WO2010137431A1 - 多結晶ウエハの検査方法 - Google Patents

多結晶ウエハの検査方法 Download PDF

Info

Publication number
WO2010137431A1
WO2010137431A1 PCT/JP2010/057094 JP2010057094W WO2010137431A1 WO 2010137431 A1 WO2010137431 A1 WO 2010137431A1 JP 2010057094 W JP2010057094 W JP 2010057094W WO 2010137431 A1 WO2010137431 A1 WO 2010137431A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline wafer
camera
light source
polycrystalline
photographing
Prior art date
Application number
PCT/JP2010/057094
Other languages
English (en)
French (fr)
Inventor
貴之 松尾
Original Assignee
株式会社ロゼフテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロゼフテクノロジー filed Critical 株式会社ロゼフテクノロジー
Priority to JP2011515956A priority Critical patent/JP5559163B2/ja
Priority to KR1020117027655A priority patent/KR101323035B1/ko
Priority to CN201080020208.XA priority patent/CN102422149B/zh
Publication of WO2010137431A1 publication Critical patent/WO2010137431A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • G01N21/3559Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content in sheets, e.g. in paper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for inspecting a defect in a polycrystalline wafer such as a polycrystalline silicon wafer for solar cells by transmission of infrared rays.
  • Patent Document 1 discloses a method of irradiating a silicon wafer with infrared rays, photographing transmitted infrared rays with a CCD camera, and detecting defects such as microcracks from the photographed image by image processing.
  • Patent Document 2 irradiates infrared rays from the front and back surfaces of a polycrystalline wafer, images infrared reflected light from the front surface and infrared transmitted light from the back surface by an infrared camera, and compares the image data from the front and back surfaces.
  • the general infrared transmission light imaging method also captures the crystal direction, crystal boundaries, and crystal patterns due to the outline thereof as an image. In the process, it becomes difficult to distinguish between the crystal pattern and the defect, and it is easy to cause a false detection or a defect to be overlooked.
  • An object of the present invention is to make a crystal pattern of a polycrystalline wafer crystal direction, a crystal boundary and a contour thereof lighter in a photographing process, and to detect defects in the polycrystalline wafer with certainty.
  • the inventor repeated an experiment of irradiating a polycrystalline wafer with infrared rays and observing the transmitted infrared rays.
  • the following knowledge was obtained. That is, if the infrared light transmitted through the polycrystalline wafer at the infrared irradiation position is directly observed, the crystal pattern of the polycrystalline wafer in the photographed image cannot be made light.
  • the infrared irradiation position is separated from the observation position of the transmitted infrared light, that is, the shooting position by the camera, by a suitable distance, the crystal pattern of the polycrystalline wafer can be made light, and only the brightness of the defects in the polycrystalline wafer can be reduced. It could be different from the brightness of other normal parts.
  • the present invention has been completed based on such findings.
  • the present invention provides the following. (1) irradiating infrared rays toward the irradiation position from a light source arranged so that the optical axis passes through the irradiation position on the polycrystalline wafer; Infrared rays that are incident from the irradiation position and repeatedly refracted and reflected inside the polycrystalline wafer, and emitted from a photographing position on the polycrystalline wafer that is separated from the irradiation position by a predetermined distance in the plane direction of the polycrystalline wafer, Shooting with a camera that shoots the shooting position; Detecting a defect in the polycrystalline wafer based on a difference in brightness between the defect-free portion and the defective portion on a photographed image obtained by the camera.
  • the method for inspecting a polycrystalline wafer according to (1) wherein the imaging position is set on a surface opposite to the surface of the polycrystalline wafer on which the irradiation position is set.
  • the light source is a single light source, The optical axis of the light source is inclined with respect to the surface of the polycrystalline wafer so as to extend from the irradiation position to the photographing position side. Crystal wafer inspection method.
  • the light sources are a plurality of light sources arranged substantially symmetrically with respect to the photographing position.
  • each light source is inclined at the same inclination angle with respect to the surface of the polycrystalline wafer so as to extend from each irradiation position to the photographing position side (1).
  • the light source is a line-type light source
  • the camera is a line sensor type camera, The method for inspecting a polycrystalline wafer according to any one of (1) to (5), wherein the camera detects infrared rays condensed by a cylindrical lens.
  • the light source is a ring type light source that forms a ring type irradiation region
  • the camera is an area sensor type camera in which the inside of the ring-shaped irradiation area is an imaging area, The method for inspecting a polycrystalline wafer according to any one of (1) to (5), wherein the camera detects the infrared light condensed by a magnifying lens.
  • infrared rays incident on the polycrystalline wafer from the irradiation position are repeatedly reflected and refracted in the polycrystalline wafer, and are separated from the irradiation position by a predetermined distance in the plane direction of the polycrystalline wafer.
  • the light is emitted from the photographing position on the polycrystalline wafer.
  • the infrared rays are repeatedly reflected and refracted in the polycrystalline wafer, so that the intensity of the infrared rays reaching the photographing position becomes substantially uniform, and the influence of the crystal pattern is affected. Since it is hardly received, the photographed image obtained by the camera becomes an image having uniform brightness that does not reflect the crystal pattern of the polycrystalline wafer.
  • the photographed image obtained by the camera becomes an image having uniform brightness that does not reflect the crystal pattern of the polycrystalline wafer.
  • infrared rays are irregularly reflected by the defect, and the intensity of the infrared rays reaching the photographing position becomes non-uniform.
  • the defect appears as an area having a different brightness on the captured image obtained by the camera as compared with the case where the defect does not exist.
  • the photographed image obtained by the camera is hardly affected by the crystal direction of the polycrystalline wafer, the crystal boundary, and the crystal pattern due to the outline thereof, and only the defect is a defect. Since the brightness is different from that of the non-exposed portion, defects in the polycrystalline wafer can be reliably detected.
  • FIG. 1 is a side view of an optical system showing a state in which an inspection direction (conveying direction of the polycrystalline wafer 1) A is from right to left
  • FIG. 2 is an optical system showing a state in which the inspection direction A is from the paper surface toward the front of the paper surface.
