WO2010134427A1 - ドライ真空ポンプ - Google Patents
ドライ真空ポンプ Download PDFInfo
- Publication number
- WO2010134427A1 WO2010134427A1 PCT/JP2010/057776 JP2010057776W WO2010134427A1 WO 2010134427 A1 WO2010134427 A1 WO 2010134427A1 JP 2010057776 W JP2010057776 W JP 2010057776W WO 2010134427 A1 WO2010134427 A1 WO 2010134427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- gas
- exhaust
- shaft
- vacuum pump
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
- F01C19/005—Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
- F04B37/16—Means for nullifying unswept space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/123—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/008—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
- F04C27/009—Shaft sealings specially adapted for pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/02—Liquid sealing for high-vacuum pumps or for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/02—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/32—Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
Definitions
- the present invention relates to a dry vacuum pump for exhausting a vacuum processing chamber.
- Dry vacuum pumps have a structure in which liquids such as oil do not come into contact with the gas to be exhausted, and are often used when high in-system cleanliness is required in the field of semiconductor manufacturing.
- a power source such as an electromagnetic motor
- an amorphous silicon or crystalline silicon thin film is formed on a substrate by using a plasma CVD technique using silane (SiH 4 ) and hydrogen gas (H 2 ) as main source gases.
- SiH 4 silane
- H 2 hydrogen gas
- the technique to do is common (for example, refer patent document 2).
- a non-contact type shaft seal mechanism may be provided with a path through which an inert gas flows (for example, (See Patent Document 3).
- a mixed gas of silane gas and hydrogen gas is mainly used as a source gas when forming an amorphous silicon film or a crystalline silicon thin film.
- hydrogen gas is also generated by a decomposition reaction of silane. Therefore, the exhaust target gas (exhaust gas) exhausted from the vacuum processing chamber contains a large amount of hydrogen gas.
- a dry vacuum pump used for sucking and discharging a gas to be exhausted including hydrogen gas from a vacuum processing chamber includes an electromagnetic motor as a drive source thereof, and the electromagnetic motor includes a permanent magnet material as a constituent material.
- Permanent magnet materials are typically iron-neodymium-based materials, and permanent magnet materials are prone to rust due to moisture, so corrosion resistance has been improved by nickel plating or the like.
- permanent magnet materials absorb hydrogen, so they form hydrogen compounds and become brittle due to heat generation, etc., leading to a decrease or collapse of magnetic force, and are susceptible to so-called hydrogen erosion. There is a concern that the excitation power will be reduced.
- hydrogen gas since hydrogen gas has a small molecular size and is easy to diffuse, the hydrogen gas diffuses from the exhaust chamber of the dry vacuum pump to the inside of the electromagnetic motor through the seal portion of the rotating shaft of the rotor, and further to the surface of the permanent magnet. It has been found that there is a risk of causing erosion by hydrogen through the thin nickel plating and plating pinholes applied to.
- the present invention provides a dry vacuum pump that can prevent malfunction of a drive source (electromagnetic motor) due to hydrogen gas contained in an exhaust target gas (exhaust gas) guided from a vacuum processing chamber.
- the purpose is to provide.
- a dry vacuum pump according to a first aspect of the present invention includes a shaft that is rotationally driven by an electromagnetic motor, and is attached to the shaft and provided in an exhaust chamber, and sucks an exhaust target gas in the vacuum processing chamber into the exhaust chamber.
- a dry vacuum pump for exhausting a vacuum processing chamber provided with an exhaust rotor, the exhaust chamber defining the exhaust chamber between the exhaust chamber and an adjacent chamber located next to the exhaust chamber
- An exhaust chamber side seal that seals between the partition wall portion and the shaft; and an adjacent chamber side seal that seals between the adjacent chamber partition wall portion and the shaft that partitions the adjacent chamber, the exhaust chamber side seal and the A gas introduction space to which a seal gas is supplied is provided between the adjacent chamber side seal, and the exhaust chamber side seal and the adjacent chamber side seal are respectively located on the exhaust chamber partition wall side or the adjacent chamber partition.
- annular base fixed to the part side, and a pair of annular lip parts extending from the base part to the shaft side, the pair of lip parts going from the base part to the shaft side As the distance between them gradually increases, the respective tip portions can be elastically contacted with the shaft.
- An exhaust chamber side seal and an adjacent chamber side seal are provided between the exhaust chamber and the adjacent chamber, and a seal gas is supplied between these seals.
- the seal gas is ejected from the exhaust chamber side seal to the exhaust chamber side and from the adjacent chamber side seal to the adjacent chamber side.
- the exhaust chamber side seal and the adjacent chamber side seal include a pair of lip portions, and the respective front end portions can be elastically contacted with the shaft. Therefore, since sealing can be performed by the two lip portions, more reliable sealing is performed.
- each lip portion has a shape extending so that the distance between the lip portions gradually increases toward the shaft side, and these lip portions are connected to a base portion that can be regarded as common. Accordingly, when one lip portion is inclined with respect to the base portion, the other lip portion is also inclined through the noble portion, and therefore, is inclined in the same direction as this inclination direction. That is, when the lip portion in contact with the exhaust chamber or the adjacent chamber is inclined so as to be separated from the shaft, the lip portion in contact with the gas introduction space to which the seal gas is supplied comes close to the shaft. On the contrary, when the lip portion in contact with the exhaust chamber or the adjacent chamber is inclined so as to be close to the shaft, the lip portion in contact with the gas introduction space to which the seal gas is supplied is separated from the shaft.
- the “neighboring chamber” means a chamber located next to the exhaust chamber, and examples thereof include a lubrication chamber and a bearing chamber. Therefore, the present invention is suitable for a seal between the exhaust chamber and the lubrication chamber and a seal between the exhaust chamber and the bearing chamber.
- the electromagnetic motor chamber that houses the electromagnetic motor is provided at a position sandwiching the adjacent chamber with respect to the exhaust chamber, and the adjacent chamber stores lubricating oil. It is assumed that the exhaust target gas contains hydrogen gas.
- Hydrogen gas erodes the permanent magnet material of the electromagnetic motor and degrades the magnetic performance.
- the exhaust chamber side seal and the adjacent chamber side seal of the above invention are provided between the exhaust chamber and the adjacent chamber (lubricating chamber), so that the adjacent chamber (lubricating chamber) is sandwiched between the exhaust chamber and the exhaust chamber.
- the exhaust target gas is prevented from leaking up to the electromagnetic motor chamber. Therefore, it can avoid that the permanent magnet of an electromagnetic motor is eroded by hydrogen gas.
- the base and the pair of lip portions are integrally formed.
- the pair of the lip portions be separate members, and the base portions of the lip portions are fixed to each other and assembled to form the base portion.
- each of the pair of lip portions is a separate member, it is easy to manufacture each lip portion, and even a complicated shape can be manufactured.
- each lip is made of polytetrafluoroethylene at a portion in contact with the shaft.
- the contact portion with the shaft is made of polytetrafluoroethylene, the friction coefficient with the shaft is lowered, and the wear amount of the sliding portion of the lip portion can be reduced. Thereby, the reliability of a seal
- sticker can be ensured over a long term.
- a dry vacuum pump includes an electromagnetic motor housed in an electromagnetic motor chamber, a shaft that is rotationally driven by the electromagnetic motor, a shaft that is attached to the shaft and provided in the exhaust chamber, A dry vacuum pump that exhausts a vacuum processing chamber including a rotor that sucks and discharges a target gas including hydrogen gas in the chamber into the exhaust chamber, and introduces an inert gas into the electromagnetic motor chamber, Purge means for exhausting the gas in the electromagnetic motor chamber is provided.
- Hydrogen gas erodes the permanent magnet material of the electromagnetic motor and degrades the magnetic performance. If the gas to be exhausted contains hydrogen gas, the exhaust chamber and the electromagnetic motor chamber are connected via the shaft, so that hydrogen may enter the electromagnetic motor chamber from the exhaust chamber. Therefore, in the dry vacuum pump according to the second aspect of the present invention, a purge means is provided for introducing an inert gas into the electromagnetic motor chamber and exhausting the gas in the electromagnetic motor chamber. As a result, even if hydrogen gas enters the electromagnetic motor chamber, it can be exhausted, and the introduction of inert gas lowers the hydrogen gas partial pressure, so that a large amount of hydrogen erodes the permanent magnet material of the electromagnetic motor. There is nothing. Therefore, it can avoid that the permanent magnet of an electromagnetic motor is eroded by hydrogen gas.
- a lubricating chamber for storing lubricating oil is provided between the exhaust chamber and the electromagnetic motor chamber, and is introduced into the electromagnetic motor chamber by the purge means.
- the inert gas is preferably exhausted through the lubrication chamber.
- the exhaust target gas containing hydrogen gas first enters the lubrication chamber adjacent to the exhaust chamber.
- An inert gas introduced from the electromagnetic motor chamber is introduced into the lubrication chamber and exhausted.
- the hydrogen gas encounters the inert gas in the lubrication chamber and is exhausted before entering the electromagnetic motor chamber. Therefore, it is possible to prevent hydrogen gas from entering the electromagnetic motor chamber as much as possible.
- a dry vacuum pump includes an electromagnetic motor housed in an electromagnetic motor chamber, a shaft that is rotationally driven by the electromagnetic motor, and a vacuum treatment that is attached to the shaft and provided in the exhaust chamber.
- a vacuum provided with a rotor that sucks and discharges an exhaust target gas including hydrogen gas in the chamber into the exhaust chamber, and a lubrication chamber that is provided between the exhaust chamber and the electromagnetic motor chamber and stores lubricating oil.
- Hydrogen gas erodes the permanent magnet material of the electromagnetic motor and degrades the magnetic performance. If the gas to be exhausted contains hydrogen gas, the exhaust chamber, the lubrication chamber, and the electromagnetic motor chamber are connected via the shaft, so hydrogen may enter the electromagnetic motor chamber from the exhaust chamber via the lubrication chamber. There is. Therefore, in the dry vacuum pump according to the third aspect of the present invention, a purge that introduces an inert gas into the lubrication chamber from the outside of the electromagnetic motor chamber and exhausts the gas in the lubrication chamber by a gas introduction passage formed in the shaft. Means were provided.
- the hydrogen gas can be exhausted before entering the electromagnetic motor chamber, and the hydrogen gas partial pressure is reduced by introducing the inert gas.
- a large amount of hydrogen does not erode the permanent magnet material of the electromagnetic motor. Therefore, it can avoid that the permanent magnet of an electromagnetic motor is eroded by hydrogen gas.
- the inert gas since the inert gas is introduced into the lubrication chamber from the outside of the electromagnetic motor chamber by the gas introduction passage formed in the shaft, the inert gas can be introduced into the lubrication chamber without drawing the piping into the electromagnetic motor chamber. And a simple configuration is realized.
