WO2010128793A2 - 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체 - Google Patents

지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체 Download PDF

Info

Publication number
WO2010128793A2
WO2010128793A2 PCT/KR2010/002838 KR2010002838W WO2010128793A2 WO 2010128793 A2 WO2010128793 A2 WO 2010128793A2 KR 2010002838 W KR2010002838 W KR 2010002838W WO 2010128793 A2 WO2010128793 A2 WO 2010128793A2
Authority
WO
WIPO (PCT)
Prior art keywords
usa
tocopherol
derivative
group
chitosan
Prior art date
Application number
PCT/KR2010/002838
Other languages
English (en)
French (fr)
Other versions
WO2010128793A3 (ko
Inventor
오유경
노상명
한수은
Original Assignee
고려대학교 산학협력단
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 서울대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2010128793A2 publication Critical patent/WO2010128793A2/ko
Publication of WO2010128793A3 publication Critical patent/WO2010128793A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a cationic chitosan derivative in which chitosan or a derivative thereof is combined with a fat-soluble vitamin or a derivative thereof, a method for preparing the same, and a drug carrier comprising the same, wherein the cationic chitosan derivative of the present invention is pharmaceutically effective for delivery into cells. Not only significantly enhances the efficiency of transporting the components into the cell, but also is useful for the purpose of reducing the cytotoxicity to enhance the therapeutic efficacy of the pharmaceutical active ingredient.
  • nucleic acid materials such as plasmid deoxyribonucleic acid (small DNA), small interfering double-stranded ribonucleic acid (siRNA), microribonucleic acid (micro RNA), antisense oligonucleotide, etc. have been identified, The importance of nucleic acid delivery materials for efficiently delivering these nucleic acid materials into cells has also increased.
  • cationic liposomes or cationic polymers in the non-viral vector have been studied as gene carriers because they have a characteristic of forming a complex by binding to the anionic charge of a gene by positive charges due to structural features.
  • Gene delivery methods using such synthetic materials are simpler to manufacture than viral gene transporters using lentiviruses or adenoviruses, and are not limited in size to the genes to be delivered, and are repeatedly administered by viral capsid proteins. There is little immune side effect, no safety problems caused by the genes owned by the virus itself, and there is a commercially advantageous advantage in terms of manufacturing cost or time.
  • the cationic polymer transporter in the gene transfer method using a cationic material is DEAE dextran, polylysine having a repeating structure of lysine amino acid, polyethyleneimine having a repeating structure of ethyleneimine, or polyamidoamine (US Pat. No. 6,020,457) and the like have been studied as transporters of genes. However, it has been pointed out that in the case of the transporter using the same, the transport efficiency into the cells in the body is lower than that of the viral transporter effectively transported through the receptor on the cell surface.
  • nanocharged particles such as cationic liposomes are prepared by mixing positively charged lipids in a phospholipid composition and mixing these particles with genes to complex positively charged phospholipid particles with genes. Has been used to enhance the expression of genes by treating them with cell lines (US Pat. No. 5,858,784).
  • Cationic lipids are those in which quaternary amines, tertiary amines, or hydroxyethylated quaternary amines are linked to the head of the lipid to provide one positive charge (DC-Chol, DDAB, TMAC, etc.) and spermine.
  • Polyamines, such as) may be divided into a kind that is connected to provide a plurality of positive charges.
  • Cationic polymers in non-viral vectors are simpler to manufacture than viral nucleic acid transporters such as lentiviruses and adenoviruses, have less immune side effects upon repeated doses by viral capsid proteins, and are resistant to genes owned by the virus itself. It does not pose a safety problem due to the body, there is an industrially advantageous advantage in the manufacturing cost or manufacturing process.
  • the present inventors have shown a typical retinol and retinol derivatives, ergocalciferol and ergocal among chitosan and fat-soluble vitamins having a positive charge.
  • New cationic chitosan derivatives modified with novel fat-soluble vitamins and derivatives thereof using ciferol derivatives, cholecalciferol and cholecalciferol derivatives, tocopherol and tocopherol derivatives, tocotrienols and tocotrienol derivatives
  • the present invention was completed by confirming that the cationic chitosan derivatives not only significantly increase the delivery efficiency of the pharmaceutical active ingredient but also significantly reduce the cytotoxicity in human cancer cell lines and mouse cell lines.
  • Another object of the present invention is to provide a third object of the present invention.
  • the present invention provides a drug delivery agent comprising a cationic chitosan derivative in which chitosan or a derivative thereof is combined with a fat-soluble vitamin or a derivative thereof.
  • Another object of the present invention is to provide a third object of the present invention.
  • composition comprising a pharmaceutically acceptable carrier.
  • Another object of the present invention is to provide a third object of the present invention.
  • It is to provide a diagnostic kit comprising a nucleic acid aptamer coupled with the cationic chitosan derivative.
  • the present invention relates to a cationic chitosan derivative in which chitosan or a derivative thereof is combined with a fat soluble vitamin or a derivative thereof.
  • the cationic chitosan derivatives according to the present invention are formulated in the form of micelles, nanoparticles, and the like, and are capable of drug delivery to any animal cell according to the purpose of use of the drug to be delivered, and significantly enhance the transport efficiency of the desired drug. It also can reduce the toxicity to cells.
  • the cationic chitosan derivative according to the present invention includes all chitosan or derivatives thereof combined with fat-soluble vitamins or derivatives thereof.
  • the term "bond” refers to a chemical covalent bond, and more specifically, a functional group such as a hydroxy group (-OH) or an amine group (-NH 2 ) present in chitosan or a derivative thereof is added to a vitamin or a derivative thereof. It means that the functional group such as hydroxyl group (-OH) or carboxyl group (-COOH) present through the chemical reaction.
  • the cationic chitosan derivative may be represented by the structure of Formula 1 or Formula 2.
  • R represents an organic group derived from a fat-soluble vitamin or a derivative thereof
  • L represents -CONH- or -NHCOO-
  • M represents -COO- or -O (CH 2 ) 2 O-
  • X represents an acetyl group, methyl glycol group, galactosyl group, lactosyl group or maltosyl group
  • a and b each independently represent an integer of 1 to 150
  • c represents the integer of 0-50.
  • R is retinol, 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid (all -trans-retinoic acid), ergocalciferol (vitamin D2), vitamin D2 (6,19,19-d3) (Vitamin D2 (6,19,19-d3)), cholecalciferol, vitamin D3), vitamin D3 (6,19,19-d3) (vitamin D3 (6,19,19-d3)), ( ⁇ ) -alpha-tocopherol (( ⁇ ) - ⁇ -tocopherol), (+)- Alpha-tocopherol ((+)- ⁇ -tocopherol), (+)-beta-tocopherol ((+)- ⁇ tocopherol), gamma-tocopherol ((+)- ⁇ tocopherol), delta-tocopherol ((+)- ⁇ tocopherol), D- ⁇ tocopherol succinate, D- ⁇ tocopherol polyethylene glycol,
  • the compound of Formula 1 or Formula 2 includes a compound wherein c is 0.
  • the compound of Formula 1 or Formula 2 includes a compound wherein c is 1 to 50 and X represents galactosyl, lactosyl or maltosyl.
  • R is 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, ((+ ) -Alpha-tocopherol (( ⁇ )- ⁇ tocopherol), alpha-tocopherol succinate, (+)-alpha-tocopherol ((+)- ⁇ tocopherol), alpha-tocopherol polyethylene glycol (D- ⁇ -tocopherol polyethylene glycol), and alpha-tocotrienol (D- ⁇ -tocotrienol) includes a compound representing an organic group derived from a vitamin or a derivative thereof.
  • the present invention also relates to a method for preparing a cationic chitosan derivative comprising reacting chitosan or a derivative thereof with a fat soluble vitamin or a derivative thereof in the presence of a solvent using a coupling agent or protecting group.
  • the coupling agent is not particularly limited, the type of coupling agent that can be used depending on the type of functional group to be bonded is known.
  • EDC N- (2-dimethylaminopropyl) -N'-ethylcarbodiimide
  • DCC Dicyclohexylcarbodiimide
  • DIC diisopropylcarbodiimide
  • CDI 1,1'-Carbonyldiimidazole
  • Succinimidyl formylbenzoate (SFB, succinimidyl 4-formylbenzoate ), C6-succinimidyl formylbenzoic acid (C6-SFB, C6-succinimidyl 4-
  • the protecting group is also not particularly limited, and the type of protecting group that can be used depending on the type of functional group to be protected is known.
  • phthalic anhydride can be used.
  • the reaction can also proceed in the presence of a nucleophilic catalyst as needed.
  • nucleophilic catalysts are also known in the art and can use, for example, DMAP (4- (Dimethylamino) pyridine).
  • the present invention also provides a pharmaceutical active ingredient
  • the present invention relates to a drug carrier comprising a cationic chitosan derivative in which chitosan or a derivative thereof is combined with a fat-soluble vitamin or a derivative thereof.
  • the drug carrier according to the present invention not only increases the intracellular transport of the drug in various cells but also significantly reduces the cytotoxicity, it can be effectively used, for example, in the therapy with the drug including the oligonucleotide medicine.
  • the manner in which the pharmaceutically active ingredient is introduced into the drug carrier may be appropriately changed depending on the form of the drug carrier.
  • a complex between the drug carrier and the drug may be efficiently formed through electrostatic bonding by a simple mix with the drug carrier in micelle form.
  • the pharmaceutically active ingredient is a fat-soluble compound
  • it may be inserted into the lipid membrane of the drug carrier
  • the pharmaceutically active ingredient is a water-soluble compound
  • it is encapsulated in a drug carrier such as liposomes or bound to a cationic chitosan. Can be introduced.
  • the pharmaceutical active ingredient includes a chemotherapeutic agent, a protein medicine or a nucleic acid medicine.
  • the chemotherapeutic agent means an organic compound that exhibits a pharmacological effect on any disease.
  • Representative examples of such chemotherapeutic agents include anticancer chemotherapeutic agents.
  • Known anticancer chemotherapeutic agents include, for example, paclitaxel, docetaxel, cisplatin, carboplatin, oxaliplatin, doxorubicin, daunorubicin, daunorubicin, Epirubicin, idarubicin, valubicin, mitoxantrone, curcumin, gefitinib, erlotinib, irinotecan , Topotecan, vinblastine, vincristine and the like.
  • the protein drug or nucleic acid drug may include, for example, peptides that specifically bind to specific receptors to block or inhibit signal transduction, and siRNAs that inhibit the expression of specific genes.
  • the drug included in the drug delivery agent of the present invention may be a nucleic acid medicine.
  • the nucleic acid includes an oligo nucleic acid. More specifically plasmid deoxyribonucleic acid (ribbonidic acid), ribonucleic acid (RNA), small interfering ribonucleic acid (siRNA), antisense oligonucleotide, microribonucleic acid (microRNA), locked nucleic acid, or Nucleic acid aptamers and the like.
  • nucleic acid medications can be bound at a dose of 0.3 mg to 1000 mg per gram of cationic chitosan derivative, although not limited thereto.
  • the drug included in the drug delivery agent of the present invention may be a fat-soluble drug.
  • Fat-soluble drugs include, but are not limited to, Paclitaxel, Carmustine, dacarbazine, Etoposide, Fluorouracil, Camptothecin, Metothecin Clofenamic acid, Sulindac, Piroxicam, Meloxicam, Tenoxicam, Diclofenac, Aceclofenac, Rebamipide Enalapril maleate, Captopril, Ramipril, Fosinopril, Benazepril, Quinapril, Temocapril, Silacapril Cilazapril, Lisinopril, Cetirizine, Diphenhydramine, Fexofenadine, Pseudoephedrine, Methylephedrine, Dextromethorphan ), Guaifenesi n), noscapine, trimetoquinol, doxylamine, ambroxol,
  • the cationic chitosan derivative of the drug carrier of the present invention includes, for example, a compound having the structure of Formula 1 or Formula 2.
  • R represents an organic group derived from a fat-soluble vitamin or a derivative thereof
  • L represents -CONH- or -NHCOO-
  • M represents -COO- or -O (CH 2 ) 2 O-
  • X represents an acetyl group, methyl glycol group, galactosyl group, lactosyl group or maltosyl group
  • a and b each independently represent an integer of 1 to 150
  • c represents the integer of 0-50.
  • R is retinol, 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid (all -trans-retinoic acid), ergocalciferol (vitamin D2), vitamin D2 (6,19,19-d3) (Vitamin D2 (6,19,19-d3)), cholecalciferol, vitamin D3), vitamin D3 (6,19,19-d3) (vitamin D3 (6,19,19-d3)), ( ⁇ ) -alpha-tocopherol (( ⁇ )- ⁇ tocopherol), (+)-alpha -Tocopherol ((+)- ⁇ -tocopherol), (+)-beta-tocopherol ((+)- ⁇ tocopherol), gamma-tocopherol ((+)- ⁇ tocopherol), delta-tocopherol ((+)- ⁇ tocopherol), alpha D- ⁇ -tocopherol succinate, D- ⁇ -tocopherol poly
  • the compound of Formula 1 or Formula 2 includes a compound wherein c is 0.
  • the compound of Formula 1 or Formula 2 includes a compound wherein c is 1 to 50 and X represents galactosyl, lactosyl or maltosyl.
  • R is 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, ( ⁇ ) -Alpha-tocopherol ( ⁇ ) - ⁇ -tocopherol, alpha-tocopherol succinate, (+)-alpha-tocopherol ((+)- ⁇ -tocopherol), alpha-tocopherol polyethylene glycol ( D- ⁇ -tocopherol polyethylene glycol), and alpha-tocotrienol (D- ⁇ tocotrienol) includes a compound exhibiting an organic group derived from a vitamin or a derivative thereof.
  • the form of the drug carrier according to the present invention is not particularly limited, but may have, for example, a formulation of liposomes, micelles, emulsions, or nanoparticles.
  • the invention also relates to the invention.
  • composition comprising a pharmaceutically acceptable carrier.
  • the drug carrier may be introduced into cells for the treatment of various diseases caused by overexpression of pathogenic proteins including tumors, arthritis, cardiovascular, endocrine diseases and the like.
  • the drug delivery vehicle may have an excellent disease treatment effect by inhibiting intracellular overexpression of pathogenic proteins.
  • the pharmaceutical composition of the present invention selectively reduces the expression of the target protein or modifies the mutations in the target gene to overexpress the pathogenic protein. It is possible to treat diseases caused by the disease caused by the target gene or the like.
  • the drug carrier according to the present invention may be administered in consideration of the amount of the pharmaceutically effective ingredient contained in the drug delivery agent and the therapeutically effective amount of the pharmaceutical active ingredient.
  • a therapeutically effective amount of a pharmaceutically effective ingredient means an amount required for administration in order to anticipate a disease therapeutic effect. Therefore, the type of disease, the severity of the disease, the type of nucleic acid to be administered, the type of formulation, the age, weight, general health, sex and diet of the patient, the time of administration, the route of administration and the duration of treatment, the chemotherapy drug used simultaneously, etc. It can be adjusted according to various factors including a drug.
  • the drug carrier may be administered to an adult at a dose of 0.001 mg / kg to 100 mg / kg, for example, once daily.
  • Carriers used in the composition according to the present invention include carriers and vehicles commonly used in the pharmaceutical field, and specifically, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer substances (E.g. various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids), water, salts or electrolytes (e.g.
  • compositions of the present invention may also further comprise lubricants, wetting agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • the pharmaceutical composition of the present invention can be prepared in a parenteral dosage form such as an oral dosage form or an injection.
  • formulations for oral administration include tablets, troches, lozenges, water soluble or oily suspensions, prepared powders or granules, emulsions, hard or soft capsules, syrups or elixirs.
  • lactose saccharose, sorbitol, mannitol, starch, amylopectin, binders such as cellulose or gelatin, excipients such as dicalcium phosphate, disintegrants such as corn starch or sweet potato starch, magnesium stearate Lubricating oils, such as calcium stearate, sodium stea fumarate or polyethylene glycol wax.
  • the capsule formulation may contain a liquid carrier such as fatty oil in addition to the above-mentioned substances.
  • Formulations for oral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, and lyophilized preparations.
  • Non-aqueous solvents and suspending solvents may be used vegetable oils such as propylene glycol, polyethylene glycol or olive oil, injectable esters such as ethyl oleate.
  • compositions according to the invention can be prepared in aqueous solutions for parenteral administration.
  • buffer solutions such as Hanks' solution, Ringer's solution, or physically buffered saline may be used.
  • Aqueous injection suspensions can be added with a substrate that can increase the viscosity of the suspension, such as sodium carboxymethylcellulose, sorbitol or dextran.
  • compositions of the present invention may be in the form of sterile injectable preparations of aqueous or oily suspensions.
  • suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents (eg Tween 80) and suspending agents.
  • Sterile injectable preparations may also be sterile injectable solutions or suspensions (eg solutions in 1,3-butanediol) in nontoxic parenterally acceptable diluents or solvents.
  • Vehicles and solvents that may be used include mannitol, water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, nonvolatile oils are conventionally employed as a solvent or suspending medium. For this purpose any non-irritating non-volatile oil can be used including synthetic mono or diglycerides.
  • It relates to a diagnostic kit comprising a nucleic acid aptamer bound to the cationic chitosan derivative.
  • the surface (substrate) of the diagnostic plate is coated with a novel cationic chitosan modified with fat-soluble vitamins and derivative vitamins and the presence of a substance that selectively reacts with the aptamer in the sample when the aptamer is bound on the coated surface. It can be used to diagnose.
  • novel cationic chitosan derivatives modified with the fat-soluble vitamins of the present invention and the derivative vitamins thereof are simple to manufacture and purify, and thus economical in mass production.
  • a drug delivery agent comprising a novel cationic chitosan modified from fat-soluble vitamins and derivative vitamins of the present invention may be used as a pharmaceutical active ingredient of interest, for example ribonucleic acid, small interfering ribonucleic acid, antisense oligonucleic acid, nucleic acid aptamers.
  • oligonucleic acid drugs such as aptamers into cells, they are usefully used for enhancing the therapeutic efficacy of nucleic acid or protein based drugs by reducing cytotoxicity.
  • NMR nuclear magnetic resonance
  • Figure 2 is an infrared absorption spectrum analysis (FT-IR) results showing the synthesis of the cationic chitosan derivative of the present invention.
  • FT-IR infrared absorption spectrum analysis
  • Figure 3 is agarose gel electrophoresis results showing the formation of a conjugate between a small interfering ribonucleic acid and a cationic chitosan derivative of the present invention.
  • Figure 4 is a result of measuring the size of the conjugate between the small interference ribonucleic acid and the cationic chitosan derivative of the present invention using dynamic light scattering equipment.
  • FIG. 5 is a photograph showing the intracellular nucleic acid transfer efficiency of the cationic chitosan derivative of the present invention in HeLa, a human cervical cancer cell using small interfering ribonucleic acid labeled with fluorescent labels.
  • FIG. 6 is a photograph showing the intracellular nucleic acid delivery efficiency of the cationic chitosan derivative of the present invention in Hepa 1-6, a mouse liver cancer cell, using small interfering ribonucleic acid labeled with fluorescent labels.
  • FIG. 7 is a photograph showing the intracellular nucleic acid delivery efficiency of the cationic chitosan derivative of the present invention in WM 266.4, a human skin melanoma cell, using small interfering ribonucleic acid labeled with fluorescent labels.
  • FIG. 8 shows the results of analysis of intracellular nucleic acid transfer efficiency of the cationic chitosan derivative of the present invention in A549 cells, which are human lung cancer cells, using small interfering ribonucleic acid labeled with fluorescent markers using a fluorescence flow cytometer (FACS). .
  • FACS fluorescence flow cytometer
  • FCS flow cytometry
  • FACS fluorescence flow cytometer
  • FIG. 11 shows the degree of intracellular nucleic acid transfer efficiency of cationic chitosan derivatives of the present invention in TF-1 cells, which are human myeloid leukemia cells, using small interfering ribonucleic acid labeled with fluorescent markers using a fluorescent flow cytometer (FACS).
  • FACS fluorescent flow cytometer
  • FIG. 13 shows the reverse transcriptase polymerase chain binding of survivin transcriptome mediated by small interfering ribonucleic acid in WM 266.4 cells of human skin melanoma cells using the cationic chitosan derivative of the present invention. Show the results confirmed by the reaction.
  • Figure 14 shows the reverse transcription polymerase in human keratin-secreting cervical cancer cells KB cells to suppress the expression of survivin transcript mediated by small interfering ribonucleic acid using the cationic chitosan derivative of the present invention Show the results confirmed by the chain reaction.
  • Figure 16 shows the results of confirming the cytotoxicity of the cationic chitosan derivative of the present invention in human skin melanoma cells WM 266.4 using MTT staining.
  • Figure 18 shows the results confirming that the fat-soluble model drug is mounted on the drug carrier of the present invention under optical and fluorescent conditions.
  • 19 shows the results of observing the delivery efficiency of a model drug labeled with a fluorescent marker of a cationic chitosan derivative drug carrier loaded with a fat-soluble model drug by fluorescence microscopy and phase contrast microscopy.
  • the tumor cells of the cationic chitosan derivative according to the present invention (HeLa cell line, human cervical cancer epithelial cell, keratin-secreting cervical cancer cell KB cell line, lung cancer cell A549 cell line, melanoma WM266.4 cell line, leukemia cell Nucleic acid delivery efficiency to the K562 cell line, the TF-1 cell line, and the hepatic cancer cell line Hepa 1-6 cell line.
  • Block IT with fluorescent labeling (Invitrogen, USA) Small interfering ribonucleic acid was used to form a variety of complexes containing novel cationic oligochitosans modified with fat-soluble vitamins and their derivative vitamins and delivered into cells, which were then examined under fluorescence microscopy. Observation was specifically measured the capacity of the nucleic acid transport to the cells of the novel cationic chitosan modified by the fat-soluble vitamin and its derivative vitamins.
  • the cytotoxicity of the cationic chitosan derivative of the present invention was evaluated using the color development method (MTT) using tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide.
  • Lipofectamine (LipofectAMINE) 2000 (Invitrogen, USA), a commercially available liposome formulation for use in nucleic acid delivery experiments, was purchased and used according to the manufacturer's instructions.
  • DMAP Dimethylamino
  • EDC N- (2-dimethylaminopropyl)- N'-ethylcarbodiimide
  • succinic anhydride 0.1 g, sigma-aldrich, USA
  • retinol retinol, 0.017 g, sigma, USA
  • the product obtained after the reaction was dialyzed in water using a dialysis membrane to remove unreacted material and impurities, and then freeze-dried.
  • the obtained chitosan derivative was stored at 4 ° C. until use.
  • the reaction was confirmed by nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) and infrared absorption spectroscopy (FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA).
  • the resulting cationic chitosan derivative was stored at 4 ° C. until use.
  • the reaction was confirmed by nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) and infrared absorption spectroscopy (FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA).
  • the resulting cationic chitosan derivative was stored at 4 ° C. until use.
  • the reaction was confirmed by nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) and infrared absorption spectroscopy (FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA). NMR graphs are shown in FIG. 1.
  • the protecting group is removed by adding hydrazine (hydrazine hydrate) at 100 ° C.
  • the product obtained after the reaction was dialyzed in water using a dialysis membrane to remove unreacted material and impurities, and then freeze-dried.
  • the resulting cationic chitosan derivative was stored at 4 ° C. until use.
  • the reaction was confirmed by nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) and infrared absorption spectroscopy (FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA).
  • Alpha-tocopherol ( ⁇ -tocopherol, 100 mg, sigma, USA) was dissolved in DMF, followed by DMAP (4- (Dimethylamino) pyridine, 0.01 g, Fluka, USA), SFB (succinimidyl 4-formylbenzoate, 0.086, Fisher Scientific Inc. , USA) was added and then reacted at 60 ° C. for about 12 hours. After the reaction was concentrated under reduced pressure, washed with ethyl acetate (Ethyl acetate), an aqueous supersaturated sodium chloride solution and dried.
  • DMAP dimethylamino
  • SFB succinimidyl 4-formylbenzoate
  • Alpha-tocopherol synthesized as DMAP (4- (Dimethylamino) pyridine, 0.1g, Fluka, USA), Example 9 after dissolving in DMF / H2O 95/5 in molecular weight 50kDa chitosan (chitosan, 1g, aldrich, USA) After adding formylbenzoic acid ( ⁇ -tocopherol formylbenzoate, 0.47g), a cationic chitosan derivative was synthesized in the same manner as in Example 9.
  • DMAP Dimethylamino
  • EDC N- (2-dimethylaminopropyl) -N'-ethylcarbodiimide, 0.1 g, sigma-aldrich, USA
  • retinoic acid retinoic aicd, 0.018 g, sigma, USA
  • Lactose chitosan (lactosyl chitosan, 1 g, sigma, USA) was synthesized in the same manner as in Example 5 DMAP (4- (Dimethylamino) pyridine, 0.1 g, Fluka, USA) and EDC (N- (2-dimethylaminopropyl) ) -N'-ethylcarbodiimide, 0.1 g, sigma-aldrich, USA) and alpha-tocopherol succinate ( ⁇ -tocopherol succinate, 0.96 g, supelco, USA), followed by stirring at room temperature for about 12 hours, followed by Example 5 Cationic chitosan derivatives were synthesized in the same manner as The reaction was confirmed by nuclear magnetic resonance (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) and infrared absorption spectroscopy (FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA).
  • NMR Nuclear Magnetic
  • Maltosyl chitosan (1 g, sigma, USA) was synthesized in the same manner as in Example 5 with DMAP (4- (Dimethylamino) pyridine, 0.1 g, Fluka, USA) and EDC (N- (2-dimethylaminopropyl). ) -N'-ethylcarbodiimide, 0.1 g, sigma-aldrich, USA) and retinoic acid (retinoic acid, 0.54 g, sigma, USA) were added, and then cationic chitosan derivatives were synthesized in the same manner as in Example 5.
  • Glycol chitosan (1 g, sigma, USA) was synthesized in the same manner as in Example 5 DMAP (4- (Dimethylamino) pyridine, 0.1 g, Fluka, USA) and EDC (N- (2-dimethylaminopropyl) -N'-ethylcarbodiimide, 0.1 g, sigma-aldrich, USA) and retinoic acid (retinoic aicd, 0.018 g, sigma, USA) were added and then cationic chitosan derivatives were synthesized in the same manner as in Example 5.
  • DMAP Dimethylamino
  • EDC N- (2-dimethylaminopropyl) -N'-ethylcarbodiimide, 0.1 g, sigma-aldrich, USA
  • retinoic acid retinoic aicd, 0.018 g, sigma, USA
  • HeLa cell line human cervical cancer epithelial cell, A549 cell line, human lung cancer cell, WM 266.4 cell line, human skin melanoma cell, KB cell line, keratin-secreting cervical cancer cell, K562 cell line, human blood leukemia cell, human TF-1 cell line, a myeloid leukemia cell, was purchased from ATCC (American Type Culture Collection, USA). Hepa 1-6 cell line, a mouse liver cancer cell, was purchased from German Collection of Microorganisms and Cell Cultures, Germany (DSMZ). Was used.
  • Lipofectamine (LipofectamineTM2000, Invitrogen, USA) solution used as a comparative example in the following experimental example was prepared as a solution in which liposomes are dispersed according to the manufacturer's protocol, the solution of the cationic chitosan derivative according to an embodiment of the present invention is a cation After dissolving the sex chitosan derivative in an organic solvent such as chloroform or alcohol, it is prepared in the form of a thin film using a vacuum concentrator and hydrated using a phosphate buffer solution to obtain a solution of polymersomes having a form similar to liposomes. It was prepared and used. These solutions were mixed and reacted with small interfering ribonucleic acids to prepare drug carriers.
  • the weight ratio of the small interfering ribonucleic acid and the cationic chitosan derivative of the present invention was changed to (1 : 1 ⁇ 1: 60) After mixing, the mixture was left at room temperature for 20 minutes and confirmed by electrophoresis on agarose gel. Nucleic acid was stained with EtBr to confirm the position on the agarose gel.
  • Example 2- (A), Example 12- (B), Example 26- (C) the interference was small as the amount of the cationic chitosan derivative of the present invention was increased.
  • the amount of the complex of ribonucleic acid and the cationic chitosan derivative was increased, the amount of small interfering ribonucleic acid that did not form a conjugate was decreased.
  • Example 16- (A), Example 23- (B) the case of Example 16 was used for the complex of the small interfering ribonucleic acid and the cationic chitosan derivative of the present invention. It was confirmed that the composite has a size of 223 nanometers, in the case of Example 23 it was confirmed that the composite has a size of 243 nanometers.
  • FIG. 5 shows the cationic chitosan derivatives of Lipofectamine [(A) and (B)] of Comparative Example 1 and Example 7 [(C) and (D)] and Example 21 [(E) and (F)].
  • FIG. 6 is a cationic prepared from Lipofectamine [(A) and (B)] of Comparative Example 1 and Example 25 [(C) and (D)] and Example 33 [(E) and (F)] Nucleic acid transfer efficiency of chitosan derivatives was observed with a fluorescence microscope (DMIL, Leica, Germany) and a phase contrast microscope.
  • A, C, and E images of FIG. 6 are phase contrast micrographs
  • B, D, and F images of FIG. 6 are fluorescent markers. Fluorescence micrograph showing intracellular delivery of small interfering ribonucleic acid labeled with. As a result of this experiment, as shown in FIGS.
  • the nucleic acid delivery efficiency of the cationic chitosan derivative prepared in Example 25 for Hepa 1-6 cell line was improved compared to that of Lipofectamine (FIGS. 6A and 6B) of Comparative Example 1. It was found that it has a nucleic acid delivery efficiency.
  • the nucleic acid delivery efficiency of the Hepa 1-6 cell line was improved compared to that of Comparative Example 1 (FIGS. 6A and 6B). It can be seen that it has a transmission efficiency.
  • A549 cell lines were seeded 2.5 ⁇ 10 4 per well into 48 well plates the day before the experiment.
  • the untreated group (FIG. 8A), which was not treated to the cells, had no transfer of ribonucleic acid into the cells as a control, and almost no peak shifted (1.12% shifted).
  • Lipopec of Comparative Example 1 of FIG. 8B In the experimental group using thymine, the transmission efficiency of fluorescently labeled small interfering ribonucleic acid was found to be 77.59%.
  • the treated group of Example 29 (FIG. 8C) of the present invention was 91.74%, which was confirmed to have improved intracellular delivery efficiency compared to the comparative example 1 treated group.
  • Example 29 of the present invention had better ribonucleic acid transfer efficiency than the lipofectamine of Comparative Example 1.
  • KB cell lines were seeded 2.5 ⁇ 10 4 per well in 48 well plates the day before the experiment and 50 ⁇ l of serum-free medium was added to the Eppendorf tube when cells in each plate were grown uniformly by 60-70%. 5 pmoles each of Block-iT (Invitrogen, USA), a small interfering ribonucleic acid material labeled with a fluorescent marker, and a cationic chitosan derivative solution prepared in Example 39 were added so that the weight ratio was 1:60.
  • Block-iT Invitrogen, USA
  • a small interfering ribonucleic acid material labeled with a fluorescent marker and a cationic chitosan derivative solution prepared in Example 39 were added so that the weight ratio was 1:60.
  • the Lipofectamine TM (Lipofectamine TM 2000, Invitrogen, USA) solution of Comparative Example 1 was mixed with 5 pmole of Block-iT (Invitrogen, USA), a small interfering ribonucleic acid substance at the dose indicated (approximately 0.5 to 1 microliter) according to the manufacturer's protocol. Added.
  • the untreated group (FIG. 9A), which was not treated to the cells, had no transfer of ribonucleic acid into the cells as a control, and almost no peak shifted (0.22% shifted).
  • Lipopec of Comparative Example 1 of FIG. 9B In the graph using thymine, the delivery efficiency of fluorescently labeled small interfering ribonucleic acid was found to be 80.79%.
  • the treatment group of Example 39 of the present invention showed 95.38%, it was confirmed to have an improved intracellular delivery efficiency compared to the treatment group of lipofectamine (Fig. 9B) of Comparative Example 1.
  • the Lipofectamine TM (Lipofectamine TM 2000, Invitrogen, USA) solution of Comparative Example 1 was mixed with 5 pmole of Block-iT (Invitrogen, USA), a small interfering ribonucleic acid substance at the dose indicated (approximately 0.5 to 1 microliter) according to the manufacturer's protocol. Added. These were slowly pipetted and mixed and left at room temperature for 20 minutes. The complex thus prepared was added to a well plate and incubated in a CO 2 incubator at 37 ° C. for 24 hours. The cultured cells were collected and washed twice with phosphate buffer.
  • the untreated group (FIG. 10A), which was not treated to the cells, had no transfer of ribonucleic acid into the cells as a control, and almost no peak moved (0.38%), and the lipofectamine of Comparative Example 1 of FIG. 10B was used.
  • the delivery efficiency of fluorescently labeled small interfering ribonucleic acid was found to be 48.21%.
  • the treatment group of Example 13 (FIG. 10C) of the present invention was 83.67%, and it was confirmed to have improved intracellular delivery efficiency compared to the lipofectamine treatment group of Comparative Example 1.
  • Example 13 of the present invention had superior ribonucleic acid transfer efficiency than the lipofectamine of Comparative Example 1.
  • the untreated group (FIG. 11A), which was not treated to the cells, had no transfer of ribonucleic acid into the cells as a control, so that peaks were hardly shifted (1.03% shifted), and lipofect of Comparative Example 1 of FIG. 11B.
  • the delivery efficiency of fluorescently labeled small interfering ribonucleic acid was found to be 57.73%.
  • the treatment group of Example 15 of the present invention showed 87.82% as shown in Figure 11C it was confirmed to have an improved intracellular delivery efficiency compared to the lipofectamine treatment group of Comparative Example 1.
  • Example 15 of the present invention had superior ribonucleic acid transfer efficiency than the lipofectamine of Comparative Example 1.
  • HeLa cell lines were seeded 5 5 104 cells per well in 24 well plates the day before the experiment. When the cells of each plate grew uniformly about 60-70%, 50 ⁇ l of a medium containing no serum was added to the eppendorf tube, and 20 pmole of siRNA targeting survivin, and Example 9 and Example 22 Solutions of cationic chitosan derivatives were each added so that the weight ratio was 1:60. Lipofectamine (Lipofectamine TM 2000, Invitrogen, USA) solution of Comparative Example 1 was added with siRNA 20 pmole targeting survivin at the doses indicated according to the manufacturer's protocol.
  • Lipofectamine Lipofectamine TM 2000, Invitrogen, USA
  • SiRNA for inducing expression of survivin gene (Gene bank accession number: NM_001168) was purchased from Samchully Pharmaceuticals, Seoul, Korea. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours. After 24 hours, total messenger ribonucleic acid (mRNA) present in cells was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and this mRNA was reverse transcribed into cDNA using AccuPowerRT PreMix (Bioneer, Daejeon, Korea). It was.
  • Trizol reagent Invitrogen, Carlsbad, CA, USA
  • the primers specific for survivin were 5'-GGACCACCGCATCTCTACAT-3 '(forward) and 5'-CTTTCTCCGCAGTTTCCTCA-3' (reverse), and the polymerase chain reaction was carried out at 95 ° C for 5 minutes. 1 minute, 1 minute at 59 °C, 30 seconds was repeated 30 times at 72 °C 30 minutes was further reacted at 72 °C. The size of the product was 347 base pairs.
  • the expression level of survivin gene was determined by comparing the band density of survivin-specific chain reaction product with the band amplified by GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene as a comparison group. Measured.
  • Figure 12 compares the expression of transcripts of survivin, a target gene, in HeLa cells when treated with the complex using the untreated group and Comparative Example 1 and Examples 9 and 22. As a control group, Comparative Example 1 and the untreated group were used.
  • the cationic chitosan derivatives prepared in Examples 9 and 22 deliver small interfering ribonucleic acid into HeLa cells at a higher efficiency than lipofectamine of Comparative Example 1 to selectively express the expression of the target gene. Suppression.
  • SiRNA for inducing expression of survivin gene (Gene bank accession number: NM_001168) was purchased from Samchully Pharmaceuticals, Seoul, Korea. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and the complex thus prepared was added to a well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours. After 24 hours, total messenger ribonucleic acid (mRNA) present in cells was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and this mRNA was reverse transcribed into cDNA using AccuPowerRT PreMix (Bioneer, Daejeon, Korea). It was.
  • Trizol reagent Invitrogen, Carlsbad, CA, USA
  • FIG. 13 compares the expression of transcripts of survivin, a target gene, in WM 266.4 cells when the untreated group and the complexes using Comparative Examples 1 and 18 and 36 were treated.
  • the expression level of survivin gene was significantly lower, such as 4.6% and 5.7%, respectively, compared to the untreated control group. It was confirmed that the delivery efficiency of small interfering ribonucleic acid that targets.
  • the cationic chitosan derivatives prepared in Examples 18 and 36 deliver small interfering ribonucleic acid into WM 266.4 cells at a higher efficiency than lipofectamine of Comparative Example 1 to selectively express the expression of the target gene. It was found that the inhibition.
  • mRNA messenger ribonucleic acid
  • Figure 14 compares the expression of transcripts of survivin, a target gene in KB cells, when untreated group and the complexes using Comparative Example 1 and Examples 24 and 38 were treated. As a control group, Comparative Example 1 and the untreated group were used.
  • the cationic chitosan derivatives prepared in Examples 24 and 38 deliver small interfering ribonucleic acid substances into KB cells with better efficiency than the lipofectamine of Comparative Example 1 to selectively express the expression of the target gene. It was found that the inhibition.
  • K562 cell lines were seeded 5 ⁇ 10 4 cells per well in 24 well plates the day before the experiment. When the cells of each plate grew uniformly about 60-70%, 50 ⁇ l of the medium without serum was added to the Eppendorf tube, and 20 pmole of siRNA targeting survivin, and in Examples 4 and 32 The solutions of the cationic chitosan derivatives prepared were each added in a weight ratio of 1:60. Lipofectamine (Lipofectamine TM 2000, Invitrogen, USA) solution of Comparative Example 1 was added with siRNA 20 pmole targeting survivin at the doses indicated according to the manufacturer's protocol.
  • Lipofectamine Lipofectamine TM 2000, Invitrogen, USA
  • mRNA messenger ribonucleic acid
  • FIG. 15 compares the expression of transcripts of survivin, a target gene, in K562 cells when the untreated group and the complex using Comparative Example 1 and Examples 4 and 32 were treated.
  • the expression level of survivin gene was lower as 52.6% and 48.1% in the complex treated group using Examples 4 and 32, respectively. It was found that the delivery efficiency of the targeted small interfering ribonucleic acid was better.
  • the cationic chitosan derivatives prepared in Examples 4 and 32 deliver small interference ribonucleic acid into K562 cells with better efficiency than Comparative Example 1 to selectively inhibit the expression of the target gene.
  • Comparative Example 1 to selectively inhibit the expression of the target gene.
  • WM 266.4 cells were used in the control group and Comparative Example 1 (LipofectamineTM2000 and siRNA complex treatment group) as a control group, and the complex weight ratio of the small interfering ribonucleic acid and the cationic chitosan derivatives prepared in Examples 11 and 30 was 1:60. And cytotoxicity was evaluated.
  • siRNA used an inert scrambled sequence in the cell. Cytotoxicity was assessed by the method with 3- (4,5-dimethylthiazole-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) reagent.
  • the cells were seeded in 48 wells for 2 ⁇ 10 4 cells per well, incubated for 12 hours, and then treated with a complex composition of the cationic chitosan derivative and the siRNA. After 24 hours, each MTT solution was added to 10% of the medium, incubated for another 3 hours, the supernatant was removed, and then 0.04 N isopropanol solution was added, followed by ELISA reader, Sunrise-Basic TECAN, Mannedorf, Its absorbance was measured at 570 nm.
  • Example 11 and Example 30 have lower toxicity than human Comparative Example 1 on cutaneous melanoma cells.
  • the experiment was carried out as follows.
  • HeLa cells were treated with a non-treated group and Comparative Example 1 (LipofectamineTM2000 and siRNA complex treated group), and the complex weight ratio of the small interfering ribonucleic acid and the cationic chitosan derivatives prepared in Examples 14 and 34 was 1:60.
  • cytotoxicity was evaluated.
  • siRNA used an inert scrambled sequence in the cell. Cytotoxicity was assessed by the method with 3- (4,5-dimethylthiazole-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) reagent.
  • the cells were seeded in 48 wells for 2.5 ⁇ 10 4 cells per well, incubated for 12 hours, and then treated with a complex composition of a cationic chitosan derivative and siRNA. After 24 hours, each MTT solution was added to 10% of the medium, incubated for another 3 hours, the supernatant was removed, and then 0.04 N isopropanol solution was added, followed by ELISA reader, Sunrise-Basic TECAN, Mannedorf, Its absorbance was measured at 570 nm.
  • the fat-soluble drug carrier using a cationic chitosan derivative according to an embodiment of the present invention is dissolved in cationic chitosan derivatives in an organic solvent such as chloroform or alcohol, and then a fat-soluble model drug NBD-DSPE (1,2-distearoyl-sn).
  • NBD-DSPE 1,2-distearoyl-sn
  • phosphate buffered was then phosphate buffered. It was hydrated using to prepare a solution in which the fat-soluble drug-mounted cationic chitosan derivative drug carrier nanoparticles were dispersed.
  • NBD-DSPE fluorescence under optical conditions and fluorescence conditions it can be confirmed that the fat-soluble model drug is mounted on the drug carrier of the present invention.
  • the cells were incubated for 24 hours in a CO 2 incubator at 37 ° C. After removing the culture medium of the cultured cells was replaced with a new culture medium 200ul each and observed the efficiency of delivery of the model drug labeled with a fluorescent marker intracellular by fluorescence microscope.
  • FIG. 19 is a fluorescence microscope (DMIL, Leica, Germany) and phase contrast microscopy of the delivery efficiency of the model drug labeled with a fluorescent marker of the fat-soluble model drug-loaded cationic chitosan derivative drug carrier as shown in Figure 19A (control),
  • the C (experimental group) photographs are phase contrast micrographs
  • the B (control) and D (experimental group) photographs of FIG. 19 are fluorescence micrographs showing intracellular delivery of a model drug labeled with a fluorescent marker.
  • the fluorescent marker-labeled fat-soluble model drug of the fluorescent marker-labeled fat-soluble model drug-loaded cationic chitosan derivative drug carrier prepared from the experimental example had a delivery efficiency of HeLa cell line. I could tell the truth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

본 발명은 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체, 그의 제조 방법 및 이를 포함하는 약물 전달체에 관한 것으로서, 본 발명의 양이온성 키토산 유도체는 세포 내로 전달하고자 하는 약제학적 유효성분을 세포 내로 수송하는 효율을 현저히 증강시킬 뿐만 아니라, 세포 독성을 감소시켜 약제학적 유효성분의 치료 효능을 증강시키는 용도로 유용하게 사용된다.

Description

지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체
본 발명은 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체, 그의 제조 방법 및 이를 포함하는 약물 전달체에 관한 것으로서, 본 발명의 양이온성 키토산 유도체는 세포 내로 전달하고자 하는 약제학적 유효성분을 세포 내로 수송하는 효율을 현저히 증강시킬 뿐만 아니라, 세포 독성을 감소시켜 약제학적 유효성분의 치료 효능을 증강시키는 용도로 유용하게 사용된다.
유전 질환자들의 세포 내로 정상적인 유전자 서열을 삽입해서 유전성 질병을 처치하는데 사용할 수 있는 기술이 제안된 이후로 유전자 처치에 의한 다양한 유전적 장애를 치료하려는 시도들이 있어 왔다. 또한 최근에는 플라스미드 데옥시리보핵산 (plasmid DNA), 작은 간섭 이중나선 리보핵산(siRNA), 마이크로 리보핵산(micro RNA), 안티센스 올리고 핵산(antisense oligonucleotide) 등 각종 핵산 물질의 의약적 용도가 규명됨에 따라서 이들 핵산 물질들을 세포 내로 효율적으로 전달하는 핵산 전달 물질의 중요성도 증대되고 있다.
각종 세포내로 유전자를 전달하기 위하여 다양한 기술 및 운반체, 특히 벡터들이 제안되어 왔으나, 핵산의 전달 또는 발현을 위해 사용되는 기술은 크게 바이러스성 벡터와 비바이러스성 벡터를 이용한 방법으로 구분할 수 있다. 특히, 상기 비바이러스성 벡터 중 양이온성 리포좀 또는 양이온성 고분자들은 구조적인 특징에 의한 양하전으로 유전자의 음이온성 하전과 결합하여 복합체를 형성하는 특징이 있어 유전자 전달체로서 연구되어 왔다.
이러한 합성 물질을 이용한 유전자 전달 방법은 렌티바이러스나 아데노 바이러스 등을 사용한 바이러스성 유전자 수송체에 비하여 제조방법이 간편하고, 전달하려는 유전자의 크기가 제한을 받지 않으며, 바이러스 캡시드 단백질에 의한 반복투여시의 면역부작용이 적고, 바이러스 자체가 소유하는 유전자에 의한 체내 안전성 문제가 제기되지 않으며, 제조비용이나 시간에 있어서도 상업적으로 유리한 장점이 있다.
양이온성 물질을 이용한 유전자 전달방법 중 양이온성 고분자 수송체의 경우 DEAE 덱스트란(dextran), 라이신 아미노산이 반복되는 구조의 폴리라이신, 에틸렌이민이 반복되는 구조의 폴리에틸렌이민, 또는 폴리아미도아민(polyamidoamine) (미국특허 제6,020,457호) 등이 유전자의 수송체로 연구되어 왔다. 그러나 이를 이용한 수송체 경우에는 세포 표면의 수용체를 통하여 효과적으로 수송되는 바이러스성 수송체에 비하여 체내 세포 내로의 수송 효율이 낮다는 문제점이 지적되어 왔다.
한편 양이온성 인지질 수송체의 경우 인지질 조성에 양하전의 지질을 일정 비율로 혼합하여 양이온성 리포좀 (cationic liposome)과 같은 나노 크기의 입자를 제조하고 이 입자를 유전자와 혼합하여 양하전 인지질 입자와 유전자의 복합체를 세포주들에 처리하여 유전자의 발현을 증강시키는 방법이 사용되어 왔다(미국특허 제5,858,784호).
양이온성 지질들은 4차 아민, 3차 아민, 또는 하이드록시 에틸화 4차 아민 등이 지질의 헤드 부분에 연결되어 한 개의 양전하를 제공하는 종류 (DC-Chol, DDAB, TMAC 등)와 스퍼민(spermine) 등의 다중 아민(polyamine) 물질이 연결되어 여러 개의 양전하를 제공하는 종류로 구분될 수도 있다.
비바이러스성 벡터 중 양이온성 고분자는 렌티바이러스나 아데노 바이러스 등의 바이러스성 핵산 수송체에 비하여 제조방법이 간편하고, 바이러스 캡시드 단백질에 의한 반복투여시의 면역부작용이 적고, 바이러스 자체가 소유하는 유전자에 의한 체내 안전성 문제가 제기되지 않으며, 제조비용 또는 제조 공정에 있어서도 산업적으로 유리한 장점이 있다.
그러나, 종래에 개시된 여러 핵산 전달용 양이온성 고분자들은 합성 방법, 세포 독성 및 세포내 핵산 전달 효율 면에서 아직 보완되어야 할 점이 많다. 그러므로 합성 공정이 짧고, 세포 독성이 낮으면서도 세포 내로 효율적으로 핵산 물질들을 전달하는 전달체의 개발이 절실히 요구된다.
이에 본 발명자들은 세포에 대한 낮은 독성과 약제학적 유효성분, 특히 핵산 의약의 우수한 전달 효율을 가지는 전달체를 개발하기 위하여 양전하를 가지는 키토산과 지용성 비타민 중 대표적인 레티놀 및 레티놀 유도체와 에르고칼시페롤 및 에르고칼시페롤 유도체, 콜레칼시페롤 및 콜레칼시페롤 유도체, 토코페롤 및 토코페롤 유도체, 토코트리엔올 및 토코트리엔올 유도체를 이용하여 신규한 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 키토산 유도체를 합성하였으며 이 양이온성 키토산 유도체의 경우 사람의 암 세포주 및 쥐의 세포주에서 약제학적 유효성분의 전달 효율을 현저히 증가시킬 뿐만 아니라 세포 독성도 현저하게 감소시키는 것을 확인함으로써, 본 발명을 완성하였다.
본 발명의 목적은 세포 내로 약제학적 유효성분의 전달을 증강시키는데 사용될 수 있는 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체 및 그의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은
약제학적 유효성분; 및
키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체를 포함하는 약물 전달체를 제공하는 것이다.
본 발명의 또 다른 목적은
본 발명에 따른 상기 약물 전달체; 및
약제학적으로 허용 가능한 담체를 포함하는 의약 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은
기재;
상기 기재 상에 코팅된 본 발명에 따른 양이온성 키토산 유도체; 및
상기 양이온성 키토산 유도체와 결합된 핵산 앱타머를 포함하는 진단 키트를 제공하는 것이다.
본 발명은 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체에 관한 것이다.
본 발명에 의한 상기 양이온성 키토산 유도체는 미셀, 나노입자 등의 형태로 제제화되어 전달하고자 하는 약물의 사용 목적에 따라 어떠한 동물 세포로도 약물 전달이 가능할 뿐만 아니라, 목적하는 약물의 수송 효율을 현저히 증강시킬 수 있으며 세포에 대한 독성 역시 감소시킨다.
본 발명에 의한 양이온성 키토산 유도체는 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합한 것은 모두 포함된다. 여기서 사용된 용어 "결합"이란 화학적 공유 결합을 의미하는 것으로서, 보다 구체적으로 키토산 또는 그 유도체에 존재하는 하이드록시기(-OH) 또는 아민기(-NH2)와 같은 관능기가 비타민 또는 그 유도체에 존재하는 하이드록시기(-OH) 또는 카르복실기(-COOH)와 같은 관능기와 화학적 반응을 통하여 결합한 것을 의미한다.
일 구체예에서 상기 양이온성 키토산 유도체는 하기 화학식 1 또는 화학식 2의 구조로 표현될 수 있다.
[화학식1]
Figure PCTKR2010002838-appb-I000001
[화학식2]
Figure PCTKR2010002838-appb-I000002
상기 식에서 R은 지용성 비타민 또는 그 유도체로부터 유도된 유기기를 나타내고,
L은 -CONH- 또는 -NHCOO-을 나타내고,
M은 -COO- 또는 -O(CH2)2O-를 나타내며,
X는 아세틸기, 메틸글리콜기, 갈락토실기, 락토실기 또는 말토실기를 나타내고,
a 및 b는 각각 독립적으로 1 내지 150의 정수를 나타내며,
c는 0 내지 50의 정수를 나타낸다.
일 구체예에서 상기 R은 레티놀(retinol), 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), 에르고칼시페롤(ergocalciferol, vitamin D2), 비타민 D2 (6,19,19-d3)(Vitamin D2 (6,19,19-d3)), 콜레칼시페롤(cholecalciferol, vitamin D3), 비타민 D3 (6,19,19-d3)(vitamin D3 (6,19,19-d3)), (±)-알파-토코페롤((±)-α-tocopherol), (+)-알파-토코페롤((+)-α-tocopherol), (+)-베타-토코페롤((+)-βtocopherol), 감마-토코페롤((+)-γtocopherol), 델타-토코페롤((+)-δtocopherol), 알파-토코페롤 숙시네이트(D-αtocopherol succinate), 알파-토코페롤 폴리에틸렌글리콜(D-αtocopherol polyethylene glycol), 알파-토코트리엔올(D-αtocotrienol), (+)-베타-토코트리엔올((+)-βtocotrienol), 델타-토코트리엔올(D-δtocotrienol), 및 감마-토코트리엔올(D-γtocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내나 이에 제한되지 않는다.
다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은 c가 0인 화합물을 포함한다.
또 다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은 c는 1 내지 50 이고, X는 갈락토실, 락토실 또는 말토실을 나타내는 화합물을 포함한다.
또 다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은
a와 b의 합이 2 내지 50이고,
R은 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), ((+)-알파-토코페롤((±)--αtocopherol), 알파-토코페롤 숙시네이트(D-αocopherol succinate), (+)-알파-토코페롤((+)-αtocopherol), 알파-토코페롤 폴리에틸렌글리콜(D-α-tocopherol polyethylene glycol), 및 알파-토코트리엔올(D-α-tocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내는 화합물을 포함한다.
본 발명은 또한 용매의 존재 하에, 커플링제(coupling agent) 또는 보호기를 사용하여 키토산 또는 그 유도체를 지용성 비타민 또는 그 유도체와 반응시키는 단계를 포함하는 양이온성 키토산 유도체의 제조방법에 관한 것이다.
상기 커플링제(coupling agent)는 특별히 제한되지 않으며, 결합시키고자 하는 관능기의 종류에 따라 사용 가능한 커플링제의 종류는 공지되어 있다. 예를 들어 EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide), DCC(Dicyclohexylcarbodiimide) DIC(diisopropylcarbodiimide), CDI(1,1'-Carbonyldiimidazole), 숙신이미딜 포밀벤조산(SFB, succinimidyl 4-formylbenzoate), C6-숙신이미딜 포밀벤조산(C6-SFB, C6-succinimidyl 4-
formylbenzoate), 디숙신이미딜 글루탐산(DSG, Disuccinimidyl glutarate), 디숙신이미딜 수베르산(DSS, Disuccinimidyl suberate), 비스설포숙신이미딜 수베르산(BS3, Bis[sulfosuccinimidyl] suberate), HOBt(N-Hydroxybenzotriazole), 무수숙신산(succinic anhydride), NHS(N-hydroxysuccinimide) 및 sulfo-NHS로 이루어진 그룹 중에서 선택된 하나 이상을 사용할 수 있다.
또한 상기 보호기 역시 특별히 제한되지 않으며, 보호시키고자 하는 관능기의 종류에 따라 사용 가능한 보호기의 종류는 공지되어 있다. 예를 들어 무수프탈산을 사용할 수 있다.
또한 상기 반응은 필요에 따라 친핵성 촉매의 존재 하에 진행될 수 있다. 상기 친핵성 촉매 역시 당업계에 공지되어 있으며 예를 들어 DMAP(4-(Dimethylamino)pyridine)을 사용할 수 있다.
본 발명은 또한 약제학적 유효성분; 및
키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체를 포함하는 약물 전달체에 관한 것이다.
본 발명에 따른 약물 전달체는 다양한 세포들에서 약물의 세포내 수송도를 증가시킬 뿐만 아니라 세포 독성도 현저하게 감소시키므로, 예를 들어 올리고 핵산 의약을 포함하는 약물을 이용한 치료요법 등에 효과적으로 사용 가능하다.
약제학적 유효성분이 약물 전달체에 도입되는 방식은 약물 전달체의 형태에 따라 적합하게 변경될 수 있다. 예를 들어, 음전하를 띠고 있는 핵산 의약의 경우에는 미셀 형태의 약물 전달체와의 단순한 혼합(mix)에 의해 정전기 결합을 통해 약물 전달체와 약물 간의 복합체를 효율적으로 형성할 수 있다. 또한, 약제학적 유효성분이 지용성 화합물인 경우 약물 전달체의 지질막 내에 삽입될 수 있으며, 약제학적 유효성분이 수용성 화합물인 경우에는 리포좀과 같은 약물 전달체 내에 봉입하거나 양이온을 띠는 키토산에 결합하는 형태로 약물 전달체에 도입될 수 있다.
상기 약제학적 유효성분은 화학요법제, 단백질 의약 또는 핵산의약을 포함한다.
상기 화학요법제는 임의의 질환에 대한 약리 효과를 나타내는 유기 화합물을 의미한다. 이러한 화학요법제의 대표적인 예로는 항암 화학요법제를 들 수 있다. 공지의 항암 화학요법제로는 예를 들어, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신 (doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 발루비신(valubicin), 미토산트론(mitoxantrone), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine), 빈크리스틴(vincristine) 등이 있다.
상기 단백질 의약 또는 핵산의약은 예를 들어, 특정 수용체에 특이적으로 결합하여 신호 전달을 차단하거나 억제하는 펩타이드, 특정 유전자의 발현을 저해하는 siRNA 등이 이에 해당된다.
한 구체예에서, 본 발명의 약물 전달체에 포함되는 약물은 핵산 의약일 수 있다. 상기 핵산은 올리고 핵산을 포함한다. 보다 구체적으로 플라스미드 디옥시리보핵산(plasmid DNA), 리보핵산(RNA), 작은 간섭 리보핵산(siRNA), 안티센스 올리고핵산(antisense oligonucleotide), 마이크로 리보핵산 (microRNA), 잠금형 핵산 (locked nucleic acid), 또는 핵산 앱타머(aptamer) 등을 포함한다.
이들 핵산 의약은 이에 제한되는 것은 아니나, 양이온성 키토산 유도체 약 1 그램당 0.3 mg 내지 1000 mg의 용량으로 결합시킬 수 있다.
다른 구체에에서, 본 발명의 약물 전달체에 포함되는 약물은 지용성 약물일 수 있다. 이에 제한되는 것은 아니나, 지용성 약물은 예를 들어, 파클리탁셀(Paclitaxel), 카무스틴(Carmustine), 다카르바진(Dacarbazine), 에토포사이드(Etoposide), 플루오로우라실(Fluorouracil), 캄포테신(Camptothecin), 메클로페나민산(Meclofenamic acid), 설린닥(Sulindac), 피록시캄(Piroxicam), 멜록시캄(Meloxicam), 테녹시캄 (Tenoxicam), 디클로페낙(Diclofenac), 아세클로페낙(Aceclofenac), 레바미피드 (Rebamipide), 말레인산 에날라프릴(Enalapril maleate), 캅토프릴(Captopril), 라미프릴(Ramipril), 포시노프릴(Fosinopril), 베나제프릴(Benazepril), 퀴나프릴(Quinapril), 테모카프릴 (Temocapril), 실라자프릴(Cilazapril), 리시노프릴(Lisinopril,), 세티리진(Cetirizine), 디펜히드라민 (Diphenhydramine), 펙소페나딘(Fexofenadine), 슈도에페드린 (Pseudoephedrine), 메칠에페드린 (Methylephedrine), 덱스트로메토르판(Dextromethorphan), 구아이페네신 (Guaifenesin), 노스카핀(Noscapine), 트리메토퀴놀(Trimetoquinol), 독실아민(Doxylamine), 암브록솔 (Ambroxol), 레토스테인(Letosteine), 소브레롤(Sobrerol), 브롬헥신(Bromhexine), 텔미사르탄(Telmisartan), 발사르탄(Valsartan), 로사탄(Losartan), 이베사르탄 (Irbesartan), 칸데사르탄(Candesartan), 올메사르탄(Olmesartan), 이프로사르탄(Eprosartan), 나프록센(Naproxen), 이부프로펜(Ibuprofen), 덱시부프로펜 (Dexibuprofen), 인도메타신(Indomethacin), 아세트아미노펜(Acetaminophen), 메페남산(Mefenamic acid), 클로로신나진 (Chlorocinnazine), 록소프로펜(Loxoprofen), 페노프로펜(Fenoprofen), 케토프로펜(Ketoprofen), 프라노프로펜(Pranoprofen), 및 클로르페니라민(Chlorpheniramine)으로 구성된 군으로부터 선택되는 하나 이상의 약물로 이루어진 군으로부터 선택되는 하나 이상의 약물일 수 있다.
또한 본 발명의 약물 전달체의 양이온성 키토산 유도체는 예를 들어 하기 화학식 1 또는 화학식 2의구조를 가지는 화합물을 포함한다.
화학식 1
Figure PCTKR2010002838-appb-C000001
화학식 2
Figure PCTKR2010002838-appb-C000002
상기 식에서 R은 지용성 비타민 또는 그 유도체로부터 유도된 유기기를 나타내고,
L은 -CONH- 또는 -NHCOO-을 나타내고,
M은 -COO- 또는 -O(CH2)2O-를 나타내며,
X는 아세틸기, 메틸글리콜기, 갈락토실기, 락토실기 또는 말토실기를 나타내고,
a 및 b는 각각 독립적으로 1 내지 150의 정수를 나타내며,
c는 0 내지 50의 정수를 나타낸다.
일 구체예에서 상기 R은 레티놀(retinol), 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), 에르고칼시페롤(ergocalciferol, vitamin D2), 비타민 D2 (6,19,19-d3)(Vitamin D2 (6,19,19-d3)), 콜레칼시페롤(cholecalciferol, vitamin D3), 비타민 D3 (6,19,19-d3)(vitamin D3 (6,19,19-d3)), (±)-알파-토코페롤((±)--αtocopherol), (+)-알파-토코페롤((+)-α-tocopherol), (+)-베타-토코페롤((+)-βtocopherol), 감마-토코페롤((+)-γtocopherol), 델타-토코페롤((+)-δtocopherol), 알파-토코페롤 숙시네이트(D-αtocopherol succinate), 알파-토코페롤 폴리에틸렌글리콜(D-α-tocopherol polyethylene glycol), 알파-토코트리엔올(D-α-tocotrienol), (+)-베타-토코트리엔올((+)-β-tocotrienol), 델타-토코트리엔올(D-δ-tocotrienol), 및 감마-토코트리엔올(D-γtocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내나 이에 제한되지 않는다.
다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은 c가 0인 화합물을 포함한다.
또 다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은 c는 1 내지 50 이고, X는 갈락토실, 락토실 또는 말토실을 나타내는 화합물을 포함한다.
또 다른 구체예에서 상기 화학식 1 또는 화학식 2의 화합물은
a와 b의 합이 2 내지 50이고,
R은 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), (±)-알파-토코페롤(±)-α-tocopherol), 알파-토코페롤 숙시네이트(D-α-tocopherol succinate), (+)-알파-토코페롤((+)-α-tocopherol), 알파-토코페롤 폴리에틸렌글리콜(D-α-tocopherol polyethylene glycol), 및 알파-토코트리엔올(D-αtocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내는 화합물을 포함한다.
본 발명에 따른 약물 전달체의 형태는 특별히 제한되지 않으나, 예를 들어 리포좀, 미셀, 에멀젼, 또는 나노입자의 제형을 가질 수 있다.
본 발명은 또한
본 발명에 따른 약물 전달체; 및
약제학적으로 허용 가능한 담체를 포함하는 의약 조성물에 관한 것이다.
상기 약물 전달체는 종양, 관절염, 심혈관계, 내분비계 질환 등을 포함하는 병인성 단백질의 과다발현으로 야기되는 각종 질환들의 치료를 위해 세포 내로 도입될 수 있다.
본 발명의 약물 전달체는 핵산전달 효율이 우수할 뿐만 아니라 세포 독성이 낮으므로 병인성 단백질의 세포내 과다 발현을 억제하여 우수한 질환 치료 효과를 거둘 수 있다.
본 발명의 의약 조성물을 통해 in vivo 또는 ex vivo 상에서 세포 내부로 목적하는 약물을 도입하게 되면 표적 단백질의 발현을 선택적으로 감소시키거나 표적 유전자에 생긴 변이를 수정하는 역할을 하여 병인성 단백질의 과다 발현으로 발생되는 질환이나 표적 유전자로 인해 발생한 질환 등을 치료할 수 있게 된다.
본 발명에 따른 약물 전달체는 약물 전달체 내에 포함된 약제학적 유효성분의 양 및 약제학적 유효성분의 치료상 유효량을 고려하여 투여될 수 있다. 약제학적 유효성분의 치료상 유효량은 질환 치료 효과를 기대하기 위하여 투여에 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 투여되는 핵산의 종류, 제형의 종류, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 치료 기간, 동시 사용되는 화학 항암제 등의 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 성인에게 상기 약물 전달체를 예컨대 1일 1회 투여시 0.001 mg/kg ~ 100 ㎎/kg의 용량으로 투여할 수 있다.
본 발명에 따른 상기 조성물에 사용되는 담체는 의약 분야에서 통상 사용되는 담체 및 비히클을 포함하며, 구체적으로 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 여러 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 또는 양모지 등을 포함하나 이에 제한되지 않는다. 본 발명의 조성물은 또한 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 또는 보존제 등을 추가로 포함할 수 있다.
본 발명의 의약 조성물은 경구 투여용 제형 또는 주사제와 같은 비경구 투여용 제형으로 제조할 수 있다.
경구 투여용 제형의 예로서는 정제, 트로치제, 로젠지, 수용성 또는 유성 현탁액, 조제분말 또는 과립, 에멀젼, 하드 또는 소프트 캡슐, 시럽 또는 엘릭시르제(elixirs)를 들 수 있다. 정제 및 캡슐 등의 제형으로 제제하기 위해서 락토오스, 사카로오스, 솔비톨, 마니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴과 같은 결합제, 디칼슘포스페이트와 같은 부형제, 옥수수 전분 또는 고구마 전분과 같은 붕괴제, 스테아르산 마그네슘, 스테아르산 칼슘, 스테아질 푸마르산 나트륨 또는 폴리에틸렌글리콜 왁스와 같은 윤활유가 함유될 수 있다. 또한 캡슐 제형의 경우에는 상기에서 언급한 물질 외에도 지방유와 같은 액체 담체를 함유할 수 있다.
경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제가 포함된다. 비수성용제, 현탁 용제는 프로필렌글리콜, 폴리에틸렌글리콜 또는 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
한 양태로서 본 발명에 따른 조성물은 비경구 투여를 위한 수용성 용액으로 제조할 수 있다. 바람직하게는 한스 용액(Hank's solution), 링거 용액(Ringer's solution) 또는 물리적으로 완충된 염수와 같은 완충 용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀룰로즈, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다.
본 발명의 조성물의 다른 바람직한 양태는 수성 또는 유성 현탁액의 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예를 들면 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형화할 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예를 들면 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 비휘발성 오일은 그 어느 것도 사용할 수 있다.
본 발명은 또한 기재;
상기 기재 상에 코팅된 본 발명에 따른 양이온성 키토산 유도체; 및
상기 양이온성 키토산 유도체와 결합된 핵산 앱타머를 포함하는 진단 키트에 관한 것이다.
예를 들면 진단용 플레이트의 표면(기재)를 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 키토산으로 코팅하고 이 코팅 면 위에 앱타머를 결합시킬 경우 시료 중 앱타머와 선택적으로 반응하는 물질의 존재를 진단하는데 이용 가능하다.
상술한 바와 같이, 본 발명의 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 키토산 유도체는 제조 및 정제 공정이 간편하여 대량 생산시의 경제성이 높다. 또한, 본 발명의 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 키토산을 포함하는 약물 전달체는 목적하는 약제학적 활성성분, 예를 들어 리보핵산, 작은 간섭 리보핵산, 안티센스 올리고핵산, 핵산 앱타머 (aptamer) 등의 올리고 핵산 의약을 세포 내로 수송하는 효율을 현저히 증강시킬 뿐만 아니라, 세포 독성을 감소시켜 핵산 또는 단백질 소재 의약의 치료 효능을 증강시키는 용도로 유용하게 사용된다.
도 1는 본 발명의 양이온성 키토산 유도체의 합성 여부를 보여주는 핵자기 공명법 (NMR) 결과이다.
도 2은 본 발명의 양이온성 키토산 유도체의 합성 여부를 보여주는 적외선 흡수 스펙트럼 분석법 (FT-IR) 결과이다.
도 3은 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체와의 결합체를 형성 여부를 보여주는 아가로즈 젤 전기영동 결과이다.
도 4는 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체와의 결합체의 크기를 동적광산란 장비를 이용하여 측정한 결과이다.
도 5은 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 자궁경부암 세포인 HeLa에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율을 보여주는 사진이다.
도 6는 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 쥐의 간암 세포인 Hepa 1-6에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율을 보여주는 사진이다.
도 7는 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 피부 흑색종 세포인 WM 266.4에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율을 보여주는 사진이다.
도 8은 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 폐암 세포인 A549 세포에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율 정도를 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 9는 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 케라틴 분비형 자궁경부암 세포인 KB세포에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율 정도를 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 10은 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 혈액성 백혈병 세포인 K562세포에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율 정도를 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 11은 형광 표식이 붙어있는 작은 간섭 리보핵산을 사용하여 사람의 골수성 백혈병 세포인 TF-1세포에서 본 발명의 양이온성 키토산 유도체의 세포내 핵산 전달 효율 정도를 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 12는 본 발명의 양이온성 키토산 유도체를 이용하여 서바이빈 발현 억제 작은 간섭 리보핵산에 의해 매개된 서바이빈 전사체 발현 억제 효능을 사람의 자궁경부암 세포인 HeLa 세포에서 역전사 중합효소 연쇄반응으로 확인한 결과를 보여준다.
도 13은 본 발명의 양이온성 키토산 유도체를 이용하여 서바이빈 발현 억제 작은 간섭 리보핵산에 의해 매개된 서바이빈 전사체 발현 억제 효능을 사람의 피부 흑색종 세포인 WM 266.4 세포에서 역전사 중합효소 연쇄반응으로 확인한 결과를 보여준다.
도 14는 본 발명의 양이온성 키토산 유도체를 이용하여 서바이빈 발현 억제 작은 간섭 리보핵산에 의해 매개된 서바이빈 전사체 발현 억제 효능을 사람의 케라틴 분비형 자궁경부암 세포인 KB세포에서 역전사 중합효소 연쇄반응으로 확인한 결과를 보여준다.
도 15는 본 발명의 양이온성 키토산 유도체를 이용하여 서바이빈 발현 억제 작은 간섭 리보핵산에 의해 매개된 서바이빈 전사체 발현 억제 효능을 사람의 혈액성 백혈병 세포인 K562세포에서 역전사 중합효소 연쇄반응으로 확인한 결과를 보여준다.
도 16은 MTT 염색법을 사용하여 본 발명의 양이온성 키토산 유도체의 세포독성을 사람의 피부 흑색종 세포인 WM 266.4에서 확인한 결과를 보여준다.
도 17은 MTT 염색법을 사용하여 본 발명의 양이온성 키토산 유도체의 세포독성을 사람의 자궁경부암 세포인 HeLa에서 확인한 결과를 보여준다.
도 18은 광학조건 및 형광조건에서 본 발명의 약물 전달체에 지용성 모델 약물이 탑재되었음을 확인한 결과를 보여준다.
도 19는 지용성 모델 약물이 탑재된 양이온성 키토산 유도체 약물 전달체의 형광 마커로 표지된 모델약물의 전달 효율을 형광 현미경과 위상차 현미경으로 관찰한 결과를 보여준다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
하기 실시예에서는 본 발명에 따른 양이온성 키토산 유도체의 종양세포(사람의 자궁경부암 상피 세포인 HeLa 세포주, 케라틴 분비형 자궁경부암 세포 KB 세포주, 폐암 세포인 A549 세포주, 흑색종인 WM266.4 세포주, 백혈병 세포인 K562세포주와 TF-1 세포주, 쥐의 간암 세포주인 Hepa 1-6 세포주)로의 핵산 전달 효율을 평가하였다.
형광 표식이 붙어있는 Block IT (Invitrogen, USA) 작은 간섭 리보핵산을 사용하여 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 올리고 키토산을 함유하는 다양한 복합체를 형성시켜 세포 내에 전달하고 이를 형광 현미경으로 관찰하면 상기 지용성 비타민 및 그 유도체 비타민들을 수식한 신규한 양이온성 키토산의 세포 내로 전달되는 핵산 수송 능력을 구체적으로 측정하였다.
또한 본 발명의 양이온성 키토산 유도체의 세포 독성은 tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide을 이용한 발색 방법 (MTT)을 사용하여 평가하였다.
[신규 키토산 유도체의 합성]
비교예 1. 기존에 판매되고 있는 양이온성 리포좀
기존의 핵산 전달 실험용으로 시판되고 있는 리포좀 제형인 리포펙타민(LipofectAMINE)TM 2000(Invitrogen, USA)을 구입하여 사용하였으며, 제조사의 지침을 따라서 수행하였다.
<실시예>
실시예 1. 레티닐 키토산 유도체 (Retinyl chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 레티놀(retinol, 0.017g, sigma, USA)을 첨가한 후 80℃에서 12시간 정도 교반하였다. 반응 후 얻어진 생성물을 미반응 물질과 불순물을 제거하기 위해 투석막을 사용하여 물에서 투석한 후 동결 건조하였다. 얻어진 키토산 유도체는 사용하기 전까지 4℃에서 보관하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 2. 레티닐 키토산 유도체 (Retinyl chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 레티놀(retinol, 0.17g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 3. 레티닐 키토산 유도체 (Retinyl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과 CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 레티놀(retinol, 0.52g, sigma, USA)을 첨가한 후 12시간 정도 교반하였다. 반응 후 얻어진 생성물을 미반응 물질과 불순물을 제거하기 위해 투석막을 사용하여 물에서 투석한 후 동결 건조하였다. 얻어진 양이온성 키토산 유도체는 사용하기 전까지 4℃에서 보관하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 4. 레티노일 키토산 유도체 (Retinoyl chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과 EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 레티놀산(retinoic acid, 0.54g, sigma, USA)을 첨가한 후 상온에서 12시간정도 교반하였다. 반응 후 얻어진 생성물을 미반응 물질과 불순물을 제거하기 위해 투석막을 사용하여 물에서 투석한 후 동결 건조하였다. 얻어진 양이온성 키토산 유도체는 사용하기 전까지 4℃에서 보관하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다. NMR 그래프를 도 1에 도시하였다.
1H NMR of retinoyl chitosan(500 MHz, D2O): 1.2 ppm (CH 3 from retinoic acid); 1.3-1.5 ppm (CH 2 from retinoic acid); 1.7-2.2 ppm (CH 3 from retinoic acid); 2.9 ppm (CH 3 from retinoic acid); 6.8 ppm (H from retinoic acid); 1.9 ppm CH 3CO from chitosan); 3.0-4.3 ppm (CH from chitosan); 4.7 ppm (OH from chitosan); 5.2-5.4 ppm (CH from chitosan); 8.0 ppm (CONH from retinoyl chitosan).
실시예 5. 레티노일 키토산 유도체 (Retinoyl chitosan derivatives)의 합성 에스터
Figure PCTKR2010002838-appb-I000003
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)과 과량의 무수프탈산(excess phthalic anhydride)을 DMF/H2O=95/5에 녹인 후 120℃에서 약 8시간정도 교반하였다. 반응 종료 후 미반응 물질을 제거하기 위해 얼음물을 부어 침전시킨 후 메탄올(methanol)로 씻어준다. 얻어진 물질에 레티놀산(retinoic aicd, 0.18g, sigma, USA), DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)을 첨가한 후 80℃에서 12시간정도 교반하였다. 반응 종료 후 100℃에서 하이드라진 (hydrazine hydrate)을 첨가하여 보호기를 제거한다. 반응 후 얻어진 생성물을 미반응 물질과 불순물을 제거하기 위해 투석막을 사용하여 물에서 투석한 후 동결 건조하였다. 얻어진 양이온성 키토산 유도체는 사용하기 전까지 4℃에서 보관하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 6. 콜레칼시페릴 키토산 유도체 (Cholecalciferyl chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 콜레칼시페롤(cholecalciferol, 0.69g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 7. 콜레칼시페릴 키토산 유도체 (Cholecalciferyl chitosan derivatives)의 합성
분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 콜레칼시페롤(cholecalciferol, 0.077g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 8. 콜레칼시페릴 키토산 유도체 (Cholecalciferyl chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 콜레칼시페롤(cholecalciferol, 0.014g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 9. 알파-토코페릴 키토산 유도체 (α Tocopherol formylbenzoyl chitosan derivatives)의 합성
알파-토코페롤(α-tocopherol, 100mg, sigma, USA)을 DMF에 녹인 후, DMAP(4-(Dimethylamino)pyridine, 0.01g, Fluka, USA), SFB(succinimidyl 4-formylbenzoate, 0.086, Fisher Scientific Inc., USA)를 첨가한 후, 60℃에서 12시간정도 반응시켰다. 반응 후 감압농축하고 에틸아세테이트(Ethyl acetate), 과포화 염화나트륨 수용액으로 씻어준 후 건조시켰다. 분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), 얻어진 중간유도체인 알파-토코페롤 포밀벤조산(α-tocopherol formylbenzoate, 0.026g)을 첨가한 후 상온에서 12시간동안 교반하여 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 10. 알파-토코페릴 키토산 유도체 (α Tocopherol formylbenzoyl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)에 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), 실시예 9와 같이 합성한 알파-토코페롤 포밀벤조산(α-tocopherol formylbenzoate, 0.47g)을 첨가한 후 실시예 9와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 11. 감마-토코페릴 키토산 유도체 (γ Tocopheryl chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 감마-토코페롤(γ-tocopherol, 0.78g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 12. 감마-토코페릴 키토산 유도체 (γ-Tocopheryl chitosan derivatives)의 합성
분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 감마-토코페롤(γ tocopherol, 0.026g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 13. 감마-토코페릴 키토산 유도체 (γ-Tocopheryl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 감마-토코페롤(γ-tocopherol, 0.26g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 14. 델타-토코페릴 키토산 유도체 (δ-Tocopheryl chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 감마-토코페롤(γ-tocopherol, 0.78g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 15. 델타-토코페릴 키토산 유도체 (δ-Tocopheryl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 델타-토코페롤(δ-tocopherol, 0.026g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 16. 알파-토코트리엔오일 키토산 유도체 (αTocotrienoyl chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 알파-토코트리엔올(α-tocotrienol, 0.75g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 17. 알파-토코트리엔오일 키토산 유도체 (α-Tocotrienoyl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 알파-토코트리엔올(α-tocotrienol, 0.025g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 18. 감마-토코트리엔오일 키토산 유도체 (γ-Tocotrienoyl chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydridee, 0.1g, sigma-aldrich, USA), 감마-토코트리엔올(γ-tocotrienol, 0.74g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 19. 감마-토코트리엔오일 키토산 유도체 (γ-Tocotrienoyl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 감마-토코트리엔올(γ-tocotrienol, 0.25g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 20. 델타-토코트리엔오일 키토산 유도체 (δ-Tocotrienoyl chitosan derivatives)의 합성
분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 델타-토코트리엔올(δ-tocotrienol, 0.025g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 21. 델타-토코트리엔오일 키토산 유도체 (δ-Tocotrienoyl chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 델타-토코트리엔올(δ-tocotrienol, 0.25g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 22. 에르고칼시페릴 키토산 유도체 (Ergocalciferyl chitosan derivatives)의 합성
분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 에르고칼시페롤(ergocalciferol, 0.24g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 23. 에르고칼시페릴 키토산 유도체 (Ergocalciferyl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 에르고칼시페롤(ergocalciferol, 0.72g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 24. 알파-토코페릴 키토산 유도체 (α-Tocopheryl chitosan derivatives)의 합성
Figure PCTKR2010002838-appb-I000004
분자량 10kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 알파-토코페롤 숙시네이트(α-tocopherol succinate, 0.032g, supelco, USA)를 첨가한 후 실시예 4와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하고 이를 도 2에 도시하였다.
실시예 25. 알파-토코페릴 키토산 유도체 (α-Tocopheryl chitosan derivatives)의 합성
분자량 50kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 알파-토코페롤 숙시네이트(α-tocopherol succinate, 0.32g, supelco, USA)를 첨가한 후 실시예 4와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 26. 알파-토코페릴 키토산 유도체 (α-Tocopheryl chitosan derivatives)의 합성 아미드
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 알파-토코페롤 숙시네이트(α-tocopherol succinate, 0.32g, supelco, USA)을 첨가한 후 실시예 4와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 27. 토코페롤 폴리에틸렌글리콜릭 키토산 유도체 (Tocopherol polyethylene glycolic chitosan derivatives)의 합성
분자량 1kDa 키토산(chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과 CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 알파 토코페롤 폴리에틸렌글리콜( -tocopherol polyethylene glycol, 0.69g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 28. 토코페롤 폴리에틸렌글리콜릭 키토산 유도체 (Tocopherol polyethylene glycolic chitosan derivatives)의 합성
분자량 30kDa 키토산(chitosan, 1g, aldrich, USA)을 실시예 5와 동일한 방법으로 합성한 물질에 알파 토코페롤 폴리에틸렌글리콜(α-tocopherol polyethylene glycol, 0.32g, supelco, USA), DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA)를 첨가한 후 실시예 5와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 29. 레티노일 메틸글리콜 키토산 유도체 (Retinoyl methylglycol chitosan derivatives)의 합성
메틸글리콜 키토산(methylglycol chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 레티놀산(retinoic aicd, 0.018g, sigma, USA)을 첨가한 후 실시예 4와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 30. 콜레칼시페릴 갈락토실 키토산 유도체 (Cholecalciferyl galactosyl chitosan derivatives)의 합성
갈락토실 키토산(galactosyl chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 콜레칼시페롤(cholecalciferol, 0.077g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 31. 델타-토코트리엔오일 갈락토실 키토산 유도체 ( -Tocotrienoyl galactosyl chitosan derivatives)의 합성
갈락토실 키토산(galactosyl chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 델타-토코트리엔올(δ-tocotrienol, 0.25g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 32. 알파-토코페릴 갈락토실 키토산 유도체 ( -Tocopheryl galactosyl chitosan derivatives)의 합성
갈락토실 키토산(galactosyl chitosan, 1g, sigma, USA)을 실시예 5와 동일한 방법으로 합성한 물질에 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), 알파-토코페롤 숙시네이트(α-tocopherol succinate, 0.032g, supelco, USA)를 첨가한 후 12시간정도 교반한 후 실시예 5와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 33. 레티닐 락토실 키토산 유도체 (Retinyl lactosyl chitosan derivatives)의 합성
락토실 키토산(lactosyl chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA), 레티놀(retinol, 0.017g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다. 
실시예 34. 에르고칼시페릴 락토실 키토산 유도체 (Ergocalciferyl lactosyl chitosan derivatives)의 합성
Figure PCTKR2010002838-appb-I000005
락토실 키토산(lactosyl chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 에르고칼시페롤(ergocalciferol, 0.24g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 35. 알파-토코페릴 락토실 키토산 유도체 (α-Tocopheryl lactosyl chitosan derivatives)의 합성
락토실 키토산(lactosyl chitosan, 1g, sigma, USA)을 실시예 5와 동일한 방법으로 합성한 물질에 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 알파-토코페롤 숙시네이트(α-tocopherol succinate, 0.96g, supelco, USA)를 첨가한 후 상온에서 12시간 정도 교반한 후 실시예 5와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 36. 감마-토코트리엔오일 말토실 키토산 유도체 (γ-Tocotrienoyl maltosyl chitosan derivatives)의 합성
말토실 키토산(maltosyl chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 감마-토코트리엔올( -tocotrienol, 0.025g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 37. 레티노일 말토실 키토산 유도체 (Retinoyl maltosyl chitosan derivatives)의 합성
말토실 키토산(maltosyl chitosan, 1g, sigma, USA)을 실시예 5와 동일한 방법으로 합성한 물질에 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 레티놀산(retinoic acid, 0.54g, sigma, USA)을 첨가한 후 실시예 5와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 38. 에르고칼시페릴 글리콜 키토산 유도체 (Ergocalciferyl glycol chitosan derivatives)의 합성
글리콜 키토산(glycol chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), CDI(1,1'-Carbonyldiimidazole, 0.1g, sigma-aldrich, USA)와 에르고칼시페롤(ergocalciferol, 0.72g, sigma, USA)을 첨가한 후 실시예 3과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다. 
실시예 39. 델타-토코페릴 글리콜 키토산 유도체 (δ-Tocopheryl glycol chitosan derivatives)의 합성
글리콜 키토산(glycol chitosan, 1g, sigma, USA)을 DMF/H2O=95/5에 녹인 후 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA), EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA)와 무수숙신산(succinic anhydride, 0.1g, sigma-aldrich, USA), 델타-토코페롤(δ-tocopherol, 0.026g, sigma, USA)을 첨가한 후 실시예 1과 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
실시예 40. 레티노일 글리콜 키토산 유도체 (Retinoyl glycol chitosan derivatives)의 합성
글리콜 키토산(glycol chitosan, 1g, sigma, USA)을 실시예 5와 동일한 방법으로 합성한 물질에 DMAP(4-(Dimethylamino)pyridine, 0.1g, Fluka, USA)과 EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide, 0.1g, sigma-aldrich, USA), 레티놀산(retinoic aicd, 0.018g, sigma, USA)을 첨가한 후 실시예 5와 동일한 방법으로 양이온성 키토산 유도체를 합성하였다. 반응 여부는 핵자기공명법 (NMR, Nuclear Magnetic Resonance, varian, Inc., USA) 및 적외선 흡수 스펙트럼 분석법(FT-IR, Infrared absorption spectroscopy, Thermo Fisher Scientific Inc., USA)으로 확인하였다.
<실험예>
[세포배양]
사람의 자궁경부암 상피 세포인 HeLa 세포주, 사람의 폐암 세포인 A549 세포주, 사람의 피부 흑색종 세포인 WM 266.4 세포주, 케라틴 분비형 자궁경부암 세포인 KB세포주, 사람의 혈액성 백혈병 세포인 K562 세포주, 사람의 골수성 백혈병 세포인 TF-1세포주는 ATCC (American Type Culture Collection, USA)로부터 구입하여 사용하였으며, 쥐의 간암 세포인 Hepa 1-6 세포주는 DSMZ (German Collection of Microorganisms and Cell Cultures, Germany)로부터 구입하여 사용하였다. HeLa, A549, K562, TF-1 세포주는 RPMI(Gibco, USA), Hepa 1-6 세포주는 DMEM(Dulbecco's modified eagles medium, Gibco, USA), WM266.4, KB 세포주는 MEM(Minimum Essential Medium, Gibco, USA)에 10% 우태아 혈청 w/v (HyClone laboratories Inc, USA)과 100 unit/ml 페니실린 또는 100㎍/ml 스트렙토마이신을 포함하여 배양하였다.
[약물 전달체의 제조]
하기 실험예에서 비교예로 사용된 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 리포좀이 분산된 용액으로 제조하였으며, 본 발명의 실시예에 따른 양이온성 키토산 유도체의 용액은 양이온성 키토산 유도체를 클로로포름 또는 알코올과 같은 유기 용매에 녹인 후 감압 농축기를 이용하여 얇은 필름 형태로 제조하고 이를 인산 완충용액을 이용하여 수화시켜 리포좀과 유사한 형태를 갖는 폴리머좀(polymersome)이 분산된 용액으로 제조하여 사용하였다. 이들 용액과 작은 간섭 리보핵산을 혼합하여 반응시켜 약물 전달체를 제조하였다.
[실험예 1] 작은 간섭 리보핵산과 양이온성 키토산 유도체의 복합체 형성 여부 측정
200 나노그램의 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체의 복합체를 형성하기 위해 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체 (실시예 2, 12, 26)의 무게비를 달리하여 (1:1~1:60) 혼합한 후 실온에서 20분간 방치한 후 아가로즈 젤에 전기영동 하여 확인하였다. 핵산은 EtBr로 염색하여 아가로스 젤 상에서의 위치를 확인 하였다.
본 실험 수행결과, 도 3[실시예 2-(A), 실시예 12-(B), 실시예 26-(C)]에서 보는 바와 같이 본 발명의 양이온성 키토산 유도체의 양이 증가할수록 작은 간섭 리보핵산과 양이온성 키토산 유도체와의 복합체의 양이 증가하여 결합체를 형성하지 않는 작은 간섭 리보핵산의 양이 감소하는 결과를 확인 할 수 있었다.
[실험예 2] 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체의 복합체의 입자크기 측정
200 나노그램의 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체 (실시예 16, 23)의 무게비를 1:40으로 하여 실온에서 20분간 복합체를 형성한 후 3 밀리리터의 인산 완충용액을 첨가한 후 동적광산란 장비 (ELS-8000)를 이용하여 복합체의 입자경을 측정하였다.
본 실험 수행결과, 도 4[실시예 16-(A), 실시예 23-(B)]에서 보는 바와 같이 작은 간섭 리보핵산과 본 발명의 양이온성 키토산 유도체와의 복합체에 대해 실시예 16의 경우 복합체가 223 나노미터의 크기를 갖는 것으로 확인되었으며, 실시예 23의 경우에는 복합체가 243 나노미터의 크기를 갖는 결과를 확인 할 수 있었다.
[실험예 3] 형광마커로 표지된 작은 간섭 리보핵산을 이용한 핵산 전달 효율 평가
3-1. HeLa 세포주에서의 작은 간섭 리보핵산의 전달 효율 평가
HeLa 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104개씩 분주
(seeding)하고 각 플레이트의 세포가 60-70% 정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고, 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole와 실시예 7 및 실시예 21에서 제조된 양이온성 키토산 유도체의 용액을 이들의 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배약액을 제거한 후 200㎕씩 새로운 배양액으로 교체하여 준 후 형광 현미경으로 리보핵산 전달 효율을 관찰하였다.
도 5는 비교예 1의 리포펙타민[(A) 및 (B)]과 실시예 7[(C) 및 (D)] 및 실시예 21[(E) 및 (F)]의 양이온성 키토산 유도체의 핵산 전달 효율을 형광 현미경(DMIL, Leica, Germany)과 위상차 현미경으로 관찰한 것으로 도 5의 A, C, E 사진은 위상차 현미경 사진이고, 도 5의 B, D, F는 형광 마커로 표지된 작은 간섭 리보핵산의 세포내 전달을 보여주는 형광 현미경 사진이다. 본 실험 수행 결과, 도 5에서 보는 바와 같이 실시예 7 및 실시예 21로부터 제조된 양이온성 키토산 유도체의 HeLa 세포주에 대한 핵산 전달 효율이 비교예 1의 리포펙타민 보다 향상된 작은 간섭 리보핵산의 전달효율을 갖는다는 사실을 알 수 있다.
3-2. Hepa 1-6 세포주에서의 작은 간섭 리보핵산의 전달 효율 평가
Hepa 1-6 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104 개씩 분주
(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과 실시예 25 및 실시예 33의 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배약액을 제거한 후 200㎕씩 새로운 배양액으로 교체하여 준 후 형광 현미경으로 리보핵산 전달 효율을 관찰하였다.
도 6은 비교예 1의 리포펙타민[(A) 및 (B)]과 실시예 25[(C) 및 (D)] 및 실시예 33[(E) 및 (F)]으로부터 제조된 양이온성 키토산 유도체의 핵산 전달 효율을 형광 현미경(DMIL, Leica, Germany)과 위상차 현미경으로 관찰한 것으로 도 6의 A, C, E사진은 위상차 현미경 사진이고, 도 6의 B, D, F 사진은 형광 마커로 표지된 작은 간섭 리보핵산의 세포내 전달을 보여주는 형광 현미경 사진이다. 본 실험 수행 결과, 도 6C와 6D에서 보는 바와 같이 실시예 25로부터 제조된 양이온성 키토산 유도체의 Hepa 1-6 세포주에 대한 핵산 전달효율이 비교예 1의 리포펙타민(도 6A, 6B)보다 향상된 핵산 전달효율을 갖는다는 사실을 알 수 있었다. 또한, 실시예 33으로부터 제조된 양이온성 키토산 유도체의 경우 도 6E와 도 6F에서 나타난 바와 같이 Hepa 1-6 세포주에 대한 핵산 전달 효율이 비교예 1 (도 6A, 6B)보다 향상된 작은 간섭 리보핵산의 전달효율을 갖는 다는 사실을 알 수 있다.
3-3. WM266.4 세포주에서의 작은 간섭 리보핵산의 전달 효율 평가
WM266.4 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104 개씩 분주
(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과, 실시예 5 및 실시예 19에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:50이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배약액을 제거한 후 200㎕씩 새로운 배양액으로 교체하여 준 후 형광 현미경으로 리보핵산 전달 효율을 관찰하였다.
도 7은 비교예 1의 리포펙타민[(A) 및 (B)]과 실시예 5[(C) 및 (D)]와 실시예 19 [(E) 및 (F)]로부터 제조된 양이온성 키토산 유도체의 핵산 전달 효율을 형광 현미경(DMIL, Leica, Germany)과 위상차 현미경으로 관찰한 것으로 형광 마커로 표지된 작은 간섭 리보핵산의 세포내 전달을 보여주는 위상차 현미경 및 형광 현미경 사진이다. 본 실험 수행 결과, 도 7C와 7D에서 보는 바와 같이 실시예 5로부터 제조된 양이온성 키토산 유도체의 WM266.4 세포주에 대한 핵산 전달 효율이 비교예 1의 리포펙타민(도 7A, 7B)보다 향상된 작은 간섭 리보핵산의 전달효율을 갖는다는 사실을 알 수 있다. 또한, 도 7E와 7F에서 보는 바와 같이 실시예 19로부터 제조된 양이온성 키토산 유도체의 전달효율을 확인한 결과 비교예 1의 리포펙타민(도 7A, 7B)보다 향상된 작은 간섭 리보핵산의 전달효율을 갖는다는 사실을 알 수 있다.
[실험예 4] 형광 유세포 분석법 (Fluorescence Activated Cell Sorting, FACS)을 이용한 작은 간섭 리보핵산의 전달 효율 측정
4-1. A549 세포주에서의 형광 유세포 분석법 (Fluorescence Activated Cell Sorting, FACS)을 이용한 작은 간섭 리보핵산의 전달 효율 측정
A549 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104 개씩 분주(seeding)하고
각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과 실시예 29에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배약액을 제거한 후 200㎕씩 인산 완충용액으로 교체하여 준 후 배양된 세포를 수집하였으며, 세포를 수집한 후 인산 완충용액으로 2번 세척하였다. 형광 표지된 작은 간섭 리보핵산이 들어간 세포들을 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포내 전달 효율을 분석하였다. 이를 도 8에 나타내었다.
도 8의 도면에서 세포에 아무 처리하지 않은 미처리군 (도 8A)은 대조군으로 리보핵산이 세포 내로 전달되지 않아 피크가 거의 이동하지 않았고 (1.12% 이동함), 도 8B의 비교예 1의 리포펙타민을 사용한 실험군에서는 형광이 표지된 작은 간섭 리보핵산의 전달 효율이 77.59%인 것으로 확인 되었다. 한편, 본 발명의 실시예 29 (도 8C)의 처리군의 경우 각각 91.74%를 나타내어 비교예 1 처리군에 비하여 향상된 세포내 전달효율을 갖는 것으로 확인되었다.
따라서 본 발명의 실시예 29에서 제조된 양이온성 키토산 유도체가 비교예 1의 리포펙타민 보다 우수한 리보핵산 전달 효율을 가짐을 알 수 있었다.
4-2. KB 세포주에서의 형광 유세포 분석법 (Fluorescence Activated Cell Sorting, FACS)을 이용한 작은 간섭 리보핵산의 전달 효율 측정
KB 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104개씩 분주(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과 실시예 39에서 제조된 양이온성 키토산 유도체 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배약액을 제거한 후 200㎕씩 인산 완충용액으로 교체하여 준 후 배양된 세포를 수집하였으며, 세포를 수집한 후 인산 완충용액으로 2번 세척하였다. 형광 표지된 작은 간섭 리보핵산이 들어간 세포들을 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포내 전달 효율을 분석하였다. 이를 도 9에 나타내었다.
도 9의 도면에서 세포에 아무 처리하지 않은 미처리군 (도 9A)은 대조군으로 리보핵산이 세포 내로 전달되지 않아 피크가 거의 이동하지 않았고 (0.22% 이동함), 도 9B의 비교예 1의 리포펙타민을 사용한 그래프에서는 형광이 표지된 작은 간섭 리보핵산의 전달 효율이 80.79%인 것으로 확인 되었다. 한편, 본 발명의 실시예 39의 처리군의 경우 95.38%를 나타내어 비교예 1의 리포펙타민(도 9B)의 처리군에 비하여 보다 향상된 세포내 전달효율을 갖는 것으로 확인되었다.
따라서 본 발명의 실시예 39(도 9C)에서 제조된 양이온성 키토산 유도체가 비교예 1의 리포펙타민 보다 우수한 리보핵산 전달 효율을 가짐을 알 수 있었다.
4-3. K562 세포주에서의 형광 유세포 분석법 (Fluorescence Activated Cell Sorting, FACS)을 이용한 작은 간섭 리보핵산의 전달 효율 측정
K562 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.52.5×104 개씩 분주(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과, 실시예 13에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:80이 되도록 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포를 수집한 후 인산 완충용액으로 2번 세척하였다. 형광 표지된 작은 간섭 리보핵산이 들어간 세포들을 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포내 전달 효율을 분석하였다. 이를 도 10에 나타내었다.
도 10의 도면에서 세포에 아무 처리하지 않은 미처리군 (도 10A)은 대조군으로 리보핵산이 세포 내로 전달되지 않아 피크가 거의 이동하지 않았고 (0.38%), 도 10B의 비교예 1의 리포펙타민을 사용한 처리군의 경우 형광이 표지된 작은 간섭 리보핵산의 전달 효율이 48.21%인 것으로 확인 되었다.
한편, 도 10C의 결과에서 나타나듯이 본 발명의 실시예 13 (도 10C)의 처리군의 경우 83.67%를 나타내어 비교예 1의 리포펙타민 처리군에 비하여 향상된 세포내 전달효율을 갖는 것으로 확인되었다.
따라서 본 발명의 실시예 13에서 제조된 양이온성 키토산 유도체가 비교예 1의 리포펙타민 보다 우수한 리보핵산 전달 효율을 가짐을 알 수 있었다.
4-4. TF-1 세포주에서의 형광 유세포 분석법 (Fluorescence Activated Cell Sorting, FACS)을 이용한 작은 간섭 리보핵산의 전달 효율 측정
TF-1 세포주를 실험 전날 48 웰 플레이트에 웰 당2.5×1044개씩 분주
(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole씩과 실시예 15에서 제조된 양이온성 키토산 유도체 용액을 무게비가 1:80이 되도록 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로(약 0.5 내지 1 마이크로리터) 작은 간섭 리보핵산 물질인 Block-iT (Invitrogen, USA) 5pmole과 함께 첨가하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하였다. 이렇게 제조된 복합체를 웰 플레이트에 가하여 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포를 수집한 후 인산 완충용액으로 2번 세척하였다. 형광 표지된 작은 간섭 리보핵산이 들어간 세포들을 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포내 전달 효율을 분석하였다. 이를 도 11에 나타내었다.
도 11의 도면에서 세포에 아무 처리하지 않은 미처리군 (도 11A)은 대조군으로 리보핵산이 세포 내로 전달되지 않아 피크가 거의 이동하지 않았고 (1.03% 이동함), 도 11B의 비교예 1의 리포펙타민을 사용한 그래프에서는 형광이 표지된 작은 간섭 리보핵산의 전달 효율이 57.73%인 것으로 확인 되었다. 한편, 본 발명의 실시예 15의 처리군의 경우 도 11C에서 확인할 수 있듯이 87.82%를 나타내어 비교예 1의 리포펙타민 처리군에 비하여 향상된 세포내 전달효율을 갖는 것으로 확인되었다.
따라서 본 발명의 실시예 15에서 제조된 양이온성 키토산 유도체가 비교예 1의 리포펙타민 보다 우수한 리보핵산 전달 효율을 가짐을 알 수 있었다.
[실험예 5] 역전사 중합효소 연쇄반응을 이용한 작은간섭 리보핵산 전달 효능 평가
5-1. HeLa 세포에서 역전사 중합효소 연쇄반응을 이용한 작은간섭 리보핵산 전달 효능 평가
HeLa 세포주를 실험 전날 24 웰 플레이트에 웰 당 세포를 5 104씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고, 서바이빈을 타겟하는 siRNA 20 pmole과, 실시예 9 및 실시예 22의 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로 서바이빈을 타겟하는 siRNA 20 pmole과 함께 첨가하였다. 서바이빈 (survivin) 유전자(Gene bank accession number: NM_001168)의 발현 억제를 유도하기 위한 siRNA는 삼천리제약 (Samchully Pharmaceuticals, Seoul, Korea)에서 구입하여 사용하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 메신저 리보핵산 (mRNA)을 분리하였으며, 이 mRNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다. 서바이빈(survivin)에 특이적인 프라이머의 서열은 5'-GGACCACCGCATCTCTACAT-3'(정방향), 5'-CTTTCTCCGCAGTTTCCTCA-3'(역방향)이며 중합효소연쇄반응은 95에서 5분 반응 후, 95℃에서 1분, 59℃에서 1분, 72℃에서 30초를 30번 반복한 후 72℃에서 5분 더 반응시켜주었다. 생성물의 크기는 347 염기쌍이었다. 서바이빈(survivin) 유전자 발현의 정도는 서바이빈 특이적인 연쇄반응 생성물의 밴드 밀도를 GAPDH (glyceraldehyde-3-phosphate dehydrogenase) 유전자를 증폭하여 나타나는 밴드를 비교군으로 사용하여 정량적인 발현의 변화량을 측정하였다.
도 12는 미처리군과 비교예 1과 실시예 9와 22를 사용한 복합체를 처리한 경우 HeLa 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 비교한 것이다. 대조군은 미처리군과 비교예 1을 사용하였다.
미처리 대조군에 비해 실시예 9와 22를 사용한 복합체 처리군의 경우 서바이빈 유전자의 발현양이 각각 16.3%와 12.8%와 같이 현저히 낮은 것으로 확인되어 비교예 1에서 나타난 37.6% 발현양에 비해 서바이빈을 타겟하는 작은간섭 리보핵산의 전달효율이 우수한 것으로 확인되었다.
이와 같은 결과에서 알 수 있듯이, 실시예 9와 22에서 제조된 양이온성 키토산 유도체가 HeLa 세포 내로 작은간섭 리보핵산물질을 비교예 1의 리포펙타민보다 우수한 효율로 전달하여 표적유전자의 발현을 선택적으로 억제시킴을 알 수 있었다.
5-2. WM 266.4 세포에서 역전사 중합효소 연쇄반응을 이용한 작은간섭 리보핵산 전달 효능 평가
WM 266.4 세포주를 실험 전날 24 웰 플레이트에 웰 당 세포를 5×104씩 분주
(seeding)하였다. 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고, 서바이빈을 타겟하는 siRNA 20 pmole과, 실시예 18과 실시예 36에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로 서바이빈을 타겟하는 siRNA 20 pmole과 함께 첨가하였다.
서바이빈 (survivin) 유전자(Gene bank accession number: NM_001168)의 발현 억제를 유도하기 위한 siRNA는 삼천리제약 (Samchully Pharmaceuticals, Seoul, Korea)에서 구입하여 사용하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 메신저 리보핵산 (mRNA)을 분리하였으며, 이 mRNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다.
도 13은 미처리군과 비교예 1과 실시예 18과 36을 사용한 복합체를 처리한 경우 WM 266.4 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 비교한 것이다. 대조군은 미처리군과 비교예 1을 사용하였다.
미처리 대조군에 비해 실시예 18과 36을 사용한 복합체 처리군의 경우 서바이빈 유전자의 발현양이 각각 4.6%와 5.7% 같이 현저히 낮은 것으로 확인되어 비교예 1에서 나타난 20.3% 발현양에 비해 서바이빈을 타겟하는 작은간섭 리보핵산의 전달효율이 우수한 것으로 확인되었다.
이와 같은 결과에서 알 수 있듯이, 실시예 18과 36에서 제조된 양이온성 키토산 유도체가 WM 266.4 세포 내로 작은간섭 리보핵산물질을 비교예 1의 리포펙타민보다 우수한 효율로 전달하여 표적유전자의 발현을 선택적으로 억제시킴을 알 수 있었다.
5-3. KB 세포에서 역전사 중합효소 연쇄반응을 이용한 작은간섭 리보핵산 전달 효능 평가
KB 세포주를 실험 전날 24 웰 플레이트에 웰 당 세포를 5×104씩 분주
(seeding)하였다. 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고, 서바이빈을 타겟하는 siRNA 20 pmole과, 실시예 24와 실시예 38에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로 서바이빈을 타겟하는 siRNA 20 pmole과 함께 첨가하였다.
이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 메신저 리보핵산 (mRNA)을 분리하였으며, 이 mRNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다.
도 14는 미처리군과 비교예 1과 실시예 24와 38을 사용한 복합체를 처리한 경우 KB 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 비교한 것이다. 대조군은 미처리군과 비교예 1을 사용하였다.
미처리 대조군에 비해 실시예 24와 38을 사용한 복합체 처리군의 경우 서바이빈 유전자의 발현양이 각각 19.2%와 10.3% 같이 현저히 낮은 것으로 확인되어 비교예 1에서 나타난 44.2% 발현양에 비해 서바이빈을 타겟하는 작은간섭 리보핵산의 전달효율이 더 우수한 것으로 확인되었다.
이와 같은 결과에서 알 수 있듯이, 실시예 24와 38에서 제조된 양이온성 키토산 유도체가 KB 세포 내로 작은간섭 리보핵산물질을 비교예 1의 리포펙타민보다 더 우수한 효율로 전달하여 표적유전자의 발현을 선택적으로 억제시킴을 알 수 있었다.
5-4. K562 세포에서 역전사 중합효소 연쇄반응을 이용한 작은간섭 리보핵산 전달 효능 평가
K562 세포주를 실험 전날 24 웰 플레이트에 웰 당 세포를 5×104씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50㎕씩을 넣고, 서바이빈을 타겟하는 siRNA 20 pmole과, 실시예 4와 실시예 32에서 제조된 양이온성 키토산 유도체의 용액을 무게비가 1:60이 되도록 각각 첨가하였다. 비교예 1의 리포펙타민(LipofectamineTM2000, Invitrogen, USA) 용액은 제조사의 프로토콜에 따라 지시된 용량대로 서바이빈을 타겟하는 siRNA 20 pmole과 함께 첨가하였다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 복합체를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 메신저 리보핵산 (mRNA)을 분리하였으며, 이 mRNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다.
도 15는 미처리군과 비교예 1과 실시예 4와 32를 사용한 복합체를 처리한 경우 K562 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 비교한 것이다. 대조군은 미처리군과 비교예 1을 사용하였다.
미처리 대조군에 비해 실시예 4와 32를 사용한 복합체 처리군의 경우 서바이빈 유전자의 발현양이 각각 52.6%와 48.1% 같이 낮은 것으로 확인되어 비교예 1에서 나타난 95.3% 발현양에 비해 서바이빈을 타겟하는 작은간섭 리보핵산의 전달효율이 더 우수한 것으로 확인되었다.
이와 같은 결과에서 알 수 있듯이, 실시예 4와 32에서 제조된 양이온성 키토산 유도체가 K562 세포 내로 작은간섭 리보핵산물질을 비교예 1 보다 더 우수한 효율로 전달하여 표적유전자의 발현을 선택적으로 억제시킴을 알 수 있었다.
[실험예 6] 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)을 사용한 세포독성 평가
6-1. WM 266.4 세포주에서의 세포독성 평가
본 발명의 양이온성 키토산 유도체의 세포 독성에 관한 평가를 하기 위하여 하기와 같은 과정으로 실험을 수행하였다. WM 266.4 세포에 대조군으로 미처리군과 비교예 1 (LipofectamineTM2000과 siRNA 복합체 처리군)을 사용하였으며, 작은 간섭 리보핵산과 실시예 11과 실시예 30에서 제조한 양이온성 키토산 유도체의 복합체 무게비가 1:60이 되도록 처리하고 세포 독성을 평가하였다. 양이온성 키토산 유도체만의 세포 독성을 명확히 평가하기 위하여 siRNA는 세포내에서 활성이 없는 스크램블 서열을 사용하였다. 세포 독성은 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 시약에 의한 방법으로 평가하였다.
세포를 웰 당 2×104 세포가 되도록 48 웰(well)에 분주 (seeding)하고 12시간 배양한 후 양이온성 키토산 유도체와 siRNA의 복합체 조성을 처리하였다. 24시간 경과 후 각각 MTT 용액을 배지의 10%가 되도록 가하고, 3시간 더 배양한 다음 상층액을 제거하고 0.04 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland)를 이용하여 570 nm에서 그 흡광도를 측정하였다.
도 16으로부터 실시예 11과 실시예 30에서 제조된 본 발명의 양이온성 키토산 유도체는 사람의 피부 흑색종 세포에 대해 비교예 1 보다 더 낮은 독성을 갖는다는 사실을 알 수 있다.
6-2. HeLa 세포주에서의 세포독성 평가
본 발명의 양이온성 키토산 유도체의 세포 독성에 관한 평가를 하기 위하여 하기와 같은 과정으로 실험을 수행하였다. HeLa 세포에 대조군으로 미처리군과 비교예 1 (LipofectamineTM2000과 siRNA 복합체 처리군)을 사용하였으며, 작은 간섭 리보핵산과 실시예 14와 34에서 제조한 양이온성 키토산 유도체의 복합체 무게비가 1:60이 되도록 처리하고 세포 독성을 평가하였다. 양이온성 키토산 유도체만의 세포 독성을 명확히 평가하기 위하여 siRNA는 세포내에서 활성이 없는 스크램블 서열을 사용하였다. 세포 독성은 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 시약에 의한 방법으로 평가하였다.
세포를 웰 당 2.5×104 세포가 되도록 48 웰(well)에 분주 (seeding)하고 12시간 배양한 후 양이온성 키토산 유도체와 siRNA의 복합체 조성을 처리하였다. 24시간 경과 후 각각 MTT 용액을 배지의 10%가 되도록 가하고, 3시간 더 배양한 다음 상층액을 제거하고 0.04 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland)를 이용하여 570 nm에서 그 흡광도를 측정하였다.
도 17로부터 실시예 14와 실시예 34에서 제조된 본 발명의 양이온성 키토산 유도체는 사람의 자궁 경부암 상피세포에 대해 비교예 1의 리포펙타민 보다 낮은 독성을 갖는다는 사실을 알 수 있다.
[지용성 약물 탑재형 약물 전달체의 제조]
본 발명의 실시예에 따른 양이온성 키토산 유도체를 이용한 지용성 약물 탑재형 약물 전달체는 양이온성 키토산 유도체를 클로로포름 또는 알코올과 같은 유기 용매에 녹인 후 지용성 모델 약물인 NBD-DSPE(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl))를 녹인 클로로포름 용액과 혼합한 후 감압 농축기를 이용하여 얇은 필름 형태로 제조하고 이를 인산 완충용액을 이용하여 수화시켜 지용성 약물 탑재형 양이온성 키토산 유도체 약물 전달체 나노입자가 분산된 용액으로 제조하여 사용하였다. 실험 결과, 도 18에서 볼 수 있는 바와 같이, 광학조건 및 형광조건에서 NBD-DSPE가 형광을 나타내어 본 발명의 약물 전달체에 지용성 모델 약물이 탑재되었음을 확인할 수 있다.
[실험예 7] HeLa 세포주에서의 형광 마커 표지형 지용성 모델 약물 탑재 양이온성 키토산 유도체 약물 전달체의 전달 효율 평가
HeLa 세포주를 실험 전날 48 웰 플레이트에 웰 당 2.5×104개씩 분주(seeding)하고 각 플레이트의 세포가 60-70%정도 균일하게 성장했을 때, 에펜도르프 튜브에 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 상기 제조된 지용성 모델 약물(NBD-DSPE) 탑재 양이온성 키토산 유도체 약물 전달체를 1 ul 처리하였다. 대조군으로는 실시예 25의 양이온성 키토산 유도체의 용액을 동일한 양을 첨가하였다.
약물 전달체의 첨가 후 37℃의 CO2배양기에서 24시간 동안 배양하였다. 배양된 세포의 배양액을 제거한 후 200㎕씩 새로운 배양액으로 교체하여 준 후 형광 현미경으로 형광 마커로 표지된 모델약물의 세포내로의 전달 효율을 관찰하였다.
도 19는 상기 지용성 모델 약물 탑재 양이온성 키토산 유도체 약물 전달체의 형광 마커로 표지된 모델약물의 전달 효율을 형광 현미경(DMIL, Leica, Germany)과 위상차 현미경으로 관찰한 것으로 도 19의 A(대조군), C(실험군) 사진은 위상차 현미경 사진이고, 도 19의 B(대조군), D(실험군) 사진은 형광 마커로 표지된 모델약물의 세포내 전달을 보여주는 형광 현미경 사진이다. 본 실험 수행 결과, 도 19C와 19D에서 보는 바와 같이 실험예로부터 제조된 형광 마커 표지형 지용성 모델 약물 탑재 양이온성 키토산 유도체 약물 전달체의 HeLa 세포주에 대한 형광 마커 표지형 지용성 모델약물의 전달효율을 갖는다는 사실을 알 수 있었다.

Claims (22)

  1. 키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체.
  2. 제1항에 있어서,
    양이온성 키토산 유도체는 하기 화학식 1 또는 화학식 2의 구조를 가지는 양이온성 키토산 유도체:
    [화학식 1]
    Figure PCTKR2010002838-appb-I000006
    [화학식 2]
    Figure PCTKR2010002838-appb-I000007
    상기 식에서 R은 지용성 비타민 또는 그 유도체로부터 유도된 유기기를 나타내고,
    L은 -CONH- 또는 -NHCOO-을 나타내고,
    M은 -COO- 또는 -O(CH2)2O-를 나타내며,
    X는 아세틸기, 메틸글리콜기, 갈락토실기, 락토실기 또는 말토실기를 나타내고,
    a 및 b는 각각 독립적으로 1 내지 150의 정수를 나타내며,
    c는 0 내지 50의 정수를
    나타낸다.
  3. 제2항에 있어서,
    R은 레티놀(retinol), 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), 에르고칼시페롤(ergocalciferol, vitamin D2), 비타민 D2 (6,19,19-d3)(Vitamin D2 (6,19,19-d3)), 콜레칼시페롤(cholecalciferol, vitamin D3), 비타민 D3 (6,19,19-d3)(vitamin D3 (6,19,19-d3)), (±)-알파-토코페롤(±)-α-tocopherol), (+)-알파-토코페롤((+)-α-tocopherol), (+)-베타-토코페롤((+)-β-tocopherol), 감마-토코페롤((+)-γ-tocopherol), 델타-토코페롤((+)-δ-tocopherol), 알파-토코페롤 숙시네이트(D-αtocopherol succinate), 알파-토코페롤 폴리에틸렌글리콜(D-tocopherol polyethylene glycol), 알파-토코트리엔올(D-α-tocotrienol), (+)-베타-토코트리엔올((+)-β-tocotrienol), 델타-토코트리엔올(D-δ-tocotrienol), 및 감마-토코트리엔올(D-γ-tocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내는 양이온성 키토산 유도체.
  4. 제2항에 있어서
    c는 0인 양이온성 키토산 유도체
  5. 제2항에 있어서,
    c는 1 내지 50 이고, X는 갈락토실, 락토실 또는 말토실을 나타내는 양이온성 키토산 유도체.
  6. 제2항에 있어서,
    a와 b의 합이 2 내지 50이고,
    R은 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), (±)-알파-토코페롤(±)-tocopherol), 알파-토코페롤 숙시네이트(D-α-tocopherol succinate), (+)-알파-토코페롤((+)-α-tocopherol), 알파-토코페롤 폴리에틸렌글리콜(D-α-tocopherol polyethylene glycol), 및 알파-토코트리엔올(D-α-tocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내는 양이온성 키토산 유도체.
  7. 용매의 존재 하에, 커플링제(coupling agent) 또는 보호기를 사용하여 키토산 또는 그 유도체를 지용성 비타민 또는 그 유도체와 반응시키는 단계를 포함하는 양이온성 키토산 유도체의 제조방법.
  8. 제7항에 있어서,
    커플링제(coupling agent)는 EDC(N-(2-dimethylaminopropyl)-N'-ethylcarbodiimide), DCC(Dicyclohexylcarbodiimide), DIC(diisopropylcarbodiimide), CDI(1,1'-Carbonyldiimidazole), 숙신이미딜 포밀벤조산(SFB, succinimidyl 4-formylbenzoate), C6-숙신이미딜 포밀벤조산(C6-SFB, C6-succinimidyl 4-formylbenzoate), 디숙신이미딜 글루탐산(DSG, Disuccinimidyl glutarate), 디숙신이미딜 수베르산(DSS, Disuccinimidyl suberate), 비스설포숙신이미딜 수베르산(BS3, Bis[sulfosuccinimidyl] suberate), HOBt(N-Hydroxybenzotriazole), 무수숙신산(succinic anhydride), NHS(N-hydroxysuccinimide) 및 sulfo-NHS로 이루어진 그룹 중에서 선택된 하나 이상인 양이온성 키토산 유도체의 제조방법.
  9. 제7항에 있어서,
    보호기는 무수프탈산인 것을 특징으로 하는 양이온성 키토산 유도체의 제조방법.
  10. 제7항에 있어서,
    반응은 친핵성 촉매의 존재 하에 진행되는 양이온성 키토산 유도체의 제조방법.
  11. 제10항에 있어서,
    친핵성 촉매는 DMAP(4-(Dimethylamino)pyridine)인 양이온성 키토산 유도체의 제조방법.
  12. 약제학적 유효성분; 및
    키토산 또는 그 유도체가 지용성 비타민 또는 그 유도체와 결합된 양이온성 키토산 유도체를 포함하는 약물 전달체.
  13. 제12항에 있어서,
    약제학적 유효성분은 핵산인 약물 전달체.
  14. 제13항에 있어서,
    핵산은 올리고 핵산인 약물 전달체.
  15. 제13항에 있어서,
    핵산은 플라스미드 데옥시리보핵산 (plasmid DNA), 리보핵산(RNA), 작은 간섭 리보핵산(siRNA), 안티센스 올리고핵산(antisense oligonucleotide), 마이크로 리보핵산 (microRNA), 잠금형 핵산 (locked nucleic acid) 및 핵산 앱타머(aptamer)로 이루어진 군으로부터 선택되는 하나 이상인 약물 전달체.
  16. 제12항에 있어서,
    약제학적 유효성분은 지용성 약물인 약물 전달체.
  17. 제16항에 있어서,
    지용성 약물은 파클리탁셀(Paclitaxel), 카무스틴(Carmustine), 다카르바진(Dacarbazine), 에토포사이드(Etoposide), 플루오로우라실(Fluorouracil), 캄포테신(Camptothecin), 메클로페나민산(Meclofenamic acid), 설린닥(Sulindac), 피록시캄(Piroxicam), 멜록시캄(Meloxicam), 테녹시캄 (Tenoxicam), 디클로페낙(Diclofenac), 아세클로페낙(Aceclofenac), 레바미피드 (Rebamipide), 말레인산 에날라프릴(Enalapril maleate), 캅토프릴(Captopril), 라미프릴(Ramipril), 포시노프릴(Fosinopril), 베나제프릴(Benazepril), 퀴나프릴(Quinapril), 테모카프릴 (Temocapril), 실라자프릴(Cilazapril), 리시노프릴(Lisinopril,), 세티리진(Cetirizine), 디펜히드라민 (Diphenhydramine), 펙소페나딘(Fexofenadine), 슈도에페드린 (Pseudoephedrine), 메칠에페드린 (Methylephedrine), 덱스트로메토르판(Dextromethorphan), 구아이페네신 (Guaifenesin), 노스카핀(Noscapine), 트리메토퀴놀(Trimetoquinol), 독실아민(Doxylamine), 암브록솔 (Ambroxol), 레토스테인(Letosteine), 소브레롤(Sobrerol), 브롬헥신(Bromhexine), 텔미사르탄(Telmisartan), 발사르탄(Valsartan), 로사탄(Losartan), 이베사르탄 (Irbesartan), 칸데사르탄(Candesartan), 올메사르탄(Olmesartan), 이프로사르탄(Eprosartan), 나프록센(Naproxen), 이부프로펜(Ibuprofen), 덱시부프로펜 (Dexibuprofen), 인도메타신(Indomethacin), 아세트아미노펜(Acetaminophen), 메페남산(Mefenamic acid), 클로로신나진 (Chlorocinnazine), 록소프로펜(Loxoprofen), 페노프로펜(Fenoprofen), 케토프로펜(Ketoprofen), 프라노프로펜(Pranoprofen), 및 클로르페니라민(Chlorpheniramine)으로 구성된 군으로부터 선택되는 하나 이상의 약물로 이루어진 군으로부터 선택되는 하나 이상의 약물인 약물 전달체.
  18. 제12항에 있어서,
    양이온성 키토산 유도체는 하기 화학식 1 또는 화학식 2의 구조를 가지는 약물 전달체:
    [화학식1]
    Figure PCTKR2010002838-appb-I000008
    [화학식2]
    Figure PCTKR2010002838-appb-I000009
    상기 식에서 R은 지용성 비타민 또는 그 유도체로부터 유도된 유기기를 나타내고,
    L은 -CONH- 또는 -NHCOO-을 나타내고,
    M은 -COO- 또는 -O(CH2)2O-를 나타내며,
    X는 아세틸기, 메틸글리콜기, 갈락토실기, 락토실기 또는 말토실기를 나타내고,
    a 및 b는 각각 독립적으로 1 내지 150의 정수를 나타내며,
    c는 0 내지 50의 정수를 나타낸다.
  19. 제16항에 있어서,
    R은 레티놀(retinol), 9-시스-레티놀산(9-cis-retinoic acid), 13-시스-레티놀산(13-cis-retinoic acid), 올-트랜스-레티놀산(all-trans-retinoic acid), 에르고칼시페롤(ergocalciferol, vitamin D2), 비타민 D2 (6,19,19-d3)(Vitamin D2 (6,19,19-d3)), 콜레칼시페롤(cholecalciferol, vitamin D3), 비타민 D3 (6,19,19-d3)(vitamin D3 (6,19,19-d3)), (±)-알파-토코페롤((±)-α-tocopherol), (+)-알파-토코페롤((+)-α-tocopherol), (+)-베타-토코페롤((+)-β-tocopherol), 감마-토코페롤((+)-γ-tocopherol), 델타-토코페롤((+)-δ-tocopherol), 알파-토코페롤 숙시네이트(D-α-tocopherol succinate), 알파-토코페롤 폴리에틸렌글리콜(D-α-tocopherol polyethylene glycol), 알파-토코트리엔올(D-α-tocotrienol), (+)-베타-토코트리엔올((+)-β-tocotrienol), 델타-토코트리엔올(D-δ-tocotrienol), 및 감마-토코트리엔올(D-γ-tocotrienol)로 이루어진 그룹 중에서 선택된 비타민 또는 그 유도체로부터 유도된 유기기를 나타내는 약물전달체.
  20. 제12항에 있어서,
    약물 전달체는 리포좀, 미셀, 에멀젼, 또는 나노입자의 제형을 가지는 약물 전달체.
  21. 제12항의 약물 전달체; 및
    약제학적으로 허용 가능한 담체를 포함하는 의약 조성물
  22. 기재;
    상기 기재 상에 코팅된 제1항의 양이온성 키토산 유도체; 및
    상기 양이온성 키토산 유도체와 결합된 핵산 앱타머를 포함하는 진단 키트.
PCT/KR2010/002838 2009-05-04 2010-05-04 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체 WO2010128793A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090038844A KR100930326B1 (ko) 2009-05-04 2009-05-04 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제조 방법 및 그를 포함하는 약물 전달체
KR10-2009-0038844 2009-05-04

Publications (2)

Publication Number Publication Date
WO2010128793A2 true WO2010128793A2 (ko) 2010-11-11
WO2010128793A3 WO2010128793A3 (ko) 2011-03-24

Family

ID=41683934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002838 WO2010128793A2 (ko) 2009-05-04 2010-05-04 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체

Country Status (2)

Country Link
KR (1) KR100930326B1 (ko)
WO (1) WO2010128793A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152910A1 (en) * 2011-05-12 2012-11-15 Helmut Vockner Novel pharmaceutical formulation
CN102924625B (zh) * 2012-11-26 2015-11-04 中国药科大学 主动肿瘤靶向壳聚糖衍生物及其制备方法和用途
KR20160050405A (ko) * 2014-10-29 2016-05-11 가톨릭대학교 산학협력단 지용성 첨가제와 약물을 포함하는 혈관용 약물 방출 풍선 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997887A (en) * 1997-11-10 1999-12-07 The Procter & Gamble Company Skin care compositions and method of improving skin appearance
KR20020088864A (ko) * 2001-05-22 2002-11-29 도영수 키토산 미용 입욕 조성물과 그 제조방법
US20070110731A1 (en) * 2005-11-16 2007-05-17 Riley Patricia A Integument Cell Regeneration Formulation
KR100821217B1 (ko) * 2005-12-29 2008-04-10 나재운 레티놀이 봉입된 저분자량 수용성 키토산 나노입자 및 이의제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997887A (en) * 1997-11-10 1999-12-07 The Procter & Gamble Company Skin care compositions and method of improving skin appearance
KR20020088864A (ko) * 2001-05-22 2002-11-29 도영수 키토산 미용 입욕 조성물과 그 제조방법
US20070110731A1 (en) * 2005-11-16 2007-05-17 Riley Patricia A Integument Cell Regeneration Formulation
KR100821217B1 (ko) * 2005-12-29 2008-04-10 나재운 레티놀이 봉입된 저분자량 수용성 키토산 나노입자 및 이의제조방법

Also Published As

Publication number Publication date
KR100930326B1 (ko) 2009-12-08
WO2010128793A3 (ko) 2011-03-24

Similar Documents

Publication Publication Date Title
WO2013089522A1 (ko) 신규한 올리고뉴클레오티드 접합체 및 그 용도
WO2010131916A2 (ko) siRNA 접합체 및 그 제조방법
WO2010126319A2 (ko) 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자
WO2018030789A1 (ko) 세포투과성이 향상된 펩티드 핵산 복합체 및 이를 포함하는 약학적 조성물
WO2019156365A1 (ko) 엔도좀 탈출능을 갖는 펩티드 핵산 복합체 및 이의 용도
WO2012002759A2 (ko) 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도
WO2010128793A2 (ko) 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체
WO2019156366A1 (ko) 핵산 복합체를 함유하는 피부 투과성 전달체 및 이의 용도
WO2015002511A1 (ko) 개선된 고효율 나노입자형 올리고뉴클레오타이드 구조체 및 그의 제조방법
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
WO2014058252A1 (ko) 신남알데하이드 유도체 함유 pH 민감성 블록 공중합체 및 이의 제조방법
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
WO2014148713A1 (ko) 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법
WO2013035641A1 (ja) ブロック共重合体の製造方法
WO2020222461A1 (ko) 면역항암 보조제
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2022139528A1 (ko) 만노스를 포함하는 지질 나노입자 또는 이의 용도
WO2015002512A1 (ko) 뎅기 바이러스 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 뎅기 바이러스 증식 억제용 조성물
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2021137611A1 (ko) 나노 구조체가 부착된 면역세포
WO2016114634A2 (ko) 사이클램 유도체 화합물 및 이의 약학적 용도
WO2022114736A1 (ko) 난용성 캄토테신 화합물을 포함하는 나노 입자를 포함하는 암 치료용 약제학적 조성물 및 이의 병용요법
WO2021066573A1 (ko) 신규 화합물 및 이의 자가면역질환 치료 용도
WO2021201352A1 (ko) 신규한 벤지미다졸 유도체, 이의 제조방법 및 이의 항암제 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772253

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10772253

Country of ref document: EP

Kind code of ref document: A2