み100nm、屈折率1.56の水酸化マグネシウム(キスマ5:協和化学(株)製)100gをジメチルホルムアミド(アルドリッチジャパン(株)製)150gによく分散させ、上記シリカ粒子分散溶液を加え、さらに70℃で3時間撹拌し、水酸化マグネシウムにシリカ粒子を化学結合させた。得られた分散溶液を遠心分離機により、粒子と溶媒とに分離し、粒子を採取した。採取した粒子を3回洗浄後、シリカ粒子が水酸化マグネシウムに結合していることを走査電子顕微鏡(FE-SEMS-4800:日立ハイテク(株)製)にて観察した。このことからシリカ粒子が水酸化マグネシウムに化学結合していることを確認した。
[合成例2]
 合成例1で得られた水酸化マグネシウム粒子30gを、メチルエチルケトン50gに分散させ、エポキシシラン(シランカップリング剤,チッソ(株)製)1gを添加して70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒と水酸化マグネシウム粒子を分離し、粒子を採取した。
[合成例3]
 合成例1で得られた水酸化マグネシウム粒子30gを、メチルエチルケトン50gに分散させ、ビニルシラン(シランカップリング剤,チッソ(株)製)1gを添加して70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒と水酸化マグネシウム粒子とを分離し、粒子を採取した。
[合成例4]
 水酸化マグネシウム粒子(キスマ5:協和化学(株)製)30gをメチルエチルケトン50gに分散させ、エポキシシラン(シランカップリング剤,チッソ(株)製)1gを添加して70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒と水酸化マグネシウム粒子とを分離し、粒子を採取した。
[合成例5]
 水酸化マグネシウム粒子(キスマ5:協和化学(株)製)30gを、メチルエチルケトン50gに分散させ、ビニルシシラン(シランカップリング剤,チッソ(株)製)1gを添加して70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒と水酸化マグネシウム粒子とを分離し、粒子を採取した。
[合成例6]
 平均粒子径20nmの球状シリカ(日本アエロジル(株)製)10gを、メチルエチルケトン100gに分散させ、エポキシシラン(シランカップリング剤、チッソ(株)製)0.3gを添加して70℃で3時間撹拌した。反応終了後、未反応モノマーを除くため、遠心分離機により反応溶媒とシリカ粒子とを分離し、粒子を採取した。
[実施例1]
 エポキシ樹脂(主剤:ペルノックス ME-540 CLEAR、硬化剤:ペルキュア HV-540 配合比100:60 ペルノックス(株)製、屈折率1.55、以下同じ)100質量部に、合成例1で得られた粒子150~300質量部、メチルエチルケトン30質量部を添加し、粒子が均一に分散するように、自転・公転ミキサー(あわとり練太郎,(株)シンキー製、以下同じ)にて撹拌し、樹脂組成物を得た。
 得られた樹脂組成物を、150℃で16時間加熱・硬化し、透明な樹脂成形体を得た。試験片の大きさ、厚みはそれぞれの評価方法に合わせて作製した。
[実施例2]
 合成例2で得られた粒子を用いた以外は、実施例1と同様にして樹脂組成物および透明な樹脂成形体を得た。
[実施例3]
 ウレタン樹脂(F-42R、日清紡ケミカル(株)製、以下同じ)100質量部に、合成例1の粒子43~150質量部、ジメチルホルムアミド1500質量部を添加し、粒子が均一に分散するように、自転・公転ミキサーにて撹拌し、樹脂組成物を得た。
 得られた樹脂組成物を、80℃で2時間加熱・乾燥し、樹脂成形体を得た。試験片の大きさ、厚みはそれぞれの評価方法に合わせて作製した。
[実施例4]
 合成例3で得られた粒子を用いた以外は、実施例3と同様にして樹脂組成物および樹脂成形体を得た。
[比較例1]
 合成例1の粒子を、水酸化マグネシウム(キスマ5:協和化学(株)製)に変更した以外は、実施例1と同様にして、樹脂組成物および樹脂成形体を得た。
[比較例2]
 合成例2の粒子を、合成例4の粒子に変更した以外は、実施例2と同様にして樹脂組成物および樹脂成形体を得た。
[比較例3]
 合成例1の粒子を、水酸化マグネシウム(キスマ5:協和化学(株)製)に変更した以外は、実施例3と同様にして樹脂組成物および樹脂成形体を得た。
[比較例4]
 合成例3の粒子を、合成例5の粒子に変更した以外は、実施例4と同様にして樹脂組成物および樹脂成形体を得た。
[比較例5]
 エポキシ樹脂のみを用い、実施例1の方法と同様にして成形・硬化し、樹脂成形体を得た。
[比較例6]
 ウレタン樹脂のみを用い、実施例3の方法と同様にして成形・硬化し、樹脂成形体を得た。
[比較例7]
 合成例1の粒子を、水酸化マグネシウム(キスマ5:協和化学(株)製)と粒子径20nmの球状シリカ(日本アエロジル(株)製)とが50:1(質量比)の比率になるように混合したものに変更した以外は、実施例1と同様にして、樹脂組成物および樹脂成形体を得た。
[比較例8]
 合成例1の粒子を、合成例4で得られた粒子と合成例6で得られた粒子とが50:1(質量比)の比率になるように混合したものに変更した以外は、実施例1と同様にして、樹脂組成物および樹脂成形体を得た。
 上記各実施例および比較例で得られた樹脂組成物および樹脂成形体について、各種評価試験を行った。結果を表1および2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示されるように、実施例1~4では比較例と比べて粒子を高充填できていることがわかる。
 また、実施例1,2および比較例1,2を同一添加量同士で比較すると、実施例1,2で得られた成形体の方が、線膨張係数が小さく、膨張し難いものであり、また強度に優れていることがわかる。
 さらに、実施例3,4および比較例3,4を同一添加量同士で比較すると、実施例1,2で得られた成形体の方が、線膨張係数が小さく、膨張し難いものであり、また、成形時の寸法安定性に優れていることがわかる。
 また、実施例1と比較例7,8を比較するとわかるように、複合粒子ではなく、水酸化マグネシウムと球状シリカとを単に混合した場合では、粒子の充填量は向上せず、得られる成形体の強度も向上していないこと、線膨張係数が小さくなっていないことがわかる。