- the purge means includes a gas exhaust passage connected to an exhaust line for exhausting the exhaust target gas from the exhaust chamber, and the gas exhaust
- the passage is preferably provided with a check valve that allows a gas flow toward the exhaust line and prohibits a reverse flow.
- the purge unit includes a gas discharge passage connected to an exhaust line for exhausting the exhaust target gas from the exhaust chamber,
- the gas discharge passage is preferably provided with an oil trap that captures the lubricating oil toward the exhaust line.
- the exhaust chamber side seal and the adjacent chamber side seal are provided between the exhaust chamber and the adjacent chamber, and the seal gas is supplied between the seals.
- the exhaust chamber side seal and the adjacent chamber side seal have a pair of lip portions, and the respective tip portions can be elastically contacted with the shaft, sealing can be performed by two lip portions. As a result, more reliable sealing is performed.
- each lip portion has a shape extending so that the distance between the lip portions gradually increases toward the shaft side, and since these lip portions are connected to a base portion that can be regarded as common, the circumferential direction of the seal Even if a pressure distribution is generated, the seal gas flow rate is adjusted so as to improve non-uniformity at each circumferential position, so that high sealing performance can be exhibited. Further, since the exhaust chamber side seal and the adjacent chamber side seal are provided between the exhaust chamber and the lubrication chamber, the exhaust target gas leaks to the electromagnetic motor chamber located between the exhaust chamber and the lubrication chamber. It is prevented. Therefore, it can avoid that the permanent magnet of an electromagnetic motor is eroded by hydrogen gas.
- the permanent magnet of the electromagnetic motor is made of hydrogen gas. Erosion can be avoided, and malfunction of the electromagnetic motor can be prevented.
- FIG. 6 is a cross-sectional perspective view showing a configuration of a seal member that constitutes the cup seal of FIG. 5. It is sectional drawing which showed the effect
- FIG. 10 is a side sectional view showing an internal structure of the dry vacuum pump of FIG. 9. It is the sectional side view which showed the internal structure of the dry vacuum pump which concerns on 3rd Embodiment of this invention.
- FIG. 1 shows an outline of a vacuum processing system using the dry vacuum pump 1 according to the first embodiment of the present invention.
- a plasma CVD apparatus (vacuum processing apparatus) 101 includes a film forming chamber 103, and a dry vacuum pump 1 is provided in a system for evacuating the film forming chamber 103.
- the film forming chamber 103 forms a film on a large area glass substrate (not shown) exceeding 1 m 2 .
- gas supply channels 104 and 105 for supplying silane gas (SiH 4 ), hydrogen gas (H 2 ), and cleaning gas (NF 3 ), which are main source gases, into the film forming chamber 103, respectively. , 106 are connected.
- the film forming chamber 103 is provided with an exhaust system 61 for exhausting gas.
- the exhaust system 61 includes an exhaust passage 110 provided with a high vacuum turbo molecular pump (TMP) 109 and a passage 112 provided with a flow rate adjusting valve (CV) 111.
- a dry vacuum pump (DP) 1 is interposed in the flow path 113 downstream from the junction S of the exhaust flow path 110 and the flow path 112.
- an exhaust line 62 is provided on the downstream side of the dry vacuum pump 1.
- the exhaust line 62 includes a combustible exhaust line 117 that exhausts a combustible gas such as silane gas and hydrogen gas, and a combustion support exhaust line 118 that exhausts a combustion support gas such as nitrogen trifluoride gas (NF 3 ). Branch off.
- the combustible exhaust line 117 is provided with a combustible exhaust valve 119a, and the combustion supporting exhaust line 118 is provided with a combustion supporting exhaust valve 119b.
- the combustible exhaust line 117 is used with the combustible exhaust valve 119a opened and the combustion support exhaust valve 119b closed.
- the combustible exhaust valve 119a is closed, the combustion supporting exhaust valve 119b is opened, and the combustion supporting exhaust line 118 is opened.
- the plasma CVD apparatus 101 is provided with a vacuum gauge (V) 120 for measuring the pressure in the film forming chamber 103.
- V vacuum gauge
- plasma CVD apparatus 101 feed the film gas made containing a starting gas consisting of SiH 4 while roughing evacuation by the dry vacuum pump 1 from atmospheric into the film forming chamber 103 is depressurized, Plasma is generated by high-frequency power supplied from a high-frequency power source (not shown), and a film is formed on a substrate such as glass that is supported and heated in the film-forming chamber 103.
- substrate the large area glass substrate exceeding 1 m ⁇ 2 > is mentioned, for example.
- the source gas is diluted with hydrogen gas.
- the film quality can be improved by diluting the hydrogen gas 20 times or more with respect to the silane gas.
- the MV 121 and the TV 122 are opened, the RV 123 is closed, and the turbo molecular pump 109 and the dry vacuum pump 1 perform high vacuum evacuation.
- a substrate (not shown) is set in the film forming chamber 103, receives a film forming recipe instruction, and performs a film forming process according to the film forming recipe.
- the film forming pressure is 1000 to 3000 Pa, and the silane gas that is a film forming raw material gas per 1 m 2 of the substrate is used.
- the flow rate is 0.5 to 2.0 SLM / m 2
- the hydrogen gas flow rate is 10 SLM / m 2 or more.
- the MV 121 and the TV 122 are closed and the RV 123 is opened, and the raw film forming gas is introduced into the film forming chamber 103 while performing roughing vacuum evacuation by the dry vacuum pump 1 and measured by the vacuum gauge (V) 120.
- the flow regulating valve (CV) 111 is adjusted so that the pressure in the film forming chamber 103 is equal to the pressure in the film forming chamber 130 of the film forming recipe instruction value, and the pressure in the film forming chamber 103 is adjusted.
- plasma discharge is started, thereby forming a film. After the predetermined film formation is performed, the plasma discharge is stopped and the film forming raw material gas is stopped.
- the MV 121 and the TV 122 are opened and the RV 123 is closed, high vacuum evacuation is performed by the turbo molecular pump 109 and the dry vacuum pump 1, the film-formed substrate is carried out, and the film-forming process is completed.
- the dry vacuum pump 1 may be used by improving the vacuum exhaust capability by combining a mechanical booster pump such as a roots pump and an exhaust system in series.
- FIG. 2 is a plan cross-sectional view of the dry vacuum pump 1 according to the present embodiment as viewed from above.
- FIG. 3 shows a side sectional view of the dry vacuum pump 1 as seen from the side.
- the dry vacuum pump 1 according to the present embodiment is configured as a roots type dry vacuum pump, but the present invention is not limited to this, and for example, other types of dry vacuum such as a scroll type, a rotary blade type, etc. It can also be applied to mechanical booster pumps such as pumps and roots pumps.
- the dry vacuum pump 1 includes an electromagnetic motor 3 that is a drive source, a lubrication chamber (adjacent chamber) 12 disposed on the side of the electromagnetic motor 3, and a side of the lubrication chamber 12. And the sealing mechanism 11 disposed between the lubricating chamber 12 and the exhaust chamber 13.
- the lubrication chamber 12 is formed by a motor cover (adjacent chamber partition wall) 8 and a side cover 9, and the exhaust chamber 13 is formed by a cylinder (exhaust chamber partition wall) 7 and a side cover 9.
- the lubrication chamber 12 and the exhaust chamber 13 constitute a main housing part of the dry vacuum pump 1.
- the lubrication chamber 12 houses the rotation transmission mechanism 4, and the exhaust chamber 13 houses the first rotor (rotor) 6.
- the electromagnetic motor 3 is disposed adjacent to the motor cover 8.
- a first shaft (shaft) 5 is connected to the rotating shaft of the electromagnetic motor 3.
- the first shaft 5 passes through the lubrication chamber 12 and extends through the side cover 9 to the exhaust chamber 13.
- the location where the first shaft 5 communicates with the lubrication chamber 12 and the exhaust chamber 13 is such that the first seal mechanism 11 suppresses the movement of gas between the lubrication chamber 12 and the exhaust chamber 13 as the first shaft 5 rotates. Is sealed.
- the rotation transmission mechanism 4 is connected to the first shaft 5 in the lubrication chamber 12, and the first rotor 6 is connected to the first shaft 5 in the exhaust chamber 13.
- the lubricating chamber 12 contains lubricating oil F (see FIG. 3) for lubricating the rotation transmission mechanism 4.
- the dry vacuum pump 1 includes a second shaft (shaft) 14, a second rotor (rotor) 15, and a second seal mechanism 16 in addition to the above configuration (see FIG. 2).
- the second shaft 14 is connected to the rotation transmission mechanism 4 in the lubrication chamber 12 and extends through the side cover 9 to the exhaust chamber 13 in parallel with the first shaft 5.
- the location where the second shaft 14 communicates with the lubrication chamber 12 and the exhaust chamber 13 is such that the second seal mechanism 16 suppresses the movement of gas between the lubrication chamber 12 and the exhaust chamber 13 as the second shaft 14 rotates. Is sealed.
- a second rotor 15 is connected to the second shaft 14 in the exhaust chamber 13.
- the dry vacuum pump 1 has a bearing chamber 17 on the opposite side (right side in FIG. 2) of the exhaust chamber 13 when viewed from the lubrication chamber 12.
- the bearing chamber 17 is formed by a second side cover 18 attached to the side opposite to the side cover 9 of the cylinder 7 and a bearing cover 19 attached to the second side cover 18.
- the first shaft 5 and the second shaft 14 pass through the second side cover 18 and are rotatably supported in the bearing chamber 17.
- the bearing chamber 17 accommodates a first bearing 20 that rotatably supports the first shaft 5 and a second bearing 21 that rotatably supports the second shaft 14.
- the first bearing 20 and the second bearing 21 are, for example, ball bearings.
- the electromagnetic motor 3 is accommodated in the electromagnetic motor chamber 10 and generates rotational power for rotating the first rotor 6.
- the electromagnetic motor 3 may have a general structure as a power source for the dry vacuum pump 1.
- the electromagnetic motor 3 has a stator and a rotor, and a permanent magnet material is used for either the stator or the rotor.
- the permanent magnet material is preferably relatively inexpensive and possesses strong magnetic properties.
- a rare earth magnet is used.
- a rare earth iron-based magnet material such as iron-neodymium is used, and in order to improve durability against erosion due to formation of rust, corrosion, or a hydrogen compound that absorbs hydrogen on the surface of the magnet body.
- a plating layer made of metal such as nickel is applied.
- the electromagnetic motor 3 and the lubrication chamber 12 are provided on the side where the gas is compressed in the exhaust space 26 of the exhaust chamber 13 (the side close to atmospheric pressure).
