WO2010134530A1 - 多層構造体 - Google Patents
多層構造体 Download PDFInfo
- Publication number
- WO2010134530A1 WO2010134530A1 PCT/JP2010/058376 JP2010058376W WO2010134530A1 WO 2010134530 A1 WO2010134530 A1 WO 2010134530A1 JP 2010058376 W JP2010058376 W JP 2010058376W WO 2010134530 A1 WO2010134530 A1 WO 2010134530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ethylene
- resin
- intermediate layer
- alcohol copolymer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/14—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J129/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
- C09J129/02—Homopolymers or copolymers of unsaturated alcohols
- C09J129/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/05—5 or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2272/00—Resin or rubber layer comprising scrap, waste or recycling material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/758—Odour absorbent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- the present invention relates to a multilayer structure in which a layer made of a blend of an ethylene-vinyl alcohol copolymer and a maleic anhydride-modified olefin resin is provided as an intermediate layer. Concerning the structure.
- Polyolefin resins such as polyethylene and polypropylene, and polyester resins represented by polyethylene terephthalate have excellent properties such as moldability, transparency, mechanical strength, and chemical resistance, and packaging materials such as films, sheets, and bottles. Is used in various fields.
- an ethylene-vinyl alcohol copolymer (saponified ethylene-vinyl acetate copolymer) is known as a resin having an excellent oxygen barrier property.
- the above-mentioned polyolefin resins and polyesters are used.
- a multilayer structure in which a resin is used as an inner layer and an ethylene-vinyl alcohol copolymer layer as an intermediate layer (oxygen barrier resin layer) is widely used in practical use.
- the inner and outer layers described above have an oxygen-absorbing resin layer containing an oxidizing organic component of an ethylenically unsaturated group-containing polymer (for example, polybutadiene) and a transition metal catalyst component such as iron or cobalt as an intermediate layer.
- a multilayer structure provided between the two is also put to practical use as an excellent oxygen barrier property (see, for example, Patent Document 1).
- the ethylene-vinyl alcohol copolymer is excellent in oxygen barrier properties, it has a drawback of poor adhesion to other resins, so that it is adjacent to such an ethylene-vinyl alcohol copolymer layer. It is necessary to provide an adhesive layer.
- oxygen absorption is performed to compensate for a decrease in oxygen-absorbing ability (decrease in oxygen barrier properties) over time of the oxygen-absorbing resin layer.
- the ethylene-vinyl alcohol copolymer is used as the resin substrate of the conductive resin layer, and the ethylene-vinyl alcohol copolymer layer is provided on both sides of the oxygen-absorbing resin layer.
- Patent Document 2 proposes a multilayer structure provided with an intermediate layer made of a blend of an ethylene-vinyl alcohol copolymer and a polyester resin.
- JP 2007-320576 A Japanese Patent No. 3788442
- the intermediate layer itself of the blend of the ethylene-vinyl alcohol copolymer and the polyester resin has an adhesive property as well as an oxygen barrier property.
- the intermediate layer exhibits excellent adhesion to the inner and outer layers only when a polyester resin such as polyethylene terephthalate is used as the inner and outer layers.
- a polyolefin-based resin is used as the inner and outer layers, the intermediate layer of such a blend exhibits little adhesion to the inner and outer layers and is prone to delamination. It becomes necessary to provide an adhesive layer.
- an object of the present invention is to sufficiently exhibit the excellent oxygen barrier property of the ethylene-vinyl alcohol copolymer without providing a special adhesive layer, and use a polyolefin resin as the inner and outer layers. It is an object of the present invention to provide a multilayer structure that can be effectively applied even in the case of the above.
- the present inventors have used a blend of an ethylene-vinyl alcohol copolymer and a maleic anhydride-modified olefin resin widely used as an adhesive as an intermediate layer.
- both components are distributed in a state of forming a clear interface, not only excellent oxygen barrier properties but also excellent adhesion to inner and outer layers formed of polyolefin resins are expressed.
- the present inventors have completed the present invention.
- a multilayer in which an adhesive intermediate layer made of a blend of an ethylene-vinyl alcohol copolymer (A) and a maleic anhydride-modified olefin resin (B) is provided between the inner and outer layers.
- the adhesive intermediate layer comprises an ethylene-vinyl alcohol copolymer (A) and a maleic anhydride-modified olefin resin (B) in a weight ratio of 4: 6 to 8: 2.
- the phase structure of the adhesive intermediate layer is a sea-island structure in which the maleic anhydride-modified olefin resin (B) is the sea, or an ethylene-vinyl alcohol copolymer (A) and a maleic anhydride-modified olefin resin (B). Both are both continuous phases that exist as continuous phases, (2) At least one of the inner and outer layers is formed of a polyolefin resin, (3) A gas barrier intermediate layer comprising an oxygen-absorbing resin layer or an oxygen barrier resin layer is provided between the inner and outer layers, and adjacent to the inner layer side and the outer layer side of the gas barrier intermediate layer.
- the adhesive intermediate layer is provided, (4) the gas barrier intermediate layer contains an ethylene-vinyl alcohol copolymer as a resin substrate; (5)
- a is the melt viscosity of the ethylene-vinyl alcohol copolymer (A) at 200 ° C. and a shear rate of 200 s ⁇ 1
- b is the melt viscosity of the maleic anhydride-modified olefin resin (B) at 200 ° C. and a shear rate of 200 s ⁇ 1 .
- the viscosity ratio ⁇ AB defined by is in the range of 3 to 10, (6)
- An odor scavenger is blended in the inner layer, Is preferred.
- a multilayer in which an adhesive intermediate layer made of a blend of ethylene-vinyl alcohol copolymer (A) and maleic anhydride-modified olefin resin (B) is provided between the inner and outer layers.
- b is the melt viscosity of the maleic anhydride-modified olefin resin (B) at 200 ° C. and a shear rate of 200 s ⁇ 1 .
- a multilayer structure is provided in which the viscosity ratio ⁇ AB defined by is in the range of 3 to 10.
- the multilayer structure of the present invention it is remarkable that a layer made of a blend of an ethylene-vinyl alcohol copolymer (A) and a maleic anhydride-modified olefin resin (B) is provided between the inner and outer layers.
- a blend layer exhibits not only excellent oxygen barrier properties due to the ethylene-vinyl alcohol copolymer, but also against the inner and outer layers, particularly against the inner and outer layers formed from a polyolefin resin.
- it is an adhesive intermediate layer exhibiting excellent adhesiveness. That is, the multilayer structure of the present invention can exhibit the excellent oxygen barrier property of the ethylene-vinyl alcohol copolymer without providing a special adhesive layer in order to prevent delamination and the like. It is particularly suitably applied as a packaging material for containers and caps.
- the adhesive intermediate layer formed between the inner and outer layers is selected and combined so that the viscosity ratio ⁇ AB defined by the above formula is in the range of 3 to 10.
- the copolymer (A) and the maleic anhydride-modified olefin resin (B) are formed, the oxygen barrier property of the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B) Therefore, the adhesion to the inner and outer layers can be improved simultaneously with the oxygen barrier property without providing a special adhesive layer.
- 1 is a diagram schematically showing a cross-sectional observation photograph in the thickness direction of an intermediate layer made of a blend of an ethylene-vinyl alcohol copolymer (A) and a maleic anhydride-modified olefin resin (B), where (a) shows the present invention. It is an example and (b) is a comparative example outside the scope of the present invention.
- 2 is an electron micrograph showing the phase structure of an ethylene-vinyl alcohol copolymer and a maleic anhydride-modified olefin resin in an adhesive intermediate layer, where (a) is an example of the present invention and (b) is outside the scope of the present invention. It is a comparative example.
- the intermediate layer made of a blend of the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B) not only exhibits excellent oxygen barrier properties but also the inner and outer layers.
- ethylene-vinyl alcohol copolymer (A) and anhydrous maleic acid can be used.