  • a line-shaped infrared ray 3 extending in a direction orthogonal to the conveyance direction A of the polycrystalline wafer 1 from a line-type light source 2 disposed on the lower surface side of the polycrystalline wafer 1 is converted into a line shape of the polycrystalline wafer 1. Irradiate toward the irradiation position P1. At this time, the light source 2 is arranged so that the optical axis of the light source 2 passing through the irradiation position P1 is inclined with respect to the normal line n1 of the surface of the polycrystalline wafer 1.
  • the optical axis of the light source 2 forms an inclination angle ⁇ with respect to the normal line n1 so that the infrared rays 3 emitted from the light source 2 extend from the irradiation position P1 side to the photographing position P2 side.
  • Such a line-type light source 2 can be configured by arranging a large number of infrared light emitting diodes linearly or by combining a rod-shaped infrared light source and a light source cover in which a line-shaped slit is formed.
  • the infrared rays 3 incident from the irradiation position P1 are repeatedly reflected and refracted inside the polycrystalline wafer 1, and are repeatedly reflected on the front and back surfaces of the polycrystalline wafer 1 to obtain the photographing position P2.
  • a part of the infrared ray 3 that has reached the photographing position P2 is reflected, and a part thereof is emitted as it is from the surface of the polycrystalline wafer 1.
  • the infrared rays 3 emitted from the photographing position P2 are photographed by the camera 6 arranged so that the optical axis 7 passes through the photographing position P2, and a photographed image is obtained by the camera 6.
  • the photographing position P2 is set to a position that is separated from the irradiation position P1 by a predetermined distance D in the surface direction of the polycrystalline wafer 1.
  • the camera 6 is disposed on the opposite side of the light source 2 with respect to the polycrystalline wafer 1.
  • the optical axis 7 of the camera 6 passes through the photographing position P2 and is perpendicular to the surface of the polycrystalline wafer 1.
  • the wavelength of the infrared ray 3 irradiated in a line shape is preferably a wavelength suitable for detecting internal defects, for example, a wavelength region of 0.7 ⁇ m to 2.5 ⁇ m.
  • the camera 6 also preferably has good sensitivity in this wavelength region.
  • the photographing position P2 is set at a position away from the irradiation position P1 by a predetermined distance D.
  • This distance D is set according to the crystal structure of the polycrystalline wafer 1 and its thickness, and is set to the best position where the crystal pattern becomes light.
  • the inspection method of the present invention is preferably for a polycrystalline wafer 1 having a thickness of 0.1 to 0.25 mm.
  • the infrared rays 3 are refracted, reflected, and absorbed inside the polycrystalline wafer 1, and the intensity of the infrared rays 3 photographed by the camera 6 is reduced to obtain a clear photographed image. Because there is no. If the thickness of the polycrystalline wafer 1 is reduced, the number of refractions and reflections that occur until the infrared rays 3 reach the photographing position P2 decreases, and a crystal pattern remains in the photographed image obtained by the camera 6.
  • the inclination angle ⁇ of the optical axis of the light source 2 with respect to the normal line n1 of the surface of the polycrystalline wafer 1 is set in the range of 20 ° to 40 °.
  • the inclination angle ⁇ is less than 20 °, the number of refractions / reflections required until the infrared ray 3 reaches the photographing position P2 that is separated from the irradiation position P1 by the predetermined distance D increases, and the intensity of the infrared ray 3 photographed by the camera 6 increases. This is because a sharp photographed image cannot be obtained.
  • the inclination angle ⁇ is larger than 20 °, the number of refractions / reflections required until the infrared rays 3 reach the photographing position P2 decreases, and a crystal pattern remains in the photographed image.
  • the predetermined distance D between the irradiation position P1 and the photographing position P2 is preferably set to 1 to 3 mm. If the predetermined distance D is shorter than 1 mm, the number of refractions / reflections required until the infrared rays 3 reach the photographing position P2 decreases, and a crystal pattern remains in the photographed image. If the predetermined distance D is longer than 3 mm, the number of refractions / reflections increases, and the intensity of the infrared rays 3 photographed by the camera 6 decreases, so that a clear photographed image cannot be obtained.
  • the thickness, the inclination angle ⁇ , and the predetermined distance D of the polycrystalline wafer 1 described above are set so as to obtain a clear photographed image with little influence of the crystal pattern. Set as appropriate within the range.
  • the infrared rays 3 that have passed through the defect-free region of the polycrystalline wafer 1 are present in a number of randomly existing crystals. Refraction and reflection are repeated in the crystal direction of the grain and the boundary of the crystal to reach the photographing position P2. Since the infrared rays 3 that have been repeatedly subjected to random refraction and reflection a plurality of times reach the photographing position P2 that is separated from the irradiation position P1 by a predetermined distance D, the effects of refraction and reflection at each crystal grain cancel each other.
  • the photographed image photographed at the photographing position P2 is a linear photographed image having uniform brightness.
  • the defect 4 when the defect 4 is present on the polycrystalline wafer 1, unlike the above, the infrared rays 3 are irregularly reflected or absorbed by the defect 4. A bright part appears. Since the shadow and bright part due to the defect 4 are different in brightness from the photographed image formed by the infrared rays 3 that have passed through the above-described defect-free region, the defect 4 can be detected by comparing the brightness of both. .
  • 4A and 4B show captured images of the camera 6 that captures the infrared rays 3 transmitted through the region including the defect 4.
  • a bright image with a dark shadow by the infrared ray 3 that has passed through the defect 4 is formed on a background image of uniform brightness formed by the infrared ray 3 that has passed through the defect-free region. Therefore, the defect 4 can be easily and reliably recognized by detecting areas with different brightness from a background image with uniform brightness.
  • the photographing position is set to a position P3 where the predetermined distance D on the extension line of the optical axis of the light source 2 is shorter than 1 mm (see FIG. 1), the infrared rays 3 emitted without sufficiently repeating refraction and reflection are used. Since the photographing is performed at the photographing position P3, the photographed image is an image affected by the boundary of the crystal.
  • two line-type light sources 2 are arranged on the lower side of the polycrystalline wafer 1 at positions symmetrical with respect to the normal line (the optical axis 7 of the camera 6) on the imaging position P2.
  • the line-shaped infrared rays 3 are irradiated from two different inclination directions toward two irradiation positions P1 of the polycrystalline wafer 1.