- the electromagnetic motor 3 By arranging the electromagnetic motor 3 in this way, airtight management of the electromagnetic motor chamber 10 can be facilitated.
- pressure fluctuations occur such as when the dry vacuum pump 1 is started and stopped, the pressure difference between the lubrication chamber 12 and the exhaust chamber 13 is small, so that the effect of further ensuring the sealing characteristics in the first seal mechanism 11 is obtained. is there.
- the number of electromagnetic motors 3 is not limited to one, and a plurality of electromagnetic motors may be provided.
- the rotation transmission mechanism 4 is lubricated by the lubricating oil F, transmits the rotational power generated by the electromagnetic motor 3 to the first shaft 5 and the second shaft 14, and synchronizes the first rotor 6 and the second rotor 15 in opposite directions. Rotate.
- the rotation transmission mechanism 4 includes a first timing gear 22, a second timing gear 23, a first bearing 24 and a second bearing 25.
- the first timing gear 22 is attached to the first shaft 5 and transmits rotational power to the second timing gear 23.
- the first bearing 24 includes an outer ring fixed to the side cover 9, an inner ring fixed to the first shaft 5, and a bearing ball disposed therebetween, and the first shaft 5 can be rotated to the side cover 9. To support.
- the second timing gear 23 is attached to the second shaft 14, receives rotational power from the first timing gear 22, and rotates the second shaft 14.
- the second bearing 25 includes an outer ring fixed to the side cover 9, an inner ring fixed to the second shaft 14, and a bearing ball disposed therebetween, and the second shaft 14 can rotate to the side cover 9.
- the structure of the rotation transmission mechanism 4 is not limited to these, For example, a reduction gear etc. may be included.
- FIG. 4 is a cross-sectional view showing the configuration of the first rotor 6 and the second rotor 15. As shown in FIGS. 2 and 3, the first rotor 6 is arranged in series along the shaft 5 in multiple stages (six stages in the illustrated example), and the second rotor 15 is arranged in series along the second shaft 14. They are arranged in multiple stages (six stages in the illustrated example).
- the first rotor 6 at each stage is arranged in pairs with the second rotor 15 at each stage.
- Each of the first rotor 6 and the second rotor 15 is formed in a three-leaf shape, and when the first shaft 5 and the second shaft 14 are rotated, they can be rotated with a small distance from the paired rotor portions. It has become.
- Each pair of the first rotor 6 and the second rotor 15 is disposed in a pair of six exhaust spaces 26 formed in the cylinder 7, and the exhaust spaces 26 are sequentially connected by an exhaust passage 26 a that communicates with the exhaust space in the subsequent stage.
- the exhaust space 26 in the foremost stage is connected to an intake hole 7 a formed in the cylinder 7, and the exhaust space 26 in the last stage (most downstream stage) is connected to an exhaust hole 7 b formed in the cylinder 7. (See FIG. 3).
- the intake hole 7a is connected via an exhaust system 61 to a film forming chamber 103 of a plasma CVD apparatus as a vacuum processing chamber for manufacturing a thin film.
- the exhaust hole 7 b is connected to the exhaust line 62.
- the film forming chamber 103 is configured as a film forming chamber for forming an amorphous silicon film or a crystalline silicon film on a substrate.
- the film forming chamber mainly containing silane gas (SiH 4 ) and hydrogen gas (H 2 ) is formed into the film forming chamber whose pressure is reduced from the atmospheric pressure while performing roughing vacuum evacuation by the dry vacuum pump 1.
- the distance d between the plasma discharge electrode for supplying high frequency power of 40 MHz to 100 MHz and the substrate surface is set to 3 mm to 10 mm, and the hydrogen gas is diluted 20 times or more with respect to the silane gas.
- the flow rate of the source gas, silane gas is 0.5 to 2.0 SLM / m 2
- the hydrogen gas flow rate is 20 SLM / m 2 or more, which is approximately 20 to 100 SLM / m 2 .
- a part of the silane gas is consumed for film formation, so that hydrogen gas generated by decomposition of the silane gas is also added, the flow rate of the hydrogen gas exhausted to the exhaust line 62 is further increased, and the hydrogen gas partial pressure in the exhaust target gas is It is very big.
- the first seal mechanism 11 and the second seal mechanism 16 seal the continuity between the lubricating oil F and the exhaust target gas at a location where the first shaft 5 and the second shaft 14 communicate with the lubrication chamber 12 and the exhaust chamber 13.
- the side cover 9 is formed with a gas introduction hole 9a for supplying a seal gas to the location.
- FIG. 5 is a cross-sectional view showing the configuration of the first seal mechanism 11, and is an enlarged view of the vicinity of the first seal mechanism 11 of FIG.
- the first seal mechanism 11 has a first seal (lubricating chamber side seal) 27 and a second seal (exhaust chamber side seal) 28.
- the first seal 27 is disposed between the side cover 9 and the first shaft 5, and the second seal 28 is disposed between the cylinder 7 and the first shaft 5.
- a gap G communicating with the gas introduction hole 9 a is formed between the cylinder 7 and the side cover 9, and a gas introduction space 29 is formed by the first seal 27 and the second seal 28.
- portions of the side cover 9 and the cylinder 7 facing the gas introduction space 29 constitute a partition wall.
- the first seal mechanism 11 has a slinger 30 attached to the first shaft 5 in the lubrication chamber 12.
- FIG. 6A is a perspective view showing a configuration of the seal member A.
- the seal member A is configured by an annular cup seal (lip seal) whose inner peripheral portion elastically contacts the outer periphery of the shaft 5.
- the seal member A includes a fixed part a, a base part b, and two lip parts c.
- a fixed portion a is formed on the outer peripheral side of the annular seal member A
- a base b is formed so as to protrude from the fixed portion a in the radial direction of the ring, and the two directions are inclined with respect to the radial direction from the base b
- the two lip portions c are formed so as to protrude in the direction of (2).
- the pair of lip portions c have a structure that projects in opposite directions while being along the axial direction of the first shaft 5.
- the lip c is formed to be elastically deformable so as to approach or separate from the other lip c.
- the seal member A may be composed of a plurality of members.
- the fixed part a, the base part b, and the lip part c are formed of a material such as fluorine rubber that has resistance to the exhaust gas including hydrogen and the lubricating oil F and has elasticity. Further, the seal member A has a sliding member d disposed at a position where each lip portion c contacts the first shaft 5 and a support member e inserted into the fixed portion a and the base portion b.
- the sliding member d is made of a material having a lower coefficient of friction than the lip portion C such as polytetrafluoroethylene, for example, reduces the contact resistance between the seal member A and the first shaft 5, and provides a gap between the first shaft 5 and the sliding member d. Make even. Since the friction coefficient is low, it is preferable because the amount of wear of the sliding member d can be reduced and reliability can be secured over a long period of time.
- FIG. 6B is a diagram illustrating a configuration of the sliding member d. As shown in the figure, after the seal member A is attached to the dry vacuum pump 1 as the first seal 27 and the second seal 28, the dry vacuum pump 1 is idled, whereby each sliding member d is attached to the shaft. 5 and is used in a state in which the caddy portion having a high surface pressure of the sliding member d is smoothed as shown in the figure below.
- the support member e is made of, for example, metal, and maintains the strength and shape of the seal member A.
- the support member e may be omitted.
- FIG. 7 is a longitudinal sectional view showing the arrangement of the first seal 27 and the second seal 28.
- the first seal 27 is disposed between the side cover 9 and the first shaft 5 and mainly prevents leakage of the lubricating oil F (or its vapor) from the lubrication chamber 12 to the exhaust chamber 13.
- the second seal 28 is disposed between the cylinder 7 and the first shaft 5, and mainly has a function of restricting invasion of gas to be exhausted (particularly hydrogen gas) from the exhaust chamber 13 to the lubrication chamber 12.
- the first seal 27 is fixed to the side cover 9, the second seal 28 is fixed to the cylinder 7, and the fixed portions a are fixed.
- the lip portions c are in elastic contact with the first shaft 5.
- the lip portion c facing the lubrication chamber 12 is a first lip 31, and the lip portion c facing the gas introduction space 29 is a second lip 32.
- the lip portion c facing the gas introduction space 29 is a third lip 33, and the lip portion c facing the exhaust chamber 13 is a fourth lip 34.
- the first lip 31 moves closer to the first shaft 5 when the pressure in the lubrication chamber 12 is higher than the gas introduction space 29, and the first shaft 5 when the pressure in the lubrication chamber 12 is lower than the gas introduction space 29. It is possible to elastically deform in the direction away from the. Similarly, the second lip 32, the third lip 33, and the fourth lip 34 are relatively low in the direction of approaching the first shaft 5 when the pressure in the space facing each lip is relatively high. In this case, it can be elastically deformed in a direction away from the first shaft 5.
- the slinger 30 rotates with the first shaft 5 and suppresses the liquid lubricating oil F from reaching the first seal 27 due to centrifugal force.
- the arrangement of the slinger 30 is arbitrary.
- the dry vacuum pump 1 of the present embodiment is configured as described above. Next, the operation of the dry vacuum pump 1 will be described.
- the first shaft 5 connected to the electromagnetic motor 3 rotates, and the first timing gear 22 rotates accordingly.
- the second timing gear 23 is rotated by the first timing gear 22, and the second shaft 14 connected to the second timing gear 23 rotates. That is, the first shaft 5 and the second shaft 14 rotate in the reverse direction at the same speed.
- the first rotor 6 and the second rotor 15 rotate.
- the first timing gear 22, the second timing gear 23, the first bearing 24, and the second bearing 25 are lubricated by the lubricating oil F.
- each exhaust space 26 When the first rotor 6 and the second rotor 15 are rotated, a region in which the volume is expanded and a region in which the volume is compressed are formed in each exhaust space 26. For this reason, gas is sucked from the exhaust passage on the side where the volume is expanded, and the gas is discharged to the exhaust passage on the side where the volume is compressed. Thereby, in each exhaust space 26, the exhaust gas containing hydrogen is sucked from the film forming chamber 103 through the upstream exhaust space 26 or the intake hole 7a, and the gas is discharged into the subsequent exhaust space 26 or the exhaust hole 7b.
- the gas is compressed in each exhaust space 26 sequentially than the exhaust space 26 in the previous stage, even if the pressure in the exhaust target system is sufficiently lower than the atmospheric pressure, the exhaust can be finally pressurized to the atmospheric pressure or exhausted. Is possible. In this case, particularly in a situation where the pressure in the exhaust target system is high, such as at the start of exhaust, the gas may be pressurized to atmospheric pressure or higher in the region where the volume is compressed.
