WO2020060260A1 - 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물 - Google Patents

헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물 Download PDF

Info

Publication number
WO2020060260A1
WO2020060260A1 PCT/KR2019/012197 KR2019012197W WO2020060260A1 WO 2020060260 A1 WO2020060260 A1 WO 2020060260A1 KR 2019012197 W KR2019012197 W KR 2019012197W WO 2020060260 A1 WO2020060260 A1 WO 2020060260A1
Authority
WO
WIPO (PCT)
Prior art keywords
helicobacter pylori
lysine
butyl
poly
pheoa
Prior art date
Application number
PCT/KR2019/012197
Other languages
English (en)
French (fr)
Inventor
나건
임병남
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to US17/277,285 priority Critical patent/US20210283257A1/en
Priority to JP2021515600A priority patent/JP7168770B2/ja
Priority claimed from KR1020190115725A external-priority patent/KR102265446B1/ko
Publication of WO2020060260A1 publication Critical patent/WO2020060260A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to a polymer complex for Helicobacter pylori recognition and use thereof.
  • Helicobacter pylori is a gram-negative bacteria of the screw-shaped living in the stomach, such as humans and animals, it has created an enzyme called oil race (Urase), decomposing element of the mucus above by the enzyme into ammonia and carbon dioxide topically They live by settling (infection) from above while neutralizing the stomach acid around Helicobacter pylori.
  • Helicobacter pylori The ability to bind to glycosylated epithelial cells is known to be essential for Helicobacter pylori to cause persistent infection and disease.
  • Helicobacter pylori infection is known to lead to the development of chronic gastritis, gastric ulcer, duodenal ulcer and gastric cancer, and is a first-class carcinogen prescribed by the International Cancer Institute.
  • the present invention relates to a polymer composition for the treatment of Helicobacter pylori photodynamics to effectively treat Helicobacter pylori infection, which is difficult to completely eliminate due to the conventional antibiotic resistance problem, wherein the polymer composition is selectively combined with Helicobacter pylori bacteria and polymer upon laser irradiation Helicobacter pylori can be used to treat infection through monooxygen produced by the photosensitizer combined with.
  • the present invention is a photosensitizer; Sialyl lactose; And it provides a polymer complex for Helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • the present invention is a photosensitizer; Sialyl lactose; And it provides a pharmaceutical composition for photodynamic therapy for gastric diseases induced by Helicobacter pylori, comprising a polymer complex for helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • the present invention is a photosensitizer; Sialyl lactose; And it provides a composition for diagnosing Helicobacter pylori infection comprising a polymer complex for Helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • the water-soluble polymer-photosensitizer complex conjugated with sialylactose that selectively binds to the Helicobacter pylori surface has excellent selectivity and binding power to the Helicobacter pylori strain, and the photosensitizer within the complex is monooxygen when irradiated with laser.
  • the photosensitizer within the complex is monooxygen when irradiated with laser.
  • Figure 1 shows that the Helicobacter pylori cognitive polymer interacts with SabA on the Helicobacter pylori surface to bind to the Helicobacter pylori surface and induces Helicobacter pylori killing due to the action of monooxygen generated in the photosensitive agent during laser irradiation. It is a schematic diagram.
  • Figure 2 shows the H 1 -NMR spectrum of NCA-carbobenzoyloxy-L-lysine [NCA-Carbobenzyloxy-L-lysine].
  • Figure 3 is a butyl-poly (carbo-benzyloxy-lysine) 10 shows the H1-NMR spectrum of [Butyl-poly (Cbz-lysine ) 10].
  • FIG. 5 shows the H1-NMR spectrum of butyl-poly (lysine) 10 -Pheoa [Butyl-poly (lysine) 10 -Pheoa].
  • FIG. 15 is a result of confirming the effect of treating Helicobacter pylori infection on the Balb / c mouse Helicobacter pylori SS1 strain infection model of butyl-poly (3SL-lysine) 10 -pheoa.
  • 17 is a nuclear magnetic resonance spectrum ( 1 H-NMR) analysis result confirming the process of removing the carbobenzyloxy group and the butyl-poly (lysine) 10 -chlorine e6 with the carbobenzyloxy group removed.
  • FIG. 18 is a nuclear magnetic resonance spectrum ( 1 H-) confirming the conjugation process of butyl-poly (lysine) 10 -chlorine e6 and siallylactose (3SL) and hybridization material butyl-poly (3SL-lysine) 10 -chlorine e6 through this. NMR).
  • Figure 28 is a butyl-poly (lysine) 10 -silicon phthalocyanine and sialyl lactose (3SL) conjugation process and hybridization material butyl-poly (3SL-lysine) 10 -silicon phthalocyanine nuclear magnetic resonance spectrum ( 1 H- NMR).
  • FIG. 31 shows the results of a chitosan-3SL-Pheoa complex in which chitosan-3'-sialylactose and chlorin-based photosensitizer, Peoporbid a (Pheoa), and a nuclear magnetic resonance spectrum ( 1 H-NMR) analysis confirming this.
  • Figure 32 shows the synthesis process of 3'-sialylactose-polyethylene glycol (PEG) -Pheoa complex.
  • Figure 34 is a pullulan (Pullulan)-peoh Forbidden a [PU-Pheoa] complex manufacturing process and nuclear magnetic resonance spectrum ( 1 H-NMR) analysis results confirming this.
  • FIG. 35 is an amination process of a pullulan-peoforbid a [PU-Pheoa] complex and a nuclear magnetic resonance spectrum ( 1 H-NMR) analysis result confirming this.
  • FIG. 36 shows the conjugation process of pullulan-peoforbid a [PU-Pheoa] complex with sialyl lactose (3SL) and hybridization material 3SL-pululan-feoforbid a through this [3SL-Pullulan-Pheoa] Nuclear magnetic resonance spectrum ( 1 H-NMR) analysis results.
  • FIG. 40 is an analysis result of an inhibition zone confirming antibacterial activity of 3SL-polyethylene glycol (PEG) -Pheoa complex against Helicobacter pylori.
  • FIG. 41 is a result of analyzing CFU (Colony forming units) confirming antimicrobial activity against Helicobacter pylori of 3SL-pululan-peoforbid a complex.
  • the present invention is a photosensitizer; Sialyl lactose; And it is possible to provide a polymer complex for Helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • the polymer composite may be a combination of an amine group or a hydroxyl group of a water-soluble polymer and a carboxyl group of a photosensitizer.
  • the polymer composite may be one that combines the amine group of the water-soluble polymer with the hydroxy group of sialyl lactose.
  • a double bond is formed by combining the aldehyde of the intermediate of the sialylactose glucose ring with the amine group of the water-soluble polymer, and the double bond is reduced by the NaCNBH 3 additive, thereby reducing the single bond. It may be changed to hydroxy group of sialyl lactose and amine group of water-soluble polymer.
  • the polymer composite is a carboxyl group of a photosensitizer and a hydroxy group of sialyl lactose, each of which is bonded to different amine groups of a water-soluble polymer, or a carboxyl group of a photosensitizer and a hydroxy group of a water-soluble polymer are bonded and hydroxy of sialyl lactose.
  • the group and the amine group of the water-soluble polymer may be combined, but are not limited thereto.
  • the water-soluble polymer may be selected from the group consisting of polylysine, polyethylene glycol, polyethyleneimine, pullulan, chondroitin sulfate, hyaluronic acid, chitosan, polycaprolactone, and polydioxane.
  • the photosensitizer may be selected from the group consisting of chlorins, phophyrins and phthalocyanine, and more preferably, it may be pheophorbide a.
  • the sialylactose may be 3'-sialylactose (sialyllactose).
  • the 3'-sialylactose interacts with SabA on the Helicobacter pylori surface to be able to bind to more accurately recognize Helicobacter pylori.
  • HSP Helicobacter pylori inactivation effect of butyl-poly (3SL-lysine) 10 -Pheoa
  • the Helicobacter pylori strain may be selected from the group consisting of Helicobacter pylori 26695, Helicobacter pylori SS1, Helicobacter pylori 51, and Helicobacter pylori 52.
  • the polymer complex for recognition of Helicobacter pylori may be represented by the following Chemical Formula 1.
  • X may be an integer from 1 to 15, more preferably X may be 10, but is not limited thereto.
  • the present invention is a photosensitizer; Sialyl lactose; And it is possible to provide a pharmaceutical composition for photodynamic therapy of gastric diseases induced by Helicobacter pylori, comprising a polymer complex for helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • the gastric disease may be selected from the group consisting of duodenal ulcer, gastritis, gastric ulcer, gastritis, gastric hyperacidity, gastric dilatation, anaerobic, air swallowing, gastrospasm, pyloric stenosis, atrophic torsion, gastric polyps, gastritis, and gastric cancer.
  • the pharmaceutical composition is any one selected from the group consisting of injections, granules, powders, tablets, pills, capsules, suppositories, gels, suspensions, emulsions, drops or liquids according to conventional methods. Can be used.
  • suitable carriers, excipients, disintegrants, sweeteners, coating agents which are commonly used in the manufacture of pharmaceutical compositions for photodynamic therapy of gastrointestinal diseases related to Helicobacter pylori comprising the polymer represented by Formula 1 above, It may further include one or more additives selected from the group consisting of expanding agents, lubricants, lubricants, flavoring agents, antioxidants, buffers, bacteriostatic agents, diluents, dispersants, surfactants, binders and lubricants.
  • carriers, excipients and diluents are lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline Cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil can be used, and solid dosage forms for oral administration include tablets, pills, powders, granules, capsules Agents, and the like, and these solid preparations may be prepared by mixing at least one excipient in the composition, for example, starch, calcium carbonate, sucrose or lactose, gelatin, and the like.
  • lubricants such as magnesium stearate and talc may be used in addition to simple excipients.
  • Liquid preparations for oral use include suspending agents, intravenous solutions, emulsions, syrups, etc.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives, may be included.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
  • Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • injectable esters such as ethyl oleate.
  • a base for suppositories witepsol, macrogol, tween 61, cacao butter, laurin butter, and glycerogelatin may be used.
  • the pharmaceutical composition is intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, transdermal, intranasal, inhalation, topical, rectal, oral, intraocular or intradermal.
  • Routes can be administered to a subject in a conventional manner.
  • the preferred dosage of the polymer represented by Formula 1 may vary depending on the condition and weight of the subject, the type and extent of the disease, the drug form, the route and duration of administration, and may be appropriately selected by those skilled in the art. According to one embodiment of the present invention is not limited thereto, the daily dosage may be 0.01 to 200 mg / kg, specifically 0.1 to 200 mg / kg, and more specifically 0.1 to 100 mg / kg. The administration may be administered once a day or divided into several times, and the scope of the present invention is not limited thereby.
  • the 'subject' may be a mammal, including a human, but is not limited to these examples.
  • the present invention is a photosensitizer; Sialyl lactose; And it is possible to provide a composition for diagnosing Helicobacter pylori infection comprising a polymer complex for Helicobacter pylori recognition, characterized in that it consists of a water-soluble polymer as a linker.
  • NCA-carbobenzoyloxy-L-lysine (NCA-Carbobenzyloxy-L-Lysine; NCA-Cbz-Lysine)
  • NCA-carbobenzoyloxy-L-lysine (NCA-Cbz-Lysine) was recovered as shown in FIG. 2, and the compound was confirmed through a nuclear magnetic resonance spectrum ( 1 H-NMR).
  • the precipitated reaction solution was divided into 50 ml falcon tubes, centrifuged at 3000 rpm for 5 minutes, and the supernatant was discarded and repeated 5 times with a new ether solution to remove unreacted material.
  • Example 1- after dissolving 250 mg of pheophorbide a (Peoeobide a; Pheoa), 108 mg of DCC (Dicyclohexylcarbodiimide), and NHS (N-Hydroxysuccinimide) 66 mg in 10 ml of DMF (Dimethylformamide) and mixing for 4 hours to activate the recovered from 2-butyl-poly (carbo-benzyloxy-lysine) 10 [butyl-poly (carbobenzyloxy -lysine) 10] was dissolved in 1g in 10ml DMF.
  • Pheophorbide a Peoeobide a
  • DCC Dicyclohexylcarbodiimide
  • NHS N-Hydroxysuccinimide
  • DCU Dicyclohexyl urea
  • the precipitation reaction was performed by adding ether, and then transferred to a 50 ml falcon tube and centrifuged at 3000 rpm for 5 minutes. After centrifugation, the supernatant was discarded and resuspended with a new ether solution, and the above process was repeated 5 times to remove unreacted material.
  • Example 2-1 To remove the carbobenzyloxy group (Cbz) from the butyl-poly- (Cbs-lysine) 10 -chlorine e6 conjugate recovered in Example 2-1, the same procedure as in Example 1-4 was performed. Then, the butyl-poly (lysine) 10 -Ce6 [Butyl-poly (Lysine) 10 -Ce6] conjugate was recovered, and nuclear magnetic resonance spectrum ( 1 H-NMR) was performed to confirm it as in FIG. 17.
  • butyl-poly ( 3SL-Lysine) 10 -Ce6 A hybrid polymer was prepared, and it was confirmed as in FIG. 18 using a nuclear magnetic resonance spectrum ( 1 H-NMR).
  • Carbobenzyloxy group (Cbz) was removed from the butyl-poly- (Cbz-lysine) 10- PP ′ conjugate recovered in Example 3-1-1 by performing the same procedure as in Example 1-4.
  • the butyl-poly (lysine) 10- PP '[Butyl-poly (lysine) 10 -PPIX] conjugate was recovered, and it was confirmed as in FIG. 20 using a nuclear magnetic resonance spectrum ( 1 H-NMR).
  • Carbobenzyloxy group (Cbz) in the butyl-poly- (Cbz-lysine) 10 -hematoporphyrin conjugate recovered in Example 3-2-1 was subjected to the same procedure as in Example 1-4. Removed to prepare a butyl-poly (lysine) 10- HPP conjugate, and confirmed as shown in FIG. 23 through a nuclear magnetic resonance spectrum ( 1 H-NMR).
  • SiPC silicone phthalocyanine
  • Example 4-2 The butyl-poly- (Cbz-lysine) 10 -phthalocyanine conjugate recovered in Example 4-2 was removed by performing the same process as in Example 1-4 to remove the carbobenzyloxy group (Cbz).
  • a poly (lysine) 10 -SiPC [Butyl-poly (lysine) 10 -SiPC] conjugate was prepared and confirmed as shown in FIG. 27 through a nuclear magnetic resonance spectrum ( 1 H-NMR).
  • chitosan 671 mg was weighed and completely dissolved by stirring in 50 ml of 1% acetic acid solution for 12 hours. The completely dissolved chitosan solution was transferred to a dialysis membrane (12k-14k) and dialyzed for 72 hours to recover the purified chitosan through lyophilization, and confirmed as shown in FIG. 29 through nuclear magnetic resonance spectrum (1H-NMR). Did.
  • 3SL 3'-Sialyllactose
  • 3SL and NaBH 3 CN were weighed and dissolved in 1 ml of primary distilled water in a 5 ml vial, and placed in an oil bath (55 degrees) dp and reacted for 48 hours while stirring. Thereafter, the solution was transferred to a dialysis membrane (12k-14k), followed by dialysis for 3 days, lyophilized, and confirmed as shown in FIG. 30 through nuclear magnetic resonance spectrum (1H-NMR).
  • chitosan-sialylactose conjugate (Chitosan-3SL) recovered through lyophilization with chlorin-based photosensitizer, pheoforbid a (Pheoa), Pheoa, DCC (Dicyclohexylcarbodiimide) and NHS (N-Hydroxysuccinimide) Dissolve with 5 ml of DMSO at room temperature for 4 hours at a ratio of 1: 1.2: 1.2 and react. After 4 hours, the reaction byproduct DCU (Dicyclohexyl urea) generated through centrifugation at 3000 rpm for 5 minutes was removed.
  • Pheoa pheoforbid a
  • DCC Dicyclohexylcarbodiimide
  • NHS N-Hydroxysuccinimide
  • the purified PEG-Pheoa and 3SL were dissolved in 1% acetic acid (pH 5.2) at a ratio of 1: 1.2, reacted at 60 ° C for 24 hours, and then removed by undialysis by dialysis (12k-14k) and final 3SL- through lyophilization.
  • the PEG-Pheoa complex was recovered, and confirmed by nuclear magnetic resonance spectrum ( 1 H-NMR) as shown in FIG. 33.
  • Example 8> Based on Pullulan Manufacture of Helicobacter pylori recognition complex capable of photodynamic therapy
  • PU-Pheoa conjugates PU (50 mg) and Pheoa (10 mg) were dissolved in DMSO (10 ml), respectively.
  • DMAP and DCC as catalysts and coupling reagents were added to the Pheoa solution in a molar ratio of 1: 1 to 1.5, respectively.
  • Pheo A solution was added dropwise to the PU solution and stirred for 2 days.
  • the unreacted material was removed by dialysis using a membrane of 12,000-14,000 MWCO for 3 days, and then freeze-dried the purified PU-Pheoa conjugate, and confirmed as shown in FIG. 34 through nuclear magnetic resonance spectrum ( 1 H-NMR). .
  • the reactant was added to ether to proceed the precipitation reaction, transferred to a 50 ml Falcon tube, and centrifuged at 3000 rpm for 5 minutes. After centrifugation, the supernatant was discarded and resuspended with a new ether solvent, and the above process was repeated 3 times to remove unreacted material. After that, the ether was completely removed for 12 hours using a vacuum pump, and then the reactants were recovered. After dissolving the recovered reactants in 10 ml of DMF, 1 ml of ethylenediamine (C 2 H 4 (NH 2 ) 2 ) was added to 15 ml of DMF. Thereafter, ethylenediamine solution was added dropwise to the reactant solution, followed by reaction for 2 hours.
  • ethylenediamine C 2 H 4 (NH 2 ) 2
  • the reactant was added to ether to proceed the precipitation reaction, transferred to a 50 ml falcon tube, and centrifuged at 3000 rpm for 5 minutes. After centrifugation, the supernatant was discarded and the same procedure was performed with a new ether solution. After the ether was completely removed for 12 hours using a vacuum pump, the reaction product was recovered, and nuclear magnetic resonance spectrum ( 1 H-NMR) analysis was performed to confirm the reaction as shown in FIG. 35.