Claims (11)

  1.  樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を含むことを特徴とする樹脂組成物。
  2.  前記粒子(B1)が、無機粒子である請求項1記載の樹脂組成物。
  3.  前記粒子(B1)が、鱗片状粒子である請求項1または2記載の樹脂組成物。
  4.  前記複合粒子(B)が、有機化合物で表面処理されている請求項1~3のいずれか1項記載の樹脂組成物。
  5.  前記樹脂(A)と前記粒子(B1)との屈折率の差が、0.1以内である請求項1~4のいずれか1項記載の樹脂組成物。
  6.  樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)、および樹脂(A)を混合することを特徴とする樹脂組成物の製造方法。
  7.  樹脂(A)、および平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)、および樹脂(A)を混合し、前記複合粒子(B)を樹脂(A)に分散させることを特徴とする粒子の分散方法。
  8.  前記複合粒子(B)が、有機化合物で表面処理されている請求項7記載の分散方法。
  9.  樹脂または樹脂組成物に粒子を配合し、この粒子を前記樹脂または樹脂組成物中へ分散させる粒子の分散方法であって、
     前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする粒子の分散方法。
  10.  樹脂または樹脂組成物に粒子を配合し、この粒子を前記樹脂または樹脂組成物内で分散させた樹脂組成物の製造方法であって、
     前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする樹脂組成物の製造方法。
  11.  樹脂または樹脂組成物に粒子を配合し、得られる樹脂成形体の線膨張率を低減させる膨張抑制方法であって、
     前記粒子として、平均粒子径100nm~50μmの粒子(B1)と、この表面に付着した平均粒子径1~300nmの無機微粒子(B2)(ただし、粒子(B1)の平均粒子径>無機微粒子(B2)の平均粒子径)とから構成される複合粒子(B)を用いることを特徴とする膨張抑制方法。
PCT/JP2010/057407 2009-05-28 2010-04-27 樹脂組成物およびその製造方法 WO2010137437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080023123.7A CN102449074B (zh) 2009-05-28 2010-04-27 树脂组合物及其制造方法
JP2011515959A JPWO2010137437A1 (ja) 2009-05-28 2010-04-27 樹脂組成物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009129243 2009-05-28
JP2009-129243 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137437A1 true WO2010137437A1 (ja) 2010-12-02

Family

ID=43222553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057407 WO2010137437A1 (ja) 2009-05-28 2010-04-27 樹脂組成物およびその製造方法

Country Status (4)

