WO2010131664A1 - 高純度炭酸リチウム及びその製造方法 - Google Patents
高純度炭酸リチウム及びその製造方法 Download PDFInfo
- Publication number
- WO2010131664A1 WO2010131664A1 PCT/JP2010/057992 JP2010057992W WO2010131664A1 WO 2010131664 A1 WO2010131664 A1 WO 2010131664A1 JP 2010057992 W JP2010057992 W JP 2010057992W WO 2010131664 A1 WO2010131664 A1 WO 2010131664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium carbonate
- lithium
- carbonate
- purity
- aqueous
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
Definitions
- the present invention relates to high-purity lithium carbonate obtained from crude lithium carbonate and a method for producing the same, and particularly relates to high-purity lithium carbonate useful as a raw material for electronic materials, battery materials, optical materials, and the like, and a method for producing the same.
- Lithium carbonate is a compounding agent such as heat-resistant glass and optical glass, ceramic materials, lithium ion secondary battery materials used in batteries for mobile phones and laptop computers, electrolyte materials, lithium niobate used in semiconductor lasers, etc. It is used for various applications such as raw materials such as single crystals and lithium tantalate single crystals.
- lithium carbonate The properties required for lithium carbonate are diverse and vary depending on the application. For example, when lithium carbonate is used as the above-described electronic material, battery material, or optical material, if there are many impurities, the electrical characteristics and optical characteristics deteriorate, so it is required to have high purity with few impurities. . Specifically, high-purity lithium carbonate having a content of dissimilar metals and other impurities of several ppm level, and further 1 ppm or less is demanded.
- Patent Document 1 An aqueous solution containing lithium bicarbonate obtained by reacting crude lithium carbonate and carbon dioxide is treated with an ion exchange module or an ion-selective medium, and then the aqueous solution containing lithium bicarbonate is heated to treat lithium carbonate.
- Patent Document 2 Method of precipitating (Patent Document 2, Patent Document 3), Method of introducing carbon dioxide into a crude lithium carbonate aqueous slurry, adding a water-soluble organic solvent to an aqueous solution in which lithium carbonate and carbon dioxide are dissolved, and precipitating lithium carbonate ( Patent Document 4) and the like have been proposed.
- Patent Document 5 a method for purifying lithium carbonate obtained by the above-described invention in post-treatment is conceivable.
- a lithium compound is dissolved in an acid, a coprecipitation agent is added to the solution, an alkali is added to shift the pH of the solution to an alkaline region, and the precipitate is separated by filtration.
- a method for obtaining a high-purity lithium compound has been proposed.
- indium, bismuth or lanthanum is used as a coprecipitation agent, and these may remain as impurities. Furthermore, even after obtaining lithium carbonate from crude lithium carbonate and purifying high-purity lithium carbonate by this method, the process becomes complicated, which is industrially disadvantageous.
- An object of the present invention is to provide high-purity lithium carbonate by eliminating the above-mentioned drawbacks of the prior art.
- Another object of the present invention is to provide a production method for obtaining high purity lithium carbonate by a simple method even when crude lithium carbonate having a high impurity content is used as a starting material.
- the present inventors have used crude lithium carbonate as a starting material, and obtained an aqueous solution obtained by reacting the crude lithium carbonate and carbon dioxide in an aqueous solvent. It was found that high-purity lithium carbonate in which the content of dissimilar metals and other impurities is extremely reduced can be obtained by heat treatment after adjusting to chelate and completing the present invention.
- the present invention (1) is a high-purity lithium carbonate obtained from crude lithium carbonate, wherein the Ca content is 5 ppm or less and the Mg content is 4 ppm or less. Is to provide.
- the present invention (2) is a method for producing high purity lithium carbonate (A) from crude lithium carbonate (a), wherein carbon dioxide is introduced into an aqueous slurry containing the crude lithium carbonate (a) to introduce hydrogen carbonate.
- a method for producing high purity lithium carbonate comprising a third step of obtaining lithium carbonate (A) by solid-liquid separation after heat treatment of an aqueous lithium solution to obtain an aqueous solution containing lithium carbonate (A) Is to provide.
- the high-purity lithium carbonate according to the present invention is particularly useful as a raw material for electronic materials, battery materials, and optical materials because impurities, particularly dissimilar metals such as Ca and Mg, are reduced. Further, according to the method for producing high purity lithium carbonate according to the present invention, even if crude lithium carbonate having a large impurity content is used as a starting material, impurities can be reduced by a simple method, which is industrially advantageous. High purity lithium carbonate can be produced by a simple method.
- the high-purity lithium carbonate (hereinafter also referred to as lithium carbonate (A)) in the present invention is a lithium carbonate (A) having a columnar crystal without aggregation, having a Ca content of 5 ppm or less, preferably 3 ppm or less, and containing Mg.
- the amount is 4 ppm or less, preferably 2 ppm or less.
- the Fe content is preferably 1 ppm or less, the Si content is 5 ppm or less, and the Al content is preferably 3 ppm or less.
- These impurities are preferably as few as possible.
- the purity of lithium carbonate (A) is preferably 99.99% or more, more preferably 99.995% or more.
- the purity in the present invention is determined by the difference method.
- the sum total of the impurities of the formula (1) does not include impurities (mainly moisture, organic matter, etc.) that are reduced by drying and strong heat treatment of lithium carbonate.
- the drying process is a process of drying lithium carbonate at 110 ° C. for 2 hours.
- the strong heat treatment is a treatment in which the lithium carbonate after the drying treatment is heated at 500 ° C. for 2 hours. That is, the purity in the present invention is determined by the formula (1), with the total of impurities being the different metals, sulfate radicals, halogen elements, metal oxides, etc. in the lithium carbonate subjected to the drying treatment and the strong heat treatment.
- the average particle size determined by scanning electron micrograph (SEM) is preferably 1 to 150 ⁇ m, more preferably 20 to 100 ⁇ m. By satisfying these numerical values, for example, it can be suitably used as a raw material for electronic materials, battery materials, and optical materials.
- the lithium carbonate (A) in the present invention is obtained from crude lithium carbonate (hereinafter also referred to as lithium carbonate (a)).
- lithium carbonate (a) contains a foreign metal and other impurities, and may be obtained from any production method or may be a commercially available product.
- Examples of the different metal contained in lithium carbonate (a) include one or more elements selected from Na, K, Mg, Ca, Fe, Pb, Al, Si, Cu, Cr, Ni, Sr, and the like. .
- the content of the dissimilar metal is preferably 0.1% by mass or more, more preferably 0.5 to 1.5% by mass.
- the Ca content is preferably 50 ppm or more, more preferably 50 to 200 ppm
- the Mg content is preferably 20 ppm or more, more preferably 20 to 100 ppm.
- impurities include sulfate radicals, halogen elements, metal oxides, and the like.
- the total content of these impurities is preferably 0.1 to 1.5% by mass.
- the lithium carbonate (a) in the present invention containing these different metals, impurities and the like preferably has a purity of 98% or more and less than 99.9% by the difference method.
- Lithium carbonate (a) which is available as an inexpensive commercial product, usually satisfies these physical property values.
- the high-purity lithium carbonate (A) according to the present invention is obtained from crude lithium carbonate (a).
- lithium carbonate (a) and carbon dioxide are reacted in an aqueous solvent to produce carbonic acid. It is preferable to obtain lithium carbonate (A) by thermally decomposing a solution obtained by adjusting the pH of the aqueous solution to a pH in the alkaline region and then chelating after the aqueous lithium hydrogen solution. By following this process, it is possible to obtain a high-purity product even from commercially available crude lithium carbonate that has many impurities and is inexpensive.
- the lithium carbonate (A) of the present invention obtained by following such a process is a novel and unprecedented product and is a high-purity product, and thus can be used for various applications.
- it can be suitably used as a raw material for electronic materials, battery materials, and optical materials.
- the high purity lithium carbonate (A) production method of the present invention includes a first step of obtaining a lithium hydrogen carbonate aqueous solution by introducing carbon dioxide into an aqueous slurry containing crude lithium carbonate (a), and the lithium hydrogen carbonate aqueous solution.
- the first step of the present invention is a step of obtaining an aqueous lithium hydrogen carbonate solution by introducing carbon dioxide into an aqueous slurry containing crude lithium carbonate (a).
- the lithium carbonate (a) used in the first step contains a foreign metal and other impurities, and may be obtained from any production method or may be a commercially available product.