- FIGS. 1 (a) and 1 (b) schematically showing an observation photograph near the interface between both components the central bright portion is the ethylene-vinyl alcohol copolymer (A). Is a portion where the maleic anhydride-modified olefin resin (B) is present.
- the contrast distribution in the thickness direction shows a large standard deviation as described above.
- FIG. 1A the brightness of both components is clear. This means that the interface between the two components is clearly present.
- the standard deviation of the contrast distribution is smaller than the above range, the difference in brightness between the two components is small, and the interface between the two components is unclear as shown in FIG. To do.
- the contrast distribution in the cross-sectional observation photograph as described above can be measured by image analysis software.
- the adhesive intermediate layer in the multilayer structure of the present invention is clearly defined between the two components (A) and (B) as shown in FIG. Since the interface exists, as shown in Example 1 described later, together with excellent oxygen barrier properties, it exhibits excellent adhesion to the inner and outer layers of the polyolefin-based resin, without providing an adhesive layer, Inconveniences such as delamination can be effectively avoided.
- the intermediate layer is formed from a blend of the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B), two components as shown in FIG.
- the oxygen barrier properties are unsatisfactory as in Comparative Example 1 described later, and the adhesion to the inner and outer layers of the polyolefin resin is also low. It will be significantly lower.
- the standard deviation of the contrast distribution between the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B) is in the above range, and a clear interface is formed between the two components.
- the reason for the excellent gas barrier properties and excellent adhesion to the inner and outer layers is not clearly understood, but there is probably a clear interface between the two components. This is because both components are incompatible and exist in independent forms.
- the ethylene-vinyl alcohol copolymer (A) has excellent oxygen barrier properties and the maleic anhydride-modified olefin resin (B). It is presumed that all of the properties as an adhesive are sufficiently exhibited.
- the ethylene-vinyl alcohol copolymer (A) and maleic anhydride which are selected and combined so that the viscosity ratio ⁇ AB defined by the above formula is in the range of 3 to 10
- the adhesive intermediate layer has a sea-island structure or an ethylene-vinyl alcohol copolymer with the maleic anhydride-modified olefin resin (B) as the sea.
- a bicontinuous structure in which both (A) and the maleic anhydride-modified olefin resin (B) are present as a continuous phase is formed.
- both components (A) and (B) are not impaired, and the oxygen barrier property of the ethylene-vinyl alcohol copolymer (A) and the adhesiveness of the maleic anhydride-modified olefin resin (B) are independent.
- the adhesiveness to the inner and outer layers can be improved simultaneously with the oxygen barrier property without providing a special adhesive layer.
- the ethylene-vinyl alcohol copolymer (A) used for the formation of the above-mentioned adhesive intermediate layer is itself, that is, in the field of packaging materials, except for conditions relating to fluidity described later.
- the grade used as an oxygen barrier resin is used.
- an ethylene-vinyl acetate copolymer having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%, is saponified so that the saponification degree is 96% or more, particularly 99 mol% or more.
- the saponified copolymer obtained is preferably used.
- the ethylene-vinyl alcohol copolymer (saponified ethylene-vinyl acetate copolymer) should have a molecular weight sufficient to form a film, and is generally a mixed solvent having a phenol / water weight ratio of 85/15.
- the maleic anhydride-modified olefin resin which is the other component forming the adhesive intermediate layer, has been conventionally used as an adhesive resin for forming an adhesive layer, for example, grafts modified with maleic anhydride.
- a modified olefin resin is used.
- polyethylene, polypropylene, and ethylene- ⁇ olefin copolymer are suitable as the olefin resin to be graft-modified.
- the amount of carbonyl group (> C ⁇ O) in the main chain or side chain is 1 to 200 meq / 100 g resin, particularly 1 to 50 meq / 100 g resin. It is preferable to contain.
- the ratio (A: B) should be a weight ratio of 4: 6 to 8: 2, preferably 5: 5 to 6: 4, most preferably 7: 3 to 8: 2. That is, when the ethylene-vinyl alcohol copolymer (A) is used in a larger amount than the above range, the amount of maleic anhydride-modified olefin resin (B) decreases, so that even if the oxygen barrier property is good.
- the adhesiveness to the inner and outer layers, particularly to the polyolefin-based resin is lowered, and an adhesive layer must be provided to prevent delamination.
- the amount of the maleic anhydride-modified olefin resin is larger than the above range, the adhesion to the inner and outer layers is sufficient, but since the ethylene-vinyl alcohol copolymer (A) is small, the oxygen barrier As a result, the intermediate layer only functions as an adhesive layer.
- the adhesive intermediate layer has a blend ratio of both components within the above-described predetermined range and is anhydrous in order to maintain the above-described excellent oxygen barrier property and have adhesiveness to the inner and outer layers.
- a bicontinuous phase is preferred in terms of oxygen barrier properties.
- a is the melt viscosity of the ethylene-vinyl alcohol copolymer (A) at 200 ° C. and a shear rate of 200 s ⁇ 1
- b is the melt viscosity of the maleic anhydride-modified olefin resin (B) at 200 ° C. and a shear rate of 200 s ⁇ 1 . It can be formed by combining both components so that the viscosity ratio ⁇ AB defined by the formula is in the range of 3 to 10, particularly 3 to 7.
- the standard deviation of the contrast distribution between the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B) is within a predetermined range.
- the ethylene-vinyl alcohol copolymer (A) and the maleic anhydride-modified olefin resin (B) are selected at the same time as satisfying the above quantity ratio and viscosity ratio ⁇ AB , and at the same time, the molding temperature
- the melt kneading temperature, shear heat generation, and die temperature in a cylinder of an extruder or the like should be relatively low.
- the maleic anhydride-modified olefin resin (B) to be used is generally 1 to 200 meq / 100 g in the main chain or side chain. It preferably contains a carbonyl group (> C ⁇ O) in an amount of resin, especially 1 to 50 meq / 100 g resin (ie corresponding to acid modification rate).
- the modification rate is higher than the above range, the reactivity becomes high, and problems such as the above-described decrease in adhesiveness and gel and sag occur, and when it is low, the function as an adhesive tends to be reduced.
- blend additives such as a dispersing agent
- transparency in the range which does not impair adhesiveness and oxygen barrier property as needed in order to maintain transparency and a moldability.
- the resin for forming the inner and outer layers is not particularly limited, and the inner and outer layers may be formed of various thermoplastic resins, particularly from the viewpoint of use as a packaging material.
- thermoplastic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, which are particularly preferably used, can be used, but it is particularly preferable to use a polyolefin resin.
- the present invention when the inner and outer layers are formed of a polyolefin resin, the excellent oxygen barrier property of the ethylene-vinyl alcohol copolymer that hardly exhibits adhesion to the polyolefin resin This is because the present invention can be effectively exhibited without causing inconveniences such as delamination, and the excellent effects of the present invention are maximized.
- polystyrene resins examples include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and linear ultra low density polyethylene (LVLDPE).
- LDPE low density polyethylene
- MDPE medium density polyethylene
- HDPE high density polyethylene
- LLDPE linear low density polyethylene
- LVLDPE linear ultra low density polyethylene
- ionomer ion-crosslinked olefin copolymer
- the various inner and outer layer forming resins as described above may be those of extrusion grade or injection grade conventionally used in the field of packaging materials.
- the inner layer and the outer layer do not need to be formed of the same kind of resin.
- the outer layer may be formed of the above-described polyester resin, and the inner layer may be formed of a polyolefin resin.
- a lubricant, a modifier, a pigment, an ultraviolet absorber and the like may be blended as necessary.
- the multilayer structure of the present invention may have an arbitrary layer structure as long as the adhesive intermediate layer described above is provided between the inner and outer layers, and an appropriate layer structure according to the application. You may have.