- the film forming chamber 103 is evacuated to a predetermined vacuum level or maintained at a predetermined vacuum level.
- the dry vacuum pump 1 of the present embodiment includes the first seal mechanism 11 and the second seal mechanism 16, it is possible to prevent the lubricating oil F or its vapor from being mixed into the exhaust target gas, Suppresses contamination in the exhaust target system.
- the exhaust target gas in the exhaust chamber 13 is suppressed from entering the lubrication chamber 12, the electromagnetic motor 3 is suppressed from being exposed to the exhaust target gas. Thereby, even when a large amount of hydrogen is contained in the exhaust target gas, it is possible to suppress the deterioration of the permanent magnet material constituting the electromagnetic motor 3.
- the first seal mechanism 11 and the second seal mechanism 16 supply the seal gas and have a pair of lip portions c that extend in opposite directions while being along the axial direction of the shaft, so that the exhaust target gas can be in the lubrication chamber.
- the electromagnetic motor 3 is further effectively prevented from entering the gas 12 and being exposed to the exhaust target gas.
- the operation of the first seal mechanism 11 will be described.
- the operation of the second seal mechanism 16 is the same as that of the seal mechanism 11.
- the pressure of the gas introduction space 29 increases.
- the seal gas seal gas supply source
- Inert gas includes nitrogen gas and argon gas, but the price of nitrogen gas is low, and even if mixed into the exhaust chamber 13, the molecular weight is large, so the reduction in exhaust capacity of the dry vacuum pump can be suppressed to a minimum. preferable.
- the gas introduction space 29 is adjusted to a flow rate that is higher than the maximum pressure of the exhaust space 26 to be described later (pressure at which a sufficient flow rate of seal gas is obtained).
- the flow rate of the seal gas is, for example, 5 SLM to 10 SLM for nitrogen gas, and approximately 1/10 to approximately 1/20 of the exhaust target gas flow rate.
- the seal gas When the first shaft 5 rotates, with respect to the first seal 27, the seal gas is caught in the sliding portion between the second lip 32 and the first shaft 5 to push up the second lip 32, and the seal gas is discharged from the formed gap. Leaks.
- the seal gas that has flowed out is further wound around the sliding portion between the first lip 31 and the first shaft 5 to push up the first lip 31, and the seal gas flows out into the lubrication chamber 12 through the formed gap. That is, the seal gas is ejected from the gas introduction space 29 through the gap between the first seal 27 and the first shaft 5 into the lubrication chamber 12.
- the seal gas when the first shaft 5 rotates, the seal gas is caught in the sliding portion between the third lip 33 and the first shaft 5 to push up the third lip 33 and seal gas from the formed gap. Leaks. The seal gas that has flowed out is further caught in the sliding portion between the fourth lip 34 and the first shaft 5 to push up the fourth lip 34, and the seal gas flows out from the formed gap. That is, the seal gas is ejected from the gas introduction space 29 to the exhaust chamber 13 through the gap between the second seal 28 and the first shaft 5.
- the lubricating oil F and its vapor in the lubrication chamber 12 are sealed by the seal gas ejected from the gap between the first seal 27 and the gap between the second seal 28 formed between the first shaft 5 and the first seal 5. It is possible to more effectively prevent the gas to be exhausted in the exhaust chamber 13 from passing through the second seal 28 and entering the gas introduction space 29.
- one end of the gas discharge passage 53 is connected to the motor cover 8 that partitions the internal space of the electromagnetic motor 3 and the lubrication chamber 12, and the other end of the gas discharge passage 53 is exhausted. It may be connected to line 62.
- the gas discharge passage 53 can be used to discharge the seal gas introduced from the gas introduction space 29 and leaked into the lubrication chamber 12 and the exhaust target gas leaked into the lubrication chamber 12 into the exhaust line 62.
- the gas discharge passage 53 may include a check valve 54 and an oil trap 55.
- the check valve 54 allows a gas flow from the lubrication chamber 12 toward the exhaust line 62 and prohibits the reverse flow. This prevents the gas to be exhausted from the film forming chamber (vacuum processing chamber) 70 discharged from the exhaust hole 7 b of the exhaust chamber 13 from entering the lubrication chamber 12 through the gas discharge passage 53.
- the oil trap 55 is provided in the middle of the gas discharge passage 53 between the lubrication chamber 12 and the check valve 54.
- the oil trap 55 carries over the lubricating oil F in the lubrication chamber 12 together with the seal gas (nitrogen gas) introduced from the gas introduction space 29 and leaked into the lubrication chamber 12 and the exhaust target gas leaked into the lubrication chamber 12. This is to prevent entry into the exhaust line 62.
- the oil trap 55 for example, an appropriate one such as a filter or a water-cooled trap can be used.
- the pressure in the exhaust chamber 13 fluctuates.
- the volume in each exhaust space 26 decreases or increases due to the rotation of the first rotor 6 and the second rotor 15.
- the exhaust target gas is compressed to a relatively high pressure and is adjacent to the second seal 28. Therefore, the final stage exhaust space 26 has a high pressure region and a high pressure.
- a low region (low pressure region) is generated around the second seal 28.
- the fourth lip 34 deforms in a direction approaching the shaft 5 when the pressure in the facing space is high, and deforms in a direction away from the shaft 5 when the pressure in the facing space is low. That is, the gap in the portion facing the high pressure region of the fourth lip 34 is reduced, and the gap in the portion facing the low pressure region is increased. If the flow rate of the seal gas from the portion facing the low pressure region is larger than the flow rate of the seal gas from the portion facing the high pressure region, the third lip 33 corresponding to the circumferential position of the portion is the fourth lip. 34, the gap between the third lip 33 and the shaft 5 is reduced, and the flow rate is restricted. That is, there is an effect that the flow rate of the seal gas to the high pressure region (which hardly flows out) is relatively increased, and the flow rate of the seal gas is made uniform over the entire circumference of the second seal 28.
- the gap between the portion of the fourth lip 34 facing the low pressure region and the first shaft 5 is larger than the gap between the portion facing the high pressure region and the shaft 5.
- the seal gas around the second seal 28 is not limited according to the flow rate. For this reason, a large amount of the seal gas flows out from the portion facing the low pressure region, the flow rate from the portion facing the high pressure region decreases, or the outflow stops. For this reason, the sealing performance with respect to the exhaust target gas (particularly hydrogen gas) may be lowered.
- Exhaust gas (especially hydrogen gas) leaks from the high-pressure region via the gas introduction space 29 to the lubrication chamber 12 together with the seal gas, and the exhaust gas (especially hydrogen gas) passes through the surface of the shaft 5 to be an electromagnetic motor. There is a possibility of entering in three directions.
- the pressure difference between the high pressure region and the gas introduction space 29 is relatively large with respect to the pressure difference between the low pressure region and the gas introduction space 29.
- the gap between the portion of the third lip 33 facing the high pressure region and the first shaft 5 is larger than the gap between the portion facing the low pressure region and the first shaft 5, and the exhaust target gas from the high pressure region. The sealing performance against the ingress of is reduced.
- the third lip 33 and the fourth lip 34 are provided on the second seal 28, even when the pressure of the exhaust target gas is not uniform over the entire circumference, the third lip 33 and the fourth lip 34. By cooperating, it is possible to further prevent the exhaust target gas from entering the gas introduction space 29.
- the pressure of the exhaust target gas may change over time due to the progress of vacuum exhaust in the system.
- the sealing performance is lowered due to pressure fluctuation, or the pressure in the gas introduction space 29 is reduced.
- the seal mechanism 11 including the third lip 33 and the fourth lip 34 it is possible to prevent the exhaust target gas from entering the gas introduction space 29 according to the pressure fluctuation as described above.
- the first lip 31 of the first seal 27 prevents the lubricating oil F and its vapor from reaching the second lip 32.
- the second lip 32 comes into contact with the lubricating oil F, so that the lubricating oil F infiltrates the sliding portion between the second lip 32 and the shaft 5 and transmits a minute scratch.
- the lubricating oil F or its vapor may enter the gas introduction space 29 from penetration due to surface tension or from a location where the pressure balance is slightly lost.
- the pressure balance between the lubricating chamber 12 and the exhaust chamber 13 fluctuates, the lubricating oil F or its vapor may enter the gas introduction space 29.
- the seal mechanism 11 having the first lip 31 and the second lip 32 it is possible to prevent the lubricating oil F or its vapor from entering the gas introduction space 29 according to the pressure fluctuation as described above. It is.
- the seal mechanism 11 and the second seal mechanism 16 have lip structures that protrude in opposite directions while being along the axial direction of the shaft, so that the first seal 27 is lubricated with the lubricating oil. F and its vapor are prevented from entering the gas introduction space 29, and the second seal 28 prevents the exhaust target gas from entering the gas introduction space 29. That is, it is possible to seal the lubricating oil F in the lubricating chamber 12 and the exhaust target gas in the exhaust chamber 13 with high sealing performance.
- the present embodiment it is possible to prevent the exhaust target gas (particularly hydrogen) from entering the lubrication chamber 12 from the exhaust chamber 13, so that the permanent magnet material of the electromagnetic motor 3 becomes the exhaust target gas. There is no exposure. For this reason, hydrogen erosion of the permanent magnet material of the electromagnetic motor 3 by a large amount of hydrogen gas contained in the exhaust target gas is effectively prevented, and the reliability of the electromagnetic motor 3 is significantly improved.
- the dry vacuum pump 1 of the first embodiment is provided with a purge mechanism (purge means) 40, and the description of the same parts as those in the first embodiment is omitted.
- the purge mechanism (purge means) 50 will be described below.
- the purge mechanism 40 includes a gas introduction unit 50 and a gas discharge passage 53.
- the purge mechanism 40 is for diluting hydrogen in the exhaust target gas leaked into the lubrication chamber 12 through the seal mechanisms 11 and 16 with an inert gas and does not react with the gas component of the exhaust target gas. Is used.
- nitrogen gas such as nitrogen gas or argon gas is preferable because it is inexpensive and has a large molecular weight even if mixed in the exhaust chamber 13, so that a reduction in exhaust capability of the dry vacuum pump can be suppressed to a small extent.
- nitrogen gas is used.
- the gas introduction part 50 is formed in a part of the container of the electromagnetic motor chamber 10 that houses the electromagnetic motor 3, and is introduced into the internal space of the electromagnetic motor 3.
- One end of the gas introduction unit 50 is connected to a nitrogen gas introduction source 51 installed outside the electromagnetic motor chamber 10.
- the nitrogen gas introduced from the nitrogen gas introduction source 51 is introduced into the lubrication chamber 12 from the internal space of the electromagnetic motor 3 via the gas introduction part 50.
