KR101582252B1 - 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법 - Google Patents

3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법 Download PDF

Info

Publication number
KR101582252B1
KR101582252B1 KR1020140018072A KR20140018072A KR101582252B1 KR 101582252 B1 KR101582252 B1 KR 101582252B1 KR 1020140018072 A KR1020140018072 A KR 1020140018072A KR 20140018072 A KR20140018072 A KR 20140018072A KR 101582252 B1 KR101582252 B1 KR 101582252B1
Authority
KR
South Korea
Prior art keywords
cancer
compound
photosensitizer
poss
photodynamic therapy
Prior art date
Application number
KR1020140018072A
Other languages
English (en)
Other versions
KR20150097032A (ko
Inventor
김영진
성다영
Original Assignee
대구가톨릭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대구가톨릭대학교산학협력단 filed Critical 대구가톨릭대학교산학협력단
Priority to KR1020140018072A priority Critical patent/KR101582252B1/ko
Publication of KR20150097032A publication Critical patent/KR20150097032A/ko
Application granted granted Critical
Publication of KR101582252B1 publication Critical patent/KR101582252B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • A61K47/546Porphyrines; Porphyrine with an expanded ring system, e.g. texaphyrine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 및 그 제조방법으로서, 광역학 치료용 고분자-광감작제 복합체에 있어서, 상기 고분자는 수용성 3차원 구형 거대분자로서, 옥타암모늄 폴리실세퀴녹세인(OctaAmmonium POSS)이고, 상기 복합체는 고분자와 광감작제 및 불포화 지방산이 펩타이드 결합을 통해 이루어지는 것으로, 수용액상에서 나노 미립구 형태인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물로 옥타암모늄 폴리실세퀴녹세인을 초순수에 용해시키는 단계; 광과민제와 촉매를 유기용매에 용해시키는 단계; 지방산과 촉매를 유기용매에 용해시키는 단계; 및 단계에서 제조된 용액을 혼합하여 반응시키는 단계를 이루어져 구형의 거대분자인 옥타암모늄 폴리실세스퀴녹세인에 고농도의 클로린 유도체 클로린 e6와 더불어 올레산을 합성시켜 사용함에 따라 광과민제 단독 사용보다 단일 항산소 생산률과 암 세포에 대한 축척률이 향상되고, 세포에 대한 독성이 감소된 합성물을 제공함으로써 상기 합성물을 광역학 치료뿐만 아니라 광역학 진단에 유용하게 사용할 수 있어 본 발명에 따른 합성물은 암 치료와 진단을 위한 단일 약제로서 유용하게 사용될 수 있는 각별한 장점이 있는 유용한 발명이다.

Description

3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법{The high density photosensitizer using spherical macromolecules for photodyn amic therapy and method of manufacturing thereof}
본 발명은 광역학 치료효과가 뛰어난 구형 거대분자를 이용한 광과민제 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 폴리실세스퀴녹세인, 클로린 e6(Ce6) 및 불포화지방산을 포함함으로써 수용액상태에서 안정성, 단일 항산소 발생효율과 세포 내 이입(移入)을 향상시키는 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법에 관한 것이다.
최근 각광받는 암치료법 중 하나인 광역학 치료(Photodynamic Therapy, PDT)는 비교적 시술이 용이하고, 치료에 따른 이완율이 낮으며, 국소 암 치료에 매우 효과적이어서 기존의 암치료법에 비해 치료 후 환자의 삶의 질을 향상시킬 수 있는 이점이 있다(비특허문헌 1).
광과민제(Photosensitizer, PS)를 체내에 주입하고, 광과민제가 반응하는 특정파장의 빛을 종양부위에 조사한다. 이후 광과민제, 빛, 산소가 반응하여 활성산소종(Reactive Oxygen Sepcies, ROS)을 생산하고, 이는 미토콘드리아와 세포막의 비가역적 손상을 야기하여 종양조직의 괴사를 유도한다(비특허문헌 2).
기저상태(ground state)에 있는 광과민제는 무독성(non-toxic)이지만, 특정 파장의 빛에 노출되면 단일항 여기 상태(excited singlet state)로 여기 된다. 단일항 여기 상태인 광과민제의 일부는 형광(fluorescence)으로 에너지를 방출하며 기저상태가 되지만, 대부분은 항간교차(ISC; Intersystem Crossing)의 과정을 통해 삼항 여기 상태(excited triplet state)로 존재한다. 삼항 여기 상태인 광과민제가 전자 혹은 수소 원자를 전달하거나(Type1), 에너지 전달을 통해(Type2) 자유 라디칼(free radical), 과산화 이온(superoxide ions)이나 단일항 산소(singlet oxyge n)을 유발한다. 이렇게 생성된 활성산소 종에 의해 세포 죽음을 유도한다(비특허문헌 3).