- a layer structure as the simplest layer structure, although a three-layer structure of inner layer / adhesive intermediate layer / outer layer can be mentioned, in order to further enhance the oxygen barrier property, a structure provided with a gas barrier intermediate layer is preferable.
- a five-layer structure of inner layer / adhesive intermediate layer / gas barrier intermediate layer / adhesive intermediate layer / outer layer may be employed.
- examples of the gas barrier layer include an oxygen barrier resin layer or an oxygen absorbing resin layer.
- the oxygen-barrier resin that forms the oxygen-barrier resin layer is typically the above-described ethylene-vinyl alcohol copolymer.
- the oxygen-barrier resin layer formed from the ethylene-vinyl alcohol copolymer is described above. Adhesiveness with the adhesive intermediate layer is the highest and is extremely suitable.
- the ethylene-vinyl alcohol copolymer may be the same as the ethylene-vinyl alcohol copolymer used for forming the adhesive intermediate layer.
- oxygen barrier resins other than ethylene-vinyl alcohol copolymer include nylon 6, nylon 6/6, nylon 6/6/6 copolymer, metaxylylene adipamide (MXD6), nylon 6 -Polyamides, such as 10, nylon 11, nylon 12, nylon 13, etc. can be mentioned.
- these polyamides those having the number of amide groups per 100 carbon atoms in the range of 5 to 50, particularly 6 to 20 are preferable in that they have high oxygen barrier properties.
- These polyamides should also have a molecular weight sufficient to form a film. For example, in concentrated sulfuric acid (concentration 1.0 g / dl), the relative viscosity measured at 30 ° C. is 1.1 or more, particularly 1.5 or more. It is desirable to be.
- the oxygen-absorbing resin layer is a resin layer containing an oxidizing organic component and a transition metal catalyst component, and is usually a material in which an oxidizing organic component and a transition metal catalyst are dispersed in a base resin, It may be a known one disclosed in Patent Document 1 and the like. That is, the oxidizing organic component has a function of blocking oxygen when it is oxidized by absorbing oxygen, and the transition metal catalyst component is blended to promote oxidation of the oxidizing organic component.
- examples of the oxidizing organic component include an ethylenically unsaturated group-containing polymer.
- This polymer has a carbon-carbon double bond, and this double bond portion is easily oxidized by oxygen, whereby oxygen is absorbed and trapped.
- Such an ethylenically unsaturated group-containing polymer is derived from, for example, polyene as a monomer, and a suitable example of polyene used as the monomer is not limited thereto. Although not, the following can be illustrated.
- Conjugated dienes such as butadiene and isoprene; 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl 1,4-hexadiene, 5-methyl-1,4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7- Chain non-conjugated dienes such as methyl-1,6-octadiene; Methyltetrahydroindene, 5-ethylidene-2-norbornene, 5- Cyclic non-conjugated dienes such as methylene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-
- a homopolymer of the above polyene, or a random copolymer, a block copolymer, or the like obtained by combining two or more of the above polyenes with other monomers can be used as the oxidizing polymer.
- Examples of other monomers copolymerized with the polyene include ⁇ -olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1- Nonadecene, 1-eicosene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-tetradecene and the like can be exemplified. Besides these, styrene, vinyltriene, acrylonitrile , Methacrylonitrile, vinyl acetate, methyl methacrylate, ethyl acrylate and
- oxidizing organic component examples include polybutadiene (BR), polyisoprene (IR), natural rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), and chloroprene among the polymers derived from polyene described above. Rubber, ethylene-propylene-diene rubber (EPDM), and the like are suitable, but of course not limited thereto. Further, the iodine value is preferably 100 or more, particularly about 120 to 196.
- a polymer that is easily oxidized such as polypropylene and an ethylene / carbon oxide copolymer, can be used as the oxidizing organic component.
- the above-mentioned oxidizing polymer and its copolymer preferably have a viscosity at 40 ° C. in the range of 1 to 200 Pa ⁇ s from the viewpoint of moldability.
- the transition metal catalyst is used to promote the oxidation of the oxidizing organic component, and is used in the form of a low-valent inorganic salt, organic salt or complex salt of the transition metal.
- the transition metal is preferably a group VIII metal such as iron, cobalt, nickel, etc., but also a group I metal such as copper, silver, tin, titanium, zirconium, etc. It may be a Group IV metal, a Group V metal such as vanadium, a Group VI metal such as chromium, a Group VII metal such as manganese, or the like.
- cobalt is particularly preferable because it significantly promotes oxygen absorption (oxidation of the oxidizing organic component).
- Examples of the inorganic salts of transition metals include halides such as chlorides, sulfur oxysalts such as sulfates, nitrogen oxysalts such as nitrates, phosphorus oxysalts such as phosphates, and silicates. .
- organic salts of transition metals include carboxylates, sulfonates, and phosphonates, and carboxylates are preferred for the purposes of the present invention. Specific examples thereof include acetic acid, propionic acid, isopropionic acid, butanoic acid, isobutanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, 3, 5, 5 -Trimethylhexanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, Linderic acid, tuzuic acid, petroceric acid, oleic acid, linoleic acid, linolenic acid And transition metal salts such as arachidonic acid,
- transition metal complexes include complexes with ⁇ -diketone or ⁇ -keto acid ester.
- ⁇ -diketone and ⁇ -keto acid ester include the following. Acetylacetone, Ethyl acetoacetate, 1,3-cyclohexadione, Methylene bis-1,3-cyclohexadione, 2-benzyl-1,3-cyclohexadione, Acetyltetralone, Palmitoyltetralone, Stearoyl tetralone, Benzoyltetralone, 2-acetylcyclohexanone, 2-benzoylcyclohexanone, 2-acetyl-1,3-cyclohexadione, Benzoyl-p-chlorobenzoylmethane, Bis (4-methylbenzoyl) methane, Bis (2-hydroxybenzoyl) methane, Benzoylacetone, Tribenzoylmethane, Diacety
- any thermoplastic resin can be used, but the above-mentioned ethylene-vinyl alcohol copolymer is preferred. That is, by using an ethylene-vinyl alcohol copolymer as a base resin, the oxygen barrier property of this layer can be further enhanced, and at the same time, the adhesion property to the above-mentioned adhesive intermediate layer can be enhanced.
- the oxidizing organic component may be used in an amount of 1 to 15% by weight, particularly 2 to 10% by weight, based on the ethylene-vinyl alcohol copolymer as the base resin.
- the transition metal catalyst is blended in an amount of 10 to 1000 ppm, particularly 50 to 500 ppm in terms of metal.
- a layer structure in which an oxygen-absorbing resin layer is provided as a gas barrier layer is particularly suitable. That is, in the oxygen-absorbing resin layer, as the oxidation of the oxidizing organic component progresses, the oxygen-absorbing ability decreases, and thus the oxygen barrier property decreases. Since the adhesive intermediate layer is provided, the oxygen barrier property of the adhesive intermediate layer compensates for the decrease in the oxygen barrier property of the oxygen-absorbing resin layer, and can maintain an excellent oxygen barrier property over a long period of time. Because it can.
- the oxygen-absorbing resin layer low molecular weight components such as aldehyde are generated with the oxidation of the oxidizing organic component, and such low molecular weight components cause odor and coloration.
- this multilayer structure is used as a container. If used, the flavor of the container contents may be reduced. For this reason, in the aspect which provided the oxygen absorptive resin layer, it is suitable to mix
- an odor scavenger a porous inorganic material mainly composed of silicate, such as zeolite or activated clay powder obtained by acid treatment of smectite clay minerals such as montmorillonite, is particularly preferable.
- High silica zeolite (silica / alumina ratio of 100 or more), which is a ZSM5 type crystal, is excellent in so-called plastic-specific polyodor and oxidation by-product trapping performance.
- Such an odor scavenger is generally blended in the inner layer (or outer layer) in an amount of 0.5 to 10% by weight.