  • the inclination angles formed by the optical axes of the respective light sources 2 and the surface of the polycrystalline wafer 1 are set to be substantially the same. According to this example, in addition to the effects described above, the amount of infrared rays 3 that can be detected by the camera 6 increases, and a bright photographed image can be obtained, so that the defect 4 can be easily detected.
  • FIG. 6 shows an example in which infrared rays 3 transmitted through the polycrystalline wafer 1 are condensed by a cylindrical lens 8 and the condensed infrared rays 3 are detected by a line sensor type camera 6.
  • the cylindrical lens 8 is arranged such that its longitudinal direction is along the line-shaped infrared rays 3, and the image of the infrared rays 3 is enlarged in the conveyance direction of the polycrystalline wafer 1.
  • the lens 8 can also be incorporated into an example in which the light source 2 is single as shown in FIGS.
  • optical system is set to appropriate values depending on the thickness of the polycrystalline wafer 1, the wavelength range of the infrared ray 3, the irradiation angle of the infrared ray 3, the sensitivity of the camera 6, and the like.
  • FIG. 7 shows an example in which the light source 2 is a ring-type light source, the camera 6 is an area-type camera, and the light source 2 and the camera 6 are arranged on different planes with respect to the polycrystalline wafer 1.
  • the ring-type light source 2 is arranged concentrically with respect to the optical axis 7 of the camera 6.
  • the irradiation position P1 of the light source 2 is given as a position where the luminous flux of the infrared rays 3 irradiated by the light source 2 is the largest, and is a circle slightly smaller than the circle of the light source 2.
  • the photographing position (photographing region) P2 is a detection range by the area type camera 6, and inside the ring type light source 2, as shown in FIG. 8, the optical axis 7 of the camera 6 from the irradiation position P1.
  • the enlargement convex lens 8 on the objective lens side of the camera 6 is arranged as necessary.
  • the irradiation position P1 can also be formed by a ring-type slit.
  • the infrared ray 3 from the light source 2 enters the inside of the polycrystalline wafer 1 from the circular irradiation position P1, reaches the inside of the circular photographing position P2 of the camera 6 by repeating refraction and reflection, Photographed by an area type camera 6.
  • the inspection range (observation range) of the polycrystalline wafer 1 can be set as a larger surface than the line-shaped inspection range, so that the inspection efficiency is improved.
  • FIG. 9 shows an example in which the ring type light source 2 and the area type camera 6 are arranged on the same surface side of the polycrystalline wafer 1. Also in this example, the infrared ray 3 from the light source 2 enters the inside of the polycrystalline wafer 1 from the circular irradiation position P1, reaches the inside of the circular imaging position P2 by repeating refraction and reflection, and is imaged by the area type camera 6. Is done.
  • a light shielding hood 9 is installed on the camera 6 so that the reflected light of the infrared rays 3 does not directly enter the camera 6. May be. Also in this example, the irradiation position P1 can be formed by a ring-shaped slit.
  • the portion of the defect 4 in the polycrystalline wafer 1 is another normal portion with respect to the infrared ray 3.
  • the detection of the defect 4 becomes effective and easy. Furthermore, even when the irradiation position P1 or the photographing position P2 cannot be set on one surface of the polycrystalline wafer 1, the defect 4 can be detected.
  • the line-type light source 2 may also be arranged on the same side as the camera 6 with respect to the polycrystalline wafer 1 in the examples of FIGS. 1, 2, 5 and 6 described above.
  • the infrared rays 3 from the line-type light source 2, as illustrated by a two-dot chain line in FIG. 9, are used as necessary by using a light guide such as an optical fiber or an acrylic resin plate, as necessary. Irradiation from at least one of the end faces (four side faces) toward the inside of the polycrystalline wafer 1 can also be performed.
  • the front edge in the traveling direction or the rear edge in the traveling direction of the polycrystalline wafer 1 If one of the light sources 2 or a part of the light source 2 is removed, the other light source 2 or the other part of the light source 2 is not detached from the edge of the moving polycrystalline wafer 1, and the defect 4 is subsequently detected. Can continue. For this reason, the defect 4 can be detected also at the edge portion of the polycrystalline wafer 1.
  • the infrared rays 3 are irradiated from the tilt direction toward the irradiation position P1 of the polycrystalline wafer 1. For this reason, in the process in which the infrared rays 3 pass through the crystal wafer 1, the opportunities for refraction and reflection are greater than those in the vertical direction, and the infrared rays 3 can be hardly affected by the crystal pattern.
  • the irradiation direction of the infrared rays 3 can also be set in a substantially vertical direction toward the irradiation position P1 of the polycrystalline wafer 1. Even if set in this way, since the infrared rays 3 are reflected at the boundaries of many crystals, the infrared rays 3 are diffused in directions other than the vertical direction. A photographed image that is not received can be obtained.
  • the infrared rays 3 are directed toward the irradiation position P1 of the polycrystalline wafer 1 and directed toward the photographing position P2, and the irradiation is performed in a tilted state. For this reason, many infrared rays 3 go to the photographing position P2 through the polycrystalline wafer 1, so that a necessary amount of light can be secured at the photographing position P2. However, even if the infrared ray 3 is directed through the polycrystalline wafer 1 in a direction other than the photographing position P2, the amount of light that can be photographed at the photographing position P2 due to refraction and reflection inside the polycrystalline wafer 1, and further irregular reflection. Therefore, the inspection of the defect 4 is possible in principle.
  • the imaging conditions are improved.
  • the polycrystalline wafer 1 may be continuously moved. Further, the posture of the polycrystalline wafer 1 may be set as a vertical or inclined state according to the inspection space, not horizontal.
  • the present invention is not limited to silicon wafers, but can be used for other polycrystalline wafers.
  • the method for inspecting a polycrystalline wafer of the present invention it is possible to obtain a photographed image that can clearly identify the existence of a defect with a light crystal pattern due to the crystal direction of the polycrystalline wafer, the boundary of the crystal and its outline. In addition, it is possible to detect defects reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 光軸が多結晶ウエハ1上の照射位置P1を通過するように配置された光源2から、赤外線3を照射位置P1に向けて照射する工程と、照射位置P1から入射して多結晶ウエハ1内部の結晶粒界及び欠陥で屈折及び反射を繰り返して、照射位置P1から多結晶ウエハ1の面方向に所定距離D離間した多結晶ウエハ1上の撮影位置P2から出射した赤外線3を、撮影位置P2を撮影するカメラ6で撮影する工程と、カメラ6で得られた撮影画像上で、無欠陥部分と欠陥部分の明るさの相違から多結晶ウエハ1内の欠陥を検出する工程と、を有する多結晶ウエハの検査方法が提供される。この検査方法によれば、多結晶ウエハ1の結晶模様の淡く、欠陥の存在を明瞭に識別できる撮影画像を得ることができ、容易かつ確実に欠陥の検出をすることができる。