- a manufacturing method of lithium carbonate (a) what is obtained by reaction of the solution which evaporated and concentrated lithium-containing brine and soda ash is mentioned, for example.
- Examples of the different metal contained in lithium carbonate (a) include one or more elements selected from Na, K, Mg, Ca, Fe, Pb, Al, Si, Cu, Cr, Ni, Sr, and the like. .
- the content of the dissimilar metal is preferably 0.1% by mass or more, more preferably 0.5 to 1.5% by mass.
- the Ca content is preferably 50 ppm or more, more preferably 50 to 200 ppm
- the Mg content is preferably 20 ppm or more, more preferably 20 to 100 ppm.
- impurities include sulfate radicals, halogen elements, metal oxides, and the like.
- the total content of these impurities is preferably 0.1 to 1.5% by mass.
- the lithium carbonate (a) in the present invention containing these different metals, impurities and the like preferably has a purity of 98% or more and less than 99.9% by the difference method.
- Lithium carbonate (a) obtained by the above-described production method and lithium carbonate (a) available as an inexpensive commercial product usually satisfy these physical properties.
- the water for dissolving lithium carbonate (a) in the first step is not particularly limited, but it is preferable to use water having a low impurity concentration.
- water having a low impurity concentration For example, when pure water from which ionic impurities such as Na + , K + , Ca 2+ , Cl ⁇ , and SO 4 2 ⁇ are passed through a reverse osmosis membrane, an ultrafiltration membrane, an ion exchanger, and the like is used, This is particularly preferable because it can prevent impurities derived from water dissolving lithium carbonate (a).
- Examples of water to be passed through reverse osmosis membranes, ultrafiltration membranes, ion exchangers, etc. include raw water such as industrial water, city water, river water, etc. Those treated to remove most of the suspended matter and organic matter in the raw water, or those treated with a pure apparatus using an ion exchanger are used.
- the aqueous slurry containing lithium carbonate (a) in the first step is adjusted by dispersing in water at a concentration equal to or higher than the saturation solubility of lithium carbonate.
- Lithium carbonate (a) and water are preferably made into an aqueous slurry in a mass ratio of 2:98 to 8:92, more preferably 3:97 to 7:93.
- carbon dioxide is introduced into the aqueous slurry containing lithium carbonate (a).
- This carbon dioxide may be generally commercially available.
- the purity of the carbon dioxide is preferably 99% or more, and the upper limit may be determined in consideration of economy.
- Reaction with lithium carbonate (a) by introducing carbon dioxide is represented by the following reaction formula (2) Li 2 CO 3 + CO 2 + H 2 O ⁇ 2LiHCO 3 (2) Is done.
- an efficient gas-liquid contact facility such as high-speed stirring.
- the solubility of lithium carbonate (a) is larger, so that the dissolution rate becomes faster.
- the reaction is preferably performed at a temperature of 40 ° C. or lower, more preferably 30 ° C. or lower, and a pressure of atmospheric pressure or higher.
- the amount of carbon dioxide introduced into the aqueous slurry in the first step is preferably determined from the viewpoint of carbon dioxide utilization efficiency because the reaction system for the hydrogenation of lithium carbonate (a) is an equilibrium reaction. Specifically, it is preferably introduced in an amount of 1 to 1.5 mol with respect to 1 mol of lithium carbonate (a) to be used.
- lithium carbonate (a) and carbon dioxide react efficiently, and the generated lithium hydrogen carbonate can be stably present in the aqueous solution.
- the second step of the present invention is a step of adding a chelating agent after adding an alkaline compound to the lithium hydrogen carbonate aqueous solution obtained in the first step and adjusting the pH to the alkaline region.
- the pH of the aqueous lithium hydrogen carbonate solution obtained in the first step is adjusted to an alkaline region, but the aqueous lithium hydrogen carbonate solution before adjustment is usually near neutral.
- the pH is preferably 7.0 to 8.0, and more preferably pH 7.2 to 7.8.
- an alkaline compound is added to the lithium hydrogen carbonate aqueous solution to obtain a pH in the alkaline region.
- the pH value after adjustment is preferably 8.0 or more, more preferably 8.0 to 12.0. By being in this range, the stability when the impurity metal element is chelated is improved.
- Examples of the alkaline compound used in the second step include alkali metal hydroxides.
- the alkali metal hydroxide lithium hydroxide, sodium hydroxide, potassium hydroxide and the like are preferable, and among these, the lithium hydrogen carbonate aqueous solution is effectively transferred to the alkaline region, and other than Li Lithium hydroxide is particularly preferable from the viewpoint of preventing alkali metal contamination.
- the alkaline compound may be added by any method as long as the pH of the aqueous lithium hydrogen carbonate solution can be adjusted efficiently.
- the method of preparing the aqueous solution of an alkaline compound and adding this aqueous solution is mentioned.
- the second step by adding a chelating agent to the lithium hydrogen carbonate aqueous solution adjusted to the alkaline region, Na, K, Mg, Ca, Fe, Pb, Al, Si, Cu in the lithium hydrogen carbonate aqueous solution are further added. , Cr, Ni and Sr can be reduced.
- the reason for performing the purification operation by adding a chelating agent after adjusting to the alkaline region is that metals such as Ca, Mg, and Fe among different metals form more stable metal chelates in the alkaline region than in the neutral region. And is also a feature of the present invention.
- the chelating agent used in the second step is not particularly limited as long as it can reduce dissimilar metals such as Na, K, Mg, Ca, Fe, Pb, Al, Si, Cu, Cr, Ni and Sr. .
- EDTA aminodiamine-based ethylenediaminetetraacetic acid
- NTA nitrilotriacetic acid
- DTPA diethylenetriaminepentaacetic acid
- CyDTA cyclohexanediaminetetraacetic acid
- HEDP phosphonic acid-based hydroxyethylidene diphosphone An acid
- aminocarboxylic acid-based chelating agents are preferably used because they are standard, and more specifically, EDTA, CyDTA, and the like are particularly preferable.
- the amount of the chelating agent added is preferably determined from the amount of the dissimilar metal contained in the lithium carbonate (a) based on the equivalent or more of the impurities to be removed contained in the raw material.
- the second step it is preferable to remove the insoluble components, for example, water-insoluble components such as foreign metal hydroxides, by filtering the lithium hydrogen carbonate aqueous solution.
- This filtration can be performed after the first step, after pH adjustment, or after addition of a chelating agent. However, if there is no impure component during the purification operation with the chelating agent, the efficiency of purification can be increased. , Preferably after the pH adjustment.
- the filtration method may be any method as long as an impure component such as a water insoluble component in the lithium hydrogen carbonate aqueous solution can be removed.
- an impure component such as a water insoluble component in the lithium hydrogen carbonate aqueous solution can be removed.
- methods such as microfiltration, filter press, cartridge filter and the like can be exemplified.
- the third step of the present invention is a step of obtaining high-purity lithium carbonate (lithium carbonate (A)) by subjecting the lithium hydrogen carbonate aqueous solution obtained in the second step to heat treatment and then solid-liquid separation.
- the decarboxylation reaction of lithium hydrogen carbonate by heat treatment is represented by the following reaction formula (3) 2LiHCO 3 ⁇ Li 2 CO 3 + CO 2 + H 2 O (3) Is done.
- this reaction suitably, it is preferable to heat the aqueous lithium hydrogen carbonate solution with stirring at 40 ° C. or higher, more preferably 50 ° C. or higher, particularly 70 to 95 ° C. This heating promotes the decarboxylation reaction of lithium hydrogen carbonate in the aqueous solution. Since the amount of decarboxylation of lithium hydrogen carbonate increases as the temperature increases, the yield of lithium carbonate (A) also improves.
- the time required for decarboxylation is not particularly limited. That is, when the temperature of the aqueous solution is increased, lithium carbonate (A) is substantially generated by decarboxylation even when the temperature is not fully increased to the above temperature range, so that the time required for decarboxylation may be determined appropriately. is there.
- the particle size of lithium carbonate (A) can be controlled by appropriately changing the stirring conditions and other conditions.
- Carbon dioxide generated by heat treatment in the third step can be recovered and reused as carbon dioxide as a raw material in the first step.
- the produced lithium carbonate (A) is solid-liquid separated, washed and dried as desired to obtain lithium carbonate (A).
- Solid-liquid separation can be performed by a conventional method. For example, the solid content is separated by a centrifuge, a filter press or the like to obtain a solid (cake). This solid usually contains 5 to 20% by mass of moisture, but since this moisture contains foreign metals and other impurities, the solid should be washed with clean water. Is preferred.