- the multilayer structure of the present invention can be provided with a regrind layer by utilizing the excellent adhesiveness of the adhesive intermediate layer, whereby resources can be reused.
- This regrind layer is a mixture of the same kind of scrap resin as the inner / outer layer resin generated during inner / outer layer molding or container molding in the virgin resin for inner / outer layer formation. It is provided between the layer and the adhesive intermediate layer, in particular between the inner layer and the adhesive intermediate layer.
- each layer may be appropriately set according to the use of the multilayer structure so that the characteristics of each layer are sufficiently exhibited.
- the multilayer structure of the present invention is suitable for use as a packaging material, and is provided for use as, for example, a packaging film or sheet, a cap, or a container (such as a bottle or a cup-shaped container).
- This multi-layer structure has a known contrast condition except that a predetermined contrast distribution is formed in the adhesive intermediate layer and a molding condition is adopted so that a clear interface is formed between the two components. Molded. For example, using a number of extruders and injection machines according to the number of layers, the film or sheet, cap or container preform was formed by co-extrusion, co-injection, etc., and formed into a preform form. The product is formed into a bottle or cup-shaped container by subsequent secondary molding, for example, blow molding or plug assist molding.
- the present invention is particularly effective for those in which the inner and outer layers are formed of a polyolefin resin and exhibits excellent oxygen barrier properties in addition to the excellent moisture resistance possessed by the polyolefin resin.
- Beverages such as beer, wine, fruit juice, carbonated soft drink, fruit, nuts, vegetables, meat products, infant food, coffee, jam, mayonnaise, ketchup, cooking oil, dressing, sauces, boiled dairy products
- packaging materials such as containers for filling various contents that deteriorate in the presence of oxygen, such as pharmaceuticals, cosmetics, and gasoline.
- the multilayer structure of the present invention is excellent in transparency, it can be suitably used for packaging containers that require transparency.
- Ethylene vinyl alcohol copolymer (EVOH, Kuraray EP-F171B) as a base resin, cobalt neodecanoate (cobalt content: 14% by weight, DICANATE 5000 manufactured by Dainippon Ink & Chemicals, Inc.), and anhydrous maleic as a transition metal catalyst
- An acid-modified polybutadiene (acid value 29 gKOH / g, RICON 131MA5 manufactured by Sartomer) was prepared.
- a 350 ppm transition metal catalyst in a cobalt amount was uniformly attached to the surface of the base resin pellets to obtain catalyst pellets.
- the catalyst pellets were melt-kneaded at a screw rotation speed of 100 rpm and a molding temperature of 200 ° C. using a liquid feeder.
- the maleic anhydride-modified polybutadiene was dropped to 5 wt% with respect to the catalyst pellets and extruded from a strand die to prepare an oxygen-absorbing resin composition.
- EVOH ethylene vinyl alcohol copolymer
- AD maleic anhydride-modified olefin resin
- a capillograph manufactured by Toyo Seiki Co., Ltd.
- capillary L / D 10 / 1 (mm)
- This deposited surface was observed with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation), and the phase structure of the adhesive intermediate layer was photographed at an acceleration voltage of 5 kV and a magnification of 3000 times.
- the resulting photos are from Adobe Photoshop Elements Using version 2.0, normalization was performed by an “image ⁇ tone correction ⁇ equalization” command in the software screen. This is to darken the blackest pixel of the photograph as 0 and the whitest pixel as 255, and to darken the entire image within the range of 0 to 255, and to compare the contrast distribution in the vicinity of the interface under the same conditions It is.
- the “distribution of the EVOH and AD interface in the adhesive intermediate layer is digitized by the“ measurement ⁇ manual measurement ⁇ concentration cross-section measurement ”command in the software screen, Standard deviation was determined. Further, such image analysis was performed at 10 locations, the standard deviations were averaged, and those with a value of 65 or more were marked with ⁇ , and those with less than 65 were marked with ⁇ .
- the boundary between EVOH (white portion) and AD (black portion) is clear, and the width of the contrast distribution is wide. Conversely, when the interface is unclear, the boundary becomes unclear, and the width of the contrast distribution becomes narrow.
- the standard deviation value is used as an index indicating the width of the contrast distribution.
- Example 1 Using a direct blow molding machine, a wide-bottle-shaped multilayer structure (bore diameter: 44 mm, internal volume: 125 cc) was produced under the conditions of a shell diameter of 15 mm, a core diameter of 13 mm, and a molding temperature of 200 ° C.
- the layer structure is 4 types and 6 layers (container outside: polypropylene layer 50um / adhesive intermediate layer 25um / EVOH layer 35um / adhesive intermediate layer 25um / regrind layer 300um / polypropylene layer 250um: container inside).
- the resin used is polypropylene (B251VT made by Prime Polymer), EVOH (Eval EP-F171B made by Kuraray), and the adhesive intermediate layer is dry blended by EVOH and AD (Admer QE840 made by Mitsui Chemicals) at a weight ratio of 7: 3.
- the produced multilayer structure was subjected to an oxygen barrier property evaluation, a delamination evaluation, and a sensory evaluation by obtaining a standard deviation by the evaluation method described above.
- Example 2 A multilayer structure was prepared in the same manner as in Example 1 except that the blending ratio of the blend resin used for the adhesive intermediate layer was changed to 5: 5, and standard deviation, oxygen barrier property evaluation, delamination evaluation, and sensory evaluation were performed. The results are shown in Table 1.
- Example 4 A multilayer structure was produced in the same manner as in Example 1 except that a layer (oxygen absorbing layer) of an oxygen absorbing resin composition containing an oxygen absorbing agent was formed instead of the EVOH layer. That is, the layer structure of this multilayer structure is 4 types and 6 layers (outside of container: polypropylene layer 50 um / adhesive intermediate layer 25 um / oxygen-absorbing resin layer 35 um / adhesive intermediate layer 25 um / regrind layer 300 um / polypropylene layer 250 um: Inside the container). The produced multilayer structure was subjected to oxygen barrier property evaluation, delamination evaluation, and sensory evaluation. The results are shown in Table 1.
- Example 5 Using a sheet molding machine, a multilayer sheet was produced under the condition of a molding temperature of 230 ° C. And the multilayer cup was produced using the plug assist vacuum pressure forming machine.
- the layer structure of the used multilayer sheet is 5 types and 6 layers (outside: polypropylene layer 400 um / adhesive intermediate layer 70 um / oxygen-absorbing resin composition layer 60 um / adhesive intermediate layer 70 um / regrind layer 600 um / deodorant compounded resin) Layer 300 um: inside) and the total sheet thickness is 1500 um.
- the adhesive intermediate layer was formed using a blend resin obtained by dry blending EVOH and AD (Admer QE840 manufactured by Mitsui Chemicals) at a weight ratio of 6: 4.
- Example 6 Using a multilayer compression molding method in which various materials are extruded by an extruder and the cut molten resin lump (drop) is set in a compression mold and compression molded, the container weight is 6.0 g, and the internal volume at the time of full filling Produced a 66 ml multilayer cup.
- the layer structure and thickness of each layer of the cup body are 3 types and 5 layers (outside: deodorant compounded resin layer 215um / adhesive intermediate layer 20um / oxygen-absorbing resin composition layer 30um / adhesive intermediate layer 20um / deodorant compounded resin layer) 215um: inside).
- a blend resin obtained by dry blending EVOH and AD maleic anhydride olefin resin, Admer QF551 manufactured by Mitsui Chemicals
- the produced multilayer cup was subjected to oxygen barrier property evaluation, delamination evaluation, and sensory evaluation. The results are shown in Table 1.
- Example 2 A multilayer structure was prepared in the same manner as in Example 1 except that AD was not used for the adhesive intermediate layer, and standard deviation, oxygen barrier property evaluation, delamination evaluation, and sensory evaluation were performed. The results are shown in Table 1. It was.