- Nitrogen gas is always introduced into the lubrication chamber 12 from the internal space of the electromagnetic motor 3 during the operation of the dry vacuum pump 1. Thereby, the internal space of the electromagnetic motor 3 and the lubrication chamber 12 are always maintained in a nitrogen gas atmosphere.
- the internal space of the electromagnetic motor 3 with the gas introduction part 50 is connected to the motor cover 8 that partitions the lubrication chamber 12, and the other end of the gas discharge passage 53 is connected to the exhaust line 62.
- the gas discharge passage 53 passes nitrogen gas (purge gas) introduced into the lubrication chamber 12, seal gas introduced from the gas introduction space 29 and leaked into the lubrication chamber 12, and exhaust target gas leaked into the lubrication chamber 12 into the exhaust line 62. It is for discharging.
- the purge mechanism 40 further includes a check valve 54 and an oil trap 55.
- the check valve 54 and the oil trap 55 are each installed in the gas discharge passage 53.
- the check valve 54 allows the gas flow from the lubrication chamber 12 toward the exhaust line 62 and prohibits the reverse flow. This prevents the gas to be exhausted from the film forming chamber (vacuum processing chamber) 103 discharged from the exhaust hole 7 b of the exhaust chamber 13 from entering the lubrication chamber 12 through the gas discharge passage 53.
- the oil trap 55 is provided in the middle of the gas discharge passage 53 between the lubrication chamber 12 and the check valve 54.
- the oil trap 55 includes the nitrogen gas (purge gas) discharged from the lubrication chamber 12, the seal gas introduced from the gas introduction space 29 and leaked into the lubrication chamber 12, and the exhaust target gas leaked into the lubrication chamber 12. This is to prevent the lubricating oil F from carrying over and entering the exhaust line 62.
- an appropriate one such as a filter or a water-cooled trap can be used as the oil trap 55.
- the exhaust gas containing hydrogen from the film forming chamber 103 sucked into the exhaust chamber 13 may be used.
- the target gas may enter the lubrication chamber 12 via the seal mechanisms 11 and 16.
- the exhaust target gas including hydrogen gas that has entered the lubrication chamber 12 comes into contact with the electromagnetic motor 3, and the permanent magnet material constituting the electromagnetic motor 3 erodes by contact with the hydrogen gas, and the excitation force is caused by destruction or the like. There is concern about the decline.
- the function as a drive source of the dry vacuum pump 1 is deteriorated, and in the worst case, the function is malfunctioned.
- the purge mechanism 40 reduces the hydrogen concentration of the exhaust target gas that has entered the lubrication chamber 12, thereby adversely affecting the electromagnetic motor 3 described above. Try to avoid. That is, in this embodiment, during the operation of the dry vacuum pump 1, the purge gas (nitrogen gas) is introduced from the nitrogen gas introduction source 51 through the gas introduction unit 50 into the internal space of the electromagnetic motor 3 and the lubrication chamber 12. The purge gas thus discharged is discharged to the exhaust line 62 through the gas discharge passage 53.
- nitrogen gas nitrogen gas
- the internal space of the electromagnetic motor 3 and the inside of the lubrication chamber 12 can be maintained in a nitrogen gas atmosphere, and even if an exhaust gas including hydrogen gas enters the lubrication chamber 12 via the seal mechanisms 11 and 16, It is possible to suppress the hydrogen gas concentration in the internal space of the motor 3 and the lubrication chamber 12 to a predetermined value or less.
- the flow rate of nitrogen gas which is a purge gas introduced into the internal space of the electromagnetic motor 3 and the lubrication chamber 12, is selected, for example, by mixing helium into the exhaust target gas and the internal space of the electromagnetic motor 3 or the lubrication chamber. It is possible to select an appropriate flow rate by connecting a helium leak detector in 12 and measuring a change in the concentration of helium.
- the nitrogen gas flow rate as the purge gas introduced through the gas introduction unit 50 is varied from 1 SLM to 3 SLM, and the concentration of helium is measured with a helium leak detector. As a result, the helium concentration became a very low and constant concentration. For this reason, 1.0 SLM was selected in order to effectively use nitrogen gas.
- the flow rate of the purge gas is not particularly limited, and can be set to an appropriate value in consideration of the internal space of the electromagnetic motor 3 and the volume of the lubrication chamber 12, the amount of hydrogen gas entering the lubrication chamber 12, and the like.
- the check valve 54 having the above-described configuration is installed in the gas discharge passage 53, the gas to be exhausted from the film forming chamber 103 discharged to the exhaust line 62 through the exhaust hole 7b. Intrusion into the lubrication chamber 12 through the gas discharge passage 53 is prevented. Thereby, the nitrogen gas atmosphere in the lubrication chamber 12 can be maintained.
- the oil trap 55 is installed in the gas discharge passage 53, the lubricating oil F in the lubricating chamber 12 is prevented from being discharged together with the purge gas to the exhaust line 62. As a result, contamination of the exhaust line 62 with oil can be prevented, and a clean exhaust system can be constructed.
- the purge mechanism (purge means) 40 includes a gas introduction passage 52 and a gas discharge passage 53.
- the purge mechanism 40 is for diluting hydrogen in the exhaust target gas leaked into the lubrication chamber 12 through the seal mechanisms 11 and 16 with an inert gas, and a case where nitrogen gas is used as the inert gas. explain.
- the gas introduction passage 52 is formed in the rotating shaft (rotor) of the electromagnetic motor 3 and the shaft center portion of the shaft 5.
- One end of the gas introduction passage 52 is connected to a nitrogen gas introduction source 51 installed outside the electromagnetic motor 3 through a gas introduction portion 50 formed in the container of the electromagnetic motor chamber 10, and the other end of the gas introduction passage 52. Faces the outer periphery of the shaft 5 located in the lubrication chamber 12.
- the nitrogen gas introduced from the nitrogen gas introduction source 51 is introduced into the lubrication chamber 12 through the gas introduction passage 52.
- Nitrogen gas is always introduced into the lubrication chamber 12 during the operation of the dry vacuum pump 1. Thereby, the lubrication chamber 12 is always maintained in a nitrogen gas atmosphere.
- the gas introduction part 50 and the gas introduction passage 52 of the axial end part of the shaft 5 is installed with a small gap so that the shaft 5 can rotate.
- Most of the purge gas introduced from the gas introduction unit 50 may be introduced into the gas introduction passage 52 and a part of the interior of the electromagnetic motor chamber 10 may be purged.
- the gas discharge passage 53 supplies nitrogen gas (purge gas) introduced into the lubrication chamber 12, seal gas introduced from the gas introduction space 29 and leaked into the lubrication chamber 12, and exhaust target gas leaked into the lubrication chamber 12 into the exhaust line 62. It is for discharging.
- the gas introduction passage 52 is provided in the rotating shaft of the electromagnetic motor 3 and the axial center portion of the shaft 5, it is not necessary to install a pipe around the electromagnetic motor 3.
- the periphery of the shaft 5 can always be covered with nitrogen gas, and the exhaust target including hydrogen into the electromagnetic motor 3 can be obtained. This has the advantage that gas can be effectively prevented from entering.
- Hydrogen gas in the exhaust target gas leaked from the exhaust chamber to the lubrication chamber through the seal mechanisms 11 and 16 is directly diluted by the purge mechanism, and hydrogen of the exhaust target gas including hydrogen gas leaked from the exhaust chamber side to the lubrication chamber Since the gas partial pressure is also lowered, it becomes possible to more effectively prevent the permanent magnet material constituting the electromagnetic motor 3 from being eroded by hydrogen. Thus, the malfunction of the drive source due to hydrogen contained in the exhaust gas can be prevented.
- first lip 31 and the second lip 32 of the first seal 27 and the third lip 33 and the fourth lip 34 of the second seal 28 have been described as an integral structure.
- the lip 32, the third lip 33, and the fourth lip 34 may be manufactured as separate bodies, and these may be combined to form the first seal 27 and the second seal 28.
- the first lip 31 and the second lip 32, and the third lip 33 and the fourth lip 34 are influenced by the deformation of the corresponding lips, and are in close contact with each other so as to adjust the gap with the shaft. It is preferable that they can be considered.
- each lip as a separate body, the manufacturing becomes easy and the cost can be reduced.
- first lip 31 and the second lip 32 of the first seal 27 and the third lip 33 and the fourth lip 34 of the second seal 28 are not necessarily the same size.
- the first lip 31 and the second lip 32 and the third lip 33 and the fourth lip 34 are lip having a strong elastic force and a small pressure difference depending on the operation of the dry vacuum pump 1. May be made as a flexible lip.
- the first lip 31 and the second lip 32, and the third lip 33 and the fourth lip 34 may be manufactured separately.
- the first seal mechanism 11 and the second seal mechanism 16 are used as seals for the lubrication chamber 12 and the exhaust chamber 13, but the present invention is not limited thereto, and the bearing chamber (adjacent chamber) 17 and the exhaust chamber 13 It may be used as a seal. Thereby, especially when the degree of vacuum in the exhaust target system is not large, it is possible to prevent the lubricating oil or the like filled in the bearing chamber 17 from leaking into the exhaust chamber 13.
- the seal installed between the lubrication chamber 12 and the exhaust chamber 13 is configured by the seal mechanisms 11 and 16 having the above configuration.
- the above seal may be configured.