- the same water as that used to dissolve lithium carbonate (a) can be used.
- This washing may be performed to such an extent that the water contained in the solid can be replaced.
- 1 to 10 times the amount of water relative to the weight of the solid is brought into contact with the solid one or more times. be able to.
- the contact between the water and the solid material may be performed to such an extent that the water in the solid material can be replaced and the lithium carbonate (A) in the solid material is not washed away.
- the method of exposing the solid material to running water The method of immersing an object is mentioned.
- Drying is not particularly limited as long as it can prevent contamination by external impurities.
- a vacuum dryer or a shelf heating dryer is suitable. This drying may be performed under conditions that do not alter the lithium carbonate (A), and the temperature is preferably 100 to 150 ° C. and the time is preferably about 1 to 5 hours.
- the mother liquor obtained by solid-liquid separation can be recycled for the preparation of an aqueous slurry containing lithium carbonate (a) in the first step.
- This mother liquor contains lithium carbonate corresponding to the saturation solubility, and the raw material yield can be further increased by recovering and using this. This is possible because the reaction of the present invention does not contain different salts for lithium carbonate other than impurities from the raw material.
- the lithium carbonate (A) obtained by the third step can be obtained by pulverizing and classifying as necessary to obtain high-purity lithium carbonate having a large primary particle size and not agglomerated.
- This lithium carbonate (A) has a remarkably small amount of impurities compared to conventional lithium carbonate.
- impurities Specifically, Na, K, Mg, Ca, Fe, Pb, Al, Si, Cu, Cr, Ni, Sr, etc.
- the Ca content is 5 ppm or less
- the Mg content is 4 ppm or less.
- the purity is 99.99% by mass or more, and the high-purity lithium carbonate produced using crude lithium carbonate as a starting material has unprecedented physical properties.
- the high-purity lithium carbonate in the present invention can be suitably used as a raw material for electronic materials, battery materials, and optical materials.
- Example 1 50 parts by mass of crude lithium carbonate (lithium carbonate (a)) containing impurities shown in Table 1 was added to 950 parts by mass of pure water to prepare a slurry. Next, carbon dioxide was introduced under normal pressure while stirring until the slurry became transparent, to obtain an aqueous lithium hydrogen carbonate solution.
- ⁇ Second step> To this aqueous lithium hydrogen carbonate solution, 10 parts by mass of lithium hydroxide as an alkaline compound was added to make an aqueous lithium hydrogen carbonate solution having a pH of 8.6, followed by filtration under reduced pressure, and ethylenediaminetetraacetic acid (as a chelating agent) was added to the resulting filtrate.
- EDTA EDTA was added in an amount of 0.2 parts by mass to obtain an aqueous lithium hydrogen carbonate solution in the second step.
- aqueous lithium hydrogen carbonate solution obtained in the second step was heated to 95 ° C. with stirring, dehydrated by heat treatment at this temperature for 1 hour, and a slurry containing high-purity lithium carbonate (lithium carbonate (A1)) It was. This slurry was subjected to solid-liquid separation by filtration under reduced pressure to obtain a solid and a mother liquor.
- the obtained solid was dried for 2 hours in a constant temperature dryer (Yamato Kagaku Co., Ltd., wind constant temperature high temperature device DKN402) maintained at 120 ° C., to obtain 41 parts by mass of lithium carbonate (A1).
- the analysis results of lithium carbonate (A1) are shown in Table 1.
- Example 2 ⁇ First step> 33 parts by weight of lithium carbonate (a) shown in Table 1 was added to 967 parts by weight of the mother liquor (17 parts by weight of lithium carbonate dissolved) obtained by the method in the third step of Example 1 to prepare a slurry. Except for this, the same method as in Example 1 was used. ⁇ Second step> The same method as in Example 1 was used. The pH of the aqueous lithium hydrogen carbonate solution after addition of lithium hydroxide was 8.6. ⁇ Third step> The same method as in Example 1 was used. The obtained lithium carbonate (A2) was 37 parts by mass. The analysis results of lithium carbonate (A2) are shown in Table 1.
- Example 3 ⁇ First step> The same method as in Example 1 was used. ⁇ Second step> The same procedure as in Example 1 was performed except that 10 parts by mass of lithium hydroxide as an alkaline compound and 0.2 parts by mass of CyDTA as a chelating agent were added. The pH of the aqueous lithium hydrogen carbonate solution after addition of lithium hydroxide was 8.6. ⁇ Third step> The same method as in Example 1 was used. The obtained lithium carbonate (A3) was 40 parts by mass. The analysis results of lithium carbonate (A3) are shown in Table 1.