- Example 3 A multilayer structure was prepared in the same manner as in Example 1 except that EVOH was not used for the adhesive intermediate layer, standard deviation, oxygen barrier property evaluation, delamination evaluation, and sensory evaluation were performed. The results are shown in Table 1. It was.
- Example 4 A multilayer structure was prepared in the same manner as in Example 1 except that the blending ratio of the blend resin used for the adhesive intermediate layer was changed to 3: 7, and standard deviation, oxygen barrier property evaluation, delamination evaluation, and sensory evaluation were performed. The results are shown in Table 1.
- Example 5 A multilayer structure is prepared in the same manner as in Example 1 except that the blending ratio of the blend resin used for the adhesive intermediate layer is changed to 9: 1, and standard deviation, oxygen barrier property evaluation, delamination evaluation, and sensory evaluation are performed. The results are shown in Table 1.
- the viscosity and blending ratio of the blend resin used for the adhesive intermediate layer affect delamination evaluation and barrier properties. This is due to the phase structure of the adhesive intermediate layer.
- the interface between EVOH and AD is clear, that is, when the standard deviation is 65 or more, good oxygen barrier properties are obtained without delamination. be able to.
- the oxygen-absorbing resin in the intermediate layer it maintains a high oxygen barrier property even after retorting, and by providing a deodorizing layer in the innermost layer, it accompanies so-called plastic-specific polyodor and oxygen absorption It was confirmed from sensory evaluation that the odor derived from the oxidation by-product can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
Abstract
Description
(1)前記接着性中間層の相構造が、無水マレイン酸変性オレフィン樹脂(B)を海とする海島構造もしくはエチレン-ビニルアルコール共重合体(A)及び無水マレイン酸変性オレフィン樹脂(B)の何れもが連続相として存在する両連続相となっており、
(2)前記内外層の少なくともどちらかの層が、ポリオレフィン系樹脂により形成されていること、
(3)前記内外層の間に、酸素吸収性樹脂層もしくは酸素バリア性樹脂層からなるガス遮断性中間層が設けられており、該ガス遮断性中間層の内層側及び外層側に隣接して、前記接着性中間層が設けられていること、
(4)前記ガス遮断性中間層が、樹脂基材としてエチレン-ビニルアルコール共重合体を含むこと、
(5)前記接着性中間層において、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とは、下記式:
ηAB=a/b
式中、aは、200℃、剪断速度200s-1でのエチレン-ビニルア
ルコール共重合体(A)の溶融粘度であり、
bは、200℃、剪断速度200s-1での無水マレイン酸変性
オレフィン樹脂(B)の溶融粘度である、
で定義される粘度比ηABが3~10の範囲にあること、
(6)前記内層に、臭気捕捉剤が配合されていること、
が好適である。
前記エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とは、下記式:
ηAB=a/b
式中、aは、200℃、剪断速度200s-1でのエチレン-ビニルア
ルコール共重合体(A)の溶融粘度であり、
bは、200℃、剪断速度200s-1での無水マレイン酸変性
オレフィン樹脂(B)の溶融粘度である、
で定義される粘度比ηABが3~10の範囲にあることを特徴とする多層構造体が提供される。
本発明の多層構造体では、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とのブレンド物からなる中間層が、優れた酸素バリア性を示すばかりか、内外層に対して優れた接着性を示し、接着性中間層として機能するのであるが、このような酸素バリア性と接着性を発現させるためには、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とを所定の量比(4:6乃至8:2)で含有していると同時に、多層構造体厚さ方向断面の走査型電子顕微鏡観察写真において、該接着性中間層内のエチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)との界面近傍のコントラスト分布を測定したとき、65以上、特に70以上の標準偏差を示すことが必要である。
尚、上記のような断面観察写真でのコントラスト分布は、画像解析ソフトによって測定することができる。
本発明において、上記の接着性中間層の形成に使用されるエチレン-ビニルアルコール共重合体(A)としては、後述する流動性に関する条件を除けば、それ自体のもの、即ち、包装材料の分野で酸素バリア性樹脂として使用されているグレードのものが使用される。
ηAB=a/b
式中、aは、200℃、剪断速度200s-1でのエチレン-ビニルア
ルコール共重合体(A)の溶融粘度であり、
bは、200℃、剪断速度200s-1での無水マレイン酸変性
オレフィン樹脂(B)の溶融粘度である、
で定義される粘度比ηABが3~10、特に3~7の範囲となるように、両成分を組み合わせることにより形成することができる。即ち、このような流動特性が得られるように両成分を組み合わせることにより、このブレンド物が押出され或いは射出されて接着性中間層を形成する際に、各成分の酸素バリア性や接着性が損なわれることなく、無水マレイン酸変性オレフィン樹脂(B)を海とする海島構造もしくは何れの成分もが層状に連続した分布構造が容易に形成されることとなる。
本発明の多層構造体において、内外層形成用の樹脂としては、特に制限されず、各種の熱可塑性樹脂により内外層が形成されていてもよく、特に包装材料としての使用の観点から、この分野で特に好適に使用されているポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステルを使用することができるが、特にポリオレフィン系樹脂を用いることが好適である。即ち、本発明では、内外層をポリオレフィン系樹脂により形成した場合において、ポリオレフィン系樹脂に対して接着性を殆ど示さないエチレン-ビニルアルコール共重合体の優れた酸素バリア性を、格別の接着剤層を用いることなく、デラミネーションなどの不都合を生じることなく効果的に発揮させることができるのであり、本発明の優れた効果が最大限に発揮されるからである。
本発明の多層構造体は、上記の内外層の間に、前述した接着性中間層が設けられている限り、任意の層構造を有していてよく、その用途に応じて適宜の層構造を有していてよい。このような層構造において、最もシンプルな層構造としては、
内層/接着性中間層/外層
の3層構造を挙げることができるが、酸素バリア性をさらに高めるために、ガス遮断性中間層を設けた構造とすることが好ましく、特に、
内層/接着性中間層/ガス遮断性中間層/接着性中間層/外層
の5層構造とすることができる。
ブタジエン、イソプレン等の共役ジエン;
1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、4-メチル
1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4,5-ジ
メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン等の
鎖状非共役ジエン;
メチルテトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-
メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン
、5-ビニリデン-2-ノルボルネン、6-クロロメチル-5-イソプロ
ペニル-2-ノルボルネン、ジシクロペンタジエン等の環状非共役ジエン
;
2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-
イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボ
ルナジエン等のトリエン、クロロプレン;
また、上記ポリエンと共重合させる他の単量体としては、例えば、炭素数が2乃至20のα-オレフィン、具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等を例示することができ、また、これら以外にも、スチレン、ビニルトリエン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、メチルメタクリレート、エチルアクリレートなどを用いることもできる。
アセチルアセトン、
アセト酢酸エチル、
1,3-シクロヘキサジオン、
メチレンビス-1,3-シクロヘキサジオン、
2-ベンジル-1,3-シクロヘキサジオン、
アセチルテトラロン、
パルミトイルテトラロン、
ステアロイルテトラロン、
ベンゾイルテトラロン、
2-アセチルシクロヘキサノン、
2-ベンゾイルシクロヘキサノン、
2-アセチル-1,3-シクロヘキサジオン、
ベンゾイル-p-クロルベンゾイルメタン、
ビス(4-メチルベンゾイル)メタン、
ビス(2-ヒドロキシベンゾイル)メタン、
ベンゾイルアセトン、
トリベンゾイルメタン、
ジアセチルベンゾイルメタン、
ステアロイルベンゾイルメタン、
パルミトイルベンゾイルメタン、
ラウロイルベンゾイルメタン、
ジベンゾイルメタン、
ビス(4-クロルベンゾイル)メタン、
ベンゾイルアセチルフェニルメタン、
ステアロイル(4-メトキシベンゾイル)メタン、
ブタノイルアセトン、
ジステアロイルメタン、
ステアロイルアセトン、
ビス(シクロヘキサノイル)メタン、
ジピバロイルメタンなど。
この多層構造体は、接着性中間層に所定のコントラスト分布が形成され、ニ成分の間に明確な界面が形成されるような成形条件が採用されることを除けば、それ自体公知の条件で成形される。例えば、層の数に応じた数の押出機や射出機を用いて、共押出、共射出などによりフィルム乃至シート、キャップ或いは容器用プリフォームの形状に成形され、プリフォームの形態に成形されたものは、続いての二次成形、例えばブロー成形、プラグアシスト成形などによって、ボトル或いはカップ状容器に成形されることとなる。
また本発明の多層構造体は透明性にも優れているため、透明性の要求される包装容器にも好適に使用できる。
[酸素吸収性樹脂組成物の作製]
基材樹脂としてエチレンビニルアルコール共重合体(EVOH、クラレ製EP-F171B)、遷移金属触媒としてネオデカン酸コバルト(コバルト含有率14重量%、大日本インキ化学工業(株)製DICANATE5000)、及び無水マレイン酸変性ポリブタジエン(酸価29gKOH/g、サートマー製RICON131MA5)を用意した。
上記基材樹脂のペレットと遷移金属触媒とをタンブラーで混合することにより、コバルト量で350ppmの遷移金属触媒を、基材樹脂ペレット表面に均一に付着させて、触媒ペレットを得た。
次いで、出口部分にストランドダイを装着した二軸押出機(東芝機械(株)製TEM-35B)を用い、スクリュー回転数100rpm、成形温度200℃で前記触媒ペレットを溶融混練しながら、液体フィーダーにより、前記無水マレイン酸変性ポリブタジエンを、前記触媒ペレットに対して5重量%になるように滴下し、ストランドダイから押し出すことにより、酸素吸収性樹脂組成物を作製した。
二軸押出機(東芝機械(株)TEM-35B)を用い、スクリュー回転数100rpm、成形温度200℃でポリプロピレンを溶融混練し、粉体フィーダーにより、合成ゼオライト(水澤化学工業製Na―ZSM5型)を、ポリプロピレンに対して5重量%になるように添加して押し出すことにより、脱臭剤配合樹脂組成物を作製した。
尚、ポリプロピレンとしては、プライムポリマー製B251VTを用いた。
[粘度測定]
接着性中間層に用いるエチレンビニルアルコール共重合体(以下、EVOHと略す)及び無水マレイン酸変性オレフィン樹脂(以下、ADと略す)について、キャピログラフ(東洋精機製)を用い、キャピラリーL/D=10/1(mm)、シリンダー温度200℃で溶融粘度を測定した。
上記粘度測定で得られた溶融粘度曲線からダイレクトブロー成形の歪み速度に相当する200s-1の溶融粘度を読みとり、下記式を用いて、粘度比ηABを算出した。
ηAB=a/b
a:200℃、剪断速度200s-1でのEVOHの溶融粘度
b:200℃、剪断速度200s-1でのADの溶融粘度
[コントラスト分布の標準偏差]
作製した多層構造体の胴部を1×1cm角になるようにカッターで切り取り、-100℃条件下で、厚さ方向断面をウルトラミクロトーム(ライカ製2050SUPERCUTS)を用いて、平滑な断面を得た。次いで、イオンスパッタ装置(日立ハイテクノロジーズ製E-1045)で試料面とスパッタ装置間距離3cm、出力15mA、蒸着時間15sの条件で蒸着した。この蒸着面を走査型電子顕微鏡(日立ハイテクノロジーズ製S-4800)で観察し、接着性中間層の相構造を加速電圧5kV、3000倍の倍率で写真撮影した。
得られた写真は、Adobe Photoshop Elements
ver2.0を用いて、ソフト画面内の“イメージ→色調補正→平均化(イコライズ)”コマンドにより規格化した。これは、写真の最も黒い画素を0、最も白い画素を255とし、画像全体を0から255の範囲内で濃淡化することであり、界面近傍のコントラスト分布の比較を同条件で行なうための処理である。
次いで、画像解析ソフトWINROOF ver6(三谷商事製)を用いて、ソフト画面内の“計測→手動計測→濃度断面計測”コマンドにより、接着性中間層におけるEVOHとAD界面近傍のコントラスト分布を数値化し、標準偏差を求めた。
さらに、このような画像解析を10箇所で行ない、標準偏差を平均化し、その値が65以上のものを○、65未満のものを×とした。
界面が明確なものは、EVOH(白い箇所)とAD(黒い箇所)の境界が鮮明であり、コントラスト分布の幅が広くなる。逆に、界面が不明確なものは、境界が不鮮明になるため、コントラスト分布の幅が狭くなる。本発明では、コントラスト分布の幅を示す指標として、標準偏差の値を用いた。
作製した多層構造体をグローブボックスに入れ、窒素置換した。次いで、多層構造体内に蒸留水を1cc入れ、アルミ箔をバリア層とする蓋材でヒートシールし密封した。この多層構造体を123℃ 30分間熱水シャワー式湿熱殺菌を行ない、30℃―80%RH条件下で1週間保管した。保管後の多層構造体内の酸素濃度をガスクロマトグラフィー(島津製GC-8A)により測定し、酸素バリア性を評価した。
酸素に敏感な内容品が品質低下を招く容器内酸素濃度の基準を1.5%とし、1.0%未満を◎、1.0%以上1.5%未満を○、1.5%以上を×とした。
作製した多層構造体の胴部をカッターで3×3cm片に切り抜き、端部がデラミするかどうかを評価した。デラミしないものを○、デラミするものを×とした。
作製した多層構造体をグローブボックスに入れ、窒素置換した。次いで、多層構造体内に蒸留水を1cc入れ、アルミ箔をバリア層とする蓋材でヒートシールし密封した。この多層構造体を123℃ 30分間熱水シャワー式湿熱殺菌を行ない、30℃―80%RH条件下で1週間保管後、容器口部を開封し、パネラーにより官能評価を行なった。
◎:ほぼ無臭
○:わずかに臭気を感じる(ポリ臭)
×:強く臭気を感じる(異臭)
ダイレクトブロー成形機を用いて、シェル直径15mm、コア直径13mm、成形温度200℃の条件で、広口ボトル形状の多層構造体(口径44mm、内容積125cc)を作製した。
層構成は、4種6層(容器外側:ポリプロピレン層50um/接着性中間層25um/EVOH層35um/接着性中間層25um/リグラインド層300um/ポリプロピレン層250um:容器内側)である。
使用樹脂は、ポリプロピレン(プライムポリマー製B251VT)、EVOH(クラレ製エバールEP-F171B)であり、接着性中間層はEVOHとAD(三井化学製アドマーQE840)を7:3の重量比でドライブレンドしたブレンド樹脂を用いた。
また、前述した粘度測定よりa=1620Pa・s、b=450Pa・sであり、ηAB=3.6であった。
ADの酸変性率は、1H-NMRで測定したところ、ピーク強度が小さく明確な定量は困難であったが、ピーク面積値より3.6meq/100g以下と推定した。
作製した多層構造体は、前述した評価方法により標準偏差を求め、酸素バリア性評価、デラミ評価、官能評価を行なった。
接着性中間層に用いるブレンド樹脂の配合比を5:5に変更した以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
無水マレイン酸変性オレフィン系樹脂(AD)を三井化学製アドマーQE850に変更し、実施例1と同様にEVOHとADとのブレンド樹脂(ブレンド比7:3)を用いて接着性中間層を形成した以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
尚、ADの粘度は、b=320Pa・sであり、ηAB=5.1であった。
ADの酸変性率は、1H-NMRで測定したところ、ピーク強度が小さく明確な定量は困難であったが、ピーク面積値より3.6meq/100g以下と推定した。
EVOH層の代わりに酸素吸収剤を含有した酸素吸収性樹脂組成物の層(酸素吸収層)を形成した以外は、実施例1と同様に多層構造体を作製した。
即ち、この多層構造体の層構成は4種6層(容器外側:ポリプロピレン層50um/接着性中間層25um/酸素吸収性樹脂層35um/接着性中間層25um/リグラインド層300um/ポリプロピレン層250um:容器内側)である。
作製した多層構造体について、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
シート成形機を用いて、成形温度230℃の条件で多層シートを作製した。及びプラグアシスト真空圧空成形機を用いて、多層カップを作製した。
用いた多層シートの層構成は、5種6層(外側:ポリプロピレン層400um/接着性中間層70um/酸素吸収性樹脂組成物層60um/接着性中間層70um/リグラインド層600um/脱臭剤配合樹脂層300um:内側)であり、全シート厚みは1500umである。
接着性中間層は、EVOHとAD(三井化学製アドマーQE840)を6:4の重量比でドライブレンドしたブレンド樹脂を用いて形成した。
上記の多層シートを30cm角に切断後、遠赤外線ヒーターでシートの内外層を190℃に加熱し、プラグアシスト真空圧空成形機を用いて溶融成形し、絞り比H/D=0.8、満注充填時の内容積が180mlのカップ形状の多層構造体を作製した。