  • amine-PU-Pheoa and 3SL were dissolved in DMSO and 1% acetic acid (pH 5.2) at a ratio of 1: 1.2, respectively.
  • NaCNBH 3 1.5 times the number of moles of amine-PU-pheoa
  • DMSO DMSO
  • MWCO dialysis membrane
  • the 3SL-PEG-Pheoa complex was recovered.
  • the recovered complex was analyzed by nuclear magnetic resonance spectrum ( 1 H-NMR) to confirm as shown in FIG. 36.
  • Example 1 It was confirmed that the Helicobacter pylori cognitive hybridization per molecule prepared as in Example 1 produced monooxygen according to laser irradiation in the water phase.
  • the hybridized polymer butyl-poly (3SL-lysine) 10 -Pheoa [butyl-poly (3SL-lysine) 10 -Pheoa] prepared in Example 1 and peoforbid a were diluted to a concentration of 1 ⁇ g / mL using a UV spectrophotometer. Then, mixed with a single oxygen sensor green (SOSG) solution in 1: 1 (v / v), irradiated with a 20 mW intensity laser for 20 seconds, and the ability to generate a single oxygen (SOG) was confirmed using a fluorescence spectrophotometer.
  • SOSG single oxygen sensor green
  • butyl-poly (3SL-lysine) 10 -Pheoa confirmed that the fluorescence intensity value increased in proportion to the lapse of time, thereby increasing monooxygen production, whereas FeO Forbidden a showed little increase in fluorescence intensity even after laser irradiation.
  • Example 1 the hybridized polymer butyl-poly (3SL-lysine) 10 -Pheoa prepared in Example 1 has very good monooxygen generating ability compared to peoforbid a having poor solubility in water phase. It is thought that the problem of poor solubility of peoforbid a can be effectively solved.
  • Example 1 It was confirmed that the Helicobacter pylori cognitive hybridization polymer synthesized as in Example 1 interacts with Helicobacter pylori in vitro, and can induce the inactivation of Helicobacter pylori by laser irradiation.
  • Example 1 Hybridization of butyl polymers prepared from poly (lysine 3SL-) 10 -Pheoa [butyl-poly ( 3SL-lysine) 10 -Pheoa] the peoh formate bead a (Pheophorbide a) UV spectrophotometer with 1 ⁇ g / ml standard After quantifying with dilution using distilled water.
  • Helicobacter pylori (Helicobacter pylori; 26695 strain) was mixed with a butyl-poly (3SL-lysine) 10-Pheoa solution in 1 ⁇ 10 6 CFU / ml and incubated at 37 ° C. for 2 hours.
  • 3'-sialylactose 3'-Sialyllactose; 3SL
  • 3'-Sialyllactose 3'-sialylactose 5mg / ml was added to 1 ml of Helicobacter pylori (1 ⁇ 10 6 CFU / ml) for 30 minutes in advance, followed by incubation and centrifugation (4000 rpm, 2 minutes) ) To remove the supernatant. Subsequently, it was redispersed with distilled water, and the above process was repeated twice, followed by treatment with butyl-poly (3SL-lysine) 10 -Pheoa at 37 ° C for 2 hours.
  • each experimental group was centrifuged (400 rpm, 2 minutes) to remove the supernatant and redispersed with distilled water (DW), and the process was repeated twice. Thereafter, a laser of 10 J / cm 2 was irradiated with a 50 mW laser intensity.
  • Helicobacter pylori was stained using SYTO 9 and Propidium iodide, SYTO 9 (Green, Ex / Em 485/498), and Propidium iodide (Red, Ex / Em 535/617 ), Cy5 (pupple, Ex / Em 650/670) was observed under a confocal microscope.
  • HSP Helicobacter pylori group treated with butyl-poly (3SL-lysine) 10 -Pheoa (HSP) as shown in FIG. 8, STYTO 9 (Green) and Cy5 (pupple) of Peohforbidd a of HSP appearing in normal Helicobacter pylori cells ), It was confirmed that HSP interacted with Helicobacter pylori as it was confirmed that most of the fluorescences matched.
  • HSP butyl-poly (3SL-lysine) 10 -Pheoa
  • STYTO 9 (Green) fluorescence appeared in normal Helicobacter pylori according to the presence or absence of laser irradiation, while propidium iodide (Red) fluorescence was not observed.
  • HSP butyl-poly (3SL-lysine) 10 -Pheoa
  • AGS cells human gastric cancer cells
  • 100 ⁇ l was dispensed into each well at a well concentration and cultured at 37 ° C. and 5% CO 2 for 24 hours.
  • each well was treated with the cognitive hybridization polymer prepared in Example 1 at a concentration of 0.5 to 50 ⁇ g / mL, reacted at 37 ° C., 5% CO 2 for 4 hours, and subjected to MTT test method to perform fluorescence intensity.
  • MTT test method to perform fluorescence intensity.
  • HSP showed little cytotoxicity at a concentration of less than or equal to 0.5 ⁇ g / mL of peoforbid a.
  • AGS cells were dispensed into each well at a concentration of 2 x 10 4 cells / well in a 24-well plate, and cultured at 37 ° C and 5% CO 2 for 24 hours. After 24 hours, each well was treated with polymer butyl-poly (3SL-lysine) 10 -Pheoa (HSP) using a UV spectrophotometer using serum-free RPMI medium at a concentration of 0.5 ⁇ g / mL based on peoforbid a and antibacterial activity experiment. The reaction was performed at 37 ° C. and 5% CO 2 conditions for 30 minutes, which showed efficacy at the time.
  • HSP polymer butyl-poly (3SL-lysine) 10 -Pheoa
  • the laser was irradiated in a range of 0 to 4.0 J / cm 2 using a 50 mW intensity laser, and the MTT assay was performed to calculate the cell viability compared to the control group.
  • the hybridized polymer butyl-poly (3SL-lysine) 10 -Pheoa showed little cytotoxicity until 2.4 J / cm 2 laser irradiation, and some cytotoxicity was confirmed from 3.2 J / cm 2 laser irradiation. At J / cm 2 , cytotoxicity of about 30% was confirmed.
  • butyl-poly (3SL-lysine) 10 -Pheoa showed lower cytotoxicity than peoforbid a.
  • the concentrations of butyl-poly (3SL-lysine) 10 -Pheoa and peoforbid a were equally adjusted to a concentration of 0.5 ml based on peoforbid a and treated with AGS cells, respectively, and incubated at 36 ° C for 30 minutes. After incubation, washed twice with DPBS and treated with trypsin, the cells were collected and centrifuged (1500 rpm, 3 minutes) to remove the supernatant.
  • AGS cells were dispersed in 1 ml of DPBS at a concentration of 1 ⁇ 10 5 cells / ml, and the degree of cell uptake of peoforbid a and butyl-poly (3SL-lysine) 10 -Pheoa absorbed into AGS cells using FACS was measured. Porvid a was confirmed by fluorescence intensity.
  • peoforbid a is absorbed into the cells by about 7 ⁇ 10 2 more than the control group, whereas butyl-poly (3SL-lysine) 10 -Pheoa was at a level similar to that of the control group.
  • Peophor beads a showed fluorescence intensity.
  • the antimicrobial activity effect between hybridized polymers in which 3'-sialylactose (3SL) or 6'-sialylactose (6SL), an isomer of 3'-sialylactose represents Helicobacter pylori cognition in the hybridized polymer.
  • the cognitive ability of 3'-sialylactose (3SL) of HSP is helicobacter pylori antibacterial activity through comparison with Pre3SL + butyl-poly (3SL-lysine) 10 -Pheoa experimental group that competitively interacts with siallylactose. It was confirmed the effect on.
  • the Helicobacter pylori 26695 strain (H. pylori strain 26695) and the Helicobacter pylori SS1 strain (H. pylori strain SS1) were purchased from the Helicobacter pylori strain bank. Brucellabroth (Difco, USA; bacto tryptone 10g, bacto peptamin 10g, bacto dextrose 1g, bacto yeast extract 2g, sodium chloride 5g, sodium bisulfite 0.1g) to which the strains were added 10% horse serum (Welgene, Korea) The culture was performed by maintaining anaerobic conditions in an incubator at 37 ° C. and a humidity of at least 95% and CO 2 of 10%.
  • butyl-poly (3SL-lysine) 10 -Pheoa (0.5 ⁇ g / ml concentration based on peoforbid a) was added and mixed at 37 ° C., 30 Incubate for minutes. After the incubation, the supernatant was removed by centrifugation (4000 rpm, 2 minutes) and dispersed using 1 ml of distilled water (DW), and the above procedure was repeated twice to produce butyl-poly (3SL-lysine) that does not react with Helicobacter pylori. 10 -Pheoa was removed and CFU assay was performed to evaluate antibacterial activity.
  • the 6'-sialylactose (6SL) -coupled hybridized polymer butyl-poly (6SL-lysine) 10 -Pheoa was also evaluated for antibacterial activity in the same manner as above.
  • 3SL 3'-sialylactose
  • 5 mg / ml of 3SL was dissolved in distilled water to perform pre-incubation with Helicobacter pylori at 37 ° C for 30 minutes. After incubation, the supernatant was removed by centrifugation (4000 rpm, 2 minutes) and dispersed using 1 ml of distilled water. After repeating this process twice, butyl-poly (3SL-lysine) 10 -Pheoa was added to 37 °C, incubated for 30 minutes.
  • butyl-poly (3SL-lysine) 10 -Pheoa exhibits very good Helicobacter pylori antibacterial activity when laser is irradiated at 2.4 J / cm 2 intensity, and butyl-poly (3SL-lysine) 10 -Pheoa.
  • HSP HSP was found to interact very well with Helicobacter pylori than the butyl-poly (6SL-lysine) 10 -Pheoa and Pre3SL + butyl-poly (3SL-lysine) 10 -Pheoa controls.
  • Example 1 It was confirmed that the Helicobacter pylori cognitive hybridization polymer synthesized as in Example 1 interacts with the Helicobacter pylori SS1 strain in vitro and can induce inactivation of Helicobacter pylori by laser irradiation.
  • the hybridization polymer butyl-poly (3SL-lysine) 10- Pheoa (HSP) prepared in Example 1 was quantified using UV spectrophotometer based on Peoh Forbid a (1 ⁇ g / ml), diluted with distilled water, and Helicobacter The mixture was mixed with Pylonii SS1 strain 1 ⁇ 10 6 CFU / ml and incubated at 37 ° C. for 2 hours.
  • butyl-poly (6SL-lysine) 10 -Pheoa which does not have Helicobacter pylori cognition, was mixed with Helicobacter pylori SS1 strain in the same process as above and incubated at 37 ° C for 2 hours, and then the control was used as 6SL-LRP. Notation.
  • Pre3SL 3'-sialylactose 5 mg / ml in advance for 30 minutes
  • Hcobacter pylori SS1 strain After incubation with 1 ml (1 ⁇ 10 6 CFU / ml), the supernatant was removed by centrifugation (4000 rpm, 2 minutes). Subsequently, it was redispersed with DW and the process was repeated twice. Subsequently, butyl-poly (3SL-lysine) 10 -Pheoa was treated, incubated at 37 ° C for 2 hours, and the control group was designated as 3SL-LRHSP.
  • each experimental group was centrifuged (4000 rpm, 2 minutes), and then the supernatant was removed. Then, it was redispersed with D.W, and the above process was repeated twice.
  • the 3SL-LRHSP experimental group has a laser because 3SL-LRHSP interacts with Helicobacter pylori. Investigation led to the damage of the Helicobacter pylori cell membrane due to the monooxygen generated in the peoforbid a of 3SL-LRHSP, and thus the propodium iodide (Red) showing fluorescence value was introduced into the Helicobacter pylori.
  • the Helicobacter pylori cognitive photosensitization hybridization polymer prepared as in Example 1 was confirmed in vivo to confirm the therapeutic effect of Helicobacter pylori infection of butyl-poly (3SL-lysine) 10 -Pheoa (3SL-LRHSP). .
  • H. pylori SS1 strain with 10% equine serum (Welgene, Korea) added brucellabroth (bacto tryptone 10 g, bacto peptamin 10 g, bacto dextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g; Difco, USA).
  • brucellabroth bacto tryptone 10 g, bacto peptamin 10 g, bacto dextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g; Difco, USA.
  • the incubator maintained 10% CO 2 , 95% or higher humidity, and the temperature was maintained at 37 ° C.
  • a 40 mW laser was irradiated for a total of 10 J / cm 2 for 250 seconds, and the same amount of laser was also irradiated to the animal experimental group administered with PBS and OCA as a control group for further comparison.
  • the group irradiated with laser is indicated as (+), and the group not irradiated with laser is indicated as (-)
  • Two days after the final drug administration the stomach of the balb c is removed, cut in half, and the stomach tissue is washed with 10 ml of PBS. out using a cell strainer to filter the suspended solids in the above, the CFU assay was performed using the remaining H. pylori SS1 strain (H.pylori strain SS1) solution.
  • the medium used for the CFU assay included Skirrow's supplement [vancomycin (10 mg / l), polymyxin B (2-5 IU / ml), trimesoprim (5 mg / l)], and the medium was 2-3 days later. By counting the number of colonies shown in the CFU assay, the effect of treating the infection of the final Helicobacter pylori cognitive photosensitization hybridization material was confirmed.
  • the reduction in colonies means that the number of Helicobacter pyloris having infectious activity in the gastrointestinal tract is reduced, and the Helicobacter pylori cognitive photosensitization hybrid polymer prepared as in Example 1 is about 3.8 to 6.8 compared to the Helicobacter pylori treatment effect using conventional antibiotics. It was confirmed that it shows an effect of treating infection that is about 5 times better.
  • Helicobacter pylori SS1 (Helicobacter pylori strain SS1) was used for pre-sale at Helicobacter pylori strain bank.
  • brucellabroth (Difco, USA) to which 10% horse serum (Welgene, Korea) was added was used, and the composition of the medium was bacto tryptone 10 g, bacto peptamin 10 g, bactodextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g.
  • the incubator maintained 10% CO 2 , 95% or higher humidity, and the temperature was maintained at 37 ° C.
  • each material was previously incubated with Helicobacter pylori at 37 ° C for 30 minutes. After incubation, the supernatant was removed by centrifugation at 4000 rpm for 2 minutes and dispersed using 1 ml of PBS.
  • each experiment group was irradiated with a laser for 50 seconds at 50 mW intensity, and then diluted to perform CFU assay.
  • Butyl (3SL-lysine) 10- PPIX as the number of Helicobacter pylori colonies decreased from 5.0 ⁇ g / ml based on PPIX concentration, 10.0 ⁇ g / ml showed that almost no colonies appeared, laser (10.0 J / cm 2 ) irradiation It was confirmed that it is an appropriate concentration showing antibacterial activity.
  • [butyl (3SL-lysine) 10 -HPP] is 10.0 ⁇ g / ml based on HPP concentration and 3 * 10 3 CFU at 1 * 10 5 CFU / ml when 10.0 J / cm 2 laser is irradiated.
  • the number of Helicobacter pylori colonies was reduced to / ml, and it was confirmed that Helicobacter pylori no longer grew compared to the free HPP control group, which is a control experiment group, at a concentration of 25.0 ⁇ g / ml or more based on the HPP concentration.
  • [butyl (3SL-lysine) 10 -SSiPC] is 25.0 ⁇ g / ml based on SSiPC concentration, and Helicobacter pylori from 1 * 10 5 CFU / ml to 4 * 10 3 CFU / ml when 10.0 J / cm 2 laser is irradiated. It was confirmed that the number of colonies was reduced, and 50.0 ⁇ g / ml was found to be an appropriate concentration showing antibacterial activity when irradiated with laser (10.0 J / cm 2 ) because no colonies appeared.
  • butyl (3SL-lysine) 10 -Ce6, butyl (3SL-lysine) 10 -PPIX, butyl (3SL-lysine) 10 -HPP and butyl (3SL-lysine) 10 -SSiPC hybridization materials have excellent Helicobacter pylori inactivation While effective, it was confirmed that free Ce6, PPIX, HPP, and SSiPC did not interact well with Helicobacter pylori because there was no sialylactose (3SL) interacting with Helicobacter pylori when irradiated with the same amount of laser, thereby preventing antibacterial activity. As it was confirmed that the effect was hardly exhibited, it was confirmed that the hybridized materials exhibited excellent Helicobacter pylori cognitive ability and thus could improve the antibacterial activity effect.
  • CFU assay was performed in the same process as the experimental method of Experimental Example 9, and the experimental group irradiated only with Negative control (denoted as NC) and laser based on Helicobacter pylori (SS1 strain) 5 * 10 5 CFU / ml (denoted only as laser) In contrast, the number of colonies of the comparison group of 3SL-Chitosan-Pheoa and a free Pheoa of the photosensitive sensitizing hybrid for chitosan-based Helicobacter pylori recognition was confirmed.
  • the concentration and antimicrobial activity showing the Helicobacter pylori inactivation effect of the PEG-based Helicobacter pylori cognitive photosensitive hybridization material 3'-Sialyllactose-PEG-Pheophorbide a (3SL-PEG-Pheoa) prepared in Example 7 was confirmed in vitro. .
  • Helicobacter pylori SS1 (Helicobacter pylori strain SS1) was used for pre-sale at Helicobacter pylori strain bank.
  • brucellabroth (Difco, USA) with 10% horse serum (Welgene, Korea) was used, and the composition of the medium was bacto tryptone 10 g, bacto peptamin 10 g, bactodextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g.
  • the incubator maintained 10% CO 2 , 95% or higher humidity, and the temperature was maintained at 37 ° C.
  • the supernatant was removed by centrifugation at 4000 rpm for 2 minutes and dispersed using 1 ml of PBS. The above procedure was repeated twice to remove unreacted material that did not react with Helicobacter pylori, and then mixed with 3SL-PEG-Pheoa (50 ⁇ g / ml concentration based on Pheoa) and incubated at 37 ° C. for 30 minutes. After incubation, the supernatant was removed by centrifugation at 4000 rpm for 2 minutes, and redispersed using 1 ml of PBS. The above process was repeated twice to remove unreacted substances that did not react with Helicobacter pylori.
  • the Helicobacter pylori was evenly inoculated onto the plate and reacted with Brucellebroth agar medium, and each experiment group was irradiated with a laser of 0-50 J / cm 2 at 100 mW intensity, and after 2 days, the plate was photodynamic by 3SL-PEG-Pheoa. Inhibition zone formation was confirmed as a therapeutic effect.
  • the 3SL-PEG-Pheoa hybridization material can exhibit an excellent Helicobacter pylori inactivation effect, and in particular, has the potential of a hybridization material capable of photodynamic inactivation of Helicobacter pylori.
  • CFU assay was performed in the same process as the experimental method of Experimental Example 9, and the experimental group irradiated only with Negative control (denoted as NC) and laser based on Helicobacter pylori (SS1 strain) 5 * 10 5 CFU / ml (denoted only as laser) Contrast pullulan-based Helicobacter pylori recognition sensitization hybridization material 3SL-PU-Pheoa and the number of colonies of the free photosensitizer Pheoa comparison group was confirmed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 헬리코박터 파일로리 인지용 고분자 복합체 및 이의 용도에 관한 것으로, 보다 상세하게 헬리코박터 파일로리 표면에 선택적으로 결합하는 시알릴락토오스를 접합시킨 수용성 고분자-광감작제 복합체는 헬리코박터 파일로리 균주에 대한 우수한 선택력 및 결합력을 가지며, 레이저 조사 시 상기 복합체 내 광감작제가 일항산소를 발생시킴으로써 헬리코박터 파일로리의 불활성화를 효과적으로 유도하는 것이 확인됨에 따라, 상기 복합체를 헬리코박터 파일로리 인지용 고분자 복합체로 제공하여 위 장관 내에서 헬리코박터 파일로리를 효과적으로 검출하고 종래의 항생제 내성 문제를 해결하기 위한 헬리코박터 파일로리 광역학 치료제로 제공하고자 한다.