Description

多結晶ウエハの検査方法
 本発明は、太陽電池用多結晶シリコンウエハなどの多結晶ウエハ内の欠陥を赤外線の透過により検査する方法に関する。
 特許文献1は、シリコンウエハに赤外線を照射して、透過赤外線をCCDカメラにより撮影し、そのときの撮影画像からマイクロクラックなどの欠陥を画像処理によって検出する方法を開示している。
 また、特許文献2は、多結晶ウエハの表面および裏面から赤外線を照射して、表面からの赤外線反射光および裏面からの赤外線透過光を赤外線カメラにより撮影し、表裏面からの画像データの比較結果によって多結晶ウエハ内部の割れ欠陥を検出する方法を開示している。
 ところが、検査対象が多結晶シリコンウエハの場合に、一般的な赤外線透過光の撮影手法によると、結晶の方向、結晶の境界やその輪郭による結晶模様も画像として取り込まれてしまうため、画像処理の過程で、結晶模様と欠陥との識別が困難となり、誤検出や欠陥の見逃しが起きやすくなっている。
日本国特開2007-258555号公報 日本国特開2007-218638号公報
 本発明は、多結晶ウエハの結晶の方向、結晶の境界やその輪郭による結晶模様を撮影過程で淡くし、多結晶ウエハ内の欠陥を確実に検出することを目的とする。
 前記課題のもとに、発明者は、多結晶ウエハに対して赤外線を照射し、その透過赤外線を観測するという実験を繰り返した。その結果、以下の知見が得られた。すなわち、赤外線の照射位置で多結晶ウエハを透過してきた赤外線を直接に観測すると、撮影画像での多結晶ウエハの結晶模様を淡くできない。しかし、赤外線の照射位置と、透過した赤外線の観察位置すなわちカメラによる撮影位置とを適当な距離だけ離すと、多結晶ウエハの結晶模様を淡くでき、しかも多結晶ウエハ内の欠陥の明るさのみを他の正常な部分の明るさと異ならせることができた。本発明は、このような知見に基づいて完成された。
 上記目的を達成するために、本発明によれば、以下が提供される。
(1) 光軸が多結晶ウエハ上の照射位置を通過するように配置された光源から、赤外線を前記照射位置に向けて照射する工程と、
 前記照射位置から入射して前記多結晶ウエハ内部で屈折及び反射を繰り返して、前記照射位置から前記多結晶ウエハの面方向に所定距離離間した前記多結晶ウエハ上の撮影位置から出射した赤外線を、前記撮影位置を撮影するカメラで撮影する工程と、
 前記カメラで得られた撮影画像上で、無欠陥部分と欠陥部分の明るさの相違から前記多結晶ウエハ内の欠陥を検出する工程と、を有する多結晶ウエハの検査方法。
(2) 前記撮影位置は、前記照射位置の設定される前記多結晶ウエハの面の反対側の面に設定されることを特徴とする(1)の多結晶ウエハの検査方法。
(3) 前記撮影位置は、前記照射位置の設定される前記多結晶ウエハの面と同一の面に設定されることを特徴とする(1)の多結晶ウエハの検査方法。
(4) 前記光源は単一の光源であり、
 前記光源の光軸は、前記照射位置から前記撮影位置側に延びるように、前記多結晶ウエハの表面に対して傾斜していることを特徴とする(1)~(3)のいずれかの多結晶ウエハの検査方法。
(5) 前記光源は、前記撮影位置に対して略対称に配置された複数の光源であり、
 各々の前記光源の前記光軸は、各々の前記照射位置から前記撮影位置側に延びるように、前記多結晶ウエハの表面に対して同一の傾斜角で傾斜していることを特徴とする(1)~(3)のいずれかの多結晶ウエハの検査方法。
(6) 前記光源はライン型の光源であり、
 前記カメラは、ラインセンサー型のカメラであり、
 前記カメラは、シリンドリカル型のレンズで集光された赤外線を検出することを特徴とする(1)~(5)のいずれかの多結晶ウエハの検査方法。
(7) 前記光源は、リング型の照射領域を形成するリング型の光源であり、
 前記カメラは、リング型の前記照射領域の内側を撮影領域とする、エリアセンサ型のカメラであり、
 前記カメラは、拡大用のレンズで集光された前記赤外線を検出することを特徴とする(1)~(5)のいずれかの多結晶ウエハの検査方法。
 本発明の多結晶ウエハの検査方法によれば、照射位置から多結晶ウエハに入射した赤外線が多結晶ウエハ内で反射や屈折を繰り返して、照射位置から多結晶ウエハの面方向に所定距離離間した多結晶ウエハ上の撮影位置から出射する。この撮影位置から出射した赤外線をカメラで撮影することで、結晶模様の淡く、欠陥の存在を明瞭に識別できる撮影画像を得ることができ、容易かつ確実に欠陥の検出をすることができる。
 具体的には、多結晶ウエハに欠陥が存在しない場合は、赤外線が多結晶ウエハ内で反射や屈折を繰り返すことによって、撮影位置に到達した赤外線の強度は略均一になって結晶模様の影響をほとんど受けなくなるため、カメラで得られた撮影画像は多結晶ウエハの結晶模様を反映しない均一な明るさの画像となる。
 ところが、多結晶ウエハ内に欠陥が存在する場合は、欠陥で赤外線が乱反射し、撮影位置に到達した赤外線の強度が不均一となる。したがって、カメラで得られる撮影画像上には、欠陥は、欠陥が存在しない場合と比べて明るさの異なる領域として現れる。このように、本発明によれば、カメラにより得られた撮影画像は、多結晶ウエハの結晶の方向、結晶の境界やその輪郭による結晶模様の影響をほとんど受けることがなく、欠陥のみが欠陥のない部分と明るさが異なるので、多結晶ウエハ内の欠陥を確実に検出できる。
本発明に係る多結晶ウエハの検査方法を実施するための光学系の側面図である。 本発明に係る多結晶ウエハの検査方法を実施するための光学系の正面図である。 多結晶ウエハの内部での赤外線の反射および屈折の状況の説明図である。 本発明に係る赤外線による多結晶ウエハの撮影画像の写真である。 参考例に係る赤外線による多結晶ウエハの撮影画像の写真である。 本発明の変形例に係る多結晶ウエハの検査方法を実施するための光学系の側面図である。 本発明の変形例に係る多結晶ウエハの検査方法を実施するための光学系の側面図である。 本発明の変形例に係る多結晶ウエハの検査方法を実施するための光学系の側面図である。 多結晶ウエハ上での検査範囲(観察範囲)の平面図である。 本発明の変形例に係る多結晶ウエハの検査方法を実施するための光学系の側面図である。
 図1および図2は、本発明に係る多結晶ウエハ1の検査方法を実施するための光学系を示している。図1は検査方向(多結晶ウエハ1の搬送方向)Aが右から左に向かう状態を示す光学系の側面図であり、図2は検査方向Aが紙面から紙面手前に向かう状態を示す光学系の正面図である。
