WO2011090333A9 - 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물 - Google Patents

클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물 Download PDF

Info

Publication number
WO2011090333A9
WO2011090333A9 PCT/KR2011/000416 KR2011000416W WO2011090333A9 WO 2011090333 A9 WO2011090333 A9 WO 2011090333A9 KR 2011000416 W KR2011000416 W KR 2011000416W WO 2011090333 A9 WO2011090333 A9 WO 2011090333A9
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
unsaturated fatty
carcinoma
methyl
fatty acid
Prior art date
Application number
PCT/KR2011/000416
Other languages
English (en)
French (fr)
Other versions
WO2011090333A3 (ko
WO2011090333A2 (ko
Inventor
안웅식
바토그토크흐간트므르
김숙희
배수미
문란영
Original Assignee
주식회사 진코스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진코스 filed Critical 주식회사 진코스
Publication of WO2011090333A2 publication Critical patent/WO2011090333A2/ko
Publication of WO2011090333A3 publication Critical patent/WO2011090333A3/ko
Publication of WO2011090333A9 publication Critical patent/WO2011090333A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a conjugate of a chlorine derivative and an unsaturated fatty acid, a photosensitizer containing the same, and a composition for treating cancer for use in photodynamic therapy comprising the same.
  • Photodynamic therapy is a medical treatment using a combination of light and photosensitizers (PS).
  • PS photosensitizers
  • the mechanism of action is largely dependent on the molecular mechanism of tumor-selective accumulation of photosensitizers and on photosensitizers and light. It can be divided into the mechanism of tumor destruction due to the interaction of. Each factor is not harmful by itself, but when combined with oxygen, they can produce lethal cytotoxic agents that inactivate tumor cells [Sternberg ED et al., Tetrahedron, 1998, 54: 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6: 158-161.
  • Photodynamic therapy exhibits dual selectivity, in which the photosensitiser is preferentially absorbed by the diseased tissue, and the photosensitiser is activated by irradiating light in a specific area.
  • Photodynamic therapy kills cells through the production of singlet oxygen and other reactive oxygen species (ROS), which overwhelms numerous antioxidant defense mechanisms in cells and cause oxidative damage to cell macromolecules.
  • ROS reactive oxygen species
  • the tumor cell lethal effect of photodynamic therapy is related to the depth of light penetration within the cancer mass.
  • the effect of light in tissues decreases exponentially with distance [Moser JG. In Photodynamic Tumor Therapy-2nd & 3rd Generation Photosensitizers. Harwood Academic Publishers, London, 1997, 3-8].
  • Tissue weakness is affected by optimal absorption, scattering by endogenous molecules and drug chromophores themselves.
  • the maximum transmittance of skin tissue is in the 700-800 nm region, and development of a photosensitizer which exhibits the maximum absorption in this region is required. Effective penetration at 630 nm was between 1 and 3 mm, while light penetration of at least 6 mm was observed at 700-850 nm.
  • an ideal photosensitizer should exhibit strong absorption in the near infrared region.
  • Photosensitizers are defined as species that induce chemical or physical modification of other species under the absorption of light. Clinicians and chemists have different views on the ideal photosensitizer (Kirchner C et al., Nano Lett., 2005, 5: 331). For example, chemists can place more emphasis on high degree of extinction and high quantum yield of singlet oxygen, while clinicians can further emphasize low toxicity and high selectivity. Nonetheless, both clinical photodynamic therapy and ideal photosensitizers are clinically appropriate and allison et al. [Zheng H. Technology in Cancer Research & Treatment, 2005, 4: 283-293] and Castano et al. [Anna C et al. , Photochem Photobiol, 2006, 82: 617-625, agree that at least some of the following criteria must be met.
  • tetrapyrrole macrocycles are often used as photosensitizers. Strong absorption in the red region of the visible spectrum is a very desirable feature for effective photosensitisers because it allows the treatment of thicker tumors [Johnson CK et al., Tetrahedron Lett., 1998, 39: 4619-4622 ]. For this reason, tetrapyrroles such as porphyrin, chlorine, bacteriochlorin, porphysin, phthalocyanine, naphthalocyanine, and expanded porphyrin have been synthesized and their photodynamic therapeutic efficacy has been evaluated. Photosensitizers can be classified by their chemical structure and origin.
  • porphyrin-based eg photoprine, ALA / PpIX and BPDMA
  • chlorine-based eg perpurin and bacteriochlorine
  • dyes eg phthalocyanine, naphthalocyanine
  • This third generation photosensitizer is designed and synthesized through its physicochemical properties to modify photosensitive species, or by conjugating photosensitizers to species such as antibodies, polymers, protein scaffolds and carbohydrates, to target diseased tissues. Enhance the effect [Brown, SB et al., The Lancet Oncology, 2004, 5: 497-508; Savellano, M. D. et al., Clin. Cancer Res., 2005, 11: 1658-1668.
  • PUFAs polyunsaturated fatty acids
  • DHA docosahexaenoic acid
  • polyunsaturated fatty acids that are rapidly absorbed by tumor cells from arterial blood can be used as biochemical precursors and energy sources, and can also readily bind to the lipid bilayer of cells, resulting in cell membrane structure and fluid.
  • Destroys Sauer, LA et al., Cancer Res., 1986, 46: 3469-3475; Sauer, L. A. et al., Brit. J. Cancer, 1992, 66: 297-303; Takahashi, M. et al., J. M. Cancer Res., 1992, 52: 154; Grammatikos, S. I. et al., J. Cancer, 1994, 70: 219.
  • DHA docosahexaenoic acid
  • the inventors have conjugated chlorine derivatives with unsaturated fatty acids (UFAs) such as docosahexaenoic acid or oleic acid in order to obtain more selective and affinity photosensitizers for cancer cells.
  • UFAs unsaturated fatty acids
  • the present invention has been completed by demonstrating that the conjugate has a very good effect of targeting cancer cells and shows a synergistic effect.
  • unsaturated fatty acids such as docosahexaenoic acid (DHA) or oleic acid (OA)
  • Another object of the present invention is to provide a method for preparing a conjugate of chlorine derivatives and unsaturated fatty acids, which are more selective and excellent in photosensitizing effect on tumor cells by conjugating chlorine derivatives with unsaturated fatty acids such as docosahexaenoic acid or oleic acid. .
  • a chlorine derivative is conjugated with an unsaturated fatty acid such as docosahexaenoic acid (DHA) or oleic acid (OA), thereby improving the selectivity to tumors and reducing cytotoxicity.
  • DHA docosahexaenoic acid
  • OA oleic acid
  • 1 shows a modified Jablonsky diagram. Where 1 is absorption, 2 is non-radioactive decay, 3 is fluorescence, 4 is cross-over, 5 is phosphorescence, and 6 is energy transfer.
  • Figure 2 briefly shows the process for preparing the methyl pyrofepopovid-d-OH and docosahexaenoic acid conjugate represented by compound 5 of the present invention.
  • Figure 3 briefly shows the process for preparing the methyl pyrofepopovid-d-OH and oleic acid conjugate represented by compound 6 of the present invention.
  • Figure 4 briefly shows the process for preparing the pyrofepopovid-a-17 5 -N-hexanol and docosahexaenoic acid conjugate represented by compound 9 of the present invention.
  • FIG. 5 is a brief description of the process for preparing the pyofeopovid-a-17 5 -N-hexanol and oleic acid conjugate represented by compound 10 of the present invention.
  • FIG. 6 is the UV spectrum of methyl pheopovide-a (MPa).
  • FIG. 7 is the 1 H-NMR spectrum of methyl pheophobide-a (MPa).
  • FIG. 8 is the UV spectrum of methyl pyropheovide-a (MPPa).
  • MPPa methyl pyropheovide-a
  • Figure 9 is a 1 H-NMR spectrum of methyl pyrofepovidide-a (MPPa).
  • FIG. 10 is a mass spectrometry spectrum of methyl pyropheovide-a (MPPa).
  • MPPa methyl pyropheovide-a
  • FIG. 11 is the UV spectrum of methyl pyrofepovidide-d-OH.
  • Figure 12 is a 1 H-NMR spectrum of methyl pyrofepovidide-d-OH.
  • FIG. 13 is the UV spectra of methyl pyrofepovidide-d-OH and docosahexaenoic acid conjugates.
  • FIG. 14 is the 1 H-NMR spectrum of methyl pyrofepovidide-d-OH and docosahexaenoic acid conjugates.
  • FIG. 15 is a mass spectrometry spectrum of methyl pyropheovide-d-OH and docosahexaenoic acid conjugates.
  • FIG. 16 is the UV spectrum of methyl pyrofepovidide-d-OH and oleic acid conjugates.
  • FIG. 17 is the 1 H-NMR spectrum of methyl pyrofepovidide-d-OH and oleic acid conjugates.
  • FIG. 18 is a mass spectrometry spectrum of methyl pyrofepovidide-d-OH and oleic acid conjugates.
  • FIG. 19 is the UV spectrum of pyrofepovidide-a (PPa).
  • PPa pyrofepovidide-a
  • FIG. 20 is the 1 H-NMR spectrum of pyrofepovidide-a (PPa).
  • PPa pyrofepovidide-a
  • Figure 21 is a mass spectrometry spectrum of pyrofepovidide-a (PPa).
  • FIG. 22 is the UV spectrum of pyrofepovid-a-17 5 -N-hexanol.
  • FIG. 23 is the 1 H-NMR spectrum of pyrofepovidide-a-17 5 -N-hexanol.
  • Fig. 24 is the mass spectrometry spectrum of pyrofepovidide-a-17 5 -N-hexanol.
  • FIG. 25 is the UV spectrum of pyrofepovidide-a-17 5 -N-hexanol and docosahexaenoic acid conjugates.
  • FIG. 26 is a 1 H-NMR spectrum of a pyrofepovidide-a-17 5 -N-hexanol and docosahexaenoic acid conjugate.
  • FIG. 27 is a mass spectrometry spectrum of pyrofepovidide-a-17 5 -N-hexanol and docosahexaenoic acid conjugates.
  • FIG. 28 is the UV spectrum of pyrofepovidide-a-17 5 -N-hexanol and oleic acid conjugates.
  • FIG. 29 is the 1 H-NMR spectrum of pyrofepovidide-a-17 5 -N-hexanol and oleic acid conjugates.
  • FIG. 30 is a mass spectrometry spectrum of pyrofepovidide-a-17 5 -N-hexanol and oleic acid conjugate.
  • FIG. 31 shows the results of comparing the cell growth inhibitory effects of chlorine derivatives alone, chlorine derivatives of the present invention and unsaturated fatty acid conjugates at 10 uM, 1 uM, and 0.1 uM when photodynamic therapy was not performed.
  • Fig. 32 is a result showing the shape of cells and the absorption rate of fluorescence when the chlorine derivative alone, the chlorine derivative of the present invention and the unsaturated fatty acid conjugate were used.
  • the present invention provides a conjugate of a chlorine derivative represented by the following general formula (I) with an unsaturated fatty acid.
  • the present invention provides a conjugate of a chlorine derivative represented by the following general formula II and an unsaturated fatty acid.
  • the present invention is to prepare a chlorine derivative represented by the following compound 4 and the following compound 8; And it provides a method for producing a chlorine derivative and an unsaturated fatty acid conjugate comprising the step of conjugating the chlorine derivative with an unsaturated fatty acid.
  • the unsaturated fatty acid is preferably docohexaenoic acid (docosahexaenoic acid, DHA) or oleic acid (oleic acid, OA), but is not limited thereto.
  • the chlorine derivative is methylfepopovide-a, pyrofepopovide-a, or methylpyrophepovide-a, but is not limited thereto. It may be extracted from Spirulina maxima algae.
  • the present invention provides a photosensitizer containing a conjugate of a chlorine derivative and an unsaturated fatty acid.
  • the photosensitizer is characterized in that it exhibits photosensitizing activity against light rays in the range of 650 nm to 800 nm.
  • the present invention provides a composition for treating cancer for use in photodynamic therapy comprising a photosensitizer containing a conjugate of a chlorine derivative and an unsaturated fatty acid as an active ingredient.
  • the conjugate of the chlorine derivative and the unsaturated fatty acid is characterized in that it is photoactivated in vitro or in vivo with respect to light in the range of 650 nm to 800 nm.
  • the cancer may be selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain and nervous system cancers.
  • the cancer is lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma Cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute Among the group consisting of leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma and pituitary adenoma It may be selected, but is not necessarily limited thereto.
  • CNS central nervous system
  • composition for treating cancer of the present invention is intravenous injection, intraperitoneal injection, intramuscular injection, intracranial injection, intratumoral injection, intraepithelial injection, dermal penetration, esophageal administration, abdominal administration, arterial injection, intraarticular injection and oral administration It can be administered by a route selected from the group consisting of.
  • composition according to the present invention can be used in the form of a formulation for parenteral administration in the form of a sterile aqueous solution, a non-aqueous solvent, a suspension, an emulsion or an emulsion according to a conventional method.
  • a sterile aqueous solution a non-aqueous solvent
  • a suspension an emulsion or an emulsion according to a conventional method.
  • it may be prepared using diluents or excipients such as surfactants commonly used.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
  • Preferred dosages of the conjugates according to the invention vary depending on the condition and weight of the patient, the extent of the disease, the form of the drug, the route of administration and the duration, and may be appropriately selected by those skilled in the art. However, for the desired effect, the conjugate of the present invention may be administered in an amount of 0.0001 to 100 mg / kg, preferably in an amount of 0.001 to 100 mg / kg once to several times daily.
  • the conjugate of the chlorine derivative and the unsaturated fatty acid of the present invention not only reduces toxicity as a photosensitizer but also enhances selectivity, thereby effectively inhibiting cancer cell proliferation while minimizing side effects on normal cells.
  • the present invention provides a composition
  • a composition comprising a photosensitive agent containing a conjugate of a chlorine derivative and an unsaturated fatty acid as an active ingredient
  • kits for cancer treatment for use in photodynamic therapy comprising a light source for irradiating light with a wavelength in the range of 650 nm to 800 nm.
  • Photodynamic therapy is a combination of photosensitizers (PS), light and oxygen.
  • PS photosensitizers
  • oxygen oxygen
  • the photosensitizer When the photosensitizer is administered to the human body, the photosensitizer accumulates in the lesion, that is, the tumor tissue, and then, when irradiated with visible light, the tumor is selectively destroyed by maximizing the production of singlet oxygen.
  • Chlorine is a compound having a structure represented by the following Chemical Formula 1 and is a large heterocyclic aromatic ring composed of pyrrole and pyrroline connected by four methine linkages at the center.
  • Magnesium-containing chlorine is called chlorophyll and is the central photosensitive pigment in the chloroplast.
  • the chlorine derivative means a compound having the chlorine as a basic skeleton structure.
  • Chlorine and chlorine derivatives are effectively used as photosensitizers in photodynamic therapy because of their photosensitization.
  • chlorine and chlorine derivatives are more useful for synthesizing photosensitizers, on the one hand because they have good spectral properties and low toxicity, and on the other hand have many reaction centers that enable various chemical conversions to be carried out. Can be used.
  • the chlorine derivatives that can be used in the present invention include, but are not limited to, methylfephopovid-a, pyrophopovida- and methylpyrofepovidide-a, which can be obtained in particular from chlorophyll.
  • the methylfeophosphide-a, pyrofeophoride-a and methylpyrofeophoride-a can be activated with much longer red light at ⁇ 670 nm and produce less long-term normal tissue phototoxicity than photoprin II. Therefore, it is used as a kind of potential new compound.
  • the chlorine derivative used in the present invention has a high yield in the extraction process has the advantage of excellent commercial utility. However, higher concentrations result in darker toxicity.
  • pheophorbide-a obtained from Spirulina Maxima , a kind of algae, which produces a mixture of natural chlorine, pyrophorovide-a and methyl pyrophorovobi De-a (methyl pyropheophorbide-a, MPPa) can be used.
  • methyl pyropheophorbide-d-OH methyl pyropheophorbide-d-OH
  • PUFAs poly unsaturated fatty acids
  • fatigue peoh Poby provides de -a-17 5 -N- hexanol (pyropheophorbide-a-175-N -hexanol) conjugate connecting the acid in Toko hexahydro chlorin derivatives such as.
  • the present invention is to compare the effect of polyunsaturated fatty acids and monounsaturated fatty acids (MUFA) on tumor cells, the monounsaturated fatty acid oleic acid is methyl pyrofeophosphide-d-OH or pyrofepoobibi
  • the monounsaturated fatty acid oleic acid is methyl pyrofeophosphide-d-OH or pyrofepoobibi
  • conjugates that are similarly linked to chlorine derivatives such as de-a-17 5 -N-hexanol.
  • the conjugate thus formed has an effect of improving the selectivity to tumors and reducing cytotoxicity, it may be usefully used for the treatment of photodynamic cancer.
  • 10uM of chlorine derivatives alone (Free-Ps), using a laser (w / o irradiation) also shows a 90% or more cell growth inhibitory effect, so that there is a side effect of dark toxicity Can be.
  • 1uM which is not cytotoxic
  • the process for preparing the methyl pyrofeophovidide-d-OH and docosahexaenoic acid conjugates represented by compound 5 of the present invention comprises the following steps (FIG. 2):
  • MPPd methyl pyropheophorbide-d
  • MPPa methyl pyrophenovidide-a
  • the process for preparing the methyl pyrofeophovidide-d-OH and oleic acid conjugate represented by compound 6 of the present invention comprises the following steps (FIG. 3):
  • MPPd methyl pyropheophorbide-d
  • MPPa methyl pyrophenovidide-a
  • the process for preparing the pyrofeophosphide-a-17 5 -N-hexanol and docosahexaenoic acid conjugates represented by compound 9 of the present invention comprises the following steps (FIG. 4):
  • the process for preparing the pyrofeophosphide-a-17 5 -N-hexanol and oleic acid conjugate represented by compound 10 of the present invention comprises the following steps (FIG. 5):
  • Spirulina maxima algae are treated with acetone to extract and separate chlorophyll-a, which is treated with methanol under acidic acid to afford methyl pheopovidide-a (MPa). This process is briefly shown in Scheme 1 below.
  • Chlorophyll-a in the present invention may be obtained separately from spirulina or maxima or may be commercially available.
  • Methyl pheophovidide-a (MPa) is then refluxed in collidine to afford methyl pyrophovidide-a (MPPa). This process is briefly shown in Scheme 2 below.
  • DHA docohexaenoic acid
  • DMPA 4-dimethylaminopyridine
  • methyl pyrophenovidide-d-OH, dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMPA) are dissolved in dichloromethane and docosahexaenoic acid (DHA) It is added and reacted to obtain compound 5. This process is briefly shown in Scheme 5 below.
  • Chlorophyll-a was extracted from spirulina maxima algae and treated with methanol under acidic acid to obtain methyl pheophovidide-a (MPa), and then methyl pheophovidide-a (MPa) was refluxed in collidine to yield methyl pyofeo Obtained povidide-a (MPPa), oxidizing methyl pyrophenovidide-a (MPPa) with osmium tetraoxide-sodium periodate to obtain methyl pyropheovide-d (MPPd) To prepare a methyl pyropheovide-d-OH and docosahexaenoic acid conjugate represented by the above compound 5 until the step of -d (MPPd) was reduced to tBuNH 2 BH 3 to obtain methyl pyrophenovidide-d-OH It is the same as how.
  • oleic acid which is a type of unsaturated fatty acid, is bound to methyl pyrofepopoide-d-OH.
  • Methyl pyrophopovid-d-OH, dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMPA) are dissolved in dichloromethane, and oleic acid (OA) is added thereto to react with the compound 6 Get This process is briefly shown in Scheme 6 below.
  • Chlorophyll-a was extracted from spirulina maxima algae and treated with methanol under acidic acid to yield methyl pheophovidide-a (MPa), and then methyl pheophovidide-a (MPa) was refluxed in collidine to produce methyl pyropheno
  • MPa methyl pheophovidide-a
  • MPPa povid-a
  • methyl pyrofenovide-a (MPa) is treated with hydrochloric acid (HCl) in terahydrofuran (THF) to obtain pyrofenovide-a (PPa).
  • HCl hydrochloric acid
  • THF terahydrofuran
  • pyrofeophosphide-a PPa
  • DCC N, N'-dicyclohexylcarbodiimide
  • NHS N-hydroxysuccinimide
  • hexanolamine is added thereto and stirred to obtain pyrofeophosphide-a-17 5 -N-hexanol. This process is briefly shown in Scheme 8 below.
  • DHA docohexaenoic acid
  • DCC dicyclohexylcarbodiimide
  • DMPA 4-dimethylaminopyridine
  • Chlorophyll-a was extracted from spirulina maxima algae and treated with methanol under acidic acid to obtain methyl pheophovidide-a (MPa), and then methyl pheophovidide-a (MPa) was refluxed in collidine to yield methyl pyofeo Povidide-a (MPPa) was obtained and treated with hydrochloric acid (HCl) in terahydrofuran (THF) to obtain pyofeopovid-a (PPa), followed by dicyclohexylcarbodiimide (DCC).
  • MPa methyl pheophovidide-a
  • MPa methyl pheophovidide-a
  • MPPa methyl pheophovidide-a
  • MPPa methyl pheophovidide-a
  • PPa pyofeopovid-a
  • DCC dicyclohexylcarbodiimide
  • pyrofephopovid-a-17 5 -N-hexanol which is represented by Compound 9 above. It is the same as the method for producing the pyrofepovidide-a-17 5 -N-hexanol and docosahexaenoic acid conjugates.
  • pyrophenovidide-a-17 5 -N-hexanol is combined with oleic acid (OA), which is a type of unsaturated fatty acid.
  • OA oleic acid
  • DCC dicyclohexylcarbodiimide
  • DMPA 4-dimethylaminopyridine
  • reagents were purchased from Sigma, Aldrich, Fluka, Alfa Aesar and Daihan. If necessary, the reagents were distilled and purified into anhydrous solutions according to standard procedures. Other commercially available reagents were used without purification.
  • TLC sica gel F 254 , 0.2 mm thick, Merck
  • MALDI mass spectra were measured with a yager-DETM STR Biospectrometry Workstation spectrometer at the Seoul National University Institute of Basic Science and Technology (NICRF).
  • the solution was diluted with dichloromethane ( ⁇ 500 mL), washed with water ( ⁇ 500 mL), washed with 10% aqueous sodium hydrogen carbonate solution ( ⁇ 500 mL), and then washed three times with water.
  • the organic layer was separated, dried over anhydrous sodium sulfate and evaporated to dryness.
  • the residue was purified by column chromatography eluting with 2% acetone in dichloromethane on silica gel 60 (230-400 mesh).
  • the product was recrystallized from dichloromethane / methanol.
  • the UV spectrum of the product was measured, as in FIG. 6.
  • Methyl pheophobide-a (1 g, 1.65 mmol) was dissolved in collidine (100 mL, re-distilled, stored on KOH) and refluxed for 2 h 30 min. After cooling, the solution was diluted with dichloromethane and washed with 2N HCl (5 ⁇ 200 mL) and then twice with water. The combined organic phases were dried over anhydrous sodium sulfate and the solvent removed by vacuum rotator. The residue was purified by elution with 2% acetone in dichloromethane on silica gel 60 (230-400 mesh) and recrystallized from dichloromethane / hexanes. As a result of measuring the UV spectrum of the product was as shown in FIG.
  • UV-vis in CH 2 Cl 2 : ⁇ max , nm (log ⁇ ) 667.7 (0.24), 610.5 (0.036), 539.2 (0.043), 508.5 (0.049), 414.1 (0.558).
  • Methyl pyropheovide-a (1 mmol) and osmium tetraoxide (OsO 4 , 10 mg) were dissolved in tetrahydrofuran (100 mL, redistilled), and then, by using a peristaltic pump. It was added to an aqueous solution (7.5 mL) in which sodium periodate (NaIO 4 , 1.19 g) and acetic acid (0.5 mL) were dissolved, and allowed to react overnight under a nitrogen atmosphere. The reaction was added to distilled water and dichloromethane and stirred for 30 minutes, and the aqueous layer was extracted several times with dichloromethane until the aqueous layer was not colored.
  • the organic layer was washed with saturated aqueous sodium hydrogen carbonate (NaHCO 3 ) solution and water, and the organic layer was dried using anhydrous sodium sulfate, and then the organic layer was concentrated.
  • the concentrated organics were purified on silica gel via column chromatography using 2% acetone in dichloromethane as eluent to afford compound (MPPd).
  • the obtained compound was confirmed by TLC and the next reaction was carried out.
  • the obtained compound was confirmed by UV-vis, 1 H-NMR and MS.
  • Methyl pyropheovide-d (0.2 mmol) was dissolved in dichloromethane (100 mL), and tBuNH 2 BH 3 (20 mg) was added thereto and reacted overnight under an argon atmosphere. The reaction was poured into a 2% aqueous HCl solution (100 mL), stirred in an ice bath for 20 minutes, and the aqueous layer was extracted several times with dichloromethane until the aqueous layer was not colored.
  • the organic layer was washed with 2% aqueous HCl solution (500 ml), distilled water (500 ml), saturated aqueous sodium hydrogen carbonate (NaHCO 3 ) solution (100 ml) and aqueous sodium chloride solution (500 ml), and the organic layer was washed with anhydrous sodium sulfate. After drying, the organic layer was concentrated. The concentrated organics were purified on silica gel via column chromatography using 10% acetone in dichloromethane as eluent to afford the compound (methyl pyropheovide-d-OH). The obtained compound was identified by UV-vis, 1 H-NMR and MS, UV-vis and 1 H-NMR are shown in Figure 11, 12 in order.
  • UV-vis in CH 2 Cl 2 : ⁇ max , nm (log ⁇ ) 664.8 (1.13), 606.8 (0.31), 537.3 (0.35), 504.0 (0.31), 472.5 (0.20), 411.3 (2.05), 319.5 (0.64).
  • Methyl pyropheovide-d-OH (30 mg, 0.054 mmol), dicyclohexylcarbodiimide (22.4 mg, 0.108 mmol) and 4-dimethylaminopyridine (9.9 mg, 0.081 mmol) in dichloromethane Stir and add docosahexaenoic acid (17.8 mg, 0.054 mmol) to the mixture.
  • the reaction was carried out for 2 hours under nitrogen atmosphere at room temperature.
  • To the reaction mixture was added 10 ml of water and stirred, which was extracted with 20 ml of dichloromethane.
  • the organic layer obtained with 100 ml of water was washed twice, and the organic layer was dried using anhydrous sodium sulfate, and then the organic layer was concentrated.
  • UV-vis in CHCl 3 : ⁇ max , nm (Abs) 666.4 (0.79), 608.2 (0.25), 537.9 (0.28), 503.7 (0.24), 412 (1.35), 320 (0.46).
  • MALDI-MS m / z of C 55 H 66 N 4 O 5 + (M + H) + ; Calculated 863.1363, measured 863.4110.
  • Methyl pheophovidide-d-OH 25 mg, 0.045 mmol
  • dicyclohexylcarbodiimide 22 mg, 0.09 mmol
  • 4-dimethylaminopyridine 0.05 mmol
  • oleic acid 12.77 mg, 0.045 mmol
  • the reaction was carried out for 2 hours under nitrogen atmosphere at room temperature.
  • To the reaction mixture was added 10 ml of water and stirred, which was extracted with 20 ml of dichloromethane.
  • the organic layer obtained with 100 ml of water was washed twice, and the organic layer was dried using anhydrous sodium sulfate, and then the organic layer was concentrated.
  • UV-vis in CHCl 3 : ⁇ max , nm (Abs) 666.1 (1.37), 608.2 (0.35), 537.9 (0.39), 505 (0.36), 411.5 (2.37), 319 (0.71).
  • Methyl pyrofenovide-a (1.166 g, 2.125 mmol) was dissolved in tetrahydrofuran (230 mL). 4N aqueous hydrochloric acid solution (580 mL) was added to the mixture. The reaction mixture was stirred for 4 hours at room temperature under a nitrogen atmosphere. Dichloromethane (150 mL) was added to the reaction mixture and the aqueous layer was separated off and the organic layer washed several times with water to remove the acid. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was recrystallized from dichloromethane / hexanes.
  • the residue was purified by eluting with 5% methanol in dichloromethane on silica gel 60 (230-400 mesh).
  • the UV spectrum of the product was measured, and as in FIG. 19. 19, two base peaks of the chlorine ring were observed at ⁇ 413.9 nm and ⁇ 667.5 nm, and other small peaks were observed at ⁇ 508.9 nm, ⁇ 539 nm, and ⁇ 609.8 nm. Meanwhile, the results of measuring 500 MHz 1 H-NMR spectrum of the product (PPa) in chloroform are shown in FIG. 20. Signals determined using ⁇ and J HH values were marked in the 1D proton spectrum.
  • UV-vis in CHCl 3 : ⁇ max , nm (Abs) 668.9 (2.03), 611.4 (0.51), 540.8 (0.58), 525.8 (0.381), 510 (0.57), 407.2 (3), 323.2 (1.16) , 269.7 (0.97).
  • MALDI-MS m / z of C 39 H 47 N 5 0 3 + (M + H) + ; Calculated 633.8222, measured 634.2467.
  • Firophepovid-a-17 5 -N-hexanol and docosahexaenoic acid conjugates pyropheophorbide-a-17 5 -N-hexanol and docosahexaenoic acid conjugate, compound 9)
  • UV-vis in CHCl 3 : ⁇ max , nm (Abs) 669.2 (0.81), 611 (0.27), 540.5 (0.31), 525.9 (0.24), 511.1 (0.28), 415.3 (1.63), 3.23 (0.56) .
  • Firophepovid-a-17 5 -N-hexanol and oleic acid conjugates pyropheophorbide-a-17 5 -N-hexanol and oleic acid conjugate, compound 10.
  • MALDI-MS m / z of C 57 H 79 N 5 O 4 + (M) + ; Calculated, measured 898.4696.
  • TC-1 cell lines were seeded at 3 ⁇ 10 3 cells / well in 96 well plates, and then cultured for 24 hours to treat conjugates of 0.1, 1, and 10 uM of chlorine derivatives, chlorine derivatives and unsaturated fatty acids for 24 hours.
  • the control group was divided into a control and a treatment group, and the treatment group was subjected to PDT at 1.56 J / cm 2 using a laser of 662 nm ⁇ 3 nm, but the control group was not subjected to PDT. Thereafter, 20 ⁇ l of 5 mg / ml MTT solution (Sigma-Aldrich) was added to each well of the control and treatment groups, and incubated at 37 ° C. for 4 hours.
  • DMSO dimethyl sulfoxide
  • TC-1 cell line in RPMI-1640 (Gibco BRL, Rockville, MD, USA) in 5% fetal bovine serum (FBS) (Gibco BRL), 0.22% sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA) , 400 mg / L G418 (Sigma-Aldrich), and streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • TC-1 cell lines were dispensed at 3 ⁇ 10 3 cells / well in 6-well plates containing sterilized cover glass, and then cultured for 24 hours to treat chlorine derivatives and conjugates of chlorine derivatives and unsaturated fatty acids for 12 hours.
  • the medium was removed, washed twice with 1X PBS buffer, and cells were fixed by treating 1 ml of 1% paraformaldehyde for 15 minutes. After fixation, the supernatant was removed, washed once with 1X PBS buffer and dried on a slide glass in which the mounting solution was dropped, followed by fluorescence analysis using a confocal microscopy (TCS SP2, Leica, Wetzlar, Germany). It was. The excitation wavelength used was 600 nm and the emission wavelength was 545 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물에 관한 것으로, 클로린 유도체(chlorin derivates)를 도코사헥사에노산(docosahexaenoic acid, DHA) 또는 올레산(oleic acid, OA)과 같은 불포화 지방산에 결합시켜 종양에 대한 선택성이 향상되고 세포 독성이 감소된 클로린 유도체와 불포화 지방산의 접합체를 제공함으로써, 상기 접합체를 광역학적 암 치료에 유용하게 사용할 수 있는 효과가 있다.

Description

클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물
본 발명은 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물에 관한 것이다.
광역학 치료(photodynamic therapy, PDT)는 빛과 광감작제(photosensitizers, PS)의 조합을 이용한 의학적 치료로서, 작용기전은 크게 광감작제의 종양 선택적 축적에 대한 분자적 기전과 광감작제와 빛의 상호작용에 따른 종양 파괴 기전으로 나눌 수 있다. 각 인자는 그 자체로 해롭지 않으나, 산소와 결합하였을 때, 이들은 종양 세포를 비활성화하는 치사의 세포독성 작용제를 생산할 수 있다[Sternberg ED et al., Tetrahedron, 1998, 54: 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6: 158-161].
광역학 치료는 이중 선택성을 나타내는데, 병든 조직에 의해서 광감작제가 우선적으로 흡수되고, 특정 영역의 빛을 조사함으로써 광감작제가 활성화된다. 광역학 치료는 세포 내 수많은 항산화 방어 메커니즘을 압도하고 세포의 거대분자에 산화적 손상을 야기하는 일중항 산소(singlet oxygen) 및 다른 반응 산소종(reactive oxygen species, ROS)의 생산을 통해 세포를 사멸시킨다[Weishaupt KR et al., Cancer Res., 1976, 36: 2326-2329].
광역학 치료 도중 형성되는 세포독성 작용제인 일중항 산소와 반응 산소종을 발생시키는 광화학적 반응은 변형된 야블론스키 다이아그램(도 1)에 의해 나타내어진다. 요컨대, 빛의 흡수 이후에 광감작제는 반감기가 짧은 여기된 일중항 상태[S1, (~10-6s)]를 통해 바닥 일중항 상태(S0)로부터 전기적으로 여기된 삼중항 상태[T1, (~10-2s)]로 변형된다. 광역학 치료에 관한 특별히 중요한 것은 반감기가 짧은 여기된 일중항 상태 광감작제가 계간교차(intersystem crossing, ISC)의 비-방사성 과정을 수행할 수 있다는 점이다. 이는 스핀 반전을 필요로 하여 이에 의하여 광감작제를 전자 스핀 평행을 가지는 상대적으로 반감기가 긴 여기된 삼중항 상태(T1)로 전환하기 때문에 스핀-금지(spin-forbidden) 과정이다. 어떠한 '금지' 경로도 '허용' 과정보다 가능성이 더 낮으나, 우수한 광감작제는 매우 높은 효율로 '금지' 계간교차 경로를 수행한다. 여기된 삼중항 상태 광감작제는 두 가지 종류의 반응을 수행할 수 있다[Macdonald JI et al., J. Porphyrins Phthalocyanines, 2001, 5: 105-129].
첫째, 이는 산소와 상호작용 이후에 슈퍼옥사이드 이온, O2 -과 같은 과산화 생성물을 생산할 수 있는 라디칼 및 라디칼 이온을 형성하기 위하여 생물학적 기질과 함께 전자-전달 과정에 참여할 수 있다[타입 I 반응]. 양자택일적으로, 이는 안정한 삼중항 산소(3O2)가 반감기는 짧으나 큰 반응성을 가지는 일중항 산소(1O2)로 전환하게 되는 타입 II 반응으로서 알려진 광화학적 과정을 수행할 수 있다.
더 나아가, 광역학 치료의 종양 세포 치사 효과는 암 덩어리 내의 빛 침투 깊이와 관련된다. 조직 내 빛의 영향은 거리에 대해 기하급수적으로 감소한다 [Moser JG. In Photodynamic Tumor Therapy - 2nd & 3rd Generation Photosensitizers. Harwood Academic Publishers, London, 1997, 3-8]. 조직의 약화는 최적의 흡수, 내인성 분자 및 약물 발색단 자체에 의한 산란에 의해 영향을 받는다. 피부 조직의 최대 투과율은 700-800 ㎚ 영역에 있고, 이 영역 내에서 최대 흡수를 나타내는 광감작제의 개발이 요구된다. 630 ㎚에서의 유효한 침투는 1 내지 3 ㎜ 사이인데 반하여, 700-850 ㎚에서는 최소한 6 ㎜의 빛 침투가 관찰되었다. 따라서, 이상적인 광감작제는 근적외선 영역에서 강한 흡수를 나타내야만 한다.
광감작제는 빛의 흡수 하에서 다른 화학종의 화학적 또는 물리적 변형을 유도하는 화학종으로서 정의된다. 임상의와 화학자는 이상적인 광감작제에 대해 다른 견해를 가진다[Kirchner C et al., Nano Lett., 2005, 5: 331]. 예를 들어, 화학자는 높은 절멸 정도와 일중항 산소의 높은 양자 수율을 보다 더 강조할 수 있음에 반하여 임상의는 낮은 독성과 높은 선택성을 더욱 강조할 수 있다. 그럼에도 불구하고, 양쪽 모두 임상적 광역학 치료와 이상적 광감작제가 임상적으로 적절하고 Allison 등[Zheng H. Technology in Cancer Research & Treatment, 2005, 4: 283-293]과 Castano 등[Anna C et al., Photochem Photobiol, 2006, 82: 617-625]에 의해 보고된 하기 기준의 몇몇을 최소한 충족해야만 한다는 점에 동의한다.
1. 가시광선 스펙트럼의 적색 부분에서의 강한 흡수(>650 ㎚),
2. 94 kJ/mol-1 보다 큰 삼중항 에너지를 가진 삼중항 형성의 높은 양자 수율,
3. 일중항 산소 생성의 높은 양자 수율(반감기가 긴 여기 상태),
4. 낮은 암흑(dark) 독성,
5. 종양 조직 대 건강한 조직, 특별히 피부에서의 농축 선택성을 나타내야만함; 일반적인 피부 감작은 피해야만 함; 특정 치료 모달리티는 피부 감작을 필요로 하며, 이때 피부의 급속한 감작 및 탈감작이 바람직함,
6. 약물의 단순한 제형화; 제형화된 약물은 긴 저장 기간을 가져야만 함,
7. 체내로부터 급속하게 제거되는 약물 동력학적 프로파일,
8. 상기 특성들의 향상을 가능하게 하는 용이한 유도체화(측쇄)의 선택권,
9. 쉽게 입수가능한 출발 물질로부터의 용이한 합성, 다수-킬로그램 스케일로의 쉬운 변형,
10. 1O2 양자 수율을 감소시키는 것으로 인한 체내에서의 자기-응집이 없음.
광역학 치료 분야에서, 테트라피롤 거대 고리가 광감작제로서 종종 사용된다. 가시광선 스펙트럼의 적색 영역에서의 강한 흡수는 이것이 더 두꺼운 종양의 치료를 가능하게 하기 때문에 효과적인 광감작제를 위한 매우 바람직한 특징이다[Johnson CK et al., Tetrahedron Lett., 1998, 39: 4619-4622]. 이러한 이유 때문에, 포르피린, 클로린, 박테리오클로린, 포피신, 프탈로시아닌, 나프탈로시아닌, 그리고 확장된 포르피린과 같은 테트라피롤이 합성되어졌고, 이들에 대한 광역학 치료 효능이 평가되어 왔다. 광감작제는 이들의 화학적 구조와 유래에 의하여 분류될 수 있다. 일반적으로 이들은 3 개의 넓은 부류로 나뉠 수 있다: (i) 포르피린-기초(예를 들어 포토프린, ALA/PpIX 및 BPDMA), (ii) 클로린-기초(예를 들어 퍼푸린 및 박테리오클로린) 및 (iii) 염료(예를 들어 프탈로시아닌, 나프탈로시아닌).
이들 중 클로린- 및 박테리오클로린-기초 광감작제는 단량체 화합물로서, 효과적으로 일중항 산소를 발생시키며(φ = 45-60 %), 그들의 긴 흡수파장 때문에 넓고(넓거나) 깊게 자리 잡은 종양을 치료하는데 효과적이다[Zheng, X. et al., J. Med. Chem. 2009, 52: 4306-4318].
그러나 대부분의 첫번째 및 두번째 세대의 광감작제는 단지 악성 세포를 더 선호하는 광역학 치료 디스플레이를 위해 연구되었고, 종종 피부 광감성을 크게 하거나(포토프린), 건강한 세포 및 조직에도 흡수되는 등의 문제를 야기하였다[Sharman, W. M. et al., Advanced Drug Delivery Reviews, 2004, 56: 53-76; Allen, C. M. et al., Tumour Targeting in Cancer Therapy, Humana Press, New Jersey, 2002, 329-361]. 이러한 문제점을 극복하기 위해, 세번째 세대의 광감작제는 병든 조직을 더욱 활발히 타겟하는 데 중점을 두고 있다. 이러한 세번째 세대의 광감작제는 이것의 물리화학적 성질을 통해 광감작 종이 변형되도록 디자인 및 합성하거나, 항체, 고분자, 단백질 스캐폴드 및 카보하이드레이트와 같은 종에 광감작제를 접합하여 병든 조직에 대한 타겟 효과를 향상시킨다[Brown, S. B. et al., The Lancet Oncology, 2004, 5: 497-508; Savellano, M. D. et al., Clin. Cancer Res., 2005, 11: 1658-1668].
한편, 최근 도코사헥사에노산(docosahexaenoic acid, DHA)과 같은 다가 불포화 지방산(poly unsaturated fatty acids, PUFAs)이 암 및 신경변성질환(neurodegenerative disorders)에 대한 잠재적인 치료 효과를 갖는 것으로 알려지면서 크게 주목받고 있다[Jaracz, S. et al., Bioorg. Med. Chem., 2005, 13: 5043-5054; Youdim, K. A. et al., J. Devl Neuroscience, 2000, 18: 383-399; Yu, J. H. et al., Ann. N. Y. Acad. Sc., 2009, 1171: 359-364]. 그리고 동맥혈(arterial blood)로부터 종양 세포에 의해 빠르게 흡수되는 몇몇의 다가 불포화 지방산은 생화학 전구물질 및 에너지 원천으로 사용될 수 있으며, 또한, 세포의 지질 이중층에 손쉽게 결합할 수 있어, 결과적으로 세포막 구조 및 유체를 파괴한다[Sauer, L. A. et al., Cancer Res., 1986, 46: 3469-3475; Sauer, L. A. et al., Brit. J. Cancer, 1992, 66: 297-303; Takahashi, M.et al., J. M. Cancer Res., 1992, 52: 154; Grammatikos, S. I. et al., J. Cancer, 1994, 70: 219].
Bradley 등이 파클리탁셀-DHA 접합체(paclitaxel-DHA conjugate)를 최초로 발견하였고, 파클리탁셀-DHA 접합체는 파클리탁셀 보다 항암 활성이 향상되어 암 치료에 효과적이다[Bradley, M.O. et al., Clinical Cancer Research, 2001, 7: 3229-3238; Bradley, M.O. et al., Journal of Controlled Release., 2001, 74: 233-236]. Siddiqui 등은 긴 체인의 불포화 지방산의 일종인 도코사헥사에노산(DHA)이 산화되기 매우 쉽다는 사실을 발견하였고, 이러한 산화는 효소적 또는 비효소적 환경 하에서 모두 일어날 수 있다. 그리고 다양한 비효소적 메커니즘을 통하여 도코사헥사에노산(DHA)은 항암 특성을 설명하는 DHA-유도 아폽토시스를 매개하는데 큰 역할을 하는 것으로 보이는 다수의 산화된 물질로 변형될 수 있다[Siddiqui, R. A. et al., Chemistry and Physics of Lipids, 2008, 153: 47-56].
이러한 배경 하에, 본 발명자는 암 세포에 대해 더욱 선택적이고 친화력이 강한 광감작제를 획득하기 위해, 클로린 유도체를 도코사헥사에노산 또는 올레산과 같은 불포화 지방산(unsaturated fatty acids, UFAs)과 접합시켰다. 그 결과, 상기 접합체가 암 세포에 타겟하는 효과가 매우 우수하여 상승 효과를 나타낸다는 사실을 입증하여 본 발명을 완성하였다.
본 발명의 목적은 클로린 유도체를 도코사헥사에노산(docosahexaenoic acid, DHA) 또는 올레산(oleic acid, OA)과 같은 불포화 지방산과 접합시킴으로써, 종양 세포에 더욱 선택적이고 광감작 효과가 우수한 클로린 유도체와 불포화 지방산의 접합체를 제공하는 것이다.
본 발명의 다른 목적은 클로린 유도체를 도코사헥사에노산 또는 올레산과 같은 불포화 지방산과 접합시킴으로써, 종양 세포에 더욱 선택적이고 광감작 효과가 우수한 클로린 유도체와 불포화 지방산의 접합체를 제조하는 방법을 제공하는 것이다.
본 발명은 클로린 유도체를 도코사헥사에노산(docosahexaenoic acid, DHA) 또는 올레산(oleic acid, OA)과 같은 불포화 지방산과 접합시켜 종양에 대한 선택성이 향상되고 세포 독성이 감소된 클로린 유도체와 불포화 지방산의 접합체를 제공함으로써, 상기 접합체를 광역학적 암 치료에 유용하게 사용할 수 있는 효과가 있다.
도 1은 변형된 야블론스키 다이아그램을 나타낸 것이다. 여기에서 1은 흡수, 2는 비방사성 붕괴, 3은 형광, 4는 계간 교차, 5는 인광, 6은 에너지 전달을 의미한다.
도 2는 본 발명의 화합물 5로 나타내어지는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체를 제조하는 과정을 간략히 나타낸 것이다.
도 3은 본 발명의 화합물 6으로 나타내어지는 메틸 피로페오포비드-d-OH 및 올레산 접합체를 제조하는 과정을 간략히 나타낸 것이다.
도 4는 본 발명의 화합물 9로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체를 제조하는 과정을 간략히 나타낸 것이다.
도 5는 본 발명의 화합물 10으로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체를 제조하는 과정을 간략히 나타낸 것이다.
도 6은 메틸 페오포비드-a(MPa)의 UV 스펙트럼이다.
도 7은 메틸 페오포비드-a(MPa)의 1H-NMR 스펙트럼이다.
도 8은 메틸 피로페오포비드-a(MPPa)의 UV 스펙트럼이다.
도 9는 메틸 피로페오포비드-a(MPPa)의 1H-NMR 스펙트럼이다.
도 10은 메틸 피로페오포비드-a(MPPa)의 질량 분석 스펙트럼이다.
도 11은 메틸 피로페오포비드-d-OH의 UV 스펙트럼이다.
도 12는 메틸 피로페오포비드-d-OH의 1H-NMR 스펙트럼이다.
도 13은 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체의 UV 스펙트럼이다.
도 14는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체의 1H-NMR 스펙트럼이다.
도 15는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체의 질량 분석 스펙트럼이다.
도 16은 메틸 피로페오포비드-d-OH 및 올레산 접합체의 UV 스펙트럼이다.
도 17은 메틸 피로페오포비드-d-OH 및 올레산 접합체의 1H-NMR 스펙트럼이다.
도 18은 메틸 피로페오포비드-d-OH 및 올레산 접합체의 질량 분석 스펙트럼이다.
도 19는 피로페오포비드-a(PPa)의 UV 스펙트럼이다.
도 20은 피로페오포비드-a(PPa)의 1H-NMR 스펙트럼이다.
도 21은 피로페오포비드-a(PPa)의 질량 분석 스펙트럼이다.
도 22는 피로페오포비드-a-175-N-헥사놀의 UV 스펙트럼이다.
도 23은 피로페오포비드-a-175-N-헥사놀의 1H-NMR 스펙트럼이다.
도 24는 피로페오포비드-a-175-N-헥사놀의 질량 분석 스펙트럼이다.
도 25는 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체의 UV 스펙트럼이다.
도 26은 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체의 1H-NMR 스펙트럼이다.
도 27은 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체의 질량 분석 스펙트럼이다.
도 28은 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체의 UV 스펙트럼이다.
도 29는 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체의 1H-NMR 스펙트럼이다.
도 30은 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체의 질량 분석 스펙트럼이다.
도 31은 광역학 치료를 실시하지 않은 경우 및 실시한 경우, 10uM, 1uM, 0.1uM에서 클로린 유도체 단독, 본 발명의 클로린 유도체와 불포화 지방산 접합체의 세포 성장 억제 효과를 비교한 결과이다.
도 32는 클로린 유도체 단독, 본 발명의 클로린 유도체와 불포화 지방산 접합체를 사용한 경우, 세포의 모양 및 형광의 흡수율을 나타내는 결과이다.
하나의 양태로서, 본 발명은 하기 일반식 I로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체를 제공한다.
[일반식 I]
[규칙 제91조에 의한 정정 19.04.2011] 
상기 식에서, R은
Figure PCTKR2011000416-appb-I000002
또는
Figure PCTKR2011000416-appb-I000003
이다.
다른 하나의 양태로서, 본 발명은 하기 일반식 II로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체를 제공한다.
[일반식 II]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-76
상기 식에서, R은
Figure PCTKR2011000416-appb-I000005
또는
Figure PCTKR2011000416-appb-I000006
이다.
다른 하나의 양태로서, 본 발명은 하기 화합물 4 및 하기 화합물 8로 나타내어지는 클로린 유도체를 제조하는 단계; 및 상기 클로린 유도체를 불포화 지방산과 접합시키는 단계를 포함하는 클로린 유도체와 불포화 지방산 접합체를 제조하는 방법을 제공한다.
[화합물 4]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-83
[화합물 8]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-86
본 발명에서, 불포화 지방산은 도코헥사에노산(docosahexaenoic acid, DHA) 또는 올레산(oleic acid, OA)임이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 클로린 유도체는 메틸페오포비드-a, 피로페오포비드-a 또는 메틸피로페오포비드-a인 것이 바람직하나, 이에 한정되는 것은 아니다. 스피루리나 맥시마(Spirulina maxima) 조류로부터 추출된 것일 수 있다.
다른 하나의 양태로서, 본 발명은 클로린 유도체와 불포화 지방산의 접합체를 함유하는 광감작제를 제공한다.
본 발명에서, 상기 광감작제는 650 ㎚ 내지 800 ㎚ 범위의 광선에 대하여 광감작 활성을 보이는 것을 특징으로 한다.
다른 하나의 양태로서, 본 발명은 클로린 유도체와 불포화 지방산의 접합체를 함유하는 광감작제를 유효성분으로 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물을 제공한다.
상기 암 치료용 조성물에서, 클로린 유도체와 불포화 지방산의 접합체는 650 ㎚ 내지 800 ㎚ 범위의 광선에 대하여 생체 외 또는 생체 내에서 광활성화되는 것을 특징으로 한다.
본 발명에서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택될 수 있다.
보다 구체적으로, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(central nervous system, CNS) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군 중에서 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다.
본 발명의 암 치료용 조성물은 정맥주사, 복강내주사, 근육내주사, 두개내주사, 종양내주사, 상피내주사, 피부관통전달, 식도투여, 복부투여, 동맥주사, 관절내주사 및 구강내투여로 이루어진 군 중에서 선택된 경로로 투여될 수 있다.
본 발명에 따른 조성물은 통상의 방법에 따라 멸균 수용액, 비수성용제, 현탁제, 에멀젼 또는 유제 등의 형태의 비경구 투여를 위한 제제로 제형화하여 사용될 수 있다. 제형화할 경우 보통 사용하는 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
본 발명에 따른 접합체의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서 본 발명의 접합체는 0.0001 내지 100 mg/kg으로, 바람직하게는 0.001~100 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다.
본 발명의 클로린 유도체와 불포화 지방산의 접합체는 광감작제로서의 독성을 감소시킬 뿐만 아니라 선택성이 증진되어 정상 세포에 대한 부작용을 최소화하면서 암세포의 증식을 효과적으로 억제할 수 있다.
다른 하나의 양태로서, 본 발명은 클로린 유도체와 불포화 지방산의 접합체를 함유하는 광감각제를 유효성분으로 포함하는 조성물; 및
파장이 650 ㎚ 내지 800 ㎚ 범위인 광선을 조사하기 위한 광원을 포함하는 광역학 치료에 사용하기 위한 암 치료용 키트를 제공한다.
이하, 본 발명의 구성을 상세히 설명한다.
광역학 치료(photodynamic therapy, PDT)는 광감작제(photosensitizers, PS), 빛 그리고 산소의 조합에 의한 치료이다. 광감작제를 인체에 투여하게 되면 광감작제가 병소 즉, 종양 조직에 축적되게 되고 이후 가시광선을 조사하게 되면 일중항 산소의 생산을 최대화하여 종양이 선택적으로 파괴되는 것이다.
클로린(chlorin)은 하기 화학식 1의 구조를 가지는 화합물로서 중심에 4개의 메틴 결합(linkage)으로 연결된 피롤과 피롤린으로 이루어진 거대한 헤테로고리 방향성 환이다. 마그네슘-함유 클로린은 클로로필로 불리며, 엽록체 내 중심 광감작 색소이다.
[화학식 1]
Figure PCTKR2011000416-appb-I000009
본 발명에서, 클로린 유도체는 상기 클로린을 기본 골격 구조로 가지는 화합물을 의미한다. 클로린 및 클로린 유도체는 이들의 광감작성 때문에 광역학적 치료에서 광감작제로서 효과적으로 이용된다. 특히, 클로린 및 클로린 유도체는, 한편으로는 우수한 스펙트럼 특성과 낮은 독성을 가지며, 다른 한편으로는 다양한 화학적 전환이 수행되는 것을 가능하게 하는 많은 반응 중심점들을 가지기 때문에, 광감작제를 합성하는데 더욱 유용하게 사용될 수 있다.
본 발명에서 사용가능한 클로린 유도체로는, 그 중 특히 클로로필로부터 얻을 수 있는 메틸페오포비드-a, 피로페오포비드-a 및 메틸피로페오포비드-a 가 있으나 이들 화합물에 제한되는 것은 아니다. 상기 메틸페오포비드-a, 피로페오포비드-a 및 메틸피로페오포비드-a는 이들이 포토프린 II보다 ~670 nm에서 훨씬 더 긴 적색 광선으로 활성화되고 장기간의 정상 조직 광독성을 덜 생산할 수 있기 때문에 잠재성이 있는 새로운 화합물의 한 종류로서 사용한다. 본 발명에서 사용한 클로린 유도체는 추출 과정에서 수율이 높아 상업적 유용성이 뛰어난 장점을 가진다. 그러나, 농도가 높아질수록 암흑 독성을 나타내게 된다.
본 발명에서는 클로린 유도체로서 천연 클로린의 혼합물을 생산하는 조류의 한 종류인 스피루리나 맥시마(Spirulina Maxima)로부터 얻어지는 페오포비드-a(pheophorbide-a, MPa), 피로페오포비드-a 및 메틸 피로페오포비드-a(methyl pyropheophorbide-a, MPPa)를 사용할 수 있다.
본 발명은 클로린 유도체와 다가 불포화 지방산(poly unsaturated fatty acids, PUFAs)의 접합체에 대한 종양-선택성 및 광감작 효과를 확인하기 위해, 메틸 피로페오포비드-d-OH(methyl pyropheophorbide-d-OH) 또는 피로페오포비드-a-175-N-헥사놀(pyropheophorbide-a-175-N-hexanol)과 같은 클로린 유도체에 도코헥사에노산을 연결한 접합체를 제공한다.
또한, 본 발명은 다가 불포화 지방산과 단일 불포화 지방산(monounsaturated acid, MUFA)이 종양 세포에 미치는 영향이 어떻게 다른지 비교하기 위해, 단일 불포화 지방산인 올레산을 메틸 피로페오포비드-d-OH 또는 피로페오포비드-a-175-N-헥사놀과 같은 클로린 유도체에 유사하게 연결시킨 접합체를 제공한다.
이렇게 형성된 상기 접합체는 종양에 대한 선택성이 향상되고 세포 독성이 감소되는 효과가 있기 때문에, 이를 광역학적 암 치료에 유용하게 사용할 수 있다.
특히, 도 31을 보면, 10uM의 클로린 유도체 단독(Free-Ps)을 사용한 경우, 레이저가 없는 상태(w/o irradiation)도 90% 이상의 세포성장 저해 효과를 나타내므로 암흑 독성의 부작용이 있는 것을 확인할 수 있다. 세포 독성이 없는 농도인 1uM을 사용한 경우에는 암흑 독성은 없으나, 레이저가 있는 상태(irradiation)에서 50%정도의 세포 성장 저해 효과만 있다. 따라서 클로린 유도체 단독을 사용하는 경우, 90%이상의 세포 성장 저해 효과를 얻기 위해서는 농도를 높여야하나 독성으로 인해 높은 농도를 사용할 수가 없는 문제가 있다. 그러나 클로린 유도체와 불포화 지방산(DHA) 접합체(Ps-DHA)의 경우, 레이저가 있는 상태에서 낮은 농도에서의 세포성장 저해 효과(광역학 치료 효과)는 클로린 유도체 단독에 비해 떨어지지만, 광역학 치료 효과가 우수한 10uM 에서도 암흑 세포 독성이 관찰되지 않으므로, 90%이상의 세포 성장 저해 효과를 얻을 수 있다는 장점이 있다. 도 32를 보면, 클로린 유도체 단독을 사용한 경우, 독성으로 인해 세포가 거의 남아 있지 않으며, 세포의 모양도 변화되었다. 그러나 클로린 유도체와 불포화 지방산(DHA) 접합체를 처리한 세포의 모양은 건강하고 형광의 흡수율도 클로린 유도체 단독 사용한 경우와 차이를 나타내지 않음을 알 수 있다.
본 발명의 화합물 5로 나타내어지는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체를 제조하는 방법은 하기 단계를 포함한다(도 2):
클로로필-a(chlorophyll a)로부터 메틸 페오포비드-a(methyl pheophorbide-a, MPa)를 합성하는 단계;
상기 메틸 페오포비드-a(MPa)로부터 메틸 피로페오포비드-a(MPPa)를 합성하는 단계;
상기 메틸 피로페오포비드-a(MPPa)로부터 메틸 피로페오포비드-d(methyl pyropheophorbide-d, MPPd)를 합성하는 단계;
상기 메틸 피로페오포비드-d로부터 메틸 피로페오포비드-d-OH를 합성하는 단계; 및
상기 메틸 피로페오포비드-d-OH에 도코헥사에노산을 결합시키는 단계.
본 발명의 화합물 6으로 나타내어지는 메틸 피로페오포비드-d-OH 및 올레산 접합체를 제조하는 방법은 하기 단계를 포함한다(도 3):
클로로필-a로부터 메틸 페오포비드-a(MPa)를 합성하는 단계;
상기 메틸 페오포비드-a(MPa)로부터 메틸 피로페오포비드-a(MPPa)를 합성하는 단계;
상기 메틸 피로페오포비드-a(MPPa)로부터 메틸 피로페오포비드-d(methyl pyropheophorbide-d, MPPd)를 합성하는 단계;
상기 메틸 피로페오포비드-d로부터 메틸 피로페오포비드-d-OH를 합성하는 단계; 및
상기 메틸 피로페오포비드-d-OH에 올레산을 결합시키는 단계.
본 발명의 화합물 9로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체를 제조하는 방법은 하기 단계를 포함한다(도 4):
클로로필-a로부터 메틸 페오포비드-a(MPa)를 합성하는 단계;
상기 메틸 페오포비드-a(MPa)로부터 메틸 피로페오포비드-a(MPPa)를 합성하는 단계;
상기 메틸 피로페오포비드-a(MPPa)로부터 피로페오포비드-a(PPa)를 합성하는 단계;
상기 피로페오포비드-a(PPa)로부터 피로페오포비드-a-175-N-헥사놀을 합성하는 단계; 및
상기 피로페오포비드-a-175-N-헥사놀에 도코헥사에노산을 결합시키는 단계.
본 발명의 화합물 10으로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체를 제조하는 방법은 하기 단계를 포함한다(도 5):
클로로필-a로부터 메틸 페오포비드-a(MPa)를 합성하는 단계;
상기 메틸 페오포비드-a(MPa)로부터 메틸 피로페오포비드-a(MPPa)를 합성하는 단계;
상기 메틸 피로페오포비드-a(MPPa)로부터 피로페오포비드-a(PPa)를 합성하는 단계;
상기 피로페오포비드-a(PPa)로부터 피로페오포비드-a-175-N-헥사놀을 합성하는 단계; 및
상기 피로페오포비드-a-175-N-헥사놀에 올레산을 결합시키는 단계.
이하, 본 발명의 클로린 유도체와 불포화 지방산의 접합체를 제조하는 방법을 상세히 설명한다.
일반식 I로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체를 제조하는 방법을 상세히 설명한다.
첫째로, 화합물 5로 나타내어지는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체를 제조하는 방법을 상세히 설명한다.
스피루리나 맥시마 조류에 아세톤을 처리하여 클로로필-a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸 페오포비드-a(MPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 1과 같다.
[반응식 1]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-154
본 발명에서 클로로필-a는 스피루리나 맥시마로부터 분리하여 얻을 수도 있고 상업적으로 입수 가능한 것을 사용할 수도 있다.
그 다음, 메틸 페오포비드-a(MPa)를 콜리딘 내에서 환류시켜 메틸 피로페오포비드-a(MPPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 2와 같다.
[반응식 2]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-160
상기 방법에 따라 얻은 메틸 피로페오포비드-a(MPPa)을 아세트산에 용해시키고, 이를 사산화 오스뮴(osmium tetroxide, OsO4)-과요오드산 나트륨(sodium periodate, NaIO4)으로 산화시켜 메틸 피로페오포비드-d(MPPd)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 3과 같다.
[반응식 3]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-165
그리고 메틸 피로페오포비드-d(MPPd)에 tBuNH2BH3를 첨가하여 환원시킴으로써, 메틸 피로페오포비드-d-OH를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 4와 같다.
[반응식 4]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-170
이후, 메틸 피로페오포비드-d-OH에 불포화 지방산의 한 종류인 도코헥사에노산(DHA)을 결합시키게 되는데, 이때, 4-다이메틸아미노피리딘(DMPA) 촉매 하에 카르보디이미드(carboimide) 매개 커플링 시약(DCC 또는 EDC-HCl)을 사용하여 에스테르화(esterification) 반응을 진행한다.
보다 자세하게, 메틸 피로페오포비드-d-OH, 다이사이클로헥실카르보디이미드(DCC) 및 4-다이메틸아미노피리딘(DMPA)을 다이클로로메탄에 용해시키고, 여기에 도코사헥사에노산(DHA)을 첨가하여 반응시켜 화합물 5를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 5와 같다.
[반응식 5]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-176
둘째로, 화합물 6으로 나타내어지는 메틸 피로페오포비드-d-OH 및 올레산 접합체를 제조하는 방법을 상세히 설명한다.
스피루리나 맥시마 조류에서 클로로필-a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸 페오포비드-a(MPa)를 얻은 다음, 메틸 페오포비드-a(MPa)를 콜리딘 내에서 환류시켜 메틸 피로페오포비드-a(MPPa)를 얻고, 메틸 피로페오포비드-a(MPPa)를 사산화 오스뮴-과요오드산 나트륨으로 산화시켜 메틸 피로페오포비드-d(MPPd)를 얻고, 메틸 피로페오포비드-d(MPPd)를 tBuNH2BH3로 환원시켜 메틸 피로페오포비드-d-OH를 얻는 단계까지는 상기 화합물 5로 나타내어지는 메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체를 제조하는 방법과 동일하다.
이후, 메틸 피로페오포비드-d-OH에 불포화 지방산의 한 종류인 올레산(OA)을 결합시키게 된다. 메틸 피로페오포비드-d-OH, 다이사이클로헥실카르보디이미드(DCC) 및 4-다이메틸아미노피리딘(DMPA)을 다이클로로메탄에 용해시키고, 여기에 올레산(OA)을 첨가하여 반응시켜 화합물 6을 얻는다. 이 과정을 간략히 나타내면 하기 반응식 6과 같다.
[반응식 6]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-183
일반식 II로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체를 제조하는 방법을 상세히 설명한다.
첫째로, 화합물 9로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체를 제조하는 방법을 상세히 설명한다.
스피루리나 맥시마 조류에서 클로로필-a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸 페오포비드-a(MPa)를 얻은 다음, 메틸 페오포비드-a(MPa)를 콜리딘 내에서 환류시켜 메틸 피로페오포비드-a(MPPa)를 얻는 단계까지는 상기 일반식 I로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체를 제조하는 방법과 동일하다.
이후, 메틸 피로페오포비드-a(MPa)를 테르라하이드로퓨란(tetrahydrofuran, THF) 내에서 염산(HCl)으로 처리하여 피로페오포비드-a(PPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 7과 같다.
[반응식 7]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-191
그 다음, 피로페오포비드-a(PPa), N,N’-다이사이클로헥실카르보디이미드(DCC) 및 N-하이드록시숙신이미드(NHS)를 다이클로로메탄에 용해시키고, 트리메틸아민(triethanolamine, TEA)을 첨가하여 반응시킨다. 그런 다음, 여기에 헥사놀아민(hexanolamine)을 첨가하여 교반시킴으로써, 피로페오포비드-a-175-N-헥사놀을 얻는다. 이 과정을 간략히 나타내면 하기 반응식 8과 같다.
[반응식 8]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-196
그 다음, 피로페오포비드-a-175-N-헥사놀에 불포화 지방산의 한 종류인 도코헥사에노산(DHA)을 결합시키게 된다. 피로페오포비드-a-175-N-헥사놀, 다이사이클로헥실카르보디이미드(DCC) 및 4-다이메틸아미노피리딘(DMPA)을 다이클로로메탄에 용해시키고, 여기에 도코사헥사에노산(DHA)을 첨가하여 반응시켜 화합물 9를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 9와 같다.
[반응식 9]
[규칙 제91조에 의한 정정 19.04.2011] 
Figure WO-DOC-FIGURE-201
둘째로, 화합물 10으로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 올레산 접합체를 제조하는 방법을 상세히 설명한다.
스피루리나 맥시마 조류에서 클로로필-a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸 페오포비드-a(MPa)를 얻은 다음, 메틸 페오포비드-a(MPa)를 콜리딘 내에서 환류시켜 메틸 피로페오포비드-a(MPPa)를 얻고, 이를 테르라하이드로퓨란(THF) 내에서 염산(HCl)으로 처리하여 피로페오포비드-a(PPa)를 얻은 후, 여기에 다이사이클로헥실카르보디이미드(DCC), N-하이드록시숙신이미드(NHS), 트리에틸아민(TEA), 헥사놀아민을 처리하여 피로페오포비드-a-175-N-헥사놀을 얻는 단계까지는 상기 화합물 9로 나타내어지는 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체를 제조하는 방법과 동일하다.
이후, 피로페오포비드-a-175-N-헥사놀에 불포화 지방산의 한 종류인 올레산(OA)을 결합시키게 된다. 피로페오포비드-a-175-N-헥사놀, 다이사이클로헥실카르보디이미드(DCC) 및 4-다이메틸아미노피리딘(DMPA)을 다이클로로메탄에 용해시키고, 여기에 올레산(OA)을 첨가하여 반응시켜 화합물 10을 얻는다. 이 과정을 간략히 나타내면 하기 반응식 10과 같다.
[반응식 10]
Figure PCTKR2011000416-appb-I000019
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시 예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
모든 시약은 Sigma, Aldrich, Fluka, Alfa Aesar 및 Daihan에서 구입하였으며, 필요한 경우에는 표준과정(standard procedures)에 따라 증류하여 무수 용액으로 정제하여 사용하였다. 그밖에 상업적으로 이용 가능한 시약은 정제 없이 사용하였다.
컬럼 크로마토그래피는 실리카겔 60(63-200 및 200-400 메쉬, Merck)을 이용하였다.
반응의 진행 상황은 TLC(실리카겔 F254, 0.2 ㎜ 두께, Merck)로 모니터링 하였고, 모니터링 시에 TLC를 UV 램프 265 ㎚ 또는 365 ㎚ 범위의 파장에서 관찰하였다.
1H-NMR 스펙트럼은 서울대학교 기초과학공동기기원(NICRF)에 있는 500 MHz Unity Inova 500(UI 500, Varian Inc, USA) 스펙트로미터로 측정하였고, 화학적 이동(chemical shifts)은 TMS(0.00)를 기준으로 상대적 ppm으로 나타내었다.
MALDI 질량 스펙트럼은 서울대학교 기초과학공동기기원(NICRF)에 있는 yager-DETM STR Biospectrometry Workstation 스펙트로미터로 측정하였다.
[실시예 1]
메틸 페오포비드-a(methyl pheophorbide-a, MPa, 화합물 1)의 합성
건조된 스피루리나 맥시마(Spirulina maxima) 조류 500 g을 2시간 동안 질소 분위기 하에서 2 ℓ의 아세톤으로 환류시켰다. 그 다음 상청액을 뜨거울 때 뷰너 깔때기 상에서 와트만 여과지로 여과시키고, 여분의 아세톤을 상기에서 남은 고형물에 첨가하였다. 상기 동일한 과정에 따라 추출과 여과 과정을 3회 반복하였다. 녹색 여과액을 증발시키고 잔사물을 300 ㎖의 아세톤에 다시 용해시킨 후 냉장고에서 냉각시킨 다음 적색의 고형 불순물을 제거하기 위하여 여과하였다. 페오피틴-a를 함유하는 여과액을 증발시키고, 질소 분위기 하, 어두운 곳, 실온에서 12시간 30분 동안 5 % 황산의 메탄올 용액(500 ㎖)으로 처리하였다. 상기 용액을 다이클로로메탄(~500 ㎖)으로 희석하고 물(~500 ㎖)로 세척하고, 10 % 탄산수소나트륨 수용액(~500 ㎖)으로 세척한 다음 다시 물로 3회 세척하였다. 유기층을 분리해내고 무수 황산나트륨 상에서 건조한 다음 건조한 상태가 되도록 증발시켰다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 다이클로로메탄 내 2 % 아세톤으로 용출시켜 컬럼 크로마토그래피함으로써 정제하였다. 생성물을 다이클로로메탄/메탄올로 재결정시켰다. 생성물의 UV 스펙트럼을 측정한 결과는 도 6과 같았다. 도 6을 살펴 보면, 클로린 고리의 2개의 베이스 피크가 λ412.5 (1.52) ㎚ 및 λ667.6 (0.655) ㎚에서 관찰되었으며, 다른 작은 피크들이 λ507.9 ㎚, λ537.7 ㎚ λ610.4 ㎚에서 관찰되었다. 한편, 생성물(MPa)의 500 MHz 1H-NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 7에 나타내었다. δ 및 JH-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 39개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 11개의 단일, 4개의 다중, 3개의 이중 및 1개의 4중 시그널로서 관찰되었으며, 이로부터 메틸 페오포비드-a(MPa)가 형성됨을 확인할 수 있었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 -4 ppm에서 넓은 시그널로 나타났다.
수율 : 0.4 %.
Rf : 0.4 (CHCl2 : CH3COCH3 = 98 : 2).
UV-vis (CH2Cl2) : λmax, ㎚ (log ε) 667.6 (0.655), 610.4 (0.124), 537.7 (0.145), 507.9 (0.158), 412.5 (1.52).
1H-NMR (300 MHz, CDCl3, TMSint) : δH, ppm 9.50 (1H, s, 5-meso-H), 9.35 (1H, s, 10-meso-H), 8.55 (1H, s, 20-meso-H), 7.97 (1H, m, 31-CH), 6.30 및 6.19 (2H, dd, 32-CH2), 6.25 (1H, s, 132-CH), 4.46 (1H, m, 18-CH), 4.21 (1H, m, 17-CH), 3.88 (3H, s, 134-OCH3), 3.65 (2H, q, 81-CH2), 3.68 (3H, s, 174-OCH3), 3.57 (3H, s, 121-CH3), 3.39 (3H, s, 21-CH3), 3.21 (3H, s, 71-CH3), 2.63-2.17 (4H, m, 171 및 172 - 2 × CH2), 1.81 (3H, d, 181-CH3), 1.68 (3H, t, 82-CH3), 0.53 및 -1.63 (2H, 각각 s, br, 2×NH).
[실시예 2]
메틸 피로페오포비드-a(methyl pyropheophorbide-a, MPPa, 화합물 2)의 합성
메틸 페오포비드-a(1 g, 1.65 mmol)를 콜리딘(100 ㎖, 재증류된 것, KOH 상에서 보관된 것)에 용해시켜 2시간 30분 동안 환류시켰다. 냉각시킨 후, 상기 용액을 다이클로로메탄으로 희석시키고 2N HCl(5×200 ㎖)으로 세척한 다음 물로 2 번 세척하였다. 복합 유기 상을 무수 황산나트륨 상에서 건조시키고 용매를 진공 로테이터로 제거하였다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 다이클로로메탄 내 2 % 아세톤으로 용출하여 정제하고, 다이클로로메탄/헥산으로 재결정시켰다. 생성물의 UV 스펙트럼을 측정한 결과 도 8과 같았다. 도 8을 보면, 클로린 고리의 2개의 베이스 피크가 λ414.1 ㎚ 및 λ667.7 ㎚에서 관찰되었으며, 다른 작은 피크들이 λ508.5 ㎚, λ539.2 ㎚ 및 λ610.5 ㎚에서 관찰되었다. 한편, 생성물(MPPa)의 500 MHz 1H-NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 9에 나타내었다. δ 및 JH-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 37개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 10개의 단일, 4개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 이로부터 이전 화합물과 다른 2개의 양성자에 의해 메틸 피로페오포비드-a가 형성됨을 확인할 수 있었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 -4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물(MPPa)의 질량 스펙트럼을 도 10에 나타내었다. 생성물의 분자량은 548.7 g/mol로 계산되었으며, EI-질량 분석법을 통한 분석을 통해 549(M+, 100 %)로 검출되었다.
수율 : 85.15 %.
Rf : 0.28 (CHCl2 : Ace = 98 : 2).
UV-vis (in CH2Cl2) : λmax, ㎚ (log ε) 667.7 (0.24), 610.5 (0.036), 539.2 (0.043), 508.5 (0.049), 414.1 (0.558).
1H-NMR (300 MHz, CDCl3, TMSint) : δH, ppm 9.46 (1H, s, 5-meso-H), 9.35 (1H, s, 10-meso-H), 8.56 (1H, s, 20-meso-H), 8.04 (1H, m, 31-CH), 6.31 및 6.19 (각각 1H, dd, 32-CH2), 5.31 및 5.15 (2H, q, J=20.1 Hz, 132-CH2), 4.51 (1H, m, 18-CH), 4.29 (1H, m, 17-CH), 3.66 (5H, s, 174-OCH3 81-CH2 서로 다른 것과 겹침), 3.63 (3H, s, 121-CH3), 3.41 (3H, s, 21-CH3), 3.22 (3H, s, 71-CH3), 2.70-2.58 (2H, m, 171-CH2), 2.33-2.31 (2H, m, 172-CH2), 1.82 (3H, d, 181-CH3), 1.69 (3H, t, 82-CH3), 0.44 및 -1.70 (각각 1H, br, s, 2×NH).
EI-MS : m/z; 549 (M+).
[실시예 3]
메틸 피로페오포비드-d(methyl pyropheophorbide-d, MPPd, 화합물 3)의 합성
메틸 피로페오포비드-a(1 mmol)와 사산화 오스뮴(OsO4, 10 ㎎)을 테트라하이드로퓨란(100 ㎖, 재증류된 것)에 용해시키고, 이를 액체이송펌프(peristaltic pump)를 이용하여 과요오드산 나트륨(NaIO4, 1.19 g)과 아세트산(0.5 ㎖)이 용해되어 있는 수용액(7.5 ㎖)에 첨가하여, 질소 분위기 하에서 하룻밤 동안 반응시켰다. 반응물을 증류수와 다이클로로메탄에 넣고 30분 동안 교반시킨 후, 수용액층이 색을 띄지 않을 때까지 수용액층을 다이클로로메탄으로 여러 차례 추출하였다. 그리고 유기층을 포화 탄산소나트륨(NaHCO3) 수용액과 물로 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 2 % 아세톤을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(MPPd)을 얻었다. 얻어진 화합물은 TLC로 확인하여 다음 반응 진행하였다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였다.
수율 : 60%.
UV-vis (CH2Cl2) : λmax, ㎚ (log ε) 695 (0.78), 634 (0.09), 555 (0.17), 522 (0.15), 427 (1.00). 388 (0.86).
1H-NMR (CDCl3) : δH, ppm 11.55 (s, CHO), 10.30, 9.61 및 8.64 (3s, CH-5, CH-10 및 CH-20, 각각), 5.35, 5.19 (2d, J = 20 Hz, CH2-132), 4.58 (dq, J = 2 + 7 Hz, CH-l8), 4.39 (dt, J = 9 + 2 Hz, CH-17), 3.73 (q, J = 8 Hz, CH2-81), 3.78, 3.72, 3.32, 3.62 (4s, CH3-21, CH3-121, CH3-71, CO2CH3), 2.54-2.80, 2.25-2.38 (2m, 17-CH2CH2), 1.85 (d, J = 7 Hz, CH3-181), 1.72 (t, J = 8 Hz, CH3-82), -0.13, -2.06 (2 S, NH).
MS (Cl) : m/z; 551 (MH+).
[실시예 4]
메틸 피로페오포비드-d-OH(methyl pyropheophorbide-d-OH, 화합물 4)의 합성
메틸 피로페오포비드-d(0.2 mmol)를 다이클로로메탄(100 ㎖)에 용해시키고, 여기에 tBuNH2BH3(20 ㎎)을 첨가하여, 아르곤 분위기 하에서 하룻밤 동안 반응시켰다. 반응물을 2 % HCl 수용액(100 ㎖)에 넣고 아이스 배스(ice bath)에서 20분 동안 교반시킨 후, 수용액층이 색을 띄지 않을 때까지 수용액층을 다이클로로메탄으로 여러 차례 추출하였다. 그리고 유기층을 2 % HCl 수용액(500 ㎖), 증류수(500 ㎖), 포화 탄산소나트륨(NaHCO3) 수용액(100 ㎖) 및 염화나트륨 수용액(500 ㎖)으로 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 10 % 아세톤을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(메틸 피로페오포비드-d-OH)을 얻었다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, UV-vis 및 1H-NMR를 순서대로 도 11, 도 12에 나타내었다.
수율 : 90%
UV-vis (in CH2Cl2) : λmax, ㎚ (log ε) 664.8 (1.13), 606.8 (0.31), 537.3 (0.35), 504.0 (0.31), 472.5 (0.20), 411.3 (2.05), 319.5 (0.64).
1H-NMR (CDCl3) : δH, ppm 9.46, 9.43, 8.55 (3H, 3s, CH-10, CH-5, CH-20), 5.89 (1H, s, CH2-31), 5.21, 5.07 (2H, 2d, J = 20 Hz, CH2-132), 4.45-4.47 (1H, m, CH-18), 4.24-4.26 (1H, m, CH-17), 3.68 (2H, q, J = 7.5 Hz, CH2-81), 3.63, 3.61, 3.41, 3.25 (4H, 4s, CH3-121, CH3-21, CH3-71, CO2CH3), 2.65-2.67, 2.53-2.58, 2.24-2.30 (4H, 4m, 17-CH2CH2), 2.15 (1H, s, br, OH), 1.79 (3H, d, J = 7.3 Hz, CH3-181), 1.69 (3H, t, J = 7.5 Hz, CH3-82), 0.24, -1.77 (2H, 2s, NH).
MS (Cl) : m/z; 553 (MH+), 537 ([(M-OH+H) + H]+).
[실시예 5]
메틸 피로페오포비드-d-OH 및 도코사헥사에노산 접합체(methyl pyropheophorbide-d-OH and docosahexaenoic acid conjugate, 화합물 5)의 합성
메틸 피로페오포비드-d-OH(30 ㎎, 0.054 mmol), 다이사이클로헥실카르보디이미드(22.4 ㎎, 0.108 mmol) 및 4-다이메틸아미노피리딘(9.9 ㎎, 0.081 mmol)를 다이클로로메탄 내에서 교반시키고, 상기 혼합물에 도코사헥사에노산(17.8 ㎎, 0.054 mmol)을 첨가하였다. 상기 반응은 실온에서 질소 분위기 하에서 2시간 동안 수행되었다. 반응 혼합물에 10 ㎖의 물을 첨가하여 교반하고, 이를 다이클로로메탄 20 ㎖로 추출하였다. 물 100 ㎖로 얻어진 유기층을 2회 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 5 % 메탄올을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(화합물 5)을 얻고, 이를 항온기 내에서 50 ℃로 건조시켰다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, 이를 순서대로 도 13, 도 14, 도 15에 나타내었다.
수율 : 39.78 ㎎ (85 %).
Rf : 0.55 (CH2Cl2 : MeOH = 98 : 2).
UV-vis (in CHCl3) : λmax, ㎚ (Abs) 666.4 (0.79), 608.2 (0.25), 537.9 (0.28), 503.7 (0.24), 412 (1.35), 320 (0.46).
1H-NMR (500 MHz, CDCl3, TMSint): δH, ppm 9.53 (1H, s, 5-meso-H), 9.42 (1H, s, 10-meso-H), 8.6 (1H, s, 20-meso-H), 6,38 (2H, s, 31-CH), 5.30 (13H, m, 35,6,8,9,11,12,14,15,17,18,20,21, 132-CHa, 겹처짐) 및 5.11 (1H, d, J=19.5 Hz, 132-CHb), 4.5 (1H, q, J=0.045 Hz, 18-CH), 4.31 (2H, d, J=8.5 Hz, 17-CH), 3.70 (2H, q, J=0.16 Hz, 81-CH2), 3.68 (3H, s, 174-CH3), 3.6 (3H, s, 121-CH3), 3.44 (3H, s, 21-CH3), 3.26 (3H, s, 71-CH3), 2.74 (10H, m, 37,10,13,16,19-CH2), 2.71-2.52 (2H, m, 171-CH2), 2.50 (2H, m, 34-CH2), 2.46 (2H, t, J=0.78 Hz 33-CH2), 2.29 (2H, m, 172-CH2), 2.03 (2H, p, J=0.08 Hz, 322-CH2), 1.81 (3H, d, J=7.3 Hz, 181-CH3), 1.70 (3H, t, J=7.6 Hz, 82-CH3), 0.93 (3H, t, 323-CH3), 0.31 및 -1.70 (각각 1H, br, s, 21, 23-NH).
MALDI-MS : C55H66N4O5 + (M+H)+의 m/z; 계산값 863.1363, 측정값 863.4110.
[실시예 6]
메틸 피로페오포비드-d-OH 및 올레산 접합체(methyl pyropheophorbide-d-OH and oleic acid conjugate, 화합물 6)의 합성
메틸 페오포비드-d-OH(25 ㎎, 0.045 mmol), 다이사이클로헥실카르보디이미드(22 ㎎, 0.09 mmol) 및 4-다이메틸아미노피리딘(0.05 mmol)을 다이클로로메탄 내에서 교반시키고, 상기 혼합물에 올레산(12.77 ㎎, 0.045 mmol)을 첨가하였다. 상기 반응은 실온에서 질소 분위기 하에서 2시간 동안 수행되었다. 반응 혼합물에 10 ㎖의 물을 첨가하여 교반하고, 이를 다이클로로메탄 20 ㎖로 추출하였다. 물 100 ㎖로 얻어진 유기층을 2회 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 5 % 메탄올을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(화합물 6)을 얻고, 이를 항온기 내에서 50 ℃로 건조시켰다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, 이를 순서대로 도 16, 도 17, 도 18에 나타내었다.
수율 : 30.9 ㎎ (84 %).
Rf : 0.42 (CH2Cl2 : MeOH = 98 : 2).
UV-vis (in CHCl3) : λmax, ㎚ (Abs) 666.1 (1.37), 608.2 (0.35), 537.9 (0.39), 505 (0.36), 411.5 (2.37), 319 (0.71).
1H-NMR (500 MHz, CDCl3, TMSint) : δH, ppm 9.44 (1H, s, 5-meso-H), 9.42 (1H, s, 10-meso-H), 8.61 (1H, s, 20-meso-H), 6.38 (1H, s, 31-CH), 5.28 및 5.13 (2H, 각각 d, J=19.5 Hz, J=19.5 Hz, 132-CH2), 5.18 (2H, m, 310, 11-CH), 4.50 (1H, q, J=0.045 Hz, 18-CH), 4.31 (1H, d, J=8.5 Hz, 17-CH), 3.7 (2H, q, J=0.46 Hz, 81-CH2), 3.68 (3H, s, 174-CH3), 3.60 (3H, s, 121-CH3), 3.44 (3H, s, 21-CH3), 3.27 (3H, s, 71-CH3), 2.7-2.56 (2H, m, 171-CH2), 2.43 (2H, t, J=0.02 Hz, 33-CH2), 2.29 (2H, m, 172-CH2), 1.88 (4H, m, 39, 12), 1.80 (3H, d, J=7.29 Hz, 181-CH3), 1.70 (3H, t, J=0.07 Hz, 82-CH3), 1.67 (2H, m, 34-CH2), 1.13 (20H, m, 35,6,7,8,13,14,15,16,17,18), 0.83 (3H, t, J=2.8 Hz, 319-CH3), 0.31 및 -1.79 (각각 1H, br, s, 21, 23-NH).
MALDI-MS : C51H68N4O5 + (M+H)+의 m/z; 계산값 817.1094, 측정값 816.3974.
[실시예 7]
피로페오포비드-a(pyropheophorbide-a, PPa, 화합물 7)의 합성
메틸 피로페오포비드-a(1.166 g, 2.125 mmol)를 테트라하이드로퓨란 (230 ㎖)에 용해시켰다. 4N 염산 수용액(580 ㎖)를 상기 혼합물에 첨가하였다. 반응 혼합물을 4시간 동안 질소 분위기 하, 실온에서 교반하였다. 다이클로로메탄(150 ㎖)을 상기 반응 혼합물에 첨가하고 수용성 층을 분리해내고 유기층을 산을 없애기 위하여 물로 수회 세척하였다. 유기층을 무수 황산나트륨 상에서 건조시키고 여과한 다음 농축하였다. 잔사물을 다이클로로메탄/헥산으로 재결정시켰다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 다이클로로메탄 내 5 % 메탄올로 용출시켜 정제하였다. 생성물의 UV 스펙트럼을 측정한 결과 도 19와 같았다. 도 19를 보면, 클로린 고리의 2개의 베이스 피크가 λ413.9 ㎚ 및 λ667.5 ㎚에서 관찰되었으며, 다른 작은 피크들이 λ508.9 ㎚, λ539 ㎚, λ609.8 ㎚에서 관찰되었다. 한편, 생성물(PPa)의 500 MHz 1H-NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 20에 나타내었다. δ 및 JH-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 34(1)개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 8개의 단일, 5개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 이로부터 이전 화합물과 다른 2개의 양성자에 의해 피로페오포비드-a가 형성됨을 확인할 수 있었다. 카르복실기의 양성자는 상기 양성자가 중수소에 의해 교환되기 때문에 나타나지 않았다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 -4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물(PPa)의 질량 스펙트럼을 도 21에 나타내었다. 생성물의 분자량은 534.7 g/mol으로 계산되었으며, EI-질량 분석법을 통한 분석을 통해 535 (M+, 100 %)로 검출되었다.
수율 : 1.0 g (88.5 %).
Rf : 0.25 (CHCl2 : MeOH = 95 : 5).
UV-vis (CH2Cl2) : λmax, ㎚ (log ε) 667.5 (0.52), 609.8 (0.08), 539.0 (0.094), 508.9 (0.107), 413.9 (1.24). 1H-NMR (300 MHz, CDCl3, TMSint): δH, ppm 9.45 (1H, s, 5-meso-H), 9.34 (1H, s, 10-meso-H), 8.53 (1H, s, 20-meso-H), 8.02 (1H, m, 31-CH), 6.29 및 6.17 (2H, dd, 32-CH2), 5.29 및 5.13 (2H, dd, 132-CH2), 4.48 (1H, m, 18-CH), 4.32 (1H, m, 17-CH), 3.66 (2H, q, 81-CH2), 3.63 (3H, s, 121-CH3), 3.38 (3H, s, 21-CH3), 3.20 (3H, s, 71-CH3), 2.72-2.58 (2H, m, 171-CH2), 2.38-2.25 (2H, m, 172-CH2), 1.82 (3H, d, J=7.2 Hz, 181-CH3), 1.67 (3H, t, J=7.8 Hz, 82-CH3), 0.48 및 -1.70 (1H, br, s, NH).
EI-MS : m/z; 535 (M+).
[실시예 8]
피로페오포비드-a-17 5 -N-헥사놀(pyropheophorbide-a-17 5 -N-hexanol, 화합물 8)의 합성
피로페오포비드-a(100 ㎎, 0.186 mmol), N,N’-다이사이클로헥실카르보디이미드(77 ㎎, 0.37 mmol) 및 N-하이드록시숙신이미드(26 ㎎, 0.226 mmol)를 무수 다이클로로메탄 3 ㎖에 용해시키고, 트리메틸아민 3 방울을 상기 혼합물에 첨가한 후에, 상기 혼합물을 4시간 동안 실온에서 아르곤 분위기 하에서 교반하였다. 그리고 메탄올(2 ml) 내 헥사놀아민(22 ㎎, 0.188 mmol)를 반응물에 첨가하고, 1시간 30분 동안 교반하였다.
물 10 ㎖를 상기 반응물에 첨가하여 10분 동안 교반하고, 이를 다이클로로메탄 30 ㎖로 추출하였다. 물 100 ㎖로 얻어진 유기층을 2회 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물에 남은 부산물을 제거하기 위해, 농축된 유기물을 소량의 다이클로로메탄으로 용해시켜 차갑게 필터하였다. 부산물이 제거된 유기물을 용리액으로서 다이클로로메탄 내 5 % 메탄올을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(화합물 8)을 얻었다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, 이를 순서대로 도 22, 도 23, 도 24에 나타내었다.
수율 : 140.2 ㎎ (71 %).
Rf : 0.31 (CH2Cl2 : MeOH = 95 : 5).
UV-vis (in CHCl3) : λmax, ㎚ (Abs) 668.9 (2.03), 611.4 (0.51), 540.8 (0.58), 525.8 (0.381), 510 (0.57), 407.2 (3), 323.2 (1.16), 269.7 (0.97).
1H-NMR (500 MHz, DMSO-d6, TMSint) : δH, ppm 9.60 (1H, s, 5-meso-H), 9.34 (1H, s, 10-meso-H), 8.86 (1H, s, 20-meso-H), 8.15 (1H, dd, J=11.51, J=11.6, 31-CH), 7.70 (1H, t, J =0.08 Hz, 173-NH), 6.35 및 6.18 (2H, 각각 d, J=11.9 Hz, J=11.76 Hz, 32-CH2), 5.22 및 5.08 (2H, 각각 d, J=19.8 Hz, J=19.7 Hz, 132-CH2), 4.55 (1H, q, J=1.54 Hz, 18-CH), 4.27 (1H, s, 179-OH), 4.26 (2H, d, J =10.1 Hz, 17-CH), 3.61 (2H, q, J =0.17 Hz, 81-CH2), 3.57 (3H, s, 121-CH3), 3.41 (3H, s, 21-CH3), 3.30 (2H, q, J =0.02 Hz, 179-CH2), 3.14 (3H, s, 71-CH3), 2.95 (2H, m, 174-CH2), 2.60-2.32 (2H, m, 171-CH2), 2.16-2.06 (2H, m, 172-CH2), 1.79 (3H, d, J=7.29 Hz, 181-CH3), 1.58 (3H, t, J =0.11 Hz, 82-CH3), 1.30 (2H, p, J =0.22 Hz, 178-CH2), 1.22 (2H, p, J =0.67 Hz, 175-CH2), 1.15 (4H, m, 176 및 177), 0.14 및 -1.67 (각각 1H, br, s, 21, 23-NH).
MALDI-MS : C39H47N5O3 + (M+H)+의 m/z; 계산값 633.8222, 측정값 634.2467.
[실시예 9]
피로페오포비드-a-17 5 -N-헥사놀 및 도코사헥사에노산 접합체(pyropheophorbide-a-17 5 -N-hexanol and docosahexaenoic acid conjugate, 화합물 9)의 합성
피로페오포비드-a-175-N-헥사놀(30 ㎎, 0.047 mmol), 다이사이클로헥실카르보디이미드(19.5, 0.094 mmol) 및 4-다이메틸아미노피리딘(6.9 ㎎, 0.056 mmol)를 다이클로로메탄 내에서 교반시키고, 상기 혼합물에 도코사헥사에노산(15.5 ㎎, 0.047 mmol)을 첨가하였다. 상기 반응은 실온에서 질소 분위기 하에서 2시간 동안 수행되었다. 반응 혼합물에 10 ㎖의 물을 첨가하여 교반하고, 이를 다이클로로메탄 20 ㎖로 추출하였다. 물 100 ㎖로 얻어진 유기층을 2회 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 5 % 메탄올을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(화합물 9)을 얻고, 이를 항온기 내에서 50 ℃로 건조시켰다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, 이를 순서대로 도 25, 도 26, 도 27에 나타내었다.
수율 : 33.5 ㎎ (75 %).
Rf : 0.17 (CH2Cl2 : MeOH = 98 : 2).
UV-vis (in CHCl3) : λmax, ㎚ (Abs) 669.2 (0.81), 611 (0.27), 540.5 (0.31), 525.9 (0.24), 511.1 (0.28), 415.3 (1.63), 3.23 (0.56).
1H-NMR (500 MHz, CDCl3, TMSint) : δH, ppm 9.5 (1H, s, 5-meso-H), 9.41 (1H, s, 10-meso-H), 8.56 (1H, s, 20-meso-H), 8.03 (1H, dd, J=11.51, J=11.6, 31-CH), 6.29 및 6.18 (2H, dd, J=17.9 Hz, J=10.7 Hz, 32-CH2), 5.34 (12H, m, 1713,14,16,17,19,20,22,23,24,25,27,28), 5.18 (2H, dd, J=19.5 Hz, J=19.5 Hz, 132-CH2), 4.77 (1H, m, 173-NH), 4.51 (1H, m, 18-CH), 4.36 (2H, d, J=6.9 Hz, 17-CH), 3.93 (2H, t, J=0.1 Hz, 179-CH2), 3.70 (2H, q, J=0.16 Hz, 81-CH2), 3.66 (3H, s, 121-CH3), 3.41 (3H, s, 21-CH3), 3.25 (3H, s, 71-CH3), 2.93 (2H, m, 174-CH2), 2.79 (10H, m, 1715,18,21,23,26-CH2), 2.7-2.4 (2H, m, 171-CH2), 2.30 (2H, m, 1712-CH2), 2.06-1.82 (2H, m, 172-CH2), 2.04 (2H, p, J=8.1 Hz, 1730-CH2), 1.80 (3H, d, J=7.29 Hz, 181-CH3), 1.70 (3H, t, J=0.11 Hz, 82-CH3), 1.61 (2H, m, 1711-CH2), 1.42 (2H, p, J=3.1 Hz, 178-CH2), 1.05 (6H, m, 175,6,7-CH2), 0.95 (3H, t, 1731-CH3), 0.47 및 -1.68 (각각 1H, br, s, 21, 23-NH).
MALDI-MS : C61H77N5O4 + (M)+의 m/z; 계산값 944.2952, 측정값 944.4903.
[실시예 10]
피로페오포비드-a-17 5 -N-헥사놀 및 올레산 접합체(pyropheophorbide-a-17 5 -N-hexanol and oleic acid conjugate, 화합물 10)의 합성
피로페오포비드-a-175-N-헥사놀(30 ㎎, 0.047 mmol), 다이사이클로헥실카르보디이미드(19.5, 0.094 mmol) 및 4-다이메틸아미노피리딘(6.9 ㎎, 0.056 mmol)를 3 ml 다이클로로메탄 내에서 교반시키고, 상기 반응 혼합물에 올레산(13.4 ㎎, 0.047 mmol)을 첨가하였다.
상기 반응은 실온에서 질소 분위기 하에서 2시간 동안 수행되었다. 반응 혼합물에 10 ㎖의 물을 첨가하여 교반하고, 이를 다이클로로메탄 20 ㎖로 추출하였다. 물 100 ㎖로 얻어진 유기층을 2회 세척하고, 무수 황산나트륨을 사용하여 상기 유기층을 건조한 후, 유기층을 농축시켰다. 농축된 유기물을 용리액으로서 다이클로로메탄 내 5 % 메탄올을 이용하여 컬럼 크로마토그래피를 통해 실리카겔 상에서 정제하여 화합물(화합물 10)을 얻고, 이를 항온기 내에서 50 ℃로 건조시켰다. 얻어진 화합물은 UV-vis, 1H-NMR 및 MS로 확인하였고, 이를 순서대로 도 28, 도 29, 도 30에 나타내었다.
수율 : 34 ㎎ (80 %).
Rf : 0.13 (CH2Cl2 : MeOH = 98 : 2).
UV-vis (CHCl3) : λmax, ㎚ (Abs) 669.2 (1.45), 611.3 (0.38), 540.6 (0.43), 525.8 (0.31), 510.3 (0.42), 4.75.5 (0.25), 414 (2.72), 323.2 (0.83).
1H-NMR (500 MHz, CDCl3, TMSint) : δH, ppm 9.49 (1H, s, 5-meso-H), 9.4 (1H, s, 10-meso-H), 8.56 (1H, s, 20-meso-H), 8.02 (1H, dd, J=11.5, J=11.5, 31-CH), 6.29 및 6.18 (2H, 각각 d, J=17.9 Hz, J=10.7 Hz, 32-CH2), 5.3 (2H, m, 1718,19-CH), 5.24 및 5.11 (2H, 각각 d, J=19.5 Hz J=19.5 Hz, 132-CH2), 4.8 (1H, m, 173-NH), 4.51 (1H, m, 18-CH), 4.36 (1H, m, 17-CH), 3.91 (2H, t, J=0.02 Hz, 179-CH2), 3.7 (2H, q, J=0.16 Hz, 81-CH2), 3.64 (3H, s, 121-CH3), 3.41 (3H, s, 21-CH3), 3.25 (3H, s, 71-CH3), 2.89 (2H, m, 174-CH2), 2.65 및 2.45 (2H, 각각 m, 171-CH2), 2.18 (2H, t, J=0.085 Hz, 1711-CH2), 2.15 및 1.86 (2H, 각각 m, 172-CH2), 1.97 (4H, m, 1717,20), 1.80 (3H, d, J=7.29 Hz, 181-CH3), 1.70 (3H, t, J=0.11 Hz, 82-CH3), 1.51 (2H, m, 1712-CH2), 1.41 (2H, p, J=0.25 Hz, 178-CH2), 1.24 (20H, m, 1713,14,15,16,21,22,23,24,25,26), 1.05 (6H, m, 175,6,7-CH2), 0.86 (3H, t, J=0.18 Hz, 1727-CH3), 0.47 및 -1.69 (각각 1H, br, s, 21, 23-NH).
MALDI-MS : C57H79N5O4 + (M)+의 m/z; 계산값, 측정값 898.4696.
[실험예 1]
클로린 유도체와 불포화 지방산의 접합체에 의한 세포 성장 억제 효과 조사
상기 실시예 9에서 제조된 클로린 유도체와 불포화 지방산의 접합체인 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체(화합물 9)에 의한 세포의 성장 억제 효과를 확인하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 세포성장 저해 효과를 조사하였다. TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청(FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다.
TC-1 세포주를 96 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 0.1, 1, 10uM의 클로린 유도체, 클로린 유도체와 불포화 지방산의 접합체를 24시간 동안 처리하였다. 그 다음 대조구와 처리구로 나누어 처리구는 662nm±3nm의 레이저를 사용하여 1.56 J/㎠로 PDT를 실시하고 대조구는 PDT를 실시하지 않았다. 이 후 대조구와 처리구 각각의 well에 5 ㎎/㎖의 MTT 용액 (Sigma-Aldrich)을 20 ㎕ 첨가하여 4 시간 동안 37℃에서 배양하고, 상층액을 제거 한 후, 디메틸설폭사이드 (DMSO, Sigma-Aldrich)를 100 ㎕/well로 첨가하여 쉐이커에서 10 초간 흔들어준 후, ELISA-reader (spectra max 250, Molecular Devices, Sunnyvale, CA, USA)로 570 nm 에서 흡광도를 측정하였다.
그 결과를 도 31에 나타내었다. 도 31을 통해 알 수 있는 바와 같이, 10uM의 클로린 유도체 단독(Free-Ps)을 사용한 경우, 레이저가 없는 상태(w/o irradiation)도 90% 이상의 세포성장 저해 효과를 나타내므로 암흑 독성의 부작용이 있는 것을 확인할 수 있다. 세포 독성이 없는 농도인 1uM을 사용한 경우에는 암흑 독성은 없으나, 레이저가 있는 상태(irradiation)에서 50%정도의 세포 성장 저해 효과만 있다. 따라서 클로린 유도체 단독을 사용하는 경우, 90%이상의 세포 성장 저해 효과를 얻기 위해서는 농도를 높여야하나 독성으로 인해 높은 농도를 사용할 수가 없는 문제가 있다. 그러나 클로린 유도체와 불포화 지방산(DHA) 접합체(Ps-DHA)의 경우, 레이저가 있는 상태에서 낮은 농도에서의 세포성장 저해 효과(광역학 치료 효과)는 클로린 유도체 단독에 비해 떨어지지만, 광역학 치료 효과가 우수한 10uM 에서도 암흑 세포 독성이 관찰되지 않으므로, 90%이상의 세포 성장 저해 효과를 얻을 수 있다는 장점이 있다.
[실험예 2]
클로린 유도체와 불포화 지방산의 접합체의 공초점 현미경 분석
상기 실시예 9에서 제조된 클로린 유도체와 불포화 지방산의 접합체인 피로페오포비드-a-175-N-헥사놀 및 도코사헥사에노산 접합체(화합물 9)의 세포 독성 및 종양 선택성을 조사하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 공초점 현미경 분석(Conforcal microscopy)을 수행하였다.
TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청 (FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다. TC-1 세포주를 소독된 커버글라스를 넣은 6 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 클로린 유도체 및 클로린 유도체와 불포화 지방산의 접합체를 12시간 동안 처리하였다. 배양 후 배지를 제거하고, 1X PBS 완충액으로 2번 씻어주고, 1% 파라포름알데하이드 1 ml를 15분간 처리하여 세포를 고정하였다. 고정 후 상층액을 제거하고, 1X PBS 완충액으로 1번 씻어주고 mounting 용액을 떨어뜨린 슬라이드 글라스 위에 올려 말린 후, 공초점 현미경(Conforcal microscopy, TCS SP2, Leica, Wetzlar, Germany)을 이용하여 형광을 분석하였다. 분석시 사용된 excitation 파장은 600 nm이고, emission 파장은 545 nm이었다.
분석 결과를 도 32에 나타내었다. 도 32를 보면 클로린 유도체 단독을 사용한 경우, 독성으로 인해 세포가 거의 남아 있지 않으며, 세포의 모양도 변화되었다. 그러나 클로린 유도체와 불포화 지방산(DHA) 접합체를 처리한 세포의 모양은 건강하고 형광의 흡수율도 클로린 유도체 단독 사용한 경우와 차이를 나타내지 않음을 알 수 있다.

Claims (14)

  1. 하기 일반식 I로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체.
    [일반식 I]
    Figure PCTKR2011000416-appb-I000020
    상기 식에서, R은
    Figure PCTKR2011000416-appb-I000021
    또는
    Figure PCTKR2011000416-appb-I000022
    이다.
  2. 하기 일반식 II로 나타내어지는 클로린 유도체와 불포화 지방산의 접합체.
    [일반식 II]
    Figure PCTKR2011000416-appb-I000023
    상기 식에서, R은
    Figure PCTKR2011000416-appb-I000024
    또는
    Figure PCTKR2011000416-appb-I000025
    이다.
  3. 제 1항 또는 제 2항 기재의 클로린 유도체와 불포화 지방산의 접합체를 함유하는 광감작제.
  4. 제 3항에 있어서, 상기 광감작제는 650 ㎚ 내지 800 ㎚ 범위의 광선에 대하여 광감작 활성을 보이는 광감작제.
  5. 제 3항의 광감작제를 유효성분으로 포함하는 암 치료용 조성물.
  6. 제 5항에 있어서, 상기 광감작제는 650 ㎚ 내지 800 ㎚ 범위의 광선에 대하여 생체 외 또는 생체 내에서 광활성화되는 암 치료용 조성물.
  7. 제 6항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군으로부터 선택되는 암 치료용 조성물.
  8. 제 7항에 있어서, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(central nervous system, CNS) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군으로부터 선택되는 암 치료용 조성물.
  9. 제 6항에 있어서, 상기 조성물은 정맥주사, 복강내주사, 근육내주사, 두개내주사, 종양내주사, 상피내주사, 피부관통전달, 식도투여, 복부투여, 동맥주사, 관절내주사 및 구강내투여로 이루어진 군으로부터 선택된 경로로 투여되는 암 치료용 조성물.
  10. 제 3항의 광감작제를 유효성분으로 하는 조성물; 및
    파장이 650 ㎚ 내지 800 ㎚ 범위인 광선을 조사하기 위한 광원;을 포함하는 광역학 치료에 사용되는 암 치료용 키트.
  11. 제 10항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군으로부터 선택되는 암 치료용 키트.
  12. 제 11항에 있어서, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(central nervous system, CNS) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군으로부터 선택되는 암 치료용 키트.
  13. 하기 화합물 4 또는 화합물 8로 나타내어지는 클로린 유도체를 제조하는 단계; 및
    [화합물 4]
    Figure PCTKR2011000416-appb-I000026
    [화합물 8]
    Figure PCTKR2011000416-appb-I000027
    상기 클로린 유도체를 불포화 지방산과 접합시키는 단계;를 포함하는 클로린 유도체와 불포화 지방산 접합체를 제조하는 방법.
  14. 제 13항에 있어서, 상기 불포화 지방산은 도코사헥사에노산(docosahexaenoic acid, DHA) 또는 올레산(oleic acid, OA)인 클로린 유도체와 불포화 지방산 접합체를 제조하는 방법.
PCT/KR2011/000416 2010-01-20 2011-01-20 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물 WO2011090333A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0005312 2010-01-20
KR20100005312 2010-01-20

Publications (3)

Publication Number Publication Date
WO2011090333A2 WO2011090333A2 (ko) 2011-07-28
WO2011090333A3 WO2011090333A3 (ko) 2011-12-01
WO2011090333A9 true WO2011090333A9 (ko) 2012-03-01

Family

ID=44307406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000416 WO2011090333A2 (ko) 2010-01-20 2011-01-20 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물

Country Status (2)

Country Link
KR (1) KR101405403B1 (ko)
WO (1) WO2011090333A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449599B1 (ko) * 2013-06-12 2014-10-13 다이아텍코리아 주식회사 광민감제 탑재 성체 줄기세포 및 그 용도
KR101582252B1 (ko) * 2014-02-17 2016-01-04 대구가톨릭대학교산학협력단 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법
KR101665253B1 (ko) 2015-06-19 2016-10-25 순천향대학교 산학협력단 도코사헥사에노산 및 트리아신 씨를 포함하는 것을 특징으로 하는 자궁내막암 치료 및 예방용 조성물
KR101668561B1 (ko) 2015-07-13 2016-10-21 원광대학교산학협력단 녹색형광단백질을 발현하는 유전자 및 로즈 벵갈을 이용한 암 질환의 광역학 치료용 조성물 및 이를 이용한 광역학 치료방법
KR101911725B1 (ko) 2017-01-16 2018-12-28 주식회사 코어파마 적색형광단백질을 발현하는 유전자 및 틴 에틸 에티오푸르푸린을 이용한 광역학 치료용 조성물 및 이를 이용한 광역학 치료방법
US11630102B2 (en) * 2017-02-10 2023-04-18 Academia Sinica Composition and method for modulating fibroblast growth factor receptor 3 activation
KR102266865B1 (ko) * 2020-01-10 2021-06-18 가톨릭대학교 산학협력단 지방산을 유효성분으로 포함하는 수용성 광감작제 결합체 및 이의 제조방법
KR102523940B1 (ko) * 2020-05-21 2023-04-20 가톨릭대학교 산학협력단 광감각제가 접합된 장내분비세포 표적 고분자 물질 및 이의 대사질환 개선을 위한 의학적 용도
CN112451680B (zh) * 2020-11-24 2022-07-19 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN113018267B (zh) * 2021-03-22 2022-07-01 沈阳药科大学 不饱和脂肪酸-光敏剂共组装纳米粒及其构建方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073419A2 (en) * 2004-04-01 2006-07-13 Gang Zheng Lipoprotein nanoplatforms
FR2877943B1 (fr) * 2004-11-16 2008-09-05 Univ De Coimbra Nouveaux derives de porphyrine, notamment chlorines et/ou bacteriochlorine, et leurs applications en therapie photodynamique
CA2708719A1 (en) * 2007-12-12 2009-06-18 University Health Network High-density lipoprotein-like peptide-phospholipid scaffold ("hpps") nanoparticles

Also Published As

Publication number Publication date
WO2011090333A3 (ko) 2011-12-01
KR20110085935A (ko) 2011-07-27
KR101405403B1 (ko) 2014-06-11
WO2011090333A2 (ko) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2011090333A9 (ko) 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
WO2010126178A1 (ko) 신규한 클로린 e6-엽산 결합 화합물, 이의 제조방법 및 이를 함유하는 암 치료용 약학적 조성물
WO2018182341A1 (ko) 피롤로벤조디아제핀 이량체 전구체 및 이의 리간드-링커 접합체 화합물
WO2010151074A2 (ko) 양자점-클로린 유도체의 접합체를 함유하는 광감작제 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료 및 진단용 조성물
WO2012108677A2 (ko) 피부미백, 항산화 및 ppar 활성을 갖는 신규 화합물 및 이의 의학적 용도
WO2013051778A1 (ko) 표적 치료에 관한 종양에 선택성이 있는 콘쥬게이트
WO2017188694A1 (ko) 질소를 포함하는 헤테로아릴 화합물 및 이의 용도
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2013180462A1 (en) A composition comprising the extract of pine tree leaf or the compounds isolated therefrom for the prevention and treatment of cancer disease by inhibiting hpv virus and the uses thereby
WO2019168237A1 (ko) 신규 화합물 및 이를 유효성분으로 함유하는 섬유증 또는 비알코올성 지방간염의 예방, 개선 또는 치료용 조성물
WO2022035115A1 (ko) 오리나무 추출물 또는 이로부터 분리된 화합물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도
WO2012067316A1 (ko) 테로카판계 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 대사성 질환 또는 이들의 합병증의 예방 또는 치료용, 또는 항산화용 조성물
WO2021194298A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2021145655A1 (ko) 신규한 피라졸 유도체
WO2021162493A1 (ko) 단백질 키나아제 분해 유도 화합물 및 이의 용도
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2020141923A9 (ko) 안전성이 향상된 피롤로벤조디아제핀 이량체 화합물 및 이의 용도
WO2010151073A2 (ko) 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물
WO2018008803A1 (ko) 세스퀴테르펜 유도체의 신규한 용도
WO2010126179A1 (ko) 클로린 e6-엽산 결합 화합물 및 키토산을 함유하는 암 치료용 약학적 조성물
WO2018012947A1 (ko) 신규한 유기황화합물, 이의 제조방법 및 이를 유효 성분으로 함유하는 암 또는 염증 질환의 예방 또는 치료용 약학적 조성물
WO2021149900A1 (ko) 이치환 아다만틸 유도체, 이의 약학적으로 허용가능한 염 및 이를 유효성분으로 포함하는 암 성장 억제용 약학적 조성물
WO2020085767A1 (ko) 암세포 사멸 조성물 및 이의 용도
WO2023204631A1 (ko) Ddx5 단백질에 결합하는 캄토테신 유도체 및 이의 프로드럭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 26/09/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11734882

Country of ref document: EP

Kind code of ref document: A2