- Example 4 ⁇ First step> The same method as in Example 1 was used. ⁇ Second step> The same procedure as in Example 1 was carried out except that 10 parts by mass of lithium hydroxide as an alkaline compound and 1 part by mass of an amine salt of EDTA (manufactured by Kirest Co., Ltd., Kirest M-50) as a chelating agent were added. The pH of the aqueous lithium hydrogen carbonate solution after addition of lithium hydroxide was 8.6. ⁇ Third step> The same method as in Example 1 was used. The obtained lithium carbonate (A4) was 40 parts by mass. The analysis results of lithium carbonate (A4) are shown in Table 1.
- the lithium carbonate obtained in Examples 1 to 4 has a reduced impurity content and is highly pure compared to the lithium carbonate obtained in Comparative Examples 1 to 3. I understand that.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
粗製炭酸リチウム(a)から得られる高純度の炭酸リチウム(A)であって、Ca含有量が5ppm以下であり、かつMg含有量が4ppm以下である高純度炭酸リチウムである。該炭酸リチウムは、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して炭酸水素リチウム水溶液を得る第一工程、炭酸水素リチウム水溶液にアルカリ性化合物を添加してpHを8.0以上に調整した後、キレート剤を添加する第二工程、及び、第二工程により得られた炭酸水素リチウム水溶液を加熱処理して炭酸リチウム(A)を含む水溶液を得た後、固液分離することにより炭酸リチウム(A)を得る第三工程、を経ることにより得ることができる。
Description
本発明は、粗製炭酸リチウムから得られる高純度炭酸リチウム及びその製造方法に関し、特に、電子材料、電池材料、光学材料等の原料として有用な高純度炭酸リチウム及びその製造方法に関するものである。
炭酸リチウムは耐熱ガラス、光学ガラス等の配合剤、セラミック材料、携帯電話やノートパソコンのバッテリーに使用されているリチウムイオン二次電池の原料、電解質の材料、半導体レーザー等に使用されるニオブ酸リチウム単結晶やタンタル酸リチウム単結晶等の原料等、様々な用途に用いられている。
炭酸リチウムに求められている特性は多様であり、用途により異なる。例えば、炭酸リチウムが上記の電子材料や電池材料、光学材料として用いられる場合は、不純物が多いと電気特性や光特性が低下するため、不純物の少ない高純度なものであることが求められている。具体的には、異種金属やその他の不純物含有量が数ppmレベル、更には1ppm以下の高純度な炭酸リチウムが求められている。
従来、このような高純度の炭酸リチウムの製造方法としては、水酸化リチウム水溶液に二酸化炭素を吹き込む方法や、前記水溶液から水酸化リチウムを再結晶化したのち、再溶解した水溶液に二酸化炭素を吹き込む方法、更に前記水溶液を炭酸ナトリウムなどの水溶性炭酸塩と反応させる方法等が知られている。
しかしながら、これらの方法は、反応が局部的に急速に進行する要素が強いために、生成する炭酸リチウムは微粒子となりやすく、さらにそれらが二次凝集するため、その内部に反応系の不純物を含有することにより純度の低下をきたす欠点がある。また、水酸化リチウムの再結晶を繰り返すことは工程が長くなり製造コスト増の原因になる。
これらの方法に対して、急速な局部反応が抑えられた方法が提案され、中でも粗製炭酸リチウムから高純度の炭酸リチウムを製造する方法について、いくつか提案されている。例えば、粗製炭酸リチウムと二酸化炭素とを反応させて得られる重炭酸リチウムを含有する水溶液を精密濾過した後、該重炭酸リチウム水溶液を加熱処理して炭酸リチウムを析出させる方法(特許文献1)、粗製炭酸リチウムと二酸化炭素とを反応させて得られる重炭酸リチウムを含有する水溶液をイオン交換モジュール又はイオン選択性媒質で処理した後、該重炭酸リチウムを含有する水溶液を加熱処理して炭酸リチウムを析出させる方法(特許文献2、特許文献3)、粗製炭酸リチウム水性スラリーに二酸化炭素を導入し、炭酸リチウムと二酸化炭素が溶解した水溶液に水溶性有機溶媒を添加して炭酸リチウムを析出させる方法(特許文献4)等が提案されている。
しかしながら、上記文献に記載された発明では、原料の粗製炭酸リチウム由来のNa、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等の異種金属やその他の不純物の除去が不十分であったり、工業生産レベルの除去には手間がかかりすぎたりするという問題があった。
また、上記発明により得られた炭酸リチウムについて、後処理において精製を行う方法が考えられる。例えば特許文献5には、リチウム化合物を酸に溶解し、この溶液に共沈剤を加えた後、アルカリを添加して溶液のpHをアルカリ域に移行させ、この沈殿物を濾別することにより高純度のリチウム化合物を得る方法が提案されている。
しかしながらこの方法では、共沈剤としてインジウム、ビスマス又はランタンを用いており、これらが不純物として残存する恐れがある。さらには、粗製炭酸リチウムから炭酸リチウムを得た後、この方法で高純度の炭酸リチウムを精製したとしても、工程が煩雑になり工業的に不利である。
本発明の目的は、前述した従来技術の欠点を解消することにより、高純度の炭酸リチウムを提供することにある。
本発明の他の目的は、不純物含有量の多い粗製炭酸リチウムを出発原料として用いても、簡略な方法で高純度の炭酸リチウムを得るための製造方法を提供することにある。
本発明者らは、かかる実情に鑑み鋭意検討を行った結果、粗製炭酸リチウムを出発原料として使用し、該粗製炭酸リチウムと二酸化炭素とを水溶媒中で反応させた水溶液を、アルカリ領域のpHに調整してキレート処理した後、加熱処理することにより、異種金属やその他の不純物含有量が極めて低減された高純度炭酸リチウムが得られることを見出し、本発明を完成するに至った。
すなわち本発明によれば、本発明(1)は、粗製炭酸リチウムから得られる高純度炭酸リチウムであって、Ca含有量が5ppm以下であり、かつMg含有量が4ppm以下である高純度炭酸リチウムを提供するものである。
また、本発明(2)は、粗製炭酸リチウム(a)から高純度炭酸リチウム(A)を製造する方法であって、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して炭酸水素リチウム水溶液を得る第一工程、炭酸水素リチウム水溶液にアルカリ性化合物を添加してpHを8.0以上に調整した後、キレート剤を添加する第二工程、及び、第二工程により得られた炭酸水素リチウム水溶液を加熱処理して炭酸リチウム(A)を含む水溶液を得た後、固液分離することにより炭酸リチウム(A)を得る第三工程からなることを特徴とする高純度炭酸リチウムの製造方法を提供するものである。
本発明に係る高純度炭酸リチウムによれば、不純物、特にCaやMgといった異種金属が低減されているので、特に、電子材料、電池材料、光学材料の原料として有用である。また、本発明に係る高純度炭酸リチウムの製造方法によれば、不純物含有量が多い粗製炭酸リチウムを出発原料として用いても、簡略な方法で不純物を低減することができるので、工業的に有利な方法で高純度炭酸リチウムを製造することができる。
以下、本発明をその好ましい実施形態に基づき説明する。
(高純度炭酸リチウム)
本発明における高純度炭酸リチウム(以下、炭酸リチウム(A)とも記載する)は、凝集のない柱状結晶の炭酸リチウム(A)であり、Ca含有量が5ppm以下、好ましくは3ppm以下、かつMg含有量が4ppm以下、好ましくは2ppm以下である。
(高純度炭酸リチウム)
本発明における高純度炭酸リチウム(以下、炭酸リチウム(A)とも記載する)は、凝集のない柱状結晶の炭酸リチウム(A)であり、Ca含有量が5ppm以下、好ましくは3ppm以下、かつMg含有量が4ppm以下、好ましくは2ppm以下である。
その他の異種金属としては、例えば、Fe含有量が1ppm以下、Si含有量が5ppm以下、Al含有量が3ppm以下であることが好ましい。これらの不純物は少なければ少ないほど好ましい。
また、炭酸リチウム(A)は、純度が99.99%以上、さらには99.995%以上であることが好ましい。本発明における純度は差数法により求められるものである。本発明における差数法とは、次式(1)により炭酸リチウムの純度を求める方法である。
炭酸リチウム(%)=100-(不純物の総和) ・・・ (1)
炭酸リチウム(%)=100-(不純物の総和) ・・・ (1)
なお、式(1)の不純物の総和とは、炭酸リチウムを乾燥処理および強熱処理することにより減量する不純物(主に水分、有機物等)は含まれない。乾燥処理は炭酸リチウムを110℃で2時間乾燥する処理である。強熱処理は、乾燥処理後の炭酸リチウムを500℃で2時間加熱する処理である。すなわち、本発明における純度は、乾燥処理および強熱処理に付した炭酸リチウム中の異種金属、硫酸根、ハロゲン元素、金属酸化物等を不純物の総和とし、式(1)により求められるものである。
さらに、走査型電子顕微鏡写真(SEM)により求められる平均粒径が1~150μm、さらには20~100μmであることが好ましい。これらの数値を満たすことで、例えば、電子材料や電池材料、光学材料の原料として好適に使用することができる。
本発明における炭酸リチウム(A)は、粗製炭酸リチウム(以下、炭酸リチウム(a)とも記載する)から得られるものである。本発明において炭酸リチウム(a)とは、異種金属やその他の不純物を含有するものであり、如何なる製造方法から得られるものであってもよく、市販品であってもよい。