Description

헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물
본 발명은 헬리코박터 파일로리 인지용 고분자 복합체 및 이의 용도에 관한 것이다.
헬리코박터 파일로리(Helicobacter pylori)는 사람 및 동물 등의 위장에 사는 나사 모양의 그람음성균으로, 유레이스(Urase)라는 효소를 만들어내고, 이 효소로 위 점액 중의 요소를 암모니아와 이산화탄소로 분해하여 국소적으로 헬리코박터 파일로리 주변의 위산을 중화시키면서 위에서 정착(감염)하여 살아간다.
또한, 헬리코박터 파일로리 표면에는 SabA(Sialic acid binding adhesin)이라는 세포 표면 구성 부착소가 있는데 이는 헬리코박터 파일로리가 위 상피세포에 감염이나 접착하는 것을 용이하게 하는데, 헬리코박터 파일로리의 SabA는 세포 표면상의 Sialylated/fucosylasted glycan에 부착한다고 알려져있다.
글리코실레이트된 상피 세포에 결합하는 능력은 헬리코박터 파일로리가 지속적인 감염 및 질병을 일으키는 데 필수적이라고 알려져 있다. 헬리코박터 파일로리에 감염되는 것은 만성 위염, 위궤양, 십이지장 궤양, 위암들의 발생으로도 이어진다고 알려져 있으며, 국제 암 연구소가 규정한 1등급 발암 물질이다.
이러한 헬리코박터 파일로리의 감염은 서방국가 일반인구의 30 내지 50%를 감염시킨다고 알려져 있으며, 현재 세계적으로 임상에서 사용되는 헬리코박터 파일로리 치료법은 양성자 펌프 억제제인 오메프라졸(omeprazole), 아목시실린(amoxicillin) 및 클라리스로마이신(clarithromycin)으로 구성된 삼제요법이 1차 표준요법으로 사용되어 왔으나, 클라리스로마이신의 내성 증가가 제균 치료실패의 주요 원인으로 알려져 있다.
상기 삼제요법을 이용한 1차 치료가 실패하거나 내성균이 있을 경우, 대체제로 메트로니다졸(metronidazole), 테트라사이클린(tetracycline), 퀴놀론(quinolone) 등이 사용되고 있으나, 이들 역시 항생제 내성 증가의 문제점이 있다. 이에 따라, 헬리코박터 파일로리 항생제 기반 치료제의 한계점을 해결할 수 있는 새로운 헬리코박터 파일로리 치료 방법에 대한 연구 및 개발이 필요한 실정이다.
본 발명은 종래의 항생제 내성 문제로 완전한 제균이 어려웠던 헬리코박터 파일로리 균 감염을 효과적으로 치료하기 위한 헬리코박터 파일로리 광역학 치료용 고분자 조성물에 관한 것으로, 상기 고분자 조성물은 헬리코박터 파일로리 균과 선택적으로 결합하고 레이저 조사시 고분자와 결합된 광감작제에서 생성되는 일항산소를 통하여 헬리코박터 파일로리 균을 감염을 치료할 수 있다.
본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 제공한다.
본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리에 의해 유도되는 위 질환 광역학 치료용 약학조성물을 제공한다.
또한, 본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리 감염 진단용 조성물을 제공한다.
본 발명에 따르면, 헬리코박터 파일로리 표면에 선택적으로 결합하는 시알릴락토오스를 접합시킨 수용성 고분자-광감작제 복합체는 헬리코박터 파일로리 균주에 대한 우수한 선택력 및 결합력을 가지며, 레이저 조사 시 상기 복합체 내 광감작제가 일항산소를 발생시킴으로써 헬리코박터 파일로리의 불활성화를 효과적으로 유도하는 것이 확인됨에 따라, 상기 복합체를 헬리코박터 파일로리 인지용 고분자 복합체로 제공하여 위 장관 내에서 헬리코박터 파일로리를 효과적으로 검출하고 종래의 항생제 내성 문제를 해결하기 위한 헬리코박터 파일로리 광역학 치료제로 제공하고자 한다.
도 1은 헬리코박터 파일로리 인지능 폴리머가 헬리코박터 파일로리 표면에 있는 SabA와 상호작용하여 헬리코박터 파일로리 표면에 결합하는 모습과 레이저 조사시 광감작제에서 발생되는 일항산소의 작용으로 헬리코박터 파일로리 사멸을 유도하는 모습을 나타내는 모식도이다.
도 2는 NCA-카르보벤조일옥시-L-라이신 [NCA-Carbobenzyloxy-L-lysine]의 H1-NMR 스펙트럼을 나타낸 것이다.
도 3은 부틸-폴리(카르보벤질옥시-라이신)10 [Butyl-poly(Cbz-lysine)10]의 H1-NMR 스펙트럼을 나타낸 것이다.
도 4는 부틸-폴리(Cbz-라이신)10-Pheoa [Butyl-poly(Cbz-lysine)10-Pheoa]의 H1-NMR 스펙트럼을 나타낸 것이다.
도 5는 부틸-폴리(라이신)10-Pheoa [Butyl-poly(lysine)10-Pheoa]의 H1-NMR 스펙트럼을 나타낸 것이다.
도 6은 부틸-폴리(3SL-라이신)10-pheoa [Butyl-poly(3SL-lysine)10-Pheoa]의 H1-NMR 스펙트럼을 나타낸 것이다.
도 7은 부틸-폴리(3SL-라이신)10-pheoa의 일항산소 생성능 확인한 결과이다.
도 8은 부틸-폴리(3SL-라이신)10-pheoa와 헬리코박터 파일로리 26695 균주의 상호작용 및 광응답제에 의한 헬리코박터 파일로리의 불활성화를 확인한 공초점현미경 분석 결과이다.
도 9는 AGS 세포에서 부틸-폴리(3SL-라이신)10-pheoa의 농도별 세포독성을 확인한 결과이다.
도 10은 부틸-폴리(3SL-라이신)10-pheoa의 레이저 조사량에 따른 세포독성을 확인한 결과이다.
도 11은 생체 외(In vitro)에서 헬리코박터 파일로리 26695 균주에 대한 부틸-폴리(3SL-라이신)10-pheoa의 항균활성을 확인한 CFU 분석 결과이다.
도 12는 생체 외(In vitro)에서 헬리코박터 파일로리 SS1 균주에 대한 부틸-폴리(3SL-라이신)10-pheoa의 항균활성을 확인한 CFU 분석 결과이다.
도 13은 생체 외(In vitro)에서 부틸-폴리(3SL-라이신)10-pheoa의 세포 흡수율을 확인한 결과이다.
도 14는 부틸-폴리(3SL-라이신)10-pheoa와 헬리코박터 파일로리 SS1 균주의 상호작용 및 광응답제에 의한 헬리코박터 파일로리의 불활성화를 확인한 공초점현미경 분석 결과이다.
도 15는 부틸-폴리(3SL-라이신)10-pheoa의 Balb/c mouse 헬리코박터 파일로리 SS1 균주 감염 모델에 대한 헬리코박터 파일로리 감염치료 효과를 확인한 결과이다.
도 16은 부틸-폴리-(Cbz-라이신)10-클로린 e6 [Butyl-poly-(Cbz-Lysine)10-Chlorin e6] 합성 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 17은 카르보벤질옥시 기를 제거하는 과정 및 카르보벤질옥시 기가 제거된 부틸-폴리(라이신)10-클로린 e6를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 18은 부틸-폴리(라이신)10-클로린 e6와 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 부틸-폴리(3SL-라이신)10-클로린 e6를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 19는 부틸-폴리-(Cbz-라이신)10-프로토포르피린 IX [Butyl-poly-(Cbz-Lysine)10-Protoporphyrin IX] 합성 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 20은 카르보벤질옥시 기를 제거하는 과정 및 카르보벤질옥시 기가 제거된 부틸-폴리(라이신)10-프로토포르피린 IX를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 21은 부틸-폴리(라이신)10-프로토포르피린 IX와 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 부틸-폴리(3SL-라이신)10-프로토포르피린 IX를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 22는 부틸-폴리-(Cbz-라이신)10-헤마토포르피린 [Butyl-poly-(Cbz-Lysine)10-Hematoporphyrin] 합성 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 23은 카르보벤질옥시 기를 제거하는 과정 및 카르보벤질옥시 기가 제거된 부틸-폴리(라이신)10-헤마토포르피린을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 24는 부틸-폴리(라이신)10-헤마토포르피린과 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 부틸-폴리(3SL-라이신)10-헤마토포르피린을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 25는 숙시닐화 실리콘 프탈로시아닌(SSiPC) 합성 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 26은 폴리-(Cbz-라이신)10-실리콘 프탈로시아닌 [poly-(Cbz-Lysine)10-silicon phthalocyanine] 합성 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 27은 카르보벤질옥시 기를 제거하는 과정 및 카르보벤질옥시 기가 제거된 부틸-폴리(라이신)10-실리콘 프탈로시아닌을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 28은 부틸-폴리(라이신)10-실리콘 프탈로시아닌과 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 부틸-폴리(3SL-라이신)10-실리콘 프탈로시아닌을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 29는 동결건조하여 정제된 키토산 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 30은 키토산과 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 키토산-3'-시알릴락토오스 [Chitosan-(3'-Sialyllactose)]을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 31은 키토산-3'-시알릴락토오스와 클로린계 광감작제인 페오포르비드 a (Pheoa)를 결합시킨 키토산-3SL-Pheoa 복합체 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 32는 3'-시알릴락토오스-폴리에틸렌글리콜(PEG)-Pheoa 복합체 합성 과정을 나타낸 것이다.
도 33은 3'-시알릴락토오스-폴리에틸렌글리콜-Pheoa 복합체를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 34는 풀루란(Pullulan)-페오포르비드 a [PU-Pheoa] 복합체 제조 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 35는 풀루란(Pullulan)-페오포르비드 a [PU-Pheoa] 복합체의 아민화 과정 및 이를 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 36은 풀루란(Pullulan)-페오포르비드 a [PU-Pheoa] 복합체와 시알릴락토오스(3SL)의 접합과정 및 이를 통한 혼성화 물질 3SL-풀루란-페오포르비드 a [3SL-Pullulan-Pheoa]을 확인한 핵자기공명스펙트럼(1H-NMR) 분석 결과이다.
도 37은 Butyl(3SL-lysine)10-Ce6 및 Butyl(3SL-lysine)10-PPIX의 헬리코박터 파일로리 균에 대한 항균활성을 확인한 CFU(Colony forming units) 분석 결과이다.
도 38은 Butyl(3SL-lysine)10-HPP 및 Butyl(3SL-lysine)10-SSiPC의 헬리코박터 파일로리 균에 대한 항균활성을 확인한 CFU(Colony forming units) 분석 결과이다.
도 39는 키토산-3SL-Pheoa 복합체의 헬리코박터 파일로리 균에 대한 항균활성을 확인한 CFU(Colony forming units) 분석 결과이다.
도 40은 3SL-폴리에틸렌글리콜(PEG)-Pheoa 복합체의 헬리코박터 파일로리 균에 대한 항균활성을 확인한 억제 영역(Inhibition zone) 분석 결과이다.
도 41은 3SL-풀루란-페오포르비드 a 복합체의 헬리코박터 파일로리 균에 대한 항균활성을 확인한 CFU(Colony forming units) 분석 결과이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 제공할 수 있다.
상기 고분자 복합체는 수용성 고분자의 아민기 또는 하이드록시기와 광감작제의 카르복시기가 결합하는 것일 수 있다.
상기 고분자 복합체는 수용성 고분자의 아민기와 시알릴락토오스의 하이드록시기가 결합하는 것일 수 있다.
보다 상세하게는 시알릴락토오스 글루코스 고리(glucose ring)의 중간체가 가지는 알데하이드와 수용성 고분자의 아민기(amine group)가 결합하여 이중결합이 형성되고, 이때 NaCNBH3 첨가제에 의하여 이중결합이 환원되면서 단일결합으로 바뀌어 최종적으로 시알릴락토오스의 하이드록시기와 수용성 고분자의 아민기가 결합하는 것일 수 있다.
상기 고분자 복합체는 광감작제의 카르복시기와 시알릴락토오스의 하이드록시기가 수용성 고분자의 서로 다른 아민기와 각각 결합하는 것이거나, 광감작제의 카르복시기와 수용성 고분자의 하이드록시기가 결합하고 시알릴락토오스의 하이드록시기와 수용성 고분자의 아민기가 결합하는 것일 수 있으나, 이에 제한되는 것을 아니다.
상기 수용성 고분자는 폴리라이신, 폴리에틸렌글리콜, 폴리에틸렌이민, 풀루란, 콘드로이틴 설페이트, 히알루론산, 키토산, 폴리카프로락톤 및 폴리다이옥산로 이루어진 군에서 선택될 수 있다.
상기 광감작제는 클로린류(chlorins), 포피린류(phophyrins) 및 프탈로시아닌류(phthalocyanine)로 이루어진 군에서 선택될 수 있으며, 보다 바람직하게는 페오포르비드 a(Pheophorbide a)일 수 있다.
상기 시알릴락토오스는 3'-시알릴락토오스(sialyllactose)일 수 있다.
보다 상세하게는 상기 3'-시알릴락토오스는 헬리코박터 파일로리 표면에 있는 SabA와 상호작용하여 결합이 가능하여 헬리코박터 파일로리를 보다 정확하게 인지할 수 있다.
본 발명의 실시예에 따르면, 부틸-폴리(3SL-라이신)10-Pheoa (HSP)의 헬리코박터 파일로리 불활성화 효과를 확인하기 위해, 혼성화 고분자 내 헬리코박터 파일로리 인지능을 나타내는 3'-시알릴락토오스(3SL) 또는 상기 3'-시알릴락토오스의 이성질체인 6'-시알릴락토오스(6SL)가 결합된 혼성화 고분자 간의 헬리코박터 파일로리 26695 균주에 대한 항균활성 효과를 비교하였으며, 시알릴락토오스와 경쟁적으로 상호작용하는 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 실험군과의 비교를 통하여 HSP의 3'-시알릴락토오스(3SL)의 인지능이 헬리코박터 파일로리 항균 작용에 미치는 영향을 확인하였다.
그 결과, 도 11과 같이 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 처리된 헬리코박터 파일로리 26695 균주의 경우, 1.2 J/cm2 레이저가 조사된 실험군은 음성 대조군과 비교하여 5×105 내지 5×104 CFU/ml 수준의 헬리코박터 파일로리 콜로니 갯수가 감소하였으며, 2.4 J/cm2 이상의 레이저가 조사된 실험군에서는 헬리코박터 파일로리의 성장이 더 이상 확인되지 않았다.
반면, 동일한 조건의 레이저가 조사된 부틸-폴리(6SL-라이신)10-Pheoa 및 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 대조군의 경우, 모두 헬리코박터 파일로리와 제대로 상호작용하지 못하고 세척단계에서 대부분 씻겨나가 부틸-폴리(3SL-라이신)10-Pheoa (HSP)와 비교하여 매우 낮은 항균활성을 나타나는 것을 확인할 수 있었다.
상기 결과로부터 부틸-폴리(3SL-라이신)10-Pheoa (HSP)의 헬리코박터 파일로리 불활성화 효과가 매우 우수한 것이 확인되었으며, 모든 시알릴락토오스가 동일한 효과를 나타내는 것이 아님이 확인되었다.
상기 헬리코박터 파일로리 균주는 헬리코박터 파일로리 26695, 헬리코박터 파일로리 SS1, 헬리코박터 파일로리 51 및 헬리코박터 파일로리 52로 이루어진 군에서 선택될 수 있다.
상기 헬리코박터 파일로리 인지용 고분자 복합체는 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2019012197-appb-I000001
상기 화학식 1에 있어서, X는 1 내지 15의 정수일 수 있으며, 보다 바람직하게는 X는 10일 수 있으나 이에 한정되지 않는다.
본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리에 의해 유도되는 위 질환 광역학 치료용 약학조성물을 제공할 수 있다.
상기 위 질환은 십이지장궤양, 위염, 위궤양, 위하수증, 위산과다증, 위 확장증, 무산증, 공기연하증, 위경련, 유문협착, 위축염전증, 위폴립, 위석, 및 위암으로 이루어진 군으로부터 선택될 수 있다.
본 발명의 한 구체예에서, 상기 약학조성물은 통상적인 방법에 따라 주사제, 과립제, 산제, 정제, 환제, 캡슐제, 좌제, 겔, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택된 어느 하나의 제형을 사용할 수 있다.
본 발명의 다른 구체예에서, 상기 화학식 1과 같이 표시되는 고분자를 포함하는 헬리코박터 파일로리 관련 위 질환 광역학 치료용 약학조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 윤활제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.
구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 일실시예에 따르면 상기 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다.
상기 화학식 1과 같이 표시되는 고분자의 바람직한 투여량은 대상체의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 200 mg/kg, 구체적으로는 0.1 내지 200 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다.
본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.
또한, 본 발명은 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리 감염 진단용 조성물을 제공할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1> 폴리라이신-페오포르피드 a 광감작제 접합체와 시알릴락토오스 접합을 이용한 혼성 고분자 제조
1-1. NCA-카르보벤조일옥시-L-라이신 (NCA-Carbobenzyloxy-L-Lysine; NCA-Cbz-Lysine) 합성
[반응식 1]
Figure PCTKR2019012197-appb-I000002
테트라하이드로퓨란(THF) 50 ml이 담겨있는 200ml 둥근 바닥 플라스크에 N6-Carbobenzyloxy-L-Lysine 3g을 넣고 완전히 용해시킨 후 상기 둥근바닥 플라스크에 트라이포스겐 (Triphosgene) 3g을 첨가하고 마그네틱바를 이용하여 혼합하면서 완전히 용해시켰다.