 図1,図2を参照して、本発明に係る多結晶ウエハ1の検査方法を実施するための光学系を説明する。
 まず、多結晶ウエハ1の下面側に配置されたライン型の光源2から、多結晶ウエハ1の搬送方向Aと直交する方向に延在するライン状の赤外線3を、多結晶ウエハ1のライン状の照射位置P1に向けて照射する。このとき、照射位置P1を通る光源2の光軸が多結晶ウエハ1の表面の法線n1に対して傾くように光源2が配置されている。具体的には、光源2の光軸は、光源2から出射された赤外線3が照射位置P1側から撮影位置P2側に延びるように、法線n1に対して傾斜角αを為している。
 このようなライン型の光源2は、多数の赤外線発光ダイオードを直線的に配置したり、棒状の赤外線光源とライン状のスリットが形成された光源カバーとの組合せによって構成することができる。
 照射位置P1から入射した赤外線3は、図3に模式的に示すように、多結晶ウエハ1の内部で反射および屈折を繰り返し、また、多結晶ウエハ1の表裏面で反射を繰り返して撮影位置P2に到達する。撮影位置P2に到達した赤外線3は一部が反射し、一部がそのまま多結晶ウエハ1の表面から出射される。このうち、撮影位置P2から出射した赤外線3は、その光軸7が撮影位置P2を通過するように配置されたカメラ6により撮影され、カメラ6により撮影画像が得られる。ここで、この撮影位置P2は照射位置P1から多結晶ウエハ1の面方向に所定距離D離間した位置に設定される。
 本実施の形態では、カメラ6は多結晶ウエハ1に対して光源2とは反対側に配置される。なお、このカメラ6の光軸7は撮影位置P2を通り、多結晶ウエハ1の表面に対して垂直である。
 ライン状に照射される赤外線3の波長は、内部欠陥の検出に適切な波長、例えば0.7μm~2.5μmの波長領域が好ましい。また、カメラ6もこの波長領域において良好な感度を有することが好ましい。
 撮影位置P2は、照射位置P1から所定距離Dだけ離れた位置に設定されている。この距離Dは、多結晶ウエハ1の結晶構造やその厚みなどに応じて設定され、結晶模様が淡くなる最も良好な位置に設定される。
 なお、本発明の検査方法は、厚み0.1~0.25mmの多結晶ウエハ1を対象とすることが好ましい。多結晶ウエハ1の厚みが厚くなるほど多結晶ウエハ1内部で赤外線3が屈折したり反射したり吸収されたりして、カメラ6で撮影する赤外線3の強度が低下して鮮明な撮影画像が得られないからである。多結晶ウエハ1の厚みが薄くなると、赤外線3が撮影位置P2に到達までに起こる屈折や反射の回数が少なくなり、カメラ6で得られる撮影画像に結晶模様が残ってしまう。
 また、光源2の光軸の多結晶ウエハ1の表面の法線n1に対する傾斜角αは20°以上40°以下の範囲に設定することが好ましい。傾斜角αが20°未満では、赤外線3が照射位置P1から所定距離Dだけ離れた撮影位置P2に到達するまでに要する屈折・反射の回数が大きくなり、カメラ6で撮影する赤外線3の強度が低下して鮮明な撮影画像が得られないからである。傾斜角αが20°より大きいと逆に、赤外線3が撮影位置P2に到達するまでに要する屈折・反射の回数が少なくなり、撮影画像に結晶模様が残ってしまう。
 さらに、照射位置P1と撮影位置P2との間の所定距離Dは1~3mmに設定することが好ましい。所定距離Dが1mmより短いと赤外線3が撮影位置P2に到達するまでに要する屈折・反射の回数が少なくなり、撮影画像に結晶模様が残ってしまう。所定距離Dが3mmより長いと、屈折・反射の回数が大きくなり、カメラ6で撮影する赤外線3の強度が低下して鮮明な撮影画像が得られない。
 本発明の多結晶ウエハ1の検査方法においては、結晶模様の影響が少なく、かつ、鮮明な撮影画像を得られるように、上述の多結晶ウエハ1の厚み、傾斜角α、所定距離Dを上述の範囲内で適宜設定する。
 以上のように構成される多結晶ウエハ1の検査方法を実施するための光学系において、多結晶ウエハ1の欠陥のない無欠陥領域を通過した赤外線3は、多数のランダムに存在している結晶粒の結晶方向や結晶の境界で屈折や反射を繰り返して撮影位置P2に到達する。ランダムな屈折や反射を複数回繰り返した赤外線3は、照射位置P1から所定距離D離間した撮影位置P2に到達した時には各々の結晶粒での屈折・反射の影響が相殺しあうので、カメラ6によって撮影位置P2で撮影された撮影画像は均一な明るさを有する線状の撮影画像となる。
 一方、多結晶ウエハ1に欠陥4が存在する場合は上記と異なり、赤外線3は欠陥4で乱反射を起こしたり吸収されたりするため、撮影位置P2で撮影された撮影画像には欠陥4による影や明るい部分が現れる。この欠陥4による影や明るい部分は上述の無欠陥領域を通過した赤外線3によって形成される撮影画像とは明るさが異なるので、両者の明るさを比較することで欠陥4を検出することができる。
 以上の工程を、多結晶ウエハ1を搬送方向Aに送りながら連続的に繰り返し行うことにより、図4A、図4Bに示すような面積を有する撮影画像を得ることができる。
 図4A,図4Bは、欠陥4を含む領域を透過した赤外線3を撮影したカメラ6の撮影画像を示している。
 図4Aにおいて、無欠陥領域を通過した赤外線3が形成する均一な明るさの背景画像に、欠陥4を通過した赤外線3による暗い影付きの明るい画像が形成される。したがって、均一な明るさの背景画像から明るさの異なる領域を検出することで、欠陥4を簡単かつ確実に認識できる。なお、図4Aは、厚み0.2mmの多結晶ウエハ1を欠陥検出対象とし、所定距離D=2mm、傾斜角α=20°に設定して得られた撮影画像である。
 なお本発明では、撮影位置P2は照射位置P1から多結晶ウエハ1の面方向に所定距離D=2mmだけ離間した位置に設定した。これと異なり、撮影位置を光源2の光軸の延長線上の所定距離Dが1mmより短い位置P3に設定した場合は(図1参照)、充分屈折や反射を繰り返さないまま出射された赤外線3を撮影位置P3で撮影することになるので、撮影画像は結晶の境界の影響を受けた画像となる。したがって、欠陥4を含む領域を通過した赤外線3から撮影画像を形成しても、図4Bの如く、欠陥4により影響を受けた部分は結晶模様に埋もれてしまい、欠陥4と結晶模様との識別が困難となる。
 図5は、多結晶ウエハ1の下側で、2つのライン型の光源2を撮影位置P2上の法線(カメラ6の光軸7)に対して線対称の位置に配置し、各光源2からライン状の赤外線3を多結晶ウエハ1の2箇所の照射位置P1に向けて異なる傾斜方向から照射する例である。なお、本例では各々の光源2の光軸が多結晶ウエハ1の面となす傾斜角は略同一に設定される。この例によると、前記の効果のほかに、カメラ6で検出できる赤外線3の光量が多くなり、明るい撮影画像が得られるので欠陥4の検出が容易となる。