炭酸リチウム(a)に含まれる異種金属としては、Na、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等から選ばれる一種又は二種以上の元素が挙げられる。該異種金属の含有量は0.1質量%以上、さらには0.5~1.5質量%であることが好ましい。該異種金属の中でも、特に、Ca含有量は50ppm以上、さらには50~200ppm、Mg含有量は20ppm以上、さらには20~100ppmであることが好ましい。
また、その他の不純物としては、硫酸根、ハロゲン元素、金属酸化物等を含有する。これらの不純物の含有量の合計は0.1~1.5質量%であることが好ましい。
これらの異種金属、不純物等を含有する本発明における炭酸リチウム(a)は、差数法による純度が98%以上99.9%未満であることが好ましい。安価な市販品として入手できる炭酸リチウム(a)は、通常、これらの物性値を満たす。
本発明に係る高純度の炭酸リチウム(A)は、粗製の炭酸リチウム(a)から得られるが、本発明においては、炭酸リチウム(a)と二酸化炭素とを水溶媒中で反応させて、炭酸水素リチウム水溶液とした後、該水溶液をアルカリ領域のpHに調整してキレート処理したものを加熱分解することによって炭酸リチウム(A)を得ることが好ましい。この過程を踏むことで、不純物が多く、安価な市販品の粗製炭酸リチウムからでも高純度品を得ることが可能となる。
かかる過程を踏むことにより得られる本発明の炭酸リチウム(A)は、従来にない新規なものであり、高純度品であるため、様々な用途に使用することができる。特に、電子材料、電池材料、光学材料の原料として好適に使用することができる。
(高純度炭酸リチウムの製造方法)
次に、本発明に係る高純度炭酸リチウムの製造方法について説明する。
本発明における高純度の炭酸リチウム(A)の製造方法は、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して炭酸水素リチウム水溶液を得る第一工程と、該炭酸水素リチウム水溶液にアルカリ性化合物を添加してpHを8.0以上のアルカリ性領域に調整した後、キレート剤を添加する第二工程と、第二工程により得られた炭酸水素リチウム水溶液を加熱分解して炭酸リチウム(A)を含む水溶液を得た後、固液分離することにより炭酸リチウム(A)を得る第三工程と、からなる。
次に、本発明に係る高純度炭酸リチウムの製造方法について説明する。
本発明における高純度の炭酸リチウム(A)の製造方法は、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して炭酸水素リチウム水溶液を得る第一工程と、該炭酸水素リチウム水溶液にアルカリ性化合物を添加してpHを8.0以上のアルカリ性領域に調整した後、キレート剤を添加する第二工程と、第二工程により得られた炭酸水素リチウム水溶液を加熱分解して炭酸リチウム(A)を含む水溶液を得た後、固液分離することにより炭酸リチウム(A)を得る第三工程と、からなる。
(第一工程)
本発明の第一工程は、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して、炭酸水素リチウム水溶液を得る工程である。
本発明の第一工程は、粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して、炭酸水素リチウム水溶液を得る工程である。
第一工程において使用する炭酸リチウム(a)は、異種金属やその他の不純物を含有するものであり、如何なる製造方法から得られるものであってもよく、市販品であってもよい。炭酸リチウム(a)の製造方法としては、例えば、リチウム含有かん水を蒸発・濃縮した溶液とソーダ灰との反応により得られるものが挙げられる。
炭酸リチウム(a)に含まれる異種金属としては、Na、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等から選ばれる一種又は二種以上の元素が挙げられる。該異種金属の含有量は0.1質量%以上、さらには0.5~1.5質量%であることが好ましい。該異種金属の中でも、特に、Ca含有量は50ppm以上、さらには50~200ppm、Mg含有量は20ppm以上、さらには20~100ppmであることが好ましい。
また、その他の不純物としては、硫酸根、ハロゲン元素、金属酸化物等を含有する。これらの不純物の含有量の合計は0.1~1.5質量%であることが好ましい。
これらの異種金属、不純物等を含有する本発明における炭酸リチウム(a)は、差数法による純度が98%以上99.9%未満であることが好ましい。前記した製造方法により得られる炭酸リチウム(a)や、安価な市販品として入手できる炭酸リチウム(a)は、通常、これらの物性を満たす。
第一工程において炭酸リチウム(a)を溶解する水は、特に限定されないが、不純物濃度の低いものを使用することが好ましい。例えば、逆浸透膜、限外濾過膜、イオン交換体等を通過させて、Na+、K+、Ca2+、Cl-、SO4
2-等のイオン性不純物を除去した純水を用いると、炭酸リチウム(a)を溶解する水に由来する不純物の混入を防止することができるため、特に好ましい。逆浸透膜、限外濾過膜又はイオン交換体等に通水される被処理水としては、例えば、工業用水、市水、河川水等の原水を凝集濾過装置及び活性炭等からなる前処理装置で処理し、原水中の懸濁物及び有機物の大半を除去したもの、あるいは、更に、イオン交換体を用いる純粋装置で処理されたもの等が用いられる。
第一工程における炭酸リチウム(a)を含む水性スラリーは、炭酸リチウムの飽和溶解度以上の濃度で水に分散させることによって調整する。炭酸リチウム(a)と水は、質量比で2:98~8:92、さらには3:97~7:93の割合で水性スラリーとすることが好ましい。この割合の水性スラリーとすることで、後述する二酸化炭素との反応により生成する炭酸水素リチウムの水に対する溶解度以上とすることができるため、反応効率が良くなる。
第一工程においては、炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入する。この二酸化炭素は、一般的に市販されているものでよい。この二酸化炭素の純度は、99%以上であることが好ましく、上限は経済性を勘案して決めればよい。
二酸化炭素の導入による炭酸リチウム(a)との反応は次の反応式(2)
Li2CO3+CO2+H2O → 2LiHCO3 ・・・ (2)
により行われる。この反応を好適に進めるためには、高速攪拌等、効率的な気液接触設備により行うことが好ましい。
Li2CO3+CO2+H2O → 2LiHCO3 ・・・ (2)
により行われる。この反応を好適に進めるためには、高速攪拌等、効率的な気液接触設備により行うことが好ましい。
また、第一工程における反応条件は、より低温、高圧であるほど、炭酸リチウム(a)の溶解度が大きいため、溶解速度も速くなる。しかし、より低温下、高圧下で行う場合、装置に工夫を要し、設備的な負荷を考慮すると、経済性を勘案して実用的な条件、例えば常温、大気圧下で行うことが好ましい。具体的には、温度は40℃以下、さらには30℃以下、圧力は大気圧以上で反応させることが好ましい。
第一工程における二酸化炭素の水性スラリーへの導入量は、炭酸リチウム(a)の炭酸水素化への反応系が平衡反応であるため、二酸化炭素の利用効率の点から決定することが好ましい。具体的には、使用する炭酸リチウム(a)1モルに対して1~1.5モルの量で導入することが好ましい。
以上の条件により第一工程を実施することで、炭酸リチウム(a)と二酸化炭素が効率良く反応し、生成する炭酸水素リチウムが安定して水溶液中に存在することができる。
(第二工程)
本発明の第二工程は、第一工程で得られた炭酸水素リチウム水溶液にアルカリ性化合物を添加して、pHをアルカリ性領域に調整した後、キレート剤を添加する工程である。
本発明の第二工程は、第一工程で得られた炭酸水素リチウム水溶液にアルカリ性化合物を添加して、pHをアルカリ性領域に調整した後、キレート剤を添加する工程である。
第二工程においては、第一工程で得られた炭酸水素リチウム水溶液のpHをアルカリ性領域に調整するが、調整前の炭酸水素リチウム水溶液は通常、中性付近である。具体的には、pH7.0~8.0、さらにはpH7.2~7.8であることが好ましい。このpHから、炭酸水素リチウム水溶液にアルカリ性化合物を添加し、アルカリ性領域のpHとする。調整後のpH値は、8.0以上、さらには8.0~12.0であることが好ましい。この範囲であることで、不純物金属元素をキレート化した場合の安定度が良くなる。
第二工程において使用するアルカリ性化合物としては、アルカリ金属の水酸化物が挙げられる。具体的には、アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が好ましく、これらの中、炭酸水素リチウム水溶液を効果的にアルカリ性領域に移行させ、Li以外のアルカリ金属の混入を防ぐ点から水酸化リチウムが特に好ましい。
アルカリ性化合物の添加方法は、炭酸水素リチウム水溶液のpHを効率よく調整できる方法であれば、如何なる方法でも良い。例えば、アルカリ性化合物の水溶液を調製し、この水溶液を添加する方法が挙げられる。
第二工程においては、アルカリ性領域に調整された炭酸水素リチウム水溶液に、キレート剤を添加することにより、さらに炭酸水素リチウム水溶液中のNa、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等の異種金属を低減させることができる。アルカリ性領域に調整した後にキレート剤を添加することによる精製操作を行う理由は、異種金属のうちCa、Mg、Feなどの金属が中性領域よりもアルカリ性領域でより安定な金属キレートを形成するためであり、本発明の特徴でもある。
第二工程において使用するキレート剤は、Na、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等の異種金属を低減させることのできるものであれば特に制限されない。例えば、アミノカルボン酸系であるエチレンジアミン四酢酸(EDTA)またはそのアミン塩、ニトリロ三酢酸(NTA)、ジエチレントリアミン五酢酸(DTPA)、シクロヘキサンジアミン四酢酸(CyDTA)、ホスホン酸系であるヒドロキシエチリデン二ホスホン酸(HEDP)等が挙げられる。これらの中、アミノカルボン酸系のキレート剤が標準的に使用されているため好ましく、さらに具体的には、EDTAやCyDTA等が特に好ましい。
キレート剤の添加量は原料中に含有されている除去すべき不純物の当量以上を目安とし、前記した炭酸リチウム(a)に含まれる異種金属の量から決めることが好ましい。
第二工程においては、炭酸水素リチウム水溶液を濾過して、不純成分、例えば異種金属の水酸化物などの水不溶分を除去することが好ましい。この濾過は第一工程の後、pH調整の後、又はキレート剤添加の後のいずれでも可能であるが、キレート剤による精製操作時に不純成分のない方が、精製の効率を上げることができるため、pH調整の後に行うことが好ましい。
濾過方法は、炭酸水素リチウム水溶液中の水不溶分等の不純成分が除去できれば、如何なる方法でも良い。例えば、精密濾過、フィルタープレス、カートリッジフィルター等の方法を例示することができる。
(第三工程)