광과민제는 화학적/ 물리적 안정성과 수용성, 높은 단일항 산소 양자 수율, 낮은 암독성, 높은 광독성, 종양선택성 등의 성질을 가져야한다(비특허문헌 4). 하지만 현재 임상에 적용되고 있는 광과민제는 체내에서 쉽게 분해되며, 소수성과 높은 암독성, 정상조직에 비특이적 손상을 야기하는 문제점이 대두 되고 있다. 1, 2세대 광과민제의 문제점을 해결하고자 개발된 3세대 광과민제는 현재 연구가 활발히 진행되고 있다. 3세대 광과민제는 고분자 전달체에 광과민제를 화학적으로 결합하거나 물리적으로 담지함으로써 광과민제의 소수성과 종양선택성, 안정성을 개선한다. 특히 선형의 친수성 천연 고분자에 광과민제를 도입하여 치료효과를 향상시킨다는 연구가 주를 이루고 있다(비특허문헌 5). 그러나 선형고분자는 일반적으로 랜덤코일 상을 가지고 있으므로 선형고분자에 도입된 광과민제가 외부로 노출되지 않아 광효율이 저하될 가능성이 있다. 또한 선형고분자에 광과민제의 도입율이 낮기 때문에 광역학 치료의 효율을 높이기 위해서는 과량의 약물을 사용하여야 하며, 이에 따른 정상세포에의 비특이적 독성 발생의 문제점이 대두될 수 있다. 특히 수용성 고분자를 사용함에 따라 세포 내에 이입되는 약물의 양이 매우 작을 가능성이 있으며, 수용성 고분자가 체내에서 쉽게 분해되어 약물의 안정성이 저하될 가능성이 있다.
2세대 광과민제인 클로린(Chlorin) e6(Ce6)은 1세대 광과민제보다 체내 순환이 짧아 빠른 배출을 보이며, 더 긴 파장대에서 높은 흡수계수를 나타낸다. 이는 조사하는 빛의 조직투과성 향상을 의미하며, 향상된 조직투과성은 심부에 위치한 병변 치료에 용이하다. 구형의 고농도 광과민제를 합성하기 위해 폴리실세스퀴녹세인(polysilsesquioxane, POSS)을 이용하였다. 대표적인 유-무기 복합재료인 폴리실세스퀴녹세인은 유기화합물인 고분자와 무기화합물인 세라믹의 물성을 동시에 가지는 물질이다. 화학적 반응에 의해 쉽게 기능기를 도입할 수 있으며, 고분자의 물성 개선 및 다양한 기능을 부여하기에 적합한 새로운 화합물이다. 특히 옥타암모늄 폴리실세스퀴녹세인(OctaAmmonium POSS)은 친수성 구형 거대분자로 다량의 기능기를 가지고 있어 다른 분자를 화학적으로 결합하는 것이 용이하다(비특허문헌 6). 하지만 반응하지 않은 아민기 때문에 세포에 독성을 나타낼 가능성이 있다. 이를 개선하기 위해 올레산(Oleic acid, OA)을 적용하였다. 올레산은 올리브유에 포함되어 있는 지방산의 주성분으로 이중결합을 1개 가지는 불포화지방산이다. 또한 올레산은 활성산소 종 생산을 도모한다는 보고가 이루어지고 있으며, 세포 내 이입을 향상시킨다는 연구도 보고되고 있다(비특허문헌 7).
이에 본 발명자들은 광역학 치료 효과를 증대시킬 수 있는 물질에 대한 연구를 통해 옥타암모늄 폴리실세스퀴녹세인에 고농도의 클로린 e6와 더불어 올레산을 도입하여 구형의 광과민제 합성물를 합성하였다. 구형의 광과민제가 암세포에 대해 이입율과 광독성이 우수하며, 낮은 암독성을 확인함으로써 본 발명을 완성하였다.
임현수, 광역학적 암치료와 형광 진단, Optical Society of Korea Annual Meeting, 2: 19-20, 2002). 배병찬, 나건, 광역학 치료용 고분자화 광응답제의 개발 및 최신동향, Polymer Science and Technology, 22:2, 160-165, 2011). Shigen obu Yano, Shiho Hirohara, Makoto Obata, Yuichiro Hagiya, Shun-ichiro Ogura, Atsushi Ikeda, Hiromi Kataoka, Mamoru Tanaka, Takashi Joh, Current states and future vie ws in photodynamic therapy, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12: 46-67, 2011). Ron R Allison, MD, Gordon H Downie, MD, PhD, Rosa Cuenca, MD, Xin-Hua Hu, PhD, Carter JH Childs, MD, Claudio H Siba ta, PhD, Photosensitizers in clinical PDT, Photodiagnosis and Photodynamic Therapy, 1: 2742, 2004). Hong Yeol Yoon, Heebeom Koo, Ki Young Choi, So Jin Lee, Kwangmeyung Kim, Ick Chan Kwon, James F. Leary, Kinam Pa rk, Soon Hong Yuk, Jae Hyung Park, Kuiwon Choi, Tumor- targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy, Biomaterials, 33: 3980-3989, 2012). Shiao-Wei Kuo, Feng-Chih Chang, POSS related polymer nano composites, Progress in Polymer Science, 36: 1649-1696, 2011). Ryowon Choue Dokko, B. H. Simon Cho, Byung Hong Chung, Cellular uptake of stearic, oleic, linoleic, and linolen ic acid and their eects on synthesis and secretion of lip ids in Hep-G2 cells, The International Journal of Biochem istry & Cell Biology, 30: 65-76, 1998).
따라서 본 발명은 상기한 실정을 감안하여 발명한 것으로서, 그 목적은 옥타암모늄 폴리실세스퀴녹세인에 고농도의 클로린 e6와 더불어 올레산을 합성시킴으로써 종양세포에 선택적이고, 광역학 효과가 우수한 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물을 제공함에 있다.
본 발명의 다른 목적은 상기 광역학 치료용 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물은 광역학 치료용 고분자-광감작제 복합체에 있어서, 상기 고분자는 수용성 3차원 구형 거대분자로서, 옥타암모늄 폴리실세퀴녹세인(OctaAmmonium POSS)이고, 상기 복합체는 고분자와 광감작제 및 불포화 지방산이 펩타이드 결합을 통해 이루어지는 것으로, 수용액상에서 나노 미립구 형태인 것을 특징으로 한다.
또한, 상기한 목적을 달성하기 위한 본 발명 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법은 (a)옥타암모늄 폴리실세퀴녹세인을 초순수에 용해시키는 단계; (b) 광과민제와 촉매를 유기용매에 용해시키는 단계; (c)지방산과 촉매를 유기용매에 용해시키는 단계; 및 (d) 상기 (a)단계와 (b) 및 (c)단계에서 제조된 용액을 혼합하여 반응시키는 단계를 포함하는 것을 특징으로 한다.
본 발명은 구형의 거대분자인 옥타암모늄 폴리실세스퀴녹세인에 고농도의 클로린 유도체 클로린 e6와 더불어 올레산을 합성시켜 사용함에 따라 광과민제 단독 사용보다 단일 항산소 생산률과 암 세포에 대한 축척률이 향상되고, 세포에 대한 독성이 감소된 합성물을 제공함으로써 상기 합성물을 광역학 치료뿐만 아니라 광역학 진단에 유용하게 사용할 수 있어 본 발명에 따른 합성물은 암 치료와 진단을 위한 단일 약제로서 유용하게 사용될 수 있는 각별한 장점이 있다.
도 1은 본 발명 3차원 구형의 광과민제 합성물의 입자 표면 분석 TEM 사진,
도 2는 본 발명 3차원 구형의 광과민제 합성물의 IR 관찰결과,
도 3은 본 발명 3차원 구형의 광과민제 합성물의 NMR 스펙트럼,
도 4는 본 발명 3차원 구형의 광과민제 합성물과 클로린(e6)의 단일 항산소 측정결과를 나타낸 그래프,
도 5는 본 발명 3차원 구형의 광과민제 합성물의 CQC(임계 퀀칭 농도) 측정결과를 나타낸 그래프,
도 6은 본 발명에 따른 클로린(e6)의 농도별 광독성을 관찰한 그래프,
도 7은 본 발명에 따른 Trypan blue staining을 통해 관찰한 결과,
도 8은 본 발명 3차원 구형의 광과민제 합성물의 세포 내 유입량을 측정한 결과,
도 9는 본 발명 3차원 구형의 광과민제 합성물의 ANNEXIN V-FITC를 측정한 결과,
도 10은 본 발명 3차원 구형의 광과민제 합성물을 DePsipher로 염색하여 광독성을 관찰한 결과,
도 11은 본 발명 3차원 구형의 광과민제 합성물의 세포질 내 Cytochrome C 방출량을 조사한 결과이다.
이하, 첨부 도면을 참조하여 본 발명 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다.
도 1은 본 발명 3차원 구형의 광과민제 합성물의 입자 표면 분석 TEM 사진, 도 2는 본 발명 3차원 구형의 광과민제 합성물의 IR 관찰결과, 도 3은 본 발명 3차원 구형의 광과민제 합성물의 NMR 스펙트럼, 도 4는 본 발명 3차원 구형의 광과민제 합성물과 클로린(e6)의 단일 항산소 측정결과를 나타낸 그래프, 도 5는 본 발명 3차원 구형의 광과민제 합성물의 CQC(임계 퀀칭 농도) 측정결과를 나타낸 그래프, 도 6은 본 발명에 따른 클로린(e6)의 농도별 광독성을 관찰한 그래프, 도 7은 본 발명에 따른 Trypan blue staining을 통해 관찰한 결과, 도 8은 본 발명 3차원 구형의 광과민제 합성물의 세포 내 유입량을 측정한 결과, 도 9는 본 발명 3차원 구형의 광과민제 합성물의 ANNEXIN V-FITC를 측정한 결과, 도 10은 본 발명 3차원 구형의 광과민제 합성물을 DePsipher로 염색하여 광독성을 관찰한 결과, 도 11은 본 발명 3차원 구형의 광과민제 합성물의 세포질 내 Cytochrome C 방출량을 조사한 결과로서, 본 발명 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물은 광역학 치료용 고분자-광감작제 복합체에 있어서, 상기 고분자는 수용성 3차원 구형 거대분자로서, 옥타암모늄 폴리실세퀴녹세인(OctaAmmonium POSS)이고, 상기 복합체는 고분자와 광감작제 및 불포화 지방산이 펩타이드 결합을 통해 이루어지는 것으로, 수용액상에서 나노 미립구 형태인 것을 특징으로 한다.
상기 폴리실세스퀴녹세인 용액은 아미노프로필아이소부틸 폴리실세스퀴녹세인(Aminopropylisobutyl POSS), 아미노프로필아이소옥틸 폴리실세스퀴녹세인(Amin opropylisooctyl POSS), 아미노프로필페닐 폴리실세스퀴녹세인(Aminopropylphenyl POSS), 아미노에틸아미노프로필아이소부틸 폴리실세스퀴녹세인(Aminoethylaminopr opylisobutyl POSS), 옥타아미노페닐 폴리실세스퀴녹세인(Octaaminophenyl POSS), 옥타암모늄 폴리실세스퀴녹세인(Octaammonium POSS), 아미노페닐사이클로헥실 폴리실세스퀴녹세인(Aminophenyl cyclohexyl POSS), 아미노페닐아이소부틸 폴리실세스퀴녹세인(Aminophenyl isobutyl POSS)로 이루어진 군으로부터 선택되는 1종 또는 2종이다.
상기 광과민제 합성물은 포르피린계(phorphyrins) 화합물, 클로린계(chlori ns) 화합물, 박테리오클로린계(bacteriochlorins) 화합물, 프탈로시아닌계(phtalo cyanine) 화합물, 나프탈로시아닌계(naphthalocyanines) 화합물 및 5-아미노레불린 에스테르계(5-aminoevuline esters) 화합물로 이루어진 군으로부터 선택된 1종이다.
또한 상기 불포화 지방산은 올레산(Oleic acid, OA), 알파 리놀렌산(-Linol enic acid, ALA), 감마 리놀렌산(-linolenic acid, GLA), 리놀레산(Linoleic acid, LA), 아라키돈산(arachidonic acid, AA), 도코사헥사엔산(Docosahexaenoic acid)로 이루어진 군으로부터 선택된 1종이다.
상기 클로린계(chlorins) 화합물은 카르복실기를 갖는 클로린 e6(Chlorin e6)이다.
또한 상기 합성물을 유효성분으로 포함하는 암 치료용 또는 진단용 합성물로사용할 수 있다.
그리고 상기 암은 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 두개내인종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 항문암, 방광암, 신장암, 전립선암, 자궁경부암, 자궁내막암, 난소암, 자궁육종 및 피부암으로 이루어진 군으로부터 선택되는 것이다.
한편, 본 발명 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법은 (a)옥타암모늄 폴리실세퀴녹세인을 초순수에 용해시키는 단계; (b) 광과민제와 촉매를 유기용매에 용해시키는 단계; (c)지방산과 촉매를 유기용매에 용해시키는 단계; 및 (d) 상기 (a)단계와 (b) 및 (c)단계에서 제조된 용액을 혼합하여 반응시키는 단계를 포함하는 것을 특징으로 한다.