 さらに、図6は、多結晶ウエハ1を透過した赤外線3をシリンドリカル型のレンズ8により集光し、集光した赤外線3をラインセンサー型のカメラ6により検出する例である。本例では、シリンドリカル型のレンズ8は、その長手方向がライン状の赤外線3に沿うように配置され、赤外線3の像が多結晶ウエハ1の搬送方向に拡大される。
 このように赤外線3がレンズ8により拡大されると、カメラ6による赤外線3の検出が容易となり、多結晶ウエハ1の連続的な移動に対しても誤検出や見逃しが少なくできる点で有利となる。ちなみに、レンズ8は、図1および図2のように光源2が単一の例にも組み込むこともできる。
 なお、具体的な寸法や光学系の配置などは、多結晶ウエハ1の厚み、赤外線3の波長域、赤外線3の照射角度、カメラ6の感度などによって、適切な数値に設定される。
 次に、図7は、光源2をリング型の光源とし、カメラ6をエリア型のカメラとし、光源2とカメラ6とを多結晶ウエハ1に対して異なる面側に配置した例である。リング型の光源2は、カメラ6の光軸7に対して同心状に配置されている。光源2の照射位置P1は、光源2が照射する赤外線3の光束が最も大きい位置として与えられ、光源2の円形よりもやや小さい円形である。
 本例によると、撮影位置(撮影領域)P2は、エリア型のカメラ6による検出範囲であり、図8のように、リング型の光源2の内側で、照射位置P1からカメラ6の光軸7の方向に距離Dだけ半径の小さい円の内側となる。なお、カメラ6の対物レンズ側の拡大用凸型のレンズ8は必要に応じて配置される。また、照射位置P1はリング型のスリットにより形成することもできる。
 図7の例によると、光源2からの赤外線3は、円形の照射位置P1から多結晶ウエハ1の内部に入り、屈折および反射を繰り返してカメラ6の円形の撮影位置P2の内側に到達し、エリア型のカメラ6により撮影される。
 リング型の光源2により、カメラ6の全方向から多結晶ウエハ1の照射位置P1に向けて赤外線3が照射されるため、多結晶ウエハ1内の欠陥4が或る一方向から検出しにくいときでも、その欠陥4の検出が可能となる。また、エリア型のカメラ6の採用によって、多結晶ウエハ1の検査範囲(観察範囲)がライン状の検査範囲よりも大きな面として設定できるため、検査能率が向上する。
 また、図9は、リング型の光源2とエリア型のカメラ6とを多結晶ウエハ1の同じ面側に配置した例である。この例でも、光源2からの赤外線3は円形の照射位置P1から多結晶ウエハ1の内部に入り、屈折および反射を繰り返して円形の撮影位置P2の内側に到達し、エリア型のカメラ6により撮影される。
 なお、赤外線3が多結晶ウエハ1の表面で反射することによって撮影画像が不鮮明になるときには、赤外線3の反射光がカメラ6に直接入射しないように、カメラ6に遮光用のフード9を設置してもよい。またこの例でも、照射位置P1をリング型のスリットにより形成することもできる。
 図9の例によると、照射位置P1と撮影位置P2とが多結晶ウエハ1に対して同じ面にあるから、多結晶ウエハ1内の欠陥4の部分が赤外線3に対して他の正常な部分よりも強い反射特性を有するとき、その欠陥4の検出が有効かつ容易となる。さらに照射位置P1または撮影位置P2が多結晶ウエハ1の一方の面に設定できない状態にあっても、欠陥4の検出が可能となる。
 もちろん、上述の図1、図2、図5および図6の例についても、ライン型の光源2は、多結晶ウエハ1に対しカメラ6と同じ側の面に配置してもよい。
 さらに、ライン型の光源2からの赤外線3は、図9に二点鎖線で例示するように、必要に応じて光ファイバーやアクリル樹脂板などの導光体を利用して、多結晶ウエハ1の4端面(4側面)のうち少なくとも1端面から多結晶ウエハ1の内部に向けて照射することもできる。
 この場合は、図5、図6、図7および図9の例によると、多結晶ウエハ1の移動過程で、多結晶ウエハ1の進行方向の前側端縁部または進行方向の後ろ側端縁部が1つの光源2または光源2の一部から外れても、他の光源2または光源2の他の部分が移動中の多結晶ウエハ1の端縁部から外れていなければ、引き続き欠陥4の検出が継続できる。このため、多結晶ウエハ1の端縁部についても、欠陥4の検出が可能となる。
 以上の例は、赤外線3を多結晶ウエハ1の照射位置P1に向けて傾斜方向から照射している。このため、赤外線3が結晶ウエハ1を通過する過程で、屈折および反射の機会が垂直方向の照射よりも多くなり、赤外線3が結晶模様の影響を受け難くできる。しかし、赤外線3の照射方向は、多結晶ウエハ1の照射位置P1に向けてほぼ垂直方向に設定することもできる。このように設定しても、赤外線3は多数の結晶の境界で反射されるため、垂直方向以外にも赤外線3が拡散するため、この拡散した赤外線3を撮影することで、結晶模様の影響を受けない撮影画像を得ることができる。
 また、以上の例は、赤外線3を多結晶ウエハ1の照射位置P1に向け、かつ撮影位置P2に指向させて傾斜させた状態として照射している。このため、多くの赤外線3が多結晶ウエハ1を経て、撮影位置P2に向かうことになるから、撮影位置P2で必要な光量が確保できる。しかし、赤外線3が多結晶ウエハ1を経て、撮影位置P2以外の方向に向けられていたとしても、多結晶ウエハ1の内部での屈折および反射、さらに乱反射によって、撮影位置P2に撮影可能な光量が現れるため、欠陥4の検査は、原理的に可能である。
 多結晶ウエハ1が検査位置で停止すれば撮影条件は良くなる。一方、シャタースピードを優先させる場合は、多結晶ウエハ1を連続的に移動させてもよい。また、多結晶ウエハ1の姿勢は、水平でなく、検査空間に応じて、垂直または傾斜状態として設定してもよい。
 なお、本発明はシリコンウエハに限らず、その他の多結晶構造のウエハにも利用できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年5月29日出願の日本特許出願(特願2009-130725)、及び2009年8月11日出願の日本特許出願(特願2009-186304)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の多結晶ウエハの検査方法によれば、多結晶ウエハの結晶の方向、結晶の境界やその輪郭による結晶模様の淡く、欠陥の存在を明瞭に識別できる撮影画像を得ることができ、容易にかつ確実に欠陥の検出をすることができる。