本発明の第三工程は、第二工程で得られた炭酸水素リチウム水溶液を加熱処理した後、固液分離することにより高純度炭酸リチウム(炭酸リチウム(A))を得る工程である。
本発明の第三工程は、第二工程で得られた炭酸水素リチウム水溶液を加熱処理した後、固液分離することにより高純度炭酸リチウム(炭酸リチウム(A))を得る工程である。
加熱処理による炭酸水素リチウムの脱炭酸反応は、次の反応式(3)
2LiHCO3 → Li2CO3+CO2+H2O ・・・ (3)
により行われる。この反応を好適に進めるためには、前記炭酸水素リチウム水溶液を40℃以上、さらには50℃以上、特に70~95℃で攪拌しながら加熱することが好ましい。この加熱により、前記水溶液中の炭酸水素リチウムの脱炭酸反応が促進される。炭酸水素リチウムの脱炭酸量は高温になるほど多くなるため、炭酸リチウム(A)の収率も良くなる。
2LiHCO3 → Li2CO3+CO2+H2O ・・・ (3)
により行われる。この反応を好適に進めるためには、前記炭酸水素リチウム水溶液を40℃以上、さらには50℃以上、特に70~95℃で攪拌しながら加熱することが好ましい。この加熱により、前記水溶液中の炭酸水素リチウムの脱炭酸反応が促進される。炭酸水素リチウムの脱炭酸量は高温になるほど多くなるため、炭酸リチウム(A)の収率も良くなる。
なお、脱炭酸に要する時間は、特に制限されるものではない。即ち、前記水溶液を昇温する場合、上記温度範囲まで昇温しきらない状態でも実質的に脱炭酸して炭酸リチウム(A)が生じるため、脱炭酸に要する時間は適宜定めれば良いからである。また、加熱処理において、攪拌条件やその他の条件を適宜変化させることにより炭酸リチウム(A)の粒子径をコントロールすることができる。
第三工程における加熱処理で発生する二酸化炭素は回収し、第一工程の原料の二酸化炭素として再利用することができる。
第三工程では、加熱処理終了後、生成した炭酸リチウム(A)を固液分離して、所望により洗浄、乾燥して炭酸リチウム(A)を得る。固液分離は常法により行うことができ、例えば、遠心分離機、フィルタープレス等により固形分を分離して固形物(ケーキ)を得る。この固形物は、通常、5~20質量%の水分が含まれているが、この水分中には異種金属やその他の不純物が含まれているため、該固形物を清浄な水により洗浄することが好ましい。
洗浄には炭酸リチウム(a)を溶解する水と同様のものを用いることができる。この洗浄は、固形物中に含まれる水分を置換できる程度でよく、例えば、固形物の重量に対して1~10倍量の水を、固形物に一回または複数回接触させることにより実施することができる。水と固形物との接触は、固形物中の水分が置換でき、固形物中の炭酸リチウム(A)が流失しない程度で行えばよく、例えば、流水中に固形物を曝す方法、水中に固形物を浸す方法等が挙げられる。
乾燥は、外部からの不純物による汚染を防止できるものであれば、特に限定されるものではない。例えば、真空乾燥機、棚段加熱乾燥機等が好適である。この乾燥は、炭酸リチウム(A)が変質しない程度の条件で実施すればよく、温度は100~150℃、時間は1~5時間程度であることが好ましい。
固液分離により得られる母液は、第一工程における炭酸リチウム(a)を含む水性スラリーの調製に循環使用することができる。この母液は、飽和溶解度分の炭酸リチウムを含んでおり、これを回収利用することにより原料収率をより上げることができる。これは、本発明の反応が、原料からの不純物以外に、炭酸リチウムに対する異種塩類を含まないために可能となる。
第三工程により得られる炭酸リチウム(A)は、必要に応じて粉砕、分級することにより、一次粒子径が大きく、凝集していない高純度炭酸リチウムを得ることができる。この炭酸リチウム(A)は、従来の炭酸リチウムと比べて不純物量が著しく少なく、具体的には、Na、K、Mg、Ca、Fe、Pb、Al、Si、Cu、Cr、Ni及びSr等の異種金属が少なく、特にCa含有量が5ppm以下であり、Mg含有量が4ppm以下である。また、純度は99.99質量%以上であり、粗製炭酸リチウムを出発原料として製造した高純度炭酸リチウムとしては、従来にない物性をもつものである。
本発明における高純度炭酸リチウムは電子材料、電池材料、光学材料の原料として好適に用いることができ、またリチウムイオン二次電池の原料、電解質の材料、半導体レーザー等に使用されるニオブ酸リチウム単結晶やタンタル酸リチウム単結晶等の原料としても好適に用いることができる。
以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。
(1)異種金属
ICP発光分光分析装置(バリアン社製、LibertySeries II)を用いて、ICP発光分光分析法により測定し、異種金属の含有量を求めた。
(2)炭酸リチウムの純度
次式を用いて、差数法により求めた。
炭酸リチウム(%)=100-(不純物の総和)
本実施例、比較例における不純物は、表1に記載の異種金属(Ca、Fe、Si、Mg、Al)である。
(3)pH
pHメーター((株)堀場製作所製 D-51)により測定した。
(1)異種金属
ICP発光分光分析装置(バリアン社製、LibertySeries II)を用いて、ICP発光分光分析法により測定し、異種金属の含有量を求めた。
(2)炭酸リチウムの純度
次式を用いて、差数法により求めた。
炭酸リチウム(%)=100-(不純物の総和)
本実施例、比較例における不純物は、表1に記載の異種金属(Ca、Fe、Si、Mg、Al)である。
(3)pH
pHメーター((株)堀場製作所製 D-51)により測定した。
〔実施例1〕
<第一工程>
表1で示される不純物を含有する粗製炭酸リチウム(炭酸リチウム(a))50質量部を、純水950質量部に添加し、スラリーを調製した。次いで、常圧下、攪拌しながらスラリーが透明になるまで二酸化炭素を導入して、炭酸水素リチウム水溶液を得た。
<第二工程>
この炭酸水素リチウム水溶液にアルカリ性化合物として水酸化リチウム10質量部を添加して、pH8.6の炭酸水素リチウム水溶液とした後、減圧濾過により濾過し、得られた濾液にキレート剤としてエチレンジアミン四酢酸(EDTA)を0.2質量部添加して、第二工程における炭酸水素リチウム水溶液を得た。
<第三工程>
第二工程で得られた炭酸水素リチウム水溶液を、攪拌しながら95℃まで昇温し、この温度で1時間加熱処理して脱炭酸し、高純度炭酸リチウム(炭酸リチウム(A1))を含むスラリーとした。このスラリーを減圧濾過により固液分離し、固形物と母液を得た。得られた固形物を120℃に維持した恒温乾燥器(ヤマト科学株式会社製、風定温高温器DKN402)で2時間乾燥させ、炭酸リチウム(A1)41質量部を得た。炭酸リチウム(A1)の分析結果を表1に示す。
<第一工程>
表1で示される不純物を含有する粗製炭酸リチウム(炭酸リチウム(a))50質量部を、純水950質量部に添加し、スラリーを調製した。次いで、常圧下、攪拌しながらスラリーが透明になるまで二酸化炭素を導入して、炭酸水素リチウム水溶液を得た。
<第二工程>
この炭酸水素リチウム水溶液にアルカリ性化合物として水酸化リチウム10質量部を添加して、pH8.6の炭酸水素リチウム水溶液とした後、減圧濾過により濾過し、得られた濾液にキレート剤としてエチレンジアミン四酢酸(EDTA)を0.2質量部添加して、第二工程における炭酸水素リチウム水溶液を得た。
<第三工程>
第二工程で得られた炭酸水素リチウム水溶液を、攪拌しながら95℃まで昇温し、この温度で1時間加熱処理して脱炭酸し、高純度炭酸リチウム(炭酸リチウム(A1))を含むスラリーとした。このスラリーを減圧濾過により固液分離し、固形物と母液を得た。得られた固形物を120℃に維持した恒温乾燥器(ヤマト科学株式会社製、風定温高温器DKN402)で2時間乾燥させ、炭酸リチウム(A1)41質量部を得た。炭酸リチウム(A1)の分析結果を表1に示す。
〔実施例2〕
<第一工程>
表1に示される炭酸リチウム(a)33質量部を、実施例1の第三工程の方法で得られた母液967質量部(炭酸リチウム溶解量17質量部)に添加し、スラリーを調製したこと以外は実施例1と同じ方法で行った。
<第二工程>
実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A2)は37質量部であった。炭酸リチウム(A2)の分析結果を表1に示す。
<第一工程>
表1に示される炭酸リチウム(a)33質量部を、実施例1の第三工程の方法で得られた母液967質量部(炭酸リチウム溶解量17質量部)に添加し、スラリーを調製したこと以外は実施例1と同じ方法で行った。
<第二工程>
実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A2)は37質量部であった。炭酸リチウム(A2)の分析結果を表1に示す。
〔実施例3〕
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物として水酸化リチウム10質量部、キレート剤としてCyDTAを0.2質量部添加すること以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A3)は40質量部であった。炭酸リチウム(A3)の分析結果を表1に示す。
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物として水酸化リチウム10質量部、キレート剤としてCyDTAを0.2質量部添加すること以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A3)は40質量部であった。炭酸リチウム(A3)の分析結果を表1に示す。
〔実施例4〕
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物として水酸化リチウム10質量部、キレート剤としてEDTAのアミン塩(キレスト株式会社製、キレストM-50)を1質量部添加すること以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A4)は40質量部であった。炭酸リチウム(A4)の分析結果を表1に示す。
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物として水酸化リチウム10質量部、キレート剤としてEDTAのアミン塩(キレスト株式会社製、キレストM-50)を1質量部添加すること以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(A4)は40質量部であった。炭酸リチウム(A4)の分析結果を表1に示す。
〔比較例1〕
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物を加えないこと以外は実施例1と同じ方法で行った。なお、炭酸水素リチウム水溶液を濾過する前のpHは7.5であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B1)は32質量部であった。炭酸リチウム(B1)の分析結果を表1に示す。