- the arrangement of the second seal 28 on the exhaust chamber 13 side may be omitted.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
一方、真空処理室から水素ガスを含む排気対象気体を吸引及び排出するために用いられるドライ真空ポンプは、その駆動源として電磁モータを備えており、この電磁モータは構成材料として永久磁石材料を含む。永久磁石材料は鉄―ネオジム系材料が代表的であり、永久磁石材料は水分による錆が発生しやすいため、ニッケルメッキなどにより耐食性改善が行われている。また、永久磁石材料は水素を吸蔵するので水素化合物を形成し、発熱他で脆化して磁力の低下や崩壊に至ることがあり、いわゆる水素による浸食を受け易いことが知られており、電磁モータの励磁力低下が懸念される。
さらに、水素ガスは分子サイズが小さく拡散しやすいため、水素ガスは、ドライ真空ポンプの排気室からロータの回転シャフトのシール部分を通過して電磁モータ内部へと拡散し、さらには永久磁石の表面に施した薄いニッケルメッキやメッキ層のピンホールを透過して、水素による浸食を生じさせる危惧があることが判明した。
特に、結晶質シリコン系薄膜製造に見られるような、シランガスを多量の水素ガスで希釈する高希釈率製膜条件にて、1m2を超える大面積基板へ製膜処理をする場合は、真空排気ポンプの内容量に対する排気対象気体中の水素ガスの割合が増加するため、一層に水素ガスによる電磁モータの永久磁石材料機能不全を発生することが懸念される。
以上から、接触型シール機構を採用した上で、排気室の圧力変動に対しても十分にシール特性の優れたシール機構が望まれている。
本発明の第1の態様にかかるドライ真空ポンプは、電磁モータによって回転駆動されるシャフトと、該シャフトに取り付けられるとともに排気室内に設けられ、真空処理室内の排気対象気体を該排気室内に吸引しかつ排出するロータと、を備えた真空処理室を排気するドライ真空ポンプであって、前記排気室と、該排気室の隣に位置する隣室との間には、該排気室を区画する排気室区画壁部と前記シャフトとの間をシールする排気室側シールと、該隣室を区画する隣室区画壁部と前記シャフトとの間をシールする隣室側シールとを備え、前記排気室側シールと前記隣室側シールとの間には、シールガスが供給されるガス導入空間が設けられ、前記排気室側シール及び前記隣室側シールは、それぞれ、前記排気室区画壁部側または前記隣室区画壁部側に固定された円環状の基部と、該基部から前記シャフト側へと延在する一対の円環状のリップ部とを備え、一対の前記リップ部は、前記基部から前記シャフト側へと向かうにつれて互いの間隔が漸次拡大するように延在するとともに、それぞれの先端部が、前記シャフトに対して弾性的に接触可能とされている。
また、排気室側シール及び隣室側シールは、一対のリップ部を備え、それぞれの先端部が、シャフトに対して弾性的に接触可能とされている。したがって、2つのリップ部によってシールを行うことができるので、より確実なシールが行われることになる。
さらに、各リップ部は、シャフト側へと向かうにつれて互いの間隔が漸次拡大するように延在する形状とされており、これらリップ部は共通とみなせる基部に接続されている。したがって、一方のリップ部が基部に対して傾斜すると、他方のリップ部も貴部を介して傾斜することになるので、この傾斜方向と同方向に傾斜することになる。すなわち、排気室または隣室に接するリップ部がシャフトから離間するように傾斜すると、これに対応してシールガスが供給されるガス導入空間に接するリップ部がシャフトに近接するようになる。これとは逆に、排気室または隣室に接するリップ部がシャフトに近接するように傾斜すると、これに対応してシールガスが供給されるガス導入空間に接するリップ部がシャフトから離間するようになる。このように、一方のリップ部がシャフトから離間してシャフトとの間隙が大きくなっても、このリップ部の周方向位置に対応する他方のリップ部がシャフトに近接してシャフトとの間隙が小さくなるので、シールガスの流出量が各周方向位置にて不均一を改善するように調整されることになる。したがって、シールの周方向に圧力分布が生じていても、各周方向位置にてシールガス流量が調整されるので、高いシール性能が発揮されることになる。
なお、本発明において、「隣室」とは、排気室の隣に位置する室を意味し、例えば、潤滑室や軸受室が挙げられる。したがって、本発明は、排気室と潤滑室とのシールや、排気室と軸受室とのシールに好適である。
そこで、本発明の第2の態様に係るドライ真空ポンプでは、電磁モータ室内に不活性ガスを導入するとともに、電磁モータ室内のガスを排気するパージ手段を設けることとした。これにより、電磁モータ室内に水素ガスが侵入したとしても排気することができ、また、不活性ガスの導入によって水素ガス分圧が低下するため、多量の水素が電磁モータの永久磁石材を浸食することがない。したがって、電磁モータの永久磁石が水素ガスによって浸食されることを回避することができる。
そこで、本発明の第3の態様に係るドライ真空ポンプでは、シャフトに形成されたガス導入通路によって電磁モータ室の外部から潤滑室内に不活性ガスを導入するとともに、潤滑室内のガスを排気するパージ手段を設けることとした。これにより、排気室から潤滑室内に水素ガスが侵入したとしても電磁モータ室内に侵入する前に水素ガスを排気することができ、また、不活性ガスの導入によって水素ガス分圧が低下するため、多量の水素が電磁モータの永久磁石材を浸食することがない。したがって、電磁モータの永久磁石が水素ガスによって浸食されることを回避することができる。
また、シャフトに形成されたガス導入通路によって電磁モータ室の外部から潤滑室内に不活性ガスを導入することとしたので、電磁モータ室内に配管を引き回すことなく潤滑室内に不活性ガスを導入することができ、簡便な構成が実現される。
また、排気室側シール及び隣室側シールは、一対のリップ部を備え、それぞれの先端部が、シャフトに対して弾性的に接触可能としたので、2つのリップ部によってシールを行うことができるので、より確実なシールが行われることになる。
また、各リップ部は、シャフト側へと向かうにつれて互いの間隔が漸次拡大するように延在する形状とされており、これらリップ部は共通とみなせる基部に接続されているので、シールの周方向に圧力分布が生じていても、各周方向位置にてシールガス流量が不均一を改善するように調整されるので、高いシール性能を発揮することができる。
また、排気室側シール及び隣室側シールを、排気室と潤滑室との間に設けることとしたので、排気室に対して潤滑室を挟んで位置する電磁モータ室までは排気対象ガスが漏出することが防止される。したがって、電磁モータの永久磁石が水素ガスによって浸食されることを回避することができる。
図1には、本発明の第1実施形態に係るドライ真空ポンプ1を用いた真空処理系統の概略が示されている。
プラズマCVD装置(真空処理装置)101は、製膜室103を備えており、この製膜室103内を真空排気する系統にドライ真空ポンプ1が設けられている。製膜室103は、1m2を超える大面積ガラス基板(不図示)に対して製膜を行なう。製膜室103には、主な原料ガスであるシランガス(SiH4)および水素ガス(H2)、ならびにクリーニングガス(NF3)をそれぞれ製膜室103内に供給するガス供給流路104,105,106が接続されている。また、製膜室103には、ガスを排気する排気系統61とが設けられている。
排気系統61は、高真空用のターボ分子ポンプ(TMP)109が設けられた排気流路110と、流量調整弁(CV)111が設けられた流路112とを備えている。排気流路110と流路112との合流点Sよりも下流の流路113には、ドライ真空ポンプ(DP)1が介装されている。さらに、ドライ真空ポンプ1の下流側には、排気ライン62が設けられている。この排気ライン62は、シランガスおよび水素ガス等の可燃ガスを排気する可燃系排気ライン117と、三フッ化窒素ガス(NF3)等の支燃系ガスを排気する支燃系排気ライン118とに分岐される。可燃系排気ライン117には可燃系排気弁119aが、支燃系排気ライン118には支燃系排気弁119bが設けられている。
製膜を実施する為に、原料ガスのシランガスおよび水素ガスを供給する場合は、可燃系排気弁119aを開、支燃系排気弁119bを閉として、可燃系排気ライン117を用いる。
製膜室103内をセルフクリーニングする為にクリーニングガスの三フッ化窒素ガスを供給する場合は、可燃系排気弁119aを閉、支燃系排気弁119bを開として、支燃系排気ライン118を用いる。
また、プラズマCVD装置101には、製膜室103の圧力を計測する真空計(V)120が設けられている。
原料ガスは、水素ガスを用いて希釈され、例えば、結晶質シリコン膜形成にはシランガスに対して20倍以上に水素ガス希釈することによって膜質の向上を実現できる。
基板(不図示)を製膜室103内にセットし、製膜レシピ指示を受け、製膜レシピにしたがって製膜処理を行なう。
例えば、結晶質シリコン膜の形成において、製膜速度2.0~2.5nm/sを得るにあたり、製膜圧力は1000~3000Paであり、基板1m2あたりの製膜用原料ガスであるシランガスの流量は0.5~2.0SLM/m2、水素ガスの流量は10SLM/m2以上の大流量となる。
次いで、プラズマ放電を開始され、これにより製膜が施される。
所定の製膜が行われた後、プラズマ放電を停止し、また、製膜原料ガスを停止する。MV121とTV122を開とするとともにRV123を閉とし、ターボ分子ポンプ109およびドライ真空ポンプ1による高真空排気を行ない、製膜処理した基板を搬出し、製膜処理を終了する。
なお、ドライ真空ポンプ1は、ルーツ型ポンプ等のメカニカルブースタポンプと排気系統を直列に組み合わせて真空排気能力を向上させて使用しても良い。
本実施形態に係るドライ真空ポンプ1は、ルーツ型ドライ真空ポンプで構成されるが、本発明はこれに限定されるものではなく、例えば、スクロール型、回転翼型等の他の形態のドライ真空ポンプ、ルーツ型ポンプ等のメカニカルブースタポンプにも適用可能である。
電磁モータ3及び潤滑室12は、図2及び図3に示すように、排気室13の排気空間26で気体が圧縮される側(大気圧に近い側)に設けられている。このように電磁モータ3を配置することで、電磁モータ室10の気密管理を容易にすることができる。また、ドライ真空ポンプ1の起動停止時など圧力変動が発生する際には、潤滑室12と排気室13との圧力差が少ないため、第1シール機構11におけるシール特性をより確実にする効果がある。
なお、電磁モータ3は1基に限られず、複数基が設けられていてもよい。
製膜室103の他に基板予熱室なども多量の水素ガス(H2)の投入を行なうことから、同様に本実施形態のドライ真空ポンプ1が利用可能である。
第1シール機構11と第2シール機構16の構成は同一であるため、第1シール機構11について説明する。
図5は、第1シール機構11の構成を示す断面図であり、図3の第1シール機構11の近傍を拡大した図である。
シリンダ7とサイドカバー9の間には、ガス導入孔9aと連通する隙間Gが形成され、第1シール27及び第2シール28によってガス導入空間29が形成されている。本実施形態に係るドライ真空ポンプ1において、サイドカバー9とシリンダ7の、ガス導入空間29に臨む部分が隔壁を構成する。
また、上記構成に加え、第1シール機構11は、潤滑室12の室内において第1シャフト5に取り付けられたスリンガ30を有する。
なお、シール部材Aは、複数の部材から構成されてもよい。
また、シール部材Aは、各リップ部cの、第1シャフト5と当接する箇所に配置された摺動部材dと、固定部a及び基部bに挿入された支持部材eを有する。
同図に示すように、第1シール27は、サイドカバー9と第1シャフト5との間に配置され、主として、潤滑室12から排気室13への潤滑オイルF(又はその蒸気)の漏出を規制する機能を有する。第2シール28は、シリンダ7と第1シャフト5との間に配置され、主として、排気室13から潤滑室12への排気対象気体(特に水素ガス)の侵入を規制する機能を有する。
第1シール機構11及び第2シール機構16において、シールガスを供給するとともに、シャフトの軸方向に沿いながら、互いに反対方向に張り出す一対のリップ部cを有することで、排気対象気体が潤滑室12に侵入して電磁モータ3が排気対象気体に曝されることを更に効果的に防止する。
シールガスの導入により、ガス導入空間29が、後述する排気空間26の最大圧力よりも高い圧力(十分なシールガスの流量が得られる圧力)になるような流量に調節される。
図8に、排気対象気体として水素ガスを100SLM排気させて、シールガスとして窒素ガスを用いた場合のシールガス流量による水素ガスの潤滑室12への漏れ濃度を計測した結果を示す。シールガス(窒素ガス)流量がない場合(0SLM)では、潤滑室12の水素濃度は60ppmであったが、シールガス(窒素ガス)を5SLM以上導入することで、潤滑室12の水素濃度は計測限界以下となり、水素ガスが潤滑室12に侵入すること防止されていることが確認された。またシールガス流量を増加することで、潤滑室12の圧力が上昇しすぎると、潤滑オイルFがガス排出通路53を経由してオイルトラップ55で捕獲できなかった微量のオイルミスト分が排気ライン62へ排出されることが危惧されるので、必要以上に潤滑室12の圧力を上昇させないことが好ましい。