Claims (7)

  1.  光軸が多結晶ウエハ上の照射位置を通過するように配置された光源から、赤外線を前記照射位置に向けて照射する工程と、
     前記照射位置から入射して前記多結晶ウエハ内部の結晶粒界及び欠陥で屈折及び反射を繰り返して、前記照射位置から前記多結晶ウエハの面方向に所定距離離間した前記多結晶ウエハ上の撮影位置から出射した赤外線を、前記撮影位置を撮影するカメラで撮影する工程と、
     前記カメラで得られた撮影画像上で、無欠陥部分と欠陥部分の明るさの相違から前記多結晶ウエハ内の欠陥を検出する工程と、を有する多結晶ウエハの検査方法。
  2.  前記撮影位置は、前記照射位置の設定される前記多結晶ウエハの面の反対側の面に設定されることを特徴とする請求項1記載の多結晶ウエハの検査方法。
  3.  前記撮影位置は、前記照射位置の設定される前記多結晶ウエハの面と同一の面に設定されることを特徴とする請求項1記載の多結晶ウエハの検査方法。
  4.  前記光源は単一の光源であり、
     前記光源の光軸は、前記照射位置から前記撮影位置側に延びるように、前記多結晶ウエハの表面に対して傾斜していることを特徴とする請求項1から請求項3のいずれか一項に記載の多結晶ウエハの検査方法。
  5.  前記光源は、前記撮影位置に対して略対称に配置された複数の光源であり、
     各々の前記光源の前記光軸は、各々の前記照射位置から前記撮影位置側に延びるように、前記多結晶ウエハの表面に対して同一の傾斜角で傾斜していることを特徴とする請求項1から請求項3のいずれか一項に記載の多結晶ウエハの検査方法。
  6.  前記光源はライン型の光源であり、
     前記カメラは、ラインセンサー型のカメラであり、
     前記カメラは、シリンドリカル型のレンズで集光された赤外線を検出することを特徴とする請求項1から請求項5のいずれか一項に記載の多結晶ウエハの検査方法。
  7.  前記光源は、リング型の照射領域を形成するリング型の光源であり、
     前記カメラは、リング型の前記照射領域の内側を撮影領域とする、エリアセンサ型のカメラであり、
     前記カメラは、拡大用のレンズで集光された前記赤外線を検出することを特徴とする請求項1から請求項5のいずれか一項に記載の多結晶ウエハの検査方法。
PCT/JP2010/057094 2009-05-29 2010-04-21 多結晶ウエハの検査方法 WO2010137431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011515956A JP5559163B2 (ja) 2009-05-29 2010-04-21 多結晶ウエハの検査方法
KR1020117027655A KR101323035B1 (ko) 2009-05-29 2010-04-21 다결정 웨이퍼의 검사 방법
CN201080020208.XA CN102422149B (zh) 2009-05-29 2010-04-21 多晶片的检查方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009130725 2009-05-29
JP2009-130725 2009-05-29
JP2009186304 2009-08-11
JP2009-186304 2009-08-11

Publications (1)

Publication Number Publication Date
WO2010137431A1 true WO2010137431A1 (ja) 2010-12-02

Family

ID=43222548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057094 WO2010137431A1 (ja) 2009-05-29 2010-04-21 多結晶ウエハの検査方法

Country Status (5)

Country Link
JP (1) JP5559163B2 (ja)
KR (1) KR101323035B1 (ja)
CN (1) CN102422149B (ja)
TW (1) TWI468674B (ja)
WO (1) WO2010137431A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094289A (ko) * 2014-12-05 2017-08-17 케이엘에이-텐코 코포레이션 워크 피스들에서의 결함 검출을 위한 장치, 방법 및 컴퓨터 프로그램 제품
CN110487814A (zh) * 2019-08-13 2019-11-22 东莞市创明电池技术有限公司 电池铝片缺陷检测装置
US10724965B2 (en) 2018-02-09 2020-07-28 Massachusetts Institute Of Technology Systems and methods for crack detection
CN111855686A (zh) * 2019-04-30 2020-10-30 视泰科技控股公司 用于检测物体中的缺陷的装置及其方法
KR20220158572A (ko) * 2021-05-24 2022-12-01 엠아이 이큅먼트 (엠) 에스디엔. 비에이치디. 전자 구성요소의 내부 결함 검사를 수행하기 위한 장치 및 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680102A (zh) * 2012-04-28 2012-09-19 江南大学 基于机器视觉的太阳能硅晶片颜色自动检测方法
JP2014190797A (ja) * 2013-03-27 2014-10-06 Tokushima Densei Kk シリコンウェハの欠陥検査装置
TWI557407B (zh) * 2014-03-05 2016-11-11 晶元光電股份有限公司 晶粒檢測方法
KR101522365B1 (ko) * 2014-05-28 2015-05-21 이영우 빗각조명을 이용한 기판 검사장치
KR101602733B1 (ko) * 2014-10-28 2016-03-11 한국교통대학교산학협력단 웨이퍼 검사장치 및 웨이퍼 검사방법
CN105738379B (zh) * 2014-12-12 2018-10-19 上海和辉光电有限公司 一种多晶硅薄膜的检测装置及检测方法
CN107369740A (zh) * 2017-07-17 2017-11-21 苏州天准科技股份有限公司 一种用于检测太阳能硅片隐裂的光学检测装置及检测方法
CN107907549A (zh) * 2017-11-13 2018-04-13 武汉华星光电半导体显示技术有限公司 基板检查设备及基板检查方法
JP7063181B2 (ja) * 2018-08-09 2022-05-09 株式会社Sumco ウェーハの検査方法および検査装置
CN109765183B (zh) * 2019-03-28 2023-11-24 青岛海鼎通讯技术有限公司 一种手机屏检测装置及其使用方法
CN112129772A (zh) * 2019-06-24 2020-12-25 杭州元色科技有限公司 缺陷检测系统以及方法
JP6755603B1 (ja) * 2019-12-25 2020-09-16 上野精機株式会社 電子部品の処理装置
CN116913797B (zh) * 2023-07-14 2024-02-13 无锡九霄科技有限公司 一种晶圆键合质量检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065759A (ja) * 1998-08-21 2000-03-03 Trw Inc 基板の欠陥を検出する装置及びその方法
JP2001305072A (ja) * 2000-04-25 2001-10-31 Advantest Corp 基板の欠陥検出方法及び装置
JP2007218638A (ja) * 2006-02-14 2007-08-30 Sharp Corp 多結晶半導体ウエハの割れ検査装置および割れ検査方法
JP2008198966A (ja) * 2007-02-08 2008-08-28 Nippon Electro Sensari Device Kk ウエーハ欠陥検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187759B2 (ja) * 1997-12-09 2001-07-11 株式会社アドバンテスト 有機汚染検出・除去装置及びその有機汚染検出・除去方法並びに化学汚染検出・除去装置及びその化学汚染検出・除去方法
JP4363368B2 (ja) * 2005-06-13 2009-11-11 住友電気工業株式会社 化合物半導体部材のダメージ評価方法、及び化合物半導体部材の製造方法
DE102005061785B4 (de) * 2005-12-23 2008-04-03 Basler Ag Verfahren und Vorrichtung zum Erkennen von Rissen in Silizium-Wafern
KR20090060435A (ko) * 2006-09-12 2009-06-12 루돌프 테크놀로지스 인코퍼레이티드 편광 이미징