作製した多層カップについて、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
各種材料を押し出し機にて押し出し、切断された溶融樹脂塊(ドロップ)を圧縮金型内にセットして圧縮成形する多層圧縮成形方法を用い、容器重量6.0g、満注充填時の内容積が66mlの多層カップを作製した。
層構成及びカップ胴部の各層厚みは3種5層(外側:脱臭剤配合樹脂層215um/接着性中間層20um/酸素吸収性樹脂組成物層30um/接着性中間層20um/脱臭剤配合樹脂層215um:内側)である。
接着性中間層は、EVOHとAD(無水マレイン酸オレフィン樹脂、三井化学製アドマーQF551)を5:5の重量比でドライブレンドしたブレンド樹脂を用いた。
作製した多層カップについて、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
接着性中間層に用いるADをアドマーQB550に変更した以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
また、多層構造体の断面を顕微鏡観察したところ、接着性中間層では、EVOHとADが相溶しており、連続相を形成していることが観察された。
また、ADの粘度は、b=750Pa・sであり、ηAB=2.2であった。
ADの酸変性率は、1H-NMRで測定したところ、ピーク強度が小さく明確な定量は困難であったが、ピーク面積値より3.6meq/100g以下と推定した。
接着性中間層にADを使用しなかった以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
接着性中間層にEVOHを使用しなかった以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
接着性中間層に用いるブレンド樹脂の配合比を3:7に変更した以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
接着性中間層に用いるブレンド樹脂の配合比を9:1に変更した以外は、実施例1と同様に多層構造体を作製し、標準偏差、酸素バリア性評価、デラミ評価、官能評価を行ない、その結果を表1に示した。
Claims (11)
- 内外層の間に、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とのブレンド物からなる接着性中間層が設けられている多層構造体であって、該接着性中間層は、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とを4:6乃至8:2の重量比で含んでおり、且つ多層構造体厚さ方向断面の走査型電子顕微鏡観察写真において、画像解析ソフトを用いて、該接着性中間層内のエチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)との界面近傍のコントラスト分布を数値化したとき、65以上の標準偏差を示すことを特徴とする多層構造体。
- 前記接着性中間層の相構造が、無水マレイン酸変性オレフィン樹脂(B)を海とする海島構造もしくはエチレン-ビニルアルコール共重合体(A)及び無水マレイン酸変性オレフィン樹脂(B)の何れもが連続相として存在する両連続相である請求項1に記載の多層構造体。
- 前記内外層において、少なくともどちらかの層が、ポリオレフィン系樹脂により形成されている請求項1に記載の多層構造体。
- 前記内外層の間に、酸素吸収性樹脂層もしくは酸素バリア性樹脂層からなるガス遮断性中間層が設けられており、該ガス遮断性中間層の内層側及び外層側に隣接して、前記接着性中間層が設けられている請求項1に記載の多層構造体。
- 前記ガス遮断性中間層が、樹脂基材としてエチレン-ビニルアルコール共重合体を含む請求項4に記載の多層構造体。
- 前記接着性中間層において、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とは、下記式:
ηAB=a/b
式中、aは、200℃、剪断速度200s-1でのエチレン-
ビニルアルコール共重合体(A)の溶融粘度であり、
bは、200℃、剪断速度200s-1での無水マレイ
ン酸変性オレフィン樹脂(B)の溶融粘度である、
で定義される粘度比ηABが3~10の範囲にある請求項1に記載の多層構造体。 - 前記内層に、臭気捕捉剤が配合された脱臭剤配合樹脂層である請求項1に記載の多層構造体。
- 外層から内層に向かって、ポリオレフィン層/リグラインド層/接着性中間層/酸素吸収性樹脂層/接着性中間層/脱臭剤配合樹脂層、
ポリオレフィン層/接着性中間層/酸素吸収性樹脂層/接着性中間層/リグラインド層/脱臭剤配合樹脂層、
ポリオレフィン層/リグラインド層/接着性中間層/酸素吸収性樹脂層/接着性中間層/リグラインド層/脱臭剤配合樹脂層のいずれかの層構成であることを特徴とする請求項1に記載の多層構造体。 - 内外層の間に、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とのブレンド物からなる接着性中間層が設けられている多層構造体であって、
前記接着性中間層は、エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とを4:6乃至8:2の重量比で含んでおり、
前記エチレン-ビニルアルコール共重合体(A)と無水マレイン酸変性オレフィン樹脂(B)とは、下記式:
ηAB=a/b
式中、aは、200℃、剪断速度200s-1でのエチレン-
ビニルアルコール共重合体(A)の溶融粘度であり、
bは、200℃、剪断速度200s-1での無水マレイ
ン酸変性オレフィン樹脂(B)の溶融粘度である、
で定義される粘度比ηABが3~10の範囲にあることを特徴とする多層構造体。 - 前記接着性中間層の相構造が、無水マレイン酸変性オレフィン樹脂(B)を海とする海島構造もしくはエチレン-ビニルアルコール共重合体(A)及び無水マレイン酸変性オレフィン樹脂(B)の何れもが連続相として存在する両連続相である請求項9に記載の多層構造体。
- 前記内外層において、少なくともどちらかの層が、ポリオレフィン系樹脂により形成されている請求項9に記載の多層構造体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011514426A JP5019000B2 (ja) | 2009-05-18 | 2010-05-18 | 多層構造体 |
US13/265,422 US20120040198A1 (en) | 2009-05-18 | 2010-05-18 | Multilayered structure |
CN201080021558.8A CN102427942B (zh) | 2009-05-18 | 2010-05-18 | 多层结构体 |
EP10777763.3A EP2433794B1 (en) | 2009-05-18 | 2010-05-18 | Multilayered structure |
KR1020117029953A KR101369566B1 (ko) | 2009-05-18 | 2010-05-18 | 다층 구조체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009119935 | 2009-05-18 | ||
JP2009-119935 | 2009-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010134530A1 true WO2010134530A1 (ja) | 2010-11-25 |
Family
ID=43126207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058376 WO2010134530A1 (ja) | 2009-05-18 | 2010-05-18 | 多層構造体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120040198A1 (ja) |
EP (1) | EP2433794B1 (ja) |
JP (1) | JP5019000B2 (ja) |
KR (1) | KR101369566B1 (ja) |
CN (1) | CN102427942B (ja) |
WO (1) | WO2010134530A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017518896A (ja) * | 2014-04-01 | 2017-07-13 | ダウ グローバル テクノロジーズ エルエルシー | 多層フィルム及びそれらから作製される物品 |
JP2020157661A (ja) * | 2019-03-27 | 2020-10-01 | 三井化学株式会社 | 複合成形体およびその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5045807B2 (ja) | 2010-11-18 | 2012-10-10 | 東洋製罐株式会社 | 多層プラスチック容器 |
DE102013013163A1 (de) | 2013-07-18 | 2015-01-22 | Kautex Textron Gmbh & Co. Kg | Mehrlagiges Verbundmaterial und Gegenstände umfassend dasselbe |
KR102646739B1 (ko) * | 2019-11-08 | 2024-03-12 | 한화솔루션 주식회사 | 다층 구조를 갖는 차단성 수지 및 그 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241546A (ja) * | 2001-02-22 | 2002-08-28 | Toray Ind Inc | 燃料取扱用部材 |
JP2003192016A (ja) * | 2001-12-26 | 2003-07-09 | Toray Ind Inc | 多層中空容器およびその製造方法 |
JP2004010679A (ja) * | 2002-06-04 | 2004-01-15 | Toyo Seikan Kaisha Ltd | 樹脂組成物及びこれを用いた多層包装材料 |