그 후 오일 수조 (Oil bath)에서 60℃로 4시간 동안 반응시켰다. 이후 유리종이 여과지 (glass & paper filter)를 이용하여 여과한 후에 900 ml 헥산 (Hexane)을 한 방울씩 떨어뜨려 침전 반응을 진행하였다. 그 후 유리종이 여과지를 이용하여 다시 한번 여과한 후, 진공펌프를 이용하여 반응물에서 12시간 동안 헥산을 완전히 제거하였다. 그 결과 도 2와 같이 약 3g의 NCA-카르보벤조일옥시-L-라이신 (NCA-Cbz-Lysine)을 회수하였으며, 상기 화합물을 핵자기공명스펙트럼 (1H-NMR)을 통하여 확인되었다.
1-2. 폴리-카르보벤질옥시-L-라이신 [Poly-Carbobenzyloxy-L-Lysine; poly(Cbz-Lysine)x] 합성
[반응식 2]
Figure PCTKR2019012197-appb-I000003
폴리-카르보벤질옥시-L-라이신 (poly-Carbobenzyloxy-L-Lysine)을 만들기 위하여 반응개시자로 부틸-아민(Butyl-amine) 90 μl을 DMF 10ml에 용해시켰으며, 상기 실시예 1-1에서 회수된 NCA-카르보벤조일옥시-L-라이신 3g을 DMF 20 ml에 용해시켰다. 상기 NCA-카르보벤조일옥시-L-라이신 용액을 부틸-아민 용액에 한 방울씩 떨어뜨려 반응을 진행시키고 48시간 동안 반응시킨 후, 300 ml 에테르(Ether)에 한 방울씩 떨어뜨려 침전 반응을 진행시켰다.
침전반응 용액을 50 ml 팔콘 튜브(falcon tube)에 나눠 담고 3000 rpm으로 5 분 동안 원심분리한 후에 상층액을 버리고 새로운 에테르 용액으로 5번 반복하여 미반응물을 제거하였다.
이후 진공펌프를 이용하여 12시간 동안 에테르를 완전히 제거하고 반응물을 회수하고, 핵자기공명스펙트럼 (1H-NMR)을 통하여 확인하였다.
그 결과, 도 3과 같은 화합물을 얻었으며 x는 약 10으로 확인되었다.
1-3. 폴리라이신-페오포르비드 a 접합체 [poly-(Cbz-Lysine)10-Pheophorbide a] 합성
[반응식 3]
Figure PCTKR2019012197-appb-I000004
페오포르비드 a(Pheophorbide a; Pheoa) 250 mg과 DCC (Dicyclohexylcarbodiimide) 108 mg, NHS (N-Hydroxysuccinimide) 66 mg을 DMF (Dimethylformamide) 10ml에 용해시키고 4시간 동안 혼합하여 활성화 시킨 후 상기 실시예 1-2에서 회수된 부틸-폴리(카르보벤질옥시-라이신)10 [Butyl-poly(carbobenzyloxy-lysine)10] 1g을 10ml DMF에 용해시켰다.
그 후 0.45 주사기 필터를 이용하여 상기 활성화된 페오포르비드 a 용액에서 DCU (Dicyclohexyl urea)를 제거한 후 부틸-폴리(카르보벤질옥시-라이신)x 용액을 한 방울씩 첨가한 후 24시간 동안 반응시켰다.
24시간 후 에테르를 첨가하여 침전 반응을 진행시킨 후 50 ml 팔콘 튜브에 옮겨 담고, 3000 rpm으로 5분 동안 원심분리하였다. 원심분리 후에 상층액을 버리고 새로운 에테르 용액으로 재부유시켰으며, 상기 과정을 5번 반복하여 미반응물을 제거하였다.
이후 진공펌프를 이용하여 12시간 동안 에테르를 완전히 제거한 뒤 반응물인 부틸-폴리(Cbz-라이신)10-Pheoa [Butyl-poly(Cbz-lysine)10-Pheoa]을 회수하였으며, 도 4와 같은 핵자기공명스펙트럼(1H-NMR) 결과를 얻었다.
1-4. 폴리(라이신)10-Pheoa [poly(lysine)10-Pheoa] 제조
[화학식 4]
Figure PCTKR2019012197-appb-I000005
앞서 실시예 1-3에서 회수된 부틸-폴리(Cbz-라이신)10-Pheoa [Butyl-poly(Cbz-lysine)10-Pheoa] 접합체에서 카르보벤질옥시기(carbobenzyloxy group; Cbz)를 제거하기 위해, 500 mg 부틸-폴리(Cbz-라이신)10-Pheoa를 TFA 3 ml에 용해시켰으며, 아세트산 3 ml에 HBr을 33% 농도로 용해시킨 후 20 ml 바이알에 넣고 30분간 혼합하였다.
상기 혼합액에 에테르/에탄올 용액(50/50 vol %) 100ml를 첨가하여 침전반응을 수행한 후 50ml 팔콘 튜브에 옮겨 담고, 3000rpm으로 5분간 원심분리한 후 상층액을 버리고 새로운 에테르/에탄올 용액(50/50 vol %)을 첨가하여 동일한 과정을 수행하였다.
상기 과정을 5회 반복하여 미반응물을 제거하고 진공펌프를 이용하여 12시간 동안 에테르/에탄올 용액을 완전히 제거한 후 반응물을 회수하였다.
그 결과, 도 5와 같은 핵자기공명스펙트럼(1H-NMR)을 나타내는 부틸-폴리(라이신)10-Pheoa 접합체를 확인하였다.
1-5. 폴리라이신-페오포르비드 a 접합체와 시알릴락토오스 접합을 통한 혼성화 고분자 제조
[화학식 5]
Figure PCTKR2019012197-appb-I000006
상기 1-4에서 회수된 부틸-폴리(라이신)X-Pheoa 300mg을 아세테이트 완충용액 10ml (pH 5.5)에 용해시켰다. 3'-시알릴락토오스 (sialyllactose; 3SL) 150mg(부틸-폴리(라이신)10-Pheoa 몰수의 1.5 배)을 5ml 아세테이트 완충용액(pH 5.5)에 용해시켰으며, NaCNBH3 15 mg(부틸-폴리(라이신)10-Pheoa 몰수의 1.5 배)을 DMSO에 1 ml에 용해시켜 준비하였다.
그 후 50ml 둥근 바닥 플라스크에 상기 용액을 첨가하여 혼합한 후 24시간 동안 반응시켰다. 이후 반응용액에 증류수를 혼합하고 투석막(molecular weight cutoff size 1000 Da)을 이용하여 72시간 동안 1차 증류수로 투석하였다. 투석 후 반응물을 72시간 동안 동결 건조하여 분말 형태의 혼성화 고분자 부틸-폴리(3SL-라이신)10-pheoa [Butyl-poly(3SL-lysine)10-pheoa]를 회수하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 6과 같이 확인하였다.
<실시예 2> 폴리라이신-클로린 e6 광감작제 접합체와 시알릴락토오스 접합을 이용한 혼성 고분자 제조
2-1. 폴리라이신-클로린 e6 접합체 [Butyl-poly-(Cbz-Lysine)10-Chlorin e6] 제조
상기 실시예 1-3과 같은 과정으로 부틸-폴리-(Cbs-라이신)10-클로린 e6 [Butyl-poly-(Cbz-Lysine)10-Chlorin e6(Ce6)] 접합체를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 16과 같이 확인하였다.
2-2. 폴리(라이신)10-Ce6 [Butyl-poly(Lysine)10-Ce6] 제조
상기 실시예 2-1에서 회수된 부틸-폴리-(Cbs-라이신)10-클로린 e6 접합체에서 카르보벤질옥시 기(carbobenzyloxy group; Cbz)를 제거하기 위해, 실시예 1-4와 같은 과정을 수행하여 부틸-폴리(라이신)10-Ce6 [Butyl-poly(Lysine)10-Ce6] 접합체를 회수하고, 핵자기공명스펙트럼(1H-NMR)을 수행하여 도 17과 같이 확인하였다.
2-3. 폴리(라이신)10-Ce6와 시알릴락토오스의 접합을 이용한 혼성 고분자 제조
상기 실시예 1-5와 같은 과정으로 실시예 2-2에서 회수된 부틸-폴리(라이신)10-Ce6에 시알릴락토오스를 접합시켜 부틸-폴리(3SL-라이신)10-Ce6 [Butyl-poly(3SL-Lysine)10-Ce6] 혼성 고분자를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 이용하여 도 18과 같이 확인하였다.
<실시예 3> 폴리라이신-프로토포르피린 광감작제 접합체와 시알릴락토오스 접합을 이용한 혼성 고분자 제조
3-1. 폴리라이신-프로토포르피린 접합체 [Butyl-poly-(Cbz-Lysine)10-Protoporphyrin Ⅸ (PPⅨ)] 합성
상기 실시예 1-3과 같은 과정으로 부틸-폴리-(Cbz-라이신)10-PPⅨ [Butyl-poly-(Cbz-Lysine)10-PPⅨ] 접합체를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 19와 같이 확인하였다.
3-2. 폴리(라이신)10-PPⅨ [Butyl-poly(Lysine)10-PPⅨ] 제조
실시예 1-4와 같은 과정을 수행하여 상기 실시예 3-1-1에서 회수된 부틸-폴리-(Cbz-라이신)10-PPⅨ 접합체에서 카르보벤질옥시 기(carbobenzyloxy group; Cbz)를 제거하여 부틸-폴리(라이신)10-PPⅨ [Butyl-poly(lysine)10-PPIX]접합체를 회수하고, 핵자기공명스펙트럼(1H-NMR)을 이용하여 도 20과 같이 확인하였다.
3-3. 부틸-폴리(라이신)10-PPⅨ 접합체와 시알릴락토오스(3SL)의 접합을 이용한 혼성 고분자 제조
실시예 1-1-5와 같은 과정으로 상기 실시예 3-1-2에서 회수된 부틸-폴리(라이신)10-PPⅨ 접합체에 시알릴락토오스를 접합시키고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 21과 같이 확인하였다.
<실시예 4> 폴리라이신-헤마토포르피린 광감작제 접합체와 시알릴락토오스 접합을 이용한 혼성 고분자 제조
4-1. 폴리라이신-헤마토포르피린 접합체 [Butyl-poly-(Cbz-Lysine)10-Hematoporphyrin (HPP)] 합성
상기 실시예 1-3과 같은 과정으로 부틸-폴리-(Cbz-라이신)10-헤마토포르피린 [Butyl-poly-(Cbz-Lysine)10-HPP] 접합체를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 22와 같이 확인하였다.
4-2. 폴리(라이신)10-헤마토포르피린 [Butyl-poly(Lysine)10-HPP] 접합체 제조
실시예 1-4와 같은 과정을 수행하여 상기 실시예 3-2-1에서 회수된 부틸-폴리-(Cbz-라이신)10-헤마토포르피린 접합체에서 카르보벤질옥시 기(carbobenzyloxy group; Cbz)를 제거하여 부틸-폴리(라이신)10-HPP 접합체를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 23과 같이 확인하였다.
4-3. 부틸-폴리(라이신)10-HPP 접합체와 시알릴락토오스(3SL)의 접합을 이용한 혼성 고분자 제조
실시예 1-5와 같은 과정으로 상기 실시예 3-2-2에서 회수된 부틸-폴리(라이신)10-HPP 접합체에 시알릴락토오스를 접합시키고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 24와 같이 확인하였다.
<실시예 5> 폴리라이신-프탈로시아닌 접합체와 시알릴락토오스 접합을 이용한 혼성 고분자 제조
5-1. 숙시닐화 실리콘 프타로시아닌 합성
실리콘프탈로시아닌(Silicon phthalocyanine : SiPC) 200 mg을 100 ml 반응기에 넣고 피리딘(pyridine) 10 ml에 용해시켰다. 이후 숙신산무수물(Succinyl anhydride) 348 mg과 DMAP(4-Dimethylaminopyridine) 213 mg을 피리딘 5 ml에 용해시키고 SiPC 용액에 첨가한 후 100℃에서 24시간 동안 질소 퍼지를 시키며 반응시켰다. 피리딘을 모두 증발시킨 후 고형의 반응물을 에탄올에 녹이고 저온의 증류수에 침전 반응을 진행시켰다. 50 ml 팔콘 튜브에 옮겨 담은 후 3000 rpm으로 5분 동안 원심분리하였다. 상층액을 버리고 새로운 증류수로 상기 과정을 3번 반복하여 미반응물을 제거하였다. 이후 72시간 동안 동결건조를 하여 숙시닐화된 SiPC (SSiPC)를 회수하였다. 그 결과, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 25와 같이 확인하였다.
5-2. 폴리라이신-프탈로시아닌 접합체 [Butyl-Poly-(Cbz-Lysine)10-silicon phthalocyanine (SiPC)] 합성
상기 실시예 4-1에서 회수된 숙시닐화된 SiPC (SSiPC)를 이용하여 실시예 1-3과 같은 과정으로 부틸-폴리-(Cbz-라이신)10-프탈로시아닌 접합체 [Butyl-poly-(Cbz-Lysine)10-SiPC]를 합성하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 26과 같이 확인하였다.
5-3. 폴리(라이신)10-SiPC [Butyl-poly(lysine)10-SiPC] 제조
실시예 1-4와 같은 과정을 수행하여 상기 실시예 4-2에서 회수된 부틸-폴리-(Cbz-라이신)10-프탈로시아닌 접합체에서 카르보벤질옥시 기(carbobenzyloxy group; Cbz)를 제거하여 부틸-폴리(라이신)10-SiPC [Butyl-poly(lysine)10-SiPC] 접합체를 제조하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 27과 같이 확인하였다.
5-4. 부틸-폴리(라이신)10-SiPC 접합체와 시알릴락토오스(3SL)의 접합을 이용한 혼성 고분자 제조
실시예 1-5와 같은 과정으로 상기 실시예 4-3에서 회수된 부틸-폴리(라이신)10-SiPC 접합체에 시알릴락토오스를 접합시키고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 28과 같이 확인하였다.
<실시예 6> 키토산을 기반으로 광역학 치료가 가능한 헬리코박터 파일로리 인지용 복합체 제조
6-1. 키토산 (Chitosan; Low molecular, LM) 정제
키토산(LM) 671mg을 weighing 하여 1% 아세트산 용액 50ml에 12시간 동안 교반시켜 완전히 용해시켰다. 완벽히 용해된 키토산 용액을 투석막(12k-14k)에 옮겨 담고 72시간 동안 투석을 진행한 후 동결건조를 통하여 정제된 키토산을 회수하였으며, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 29와 같이 확인하였다.
6-2. 키토산-시알릴락토오스 [Chitosan-(3'-Sialyllactose)] 접합체 합성
키토산에 헬리코박터 인지용 3'-Sialyllactose (3SL)를 접합하기 위해서 정제된 키토산 90mg을 weighing한 후 2ml의 1% 아세트산 용액에 교반하여 용해시키고, 1차 증류수를 4ml을 추가하여 혼합한 다음 용액의 pH를 확인(pH 4-5)하였다. 3SL과 NaBH3CN을 각각 weighing하여 5ml 바이알에 각각 1ml 1차 증류수에 용해시키고, Oil bath(55도)dp 넣고 교반하면서 48시간 동안 반응시켰다. 이후에 투석막(12k-14k)에 용액을 옮기고 3일간 투석 진행 후 동결건조시키고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 30과 같이 확인하였다.
6-3. 키토산-시알릴락토오스-클로린계 광감작제 복합체 합성
동결건조를 통하여 회수된 키토산-시알릴락토오스 접합체 (Chitosan-3SL)와 클로린계 광감작제인 페오포르비드 a (Pheoa)와의 복합체 형성을 위하여 먼저 Pheoa, DCC (Dicyclohexylcarbodiimide) 및 NHS (N-Hydroxysuccinimide)를 1:1.2:1.2 비율로 4시간 동안 상온에서 DMSO 5 ml로 녹이고 반응시켰다. 4시간 뒤에 3000rpm에서 5분 동안 원심분리를 통하여 발생한 반응 부산물 DCU (Dicyclohexyl urea)를 제거하였다.
상기 Pheoa 용액과 증류수 20ml에 녹인 키토산-3SL 접합체 300mg을 혼합한 후 24시간 동안 상온에서 반응시키고 3일 동안 투석(12k-14k)하였다. 이후에 Co-solvent로 침전된 과도한 유리 Pheoa를 3000rpm에서 5분 동안 원심분리하여 미반응물을 제거한 뒤 동결 건조시켜 키토산-3SL-Pheoa를 회수하였으며, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 31과 같이 확인하였다.
<실시예 7> PEG를 기반으로 광역학 치료가 가능한 헬리코박터 파일로리 인지용 복합체 제조
3'-시알릴락토오스-폴리에틸렌글리콜-페오포르비드 a [3SL-PEG-Pheoa] 복합체 제조
도 32와 같은 과정으로 폴리에틸렌글리콜 (PEG) 6k에 클로린계 광감작제인 Pheoa를 접합하기 위해, 먼저 Pheoa, DCC (Dicyclohexylcarbodiimide) 및 NHS (N-Hydroxysuccinimide)를 1:1.2:1.2 비율로 4시간 동안 상온에서 DMF 5 ml로 녹이고, 4시간 뒤에 3000rpm에서 5분 동안 원심분리하여 발생된 반응 부산물 DCU (Dicyclohexyl urea)를 제거하였다. 상기 PEG를 Pheoa와 1:1.2 비율로 반응시킨 후 소수성 컬럼(LH20)을 이용하여 PEG-Pheoa를 정제하였다.
정제된 PEG-Pheoa와 3SL을 1:1.2 비율로 1% 아세트산(pH 5.2)에 녹여 60℃에서 24시간 동안 반응시킨 후 투석(12k-14k)하여 미반응물을 제거하고 동결건조를 통해서 최종 3SL-PEG-Pheoa 복합체를 회수하고, 핵자기공명스펙트럼(1H-NMR)을 통하여 도 33과 같이 확인하였다.
<실시예 8> 풀루란(Pullulan) 기반으로 광역학 치료가 가능한 헬리코박터 파일로리 인지용 복합체 제조
8-1. 풀루란-페오포르비드 a [PU-Pheoa] 복합체 제조
PU-Pheoa 접합체를 제조하기 위해, PU (50 mg) 및 Pheoa (10 mg)를 DMSO (10 ml)에 각각 용해시켰다. 촉매 및 커플링 시약으로서 DMAP 및 DCC를 각각 1 : 1 : 1.5의 몰비로 Pheoa 용액에 첨가 하였다. 4 시간 후, Pheo A 용액을 PU 용액에 적가하고 2 일 동안 교반하였다.
반응하지 않은 물질은 3일 동안 12,000-14,000 MWCO의 막을 사용하여 투석하여 제거하고, 정제된 PU-Pheoa 접합체를 동결건조시킨 후 핵자기공명스펙트럼(1H-NMR)을 통하여 도 34와 같이 확인하였다.
8-2. 풀루란-페오포르비드 a [PU-Pheoa] 복합체의 아민화
100 ml 반응기에 플루란-페오포바이드 a 복합체를 (PU-Pheoa) 500 mg을 DMF(Dimethylformamide) 10 ml에 용해시키고 피리딘(Pyridine) 100 μl를 첨가하였다. 이후 후드 내에서 염화티오닐(SOCl2) 90μl을 첨가하고 3시간 동안 반응시켰다. 이 때 반응기를 고무마개로 막아준 후 바늘 2개를 꽂아주었다.
반응 후 반응물을 에테르에 첨가하여 침전 반응을 진행시킨 후 50 ml 팔콘 튜브에 옮겨 담고, 3000 rpm으로 5분 동안 원심분리하였다. 원심분리 후에 상층액을 버리고 새로운 에테르 용매로 재부유시켰으며, 상기과정을 3번 반복하여 미반응물을 제거하였다. 이후 진공펌프를 이용하여 12시간 동안 에테르를 완전히 제거한 뒤 반응물을 회수하였다. 회수한 반응물을 DMF 10 ml에 용해시킨 후 DMF 15 ml에 에틸렌다이아민(C2H4(NH2)2) 1ml을 첨가하였다. 그 후 반응물 용액에 에틸렌다이아민 용액을 한 방울씩 첨가한 후 2시간 동안 반응시켰다. 반응 후 반응물을 에테르에 첨가하여 침전 반응을 진행시킨 후 50 ml 팔콘 튜브에 옮겨 담고 3000 rpm으로 5분 동안 원심분리 하였다. 원심분리 후에 상층액을 버리고 새로운 에테르 용액으로 동일한 과정을 수행하였다. 이후에 진공펌프를 이용하여 12시간 동안 에테르를 완전히 제거한 뒤 반응물을 회수하고, 핵자기공명스펙트럼(1H-NMR) 분석을 진행하여 도 35와 같이 확인하였다.