Country Link
JP (1) JPWO2010137437A1 (ja)
KR (1) KR20120030037A (ja)
CN (1) CN102449074B (ja)
WO (1) WO2010137437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197351A (ja) * 2011-03-22 2012-10-18 Daido Metal Co Ltd 摺動用樹脂組成物
JP2015511646A (ja) * 2012-03-13 2015-04-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 熱可塑性ポリウレタン、熱可塑性ポリウレタンの製造方法、熱可塑性ポリウレタンを使用する方法、難燃剤の使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746533B (zh) * 2012-07-11 2014-01-15 四川石棉巨丰粉体有限公司 重质碳酸钙复合填料及其制备方法和用途
CN104592720A (zh) * 2015-01-12 2015-05-06 安徽玉堂雨具有限公司 一种提高塑胶韧性的碳酸钙填料及其制备方法
JP6815087B2 (ja) * 2016-03-28 2021-01-20 日鉄ケミカル&マテリアル株式会社 球状ユークリプタイト粒子およびその製造方法
EP4029916A4 (en) * 2019-09-10 2023-10-11 SETOLAS Holdings, Inc. THERMAL CONDUCTIVITY IMPROVER, METHOD FOR IMPROVING THERMAL CONDUCTIVITY, THERMALLY CONDUCTIVE RESIN COMPOSITION AND THERMALLY CONDUCTIVE RESIN MOLDED PRODUCT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162728A (ja) * 1986-12-26 1988-07-06 Toyobo Co Ltd 配向ポリエステルフイルム
JP2002284858A (ja) * 2001-03-27 2002-10-03 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296519A (ja) * 1990-03-27 1991-12-27 Matsushita Electric Works Ltd 光半導体用エポキシ樹脂封止材料
JPH04222855A (ja) * 1990-12-25 1992-08-12 Matsushita Electric Works Ltd 光半導体用エポキシ樹脂封止材料
JP3230765B2 (ja) * 1992-08-17 2001-11-19 株式会社トクヤマ エポキシ樹脂組成物
JP3392099B2 (ja) * 2000-03-03 2003-03-31 日鉄鉱業株式会社 シリカ−炭酸カルシウム複合粒子の製造方法、並びに該粒子を含有する組成物又は構造体
CN1253730C (zh) * 2001-08-06 2006-04-26 优泊公司 光反射体
JP2005154278A (ja) * 2003-11-20 2005-06-16 Pola Chem Ind Inc 単分散球状粉体被覆粉体及びそれを含有してなる化粧料
JP2006176586A (ja) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd 透明複合体組成物及び光学シート並びに表示素子用プラスチック基板
JP5146650B2 (ja) * 2005-06-21 2013-02-20 日清紡ホールディングス株式会社 基板用充填材および無機−有機複合基板成形材料用組成物
JP2007185890A (ja) * 2006-01-13 2007-07-26 Eidai Co Ltd 木質成形材の製造方法
JP5091467B2 (ja) * 2006-12-01 2012-12-05 リケンテクノス株式会社 反射防止フィルム
JP2008189809A (ja) * 2007-02-05 2008-08-21 Mitsubishi Gas Chem Co Inc ポリエステル樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162728A (ja) * 1986-12-26 1988-07-06 Toyobo Co Ltd 配向ポリエステルフイルム
JP2002284858A (ja) * 2001-03-27 2002-10-03 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197351A (ja) * 2011-03-22 2012-10-18 Daido Metal Co Ltd 摺動用樹脂組成物
JP2015511646A (ja) * 2012-03-13 2015-04-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 熱可塑性ポリウレタン、熱可塑性ポリウレタンの製造方法、熱可塑性ポリウレタンを使用する方法、難燃剤の使用方法

Also Published As

Publication number Publication date
CN102449074B (zh) 2015-01-28
JPWO2010137437A1 (ja) 2012-11-12
KR20120030037A (ko) 2012-03-27
CN102449074A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5122116B2 (ja) 熱伝導性樹脂組成物
WO2010137437A1 (ja) 樹脂組成物およびその製造方法
KR101825589B1 (ko) 개선된 도금 성능을 갖는 높은 탄성률 레이저 직접 구조화 폴리카보네이트 조성물들 및 반사 첨가제들에 의한 넓은 레이저 윈도우
JP5821190B2 (ja) 樹脂組成物とそれを用いた透明な樹脂成形体および塗膜
TW200946654A (en) Resin composition and use of the same
CN116438245B (zh) 液晶聚合物组合物、液晶聚合物成型体和电气电子设备
JP5141568B2 (ja) 液晶ポリマー組成物及びそれを用いてなる成形体
TW202221077A (zh) 液晶聚合物組合物、液晶聚合物成形體、及電氣電子機器
JP5914934B2 (ja) 液晶ポリエステル組成物、成形体及び発光装置
EP3752555B1 (en) Thermoconductive filler particles and polymer compositions containing them
JP4368079B2 (ja) 液晶ポリエステル樹脂組成物
JP2006143487A (ja) 板状アルミナ粒子、板状アルミナ粒子の製造方法、樹脂組成物及び樹脂組成物の製造方法
US20240240087A1 (en) Liquid crystal polymer composition and liquid crystal polymer molded article
TW202307110A (zh) 液晶聚合物組合物、液晶聚合物成形體、及電氣電子機器
JP3059829B2 (ja) 導電性フィラー、その製造方法およびその使用
JP7393590B1 (ja) 平面状コネクター用液晶性樹脂組成物及びそれを用いた平面状コネクター
JP3321500B2 (ja) 安定化ポリカーボネート樹脂組成物
JPS646667B2 (ja)
JP7381259B2 (ja) 液晶ポリエステル樹脂組成物の製造方法及び液晶ポリエステル樹脂組成物
KR20200061942A (ko) 내화학성이 개선된 폴리카보네이트 수지 조성물
JP2003238818A (ja) 炭素繊維強化熱可塑性樹脂組成物および射出成形品
WO2023026998A1 (ja) 液晶ポリエステルペレット組成物及び射出成形品
WO2023136196A1 (ja) 液晶ポリエステル組成物、及び成形体
JP2005139261A (ja) 樹脂組成物、樹脂組成物中間体、樹脂組成物の製造方法、及び樹脂組成物中間体の製造方法
JPH05140448A (ja) メツキ用高比重熱可塑性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023123.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515959

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117024945

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780394

Country of ref document: EP

Kind code of ref document: A1