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065759A (ja) * 1998-08-21 2000-03-03 Trw Inc 基板の欠陥を検出する装置及びその方法
JP2001305072A (ja) * 2000-04-25 2001-10-31 Advantest Corp 基板の欠陥検出方法及び装置
JP2007218638A (ja) * 2006-02-14 2007-08-30 Sharp Corp 多結晶半導体ウエハの割れ検査装置および割れ検査方法
JP2008198966A (ja) * 2007-02-08 2008-08-28 Nippon Electro Sensari Device Kk ウエーハ欠陥検査装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094289A (ko) * 2014-12-05 2017-08-17 케이엘에이-텐코 코포레이션 워크 피스들에서의 결함 검출을 위한 장치, 방법 및 컴퓨터 프로그램 제품
US11105839B2 (en) 2014-12-05 2021-08-31 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
KR102386192B1 (ko) * 2014-12-05 2022-04-12 케이엘에이 코포레이션 워크 피스들에서의 결함 검출을 위한 장치, 방법 및 컴퓨터 프로그램 제품
KR20220103200A (ko) * 2014-12-05 2022-07-21 케이엘에이 코포레이션 워크 피스들에서의 결함 검출을 위한 장치, 방법 및 컴퓨터 프로그램 제품
US11726126B2 (en) 2014-12-05 2023-08-15 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
KR102589607B1 (ko) 2014-12-05 2023-10-13 케이엘에이 코포레이션 워크 피스들에서의 결함 검출을 위한 장치, 방법 및 컴퓨터 프로그램 제품
US11892493B2 (en) 2014-12-05 2024-02-06 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
US10724965B2 (en) 2018-02-09 2020-07-28 Massachusetts Institute Of Technology Systems and methods for crack detection
CN111855686A (zh) * 2019-04-30 2020-10-30 视泰科技控股公司 用于检测物体中的缺陷的装置及其方法
CN110487814A (zh) * 2019-08-13 2019-11-22 东莞市创明电池技术有限公司 电池铝片缺陷检测装置
KR20220158572A (ko) * 2021-05-24 2022-12-01 엠아이 이큅먼트 (엠) 에스디엔. 비에이치디. 전자 구성요소의 내부 결함 검사를 수행하기 위한 장치 및 방법
KR102592277B1 (ko) 2021-05-24 2023-10-19 엠아이 이큅먼트 (엠) 에스디엔. 비에이치디. 전자 구성요소의 내부 결함 검사를 수행하기 위한 장치 및 방법

Also Published As

Publication number Publication date
CN102422149B (zh) 2014-03-19
KR101323035B1 (ko) 2013-10-29
TW201100788A (en) 2011-01-01
JP5559163B2 (ja) 2014-07-23
JPWO2010137431A1 (ja) 2012-11-12
TWI468674B (zh) 2015-01-11
KR20120022993A (ko) 2012-03-12
CN102422149A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5559163B2 (ja) 多結晶ウエハの検査方法
JP5521377B2 (ja) ガラス板の欠陥識別方法および装置
JP5909751B2 (ja) 平板ガラスの異物検査装置及び検査方法
TWI422814B (zh) 基板內部缺陷檢查裝置及方法
JP2015040835A (ja) 透明板状体の欠点検査装置及び欠点検査方法
JP6487617B2 (ja) マイクロレンズアレイの欠陥検査方法及び欠陥検査装置
JP2011117928A (ja) 基板の内部欠陥検査装置および方法
JP2012026858A (ja) 円筒容器の内周面検査装置
JP2015068670A (ja) シート状物の欠点検査装置およびシート状物の欠点検査方法
JP2004309287A (ja) 欠陥検出装置、および欠陥検出方法
JP6039119B1 (ja) 欠陥検査装置
JP4630945B1 (ja) 欠陥検査装置
JP2006017685A (ja) 表面欠陥検査装置
JP7448808B2 (ja) 表面検査装置及び表面検査方法
JP6679942B2 (ja) シートのキズ欠点検査装置
CN112703393B (zh) 片状物的缺陷检查用照明、片状物的缺陷检查装置和片状物的缺陷检查方法
JP3078784B2 (ja) 欠陥検査装置
JP2012068211A (ja) シート部材の歪み検査装置及びシート部材の歪み検査方法
KR102528464B1 (ko) 비전 검사 장치
JP7126011B2 (ja) 透過光学系の検査装置
JP6086277B2 (ja) パターン検査装置及びそれに使用する照明光学系
JP4508838B2 (ja) 容器の口部の検査装置
JP2001074666A (ja) 異物検査装置
JP2006098198A (ja) 透明部材の欠陥検査装置
JP2005049291A (ja) 透明板状体の集光作用を有する微小欠点を検出する装置および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020208.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515956

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117027655

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780388

Country of ref document: EP

Kind code of ref document: A1