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物を加えないこと以外は実施例1と同じ方法で行った。なお、炭酸水素リチウム水溶液を濾過する前のpHは7.5であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B1)は32質量部であった。炭酸リチウム(B1)の分析結果を表1に示す。
〔比較例2〕
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物及びキレート剤を加えないこと以外は、実施例1と同じ方法で行った。なお、炭酸水素リチウム水溶液を濾過する前のpHは7.5であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B2)は32質量部であった。炭酸リチウム(B2)の分析結果を表1に示す。
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
アルカリ性化合物及びキレート剤を加えないこと以外は、実施例1と同じ方法で行った。なお、炭酸水素リチウム水溶液を濾過する前のpHは7.5であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B2)は32質量部であった。炭酸リチウム(B2)の分析結果を表1に示す。
〔比較例3〕
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
キレート剤を加えないこと以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B3)は40質量部であった。炭酸リチウム(B3)の分析結果を表1に示す。
<第一工程>
実施例1と同じ方法で行った。
<第二工程>
キレート剤を加えないこと以外は、実施例1と同じ方法で行った。なお、水酸化リチウム添加後の炭酸水素リチウム水溶液のpHは8.6であった。
<第三工程>
実施例1と同じ方法で行った。得られた炭酸リチウム(B3)は40質量部であった。炭酸リチウム(B3)の分析結果を表1に示す。
表1に示す結果から明らかなように、実施例1~4で得られる炭酸リチウムは、比較例1~3で得られる炭酸リチウムと比べて、不純物含有量が低減され、高純度なものであることが判る。
Claims (9)
- 粗製炭酸リチウム(a)から得られる高純度の炭酸リチウム(A)であって、Ca含有量が5ppm以下であり、かつMg含有量が4ppm以下である高純度炭酸リチウム。
- 純度が99.99%以上である請求項1に記載の高純度炭酸リチウム。
- 粗製炭酸リチウム(a)と二酸化炭素とを水溶媒中で反応させて得られる炭酸水素リチウム水溶液を、アルカリ領域のpHに調整してキレート処理した後、加熱分解することにより得られる請求項1に記載の高純度炭酸リチウム。
- 粗製炭酸リチウム(a)から高純度炭酸リチウム(A)を製造する方法であって、
粗製炭酸リチウム(a)を含む水性スラリーに二酸化炭素を導入して炭酸水素リチウム水溶液を得る第一工程、
炭酸水素リチウム水溶液にアルカリ性化合物を添加してpHを8.0以上に調整した後、キレート剤を添加する第二工程、及び、
第二工程により得られた炭酸水素リチウム水溶液を加熱処理して炭酸リチウム(A)を含む水溶液を得た後、固液分離することにより炭酸リチウム(A)を得る第三工程、
からなることを特徴とする高純度炭酸リチウムの製造方法。 - 第二工程におけるアルカリ性化合物が水酸化リチウムである請求項4に記載の高純度炭酸リチウムの製造方法。
- 第二工程におけるキレート剤がエチレンジアミン四酢酸である請求項4又は5のいずれか一項に記載の高純度炭酸リチウムの製造方法。
- 第三工程において固液分離により得られる母液を、第一工程における水性スラリーの溶媒として使用する請求項4~6のいずれか一項に記載の高純度炭酸リチウムの製造方法。
- 高純度炭酸リチウムのCa含有量が5ppm以下であり、かつMg含有量が4ppm以下である請求項4~7のいずれか一項に記載の高純度炭酸リチウムの製造方法。
- 高純度炭酸リチウムの純度が99.99%以上である請求項4~8のいずれか一項に記載の高純度炭酸リチウムの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118232A JP5431019B2 (ja) | 2009-05-15 | 2009-05-15 | 高純度炭酸リチウムの製造方法 |
JP2009-118232 | 2009-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010131664A1 true WO2010131664A1 (ja) | 2010-11-18 |
Family
ID=43085037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057992 WO2010131664A1 (ja) | 2009-05-15 | 2010-05-12 | 高純度炭酸リチウム及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5431019B2 (ja) |
WO (1) | WO2010131664A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398910A (zh) * | 2010-11-25 | 2012-04-04 | 兰州大学 | 一种除去电池级碳酸锂中钙、镁、铁、钠、钾阳离子杂质的方法 |
CN103449481A (zh) * | 2012-05-29 | 2013-12-18 | 日铁矿业株式会社 | 制备碳酸锂的方法 |
CN103833053A (zh) * | 2014-01-21 | 2014-06-04 | 四川天齐锂业股份有限公司 | 制备5n级高纯碳酸锂的方法 |
CN106379921A (zh) * | 2016-08-31 | 2017-02-08 | 四川长和华锂科技有限公司 | 一种以磷酸锂废料为原料生产工业级碳酸锂和电池级碳酸锂的方法 |
CN109553119A (zh) * | 2018-12-21 | 2019-04-02 | 清华大学 | 一种碳酸锂纯化和纳米化的方法 |
CN110336016A (zh) * | 2019-07-16 | 2019-10-15 | 中钢集团南京新材料研究院有限公司 | 一种掺铝锰酸锂的制备方法 |
CN110342550A (zh) * | 2019-08-08 | 2019-10-18 | 赣州有色冶金研究所 | 一种干法制备氟化锂的方法 |
KR20200024909A (ko) * | 2017-08-02 | 2020-03-09 | 제이엑스금속주식회사 | 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법 |
WO2021053514A1 (en) | 2019-09-16 | 2021-03-25 | InCoR Lithium | Selective lithium extraction from brines |
CN114361431A (zh) * | 2021-08-20 | 2022-04-15 | 山东瑞福锂业有限公司 | 一种锂离子电池中三元正极材料用规整微米片的碳酸锂材料的结构调控的工艺与方法 |
CN115504490A (zh) * | 2022-09-29 | 2022-12-23 | 江西闪凝科技有限公司 | 一种外场辅助制备电池级碳酸锂的方法 |
EP3950106A4 (en) * | 2019-03-29 | 2023-04-05 | JX Nippon Mining & Metals Corporation | PROCESS FOR PRODUCTION OF LITHIUM CARBONATE |
CN116789153A (zh) * | 2023-06-30 | 2023-09-22 | 江西金辉锂业有限公司 | 一种从粗碳酸锂制备高纯碳酸锂的方法 |
CN117401700A (zh) * | 2023-11-15 | 2024-01-16 | 甘肃睿思科新材料有限公司 | 一种使用碳化母液连续制备碳酸氢锂的方法 |
US12123074B2 (en) * | 2017-08-02 | 2024-10-22 | Jx Metals Circular Solutions Co., Ltd. | Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101181922B1 (ko) | 2010-12-07 | 2012-09-11 | 재단법인 포항산업과학연구원 | 염수로부터 고순도 수산화리튬과 탄산리튬 제조 방법 |
CN103097586B (zh) | 2010-08-12 | 2015-09-02 | 浦项产业科学研究院 | 通过电解从含锂溶液中提取高纯度锂的方法 |
CN102267708B (zh) * | 2011-07-01 | 2013-05-22 | 清华大学 | 一种结晶法制备碳酸锂纳米颗粒的方法 |
JP5406955B2 (ja) | 2012-03-22 | 2014-02-05 | 日鉄鉱業株式会社 | 炭酸リチウムを製造する方法 |
EP2855357B1 (de) * | 2012-05-25 | 2019-11-13 | LANXESS Deutschland GmbH | Herstellung von hochreinem lithiumfluorid |
US11268164B2 (en) | 2016-09-28 | 2022-03-08 | Jfe Steel Corporation | Steel sheet and method for producing the same |
JP7115123B2 (ja) * | 2018-08-02 | 2022-08-09 | 住友金属鉱山株式会社 | リチウムの精製方法 |
WO2024143267A1 (ja) * | 2022-12-28 | 2024-07-04 | Agc株式会社 | ガラスの原材料に用いられる複合体及びその製造方法、並びに、水酸化リチウムを製造する際に得られる廃材の利用方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1131041A (ja) * | 1997-07-11 | 1999-02-02 | Tokai Rubber Ind Ltd | コンピュータに入力された手入力内容のチェック方法及びチェック装置 |
JP2002505248A (ja) * | 1998-03-05 | 2002-02-19 | ビーエーエスエフ アクチェンゲゼルシャフト | 高純度のリチウム塩の製造 |
JP2004196607A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2004196606A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2009046390A (ja) * | 2008-10-24 | 2009-03-05 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2009057278A (ja) * | 2008-10-24 | 2009-03-19 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
-
2009
- 2009-05-15 JP JP2009118232A patent/JP5431019B2/ja active Active
-
2010
- 2010-05-12 WO PCT/JP2010/057992 patent/WO2010131664A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1131041A (ja) * | 1997-07-11 | 1999-02-02 | Tokai Rubber Ind Ltd | コンピュータに入力された手入力内容のチェック方法及びチェック装置 |
JP2002505248A (ja) * | 1998-03-05 | 2002-02-19 | ビーエーエスエフ アクチェンゲゼルシャフト | 高純度のリチウム塩の製造 |
JP2004196607A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2004196606A (ja) * | 2002-12-19 | 2004-07-15 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2009046390A (ja) * | 2008-10-24 | 2009-03-05 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2009057278A (ja) * | 2008-10-24 | 2009-03-19 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398910A (zh) * | 2010-11-25 | 2012-04-04 | 兰州大学 | 一种除去电池级碳酸锂中钙、镁、铁、钠、钾阳离子杂质的方法 |
CN102398910B (zh) * | 2010-11-25 | 2014-07-16 | 兰州大学 | 一种除去电池级碳酸锂中钙、镁、铁、钠、钾阳离子杂质的方法 |
CN103449481A (zh) * | 2012-05-29 | 2013-12-18 | 日铁矿业株式会社 | 制备碳酸锂的方法 |
CN103449481B (zh) * | 2012-05-29 | 2016-08-24 | 日铁矿业株式会社 | 制备碳酸锂的方法 |
CN103833053A (zh) * | 2014-01-21 | 2014-06-04 | 四川天齐锂业股份有限公司 | 制备5n级高纯碳酸锂的方法 |
CN106379921A (zh) * | 2016-08-31 | 2017-02-08 | 四川长和华锂科技有限公司 | 一种以磷酸锂废料为原料生产工业级碳酸锂和电池级碳酸锂的方法 |
KR102354730B1 (ko) | 2017-08-02 | 2022-02-09 | 제이엑스금속주식회사 | 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법 |
US12123074B2 (en) * | 2017-08-02 | 2024-10-22 | Jx Metals Circular Solutions Co., Ltd. | Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap |
US20230279522A1 (en) * | 2017-08-02 | 2023-09-07 | Jx Nippon Mining & Metals Corporation | Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap |
KR20200024909A (ko) * | 2017-08-02 | 2020-03-09 | 제이엑스금속주식회사 | 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법 |
EP3689821A1 (en) * | 2017-08-02 | 2020-08-05 | JX Nippon Mining & Metals Corporation | Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap |
EP3663262A4 (en) * | 2017-08-02 | 2021-01-06 | JX Nippon Mining & Metals Corporation | METHOD FOR DISCLOSURE OF A LITHIUM COMPOUND, METHOD FOR MANUFACTURING LITHIUM CARBONATE AND METHOD FOR RECOVERING LITHIUM FROM SEPARATED LITHIUM-ION SECONDARY CELLS |
US11718895B2 (en) | 2017-08-02 | 2023-08-08 | Jx Nippon Mining & Metals Corporation | Method for dissolving lithium compound, method for manufacturing lithium carbonate, and method for recovering lithium from lithium ion secondary cell scrap |
CN109553119A (zh) * | 2018-12-21 | 2019-04-02 | 清华大学 | 一种碳酸锂纯化和纳米化的方法 |
EP3950106A4 (en) * | 2019-03-29 | 2023-04-05 | JX Nippon Mining & Metals Corporation | PROCESS FOR PRODUCTION OF LITHIUM CARBONATE |
CN110336016A (zh) * | 2019-07-16 | 2019-10-15 | 中钢集团南京新材料研究院有限公司 | 一种掺铝锰酸锂的制备方法 |
CN110342550A (zh) * | 2019-08-08 | 2019-10-18 | 赣州有色冶金研究所 | 一种干法制备氟化锂的方法 |
US11634789B2 (en) | 2019-09-16 | 2023-04-25 | InCoR Lithium | Selective lithium extraction from brines |
WO2021053514A1 (en) | 2019-09-16 | 2021-03-25 | InCoR Lithium | Selective lithium extraction from brines |
CN114361431A (zh) * | 2021-08-20 | 2022-04-15 | 山东瑞福锂业有限公司 | 一种锂离子电池中三元正极材料用规整微米片的碳酸锂材料的结构调控的工艺与方法 |
CN115504490A (zh) * | 2022-09-29 | 2022-12-23 | 江西闪凝科技有限公司 | 一种外场辅助制备电池级碳酸锂的方法 |
CN115504490B (zh) * | 2022-09-29 | 2023-12-19 | 江西闪凝科技有限公司 | 一种外场辅助制备电池级碳酸锂的方法 |
CN116789153A (zh) * | 2023-06-30 | 2023-09-22 | 江西金辉锂业有限公司 | 一种从粗碳酸锂制备高纯碳酸锂的方法 |
CN117401700A (zh) * | 2023-11-15 | 2024-01-16 | 甘肃睿思科新材料有限公司 | 一种使用碳化母液连续制备碳酸氢锂的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010265142A (ja) | 2010-11-25 |
JP5431019B2 (ja) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5431019B2 (ja) | 高純度炭酸リチウムの製造方法 | |
JP2023500313A (ja) | 抽出-逆抽出分離精製によるリチウムの抽出方法 | |
JP4896108B2 (ja) | 高純度炭酸リチウムの製造方法 | |
JP5406386B2 (ja) | 硫酸マンガン一水和物の製造方法 | |
US20190233297A1 (en) | Method of preparing lithium compound | |
JP6926010B2 (ja) | 水酸化リチウムの製造方法 | |
KR101283843B1 (ko) | 탄산리튬의 정제 방법 | |
JP4896109B2 (ja) | 高純度炭酸リチウムの製造方法 | |
JP2012092004A (ja) | 炭酸リチウムの精製方法 | |
CN108862335A (zh) | 一种用磷酸锂制备碳酸锂的方法 | |
CN101259956A (zh) | 一种粗碲粉深度除杂的方法 | |
JP5406822B2 (ja) | 炭酸リチウムの製造方法 | |
WO2023169432A1 (zh) | 一种制备电池级氢氧化锂和碳酸锂的方法和系统 | |
JP2023502146A (ja) | 電池グレードのNi-Co-Mn混合液及び電池グレードのMn溶液の調製方法 | |
KR101562263B1 (ko) | 질산폐액을 이용하여 질산나트륨을 제조하는 방법 | |
JP3955130B2 (ja) | 硫酸バナジウム(iii)の製造方法 | |
KR20190072111A (ko) | 이차 전지용 양극 활물질 전구체 제조 방법 및 이를 이용한 제조 장치 | |
JP3788185B2 (ja) | クロム及びセリウムを含む溶液からのセリウムの回収方法 | |
KR20080036093A (ko) | 고순도 가성칼리의 제조 방법 | |
JP2005206456A (ja) | 高純度炭酸カルシウム及びその製造方法 | |
JP2004196607A (ja) | 高純度炭酸リチウムの製造方法 | |
JP5106488B2 (ja) | 炭酸マンガンの製造方法 | |
JP7345728B2 (ja) | 炭酸リチウムの精製方法 | |
JP2004196606A (ja) | 高純度炭酸リチウムの製造方法 | |
JPH0696455B2 (ja) | 高純度硫酸コバルトの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10774921 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10774921 Country of ref document: EP Kind code of ref document: A1 |