シールガスの流量は、1m2を超える大面積基板の結晶質シリコン膜の形成においては、例えば窒素ガスが5SLM~10SLMであり、排気対象気体流量の略1/10~略1/20である。
逆止弁54は、潤滑室12から排気ライン62へ向かうガスの流れを許容し、その逆の流れは禁止する。これにより、排気室13の排気孔7bから排出された製膜室(真空処理室)70の排気対象気体がガス排出通路53を介して潤滑室12へ侵入することが防止される。
第2実施形態は、第1実施形態のドライ真空ポンプ1にパージ機構(パージ手段)40を設けたものであり、第1実施形態と重複する部分はその説明を省略する。
以下に、パージ機構(パージ手段)50について説明する。
図9及び図10に示すように、パージ機構40は、ガス導入部50と、ガス排出通路53とを有する。パージ機構40は、シール機構11、16を介して潤滑室12に漏出した排気対象気体中の水素を不活性ガスで希釈するためのものであり、排気対象気体のガス成分と反応しない不活性ガスを用いる。不活性ガスとしては、窒素ガスやアルゴンガスなどの窒素ガスは価格が安価であるとともに、排気室13に混入しても分子量が大きいためドライ真空ポンプの排気能力低下を少なく抑えられるので好ましい。本実施形態では窒素ガスを用いる。
本実施形態において、ガス導入部50を介して導入したパージガスとしての窒素ガス流量を1SLM~3SLMで変化させて、ヘリウムリークディテクタでヘリウムの濃度を計測したところ、窒素ガス流量を1.0SLM以上とすることで、ヘリウム濃度が極めて低い一定濃度となった。このため、窒素ガスを有効に利用するために、1.0SLMを選定した。
パージガスの流量は特に限定されず、電磁モータ3の内部空間および潤滑室12の容積や潤滑室12へ侵入する水素ガス量等を勘案して適宜の値に設定することができる。
第3実施形態は、第2実施形態のガス導入部50にガス導入通路52を設けたものであり、第2実施形態と重複する部分はその説明を省略する。
図11に示すように、パージ機構(パージ手段)40は、ガス導入通路52と、ガス排出通路53とを有する。パージ機構40は、シール機構11、16を介して潤滑室12に漏出した排気対象気体中の水素を不活性ガスで希釈するためのものであり、不活性ガスには窒素ガスを利用する場合を説明する。
なお、シャフト5が回転可能であるよう、ガス導入部50とシャフト5の軸端部のガス導入通路52の間は、少ない隙間をもって設置されている。ガス導入部50から導入されたパージガスの多くがガス導入通路52へと導入されて、一部は電磁モータ室10内部をパージしてもよい。
このように、排気対象気体に含まれる水素による駆動源の機能不全を防止することができる。
このとき、第1リップ31と第2リップ32、および第3リップ33と第4リップ34は各対応するリップの変形に影響されて、シャフトとの隙間を調整するよう、密着して一体構造とみなせるようになっていることが好ましい。また、各リップを組み合わせる際に、相互間の位置決め可能な嵌め込み構造を設けてがあれば、第1シール27と第2シール28を精度よく構成できるので、さらに好ましい。
このように、各リップをそれぞれ別体として製作することで、製作が容易になり、コストダウンが可能となる。
このとき、各リップはサイズが異なることから、第1リップ31と第2リップ32、および第3リップ33と第4リップ34をそれぞれ別体として製作してもよい。
ドライ真空ポンプ1の運用に応じて、圧力差に対する各リップ構造を設けることで、より一層にシール特性が向上する。したがって、排気対象気体に含まれる多量の水素ガスによる電磁モータ3の永久磁石材の水素浸食がより一層に阻止され、電磁モータ3の信頼性がより一層に高められる。
3 電磁モータ
4 回転伝達機構
5 シャフト
6,15 ロータ
11,16 シール機構
12 潤滑室
13 排気室
29 ガス導入空間
31 第1リップ
32 第2リップ
33 第3リップ
34 第4リップ
40 パージ機構
50 ガス導入部
51 パージガス(窒素ガス)導入源
52 ガス導入通路
53 ガス排出通路
54 逆止弁
55 オイルトラップ
61 排気系統
62 排気ライン
101 真空処理装置(プラズマCVD装置)
103 真空処理室(製膜室)
104,105,106 ガス供給流路
110 排気流路
111 流量調整弁
112,113 流路
117 可燃系排気ライン
118 支燃系排気ライン
120 真空計
F 潤滑オイル
Claims (14)
- 電磁モータによって回転駆動されるシャフトと、
該シャフトに取り付けられるとともに排気室内に設けられ、真空処理室内の排気対象気体を該排気室内に吸引しかつ排出するロータと、
を備えたドライ真空ポンプにおいて、
前記排気室と、該排気室の隣に位置する隣室との間には、該排気室を区画する排気室区画壁部と前記シャフトとの間をシールする排気室側シールと、該隣室を区画する隣室区画壁部と前記シャフトとの間をシールする隣室側シールとを備え、
前記排気室側シールと前記隣室側シールとの間には、シールガスが供給されるガス導入空間が設けられ、
前記排気室側シール及び前記隣室側シールは、それぞれ、前記排気室区画壁部側または前記隣室区画壁部側に固定された円環状の基部と、該基部から前記シャフト側へと延在する一対の円環状のリップ部とを備え、
一対の前記リップ部は、前記基部から前記シャフト側へと向かうにつれて互いの間隔が漸次拡大するように延在するとともに、それぞれの先端部が、前記シャフトに対して弾性的に接触可能とされていることを特徴とするドライ真空ポンプ。 - 前記基部と一対の前記リップ部とは、一体にて構成されていることを特徴とする請求項1に記載のドライ真空ポンプ。
- 一対の前記リップ部をそれぞれ別部材とし、これらリップ部の基端部を互いに固定して組み付けることによって前記基部と構成することを特徴とする請求項1又は2に記載のドライ真空ポンプ。
- 各前記リップは、前記シャフトと接触する部位がポリテトラフルオロエチレンとされていることを特徴とする請求項1から3のいずれかに記載のドライ真空ポンプ。
- 前記電磁モータを収容する電磁モータ室は、前記排気室に対して前記隣室を挟んだ位置に設けられ、
前記隣室は、潤滑オイルが貯留される潤滑室とされ、
前記排気対象気体には、水素ガスが含まれていることを特徴とする請求項1から4のいずれかに記載のドライ真空ポンプ。 - 前記排気室から前記排気対象気体を排気する排気ラインへ接続されたガス排出通路をさらに備え、該ガス排出通路には、前記排気ラインへ向かう前記潤滑オイルを捕捉するオイルトラップが設けられていることを特徴とする請求項5に記載のドライ真空ポンプ。
- 前記排気室から前記排気対象気体を排気する排気ラインへ接続されたガス排出通路をさらに備え、該ガス排出通路には、前記排気ラインへ向かうガスの流れを許容するとともに逆方向の流れを禁止する逆止弁が設けられていることを特徴とする請求項1から6のいずれかに記載のドライ真空ポンプ。
- 電磁モータ室内に収容された電磁モータと、
該電磁モータによって回転駆動されるシャフトと、
該シャフトに取り付けられるとともに排気室内に設けられ、真空処理室内の水素ガスを含む排気対象気体を該排気室内に吸引しかつ排出するロータと、
を備えたドライ真空ポンプにおいて、
前記電磁モータ室内に不活性ガスを導入するとともに、該電磁モータ室内のガスを排気するパージ手段が設けられていることを特徴とするドライ真空ポンプ。 - 前記排気室と前記電磁モータ室との間には、潤滑オイルが貯留される潤滑室が設けられ、
前記パージ手段によって前記電磁モータ室内に導入された不活性ガスは、前記潤滑室内を通過して排気されることを特徴とする請求項8に記載のドライ真空ポンプ。 - 電磁モータ室内に収容された電磁モータと、
該電磁モータによって回転駆動されるシャフトと、
該シャフトに取り付けられるとともに排気室内に設けられ、真空処理室内の水素ガスを含む排気対象気体を該排気室内に吸引しかつ排出するロータと、
前記排気室と前記電磁モータ室との間に設けられ、潤滑オイルが貯留される潤滑室と、
を備えたドライ真空ポンプにおいて、
前記シャフトに形成されたガス導入通路によって前記電磁モータ室の外部から前記潤滑室内に不活性ガスを導入するとともに、該潤滑室内のガスを排気するパージ手段が設けられていることを特徴とするドライ真空ポンプ。 - 前記排気室と前記電磁モータ室との間には、潤滑オイルが貯留される潤滑室が設けられ、
前記排気対象気体には、水素ガスが含まれていることを特徴とする請求項8に記載のドライ真空ポンプ。 - 前記排気対象気体には、水素ガスが含まれていることを特徴とする請求項9又は10に記載のドライ真空ポンプ。
- 前記パージ手段は、前記排気室から前記排気対象気体を排気する排気ラインへ接続されたガス排出通路を備え、該ガス排出通路には、前記排気ラインへ向かう前記潤滑オイルを捕捉するオイルトラップが設けられていることを特徴とする請求項11又は12に記載のドライ真空ポンプ。
- 前記パージ手段は、前記排気室から前記排気対象気体を排気する排気ラインへ接続されたガス排出通路を備え、該ガス排出通路には、前記排気ラインへ向かうガスの流れを許容するとともに逆方向の流れを禁止する逆止弁が設けられていることを特徴とする請求項8から13のいずれかに記載のドライ真空ポンプ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/142,100 US20110256003A1 (en) | 2009-05-20 | 2010-05-06 | Dry vacuum pump |
EP10777662A EP2434156A1 (en) | 2009-05-20 | 2010-05-06 | Dry vacuum pump |
KR1020117016393A KR101310490B1 (ko) | 2009-05-20 | 2010-05-06 | 드라이 진공 펌프 |
CN201080004682.3A CN102282371B (zh) | 2009-05-20 | 2010-05-06 | 干式真空泵 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009122499A JP5473400B2 (ja) | 2009-05-20 | 2009-05-20 | ドライ真空ポンプおよびそのシール方法 |
JP2009122500A JP5330896B2 (ja) | 2009-05-20 | 2009-05-20 | ドライ真空ポンプ |
JP2009-122500 | 2009-05-20 | ||
JP2009-122499 | 2009-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010134427A1 true WO2010134427A1 (ja) | 2010-11-25 |
Family
ID=43126112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057776 WO2010134427A1 (ja) | 2009-05-20 | 2010-05-06 | ドライ真空ポンプ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110256003A1 (ja) |
EP (1) | EP2434156A1 (ja) |
KR (1) | KR101310490B1 (ja) |
CN (1) | CN102282371B (ja) |
TW (2) | TW201443343A (ja) |
WO (1) | WO2010134427A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2715139A1 (en) * | 2011-06-02 | 2014-04-09 | Ebara Corporation | Vacuum pump |
EP2715138A1 (en) * | 2011-06-02 | 2014-04-09 | Ebara Corporation | Vacuum pump |
CN110088478A (zh) * | 2016-12-19 | 2019-08-02 | 爱德华兹有限公司 | 泵密封 |
TWI673433B (zh) * | 2012-05-18 | 2019-10-01 | 日商愛德華有限公司 | 調整一真空幫浦配備之操作參數的方法與裝置 |
TWI788526B (zh) * | 2018-03-07 | 2023-01-01 | 法商普發真空公司 | 乾式真空泵 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103930363B (zh) * | 2011-09-16 | 2016-10-12 | 柿子技术公司 | 基板传送装置 |