8-3. 3SL-풀루란-페오포르비트 a [3SL-PU-Pheoa] 복합체 제조
정제한 아민-PU-Pheoa와 3SL을 1:1.2 비율로 각각 DMSO와 1% 아세트산(pH 5.2)에 용해시켰다. NaCNBH3 (amine-PU-pheoa 몰수의 1.5 배)을 DMSO에 용해시키고 60℃에서 24시간 동안 반응시킨 후 투석막 (MWCO :12k-14k)를 이용한 투석을 진행하여 미반응물을 제거하고 동결건조시켜 최종 3SL-PEG-Pheoa 복합체를 회수하였다. 회수된 복합체를 핵자기공명스펙트럼(1H-NMR)으로 분석하여 도 36과 같이 확인하였다.
<실험예 1> 헬리코박터 파일로리 인지능 광감작 혼성화 고분자의 일항산소(SOG) 생성능 확인
실시예 1과 같이 제조된 헬리코박터 파일로리 인지능 혼성화 과분자가 수상에서 레이저 조사에 따라 일항산소를 생성하는지 확인하였다.
실시예 1에서 제조한 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa [butyl-poly(3SL-lysine)10-Pheoa]과 페오포르비드 a을 UV spectrophotometer를 이용하여 1 μg/mL 농도로 희석한 뒤 SOSG(singlet oxygen sensor green) 용액과 1:1(v/v)로 혼합하고 20 mW 세기의 레이저를 20초씩 조사하고 형광분광 광도계를 이용하여 일항산소(SOG) 생성능을 확인하였다.
그 결과 도 7과 같이 부틸-폴리(3SL-라이신)10-Pheoa은 400초까지 레이저를 조사하였을 때, 시간 경과에 비례하여 형광강도 값이 증가하여 일항산소 생성이 증가되는 것이 확인된 반면, 페오포르비드 a는 레이저를 조사하여도 형광 강도 값이 거의 증가하지 않았다.
상기 결과로부터 실시예 1에서 제조한 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa는 수상에서 난용성을 가지는 페오포르비드 a와 비교하여 매우 우수한 일항산소 생성능을 가지는 것이 확인됨에 따라, 종래의 페오포르비드 a가 가진 난용성 문제를 효과적으로 해결할 수 있을 것으로 판단된다.
<실험예 2> 공초점 현미경을 통한 헬리코박터 파일로리 인지능 혼성화 고분자의 상호작용 및 불활성화 확인
실시예 1과 같이 합성된 헬리코박터 파일로리 인지능 혼성화 고분자가 생체 외 (in vitro)에서 헬리코박터 파일로리와 상호작용하며, 레이저 조사에 의해 헬리코박터 파일로리의 불활성화를 유도할 수 있지 확인하였다.
실시예 1에서 제조한 혼성화 고분자인 부틸-폴리(3SL-라이신)10-Pheoa [butyl-poly(3SL-lysine)10-Pheoa]를 페오포르비드 a (Pheophorbide a) 1 μg/ml 기준으로 UV spectrophotometer를 이용하여 정량 후 증류수를 이용하여 희석하였다.
헬리코박터 파일로리 (Helicobacter pylori; 26695 균주) 1×106 CFU/ml에 부틸-폴리(3SL-라이신)10-Pheoa 용액를 혼합하여 37℃, 2시간 동안 인큐베이션하였다.
대조군으로 3'-시알릴락토오스(3'-Sialyllactose; 3SL) 5mg/ml을 미리 30분 동안 헬리코박터 파일로리 1ml(1×106 CFU/ml)에 첨가하여 인큐베이션한 후 원심분리 (4000 rpm, 2분)하여 상층액을 제거하였다. 이후, 증류수로 재분산시켰으며, 상기 과정을 2번 반복 수행하고 부틸-폴리(3SL-라이신)10-Pheoa를 처리하여 37℃, 2시간 동안 인큐베이션하였다. 또한, 대조군으로 헬리코박터 파일로리 인지능을 갖지 않는 부틸-폴리(Cbz-라이신)10-Pheoa [butyl-poly(Cbz-lysine)10-Pheoa, Cbz =carbobenzyloxy, nHSP로 표기]을 37℃, 2시간 동안 인큐베이션하였다.
상기 인큐베이션 후 각 실험군을 원심분리(400rpm, 2분)하여 상층액을 제거고 증류수(D.W)로 재분산시켰으며, 상기 과정을 2번 반복하였다. 이후, 50mW 레이저 세기로 총 10 J/cm2의 레이저를 조사하였다.
또한, 헬리코박터 파일로리를 SYTO 9 과 프로피디움 아이오다이드(Propidium iodide)를 이용하여 염색하였으며, SYTO 9 (Green, Ex/Em 485/498), 프로피디움 아이오다이드(Red, Ex/Em 535/617), Cy5(pupple, Ex/Em 650/670)의 조건으로 형광이미지를 공초점 현미경으로 관찰하였다.
그 결과, 도 8과 같이 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 처리된 헬리코박터 파일로리군에서는 정상 헬리코박터 파일로리 세포에서 나타나는 STYTO 9(Green)와 HSP의 페오포르비드 a의 Cy5(pupple)의 형광이 대부분 일치하는 것이 확인됨에 따라, HSP가 헬리코박터 파일로리와 상호작용하는 것이 확인되었다.
반면, 부틸-(Cbz-라이신)10-Pheoa (nHSP)가 처리된 헬리코박터 파일로리군에서는 STYTO 9(Green) 형광이 나타났으나 페오포르비드 a의 Cy5(pupple) 형광이 나타나지 않는 것이 확인됨에 따라, nHSP는 헬리코박터 파일로리와 상호작용하지 않는 것이 확인되었다.
또한, 3'-시알릴락토오스(3SL)를 30분간 전처리한 후 HSP 처리한 헬리코박터 파일로리군(Pre3 + HSP)에서는 정상 헬리코박터 파일로리 세포에서 나타나는 STYTO 9(Green)가 확인되었으나, 페오포르비드 a의 Cy5(pupple) 형광이 나타나지 않는 것이 확인됨에 따라, 상기 HSP가 단독 처리된 경우와 다르게 헬리코박터 파일로리와 HSP가 상호작용하지 않는 것이 확인되었다.
한편, 레이저 조사에 따른 헬리코박터 파일로리 불활성화능을 확인한 결과, 도 8과 같이 HSP가 처리된 헬리코박터 파일로리군에 레이저를 조사[Laser (+)]한 경우, HSP와 헬리코박터 파일로리의 상호작용 후 레이저 조사에 의해 페오포르비드 a에서 발생된 일항산소로 인한 헬리코박터 파일로리 세포막의 손상을 나타내는 프로피디움 아이오다이드(Red) 형광이 확인되었다.
또한, 다른 실험군에서는 레이저 조사 유무에 따라 정상적인 헬리코박터 파일로리에서 나타나는 STYTO 9(Green) 형광이 나타난 반면, 프로피디움 아이오다이드(Red) 형광은 확인되지 않았다.
상기 결과로부터 부틸-폴리(3SL-라이신)10-Pheoa (HSP)는 헬리코박터 파일로리를 정확하게 인지하여 상호작용하고, 레이저 조사 시 상호작용된 HSP의 광감작제에서 발생하는 일항산소를 통하여 헬리코박터 파일로리를 효과적으로 불활성화시키는 것이 확인되었다.
<실험예 3> 헬리코박터 파일로리 인지능 광감작 혼성화 고분자의 세포독성 확인
상기 실시예 1과 같이 합성된 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)의 세포독성을 확인하기 위해, AGS 세포(사람 위암세포)를 96웰 플레이트에 5 × 103cells/well 농도로 100 μl씩 각 웰에 분주하고 24시간 동안 37℃, 5% CO2 조건에서 배양하였다. 24시간 후 각 웰에 상기 실시예 1에서 제조한 인지능 혼성화 고분자를 0.5 내지 50μg/mL 농도로 처리하고 4시간 동안 37℃, 5% CO2 조건에서 반응 시키고 MTT 시험법을 수행한 후 형광강도를 570nm에서 멀티리더기 (Synergy H1 Multi-mode Reader, Biotek)을 이용하여 확인하고, 페오포르비드 a만 처리되 대조군과 비교하여 세포 생존율을 계산하였다.
그 결과, 도 9와 같이 HSP는 페오포르비드 a 0.5 μg/mL 이하의 농도에서 세포 독성을 거의 나타내지 않는 것을 확인할 수 있었다.
<실험예 4> 헬리코박터 파일로리 인지능 광감작 혼성화 고분자의 세포 광독성 확인
상기 실시예 1과 같이 합성된 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 항균활성을 나타내는 농도 및 레이저 세기에서 세포 독성을 확인하였다.
24 웰 플레이트에 AGS 세포를 2 × 104 cells/well의 농도로 1ml씩 각 웰에 분주하고 24시간 동안 37℃, 5% CO2 조건에서 배양하였다. 24시간 후 UV spectrophotometer를 이용하여 각 웰에 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)을 페오포르비드 a 기준 0.5 μg/mL 농도로 무혈청 RPMI 배지를 이용하여 처리하고 항균활성 실험 시에 효능을 나타냈던 30분 동안, 37℃, 5% CO2 조건에서 반응시켰다.
반응 후 50 mW 세기의 레이저를 이용하여 0 ~ 4.0 J/cm2 범위로 레이저를 조사하고 MTT 어세이를 수행하여 세포 생존율을 대조군과 비교하여 계산하였다.
대조군은 상기 고분자와 동일한 농도로 페오포르비드 a만을 처리하였으며, MTT 용액 처리 후 나타나는 형광강도를 570nm에서 멀티리더기 (Synergy H1 Multi-mode Reader, Biotek)을 이용하여 확인하였다.
그 결과, 도 10과 같이 0.5 μg/mL 농도의 페오포르비드 a를 처리하여 30분간 인큐베이션한 후 레이저를 조사한 대조군에서는 0.8 J/cm2 레이저 세기부터 세포독성이 나타났으며, 레이저 조사량 증가에 따라 4.0 J/cm2 에서는 약 50% 수준의 세포독성이 확인되었다.
반면 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)는 2.4 J/cm2 레이저 조사까지는 세포독성이 거의 나타나지 않았으며, 3.2 J/cm2 레이저 조사부터 약간의 세포독성이 확인되어 4.0 J/cm2 에서는 약 30% 수준의 세포독성이 확인되었다.
상기 결과로부터 부틸-폴리(3SL-라이신)10-Pheoa는 페오포르비드 a보다 낮은 세포독성이 나타나는 것이 확인되었다.
<실험예 5> 헬리코박터 파일로리 인지능 광감작 혼성화 고분자의 세포 흡수 확인
실시예 1에서 제조된 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 세포 내로 흡수되는 수준을 확인하였다.
부틸-폴리(3SL-라이신)10-Pheoa와 페오포르비드 a의 농도를 동일하게 페오포르비드 a 기준 0.5 ml 농도로 맞추고 AGS 세포에 각각 처리하여 36℃에서 30분간 인큐베이션하였다. 인큐베이션 후 DPBS로 2번 세척하고 트립신 처리하여 세포를 수집한 후 원심분리(1500 rpm, 3분)하여 상층액을 제거하였다.
그 후 AGS 세포를 1×105 cell/ml 농도로 DPBS 1ml에 분산시키고 FACS를 이용하여 AGS 세포에 흡수된 페오포르비드 a와 부틸-폴리(3SL-라이신)10-Pheoa의 세포 흡수 정도를 페오포르비드 a 형광강도로 확인하였다.
그 결과, 도 13과 같이 페오포르비드 a는 대조군과 비교하여 7×102 정도 더 많인 세포내로 흡수되는 것이 확인된 반면, 부틸-폴리(3SL-라이신)10-Pheoa는 대조군과 거의 유사한 수준의 페오포르비드 a 형광강도를 나타내었다.
<실험예 6> 헬리코박터 파일로리 인지능 광감작 혼성화 고분자의 헬리코박터 파일로리 항균활성 확인
상기 실시예 1과 같이 합성된 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)의 헬리코박터 파일로리 불활성화 효과를 확인하였다.
또한, 상기 혼성화 고분자 내 헬리코박터 파일로리 인지능을 나타내는 3'-시알릴락토오스(3SL) 또는 상기 3'-시알릴락토오스의 이성질체인 6'-시알릴락토오스(6SL)가 결합된 혼성화 고분자 간의 항균활성 효과를 비교하였으며, 시알릴락토오스와 경쟁적으로 상호작용하는 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 실험군과의 비교를 통하여 HSP의 3'-시알릴락토오스(3SL)의 인지능이 헬리코박터 파일로리 항균 작용에 미치는 영향을 확인하였다.
헬리코박터 파일로리 26695 균주(H. pylori strain 26695)와 헬리코박터 파일로리 SS1 균주 (H. pylori strain SS1)를 헬리코박터 파일로리 균주은행에서 분양받았다. 상기 균주들을 10% 말 혈청(Welgene, Korea)을 첨가한 브루셀라브로스(brucellabroth; Difco, USA; bacto tryptone 10g, bacto peptamin 10g, bacto dextrose 1g, bacto yeast extract 2g, sodium chloride 5g, sodium bisulfite 0.1g)를 이용하여, 10%의 CO2, 95% 이상의 습도 및 37℃의 인큐베이터에서 혐기성 조건을 유지하여 배양하였다.
각각 배양된 헬리코박터 파일로리 균주 1 ml(5×105 CFU/m)에 부틸-폴리(3SL-라이신)10-Pheoa (페오포르비드 a 기준 0.5 μg/ml 농도)를 첨가하여 혼합하고 37℃에서 30분 동안 인큐베이션하였다. 인큐베이션 후 원심분리(4000 rpm, 2분)하여 상층액을 제거하고 증류수(D.W) 1 ml를 이용하여 분산시켰으며, 상기 과정 2회 반복하여 헬리코박터 파일로리와 반응하지 않는 부틸-폴리(3SL-라이신)10-Pheoa를 제거하고, CFU 어세이를 수행하여 항균활성을 평가하였다.
6'-시알릴락토오스(6SL)가 결합된 혼성화 고분자 부틸-폴리(6SL-라이신)10-Pheoa 역시 상기와 동일한 방법으로 항균활성을 평가하였다.
또한, 3'-시알릴락토오스 (3SL)와의 경쟁적 인지능 저해 효과를 확인하기 위하여 3SL 5 mg/ml을 증류수에 용해시켜 헬리코박터 파일로리와 37℃, 30분 동안 사전 인큐베이션을 진행하였다. 인큐베이션 후 원심분리(4000 rpm, 2분)하여 상층액을 제거하고 1 ml의 증류수를 이용하여 분산시켰으며, 이 과정 2회 반복한 후 부틸-폴리(3SL-라이신)10-Pheoa를 첨가하여 37℃, 30분 동안 인큐베이션하였다.
인큐베이션 후 원심분리(4000 rpm, 2분)하여 상층액을 제거하고 1 ml의 증류수를 이용하여 분산시켰으며, 상기 과정 2회 반복하여 헬리코박터 파일로리와 반응하지 않은 부틸-폴리(3SL-라이신)10-Pheoa를 제거하였다. 이후 헬리코박터 파일로리 26695 균주 실험군에 50 mW 세기로 0, 24, 48, 72 및 96초 동안 레이저 조사를 한 후 CFU assay를 수행하였으며, 헬리코박터 파일로리 SS1 균주 실험군에는 50 mW 세기로 0, 12, 48 및 60초 동안 레이저를 조사하여 CFU assay를 수행하였다.
그 결과, 도 11과 같이 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 처리된 헬리코박터 파일로리 26695 균주의 경우, 1.2 J/cm2 레이저가 조사된 실험군은 음성 대조군과 비교하여 5×105 내지 5×104 CFU/ml 수준의 헬리코박터 파일로리 콜로니 개수가 감소하였으며, 2.4 J/cm2 이상의 레이저가 조사된 실험군에서는 헬리코박터 파일로리의 성장이 더 이상 확인되지 않았다.
반면, 동일한 조건의 레이저가 조사된 부틸-폴리(6SL-라이신)10-Pheoa 및 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 대조군의 경우, 모두 헬리코박터 파일로리와 제대로 상호작용하지 못하고 세척단계에서 대부분 씻겨나가 부틸-폴리(3SL-라이신)10-Pheoa (HSP)와 비교하여 매우 낮은 항균활성을 나타나는 것을 확인할 수 있었다.
또한, 도 12와 같이 헬리코박터 파일로리 SS1 균주의 경우, 음성 대조군(NC)와 레이저만 조사된 실험군과 비교하여 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)가 처리된 실험군에서는 1.2 J/cm2 레이저가 조사된 실험군에서부터 CFU(coliny forming units)가 감소하여 2.4 J/cm2가 조사된 실험군에서는 헬리코박터 파일로리 콜로니가 나타나지 않아 항균활성을 나타내는 레이저 조사량으로 확인되었다. 반면, 부틸-폴리(6SL-라이신)10-Pheoa 및 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 대조군에서는 음성 대조군과 유사한 수준의 헬리코박터 파일로리 개체수가 유지되는 것이 확인되었다.
상기 결과로부터 2.4 J/cm2 세기로 레이저가 조사될 경우 부틸-폴리(3SL-라이신)10-Pheoa가 매우 우수한 헬리코박터 파일로리 항균활성을 나타내는 것이 확인되었으며, 부틸-폴리(3SL-라이신)10-Pheoa (HSP)는 부틸-폴리(6SL-라이신)10-Pheoa 및 Pre3SL + 부틸-폴리(3SL-라이신)10-Pheoa 대조군보다 헬리코박터 파일로리와 매우 우수하게 상호작용하는 것이 확인되었다.
<실험예 7> 공초점 현미경 분석을 이용한 헬리코박터 파일로리 인지능 혼성화 물질의 상호작용 및 불활성화 확인
실시예 1과 같이 합성된 헬리코박터 파일로리 인지능 혼성화 고분자가 생체 외 (in vitro)에서 헬리코박터 파일로리 SS1 균주와 상호작용하며, 레이저 조사에 의해 헬리코박터 파일로리의 불활성화를 유도할 수 있지 확인하였다.
상기 실시예 1에서 제조한 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa (HSP)를 페오포르비드 a (1 μg/ml) 기준으로 UV spectrophotometer를 이용하여 정량 후 증류수를 이용하여 희석하고 헬리코박터 파일로니 SS1 균주 1×106 CFU/ml와 혼합하여 37℃, 2시간 동안 인큐베이션하였다.
또한, 헬리코박터 파일로리 인지능을 갖지 않은 부틸-폴리(6SL-라이신)10-Pheoa를 상기와 동일한 과정으로 헬리코박터 파일로니 SS1 균주와 혼합하여 37℃, 2시간 동안 인큐베이션한 후 상기 대조군을 6SL-LRP로 표기하였다.
또 다른 대조군으로 3'-시알릴락토오스 (Pre3SL) 5 mg/ml를 미리 30분 동안 헬리코박터 파일로니 SS1 균주 1ml (1×106 CFU/ml)과 인큐베이션한 후 원심분리(4000rpm, 2분)하여 상층액을 제거하였다. 이후 D.W로 재분산시키고 상기 과정을 2번 반복 실시하였다. 이후 부틸-폴리(3SL-라이신)10-Pheoa을 처리하고, 37℃, 2시간 동안 인큐베이션하였으며, 상기 대조군을 3SL-LRHSP로 표기하였다.
각 실험군의 인큐베이션이 끝난 후 각각의 실험군을 원심분리 (4000 rpm, 2분)한 후 상층액을 제거하였다. 이후 D.W로 재분산시켰으며 상기 과정을 2번 반복하였다.
그 후, 50 mW 레이저 세기로 총 10 J/cm2 의 레이저를 조사하고, 헬리코박터 파일로리를 SYTO 9과 프로피디움 아이오다이드(Propidium iodide)로 염색한 후 SYTO 9 (Green, Ex/Em 485/498), 프로피디움 아이오다이드(Red, Ex/Em 535/617), Cy5(pupple, Ex/Em 650/670)의 조건으로 형광이미지를 확인하였다.
그 결과, 도 14와 같이 HSP의 경우 정상적인 헬리코박터 파일로리에서 나타나는 STYTO 9(Green)의 형광과 3SL-LRHSP의 페오포르비드 a의 Cy5(pupple) 형광이 대부분 일치하는 것이 확인됨에 따라, 3SL-LRHSP가 헬리코박터 파일로리와 상호작용하는 것이 확인하였다. 반면에 부틸-폴리(6SL-라이신)10-Pheoa이 처리된 실험군(6SL-LRP)의 경우에는 정상적인 헬리코박터 파일로리에서는 STYTO 9(Green)의 형광을 나타내지만 HSP의 페오포르비드 a의 Cy5(pupple) 형광이 나타나지 않았으며, 또 다른 실험군으로 3'-시알릴락토오스를 30분 동안 전처리한 후 HSP를 처리한 실험군(Pre3SL + LRHSP) 역시 정상적인 헬리코박터 파일로리에서는 SYTO 9(Green)의 형광을 나타났지만 HSP의 페오포르비드 a의 Cy5(pupple) 형광은 나타나지 않았다.
상기 결과로부터 부틸-폴리(6SL-라이신)10-Pheoa와 3'-시알릴락토오스 전처리 후 처리된 부틸-폴리(3SL-라이신)10-Pheoa은 헬리코박터 파일로리와 상호작용하지 않는 것이 확인되었다.
한편, 레이저 조사한 실험군 [Laser (+)로 표기]과 레이저를 조사하지 않은 실험군[Laser (-)로 표기]을 비교한 경우, 3SL-LRHSP 실험군은 3SL-LRHSP가 헬리코박터 파일로리와 상호작용 하기 때문에 레이저 조사에 의해 3SL-LRHSP의 페오포르비드 a에서 발생한 일항산소로 인하여 헬리코박터 파일로리 세포막의 손상으로 유도되고 이에 따라 헬리코박터 파일로리 내부로 들어가 형광 값을 나타내는 Propodium iodide(Red)가 확인되었다.
그러나 다른 6SL-LRP Laser(+), Laser(-), Pre3SL + 3SL-LRHSP Laser(+), Laser(-) 실험군에서는 레이저 조사 유무에 따라서 정상적인 헬리코박터 파일로리에서 나타나는 SYTO 9(Green) 형광만 확인되었을 뿐 프로피디움 아이오다이드(적색) 형광은 확인되지 않았다.
상기 결과로부터 3SL-LRHSP는 헬리코박터 파일로리를 인지하여 성공적으로 상호작용함에 따라, 레이저 조사에 시 페오포르비드 a에서 발생한 일항산소로 인하여 헬리코박터 파일로리가 효과적으로 불활성화되는 것이 확인되었다.
<실험예 8> in vivo 헬리코박터 파일로리 인지능 혼성화 고분자의 헬리코박터 파일로리 감염 치료 효과 확인
실시예 1과 같이 제조된 헬리코박터 파일로리 인지능 광감작 혼성화 고분자 부틸-폴리(3SL-라이신)10-Pheoa(3SL-LRHSP)의 헬리코박터 파일로리 감염치료 효과를 확인하기 위해 생체 내(in vivo)에서 확인하였다.
헬리코박터 파일로리(H. pylori) SS1 균주를 10% 말 혈청(Welgene, Korea)이 첨가된 brucellabroth(bacto tryptone 10 g, bacto peptamin 10 g, bacto dextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g; Difco, USA)를 이용하여 배양하였다. 혐기성 조건을 유지시켜 주기 위하여 인큐베이터는 10%의 CO2, 95% 이상의 습도를 유지하였으며, 온도는 37℃를 유지하였다.
또한, 헬리코박터 파일로리(H. pylori) SS1 균주 200 μl(3×108 CFU/m)를 balb c 마우스에 일주일 동안 이틀 간격으로 총 3번 경구투여하여 접종 및 감염을 유발시켰다.
이후 2주 동안 감염 발달을 진행시키고 헬리코박터 파일로리 감염 치료에 효과가 있는 항쟁제 기반의 삼제요법 [OCA; 오메프라졸(Omeprazole) 400 μmol/kg, 아목시실린(amoxicillin) 68 μmol/kg, 및 클라리스로마이신(clarithromycin) 19.1 μmol/kg)을 3일 동안 1일 간격으로 경구 투여하였으며(경구 투여 6시간 전부터 balb c는 절식), 3SL-LRHSP[부틸-폴리(3SL-라이신)10-Pheoa (pheophorbide a 기준 0.5 μg/ml 농도)]를 3번째 OCA 투여 시 함께 투여하고 30분 후 미세 섬유 레이저 (micro fiber laser)를 이용하여 위 속으로 레이저를 조사하였다.
레이저 조사는 40mW 레이저를 250초 동안 총 10 J/cm2 조사하였으며, 대조군으로 PBS와 OCA가 투여된 동물실험군에도 같은 양의 레이저를 조사하여 추가 비교하였다. (레이저를 조사한 그룹은 (+)로 표기, 레이저를 조사하지 않은 그룹은 (-)로 표기) 최종 약물 투여 이후 이틀 뒤, balb c의 위를 떼어내어 반을 가르고 PBS 10 ml로 위 조직을 씻어내고 cell strainer를 이용하여 위 속 부유물을 걸러내고, 남은 헬리코박터 파일로리 SS1 균주(H.pylori SS1 strain) 용액을 이용하여 CFU assay를 수행하였다.
CFU assay에 사용된 배지는 Skirrow's supplement[반코마이신 (10 mg/l), 폴리믹신 B (2-5 IU/ml), 트리메소프림 (5 mg/l)]가 포함되었으며, 2-3일 후 배지에 나타난 콜로니 수를 세어 CFU assay를 통해 최종적인 헬리코박터 파일로리 인지능 광감작 혼성화 물질의 감염 치료 효과를 확인하였다.
그 결과, 도 15와 같이 PBS(-) 및 PBS(+) 그룹의 경우, 각각 약 1.1×107 CFU/stomach, 1.4×107 CFU/stomach의 헬리코박터 파일로리 콜로니가 확인되었으며, OCA(-) 및 OCA(+) 실험군에서는 각각 2.6×106 및 4.4×106 CFU/stomach의 헬리코박터 파일로리 콜로니가 확인되었다. 마지막으로 3SL-LRHSP(-) 및 3SL-LRHSP(+) 실험군에서는 각각 1.6×107 및 6.7×104 CFU/stomach의 헬리코박터 파일로리 콜로니를 확인할 수 있었다.
상기 결과로부터 PBS(-), PBS(+) 및 3SL-LRHSP(-) 실험군의 CFU assay 결과가 유사한 수준으로 확인됨에 따라, 상기 실험군들에서는 레이저 조사 유무에 의한 헬리코박터 파일로리의 감염 수준 감소 영향은 크게 차이 나지 않는 것으로 확인되었다. 또한, 기존의 헬리코박터 파일로리를 치료하는 항생제 기반 방법인 OCA(-) 및 OCA(+) 대조군에서도 레이저 조사 유무에 의한 영향은 거의 나타나지 않는 것이 확인되었다.
반면, 3SL-LRHSP이 처리된 실험군에서는 PBS(-), PBS(+) 및 3SL-LRHSP(-)와 비교하여 약 1.5×102 ~ 2.3×102 배의 콜로니가 감소하였으며, 기존의 헬리코박터 파일로리 치료제가 처리된 OCA(-) 및 OCA(+) 실험군 보다도 3.8 ~ 6.5 배의 콜로니가 감소된 것이 확인되었다.
콜로니 감소는 위장관 내 감염력을 가지는 헬리코박터 파일로리 개수가 감소된 것을 의미하는 데, 상기 실시예 1과 같이 제조된 헬리코박터 파일로리 인지능 광감작 혼성화 고분자는 기존의 항생제를 이용한 헬리코박터 파일로리 치료 효과보다 약 3.8 ~ 6.8배 정도 더 우수한 감염 치료 효과를 나타내는 것으로 확인되었다.
<실험예 9> 폴리라이신 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질의 in vitro 헬리코박터 파일로리 항균 활성 확인
상기 실시예 2, 3, 4 및 5에서 제조된 폴리라이신 기반의 헬리코박터 파일로리 인지능 광감작 혼성화 물질 Butyl(3SL-lysine)10-Ce6, Butyl(3SL-lysine)10-PPIX, Butyl(3SL-lysine)10-HPP 및 Butyl(3SL-lysine)10-SSiPC가 헬리코박터 파일로리 불활성 효과를 나타내는 농도 및 항균활성을 In vitro에서 확인하였다.
1. 실험 방법
헬리코박터 파일로리 SS1 (Helicobacter pylori strain SS1)을 헬리코박터 파일로리 균주은행에서 분양받아 사용하였다. 균의 배양에는 10% 말혈청 (Welgene, Korea)을 첨가한 brucellabroth (Difco,USA)를 이용하였으며, 배지의 조성은 bacto tryptone 10 g, bacto peptamin 10 g, bactodextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g으로 구성되었다. 혐기성 조건을 유지시켜 주기 위하여 인큐베이터는 10%의 CO2, 95% 이상의 습도를 유지하였으며, 온도는 37℃를 유지하였다.
또한 헬리코박터 파일로리 (SS1 strain) 1 ml(5*105 CFU/ml)에 3‘-Sialyllactose (3SL로 표기)의 헬리코박터 파일로리 인지능 효과를 확인하기 위하여 같은 농도의 유리 광응답제(Ce6, PPIX, HPP, SSiPC)를 DMSO에 과량 녹여 증류수로 희석하여 헬리코박터 파일로리 인지용 복합체와 각 농도를 맞추었다.
또한 각각의 물질은 헬리코박터 파일로리와 미리 37℃, 30분 동안 인큐베이션하였다. 인큐베이션 후 4000 rpm에서 2분간 원심분리하여 상층액을 제거하고 1 ml의 PBS를 이용하여 분산시켰다. 상기 과정을 2회 반복하여 헬리코박터 파일로리와 반응하지 않은 미반응물을 제거한 후 Butyl(3SL-lysine)10-Ce6, Butyl(3SL-lysine)10-PPIX, Butyl(3SL-lysine)10-HPP, Butyl(3SL-lysine)10-SSiPC (각각의 광응답제 Ce6, PPIX, HPP, SSiPC 기준 0 - 50 μg/ml 농도)와 섞어주고 37℃, 30분 동안 인큐베이션하였다. 인큐베이션 후 4000 rpm에서 2분간 원심분리하여 상층액을 제거하고, 이후 PBS 1 ml를 이용하여 재분산시켰다. 상기 과정 2회 반복하여 헬리코박터 파일로리와 반응하지 않는 미반응물들을 제거하였다.
이 후 각각의 실험군에 50 mW 세기로 각각 200초 동안 레이저를 조사한 후 희석하여 CFU assay를 진행하였다.
2. 실험 결과
도 37과 같이 Butyl(3SL-lysine)10-Ce6는 Ce6 농도 기준 0.5 μg/ml에서부터 헬리코박터 파일로리 콜로니 수가 감소하여 1.0 μg/ml에서는 콜로니가 거의 나타나지 않는 것이 확인됨에 따라, 레이저(10.0 J/cm2) 조사 시 항균활성을 나타내는 적정 농도임이 확인되었다. 또한, Butyl(3SL-lysine)10-PPIX는 PPIX 농도 기준 5.0 μg/ml 에서부터 헬리코박터 파일로리 콜로니 수가 감소하여 10.0 μg/ml는 콜로니가 거의 나타나지 않는 것이 확인됨에 따라, 레이저(10.0 J/cm2) 조사 시 항균활성을 나타내는 적정 농도인 것을 확인되었다.
반면, 대조군으로 유리 Ce6 및 PPIX가 각각 처리된 헬리코박터 파일로리 콜로리에서는 유리 Ce6 및 PPIX 농도 기준 50.0 μg/ml에서 NC군에 대비하여 절반을 상회하는 콜로니 결과 값을 확인하였다.
한편, 도 38을 참고하면 [butyl(3SL-lysine)10-HPP]은 HPP 농도 기준 10.0 μg/ml 이면서 10.0 J/cm2 레이저가 조사되었을 때 1*105 CFU/ml에서 3*103 CFU/ml로 헬리코박터 파일로리 콜로니의 갯수가 감소하였으며, 특히 HPP 농도 기준 25.0 μg/ml 이상의 농도에서는 대조 실험군인 유리 HPP 비교군에 비하여 헬리코박터 파일로리가 더 이상 자라지 않는 것이 확인되었다. 또한, [butyl(3SL-lysine)10-SSiPC]은 SSiPC 농도 기준 25.0 μg/ml 이면서 10.0 J/cm2 레이저가 조사하였을 때 1*105 CFU/ml에서 4*103 CFU/ml로 헬리코박터 파일로리 콜로니의 갯수가 감소하는 것이 확인되었으며, 50.0 μg/ml는 콜로니가 나타나지 않아 레이저(10.0 J/cm2) 조사 시 항균활성을 나타내는 적정 농도임이 확인되었다.
반면, 대조군으로 유리 HPP 및 SSiPC가 각각 처리된 헬리코박터 파일로리 콜로리에서는 유리 HPP 및 SSiPC 농도 기준 50.0 μg/ml에서 NC군에 대비하여 절반을 상회하는 콜로니 결과 값을 확인하였다.
상기 결과로부터 butyl(3SL-lysine)10-Ce6, butyl(3SL-lysine)10-PPIX, butyl(3SL-lysine)10-HPP 및 butyl(3SL-lysine)10-SSiPC 혼성화 물질은 우수한 헬리코박터 파일로리 불활성화 효과를 나타내는 것이 확인된 반면, 유리 Ce6, PPIX, HPP 및 SSiPC는 같은 레이저 양을 조사하였을 때 헬리코박터 파일로리와 상호작용하는 시알릴락토오스(3SL)가 존재하지 않아서 헬리코박터 파일로리와 제대로 상호 작용하지 못하여 항균 활성 효과가 거의 나타나지 않는 것이 확인됨에 따라, 상기 혼성화 물질들은 우수한 헬리코박터 파일로리 인지능을 나타내어 항균 활성 효과를 향상시킬 수 있음이 확인되었다.
<실험예 10> 키토산 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질의 in vitro 헬리코박터 파일로리 항균 활성 확인
상기 실시예 6에서 제조된 키토산 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질 3‘-Sialyllactose-Chitosan-Pheophorbide a (3SL-Chitosan-Pheoa)의 헬리코박터 파일로리 불활성 효과를 나타내는 농도 및 항균활성을 In vitro에서 확인하였다.
앞서 진행된 실험예 9의 실험방법과 동일한 과정으로 CFU assay를 수행하여 Helicobacter pylori(SS1 strain) 5*105 CFU/ml 기준으로 Negative control(NC로 표기)과 레이저만 조사한 실험군(Only laser로 표기) 대비 키토산 기반 헬리코박터 파일로리 인지용 광감작 혼성화 물질 3SL-Chitosan-Pheoa과 유리 Pheoa 비교군의 콜로니 수를 확인하였다.
그 결과, 도 39와 같이 3SL-Chitosan-Pheoa의 경우 Pheoa 농도 기준 10.0 μg/ml 에서부터 헬리코박터 파일로리 콜로니 수가 감소하기 시작하여 25.0 μg/ml는 콜로니가 나타나지 않아 일정량의 레이저(10.0 J/cm2)을 조사하였을 때 항균활성을 나타내는 적정 농도임이 확인되었다. 반면 대조 실험군 유리 Pheoa에서는 Pheoa 농도 기준 50.0 μg/ml 일 때 NC 대비하여 절반에 조금 못 미치는 콜로니 결과 값을 확인하였다.
상기 결과로부터 Pheoa 농도 기준 25.0 μg/ml 이상의 농도에서는 대조 실험군인 유리 Pheoa 비교군 보다 헬리코박터 파일로리 더 이상 자라지 않는 것으로 보아 3SL-Chitosan-Pheoa의 우수한 항균활성능을 나타내는 것이 확인된 반면, 유리 Pheoa는 같은 레이저 양을 조사하였을 때 헬리코박터 파일로리와 상호작용하는 시알릴락토오스(3SL)가 존재하지 않아서 헬리코박터 파일로리와 제대로 상호 작용하지 못하고 이후에 세척 단계에서 헬리코박터 파일로리와 상호작용하지 못한 물질들이 대부분 씻겨져 나가서 헬리코박터 파일로리 혼성화 물질 3SL-Chitosan-Pheoa에 비하여 항균 활성 능력을 거의 나타내지 못하는 것이 확인되었다.
<실험예 11> 폴리에틸렌글리콜(PEG) 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질의 in vitro 헬리코박터 파일로리 항균 활성 확인
상기 실시예 7에서 제조된 PEG 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질 3‘-Sialyllactose-PEG-Pheophorbide a (3SL-PEG-Pheoa)의 헬리코박터 파일로리 불활성 효과를 나타내는 농도 및 항균활성을 In vitro에서 확인하였다.
1. 실험방법
헬리코박터 파일로리 SS1 (Helicobacter pylori strain SS1)을 헬리코박터 파일로리 균주은행에서 분양받아 사용하였다. 균의 배양에는 10 % horse serum(Welgene, Korea)을 첨가한 brucellabroth (Difco,USA)를 이용하였으며, 배지의 조성은 bacto tryptone 10 g, bacto peptamin 10 g, bactodextrose 1 g, bacto yeast extract 2 g, sodium chloride 5 g, sodium bisulfite 0.1 g으로 구성되었다. 혐기성 조건을 유지시켜 주기 위하여 인큐베이터는 10%의 CO2, 95% 이상의 습도를 유지하였으며, 온도는 37℃를 유지하였다.
또한 Helicobacter pylori(26695 strain) 1 ml(1*105 CFU/m)l에 3SL-PEG-Pheoa의 농도를 고정(50 μg/ml) 후 레이저 세기에 따른 광역학 항균 치료 효과를 확인하였다. 또한 각각의 물질은 헬리코박터 파일로리와 미리 37℃, 30분 동안 인큐베이션하였다.
인큐베이션 후 4000 rpm에서 2분간 원심분리하여 상층액을 제거하고 1 ml의 PBS를 이용하여 분산시켰다. 상기 과정 2 회 반복하여 헬리코박터 파일로리와 반응하지 않은 미반응물을 제거한 후 3SL-PEG-Pheoa (Pheoa 기준 50 μg/ml 농도)와 섞어주고 37℃, 30분 동안 인큐베이션하였다. 인큐베이션 후에 4000 rpm에서 2분간 원심분리하여 상층액을 제거하고, PBS 1 ml를 이용하여 재분산시켰다. 상기 과정을 2회 반복하여 헬리코박터 파일로리와 반응하지 않는 미반응물들을 제거하였다.
이후 Brucellebroth 아가 배지에 반응 헬리코박터 파일로리를 플레이트에 고르게 접균한 뒤 각각의 실험군에 100 mW 세기로 각각 0-50 J/cm2의 레이저를 조사하고, 이틀 뒤 플레이트에 3SL-PEG-Pheoa에 의한 광역학 치료 효과로 억제 영역(Inhibition zone) 형성을 확인하였다.
2. 실험 결과
도 40과 같이 3SL-PEG-Pheoa의 경우 Pheoa 농도 기준 (50.0 μg/ml) 에서 10 J/cm2에서 헬리코박터 파일로리가 자라지 않는 억제 영역이 확인이 되었으며, 30, 40, 50 J/cm2의 레이저 세기에서도 역시 억제 영역을 확인되었다. 반면, 레이저가 조사되지 않은 비교군에서는 억제 영역이 나타나지 않았다.
상기 결과로부터 3SL-PEG-Pheoa 혼성화 물질은 우수한 헬리코박터 파일로리 불활성화 효과를 나타낼 수 있으며, 특히, 헬리코박터 파일로리 광역학적 불활성화가 가능한 혼성화 물질의 잠재성을 가진 것이 확인되었다.
<실험예 12> 풀루란(Pullulan) 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질의 in vitro 헬리코박터 파일로리 항균 활성 확인
상기 실시예 8에서 제조된 풀루란 기반 헬리코박터 파일로리 인지능 광감작 혼성화 물질 3'-Sialyllactose-Pullulan-Pheophorbide a (3SL-PU-Pheoa)의 헬리코박터 파일로리 불활성 효과를 나타내는 농도 및 항균활성을 In vitro에서 확인하였다.
앞서 진행된 실험예 9의 실험방법과 동일한 과정으로 CFU assay를 수행하여 Helicobacter pylori(SS1 strain) 5*105 CFU/ml 기준으로 Negative control(NC로 표기)과 레이저만 조사한 실험군(Only laser로 표기) 대비 풀루란 기반 헬리코박터 파일로리 인지용 광감작 혼성화 물질 3SL-PU-Pheoa과 유리 광감작제 Pheoa 비교군의 콜로니 수를 확인하였다.
그 결과, 도 41과 같이 3SL-PU-Pheoa의 경우 Pheoa 농도 기준 20.0 μg/ml에 10.0 J/cm2 레이저 조사하였을 때 1*105 CFU/ml에서 5*103 CFU/ml로 헬리코박터 파일로리 콜로니의 갯수가 감소하는 것이 확인되었다. 반면, Pheoa 농도 기준 50.0 μg/ml 이상의 농도에서는 대조 실험군인 유리 Pheoa 비교군 보다 헬리코박터 파일로리기 더 이상 자라지 않는 것이 확인되었다.
반면, 비교군 유리 Pheoa에서는 같은 레이저 양을 조사하였을 때 Pheoa 농도 기준 50.0 μg/ml에서도 9*102 CFU/ml의 헬리코박터 파일로리 콜로니를 확인할 수 있었다.
상기 결과로부터 3SL-Chitosan-Pheoa 혼성화 물질은 우수한 헬리코박터 파일로리 항균활성능을 나타내는 것이 확인되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (11)

  1. 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  2. 청구항 1에 있어서, 상기 고분자 복합체는 수용성 고분자의 아민기 또는 하이드록시기와 광감작제의 카르복시기가 결합하는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  3. 청구항 1에 있어서, 상기 고분자 복합체는 수용성 고분자의 아민기와 시알릴락토오스의 하이드록시기가 결합하는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  4. 청구항 1에 있어서, 상기 수용성 고분자는 폴리라이신, 폴리에틸렌글리콜, 폴리 에틸렌이민, 풀루란, 콘드로이틴 설페이트, 히알루론산, 키토산, 폴리카프로락톤 및 폴리다이옥산로 이루어진 군에서 선택된 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  5. 청구항 1에 있어서, 상기 광감작제는 클로린류(chlorins), 포피린류(phophyrins) 및 프탈로시아닌류(phthalocyanine)로 이루어진 군에서 선택되는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  6. 청구항 1에 있어서, 상기 시알릴락토오스는 3'-시알릴락토오스(sialyllactose)인 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  7. 청구항 1에 있어서, 상기 헬리코박터 파일로리 균주는 헬리코박터 파일로리 26695, 헬리코박터 파일로리 SS1, 헬리코박터 파일로리 51 및 헬리코박터 파일로리 52으로 이루어진 군에서 선택되는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
  8. 청구항 1에 있어서, 상기 헬리코박터 파일로리 인지용 고분자 복합체는 하기 화학식 1로 표시되는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체.
    [화학식 1]
    Figure PCTKR2019012197-appb-I000007
    상기 화학식 1에 있어서, X는 1 내지 15의 정수임.
  9. 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리에 의해 유도되는 위 질환 광역학 치료용 약학조성물.
  10. 청구항 9에 있어서, 상기 위 질환은 십이지장궤양, 위염, 위궤양, 위하수증, 위산과다증, 위 확장증, 무산증, 공기연하증, 위경련, 유문협착, 위축염전증, 위폴립, 위석, 및 위암으로 이루어진 군으로부터 선택되는 특징으로 하는 헬리코박터 파일로리 관련 위 질환 광역학 치료용 약학조성물.
  11. 광감작제; 시알릴락토오스; 및 연결체로서 수용성 고분자로 이루어지는 것을 특징으로 하는 헬리코박터 파일로리 인지용 고분자 복합체를 포함하는 헬리코박터 파일로리 감염 진단용 조성물.
PCT/KR2019/012197 2018-09-20 2019-09-20 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물 WO2020060260A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/277,285 US20210283257A1 (en) 2018-09-20 2019-09-20 Polymer composite for helicobacter pylori recognition and composition for photodynamic therapy comprising same
JP2021515600A JP7168770B2 (ja) 2018-09-20 2019-09-20 ヘリコバクター・ピロリ認知用高分子複合体及びそれを含む光線力学治療用組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0112824 2018-09-20
KR20180112824 2018-09-20
KR10-2019-0115725 2019-09-20
KR1020190115725A KR102265446B1 (ko) 2018-09-20 2019-09-20 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물

Publications (1)

Publication Number Publication Date
WO2020060260A1 true WO2020060260A1 (ko) 2020-03-26

Family

ID=69888623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012197 WO2020060260A1 (ko) 2018-09-20 2019-09-20 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물

Country Status (2)

Country Link
JP (1) JP7168770B2 (ko)
WO (1) WO2020060260A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157655A1 (ja) * 2020-02-05 2021-08-12 国立大学法人 東京大学 フタロシアニン染料と抗体又はペプチドとのコンジュゲート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160127360A (ko) * 2015-04-27 2016-11-04 가톨릭대학교 산학협력단 폴리에틸렌글리콜 숲을 이용한 광역학 치료용 고분자 나노접합체 및 이의 제조방법
KR20170104024A (ko) * 2016-03-03 2017-09-14 주식회사 엠디헬스케어 헬리코박터파일로리균 유래 나노소포 및 이의 용도
KR20180085689A (ko) * 2017-01-19 2018-07-27 가톨릭대학교 산학협력단 바이러스 진단 및 치료를 위한 인지능 물질 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2183329A1 (en) * 1994-03-02 1995-09-08 David A. Zopf Method for treating and inhibiting gastric and duodenal ulcers
US6462070B1 (en) * 1997-03-06 2002-10-08 The General Hospital Corporation Photosensitizer conjugates for pathogen targeting
US20030114434A1 (en) * 1999-08-31 2003-06-19 James Chen Extended duration light activated cancer therapy
US20090209508A1 (en) * 2005-05-16 2009-08-20 Universite De Geneve Compounds for Photochemotherapy
WO2009155665A1 (en) * 2008-06-26 2009-12-30 Central Northern Adelaide Health Service Methods and compositions for treating pathological infections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160127360A (ko) * 2015-04-27 2016-11-04 가톨릭대학교 산학협력단 폴리에틸렌글리콜 숲을 이용한 광역학 치료용 고분자 나노접합체 및 이의 제조방법
KR20170104024A (ko) * 2016-03-03 2017-09-14 주식회사 엠디헬스케어 헬리코박터파일로리균 유래 나노소포 및 이의 용도
KR20180085689A (ko) * 2017-01-19 2018-07-27 가톨릭대학교 산학협력단 바이러스 진단 및 치료를 위한 인지능 물질 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARENTE, F.: "Treatment of Helicobacter pylori infection using a novel antiadhesion compound (3'sialyllactose sodium salt). A double blind, placebo-controlled clinical study", HELICOBACTER, 2003, pages 252 - 256, XP055693791 *
SAHU, K.: "Topical photodynamic treatment with poly-L-lysine-chlorin p6 conjugate improves wound healing by reducing hyper inflammatory response in Pseudomonas aeruginosa-infected wounds of mice", LASERS MED SCI., 2013, pages 465 - 471, XP055571792 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157655A1 (ja) * 2020-02-05 2021-08-12 国立大学法人 東京大学 フタロシアニン染料と抗体又はペプチドとのコンジュゲート

Also Published As

Publication number Publication date
JP7168770B2 (ja) 2022-11-09
JP2022501382A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
WO2018034522A1 (ko) 코어와 그의 표면에 결합된 시알산, 시알릴락토스 또는 이들의 유도체를 포함하는 결합체 및 그의 용도
WO2010126178A1 (ko) 신규한 클로린 e6-엽산 결합 화합물, 이의 제조방법 및 이를 함유하는 암 치료용 약학적 조성물
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
WO2011090333A9 (ko) 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물
WO2020060260A1 (ko) 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물
WO2013180462A1 (en) A composition comprising the extract of pine tree leaf or the compounds isolated therefrom for the prevention and treatment of cancer disease by inhibiting hpv virus and the uses thereby
WO2020222461A1 (ko) 면역항암 보조제
KR20200033759A (ko) 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물
WO2018135882A1 (ko) 바이러스 진단 및 치료를 위한 인지능 물질 및 이의 제조방법
WO2021194298A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2021201654A1 (ko) Glp-2 유도체 또는 이의 지속형 결합체를 포함하는 방사선요법, 화학요법, 또는 이들의 조합으로 유발된 점막염의 예방 또는 치료용 약학적 조성물
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2022114736A1 (ko) 난용성 캄토테신 화합물을 포함하는 나노 입자를 포함하는 암 치료용 약제학적 조성물 및 이의 병용요법
WO2021206428A1 (ko) 로즈마린산 유도체, 로즈마린산-유래 입자 및 이를 포함하는 염증성 질환 치료용 조성물
WO2021066573A1 (ko) 신규 화합물 및 이의 자가면역질환 치료 용도
WO2010126179A1 (ko) 클로린 e6-엽산 결합 화합물 및 키토산을 함유하는 암 치료용 약학적 조성물
WO2023080765A1 (ko) 신규 옥사다이아졸 유도체 및 이의 용도
WO2021137611A1 (ko) 나노 구조체가 부착된 면역세포
WO2021201352A1 (ko) 신규한 벤지미다졸 유도체, 이의 제조방법 및 이의 항암제 용도
WO2020242268A1 (ko) 비오틴 모이어티와 결합된 생리활성 물질 및 이를 포함하는 경구 투여용 조성물
WO2022164019A1 (ko) 환원반응성 일산화질소 공여 화합물 및 전달체 시스템
WO2010128793A2 (ko) 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861954

Country of ref document: EP

Kind code of ref document: A1