JP2004182344A (ja) * | 2002-10-09 | 2004-07-02 | Toyo Seikan Kaisha Ltd | 包装用多層構造体 |
JP2005119693A (ja) * | 2003-10-16 | 2005-05-12 | Toyo Seikan Kaisha Ltd | 包装体 |
JP2007320576A (ja) | 2006-05-30 | 2007-12-13 | Toyo Seikan Kaisha Ltd | 酸素感受性の内容物を充填した製品 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2656818B2 (ja) * | 1988-12-02 | 1997-09-24 | 三井東圧化学株式会社 | 接着性ポリプロピレン組成物 |
CA2113137A1 (en) * | 1993-05-20 | 1994-11-21 | Cryovac, Inc. | Plasticization of ethylene vinyl alcohol with acrylic ester terpolymers and resulting products |
JP3529893B2 (ja) * | 1994-05-18 | 2004-05-24 | 株式会社クラレ | 樹脂組成物および多層構造体 |
JP3529892B2 (ja) * | 1994-05-18 | 2004-05-24 | 株式会社クラレ | 燃料容器および燃料パイプ |
JP3489902B2 (ja) * | 1995-03-31 | 2004-01-26 | 株式会社クラレ | 樹脂組成物およびそれを用いた多層構造体 |
US5827615A (en) * | 1996-07-15 | 1998-10-27 | Mobil Oil Corporation | Metallized multilayer packaging film |
JP2000296587A (ja) * | 1999-02-12 | 2000-10-24 | Sumitomo Bakelite Co Ltd | 積層体及び密封容器 |
EP1122060A1 (en) * | 2000-02-07 | 2001-08-08 | Atofina | Multilayer structure and tank consisting of this structure, which has a barrier layer in direct contact with the fluid contained |
CN1431954A (zh) * | 2000-05-30 | 2003-07-23 | 陶氏环球技术公司 | 用于多层挤出并保持阻隔性能的改进的阻隔组合物 |
US7252878B2 (en) * | 2002-10-23 | 2007-08-07 | Toray Plastics (America), Inc. | High barrier flexible packaging structure |
JP2005248033A (ja) * | 2004-03-04 | 2005-09-15 | Mitsui Chemicals Inc | エチレン・ビニルアルコール共重合体樹脂組成物 |
US20080038530A1 (en) * | 2004-05-07 | 2008-02-14 | Renato Rimondi | Extensible Multilayer Film |
US20080045102A1 (en) * | 2006-08-15 | 2008-02-21 | Gerald Timothy Keep | Controlled flow polymer blends and products including the same |
AU2008264215A1 (en) * | 2008-01-03 | 2009-07-23 | Flexopack S.A. | Thermoforming film |
CN101323685B (zh) * | 2008-06-27 | 2010-09-29 | 哈尔滨隆华艺美包装制品有限公司 | 线性低密度聚乙烯与乙烯-乙烯醇共聚物的共混膜及其制作方法 |
-
2010
- 2010-05-18 JP JP2011514426A patent/JP5019000B2/ja active Active
- 2010-05-18 US US13/265,422 patent/US20120040198A1/en not_active Abandoned
- 2010-05-18 EP EP10777763.3A patent/EP2433794B1/en active Active
- 2010-05-18 WO PCT/JP2010/058376 patent/WO2010134530A1/ja active Application Filing
- 2010-05-18 KR KR1020117029953A patent/KR101369566B1/ko active IP Right Grant
- 2010-05-18 CN CN201080021558.8A patent/CN102427942B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241546A (ja) * | 2001-02-22 | 2002-08-28 | Toray Ind Inc | 燃料取扱用部材 |
JP2003192016A (ja) * | 2001-12-26 | 2003-07-09 | Toray Ind Inc | 多層中空容器およびその製造方法 |
JP2004010679A (ja) * | 2002-06-04 | 2004-01-15 | Toyo Seikan Kaisha Ltd | 樹脂組成物及びこれを用いた多層包装材料 |
JP2004182344A (ja) * | 2002-10-09 | 2004-07-02 | Toyo Seikan Kaisha Ltd | 包装用多層構造体 |
JP3788442B2 (ja) | 2002-10-09 | 2006-06-21 | 東洋製罐株式会社 | 包装用多層構造体 |
JP2005119693A (ja) * | 2003-10-16 | 2005-05-12 | Toyo Seikan Kaisha Ltd | 包装体 |
JP2007320576A (ja) | 2006-05-30 | 2007-12-13 | Toyo Seikan Kaisha Ltd | 酸素感受性の内容物を充填した製品 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017518896A (ja) * | 2014-04-01 | 2017-07-13 | ダウ グローバル テクノロジーズ エルエルシー | 多層フィルム及びそれらから作製される物品 |
JP2020157661A (ja) * | 2019-03-27 | 2020-10-01 | 三井化学株式会社 | 複合成形体およびその製造方法 |
JP7312588B2 (ja) | 2019-03-27 | 2023-07-21 | 三井化学株式会社 | 複合成形体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5019000B2 (ja) | 2012-09-05 |
EP2433794A4 (en) | 2012-10-03 |
KR20120011077A (ko) | 2012-02-06 |
JPWO2010134530A1 (ja) | 2012-11-12 |
EP2433794B1 (en) | 2018-12-26 |
CN102427942B (zh) | 2014-09-17 |
EP2433794A1 (en) | 2012-03-28 |
CN102427942A (zh) | 2012-04-25 |
KR101369566B1 (ko) | 2014-03-04 |
US20120040198A1 (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4082023B2 (ja) | 酸素吸収性樹脂組成物、包装材料及び包装用多層容器 | |
JP5582181B2 (ja) | 多層容器 | |
JP5019248B2 (ja) | 酸素吸収性樹脂組成物 | |
JP3896875B2 (ja) | 成形性及びガス遮断性に優れた樹脂組成物及び包装材料 | |
JP5045807B2 (ja) | 多層プラスチック容器 | |
JP5019000B2 (ja) | 多層構造体 | |
JP5268014B2 (ja) | 酸素吸収性樹脂組成物用ペレット及び酸素吸収性樹脂組成物 | |
KR101113398B1 (ko) | 포장용 다층 구조체 | |
JP3788442B2 (ja) | 包装用多層構造体 | |
JP4878720B2 (ja) | 酸素バリヤー性に優れた多層構造物 | |
JP5527919B2 (ja) | 水分及び酸素バリヤー性樹脂組成物 | |
JP4019737B2 (ja) | 酸素吸収性及び酸素バリアー性に優れた多層構造物 | |
JP6205963B2 (ja) | 多層構造プラスチック容器 | |
JP4258303B2 (ja) | 包装体 | |
JP5585795B2 (ja) | 酸素吸収性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080021558.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777763 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011514426 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13265422 Country of ref document: US Ref document number: 2010777763 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117029953 Country of ref document: KR Kind code of ref document: A |