FR2984423A1 (fr) * | 2011-12-15 | 2013-06-21 | Adixen Vacuum Products | Dispositif de pompage et equipement de fabrication d'ecrans plats correspondant |
DE102013211529A1 (de) * | 2013-06-19 | 2014-12-24 | Pfeiffer Vacuum Gmbh | Vakuumpumpe |
GB2559134B (en) * | 2017-01-25 | 2020-07-29 | Edwards Ltd | Pump assemblies with stator joint seals |
JP6473283B1 (ja) * | 2017-05-30 | 2019-02-20 | 株式会社アルバック | 真空ポンプ |
FR3076582B1 (fr) | 2018-01-09 | 2020-01-24 | Pfeiffer Vacuum | Pompe a vide de type seche et procede de commande d'un moteur synchrone de pompe a vide |
CN109340116A (zh) * | 2018-10-08 | 2019-02-15 | 江苏亚太工业泵科技发展有限公司 | 排气侧内置氮气密封的螺杆真空泵 |
CN115427661A (zh) * | 2020-02-17 | 2022-12-02 | 普旭制造有限公司 | 用于再循环至少部分含氢的气体组合物的装置和燃料电池系统 |
FR3119209B1 (fr) * | 2021-01-25 | 2023-03-31 | Pfeiffer Vacuum | Pompe à vide de type sèche et groupe de pompage |
KR20230103361A (ko) | 2021-12-31 | 2023-07-07 | 홍경순 | 쿨링수단을 구비하는 진공 펌프 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62197685A (ja) * | 1986-02-26 | 1987-09-01 | Hitachi Ltd | スクリユ−真空ポンプの軸封装置 |
JPH06201054A (ja) * | 1992-12-28 | 1994-07-19 | Hitachi Ltd | 真空ポンプ用軸封装置 |
JPH06346882A (ja) * | 1993-06-07 | 1994-12-20 | Hitachi Ltd | ドライ真空ポンプの軸封用パージガス量制御装置 |
JP3085539U (ja) * | 2001-10-23 | 2002-05-10 | 大晃機械工業株式会社 | 真空ポンプの軸シール構造 |
JP2003172261A (ja) | 2001-12-03 | 2003-06-20 | Teijin Seiki Co Ltd | 回転軸シール機構 |
WO2005042979A1 (ja) * | 2003-10-21 | 2005-05-12 | Nabtesco Corporation | 回転式ドライ真空ポンプ |
JP2005171766A (ja) | 2003-12-08 | 2005-06-30 | Ulvac Japan Ltd | ドライポンプ及びドライポンプの運転方法 |
JP2006216921A (ja) | 2005-02-07 | 2006-08-17 | Mitsubishi Heavy Ind Ltd | 光電変換装置の製造方法および光電変換装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6183208B1 (en) * | 1997-10-03 | 2001-02-06 | Roper Holdings, Inc. | Immersible motor system |
JP2002122086A (ja) * | 2000-10-16 | 2002-04-26 | Toyota Industries Corp | 流体機械における回転軸支持構造 |
JP2002221177A (ja) * | 2001-01-24 | 2002-08-09 | Toyota Industries Corp | 真空ポンプにおける軸封構造 |
BE1013944A3 (nl) * | 2001-03-06 | 2003-01-14 | Atlas Copco Airpower Nv | Watergeinjecteerde schroefcompressor. |
JP3896930B2 (ja) * | 2002-09-10 | 2007-03-22 | 株式会社豊田自動織機 | 流体ポンプ装置 |
GB0326613D0 (en) * | 2003-11-14 | 2003-12-17 | Boc Group Plc | Vacuum pump |
-
2010
- 2010-05-06 CN CN201080004682.3A patent/CN102282371B/zh active Active
- 2010-05-06 KR KR1020117016393A patent/KR101310490B1/ko active IP Right Grant
- 2010-05-06 WO PCT/JP2010/057776 patent/WO2010134427A1/ja active Application Filing
- 2010-05-06 EP EP10777662A patent/EP2434156A1/en not_active Withdrawn
- 2010-05-06 US US13/142,100 patent/US20110256003A1/en not_active Abandoned
- 2010-05-13 TW TW103126300A patent/TW201443343A/zh unknown
- 2010-05-13 TW TW099115338A patent/TW201102511A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62197685A (ja) * | 1986-02-26 | 1987-09-01 | Hitachi Ltd | スクリユ−真空ポンプの軸封装置 |
JPH06201054A (ja) * | 1992-12-28 | 1994-07-19 | Hitachi Ltd | 真空ポンプ用軸封装置 |
JPH06346882A (ja) * | 1993-06-07 | 1994-12-20 | Hitachi Ltd | ドライ真空ポンプの軸封用パージガス量制御装置 |
JP3085539U (ja) * | 2001-10-23 | 2002-05-10 | 大晃機械工業株式会社 | 真空ポンプの軸シール構造 |
JP2003172261A (ja) | 2001-12-03 | 2003-06-20 | Teijin Seiki Co Ltd | 回転軸シール機構 |
WO2005042979A1 (ja) * | 2003-10-21 | 2005-05-12 | Nabtesco Corporation | 回転式ドライ真空ポンプ |
JP2005171766A (ja) | 2003-12-08 | 2005-06-30 | Ulvac Japan Ltd | ドライポンプ及びドライポンプの運転方法 |
JP2006216921A (ja) | 2005-02-07 | 2006-08-17 | Mitsubishi Heavy Ind Ltd | 光電変換装置の製造方法および光電変換装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2715139A1 (en) * | 2011-06-02 | 2014-04-09 | Ebara Corporation | Vacuum pump |
EP2715138A1 (en) * | 2011-06-02 | 2014-04-09 | Ebara Corporation | Vacuum pump |
EP2715138A4 (en) * | 2011-06-02 | 2014-12-17 | Ebara Corp | VACUUM PUMP |
EP2715139A4 (en) * | 2011-06-02 | 2014-12-17 | Ebara Corp | VACUUM PUMP |
TWI673433B (zh) * | 2012-05-18 | 2019-10-01 | 日商愛德華有限公司 | 調整一真空幫浦配備之操作參數的方法與裝置 |
CN110088478A (zh) * | 2016-12-19 | 2019-08-02 | 爱德华兹有限公司 | 泵密封 |
TWI788526B (zh) * | 2018-03-07 | 2023-01-01 | 法商普發真空公司 | 乾式真空泵 |
Also Published As
Publication number | Publication date |
---|---|
CN102282371B (zh) | 2014-12-31 |
KR20110094145A (ko) | 2011-08-19 |
KR101310490B1 (ko) | 2013-09-24 |
EP2434156A1 (en) | 2012-03-28 |
TW201443343A (zh) | 2014-11-16 |
US20110256003A1 (en) | 2011-10-20 |
TW201102511A (en) | 2011-01-16 |
CN102282371A (zh) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010134427A1 (ja) | ドライ真空ポンプ | |
JP5473400B2 (ja) | ドライ真空ポンプおよびそのシール方法 | |
JP5330896B2 (ja) | ドライ真空ポンプ | |
US9097252B2 (en) | Scroll pump including drive shaft extending through fixed scroll | |
KR20120127576A (ko) | 퍼지 가스 시스템을 구비한 건식 진공 펌프 및 퍼징 방법 | |
CN102410224A (zh) | 真空泵 | |
US5380171A (en) | Turbo vacuum pump | |
US9261099B2 (en) | Vacuum pump | |
US7686600B2 (en) | Vaccum pump having shaft seal to prevent corrosion and to ensure smooth operation | |
JPH0389080A (ja) | 真空ポンプ潤滑油のシール機構 | |
US20180209420A1 (en) | Liquid ring pump | |
JP2006138216A (ja) | ターボ分子ポンプの軸封防塵構造 | |
JP2004293420A (ja) | ドライポンプの潤滑油シール構造 | |
JP2004263627A (ja) | 真空ポンプ | |
JPH05152217A (ja) | 高性能半導体製造用の排気システムおよびその制御方法 | |
JP2010229832A (ja) | ドライ真空ポンプおよびそれを用いた処理室減圧方法 | |
US12044313B2 (en) | Dual vacuum seal | |
JPH0720396Y2 (ja) | ターボ分子ポンプのガスパージ機構 | |
JP2022112866A (ja) | 転がり軸受及びこれを備えた真空ポンプ | |
JPH05280488A (ja) | 真空ポンプ | |
KR20130027776A (ko) | 부스터 펌프 및 그를 이용한 진공 시스템 | |
JPH11210658A (ja) | オイルフリー流体機械 | |
JPH09151897A (ja) | 真空ポンプ | |
JP2013044307A (ja) | スクロール形真空ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080004682.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777662 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13142100 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010777662 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117016393 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |