WO2021137611A1 - 나노 구조체가 부착된 면역세포 - Google Patents

나노 구조체가 부착된 면역세포 Download PDF

Info

Publication number
WO2021137611A1
WO2021137611A1 PCT/KR2020/019375 KR2020019375W WO2021137611A1 WO 2021137611 A1 WO2021137611 A1 WO 2021137611A1 KR 2020019375 W KR2020019375 W KR 2020019375W WO 2021137611 A1 WO2021137611 A1 WO 2021137611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
immune
attached
cell
nanostructures
Prior art date
Application number
PCT/KR2020/019375
Other languages
English (en)
French (fr)
Inventor
황도원
기영욱
이동원
유동혁
김수민
Original Assignee
(주)테라베스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)테라베스트 filed Critical (주)테라베스트
Priority claimed from KR1020200187155A external-priority patent/KR102657743B1/ko
Publication of WO2021137611A1 publication Critical patent/WO2021137611A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to immune cells to which nanostructures are attached.
  • an active protein eg, IL-2
  • an active protein eg, IL-2
  • the active protein itself circulates throughout the body and induces a non-specific immune response, causing side effects such as CRS (cytokine syndrome).
  • CRS cytokine syndrome
  • combining active protein delivery strategies based on nanostructures (eg, nanoparticles and carriers, etc.) with immune cell-based therapies could improve efficacy for the treatment of various diseases. It can also lead to the development of new therapeutic modalities with reduced toxicity.
  • nanostructures containing active proteins e.g., cytokines, etc.
  • immune cells e.g., tumor-reactive T cells, etc.
  • Hydrogen peroxide is an essential oxidative metabolite and serves as a messenger in cellular signaling pathways essential for the adaptation, development and growth of organisms.
  • H 2 O 2 is a type of reactive oxygen species (ROS), which is also a precursor of highly toxic ROS such as peroxinitrite, hypochloride, and hydroxyl radicals.
  • ROS reactive oxygen species
  • H 2 O 2 is an efficient target for diseases associated with oxidative stress.
  • therapies that specifically act on the inflammatory and/or cancer milieu will offer significant advantages over conventional antioxidant therapies.
  • the present invention provides an immune cell comprising an immune cell in which CD45 is located in a cell membrane, a ligand binding to the CD45, and a nanostructure attached to the immune cell by the ligand.
  • the present invention provides an anticancer agent comprising immune cells including nanostructures.
  • the present invention provides an anti-inflammatory agent comprising immune cells including nanostructures.
  • the present invention provides an anti-inflammatory agent comprising immune cells including nanostructures.
  • the present invention provides the use of immune cells comprising nanostructures.
  • the present invention provides a pharmaceutical composition comprising immune cells comprising nanostructures.
  • the present invention provides a method for treating cancer and/or inflammation in which an immune cell comprising a nanostructure is administered to a subject to be treated.
  • immune cells comprising: a ligand that binds to a specific protein located in the cell membrane of the immune cell; and a nanostructure attached to the immune cell by the ligand,
  • the nanostructure is a nanogel or nanoparticles
  • the nanogel includes one or more active substances and a linker connecting them, wherein the linker is a compound decomposed by active oxygen,
  • the nanoparticles include one or more active substances and a carrier supporting them, wherein the carrier is a polymer decomposed by active oxygen, immune cells to which nanostructures are attached.
  • linker is 4-(5-(hydroxymail)-5-methyl-1,3,2-dioxaborinan-2-yl)phenyl methanol (BRAP), thioketal ( Thioketal) and one or more of selenide, immune cells to which nanostructures are attached.
  • BRAP 4-(5-(hydroxymail)-5-methyl-1,3,2-dioxaborinan-2-yl)phenyl methanol
  • thioketal Thioketal
  • selenide immune cells to which nanostructures are attached.
  • the ligand is an antibody, an antibody fragment (scFv), an aptamer, or a small molecule compound.
  • T cells are CD8+ T cells (cytotoxic T cells), CD4+ T cells (helper T cells), memory T cells, suppressor T cells (suppressor T cells), and natural killer T cells (NK cells).
  • T cells adoptive transfer T cells, regulatory T cells (regulatory T cells), and any one or more of chimeric antigen receptor T cells, immune cells to which nanostructures are attached.
  • cytokine is interleukin, interferon, tumor necrosis factor, transforming growth factor, immunosuppressive factor, or granulocyte macrophage colony stimulating factor (FLT3).
  • interleukin is IL-1 alpha, IL-1 beta, IL2, IL-4, IL-5, IL6, IL7, IL12, IL15, IL-15-Sa, IL17, IL18, IL21 or IL-23, immune cells to which nanostructures are attached.
  • hydrophobic compound is a hydrophobic anticancer agent and a hydrophobic anti-inflammatory agent.
  • hydrophobic anticancer agent is at least one of paclitaxel, sorafenib, and erlotinib.
  • An anticancer agent comprising immune cells to which the nanostructure of any one of the above 1 to 17 is attached.
  • An active substance delivery system comprising immune cells to which the nanostructures of any one of the above 1 to 17 are attached.
  • Inflammation and cancer can be treated using the immune cells to which the nanostructure according to the present invention is attached.
  • a hydrogen peroxide environment-specific anti-inflammatory and anti-cancer agent can be formulated.
  • the active protein contained in the nanostructure according to the present invention is released in a free form and can be used for the treatment of diseases.
  • 3 shows a method for preparing a target locomotives derivative.
  • FIG. 4 shows a method for preparing a H 2 O 2 sensitive protein nanogel and adsorption of a target-directed derivative to the surface of the nanogel.
  • FIG. 5 shows the results of analyzing the structure of the BRAP-based H 2 O 2 sensitive linker using NMR.
  • Figure 5 (A) shows the NMR analysis result of 1H.
  • Figure 5 (B) shows the NMR analysis result of 13C.
  • FIG. 6 shows the results of analyzing the particle size of the BSA nanogel using the light scattering method.
  • Figure 6 (A) shows the diameter and strength of the FITC-BSA nanogel formed when 90% of THF was added.
  • 6 (B) shows the diameter and strength of the BSA nanogel formed when 95% of THF was added.
  • FIG. 9 is a schematic diagram for the preparation of BM nanoparticles.
  • FIG. 11 shows a method for preparing BM nanoparticles supported with IL15 on which Anti CD45 is adsorbed on the surface.
  • FIG. 12 shows a method for preparing IL15-supported BM microspheres adsorbed on the surface of Anti CD45 aptamer.
  • 16 is an SEM and DLS result of IL-2 loaded BM nanoparticles prepared by the S/O/W method.
  • 17 is an SEM and DLS result of IL-2 loaded BM nanoparticles prepared by the S/O/W method.
  • FIG. 18 is a schematic diagram of the preparation of IL-2 loaded BM nanoparticles prepared by the laminar mixing method. Specifically, it indicates that BM or lipophilic molecules in the aqueous phase PVA or hydrophilic molecular oil phase are slowly mixed with each other through laminar mixing to make nanoparticles.
  • 19 is a SEM and light scattering method results of IL2 0.25% (50ug)-supported BM nanoparticles prepared with an in vitro chip-based nanoparticle manufacturing equipment.
  • 21 is a result of SEM and light scattering method of IL2 0.05% (10 ug)-supported BM nanoparticles prepared with in vitro chip-based nanoparticle manufacturing equipment.
  • 25 is a freeze-dried SEM image according to the addition of excipients of IL2 0.05% (10ug)-supported BM nanoparticles prepared with in vitro chip-based nanoparticle manufacturing equipment.
  • 26 is a result of observing IL-2-loaded FBM nanoparticles and DSPE-PEG-Maleimide in cells.
  • Figure 28 is the result of confirming by Western blot whether STAT5 phosphorylation and ErK phosphorylation related to the IL-2 downstream signaling system in T cells.
  • Figure 31 is a test result of human NK cell cytotoxic effect of human IL-12 packaged in nanoparticles.
  • Figure 31 (A) is the result of confirming the cytotoxicity of NK cells by co-culture with K562 and human NK cells for 4 hours in an environment in the presence of hydrogen peroxide.
  • Figure 31 (B) is the result of confirming the cytotoxicity of NK cells by co-culture with K562 and human NK cells for 7 hours.
  • the present invention relates to immune cells to which nanostructures are attached.
  • the present invention is immune cells; a ligand that binds to a specific protein located in the cell membrane of the immune cell; and a nanostructure attached to the immune cell by the ligand, wherein the nanostructure is a nanogel or nanoparticles, and the nanogel includes one or more active substances and a linker connecting them, wherein the linker is a reactive oxygen species. It is a compound decomposed by , and the nanoparticles include one or more active substances and a carrier supporting them, and the carrier is a polymer that is decomposed by active oxygen, and provides immune cells to which nanostructures are attached.
  • immune cells refer to all types of cells involved in immune function in the human body.
  • the immune cells may be T cells, B cells, NK cells, or hematopoietic progenitor cells.
  • the immune cell is a cell to which nanoparticles are conjugated, and can generally act on a target site when administered in vivo.
  • Suitable target cells may depend on their homming potential, the phenotype of cell surface proteins, and the like.
  • immune cells may flow out from blood vessels and enter a target tissue or organ, and may include nucleated immune cells.
  • the immune cells when administered by intravenous injection, they may flow out from a blood vessel and enter a target tissue or organ.
  • a T cell refers to a type of lymphocyte that is produced or processed by the thymus and actively participates in an immune response.
  • T cells can be distinguished from other lymphocytes such as B cells and natural killer cells (NK cells) by the presence of the T cell receptor (TCR) on the cell surface.
  • the T cells include CD8+ T cells (cytotoxic T cells), CD4+ T cells (helper T cells), memory T cells, suppressor T cells (suppressor T cells), natural killer T cells (NK T cells), It may be an adoptive transfer T cell, a regulatory T cell, or a chimeric antigen receptor T cell.
  • T cells in the present invention can be engineered to express a chimeric antigen receptor (CAR).
  • CAR may comprise an antigen binding domain, a co-stimulatory domain or a CD3 signaling domain.
  • the hematopoietic progenitor cells may include murine lineage negative, Sca-1-positive and c-kit positive cells and their human counterparts.
  • the immune cell may have a specific protein on the cell membrane.
  • the specific protein may be cell surface receptors.
  • a cell surface receptor refers to a protein that mediates communication between a cell and the extracellular environment.
  • a cell surface receptor is a receptor that exists on the cell membrane of an immune cell, and may cause a specific reaction within the cell by receiving a physical action or substance outside the cell.
  • the cell surface receptor located on the membrane surface of the immune cell may not be internalized into the immune cell.
  • a cell surface receptor eg, CD45
  • a cognate ligand eg, an anti-CD45 antibody
  • At least 50% (or at least 50%) of the nanogels or nanoparticles linked to immune cells are cell surface (i.e., internalized) It may not be internalized for at least 24 hours.
  • the cell surface receptor may be OX40, CD28, GITR, VISTA, CD40, CD3, CD45 or CD137.
  • the cell surface receptor may be CD45.
  • the CD45 can activate T cells and B cells.
  • immune cells expressing CD45 may be linked to or bound to the surface of a nanostructure containing a ligand (eg, anti-CD45 antibody).
  • a ligand eg, anti-CD45 antibody
  • the cell surface receptor may be a human CD45 receptor.
  • the cell surface receptor (eg, CD45) may bind to a cognate ligand (eg, anti-CD45 antibody), thereby stably binding the nanostructure and immune cells.
  • a cognate ligand eg, anti-CD45 antibody
  • the ligand may be any molecule that binds to another molecule.
  • the ligand may be an antibody, an antibody fragment (scFv), an aptamer, or a small molecule compound.
  • the antibody may be a monoclonal antibody or a polyclonal antibody. In the present invention, the antibody may be a human antibody or a humanized antibody.
  • the ligand may be an antibody, for example, an anti-CD45 antibody. Specifically, it may be a monoclonal antibody or a polyclonal antibody, and may be a human antibody or a humanized antibody.
  • the antibody may be a monoclonal anti-CD45 antibody.
  • the targeting derivative may be a state in which a chemical derivative is bound to a part of a ligand.
  • the chemical derivative may be, for example, a catechol derivative or DSPE-PEG-Maleimide.
  • a derivative refers to a state in which a part of a compound is chemically bound to another compound.
  • it may be a catechol derivative in which a compound is bound to a part of catechol (see FIG. 2 ).
  • the antibody or aptamer may be in the form of an antibody to which a catechol derivative is bound or an aptamer to which a catechol derivative is bound.
  • the antibody or aptamer may be in the form of an antibody chemically bonded to DSPE-PEG-Maleimide (see Formula 1) or a derivative thereof, or an aptamer chemically bonded to DSPE-PEG-Maleimide or a derivative thereof.
  • the antibody used as a ligand in the present invention may be in a state in which catechol is first bound to an antibody used as a CD45 target ligand in order to connect immune cells to the nanostructure, and then bound to the nanostructure.
  • the aptamer used as a ligand in the present invention may be in a state in which catechol is first bound to an aptamer used as a CD45 target ligand in order to connect immune cells and nanoparticles, and then bound to nanoparticles.
  • the antibody used as a ligand in the present invention may be in a state of binding to the nanostructure after first binding DSPE-PEG-Maleimide to the antibody used as the CD45 targeting ligand in order to connect the immune cells and the nanostructure.
  • the aptamer used as a ligand in the present invention may be in a state in which DSPE-PEG-Maleimide is first bound to an aptamer used as a CD45 targeting ligand in order to connect immune cells and nanoparticles, and then bound to nanoparticles.
  • the aptamer used as a ligand in the present invention may be in a lipid-bound state.
  • the aptamer may be combined with DSPE-PEG or DSPE-PEG-Maleimide.
  • the present invention is not limited thereto.
  • the low molecular weight compound refers to a compound having a molecular weight of 1,000 Da or less among saccharides (oligosaccharides), amino acids (oligopeptides), glycerides produced from fatty acids, or derivatives thereof.
  • the low molecular weight compound can bind to a specific protein on the immune cell membrane.
  • the ligand is 3,4-dihydroxyhydrocinnamic acid (3,4-Dihydroxyhydrocinnamic acid) is introduced at the terminal, the nanostructure is a carboxyl group of the acid and the amino group of the nanostructure bonded by reaction state may be
  • catechol may be 3,4-dihydroxyhydrocinnamic acid, and may bind to an amine on a protein.
  • a protein to which such a catechol is bound is generally referred to as a catecholized protein.
  • the catecholized protein does not have a chemical modification of the protein, so it is possible to minimize a decrease in the activity of the protein, and may have an excellent pharmacological effect. In addition, it has uniform biological efficacy in vivo and can increase the in vivo efficacy and stability of protein drugs.
  • Nanostructures in the present invention generally refer to microstructures having a particle diameter of less than 1000 nm, for example, less than 500 nm, less than 250 nm, or less than 100 nm.
  • the nanostructure may be directly conjugated to an immune cell through a ligand, or may be conjugated to a catechol and a ligand conjugated form.
  • the ligand is 3,4-dihydroxyhydrocinnamic acid (3,4-Dihydroxyhydrocinnamic acid) is introduced at the terminal, the nanostructure is bonded by the reaction of the carboxyl group of the acid and the amino group of the nanostructure may be in a state of
  • the active material when the nanostructure and the immune cell are bound through the ligand to which the catechol is bound, the active material may be released in a free form in a hydrogen peroxide environment. Accordingly, the active substance can exhibit its original activity and function according to its type.
  • the nanostructure may contain a compound that stabilizes the nanostructure in solution or on the cell surface or increases the interaction between the nanostructure and the surface of immune cells.
  • the compound that increases the interaction may be protamine, chitosan, carbohydrate, heparan-sulfate proteoglycan, natural polymer, polysaccharide, dextrimer, cellulose, fibronectin, collagen, fibrin or proteoglycan.
  • the nanostructure includes nanogels or nanoparticles.
  • the nanogel may consist of a plurality of active substances cross-linked (eg, reversibly and covalently) cross-linked with each other via a degradable linker.
  • the active material of the nanogel can be reversibly cross-linked through a degradable linker (eg, BRAP). Under certain physiological conditions, the linker may degrade and release an intact biologically active substance.
  • a degradable linker eg, BRAP
  • the active material of the nanogel may be reversibly linked to a functional group through a degradable linker, and the linker may be degraded under certain physiological conditions to release an intact biologically active material.
  • the nanogel may include one or more active substances and a linker connecting them, and may be decomposed by active oxygen.
  • the nanogel may comprise a combination of active material A and active material B.
  • active substance A may be linked to active substance A, linked to a linker, or linked to active substance B, wherein active substance B is linked to active substance A, linked to a linker, or linked to active substance B can be connected
  • the active substance may be linked to a cleavable linker (eg, a covalent bond, etc.) via any terminal or internal -NH functional group (eg, a side chain of lysine) or the like.
  • a cleavable linker eg, a covalent bond, etc.
  • any terminal or internal -NH functional group eg, a side chain of lysine
  • the linker may be a compound that connects active substances.
  • the linker may be cleaved under certain physiological conditions.
  • the linker in which a nitrophenyl derivative or a succinate derivative is bonded to the end of the linker may have a faster rate of decomposition of the bond and a faster rate of conversion to a free protein than in the case where it is not.
  • the linker may be a BRAP-based linker, a thiochital-based linker, a selenium-based linker, or the like.
  • the BRAP-based linker, thiochital-based linker, or selenium-based linker may be decomposed by active oxygen.
  • the BRAP-based linker, thiochital-based linker, or selenium-based linker may be decomposed by hydrogen peroxide (H 2 O 2 ).
  • the BRAP linker is oxidized by high levels of H 2 O 2 , thereby reducing H 2 O 2 mediated oxidative stress and damage.
  • free HBA is generated from BRAP by H 2 O 2 mediated oxidation, which may exhibit endogenous antioxidant and anti-inflammatory activity in tissues under oxidative stress.
  • BRAP may effectively lower the level of H 2 O 2 when H 2 O 2 is overproduced, and may not exhibit an H 2 O 2 inhibitory effect in a normal physiological state.
  • BRAP can be selectively decomposed in a high concentration H 2 O 2 environment around cancer cells and tumor tissues to liberate active substances.
  • the boronated dinitrophenyl carbamate produced after the reaction with the protein can cause the carbamate to break down quickly by reacting the boronate of BRAP with H 2 O 2 and then performing a 1,6-elimination reaction at a fast rate. As a result, the rate of conversion to the original amine of the protein may be faster.
  • the BRAP may be degraded by 50% or more within several hours, for example, at least 90% within 24 hours.
  • BRAP and HBA which is a degradation product of BRAP, can inhibit ROS production.
  • BRAP and HBA a degradation product of BRAP, have anti-apoptotic and anti-inflammatory properties, and may have an inhibitory effect on the expression of cleaved caspase-3 and TNF- ⁇ proteins.
  • BRAP may be BRAP to which a nitrophenyl derivative is bound.
  • nitrophenyl derivatives are bound to both ends of BRAP in order to bind to proteins, so that it may have the form of boronated dinitrophenyl carbonate.
  • the nitrophenyl derivative can bind to the amine of the active protein.
  • the linker in a state in which a nitrophenyl derivative is bound to the BRAP terminus can be linked to a carbonate form by reacting with a protein.
  • the rate of decomposition of the bond and the rate of conversion to a free form protein may be faster than in the case where it is not linked.
  • HBA 4-hydroxybenzyl alcohol
  • HBA may have a therapeutic effect on diseases related to oxidative damage, such as ischemic brain injury and coronary heart disease.
  • diseases related to oxidative damage such as ischemic brain injury and coronary heart disease.
  • it may have antioxidant effects and anti-inflammatory effects.
  • Thioketal refers to a sulfur analog of ketal in which one of the oxygens is replaced with sulfur
  • dithioketal refers to a sulfur analog of ketal in which two oxygens are replaced with sulfur (see Formula 3).
  • the thioketal may be a thioketal to which a nitrophenyl derivative or a succinate derivative is bound.
  • the thioketal may be oxidized and decomposed by a high level of H 2 O 2 , and may reduce H 2 O 2 mediated oxidative stress and damage.
  • 50% or more of the thioketal may be decomposed within a few hours, for example, 90% or more may be decomposed within 24 hours.
  • the selenium-based linker may include selenium or selenide.
  • the selenium-based linker may be in a state in which a nitrophenyl derivative or a succinate derivative is bound.
  • the selenium-based linker may be oxidized and decomposed by high levels of H 2 O 2 , and may reduce H 2 O 2 mediated oxidative stress and damage.
  • the selenium-based linker may be degraded by 50% or more within several hours, for example, may be degraded by 90% or more within 24 hours.
  • Nanoparticles in the present invention may include one or more active substances and a carrier carrying them.
  • nanoparticles may be composed of a carrier, which is one or more polymeric polymers arranged in a random manner.
  • Nanoparticles in the present invention may include polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the PEG may have a molecular weight of 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7, 7 to 8, 8 to 9 or 9 to 10 kD.
  • Nanoparticles in the present invention may be biodegradable, for example, may be gradually decomposed in the H 2 O 2 environment in vivo.
  • the active material when the active material is dispersed throughout the nanoparticles, the outermost layer of the nanoparticles may be decomposed, and the active material inside may be released as the pores in the nanoparticles expand.
  • the carrier may be usefully used to support and protect substances such as drugs, enzymes, other proteins and peptides, and DNA and RNA fragments.
  • the carrier can load both hydrophilic and hydrophobic molecules, and can be used as a drug delivery system.
  • the carrier may be used without limitation as long as it can be used for the purpose of carrying or delivering the active substance.
  • the carrier may be made of boronated maltodextrin (BM) or a copolymer thereof (see Formula 4).
  • A may be at least one selected from Formulas A1 to A3 below.
  • R1, R2, R3, R4, R5 and R6 are independently hydrogen, a C1-3 alkyl group, a C2-3 alkenyl group, or a C6 aryl group, and M is a polymer having an OH group As such, it may be connected to A by an -O- bond through at least one of OH groups present in the molecule.
  • the compound of Formula 4 may be, for example, a compound of any one of Formulas 5 to 11, or a compound bonded to OH of M.
  • a substituent represented by any one of Formulas A1 to A3 reacts with hydrogen peroxide through the mechanism of Reaction Scheme 2 below to generate quinone methide and carbon dioxide, and quinone methide additionally reacts with water to p-hydroxybenzyl alcohol (HBA) can create
  • n may be 10 to 2000.
  • the particle diameter of the BM carrier of the present invention may be less than 1000 nm, for example, less than 500 nm, less than 250 nm, or less than 100 nm.
  • BM can support the active material therein when preparing an insoluble polymer into a nanostructure.
  • the BM may carry BSA, cytokines, or hydrophobic compounds therein.
  • the active material may be used according to the purpose of using the immune cells to which the nanostructure is attached.
  • the active substance may exhibit anti-inflammatory or anti-cancer therapeutic effects.
  • it may be a protein or a hydrophobic compound having the therapeutic effect.
  • the active substance may be an antibacterial agent, an antiviral agent, an antiparasitic agent, an antifungal agent and an antimycobacterial agent.
  • the release of the active material from the nanostructure may occur over 2 to 3 weeks, 1 to 2 weeks, 4 to 6 days, 1 to 3 days, 1 to 24 hours, or less than 1 hour. .
  • the active substance includes a protein, and may be, for example, an active protein.
  • the active protein refers to a protein included in the nanostructure.
  • it may be a protein linked by a linker to form a nanogel, or a protein supported by a carrier and included in nanoparticles.
  • the active protein may be an antibody, single chain antibody, antibody fragment, enzyme, cofactor, transcription factor and other regulatory factors, some antigens, vaccines, drugs, enzymes, antibodies, complement, cytokines or chemokines.
  • the active protein may be an immune regulatory protein (eg, an immune stimulating or immunosuppressive protein).
  • the immune modulatory protein may be a protein that modulates (eg, stimulates or inhibits) an immune response (including enhancement or reduction of an existing immune response) in a subject administered alone or in combination with others.
  • the immunomodulatory protein may be PD-L1, CTLA-4, IL-10 or TGF- ⁇ .
  • the active protein may be an immune stimulating protein.
  • the immune stimulating protein may be a protein that stimulates an immune response (including enhancement of an existing immune response) in a subject administered alone or in combination with other proteins or agents.
  • the vaccine is divided into an attenuated vaccine or an inactive vaccine, and may be, for example, a virus, bacterial, live attenuated vaccine, toxoid or cell fraction vaccine.
  • the drug may be an anti-cancer agent, an anti-inflammatory agent, an anti-allergic agent, an anti-viral agent, or an anti-atopic therapeutic agent.
  • the enzyme may be a reactive oxygen species scavenger, a DNA photorepair enzyme, a glucosylase, a DNA polymerase, a DNA ligase, or a pascase-8 enzyme.
  • the present invention is not limited thereto.
  • the antibody may be IgG, IgA, IgM, IgD or IgE, and may also be a diabody.
  • a diabody is a protein composed of antigen-binding fragments originating from two different antibodies.
  • the present invention is not limited thereto.
  • the cytokine may be interleukin, interferon, tumor necrosis factor, transforming growth factor, immunosuppressive factor, or granulocyte macrophage colony stimulating factor (FLT3).
  • the interleukin is selected from the group consisting of IL-1 ⁇ , IL-1 ⁇ , IL2, IL-4, IL-5, IL6, IL7, IL12, IL15, IL-15-Sa, IL17, IL18, IL21 or IL-23. It may be at least one selected, but is not limited thereto.
  • the IL-15-Sa may exist in the form of a dimeric IL-15ROSu/Fc and two IL-15N72D molecules.
  • the interferon may be IFN- ⁇ or IFN- ⁇ , but is not limited thereto.
  • the tumor necrosis factor may be tumor necrosis factor- ⁇ or tumor necrosis factor- ⁇
  • the transforming growth factor or immunosuppressive factor may be TGF- ⁇ or TGF- ⁇ .
  • TGF- ⁇ may function to suppress immunity.
  • the immunosuppressive effect can be amplified using immunosuppressive T cells (regulatory T cells). Through this, it can be usefully utilized for autoimmune diseases.
  • the complement may be a substance that complements the functions of immunity and phagocytosis in order to remove pathogens of the organism.
  • the active protein may have a -NH 2 functional group.
  • the active protein may be a cytokine, vaccine, drug, enzyme, antibody or complement having a -NH 2 functional group.
  • the active protein may exhibit anti-inflammatory or anti-cancer therapeutic effects.
  • the hydrophobic compound may exhibit an anti-inflammatory or anti-cancer therapeutic effect.
  • the hydrophobic compound may have a therapeutic effect on solid cancer or hematologic cancer.
  • the anticancer hydrophobic compound may be a cytotoxic anticancer agent, a targeted anticancer agent, or an immune checkpoint inhibitor.
  • the hydrophobic compound may be a hydrophobic anticancer agent or a hydrophobic anti-inflammatory agent.
  • the hydrophobic anticancer agent may include any one or more of erlotinib, paclitaxel, and sorafenib. However, if it is hydrophobic and has an anticancer effect, it may be used without limitation.
  • active oxygen refers to a chemically activated molecule containing oxygen, and includes oxygen ions, superoxides and peroxides.
  • the active oxygen may be, for example, hydrogen peroxide.
  • the reactive oxygen species may be generated during trauma or organ damage, and in particular, the concentration of hydrogen peroxide may be high around cancer cells and tumor tissues.
  • Oxidative stress-induced damage occurs when the production of oxygenated species increases concurrently with a decrease in antioxidant defenses, eventually leading to the manifestation of reactive oxygen species (ROS). This can overwhelm the cellular defense system and eventually lead to death by impairing normal cellular function.
  • ROS reactive oxygen species
  • the compound can provide a desired pharmaceutical effect in terms of temporal and spatial conditions of therapeutic activity.
  • the compound has target region specificity and stimulation sensitivity, which can enhance the effect of the compound and reduce undesirable side effects at the same time. Although most ROS survive extremely short, H 2 O 2 may be the most stable ROS produced.
  • BRAP when the concentration of H 2 O 2 is accumulated at a high level during oxidative stress, it may cause cell damage. At this time, BRAP reacts with H 2 O 2 and is specifically activated by pathologically overproduced H 2 O 2 to exhibit anti-inflammatory or anticancer effects.
  • the nanostructures, immune cells, linkers or carriers and active substances may be mixed as follows.
  • the linker and the active material may be mixed in a ratio of 1000:1 to 1:1000, 100:1 to 1:100 by weight.
  • the carrier and the active material may be mixed in a ratio of 1000:1 to 1:1000, 100:1 to 1:100 by weight.
  • nanostructure and immune cells may be mixed in a ratio of 1000:1 to 1:1000, 100:1 to 1:100 by weight.
  • the present invention relates to an anti-inflammatory agent comprising immune cells to which nanostructures are attached.
  • the present invention relates to an anticancer agent comprising immune cells to which nanostructures are attached.
  • the present invention relates to an active substance delivery system comprising immune cells to which nanostructures are attached.
  • Immune cells to which the nanostructure of the present invention is attached may have an anti-inflammatory effect.
  • it may be used in the form of an anti-inflammatory agent including immune cells to which nanostructures are attached.
  • the present invention relates to immune cells to which nanostructures are attached for the treatment of cancer or inflammation.
  • the present invention relates to the use of immune cells to which nanostructures are attached for use in the treatment of cancer or inflammation.
  • the present invention relates to the use of immune cells to which nanostructures are attached in the production of anticancer agents or anti-inflammatory agents.
  • the present invention relates to a pharmaceutical composition comprising immune cells to which nanostructures are attached.
  • the pharmaceutical composition may be administered to a subject in a pharmaceutically acceptable amount.
  • pharmaceutically acceptable refers to a non-toxic substance that does not interfere with the effect of the biological activity of an active substance (eg, an active protein in a nanostructure).
  • Such compositions may, in some embodiments, contain salts, buffers, preservatives and optionally other therapeutic agents.
  • a preferred dosage of the pharmaceutical composition of the present invention varies depending on the patient's condition and weight, the type of disease, the form of the drug, the route of administration, and the administration period, and may be appropriately selected by those skilled in the art.
  • the pharmaceutical composition of the present invention may be administered at 0.01-100 mg/kg/day.
  • the composition may be administered once or several times a day.
  • the present invention relates to a method for treating cancer or inflammation, comprising administering to a subject a therapeutically effective amount of immune cells to which nanostructures are attached.
  • the treatment method may include a method of preventing or treating a disease related to inflammation or reactive oxygen species in a subject in need thereof.
  • the method comprises administering to a subject to be treated a therapeutically effective amount of a boronic ester of the present invention, wherein the ester releases an anti-inflammatory and/or antioxidant compound within the body of the subject. It can be partially disassembled to
  • the method of treatment includes a method of preventing or inhibiting the formation of reactive oxygen species (ROS) in at least one body part of a subject to be treated, wherein the method comprises administering a therapeutically effective amount of the boronic esters of the present invention. and administering to a subject to be treated, wherein the esters are capable of releasing an anti-inflammatory and/or antioxidant compound within the body of the subject.
  • ROS reactive oxygen species
  • the pharmaceutical containing the immune cells to which the nanostructures of the present invention are attached may be prepared with commonly used diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants or surfactants.
  • Solid dosage forms for oral administration include tablets, pills, powders, granules or capsules, and such solid dosage forms also include, in addition to the composition, at least one excipient such as starch, calcium carbonate, sucrose Contains sucrose, lactose or gelatin.
  • a lubricant such as magnesium stearate or talc may also be used.
  • Liquid formulations for oral administration include suspensions, solutions, emulsions and syrups, and may contain various excipients such as wetting agents, flavoring agents, aromatics and preservatives. , in addition to water and liquid paraffin, which are often used as single dilutions.
  • Formulations for parenteral administration may include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories.
  • Non-aqueous solvents or suspending agents vegetable oils such as propylene glycol, polyethylene glycol, olive oil, or injectable esters such as ethyl oleate ) can be used.
  • As the base of the suppository witepsol, Macrogol, Tween61, cacao butter, laurin fat, or glycerogelatin may be used.
  • the drug containing the immune cells to which the nanostructure of the present invention is attached may be administered to a subject to be treated by various routes. Any mode of administration may be administered by, for example, oral, rectal, or intravenous, intramuscular, subcutaneous, dermal, intrauterine, intrathecal or intraventricular injection and the like.
  • a nitrophenyl derivative or a succinate derivative is bonded to the terminus of 4-(5-(hydroxymail)-5-methyl-1,3,2-dioxaborinan-2-yl)phenyl methanol (BRAP). It provides a compound comprising.
  • the BRAP and a nitrophenyl derivative or a succinate derivative may be chemically combined to form a compound.
  • a nitrophenyl derivative or a succinate derivative is shared at the terminus of 4-(5-(hydroxymail)-5-methyl-1,3,2-dioxaborinan-2-yl)phenyl methanol (BRAP). can combine to form compounds.
  • the present invention provides a compound formed by bonding a nitrophenyl derivative or a succinate derivative to a thioketal terminus.
  • the thiochital and the nitrophenyl derivative or the succinate derivative may be chemically bonded to form a compound.
  • a nitrophenyl derivative or a succinate derivative may be covalently bonded to a thiochital terminus to form a compound.
  • the cancer includes bladder cancer, breast cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, prostate cancer, pancreatic cancer, gastric cancer, cervical cancer, thyroid cancer and carcinoma including skin cancer including squamous cell carcinoma; lymphoid hematopoietic tumors, including leukemia, acute lymphoblastic leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burkitt's lymphoma; hematopoietic tumors of the myeloid type, including acute and chronic myeloid leukemia and promyelocytic leukemia; mesenchymal-derived tumors including fibrosarcoma and rhabdomyosarcoma; other tumors including melanoma, seminoma, teratocarcinoma, neuroblastoma and glioma; tumors of the central
  • the cake form refers to a shape in which the bread is dried in the form of swelling during freeze-drying.
  • the freeze-dried shape may be called a cake shape when the bread is dried in a puffy form.
  • Example 1 Cell therapy agent using hydrogen peroxide-sensitized protein nanogel
  • a BRAP-based hydrogen peroxide-sensitized linker was synthesized. (See Fig. 1)
  • BRAP (2.00 g) and p-nitrophenyl chloroformate (3.50 g) were dissolved in 100 mL of THF.
  • the gas in the flask was substituted with nitrogen gas for 30 minutes under an ice bath.
  • Triethylamine 2.48 mL was slowly dropped in the form of drops, and after confirming that the salt was precipitated, the reaction was carried out for one day.
  • THF was removed using a rotary evaporator, and the product was dissolved again in dichloromethane. Extraction was performed using distilled water and dichloromethane. Using MgSO 4 , moisture was completely removed, and the by-products were washed with methanol and crystals were formed at the same time. Methanol was completely removed with a rotary evaporator. After removing moisture in the freeze dryer for more than one day, it was stored in a vacuum state. (See Fig. 5)
  • Nanogels were prepared using BSA (6.6 kda) as a model protein.
  • Catechol does not decrease the activity of IL-15 because it is adsorbed to the surface of the protein nanogel by the physical force of the van der Waals bond rather than the covalent bond. (See Fig. 3)
  • BSA was dissolved in PBS (pH 7.4) solution at a concentration of 10 mg/mL to make a protein solution, and a hydrogen peroxide-sensitive linker was dissolved in DMSO to prepare linker solutions of various concentrations.
  • the weight ratio of linker to BSA was fixed at 5%, 15% or 25%.
  • Hydrogen peroxide-sensitized linker was added dropwise to the stirring BSA solution using an insulin syringe, and the mixture of BSA and linker was stirred for 3 hours.
  • the resulting nanogels were purified using a PBS solution using a centrifugal filter tube, and then stored refrigerated. When 15% linker was used, the average particle size was 450 nm. (See Fig. 23)
  • This Catechol-bound BSA was dissolved in PBS solution at a concentration of 0.2 mg/mL.
  • BSA nanogels were dispersed in PBS at a concentration of 2 mg/mL at room temperature. While stirring 1 mL of the nanogel dispersion, 500 mL of the Catechol-BSA solution was slowly added dropwise, followed by stirring for 1 hour. (See Fig. 7)
  • Example 2 Cell therapy technology using BM nanoparticles
  • BM 100 mg BM was dissolved in 1 mL of THF.
  • 1 mg of BSA was dissolved in 100 ⁇ L of deionized water.
  • ultrasound probe type, Fisher Scientific, Sonic Dis-membrator 500, maximum output 100%
  • the BSA solution was injected using a syringe, and then sonication was continued for 90 seconds.
  • sonicating into a beaker containing 20 mL of PVA add 3 BSA dispersions using a syringe. Sonication was continued for 90 seconds.
  • the BM/BSA dispersion was homogenized for 90 seconds using a Homogenizer (PRO Scientific, PRO 200, 12,000 rpm).
  • THF was evaporated using a rotary evaporator, and the supernatant was removed after centrifugation (10,000 xg, 6 minutes) and dispersed in distilled water to obtain microspheres. At this time, the obtained microspheres were dried after freezing in liquid nitrogen.
  • BM nanoparticles were treated at a concentration of about 1 to 5 mg/mL in a cell experiment (1X10 6 pieces/mL). (IL15 content is limited to 10ng/Ml to 30ng/mL)
  • BSA 100mg/mL
  • BSA content Compared to BM
  • BSA content remark
  • Non-uniform particle size distribution 3 1 mL 100 mL 45%/90 seconds 90 seconds 1 mm 0.045% 4 1 mL 50 mL 45%/90 seconds 90 seconds 2 mm 0.035% 5 1 ml 100 mL 55%/90 seconds 90 seconds 700 nm 0.045% 6 1 mL 100 mL 45%/120 seconds 120 seconds 400 nm to 1 mm 0.045% 7 2 mL 200 mL 55%/120 seconds 120 seconds 300 nm to 2 mm 0.02%
  • IL15-supported microspheres After preparation of IL15-supported microspheres by the double emulsification method, the surface was coated with CD45, and Catechol-bound Anti CD45 was conjugated to BM nanoparticles (see FIG. 11).
  • BM and 10 mg CD45 aptamer were dissolved in 1 mL of THF.
  • 1 mg of BSA was dissolved in 100 ⁇ L of deionized water.
  • ultrasound probe type, Fisher Scientific, Sonic Dis-membrator 500, maximum output 100%
  • the BSA solution was injected using a syringe, and then sonication was continued for 90 seconds.
  • three BSA dispersions were placed using a syringe, and then sonication was continued for 90 seconds.
  • the BM-CD45/BSA dispersion was homogenized for 90 seconds using a homogenizer.
  • THF was evaporated using a rotary evaporator, the supernatant was removed after centrifugation, and then dispersed in distilled water to obtain nanoparticles.
  • the experiment was carried out as shown in Table 2 below.
  • the BM nanoparticle preparation sequence is as follows (see FIG. 10).
  • IL-2 was used as the active material supported in the BM nanoparticles.
  • Type IL-2 DW BM organic solvent Surfactant solution Remove type One W/O/W 0.1mg 0.2ml 25mg 2ml DCM (in MeOH 5%) 20ml PVA 5% Solution Vaccume 2 W/O/W 0.1mg 0.2ml 25mg 2ml DCM (in MeOH 5%) 20ml PVA 5% Solution Vaporation 3 W/O/W 0.1mg 0.2ml 25mg 2ml DCM (in EtOH 5%) 20ml PVA 5% Solution Vaccume 4 W/O/W 0.1mg 1ml 25mg 5ml DCM (in MeOH 5%) 40ml PVA 5% Solution Vaccume 5 W/O/W 0.5mg BSA 0.1ml 50mg 1ml DCM (in EtOH 5%) 10ml PVA 5% Solution Vaporation 6 W/O/W 0.5mg BSA 0.1ml 100mg 1ml DCM (in EtOH 5%) 10ml
  • FBM ( ⁇ DSPE-PEG-MAL) nanoparticles prepared by the W/O/W method loaded with 0.5% IL-2 prepared by the W/O/W method as described above were analyzed by SEM and DLS.
  • nanoparticles can be formed, but most exist in the form of a film and have a size of about 300 to 600 nm (see FIG. 13).
  • IL-2-supported BM nanoparticles prepared by the S/O/W method as described above were analyzed by SEM and DLS.
  • IL2-loaded BM nanoparticles prepared by laminar mixing were prepared using Nanoassemblr, a nanoparticle manufacturing equipment (see FIG. 18 ).
  • BM or lipophilic molecules on PVA or hydrophilic molecules in aqueous solution and oil are slowly mixed with each other through laminar mixing to form nanoparticles.
  • BM 40 mg BM was dissolved in 2 mL of ACT.
  • 50 ug IL-2 was dissolved in 2 mL distilled water.
  • Laminar mixing was performed by filling each 3mL syringe. After receiving 3mL, filled in a syringe, and then filled in a 3mL syringe of 2.5% PVA to proceed with laminar mixing. After removing the ACT using Diaylsis, centrifugation (10,000 rpm, 10 minutes), the supernatant was removed, and then dispersed in distilled water and freeze-dried.
  • Nanoparticles were prepared in the same manner as in Example 2.3.1., except that 25 ⁇ g of IL-2 was dissolved in 2 mL distilled water.
  • Nanoparticles were prepared in the same manner as in Example 2.3.1., except that 10 ug of IL-2 was dissolved in 2 mL distilled water.
  • FBM, FBM-PEG-Maleimide 5%, FBM-IL2 and FBM-MAL-IL2 stock 2 mg/ml were vortexed and sonicated in PBS (see FIG. 26 ).
  • Nanoparticles bound to maleimide were treated with T cells obtained from human blood to confirm the effect of IL-2 packed in nanoparticles. Results were confirmed after 3 hours, 6 hours, and 24 hours after the start of the experiment.
  • the experimental group treated only with BM nanoparticles obtained cells of 2.6x10 6 , 2.55x10 6 , respectively, at 24 hours, and cells treated with IL-2 loaded nanoparticles were 2.5x10 cells without hydrogen peroxide treatment. 6 was similar to the experimental group treated only with BM nanoparticles, but increased to 4.1x10 6 when hydrogen peroxide was treated.
  • the nanoparticles are normally decomposed in the presence of hydrogen peroxide to release IL-2 and affect cell proliferation.
  • Antibodies used for Western blot are shown in Table 3 below.
  • Tris-glycine gel was made with 8% running gel and 5% stacking gel, and the above samples were separated by electrophoresis at 70V for 140 minutes using the corresponding gel.
  • NC membrane to which the protein was transferred was blocked with 5% skim milk at room temperature for 1 hour.
  • H 2 O 2 treatment was performed to release IL-2 from the BM nanoparticles, and T cell activity was observed.
  • IL-2 loaded BM particles were bound to the NK cell membrane through maleimide, reacted for 1 hour, and then protein was obtained from the cells, followed by Western blot ( western blot) was performed.
  • H 2 O 2 selectively released IL-2 from the BM nanoparticles to stimulate human NK cells to increase the phosphor-STAT5 and active phosphor-ERK levels, which evaluate NK cell activation (see FIG. 30 ).
  • Nanoparticles 2mg was put in 0.5ml of PBS (Wellgene) and dissolved at a concentration of 4mg/ml, and then mixed with voltex for 3sec. It was visually confirmed that it had completely melted.
  • the lysed BM was put into NK cells aliquoted for each condition at a concentration of 400 ⁇ g/ml and mixed well. Incubated at room temperature for 15 minutes.
  • CFSE-stained K562 and NK cells bound to nanoparticles were seeded in a 12 well plate at a ratio suitable for the conditions. At this time, the amount of medium per well was set to 1 ml, and the medium was AlySN505-0+2% autoplasma+1% L-glutamine.
  • cytotoxicity was increased in BM-IL12-M-linked Hnk cells (see FIG. 31A ).
  • cytotoxicity of NK cells in K562 was about 17%, whereas in the experimental group treated with BM-IL12-M, the cytotoxicity was increased to 29% (see Fig. 31 B). .

Abstract

본 발명은 나노 구조체가 부착된 면역세포 및 그 용도에 관한 것이다. 본 발명에 따르면, 과산화수소에 의해 분해되는 링커 및/또는 담체를 포함하는 나노 구조체와 CD45가 세포막에 위치하는 면역세포가 리간드를 통해 결합하여 면역 세포의 활성을 향상시킨다. 또한 상기 링커 및/또는 담체를 통해 과산화수소 환경 특이적인 면역 반응을 할 수 있다. 따라서 이러한 특성을 통해 암 또는 염증 등에 대한 질병의 예방 및 치료에 효율적으로 활용될 수 있다.

Description

나노 구조체가 부착된 면역세포
본 발명은 나노 구조체가 부착된 면역세포에 관한 것이다.
현재까지 암 치료효능이 우수한 면역세포 치료제 및 CAR-T/CAR-NK등을 암환자에 투여 시 주사된 면역세포치료제의 체내 활성을 높이기 위해 활성단백질 (예, IL-2)등을 정맥을 통해 같이 투여한다. 하지만, 활성단백질 자체가 몸 전체를 순환하면서 비특이적인 면역반응을 유도하여 CRS(사이토카인 신드롬)과 같은 부작용을 유발한다. 이를 해결하기 위해 나노 구조체(예: 나노 입자 및 담체 등)를 기반으로 한 활성 단백질 전달 전략을 면역 세포 기반 요법과 결합하면 다양한 질병의 치료에 대한 효능을 개선할 수 있다. 또한 독성이 감소된 새로운 치료 양식을 개발할 수 있다. 예를 들어, 활성 단백질(예를 들어, 사이토카인 등)을 함유하는 나노 구조체는 면역 세포(예를 들어, 종양 반응성 T 세포 등)와 리간드를 통해 결합된 상태로 제공되어 세포 기반 요법을 촉진시킬 수 있다.
하이드로젠퍼옥사이드(H 2O 2)는 필수적인 산화적 대사산물이며 유기체의 적응, 발달 및 성장을 위해 필수적인 세포 신호 경로에서의 메신저로서 역할을 한다. H 2O 2은 활성산소종(Reactive oxygen species, ROS)의 한 종류이고, 이는 또한 페록신아질산염(peroxinitrite)과 하이포아염소산염(hypochloride), 하이드록실라디칼과 같은 높은 독성의 ROS의 전구체이다. H 2O 2의 축적이 산화적 스트레스와 염증반응을 유발한다는 많은 증거가 있으며, 이것은 암, 당뇨병, 심혈관계 질환 및 허혈-재관류(ischemia-reperfusion, I/R)손상등과 같은 다양한 병리학적 조건의 발병(onset)과 진행에 높은 관련이 있다.
염증 및/또는 암 세포 부위는 다른 곳 보다 높은 H 2O 2 농도를 나타낸다. 이는 산화적 스트레스 및 세포손상을 일으키고, 또한 조직 손상을 더 악화시킨다. 따라서 H 2O 2는 산화적 스트레스와 연관된 질병에 대한 효율적인 목표이다. 따라서 염증 및/또는 암 환경에 특이적으로 작용하는 치료법은 일반적인 항산화 치료법 이상의 대해 커다란 이점을 제공할 것이다.
본 발명은 CD45가 세포막에 위치하는 면역세포, 상기 CD45에 결합되는 리간드 및 상기 리간드에 의해 상기 면역세포에 부착되는 나노 구조체를 포함하는 면역세포를 제공한다.
본 발명은 나노구조체를 포함하는 면역세포를 포함하는 항암제를 제공한다.
본 발명은 나노구조체를 포함하는 면역세포를 포함하는 항염증제를 제공한다.
본 발명은 나노구조체를 포함하는 면역세포를 포함하는 항염증제를 제공한다.
본 발명은 나노구조체를 포함하는 면역세포의 용도를 제공한다.
본 발명은 나노구조체를 포함하는 면역세포를 포함하는 약학 조성물을 제공한다.
본 발명은 나노구조체를 포함하는 면역세포를 치료 대상에게 투여하는 암 및/또는 염증 치료 방법을 제공한다.
1. 면역세포; 상기 면역세포의 세포막에 위치하는 특이적 단백질에 결합되는 리간드; 및 상기 리간드에 의해 상기 면역세포에 부착되는 나노 구조체를 포함하고,
상기 나노 구조체는 나노젤 또는 나노입자이고,
상기 나노젤은 하나 이상의 활성 물질 및 이들을 연결하는 링커를 포함하고, 상기 링커는 활성산소에 의해 분해되는 화합물이며,
상기 나노입자는 하나 이상의 활성 물질 및 이들을 담지하는 담체를 포함하고, 상기 담체는 활성산소에 의해 분해되는 고분자인, 나노 구조체가 부착된 면역세포.
2. 위 1에 있어서, 상기 링커는 4-(5-(하이드록시메일)-5-메틸-1,3,2-디옥사보리난-2-일)페닐 메탄올(BRAP), 싸이오케탈(Thioketal) 및 셀레나이드 중 하나 이상인, 나노 구조체가 부착된 면역세포.
3. 위 1에 있어서, 상기 링커는 니트로페닐 유도체 또는 숙시네이트 유도체가 결합된 것인, 나노 구조체가 부착된 면역세포.
4. 위 1에 있어서, 상기 고분자는 보로네이티드 말토덱스트린인, 나노 구조체가 부착된 면역세포.
5. 위 1에 있어서, 상기 활성산소는 과산화수소인, 나노 구조체가 부착된 면역세포.
6. 위 1에 있어서, 상기 리간드는 항체, 항체 절편(scFv), 압타머 또는 저분자 화합물인, 나노 구조체가 부착된 면역세포.
7. 위 1에 있어서, 상기 리간드에는 3, 4 - 다이하이드록시하이드로시나믹 산(3, 4 - Dihydroxyhydrocinnamic acid)이 도입되어, 상기 나노 구조체는 상기 산의 카르복시기와 상기 나노구조체의 아미노기의 반응으로 결합된 것인, 나노 구조체가 부착된 면역세포.
8. 위 1에 있어서, 상기 특이적 단백질은 세포 표면 수용체인, 나노 구조체가 부착된 면역세포.
9. 위 8에 있어서, 상기 세포 표면 수용체는 CD45, OX40, CD28, GITR, VISTA, CD40, CD3 및 CD137 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
10. 위 1에 있어서, 상기 면역세포는 T세포, B세포, NK세포 또는 조혈전구세포인, 나노 구조체가 부착된 면역세포.
11. 위 10에 있어서, 상기 T세포는 CD8+ T세포(세포 독성 T 세포), CD4+ T세포(헬퍼 T 세포), 기억 T 세포, 억제자 T 세포(suppressor T 세포), 자연 살해 T 세포 (NK T 세포), 입양전달 T세포, 조절 T세포(regulatory T cell) 및 키메라 항원 수용체 T세포 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
12. 위 1에 있어서, 상기 활성 물질은 단백질 또는 소수성 화합물인, 나노 구조체가 부착된 면역세포.
13. 위 12에 있어서, 상기 단백질은 사이토카인인, 나노 구조체가 부착된 면역세포.
14. 위 13에 있어서, 상기 사이토카인은 인터루킨, 인터페론, 종양괴사인자, 전환성장인자, 면역억제인자 또는 과립구 대식세포 콜로니 자극 인자(FLT3)인, 나노 구조체가 부착된 면역세포.
15. 위 14에 있어서, 상기 인터루킨은 IL-1 알파, IL-1 베타, IL2, IL-4, IL-5, IL6, IL7, IL12, IL15, IL-15-Sa, IL17, IL18, IL21 또는 IL-23인, 나노 구조체가 부착된 면역세포.
16. 위 12에 있어서, 상기 소수성 화합물은 소수성 항암제, 소수성 항염증제인, 나노 구조체가 부착된 면역세포.
17. 위 16에 있어서, 상기 소수성 항암제는 파클리탁셀, 소라페닙 및 엘로티닙 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
18. 위 1 내지 17 중 어느 하나의 나노 구조체가 부착된 면역세포를 포함하는 항암제.
19. 위 1 내지 17 중 어느 하나의 나노 구조체가 부착된 면역세포를 포함하는 활성 물질 전달체.
본 발명에 따른 나노 구조체가 부착된 면역세포를 이용하여 염증 및 암을 치료할 수 있다.
본 발명에 따른 나노 구조체가 부착된 면역세포를 이용하여 과산화수소 환경 특이적인 항염증제 및 항암제를 조성할 수 있다.
본 발명에 따른 나노 구조체에 포함된 활성 단백질이 자유 형태로 방출되어 질병의 치료에 사용될 수 있다.
도 1은 H 2O 2 감응형 BRAP 기반 링커의 합성 방법 및 그 화학적 구조를 나타낸 것이다.
도 2는 표적지향(Target locomotives) 유도체의 제조 방법을 나타낸 것이다.
도 3은 표적지향(Target locomotives) 유도체의 제조 방법을 나타낸 것이다.
도 4는 H 2O 2 감응형 단백질 나노젤의 제조 방법 및 표적지향 유도체가 나노젤 표면에 흡착하는 모습을 나타낸 것이다.
도 5는 NMR을 이용한 BRAP 기반 H 2O 2 감응형 링커의 구조를 분석한 결과를 나타낸 것이다. 도 5 (A)는 1H의 NMR 분석 결과를 나타낸 것이다. 도 5 (B)는 13C의 NMR 분석 결과를 나타낸 것이다.
도 6은 광산란법을 이용하여 BSA 나노젤의 입자 크기를 분석한 결과를 나타낸 것이다. 도 6 (A)는 THF를 90% 추가한 경우 형성된 FITC-BSA 나노젤의 지름과 강도를 나타낸 것이다. 도 6 (B)는 THF를 95% 추가한 경우 형성된 BSA 나노젤의 지름과 강도를 나타낸 것이다.
도 7은 광산란법을 이용하여 BSA 나노젤과 표면 수식된 BSA 나노젤의 입자 크기를 분석한 결과를 나타낸 것이다.
도 8은 형광이 연결된 나노젤이 NK세포 표면에 결합된 모습을 컨포칼 현미경으로 관찰한 결과를 나타낸 것이다.
도 9는 BM 나노입자 제조에 대한 모식도이다.
도 10은 BM 나노입자 제조 과정을 나타낸 것이다.
도 11은 Anti CD45가 표면에 흡착된 IL15담지된 BM 나노입자 제조 방법을 나타낸 것이다.
도 12는 Anti CD45 aptamer가 표면에 흡착된 IL15담지된 BM 미립구 제조방법을 나타낸 것이다.
도 13은 W/O/W 방법으로 제조된 IL-2 0.5% 담지된 FBM (± DSPE-PEG-MAL) 나노입자의 SEM 및 DLS 결과이다.
도 14는 S/O/W 방법으로 제조된 IL-2가 담지된 BM 나노입자의 SEM 및 DLS 결과이다.
도 15는 S/O/W 방법으로 제조된 IL-2가 담지된 BM 나노입자의 SEM 및 DLS 결과이다.
도 16은 S/O/W 방법으로 제조된 IL-2가 담지된 BM 나노입자의 SEM 및 DLS 결과이다.
도 17은 S/O/W 방법으로 제조된 IL-2가 담지된 BM 나노입자의 SEM 및 DLS 결과이다.
도 18은 Laminar mixing 방법으로 제조된 IL-2가 로딩된 BM 나노입자의 제조 모식도이다. 구체적으로는 Aqueous 상의 PVA나 친수성 분자 Oil상에 BM이나 친유성 분자들이 서로 Laminar mixing을 통해 2개의 상이 서서히 혼합되며 나노입자를 만드는 것을 나타낸다.
도 19는 체외칩 기반 나노입자 제조 장비로 제조된 IL2 0.25% (50ug) 담지된 BM 나노입자의 SEM 및 광산란법 결과이다.
도 20은 체외칩 기반 나노입자 제조 장비로 제조된 IL2 0.125% (25ug) 담지된 BM 나노입자의 DLS 및 SEM 결과이다.
도 21 체외칩 기반 나노입자 제조 장비로 제조된 IL2 0.05%(10ug) 담지된 BM 나노입자의 SEM 및 광산란법 결과이다.
도 22는 BSA 담지된 BM 나노입자의 과산화수소 처리시에 입도 변화를 나타낸 것이다.
도 23은 광산란법을 이용한 나노입자의 크기를 분석한 결과이다.
도 24는 체외칩 기반 나노입자 제조 장비로 제조된 IL2 0.05% (10ug) 담지된 BM 나노입자의 부형제 첨가에 따른 동결건조 후의 이미지이다.
도 25는 체외칩 기반 나노입자 제조 장비로 제조된 IL2 0.05% (10ug) 담지된 BM 나노입자의 나노입자의 부형제 첨가에 따른 동결건조 SEM 이미지이다.
도 26은 IL-2 가 로딩된 FBM 나노입자와 DSPE-PEG-Maleimide를 세포에서 관찰한 결과이다.
도 27은 H 2O 2 100 μM을 나노입자에 처리하여 각 시간에 따른 세포 증식을 확인한 결과이다.
도 28은 T 세포에서 IL-2 downstream 신호체계와 관련된 STAT5 인산화와 ErK 인산화 여부를 Western blot으로 확인한 결과이다.
도 29는 T 세포에서 IL-2 downstream 신호체계와 관련된 STAT5 인산화 정도와 ErK 인산화 정도를 측정한 결과이다.
도 30은 NK세포에서 IL-2 downstream 신호체계와 관련된 STAT5 인산화 정도와 ErK 인산화 정도를 측정한 결과이다.
도 31은 나노 입자에 포장 된 인간 IL-12의 인간 NK 세포 세포 독성 효과 시험 결과이다. 도 31 (A)는 과산화수소가 존재하는 환경에서 K562와 Human NK cells과 4시간동안 공배양하여 NK cell의 세포독성을 확인한 결과이다. 도 31 (B)는 K562와 Human NK cells과 7시간동안 공배양하여 NK cell의 세포독성을 확인한 결과이다.
이하 본 발명을 상세히 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적인 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 의미를 따른다.
본 발명은 나노 구조체가 부착된 면역세포에 관한 것이다.
본 발명은 면역세포; 상기 면역세포의 세포막에 위치하는 특이적 단백질에 결합되는 리간드; 및 상기 리간드에 의해 상기 면역세포에 부착되는 나노 구조체를 포함하고, 상기 나노 구조체는 나노젤 또는 나노입자이고, 상기 나노젤은 하나 이상의 활성 물질 및 이들을 연결하는 링커를 포함하고, 상기 링커는 활성산소에 의해 분해되는 화합물이며, 상기 나노입자는 하나 이상의 활성 물질 및 이들을 담지하는 담체를 포함하고, 상기 담체는 활성산소에 의해 분해되는 고분자인, 나노 구조체가 부착된 면역세포를 제공한다.
본 발명에서 면역세포(Immunocyte)는 인체에서 면역 작용에 관여하는 모든 종류의 세포를 말한다. 예를 들어, 상기 면역세포는 T세포, B세포, NK세포 또는 조혈전구세포일 수 있다.
본 발명에서 상기 면역 세포는 나노 입자가 접합된 세포이며, 생체 내에서 투여될 때 일반적으로 표적 부위에 작용할 수 있다. 적합한 표적 세포는 그들의 귀소 잠재력(homming potential), 세포 표면 단백질의 표현형 등에 따라 달라질 수 있다.
본 발명에서 면역 세포는 혈관으로부터 유출되어 표적 조직 또는 기관으로 들어갈 수 있으며, 유핵 면역 세포를 포함할 수 있다. 예를 들어, 상기 면역세포가 정맥 내 주사에 의해 투여되는 경우에 혈관으로부터 유출되어 표적 조직 또는 기관으로 들어갈 수 있다.
본 발명에서 T 세포는 흉선에 의해 생성 또는 처리되고 면역 반응에 적극적으로 참여하는 유형의 림프구를 말한다. T 세포는 세포 표면에 T 세포 수용체 (TCR)가 존재함으로써 B 세포 및 자연 살해 세포 (NK 세포)와 같은 다른 림프구와 구별 될 수 있다.
본 발명에서 상기 T세포는 CD8+ T세포(세포 독성 T 세포), CD4+ T세포(헬퍼 T 세포), 기억 T 세포, 억제자 T 세포(suppressor T 세포), 자연 살해 T 세포 (NK T 세포), 입양전달 T세포, 조절 T세포(regulatory T cell) 또는 키메라 항원 수용체 T세포일 수 있다.
본 발명에서 T 세포는 키메라 항원 수용체 (CAR)를 발현하도록 조작 될 수 있다. 예를 들어, 상기 CAR는 항원 결합 도메인, 공동 자극 도메인 또는 CD3 신호 전달 도메인을 포함할 수 있다.
본 발명에서 상기 조혈전구세포는 뮤린 계통 음성, Sca-1- 양성 및 c- 키트 양성 세포 및 이들의 인간 대응 세포(human counterparts)를 포함할 수 있다.
본 발명에서 상기 면역세포는 세포막 상에 특이적 단백질을 가질 수 있다. 예를 들어, 상기 특이적 단백질은 세포 표면 수용체 (Cell surface receptors)일 수 있다.
본 발명에서 세포 표면 수용체 (예: 막 관통 수용체)는 세포와 세포 외 환경 사이의 통신을 매개하는 단백질을 말한다. 예를 들어, 세포 표면 수용체는 면역세포의 세포막 상에 존재하는 수용체로서, 세포 밖의 물리적 작용이나 물질을 받아들여 세포 내에서 특이한 반응을 일으킬 수 있다.
본 발명에서 상기 면역세포의 막 표면에 위치하는 세포 표면 수용체는 면역세포로 내재화되지 않을 수 있다.
본 발명에서 세포 표면 수용체 (예를 들어, CD45)는 동족 리간드 (예를 들어, 항 CD45 항체)와 결합하여 24 시간 이상 면역 세포 표면에 남아있을 수 있으며, 내재화되지 않을 수 있다.
본 발명에서 세포 표면 수용체 (예를 들어, CD45)를 발현하는 면역세포 (예를 들어, T 세포)에 연결된 나노젤 또는 나노입자의 50 % 이상 (또는 50 % 이상)은 세포 표면 (즉, 내부화되지 않음) 최소 24 시간 동안 내재화되지 않을 수 있다.
본 발명에서 세포 표면 수용체는 OX40, CD28, GITR, VISTA, CD40, CD3, CD45 또는 CD137 등일 수 있다.
본 발명에서 세포 표면 수용체는 CD45일 수 있다. 상기 CD45는 T 세포 및 B 세포를 활성화시킬 수 있다.
본 발명에서 CD45를 발현하는 면역세포는 리간드 (예를 들어, 항 CD45 항체)를 함유하는 나노 구조체의 표면에 연결되거나 결합할 수 있다.
본 발명에서 세포 표면 수용체는 인간 CD45 수용체일 수 있다.
본 발명에서 세포 표면 수용체 (예를 들어, CD45)는 동족 리간드 (예를 들어, 항 CD45 항체)와 결합하여, 나노 구조체와 면역 세포를 안정적으로 결합하도록 할 수 있다.
본 발명에서 리간드는 다른 분자에 결합하는 모든 분자일 수 있다. 예를 들어, 리간드는 항체, 항체 절편(scFv), 압타머 또는 저분자 화합물 등일 수 있다.
본 발명에서 항체는 단일 클론 항체 또는 다중 클론 항체일 수 있다. 본 발명에서 항체는 인간 항체 또는 인간화 항체일 수 있다.
본 발명에서 리간드는 항체일 수 있으며, 예를 들어 항 CD45 항체일 수 있다. 구체적으로 단일 클론 항체 또는 다중 클론 항체일 수 있고, 인간 항체 또는 인간화 항체일 수 있다.
본 발명에서 상기 항체는 모노클로날 항 CD45 항체일 수 있다.
본 발명에서 표적지향 유도체란 리간드의 일부에 화학적 유도체가 결합한 상태일 수 있다. 상기 화학적 유도체는 예를 들어 카테콜 유도체 또는 DSPE-PEG-Maleimide 일 수 있다.
본 발명에서 유도체란 화합물의 일부에 다른 화합물이 화학적으로 결합한 상태를 말한다. 예를 들어, 카테콜의 일부에 화합물이 결합한 카테콜 유도체일 수 있다 (도 2 참조).
본 발명에서 상기 항체 또는 압타머는 카테콜 유도체가 결합된 항체 또는 카테콜 유도체가 결합된 압타머 형태일 수 있다.
본 발명에서 상기 항체 또는 압타머는 DSPE-PEG-Maleimide (화학식 1 참조) 또는 이의 유도체와 화학적 결합으로 결합된 항체 또는 DSPE-PEG-Maleimide 또는 이의 유도체와 화학적 결합으로 결합된 압타머 형태일 수 있다.
[화학식 1]
Figure PCTKR2020019375-appb-img-000001
본 발명에서 리간드로 사용되는 항체는 면역세포와 나노 구조체를 연결하기 위해서 CD45 표적 리간드로 사용하는 항체에 먼저 카테콜을 결합한 후 나노 구조체에 결합된 상태일 수 있다.
본 발명에서 리간드로 사용되는 압타머는 면역세포와 나노 입자를 연결하기 위해서 CD45 표적 리간드로 사용하는 압타머에 먼저 카테콜을 결합한 후 나노입자에 결합된 상태일 수 있다.
본 발명에서 리간드로 사용되는 항체는 면역세포와 나노 구조체를 연결하기 위해서 CD45 표적 리간드로 사용하는 항체에 먼저 DSPE-PEG-Maleimide를 결합한 후 나노 구조체에 결합된 상태일 수 있다.
본 발명에서 리간드로 사용되는 압타머는 면역세포와 나노 입자를 연결하기 위해서 CD45 표적 리간드로 사용하는 압타머에 먼저 DSPE-PEG-Maleimide를 결합한 후 나노입자에 결합된 상태일 수 있다.
본 발명에서 리간드로 사용되는 압타머는 지질과 결합된 상태일 수 있다. 예를 들어, 상기 압타머는 DSPE-PEG또는 DSPE-PEG-Maleimide와 결합된 상태일 수 있다. 다만, 이에 제한되지 않는다.
본 발명에서 저분자 화합물은 당류(올리고당), 아미노산(올리고펩티드), 지방산으로부터 생성되는 글리세리드 또는 이들 유도체 중에서 분자량이 1,000 Da 이하인 화합물을 말한다.
본 발명에서 상기 저분자 화합물은 면역세포는 세포막 상에 특이적 단백질과 결합할 수 있다.
본 발명에서 상기 리간드는 말단에 3, 4 - 다이하이드록시하이드로시나믹 산(3, 4 - Dihydroxyhydrocinnamic acid)이 도입되어, 상기 나노 구조체는 상기 산의 카르복시기와 상기 나노구조체의 아미노기의 반응으로 결합된 상태일 수 있다.
본 발명에서 카테콜(catechol)은 3, 4 - 다이하이드록시하이드로시나믹 산(3, 4 - Dihydroxyhydrocinnamic acid)일 수 있으며, 단백질 상의 아민(amine)에 결합할 수 있다. 이러한 카테콜이 결합된 단백질을 일반적으로 카테콜화 단백질(catecholized protein)이라 한다.
상기 카테콜화 단백질은 단백질의 화학적 변형이 없어, 단백질의 활성 감소를 최소화 할 수 있으며, 우수한 약리학적 효과를 갖을 수 있다. 또한, 생체 내에서 균일한 생물학적 효능을 가지며 단백질 약물의 생체 내 효능 및 안정성을 증가시킬 수 있다.
본 발명에서 나노 구조체(Nanostructures)는 일반적으로 1000 nm 미만, 예를 들어 500 nm 미만, 250 nm 미만 또는 100 nm 미만의 입경을 갖는 미세 구조체를 말한다.
본 발명에서 상기 나노 구조체는 면역 세포에 리간드를 통해 직접적으로 접합되거나, 카테콜과 리간드가 결합된 형태로 접합될 수 있다. 예를 들어, 상기 리간드는 말단에 3, 4 - 다이하이드록시하이드로시나믹 산(3, 4 - Dihydroxyhydrocinnamic acid)이 도입되어, 상기 나노 구조체는 상기 산의 카르복시기와 상기 나노구조체의 아미노기의 반응으로 결합된 상태일 수 있다.
본 발명에서 카테콜이 결합된 리간드를 통해 나노구조체와 면역세포가 결합하는 경우, 과산화수소 환경에서 활성 물질이 자유형태(free form)로 방출될 수 있다. 이에 따라, 활성 물질이 원래의 활성을 나타낼 수 있고, 그 종류에 따라 기능할 수 있다.
본 발명에서 나노 구조체는 용액 또는 세포 표면에서 나노 구조체를 안정화시키거나 나노 구조체와 면역세포 표면 사이의 상호 작용을 증가시키는 화합물을 포함할 수 있다. 예를 들어, 상기 상호 작용을 증가시키는 화합물은 프로타민, 키토산, 탄수화물, 헤파 란-설페이트 프로테오글리칸, 천연 중합체, 다당류, 덱스트레이머, 셀룰로오스, 피브로넥틴, 콜라겐, 피브린 또는 프로테오글리칸일 수 있다.
본 발명에서 나노 구조체는 나노젤 또는 나노입자를 포함한다.
본 발명에서 나노젤은 분해 가능한 링커를 통해 서로 가교된 (예를 들어, 가역적으로 및 공유적으로 가교된) 복수의 활성 물질로 이루어질 수 있다.
상기 나노젤의 활성 물질은 분해 가능한 링커 (예: BRAP)를 통해 가역적으로 가교될 수 있다. 특정 생리학적 조건에서 링커는 분해될 수 있으며, 손상되지 않은 생물학적 활성 물질을 방출할 수 있다.
상기 나노젤의 활성 물질은 분해 가능한 링커를 통해 작용기에 가역적으로 연결될 수 있으며, 특정 생리학적 조건 하에서 링커가 분해되어, 손상되지 않은 생물학적 활성 물질을 방출할 수 있다.
본 발명에서 나노젤은 하나 이상의 활성 물질 및 이들을 연결하는 링커를 포함하여 이루어질 수 있으며, 활성산소에 의해 분해될 수 있다.
본 발명에서 나노젤은 활성 물질 A와 활성 물질 B의 조합을 포함할 수 있다. 예를 들어, 상기 활성 물질 A는 활성 물질 A에 연결되거나, 링커에 연결되거나, 활성 물질 B에 연결될 수 있고, 상기 활성 물질 B는 활성 물질 A에 연결되거나, 링커에 연결되거나, 활성 물질 B에 연결될 수 있다.
본 발명에서 활성 물질은 임의의 말단 또는 내부 -NH 작용기 (예를 들어, 리신의 측쇄) 등을 통해 분해 가능한 링커에 연결 (예를 들어, 공유 결합 등) 될 수 있다.
본 명세서에서 링커란 활성 물질을 연결하는 화합물일 수 있다. 상기 링커는 특정 생리학적 조건에서 분해될 수 있다.
본 발명에서 링커 말단에 니트로페닐 유도체 또는 숙시네이트 유도체가 결합된 상태의 링커는, 그렇지 않은 경우에 비해 결합의 분해 속도 및 자유 형태의 단백질로 전환하는 속도가 빠를 수 있다.
상기 링커는 BRAP 기반의 링커, 싸이오키탈 기반의 링커, 셀레늄 기반의 링커 등일 수 있다.
본 발명에서 상기 BRAP 기반의 링커, 싸이오키탈 기반의 링커 또는 셀레늄 기반의 링커는 활성산소에 의해 분해될 수 있다. 예를 들어, 상기 BRAP 기반의 링커, 싸이오키탈 기반의 링커 또는 셀레늄 기반의 링커는 과산화수소(H 2O 2)에 의해 분해될 수 있다.
본 명세서에서 BRAP란 (4 - (hydroxymethyl)phenyl)boronic acid)를 기반으로 제작된 하기 화학식 2의 양 말단 알코올 화합물로써 n= 0 내지 2 의 알킬기를 갖는 구조를 갖는 화합물로, H 2O 2에 의해 특이적으로 분해될 수 있다.
[화학식 2]
Figure PCTKR2020019375-appb-img-000002
상기 BRAP링커는 높은 레벨의 H 2O 2에 의해 산화되어, H 2O 2 매개 산화적 스트레스와 손상을 감소시킬 수 있다. 또한 H 2O 2 매개 산화에 의해 BRAP로부터 유리 HBA를 생성되어, 산화적 스트레스 하에 조직에서 내인성 항산화 및 항염증 활성을 나타낼 수 있다.
[반응식 1]
Figure PCTKR2020019375-appb-img-000003
본 발명에서 BRAP는 H 2O 2가 과생산되는 경우 H 2O 2의 레벨을 효과적으로 낮출 수 있으며, 정상적인 생리적 상태에서는 H 2O 2 억제 효과를 나타내지 않을 수 있다.
본 발명에서 BRAP는 암세포 및 종양조직 주변에서 고농도를 나타내는 H 2O 2 환경에서 선택적으로 분해되어 활성 물질을 유리시킬 수 있다. 단백질과 반응한 후 생성되는 boronated dinitrophenyl carbamate는 BRAP의 boronate가 H 2O 2와 반응한 후 빠른 속도의 1,6-elimination 반응을 하여 carbamate가 빨리 끊어지게 할 수 있다. 그 결과, 단백질이 가지고 있는 본래의 amine으로 전환되는 속도가 더 빠를 수 있다.
본 발명에서 상기 BRAP는 수 시간 내에 50% 이상 분해될 수 있으며, 예를 들어, 24시간 내에 90% 이상 분해될 수 있다.
본 발명에서 BRAP 및 BRAP의 분해산물인 HBA는 ROS생성을 억제할 수 있다.
본 발명에서 BRAP 및 BRAP의 분해산물인 HBA는 항세포자멸사 및 항염증 특성을 가지며, 절단된 caspase-3 및 TNF-α 단백질 발현의 억제 효과를 가질 수 있다.
본 발명에서 BRAP는 니트로페닐 유도체가 결합된 BRAP일 수 있다. 본 발명의 일 실시예에서는, 단백질과 결합하기 위해 BRAP 양쪽 말단에 nitrophenyl 유도체가 결합하여 boronated dinitrophenyl carbonate 형태를 가질 수 있다. nitrophenyl 유도체는 활성 단백질의 amine과 결합할 수 있다.
본 발명에서 BRAP 말단에 니트로페닐 유도체가 결합된 상태의 링커는 단백질과 반응하여 carbonate 형태로 연결될 수 있다. Carbonate 형태로 연결된 경우, 그렇지 않은 경우에 비해 결합의 분해 속도 및 자유 형태의 단백질로 전환하는 속도가 빠를 수 있다.
본 발명에서 4-하이드록시벤질알콜(4-hydroxybenzyl alcohol, HBA)이란 페놀성 화합물로서, 페놀 하이드록실 그룹으로 인하여 슈퍼옥사이드(superoxide) 및 하이드로실 라디칼에 대한 강력한 소거제(scavenger) 역할을 할 수 있다.
본 발명에서 HBA는 허혈성 뇌손상(ischemic brain injury), 관상 심장병(coronary heart disease)과 같은 산화적 손상에 관련된 질병에 대한 치료 효과를 가질 수 있다. 또한, 항산화 효능 및 염증 치료 효과를 가질 수 있다.
싸이오케탈(Thioketal)은 산소 중 하나가 황으로 대체된 케탈의 황 유사체를 말하며, 디싸이오케탈(dithioketal)은 산소 두개가 황으로 대체된 케탈 황 유사체를 말한다(화학식 3 참조).
[화학식 3]
Figure PCTKR2020019375-appb-img-000004
본 발명에서 싸이오케탈은 니트로페닐 유도체 또는 숙시네이트 유도체가 결합된 싸이오케탈일 수 있다.
상기 싸이오케탈은 높은 레벨의 H 2O 2에 의해 산화되어 분해될 수 있으며, H 2O 2 매개 산화적 스트레스와 손상을 감소시킬 수 있다.
본 발명에서 상기 싸이오케탈은 수 시간 내에 50% 이상 분해될 수 있으며, 예를 들어, 24시간 내에 90% 이상 분해될 수 있다.
본 발명에서 셀레늄 기반의 링커는 셀레늄 또는 셀레나이드 (Selenide)를 포함할 수 있다.
상기 셀레늄 기반의 링커는 니트로페닐 유도체 또는 숙시네이트 유도체가 결합된 상태일 수 있다.
상기 셀레늄 기반의 링커는 높은 레벨의 H 2O 2에 의해 산화되어 분해될 수 있으며, H 2O 2 매개 산화적 스트레스와 손상을 감소시킬 수 있다.
본 발명에서 상기 셀레늄 기반의 링커는 수 시간 내에 50% 이상 분해될 수 있으며, 예를 들어, 24시간 내에 90% 이상 분해될 수 있다.
본 발명에서 나노입자는 하나 이상의 활성 물질 및 이들을 담지하는 담체를 포함할 수 있다. 예를 들어, 나노입자는 무작위 방식으로 배열된 하나 이상의 고분자 중합체인 담체로 구성될 수 있다.
본 발명에서 나노입자는 폴리에틸렌 글리콜 (PEG)을 포함할 수 있다. 상기 PEG는 분자량이 1 내지 2, 2 내지 3, 3 내지 4, 4 내지 5, 5 내지 6, 6 내지 7, 7 내지 8, 8 내지 9 또는 9 내지 10 kD일 수 있다.
본 발명에서 나노입자는 생분해성일 수 있으며, 예를 들어 생체 내의 H 2O 2 환경에서 점진적으로 분해될 수 있다. 예를 들어, 활성 물질이 나노입자 전체에 분산되어 있는 경우 나노입자의 가장 바깥쪽 층이 분해될 수 있으며, 나노입자 내의 기공이 확대됨에 따라 내부의 활성 물질이 방출될 수 있다.
상기 담체는 약물, 효소, 다른 단백질 및 펩티드, DNA 및 RNA 단편과 같은 물질 담지하고 보호하는데 유용하게 사용될 수 있다. 담체는 친수성 분자와 소수성 분자를 모두 적재 할 수 있으며, 약물 전달 시스템으로 사용될 수 있다.
본 발명에서 담체란 활성 물질의 담지 또는 전달 용도로 사용될 수 있는 것이라면 제한 없이 사용될 수 있다. 예를 들어, 상기 담체는 보로네이티드 말토덱스트린(Bronated maltodetrin, BM) 또는 이의 공중합체로 만들어질 수 있다 (화학식 4 참조).
[화학식 4]
A-M
상기 화학식 4에서 A는 하기 화학식 A1 내지 A3 중 선택되는 하나 이상일 수 있다.
[화학식 A1]
Figure PCTKR2020019375-appb-img-000005
[화학식 A2]
Figure PCTKR2020019375-appb-img-000006
[화학식 A3]
Figure PCTKR2020019375-appb-img-000007
상기 화학식 4 및 화학식 A1 내지 A3에서 R1, R2, R3, R4, R5 및 R6은 독립적으로 수소, C1-3의 알킬기, C2-3의 알케닐기 또는 C6의 아릴기이고, M은 OH기를 갖는 고분자로서 분자 내에 존재하는 OH기 중 적어도 하나를 통해 A와 -O- 결합으로 연결될 수 있다.
상기 화학식 4의 화합물은, 예를 들어 하기 화학식 5 내지 11 중 어느 하나의 화합물일 수 있거나 M의 OH에 모두 결합된 화합물이다.
[화학식 5]
Figure PCTKR2020019375-appb-img-000008
[화학식 6]
Figure PCTKR2020019375-appb-img-000009
[화학식 7]
Figure PCTKR2020019375-appb-img-000010
[화학식 8]
Figure PCTKR2020019375-appb-img-000011
[화학식 9]
Figure PCTKR2020019375-appb-img-000012
[화학식 10]
Figure PCTKR2020019375-appb-img-000013
[화학식 11]
Figure PCTKR2020019375-appb-img-000014
상기 화학식 A1 내지 A3 중 어느 하나로 표시되는 치환기는 아래 반응식 2의 메커니즘을 통해 과산화수소와 반응하여 퀴논 메타이드와 이산화탄소를 생성하고, 퀴논 메타이드는 물과 추가적으로 반응하여 p-하이드록시벤질 알코올(HBA)를 생성할 수 있다.
[반응식 2]
Figure PCTKR2020019375-appb-img-000015
본 명세서의 반응식 및 화학식에서, n은 10 내지 2000일 수 있다.
본 발명의 BM 담체의 입경은 1000 nm 미만, 예를 들어 500 nm 미만, 250 nm 미만 또는 100 nm 미만일 수 있다.
본 발명에서 BM은 불용성의 고분자를 나노 구조체로 제조할 때 활성 물질을 내부에 담지할 수 있다. 예를 들어, BM은 내부에 BSA, 싸이토카인 또는 소수성 화합물을 담지할 수 있다.
본 발명에서 활성 물질은 나노 구조체가 부착된 면역세포를 사용하고자 하는 목적에 맞추어 사용될 수 있다.
본 발명에서 활성 물질은 항염 또는 항암 치료 효과를 나타내는 것일 수 있다. 예를 들어, 상기 치료 효과를 가지는 단백질 또는 소수성 화합물일 수 있다.
본 발명에서 상기 활성 물질은 항균제, 항 바이러스제, 항 기생충 제, 항진균제 및 항 미코 박테리아제일 수 있다.
본 발명에서 상기 나노 구조체로부터 활성 물질의 방출은 2주 내지 3주, 1주 내지 2주, 4일 내지 6일, 1일 내지 3일, 1시간 내지 24시간 또는 1 시간 미만에 걸쳐 일어날 수 있다.
본 발명에서 활성 물질은 단백질을 포함하며, 예를 들어 활성 단백질일 수 있다.
본 발명에서 활성 단백질은 나노 구조체에 포함되는 단백질을 말한다. 예를 들어, 링커에 의해서 연결되어 나노젤을 형성하거나 담체에 의해 담지되어 나노입자에 포함되는 단백질일 수 있다.
본 발명에서 활성 단백질은 항체, 단일 사슬 항체, 항체 단편, 효소, 보조 인자, 전사 인자 및 기타 조절 인자, 일부 항원, 백신, 약물, 효소, 항체, 보체, 사이토카인 또는 케모카인 등일 수 있다.
본 발명에서 상기 활성 단백질은 면역 조절 단백질 (예를 들어, 면역 자극 또는 면역 억제 단백질)일 수 있다. 상기 면역 조절 단백질은 단독으로 또는 다른 것과 조합하여 투여되는 대상체에서 면역 반응 (기존 면역 반응의 향상 또는 감소 포함)을 조절 (예를 들어, 자극 또는 억제)하는 단백질일 수 있다. 예를 들어, 면역 조절 단백질은 PD-L1, CTLA-4, IL-10 또는 TGF-β일 수 있다.
본 발명에서 상기 활성 단백질은 면역 자극 단백질일 수 있다. 상기 면역 자극 단백질은 단독으로 또는 다른 단백질 또는 제제와 조합하여 투여되는 대상체에서 면역 반응을 자극하는 (기존 면역 반응의 향상 포함) 단백질일 수 있다.
상기 백신은 약독화 백신 또는 불활성 백신으로 나뉘며, 예를 들어, 바이러스, 세균, 약독화 생균백신, 톡소이드 또는 세포분획백신일 수 있다.
상기 약물은 항암제, 항염증제, 항알러지제, 항바이러스제 또는 항아토피치료제 등 일 수 있다. 상기 효소는 활성산소 제거효소, DNA 광회복효소, 글루코실라아제, DNA 중합효소, DNA 연결효소, 또는 파스카제-8 효소일 수 있다. 이에 제한되는 것은 아니다.
상기 항체는 IgG, IgA, IgM, IgD 또는 IgE일 수 있으며, 또한 이중항체일 수 있다. 이중항체란 두 개의 서로 다른 항체에서 기원한 항원결합단편으로 구성된 단백질을 말한다. 다만, 이에 제한되는 것은 아니다.
상기 사이토카인은 인터루킨, 인터페론, 종양괴사인자, 전환성장인자, 면역억제인자 또는 과립구 대식세포 콜로니 자극 인자(FLT3)일 수 있다.
상기 인터루킨은 IL-1 α, IL-1 β, IL2, IL-4, IL-5, IL6, IL7, IL12, IL15, IL-15-Sa, IL17, IL18, IL21 또는 IL-23으로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 제한되지 않는다. 상기 IL-15-Sa는 이량체 IL-15ROSu/Fc 및 2 개의 IL-15N72D 분자 형태로 존재할 수 있다.
상기 인터페론은 IFN-γ 또는 IFN-α일 수 있으나, 이에 제한되지 않는다.
상기 종양괴사인자 (Tumor necrosis factor, TNF)는 종양괴사인자-α 또는 종양괴사인자-β일 수 있으며, 상기 전환성장인자 또는 면역억제인자는 TGF-α 또는 TGF-β일 수 있다.
본 발명에서 TGF-β의 경우 면역을 억제하는 기능을 할 수 있다. 이 때, 면역억제 T세포 (regulatory T cell)를 이용하여 면역억제 효과를 증폭시킬 수 있다. 이를 통해, 자가면역질환에 유용하게 활용 될 수 있다.
보체(complement system)는 생물의 병원체를 제거하기 위해 면역 작용과 식작용의 기능을 보완하는 물질일 수 있다.
본 발명에서 상기 활성 단백질은 -NH 2 작용기를 가질 수 있다. 예를 들어, 활성 단백질은 -NH 2 작용기를 가지는 사이토카인, 백신, 약물, 효소, 항체 또는 보체 등일 수 있다.
본 발명에서 활성 단백질은 항염 또는 항암 치료 효과를 나타내는 것일 수 있다.
본 발명에서 소수성 화합물은 항염 또는 항암 치료 효과를 나타내는 것일 수 있다. 예를 들어, 상기 소수성 화합물은 고형암 또는 혈액암 치료 효과를 나타내는 것일 수 있다.
본 발명에서 상기 항암용 소수성 화합물은 세포독성항암제, 표적항암제 또는 면역관문억제제일 수 있다.
본 발명에서 상기 소수성 화합물은 소수성 항암제, 소수성 항염증제일 수 있다.
본 발명에서 상기 소수성 항암제는 엘로티닙(erlotinib), 파클리탁셀(paclitaxel) 및 소라페닙(Sorafenib) 중 어느 하나 이상을 포함하는 것일 수 있다. 다만, 소수성을 띄며 항암 효과를 가지는 것이라면 제한 없이 이용될 수 있다.
본 발명에서 활성산소(Reactive Oxygen Species, ROS)는 산소를 포함하는 화학적으로 활성화된 분자를 말하며, 산소이온, 슈퍼옥사이드(superoxide) 및 퍼옥사이드(peroxide)를 포함한다. 활성산소는 예를 들어, 과산화수소일 수 있다.
상기 활성 산소는 외상 또는 장기의 손상 시 생성될 수 있으며, 특히 암 세포 및 종양 조직 주변에서 과산화수소 농도가 높을 수 있다.
산화적 스트레스로 인한 손상은 항산화 방어물에서의 감소와 동시에 산소화 종의 생성이 증가할 때 일어나며, 결국 활성산소종(ROS)의 징후가 유발된다. 이것은 세포 방어 시스템을 제압하고 나중에 결국 정상적인 세포기능에 손상을 입혀 사멸로 유도될 수 있다.
본 발명에서 상기 화합물은 치료적인 활성의 시간적 및 공간적 조건으로 바람직한 약학적인 효과를 제공할 수 있다. 상기 화합물은 타겟영역 특정과 자극 민감성이 있는데, 이것은 상기 화합물의 효과를 향상시키고 동시에 바람직하지 않은 부작용을 감소시킬 수 있다. 비록 대부분의 ROS가 극단적으로 짧게 생존하긴 하지만, H 2O 2 는 생산된 가장 안정한 ROS 일 수 있다.
본 발명에서 H 2O 2의 농도가 산화적 스트레스 동안 높은 수준으로 축적되는 경우 세포손상을 유발할 수 있다. 이 때, BRAP가 H 2O 2와 반응하여 병리적으로 과생산된 H 2O 2에 의해 특이적으로 활성화되어 항염 또는 항암 효과를 나타낼 수 있다.
본 발명의 나노 구조체가 부착된 면역세포의 활성을 높이기 위해 하기와 같이 나노 구조체, 면역세포, 링커 또는 담체 및 활성 물질을 혼합할 수 있다.
본 발명에서 링커와 활성 물질은 중량 기준으로 1000:1 내지 1:1000, 100:1 내지 1:100의 비율로 혼합될 수 있다.
본 발명에서 담체와 활성 물질은 중량 기준으로 1000:1 내지 1:1000, 100:1 내지 1:100의 비율로 혼합될 수 있다.
또한 나노 구조체와 면역세포는 중량 기준으로 1000:1 내지 1:1000, 100:1 내지 1:100의 비율로 혼합될 수 있다.
본 발명은 나노 구조체가 부착된 면역세포를 포함하는 항염증제에 관한 것이다.
본 발명은 나노 구조체가 부착된 면역세포를 포함하는 항암제에 관한 것이다.
본 발명은 나노 구조체가 부착된 면역세포를 포함하는 활성 물질 전달체에 관한 것이다.
본 발명의 나노 구조체가 부착된 면역세포는 항염증 효과를 지닐 수 있다. 예를 들어, 나노 구조체가 부착된 면역세포를 포함하는 항염증제 형태로 사용될 수 있다.
본 발명은 암 또는 염증의 치료를 위한 나노 구조체가 부착된 면역세포에 관한 것이다.
본 발명은 암 또는 염증의 치료에 사용하기 위한 나노 구조체가 부착된 면역세포의 용도에 관한 것이다.
본 발명은 항암제 또는 항염증제의 제조에 있어서의 나노 구조체가 부착된 면역세포의 용도에 관한 것이다.
본 발명은 나노 구조체가 부착된 면역세포를 포함하는 약학 조성물에 관한 것이다.
상기 약학 조성물은 약제학적으로 허용되는 양으로 대상체에게 투여될 수 있다. 용어 "약제 학적으로 허용되는"은 활성 물질 (예를 들어, 나노 구조체의 활성 단백질)의 생물학적 활성의 효과를 방해하지 않는 무독성 물질을 의미한다. 이러한 조성물은 일부 실시 양태에서 염, 완충제, 방부제 및 임의로 다른 치료제를 함유할 수 있다.
본 발명의 약학 조성물의 바람직한 복용량은 환자의 상태 및 체중, 병의 종류, 약의 형태, 투여경로, 투여기간에 따라 달라지고, 당업자에 의해 적합하게 선택될 수 있다. 바람직한 효과를 위하여, 본 발명의 상기 약학 조성물은 0.01-100mg/kg/day에서 복용될 수 있다. 상기 조성물은 하루에 한번 또는 여러 번에 걸쳐 투여될 수 있다.
본 발명은 나노 구조체가 부착된 면역세포의 치료적인 유효량을 대상에게 투여하는 단계를 포함하는 암 또는 염증 치료 방법에 관한 것이다.
상기 치료 방법은 이를 필요로 하는 치료대상에서 염증 또는 활성산소종과 관련한 질환을 예방하거나 치료하는 방법을 포함할 수 있다. 상기 방법은 본 발명의 보로닉에스터(boronic esters)의 치료적으로 효과적인 양을 치료 대상에게 투여하는 것을 포함하며, 상기 에스터(esters)는 치료대상의 신체 내에서 항염증 및/또는 항산화 화합물을 방출하기 위해 부분적으로 분해될 수 있다.
상기 치료 방법은 치료대상의 적어도 한 신체 부위에서 활성산소종(ROS)의 형성을 예방하거나 억제하는 방법을 포함하며, 상기 방법은 본 발명의 보로닉에스터(boronic esters)의 치료적으로 효과적인 양을 치료대상에게 투여하는 것을 포함하며, 상기 에스터(esters)는 치료대상의 신체 내에서 항염증 및/또는 항산화 화합물을 방출될 수 있다. 이를 통해 치료대상의 적어도 한 신체 부위에서 ROS의 형성이 예방되거나 억제될 수 있다.
본 발명의 나노구조체가 부착된 면역세포를 포함하는 약제는 충진제(filler), 증량제(extender), 바인더, 습윤제, 붕해제(disintegrants) 또는 계면활성제와 같은 일반적으로 사용되는 희석액 또는 부형제로 제조될 수 있다. 경구 투여를 위한 고형 제형들은 정제, 환제(pills), 가루, 과립 또는 캡슐을 포함하고, 이와 같은 고형 제형들은, 또한 조성물에 더하여, 적어도 하나의 부형제, 예를 들어, 전분, 탄산칼슘, 수크로오즈(sucrose), 젖당(lactose) 또는 젤라틴(gelatin)을 포함한다. 단일 부형제에 더하여, 마그네슘 스테아르산염 또는 탈크와 같은 윤활제 또한 사용될 수 있다. 경구 투여를 위한 액체 제형은 서스펜션(suspension), 용액, 에멀젼(emulsion) 및 시럽을 포함하고, 다양한 부형제, 예를 들어, 습윤제, 방향제(flavoring agents), 향료(aromatics) 및 보존제를 포함할 수 있고, 덧붙여 단일 희석액으로 자주 사용되는 물과 액체 파라핀을 포함할 수 있다.
비경구투여를 위한 제형은 살균된 수용액(sterilized aqueous solutions), 비수용액(non-aqueous solutions), 서스펜션(suspension), 에멀젼(emulsion), 동결건조 제제 및 좌약을 포함할 수 있다. 비수용매(non-aqueous solvents) 또는 서스펜션화제(suspending agents), 프로필렌 글리콜(propylene glycol), 폴리에틸렌 글리콜(polyethylene glycol), 올리브오일과 같은 식물오일 또는 에틸 올레산(ethyl oleate)과 같은 주사가능한 에스터(esters)가 사용될 수 있다. 좌약의 기제로서, witepsol, Macrogol, Tween61, cacao butter, laurin fat, 또는 glycerogelatin이 사용될 수 있다.
본 발명의 나노구조체가 부착된 면역세포를 포함하는 약제는 다양한 경로에 의해 치료대상에게 투여될 수 있다. 투여의 모든 방식은 예를 들어, 경구, 직장, 또는 정맥, 근육 내, 피하, 진피, 자궁 내, 경막 또는 뇌실 내 주사 등으로 투여될 수 있다.
기타 나노 구조체가 부착된 면역세포에 대한 세부적인 내용은 상기 설명된 내용과 같다.
본 발명은 4-(5-(하이드록시메일)-5-메틸-1,3,2-디옥사보리난-2-일) 페닐 메탄올 (BRAP) 말단에 니트로페닐 유도체 또는 숙시네이트 유도체가 결합하여 이루어지는 화합물을 제공한다.
본 발명에서 상기 BRAP와 니트로페닐 유도체 또는 숙시네이트 유도체가 화학적 결합하여 화합물을 형성할 수 있다. 예를 들어, 4-(5-(하이드록시메일)-5-메틸-1,3,2-디옥사보리난-2-일) 페닐 메탄올 (BRAP) 말단에 니트로페닐 유도체 또는 숙시네이트 유도체가 공유 결합하여 화합물을 형성할 수 있다.
본 발명은 싸이오키탈(Thioketal) 말단에 니트로페닐 유도체 또는 숙시네이트 유도체가 결합하여 이루어지는 화합물을 제공한다.
본 발명에서 상기 싸이오키탈과 니트로페닐 유도체 또는 숙시네이트 유도체가 화학적 결합하여 화합물을 형성할 수 있다. 예를 들어, 싸이오키탈 말단에 니트로페닐 유도체 또는 숙시네이트 유도체가 공유 결합하여 화합물을 형성할 수 있다.
상기 암은 방광암, 유방암, 결장암, 신장암, 간암, 폐암, 난소암, 전립선암, 췌장암, 위암, 경부암, 갑상선암 및 편평세포암종을 포함하는 피부암을 포함하는 암종; 백혈병, 급성 림프성 백혈병, 급성 림프구성 백혈병, B-세포 림프 종, T-세포 림프종, 호지킨스 림프종, 비-호지킨스 림프종, 모발상 세포 림프종 및 버켓 림프종을 포함하는 림프계 조혈모 종양; 급성 및 만성 골수성 백혈병 및 전골 수구 백혈병을 포함하는 골수형의 조혈 종양; 섬유 육종 및 횡문 근육종을 포함하는 간엽 유래 종양; 흑색종, 정상피종, 기형암종, 신경모세포종 및 신경교종을 포함하는 다른 종양; 성상세포종, 신경아세포종, 신경교종 및 신경초종을 포함하는 중추 및 말초 신경 시스템의 종양; 섬유육종, 횡문근육종 및 골육종을 포함하는 중간엽 유래 종양; 및 흑색종, 색소성 건피증, 각화극세포종, 정상피종, 갑상선 여포 상암 및 기형 암종을 포함하는 기타 종양으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 명세서에서 케익 형태란 동결건조시 빵이 부풀어 오르는 형태로 건조되는 형상을 말한다. 예를 들어, 활성 물질이 담지된 BM 나노입자에 부형제 (Mannitol 또는 Sucrose)를 첨가하여 동결 건조하는 경우, 동결 건조되는 모양이 빵이 부풀어 오르는 형태로 건조될 시에 케익 형태라고 할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 상세하게 설명하기로 한다. 이는 본 발명을 보다 상세하게 설명하기 위한 것일 뿐 본 발명의 권리범위가 이에 한정 되는 것은 아니다.
실시예
실시예 1. 과산화수소 감응형 단백질 나노젤을 이용한 세포치료제
1.1. BRAP 기반 과산화수소 감응형 링커 합성
본 발명에서는 BRAP 기반 과산화수소 감응형 링커를 합성하였다. (도 1 참조)
1.1.1. BRAP 합성
4-(hydroxymethyl)phenylboronic acid (2.00g)와 trimethylolethane (1.59g)을 100 mL의 THF에 분산시킨 후, 500mL의 증류수를 넣고 용액이 투명해질 때까지 상온에서 반응시켰다. 다음으로, 회전증발농축기를 이용해 반응 결과물을 증발시킨 뒤 dichloromethane에 녹였다. 마지막으로, 반응하지 않은 4-(hydroxymethyl)phenylboronic acid와 trimethylolethane을 필터를 통해서 완벽히 제거한 후, dichloromethane을 회전증발농축기를 이용해 완벽히 제거한 후, 제조한 결과물을 진공 상태로 보관하였다.
1.1.2. 과산화수소 감응형 링커 합성
BRAP (2.00g)와 p-nitrophenyl chloroformate (3.50g)을 THF 100mL에 녹였다. Ice bath 하에서 용액을 30분동안 플라스크 내의 기체를 질소가스로 치환시켰다. Triethylamine 2.48 mL를 방울 형태로 천천히 떨어뜨리고, 염이 침전된 것을 확인한 후, 하루 동안 반응시켰다. 반응 후 침전된 염을 제거한 후, 회전증발농축기를 이용해, THF를 제거하고, 생성물을 dichloromethane에 다시 녹였다. 증류수와 dichloromethane을 이용해 extraction을 행하였다. MgSO 4 를 이용해, 수분을 완벽히 제거한 후, methanol을 사용해 부산물을 세척함과 동시에 결정을 형성시켰다. 회전증발농축기로 완전히 methanol을 제거하였다. 하루 이상 동결건조기에서 수분을 제거한 후, 진공상태에서 보관하였다. (도 5 참조)
1.2. 단백질 나노젤 제조 및 물리화학적 특성 분석
모델 단백질로 BSA(6.6kda)를 이용하여 나노젤을 제조하였다.
Catechol이 결합된 단백질을 합성한 후 (도 2 참조), 나노젤 표면에 흡착시켜 단백질 나노젤 표면 수식하였다. 이때, Catechol은 단백질 나노젤의 표면에 공유결합이 아닌 van der waals 결합의 물리적 힘에 의해 흡착이 되므로 IL-15의 활성을 저하시키지 않는다. (도 3 참조)
1.2.1. BRAP 기반 과산화수소 감응형 링커를 이용한 단백질 나노젤 제조
BSA를 10 mg/mL의 농도로 PBS (pH 7.4) 용액에 녹여 단백질 용액을 만들고 과산화수소 감응형 링커를 DMSO에 녹여 다양한 농도의 링커 용액을 만들었다. BSA에 대한 링커의 중량비는 5%, 15% 또는 25% 로 고정하였다. 교반 중인 BSA 용액에 insulin syringe를 이용하여 과산화수소 감응형 링커를 한 방울씩 추가하고 3시간 동안 BSA와 링커의 혼합액을 교반시켰다. 생성된 나노젤을 원심 필터 튜브를 이용해, PBS 용액으로 단백질 나노젤을 정제한 후, 냉장 보관하였다. 15% 링커를 사용한 경우 평균 입자크기는 450nm였다. (도 23 참조)
1.2.2. 표면이 수식된 단백질 나노젤 제조
본 Catechol 결합된 BSA를 PBS 용액에 0.2 mg/mL의 농도로 녹였다. BSA 나노젤을 2 mg/mL의 농도로 상온에서 PBS에 분산시켰다. 나노젤 분산액 1 mL을 교반하면서 Catechol-BSA 용액 500 mL를 천천히 한 방울씩 추가하면서 1시간 교반하였다. (도 7 참조)
실시예 2. BM 나노입자를 이용한 세포치료기술
2.1. BM 나노입자의 제조
2.1.1. BM 나노입자 제조 방법
100 mg BM 을 1 mL of THF 에 녹였다. 1 mg of BSA 를 100 μL 증류수 (deionized water) 에 녹였다. BM 용액이 담긴 Vial 에 초음파 (probe type, Fisher Scientific, Sonic Dis-membrator 500, 최대출력 100%)를 가하면서 BSA 용액을 주사기를 이용하여 넣은 후, 초음파 처리를 90초동안 계속하였다. PVA 20 mL이 담긴 비이커에 초음파 처리하면서, 3번의 BSA 분산액을 주사기를 이용하여 넣는다. 초음파 처리를 90초동안 계속하였다. BM/BSA 분산액을 Homogenizer (PRO Scientific, PRO 200, 12,000 rpm)를 이용하여 90초동안 균질화하였다. 회전증발기를 이용하여 THF를 증발시키고 원심분리 (10,000 xg, 6분) 후 상층액을 제거한 후 증류수에 분산하여 미립구를 얻었다. 이 때, 얻어낸 미립구는 액체질소에서 동결 후 건조시켰다.
단백질과 BM의 중량비와 처리 시간에 따른 나노입자의 크기 변화는 다음과 같다 (표 1 참조). BM 나노입자의 단백질 담지율을 0.5 내지 1.0% 로 조절하기 위해, 세포실험 (1X10 6개/mL)에서 BM나노입자를 약 1 내지 5mg/mL의 농도로 처리하였다. (IL15의 함량10ng/Ml 내지 30ng/mL로 제한)
# BM (100mg/mL) BSA (10mg/mL) 초음파
처리
균질화 입자크기 BSA 함량
(BM대비)
비고
1 1 mL 100 mL 40%/60 초 60 초 3 mm 0.045 %
2 3 mL 300 mL 45%/90 초 90 초 1.5 ~ 5 mm 0.045 % 입도 분포 불균일
3 1 mL 100 mL 45%/90 초 90 초 1 mm 0.045 %
4 1 mL 50 mL 45%/90 초 90 초 2 mm 0.035 %
5 1 Ml 100 mL 55%/90 초 90 초 700 nm 0.045 %
6 1 mL 100 mL 45%/120 초 120 초 400 nm ~ 1 mm 0.045 %
7 2 mL 200 mL 55%/120 초 120 초 300 nm ~ 2 mm 0.02 % 입도 분포 불균일
2.1.2. CD45 로 수식된 IL15 담지된 BM 나노입자 제조
이중유화법으로 IL15가 담지된 미립구 제조 후 표면을 CD45로 코팅하고, Catechol이 결합된 Anti CD45를 BM 나노입자에 접합하였다 (도 11 참조).
2.1.3. CD45 aptamer로 표면 수식된 BM 나노입자 제조
이중유화법으로 나노입자를 제조하면서 DSPE-PEG-Anti CD aptamer를 사용하여 미립구의 표면을 수식하고, BSA가 담지된 BM 나노입자의 크기 조절을 하며 실험을 진행하였다. (도 12 참조)
90 mg BM과 10 mg CD45 aptamer를 1 mL of THF 에 녹였다. 1 mg of BSA 를 100 μL 증류수 (deionized water) 에 녹였다. BM-CD45 용액이 담긴 Vial 에 초음파 (probe type, Fisher Scientific, Sonic Dis-membrator 500, 최대출력 100%)를 가하면서 BSA 용액을 주사기를 이용하여 넣은 후, 초음파 처리를 90초동안 계속하였다. PVA 20 mL이 담긴 비이커에 초음파 처리하면서 3번의 BSA 분산액을 주사기를 이용하여 넣은 후, 초음파 처리를 90초동안 계속하였다. BM-CD45/BSA 분산액을 Homogenizer를 이용하여 90초동안 균질화하였다. 회전증발기를 이용하여 THF를 증발시키고 원심분리 후 상층액을 제거한 후 증류수에 분산하여 나노입자를 얻었다.
2.2. W/O/W 또는 S/O/W 방법을 이용한 BM 나노입자의 제조
2.2.1. BM 나노입자의 제조 방법
하기 표 2와 같이 실험을 진행하였다. BM 나노입자 제조 순서는 다음과 같다(도 10 참조). BM 나노입자 내에 담지되는 활성 물질로는 IL-2를 이용하였다.
1) IL-2를 DW에 녹여주었다.
2) BM을 유기용매에 녹여주었다.
3) IL-2용액을 BM용액에 넣고 Rod-type sonicator를 이용하여 40%의 출력으로 1분간 유화시켰다.
4) 유화된 용액을 1분 30초간 균질기를 통해 잘 섞어주었다. (S/O, W/O)
5) 4번 용액을 DSPE-PEG-MAL/PVA(5%) or PVA(5%)용액에 넣고 3,4 과정과 동일한 조건으로 유화시켰다. (S/O/W, W/O/W)
6) PVA 0.5% 용액에 희석 시킨 후 1분 30초간 균질기를 통해 유화시켰다.
7) 유기용매를 제거하고 원심분리(12000RPM/ 10min)를 활용하여 2~3 차례 세척을 진행 한 후 수집하였다.
8) 동결건조를 통해 물을 제거하고, 동결 건조 후 사이즈를 측정하였다.
Type IL-2 DW BM Organic solvent Surfactant solution Remove type
1 W/O/W 0.1mg 0.2ml 25mg 2ml
DCM (in MeOH 5%)
20ml
PVA 5% Solution
Vaccume
2 W/O/W 0.1mg 0.2ml 25mg 2ml
DCM (in MeOH 5%)
20ml
PVA 5% Solution
Vaporation
3 W/O/W 0.1mg 0.2ml 25mg 2ml
DCM (in EtOH 5%)
20ml
PVA 5% Solution
Vaccume
4 W/O/W 0.1mg 1ml 25mg 5ml
DCM (in MeOH 5%)
40ml
PVA 5% Solution
Vaccume
5 W/O/W 0.5mg
BSA
0.1ml 50mg 1ml
DCM (in EtOH 5%)
10ml
PVA 5% Solution
Vaporation
6 W/O/W 0.5mg
BSA
0.1ml 100mg 1ml
DCM (in EtOH 5%)
10ml
PVA 5% Solution
Vaporation
7 S/O/W 0.1mg 0.2ml 25mg 2ml
DMSO (in DCM 20%)
10ml
PVA 5% Solution
Dialysis
8 S/O/W 0.1mg 0.2ml 25mg 2ml
DMSO (in DCM 20%)
10ml
PVA 5% Solution
Vaccume
9 S/O/W 0.05mg 0.1ml 50mg 1ml
THF
10ml
PVA 5% Solution
Vaccume
10 S/O/W 0.05mg 0.1ml 100mg 1ml
THF
10ml
PVA 5% Solution
Vaccume
11 S/O/W 0.45mg 0.1ml 50mg 1ml
THF
10ml
PVA 5% Solution
Vaccume
12 S/O/W 0.45mg 0.1ml 100mg 1ml
THF
10ml
PVA 5% Solution
Vaccume
13 Nanoassemblr 0.1mg 2ml 40mg 2ml
ACT
3ml
PVA 2.5% Solution
Dialysis
14 Nanoassemblr 0.05mg 2ml 40mg 2ml
ACT
3ml
PVA 2.5% Solution
Dialysis
15 Nanoassemblr 0.025mg 2ml 40mg 2ml
ACT
3ml
PVA 2.5% Solution
Dialysis
16 S/O/W 0.1mg
BSA
0.1ml 50mg
FBM
1ml
THF
10ml
PVA 5% Solution
Vaccume
17 W/O/W 0.1mg 1ml 20mg
FBM
5ml
DCM (in THF 5%)
10ml
PVA 5% Solution
Vaccume
18 W/O/W 0.1mg 1ml 20mg
FBM
5ml
DCM (in THF 5%)
10ml
PVA 5% Solution
in DSPE-PEG-Mal 0.5mg
Vaccume
19 S/O/W 0.05mg 0.1ml 50mg
FBM
1ml
THF
10ml
PVA 5% Solution
Vaccume
20 O/W 0 0 25mg 2ml
DMSO (in DCM 20%)
10ml
PVA 5% Solution
Vaccume
21 O/W 0 0 50mg
FBM
1ml
THF
10ml
PVA 5% Solution
Vaccume
2.2.2. W/O/W 방법에 의한 BM 나노입자
상기와 같이 W/O/W 방법에 의해 제조된 0.5% IL-2이 담지된 FBM (± DSPE-PEG-MAL) 나노입자를 SEM 및 DLS로 분석하였다.
그 결과, 나노입자의 형성이 가능하나 필름형태로 대다수 존재하며 약 300 내지 600nm의 크기를 갖는 것을 확인하였다(도 13 참조).
2.2.3. S/O/W 방법에 의한 BM 나노입자
상기와 같이 S/O/W 방법에 의해 제조된 IL-2이 담지된 BM 나노입자를 SEM 및 DLS로 분석하였다.
그 결과, 나노입자의 형성률이 높으며 입자 자체의 크기도 약 200 내지 500nm 수준을 유지하는 것을 확인하였다(도 14 내지 17 참조).
2.3. 제조 장비(Nanoassemblr)를 이용한 BM 나노입자의 제조
나노입자 제조 장비인 Nanoassemblr를 이용하여 Laminar mixing 방법으로 제조된 IL2가 로딩된 BM 나노입자를 제조하였다(도 18 참조).
상기 제조 장비를 이용하여 수용액 상의 PVA나 친수성 분자와 오일(Oil) 상에 BM이나 친유성 분자들이 서로 Laminar mixing을 통해 2개의 상이 서서히 혼합되며 나노입자가 형성된다.
2.3.1. IL-2 0.25% (50ug) 담지된 BM 나노입자
40mg BM을 2mL의 ACT에 녹였다. 50 ug IL-2를 2mL 증류수에 녹였다. 각 3mL 시린지에 충진하여 Laminar mixing을 진행하였다. 이후 3mL를 수취하여 시린지에 충진 후 2.5% PVA 3mL 시린지에 충진하여 Laminar mixing을 진행하였다. 이후 Diaylsis를 이용하여 ACT를 제거시키고 원심분리 (10,000 rpm, 10분) 후 상층액을 제거한 후 증류수에 분산하여 동결 건조하였다.
그 결과, DLS를 통해 약 400nm의 나노입자 크기를 확인할 수 있었으며, SEM 사진 확인 결과 300 내지 400nm의 나노입자가 존재함을 확인할 수 있었다(도 19 참조).
2.3.2. IL-2 0.125% (50ug) 담지된 BM 나노입자
IL-2을 25 ug으로 2mL 증류수에 녹인 것을 제외하고, 상기 실시예 2.3.1.과 같은 방법으로 나노 입자를 제조하였다.
그 결과, DLS를 통해 약 200nm의 나노입자 크기를 확인할 수 있었으며, SEM 사진 확인 결과 200~300nm의 나노입자가 존재함을 확인할 수 있었다(도 20 참조).
2.3.3. IL-2 0.05% (10ug) 담지된 BM 나노입자
(1) IL-2을 10 ug으로 2mL 증류수에 녹인 것을 제외하고, 상기 실시예 2.3.1.과 같은 방법으로 나노 입자를 제조하였다.
그 결과, DLS를 통해 약 170nm의 나노입자 크기를 확인할 수 있었으며, SEM 사진 확인 결과 100 내지 200nm의 나노입자가 존재함을 확인할 수 있었다(도 21 참조).
(2) 상기 (1)에 따라 제조된 IL-2가 담지된 BM 나노입자에 부형제 (Mannitol 또는 Sucrose)를 첨가하여 동결 건조하였다. 부형제(Mannitol 또는 Sucrose)를 첨가함에 따라 케익 형태로 형성이 되는 것을 확인할 수 있었다(도 24 참조).
(3) 상기 (2)에 따라 IL-2가 로딩된 BM 나노입자에 부형제 (Mannitol 또는 Sucrose)를 첨가하고 동결건조 한 후 SEM 이미지를 촬영한 결과, i) 부형제를 처리하지 않은 경우 및 ii) Mannitol을 처리한 경우에 나노입자가 잘 유지됨을 확인할 수 있었다. 반면, Sucrose를 처리한 경우에는 상대적으로 적은 수량의 나노입자가 확인되었다(도 25 참조).
실험예 1. BM 나노입자의 세포 내 활성
하기와 같은 방법으로, FBM, FBM-PEG-Maleimide 5%, FBM-IL2 및 FBM-MAL-IL2 스톡(stock) 2mg/ml을 PBS 하에서 vortex 및 sonication하였다(도 26 참조).
1) cell를 24well에 coverslip 놓고 Seeding.
2) confluency 80 내지 90%일 때 진행.
3) Media 제거.
4) 각 well에 media1ml + 100ug 씩 처리.
5) Incubation (4℃, 37℃).
6) nanoparticle제거, PBS washing.
7) PFA 15분 incubation - PFA제거 후 PBS washing.
8) PBS 제거 후 slide위에 coverslip을 놓고 mounting(with DAPI).
실험예 2. 과산화수소가 없는 조건에서 나노입자의 활성
과산화수소를 처리하지 않은 조건에서 나노입자에 의한 p-STAT5 (Tyr694), p-Erk (Thr202/Tyr204), Cyclin D2 및 β-actin의 발현을 웨스턴 블롯 방법으로 확인하였다.
그 결과를 정량화하여 β-actin으로 normalization하여 하였다. IL-2와 나노입자(FBM 또는 BM)을 세포에 처리한 실험군에서 IL-2 down signaling에 관여하는 p-STAT5(STAT5α의 인산화 형태), p-Erk(Erk의 인산화 형태)의 발현 정도를 측정하였을 때, 대조군 (cell only)에 비해서 IL-2와 나노입자를 처리한 세포에서 그 발현 정도가 증가함을 확인하였다. 반면, Cycline D2는 IL-2 처리 여부와 상관없이 대조군과 비슷한 발현 정도를 보였다.
실험예 3. 인간 T 세포에 나노 입자를 처리 한 후 세포 계수 및 생존력 분석
말레이미드(Maleimide)를 결합시킨 나노입자를 사람의 혈액으로부터 얻은 T 세포에 처리하여 나노입자에 담지(packing)되어 있는 IL-2의 영향을 확인하였다. 실험 시작 후 3시간, 6시간 및 24시간 경과 후의 결과를 확인하였다.
각 시간 별로 세포수는 IL-2가 담지된 나노입자와 과산화수소 100 μM을 함께 처리한 실험군에서 눈에 띄게 차이를 보였다(도 27 참조).
IL-2가 담지되어 있지 않은 나노입자를 처리한 실험군은 3시간째에 i) 과산화수소를 처리하지 않은 세포는 2.65x10 6, ii) 과산화수소를 처리한 세포는 2.75x10 6의 세포수를 나타냈다.
IL-2가 담지된 나노입자를 처리한 실험군은 i) 과산화수소를 처리하지 않은 세포는 3.15x10 6, ii) 과산화수소를 처리한 세포에서는 4.55x10 6의 세포수를 나타냈다.
BM 나노입자만을 처리한 실험군(BM only)은 24시간째에 각각 2.6x10 6, 2.55x10 6의 세포를 수득하였고, IL-2가 담지된 나노입자를 처리한 세포는 과산화수소를 처리하지 않으면 2.5x10 6으로 BM 나노입자만을 처리한 실험군과 유사하였으나, 과산화수소를 처리하면 4.1x10 6까지 증가하는 것을 확인하였다.
이 결과로 과산화수소가 존재하는 환경에서 나노입자가 정상적으로 분해되어 IL-2가 방출되고, 세포 증식에 영향을 준다는 것을 확인하였다.
실험예 4. Western blot을 통한 STAT5 인산화 및 ErK 인산화 확인
4.1. Western blot 항체
Western blot에 사용한 항체(antibody)는 하기 표 3과 같다.
Antibody name Company name Cat. # Clone Host species Size Dilution ratio
1 Recombinant Anti-STAT5 (phospho Y694) antibody [E208] abcam ab32364 E208 Rabbit monoclonal antibody 90kDa 1:5000
2 Recombinant Anti-STAT5a antibody [E289] abcam ab32043 E289 Rabbit monoclonal antibody 92kDa 1:5000
3 Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) Antibody cell signaling 9101s - Rabbit polyclonal antibody 44kDa 1:5000
4 p44/42 MAPK (Erk1/2) Antibody cell signaling 9102s - Rabbit polyclonal antibody 42,44kDa 1:5000
5 Anti-beta Actin antibody [mAbcam 8226] - Loading Control abcam ab8226 mAbcam 8226 Mouse monoclonal antibody 42kDa 1:5000
6 Goat Anti-Rabbit IgG H&L (HRP) abcam ab205718 - Goat - 1:10,000
7 Goat Anti-Mouse IgG H&L (HRP) abcam ab205719 - Goat - 1:10,000
4.2. Western blot 방법
1) 인간 T 세포에 IL-2 사이토카인(cytokine) BM 나노입자를 처리한 후 수득한 세포들을 세포 용해 버퍼(cell lysis buffer; RIPA buffer (thermo, 89900), 100x protease inhibitor (Thermo, 87785), 100x phosphatase inhibitor (Millipore, 524625))를 이용하여 용해시켰다.
2) 세포 용해액에서 단백질을 얻기 위해 -80℃에서 2시간동안 보관한 후, 13,000 rpm으로 30분간 원심분리 하였다.
3) 여기서 나온 상층액을 새로운 튜브로 옮기고 BCA protein assay kit (Thermo, 23225)로 단백질을 정량화하였다.
4) gel에 로딩(loading)할 샘플을 제조하기 위해 5x sample buffer(welgene, ML036-01)와 10ug의 단백질을 섞어 95℃에서 끓였다.
5) 8%의 running gel과 5% stacking gel로 Tris-glycine gel을 만들어 상기의 샘플들을 해당 gel을 이용하여 70V에서 140분 전기영동으로 분리하였다.
6) 전기영동으로 분리한 단백질들은 Western blot을 진행하기 위해 니트로셀룰로오스 막(Nitrocellulose membrane; NC membrane, GE healthcare, 45-004-002)에 250mA로 옮겼다.
7) 단백질이 옮겨진 NC membrane을 5% skim milk로 1시간 동안 상온에서 블로킹(blocking)하였다.
8) 블로킹이 끝난 membrane은 1차 항체(primary antibodies)와 상온에서 4℃에서 O/N 반응시켰다.
9) TBST로 3번 세척한 후, 2차 항체(secondary antibodies)로 상온에서 1시간 반응시켰다.
10) TBST로 4번 세척하고, ECL (Enhanced chemiluminescence, Bio-Rad, BR170-5061)과 IQ800 chemidoc 장비를 이용하여 특정 단백질을 band로 검출하였다.
11) Band로 검출한 결과는 IQTL (ImageQuantTL) 분석 소프트웨어 중 1D gel analysis 방법을 이용해 측정한 band의 intensity 값을 측정하고, band 마다의 background를 제거하여 각 band에 대해 정량화하였다.
4.3. Western blot 결과
4.3.1. T 세포 실험 결과
H 2O 2에 민감한 BM-IL2-Mal 나노입자를 인간 T세포와 반응시킨 후, H 2O 2 처리를 하여 IL-2가 BM 나노입자로부터 방출되게 하여, T세포 활성도를 관찰하였다.
그리고 IL-2 downstream 신호체계와 관련된 STAT5 인산화 여부와 ErK 인산화 여부를 상기 4.2.와 같은 방법에 따라 Western bolt으로 확인하였다.
그 결과, T 세포 표면에 BM-IL2-Mal를 연결하였을때 T 세포내 활성을 나타내는 인산화된 STAT5와 인산화된 Erk 단백질의 양이 현저히 증가되어 24시간 경과 후에도 많은 양의 인산화된 STAT5와 Erk를 확인할 수 있었다. H 2O 2 처리 후 더욱 증가된 인산화 STAT5와 Erk를 관찰할 수 있었다(도 28 및 29 참조).
4.3.2. NK 세포 실험 결과
인간(Human) NK 세포에서 IL-2가 탑재된 BM입자를 말레이미드(maleimide)를 통해 NK 세포 막에 결합시켜 1시간 반응시킨 후 세포에서 단백질을 얻어, 4.2.와 같은 방법에 따라 웨스턴 블롯(western blot)을 시행하였다.
활성 phosphor-STAT5 및 활성 phosphor-ERK 수치가 H 2O 2를 처리하였을 때 현저히 증가하였다. 이를 통해 H 2O 2 선택적으로 IL-2가 BM 나노입자로부터 방출되어 인간 NK 세포를 자극하여 NK 세포 활성화를 평가하는 phosphor-STAT5 및 활성 phosphor-ERK 수치가 증가하였다 (도 30 참조).
실험예 5. 인간 NK 세포에서 나노입자에 포장된 인간 IL-12의 처리를 통한 세포독성 효과 테스트
5.1. 실험 방법
1) Nanoparticles 2mg을 PBS(Wellgene) 0.5ml에 넣고 4mg/ml 농도로 녹여준 뒤, voltex로 3sec 동안 섞어주었다. 완전히 녹았는지 눈으로 확인하였다.
2) 미리 9.8M 과산화수소(Sigma)를 PBS에 100 mM로 희석하여 만들었다.
3) K562를 1 -2X10 6/ml을 PBS 1.8 ml에 resuspension하여 target cell을 준비하였다.
4) 희석된 10X CFSE를 K562 1.8 ml에 200 μl 넣고 잘 섞어준 뒤 상온에서 15분간 incubation 하였다.
5) 15분 뒤 serum이 없는 RPMI1640 media 1 ml을 넣고 wash를 위해 centrifuge 2000rpm, 3min 해주었다.
6) 상층액을 제거하고 serum이 있는 RPMI1640배지 2-3 ml을 넣고 37℃cell incubator에서 30min간 incubation 하였다.
7) 30분 동안 K562를 준비하는 동안 human NK cells을 필요한 세포의 수만큼 준비하였다 (Ratio 1:1=E:T).
8) 용해된 BM을 각 조건에 맞게 aliquot한 NK cell에 400 μg/ml 농도로 넣고 잘 섞어주었다. 상온에서 15분간 incubation 하였다.
9) 15분 뒤, PBS 2 ml씩 넣고 centrifuge 1000 rpm, 5min 동안 세척을 진행하였다 (1회 세척).
10) CFSE가 염색된 K562와 Nanoparticle을 binding 시킨 NK cell을 조건에 맞는 ratio로 12 well plate에 seeding하였다. 이때 well당 배지의 양은 1 ml로 설정하고 배지는 AlySN505-0+2% autoplasma+1% L-glutamine으로 진행하였다.
11) Multi-well plate에 seeding한 뒤, 미리 1000X로 희석해 놓은 과산화수소를 조건에 맞게 1 μl씩 넣고 잘 흔들어 섞어주었다.
12) 시간별로 반응이 끝난 세포는 모두 수득하여 FACS용 5 ml tube에 모아주고 2000 rpm 3 min centrifuge하였다.
13) 모은 pallet을 PBS 200 μl로 resuspension한 뒤 7-AAD staining solution을 5-10 μl를 넣고 잘 섞어주었다.
14) Ice에서 5분 동안 반응시킨 뒤 바로 FACS를 측정하였다.
5.2. 결과
Maleimide를 결합시킨 nanoparticle을 사람의 혈액으로부터 얻은 NK cell에 처리하여 nanoparticle에 packing 되어 있는 IL-12의 영향을 확인하기 위해 K562와 공배양을 시킴으로써 human IL-12 cytokine에 의한 NK cell의 세포독성이 증가하는지 확인하는 실험을 진행하였다. 시간은 4시간, 7시간 동안 확인하였다.
4시간 동안 K562에 처리된 primary human NK cell의 cytotoxicity는 비해, BM-IL12-M가 연결된 Hnk세포에서 cytotoxicity이 증가하였다(도 31 A 참조).
또한, 7시간 동안 공배양을 진행한 결과 K562에 보인 NK cell의 cytotoxicity는 약 17%정도였고, 그에 비해 BM-IL12-M을 처리한 실험군은 cytotoxicity이 29%까지 증가하였다(도 31 B 참조).

Claims (19)

  1. 면역세포; 상기 면역세포의 세포막에 위치하는 특이적 단백질에 결합되는 리간드; 및 상기 리간드에 의해 상기 면역세포에 부착되는 나노 구조체를 포함하고,
    상기 나노 구조체는 나노젤 또는 나노입자이고,
    상기 나노젤은 하나 이상의 활성 물질 및 이들을 연결하는 링커를 포함하고, 상기 링커는 활성산소에 의해 분해되는 화합물이며,
    상기 나노입자는 하나 이상의 활성 물질 및 이들을 담지하는 담체를 포함하고, 상기 담체는 활성산소에 의해 분해되는 고분자인, 나노 구조체가 부착된 면역세포.
  2. 청구항 1에 있어서, 상기 링커는 4-(5-(하이드록시메일)-5-메틸-1,3,2-디옥사보리난-2-일)페닐 메탄올(BRAP), 싸이오케탈(Thioketal) 및 셀레나이드 중 하나 이상인, 나노 구조체가 부착된 면역세포.
  3. 청구항 1에 있어서, 상기 링커는 니트로페닐 유도체 또는 숙시네이트 유도체가 결합된 것인, 나노 구조체가 부착된 면역세포.
  4. 청구항 1에 있어서, 상기 고분자는 보로네이티드 말토덱스트린인, 나노 구조체가 부착된 면역세포.
  5. 청구항 1에 있어서, 상기 활성산소는 과산화수소인, 나노 구조체가 부착된 면역세포.
  6. 청구항 1에 있어서, 상기 리간드는 항체, 항체 절편(scFv), 압타머 또는 저분자 화합물인, 나노 구조체가 부착된 면역세포.
  7. 청구항 1에 있어서, 상기 리간드에는 3, 4 - 다이하이드록시하이드로시나믹 산(3, 4 - Dihydroxyhydrocinnamic acid)이 도입되어, 상기 나노 구조체는 상기 산의 카르복시기와 상기 나노구조체의 아미노기의 반응으로 결합된 것인, 나노 구조체가 부착된 면역세포.
  8. 청구항 1에 있어서, 상기 특이적 단백질은 세포 표면 수용체인, 나노 구조체가 부착된 면역세포.
  9. 청구항 8에 있어서, 상기 세포 표면 수용체는 CD45, OX40, CD28, GITR, VISTA, CD40, CD3 및 CD137 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
  10. 청구항 1에 있어서, 상기 면역세포는 T세포, B세포, NK세포 또는 조혈전구세포인, 나노 구조체가 부착된 면역세포.
  11. 청구항 10에 있어서, 상기 T세포는 CD8+ T세포(세포 독성 T 세포), CD4+ T세포(헬퍼 T 세포), 기억 T 세포, 억제자 T 세포(suppressor T 세포), 자연 살해 T 세포 (NK T 세포), 입양전달 T세포, 조절 T세포(regulatory T cell) 및 키메라 항원 수용체 T세포 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
  12. 청구항 1에 있어서, 상기 활성 물질은 단백질 또는 소수성 화합물인, 나노 구조체가 부착된 면역세포.
  13. 청구항 12에 있어서, 상기 단백질은 사이토카인인, 나노 구조체가 부착된 면역세포.
  14. 청구항 13에 있어서, 상기 사이토카인은 인터루킨, 인터페론, 종양괴사인자, 전환성장인자, 면역억제인자 또는 과립구 대식세포 콜로니 자극 인자(FLT3)인, 나노 구조체가 부착된 면역세포.
  15. 청구항 14에 있어서, 상기 인터루킨은 IL-1 알파, IL-1 베타, IL2, IL-4, IL-5, IL6, IL7, IL12, IL15, IL-15-Sa, IL17, IL18, IL21 또는 IL-23인, 나노 구조체가 부착된 면역세포.
  16. 청구항 12에 있어서, 상기 소수성 화합물은 소수성 항암제, 소수성 항염증제인, 나노 구조체가 부착된 면역세포.
  17. 청구항 16에 있어서, 상기 소수성 항암제는 파클리탁셀, 소라페닙 및 엘로티닙 중 어느 하나 이상인, 나노 구조체가 부착된 면역세포.
  18. 청구항 1 내지 17 중 어느 한 항의 나노 구조체가 부착된 면역세포를 포함하는 항암제.
  19. 청구항 1 내지 17 중 어느 한 항의 나노 구조체가 부착된 면역세포를 포함하는 활성 물질 전달체.
PCT/KR2020/019375 2019-12-30 2020-12-30 나노 구조체가 부착된 면역세포 WO2021137611A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962954754P 2019-12-30 2019-12-30
US62/954,754 2019-12-30
KR1020200187155A KR102657743B1 (ko) 2019-12-30 2020-12-30 나노 구조체가 부착된 면역세포
KR10-2020-0187155 2020-12-30

Publications (1)

Publication Number Publication Date
WO2021137611A1 true WO2021137611A1 (ko) 2021-07-08

Family

ID=76686667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019375 WO2021137611A1 (ko) 2019-12-30 2020-12-30 나노 구조체가 부착된 면역세포

Country Status (1)

Country Link
WO (1) WO2021137611A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104053A1 (zh) * 2021-12-08 2023-06-15 深圳先进技术研究院 一种氧化还原型纳米颗粒和活细胞载体及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017170A1 (en) * 2008-11-24 2014-01-16 Massachusetts Institute Of Technology Methods and compositions for localized agent delivery
KR20160085794A (ko) * 2013-11-01 2016-07-18 예일 유니버시티 면역요법용 모듈러 입자
US20170080104A1 (en) * 2015-08-12 2017-03-23 Massachusetts Institute Of Technology Cell surface coupling of nanoparticles
KR101963327B1 (ko) * 2017-10-17 2019-03-28 전북대학교산학협력단 보로네이트가 결합된 고분자 및 그 용도
KR20190038540A (ko) * 2015-06-22 2019-04-08 셀리스 아게 세포 표적화된 약학적으로 활성인 물질 또는 표지 전달 시스템
KR20190053203A (ko) * 2016-09-01 2019-05-17 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 T-세포 암을 표적화하는 방법 및 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017170A1 (en) * 2008-11-24 2014-01-16 Massachusetts Institute Of Technology Methods and compositions for localized agent delivery
KR20160085794A (ko) * 2013-11-01 2016-07-18 예일 유니버시티 면역요법용 모듈러 입자
KR20190038540A (ko) * 2015-06-22 2019-04-08 셀리스 아게 세포 표적화된 약학적으로 활성인 물질 또는 표지 전달 시스템
US20170080104A1 (en) * 2015-08-12 2017-03-23 Massachusetts Institute Of Technology Cell surface coupling of nanoparticles
KR20190053203A (ko) * 2016-09-01 2019-05-17 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 T-세포 암을 표적화하는 방법 및 조성물
KR101963327B1 (ko) * 2017-10-17 2019-03-28 전북대학교산학협력단 보로네이트가 결합된 고분자 및 그 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ECKMANN D. M., COMPOSTO R. J., TSOURKAS A., MUZYKANTOV V. R.: "Nanogel carrier design for targeted drug delivery", JOURNAL OF MATERIALS CHEMISTRY. B, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 2, no. 46, 1 January 2014 (2014-01-01), GB, pages 8085 - 8097, XP055826295, ISSN: 2050-750X, DOI: 10.1039/C4TB01141D *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023104053A1 (zh) * 2021-12-08 2023-06-15 深圳先进技术研究院 一种氧化还原型纳米颗粒和活细胞载体及其应用

Similar Documents

Publication Publication Date Title
WO2020060122A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 이의 용도
WO2012002759A2 (ko) 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도
WO2016122147A1 (ko) 자연살해세포의 대량생산 방법 및 상기 방법으로 수득된 자연살해세포의 항암제로서의 용도
WO2018166307A1 (zh) 靶向nkg2dl的特异性嵌合抗原受体t细胞,其制备方法和应用
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
WO2021137611A1 (ko) 나노 구조체가 부착된 면역세포
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2018030806A1 (ko) 항체 중쇄불변부위 이종이중체에 융합된 사이토카인 및 이를 포함하는 약제학적 조성물
WO2020222461A1 (ko) 면역항암 보조제
WO2020251181A1 (ko) 줄기세포 유래 엑소좀 생성 촉진 및 줄기세포능 증가용 조성물
WO2021107689A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 면역관문 억제제를 포함하는 암 치료용 약학 조성물
WO2021187922A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 항암제를 포함하는 암 치료용 약학 조성물
WO2020231058A1 (ko) 사이토카인 유도 살해세포를 포함하는 활성화 림프구 및 이의 제조 방법
WO2022114736A1 (ko) 난용성 캄토테신 화합물을 포함하는 나노 입자를 포함하는 암 치료용 약제학적 조성물 및 이의 병용요법
WO2022030973A1 (ko) 종양 침윤성 림프구로부터 역분화된 줄기세포 기억 t세포를 포함하는 세포치료제 조성물 및 그 제조 방법
WO2021066573A1 (ko) 신규 화합물 및 이의 자가면역질환 치료 용도
WO2023068894A1 (ko) 자연살해 세포의 면역 항암기능 증진을 위한 표면 개질용 고분자 화합물
WO2021230710A1 (ko) 신규 ido/tdo 억제제, 그의 항암 용도, 그의 항암 병용 요법
WO2021206428A1 (ko) 로즈마린산 유도체, 로즈마린산-유래 입자 및 이를 포함하는 염증성 질환 치료용 조성물
WO2022164019A1 (ko) 환원반응성 일산화질소 공여 화합물 및 전달체 시스템
WO2020060260A1 (ko) 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물
WO2022177151A1 (ko) 일산화질소 감응성 하이드로겔
WO2021040496A1 (ko) 백시니아 바이러스 및 과립백혈구 형성 억제제를 유효성분으로 포함하는 암 치료용 약학 조성물
WO2022005268A1 (ko) Rna 및 이를 포함하는 핵산 전달체
WO2022010322A1 (ko) 나프토퀴논계 화합물 및 면역관문 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 20908852

Country of ref document: EP

Kind code of ref document: A1