상기 유기용매는 디메틸설폭사이드(Dimethylsulfoxide: DMSO), 포름아마이드(Formamide) 및 디메틸포름아마이드(Dimethylformamide: DMF)로 이루어진 군으로부터 선택된 1종이다.
상기 촉매는 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드(1-ethyl-3-(3- dimethylaminopropyl)carbodiimide; EDC)와 N-하이드로숙시니미드(N-hydrosuccini mide; NHS) 또는 이들의 혼합물이다.
본 발명에서, 상기 고분자는 옥타암모늄 폴리실세스퀴녹세인과 상기 불포화 지방산은 올레산을 사용함으로써 암세포에 대한 축적률과 광역학 치료 효과를 증대시킬 수 있다.
본 발명에서 광역학 치료란 특정 파장에 반응하여 단일 항산소를 생산하는 광과민제에 의한 치료를 말한다.
본 발명은 암 세포에 특이적으로 축적되고 단독 사용보다 광원에 의해 단일 항산소 생성 능력이 향상된 광역학 치료용 구형의 고농도 광과민제를 제공한다.
상기 합성물은 소수성인 클로린계 광과민제 및 불포화 지방산에 삼차원 구형의 친수성 고분자를 도입한 것으로, 수용액상에서 안정하게 나노크기의 형태일 수 있으며, 평균 입자 크기는 200nm이하 일 수 있다.
따라서 본 발명의 복합체는 광역학 치료뿐만 아니라 생체적합성과 나노 크기를 형성하므로 약물전달체로 제공한다.
본 발명에서 암 조직 주변의 느슨한 신생혈관의 높은 투과성으로 인해 나타나는 EPR(enhanced permeability and retention) 효과에 의해 암 조직에 선택적으로 축적이 된다.
본 발명에서 사용되는 삼차원 구형의 친수성 고분자로는, 하기 화학식 1의 옥타암모늄 폴리실세스퀴녹세인이 바람직하다. 옥타암모늄 폴리실세스퀴녹세인은 시중에서 판매하고 있는 것을 구입하여 사용하거나, 천연으로부터 당업계에 공지된 방법으로 분리 및 정제하여 사용할 수 있고, 바람직하게는 고분자 물질에 존재하는 불순물을 제거하고 순도도 높이기 위해 깨끗이 정제하여 사용할 수 있다.
Figure 112014015397846-pat00001
또한 본 발명에서 사용하는 광과민제는 특정 파장에 따라 활성 산소종을 생성하여 비가역적 손상을 야기하는 것으로, 상기 친수성 고분자인 옥타암모늄 폴리실세스퀴녹세인과 아미드 결합을 형성할 수 있는 카르복실기(COOH)를 가지고 있는 화합물이면 특별히 종류를 한정하지 않는다.
예를 들어, 상기 광과민제로 포르피린계(phorphyrins) 화합물, 클로린계(chl orins) 화합물, 박테리오클로린계(bacteriochlorins) 화합물, 프탈로시아닌계(phta locyanine) 화합물, 나프탈로시아닌계(naphthalocyanines) 화합물 및 5-아미노레불린 에스테르계(5-aminoevuline esters) 화합물로 이루어진 군으로부터 선택된 1종을 사용할 수 있으며, 바람직하게는 클로린계 화합물이 좋다.
이러한 클로린계 화합물의 종류로는 포토디타진, 라다클로린(radachlorin), 2-(1-hexylethyl)-2-devinylpyropheophorbide-(HPPH), 또는 클로린(e6) 등이 있으며, 본 발명의 구체적 실시예에서는 하기 화학식 2의 클로린(e6)을 사용하였다.
Figure 112014015397846-pat00002
또한 본 발명에 사용하는 불포화지방산은 옥타암모늄 폴리실세스퀴녹세인에 광과민제와 함께 결합함으로써, 세포 내 축척률을 향상시키고 세포 독성을 감소시켜주는 것으로 하기 화학식 3인 올레산(oleic acid, OA)이 바람직하나, 이에 한정되는 것은 아니다.
Figure 112014015397846-pat00003
따라서 본 발명의 일 구체예에서, 본 발명의 합성물은 옥타암모늄 폴리실세스퀴녹세인에 클로린(e6) 및 올레산의 아미드 결합으로 연결된, 하기 화학식 4의 화합물일 수 있다.
Figure 112014015397846-pat00004
삼차원 구형의 고분자와 광과민제 및 불포화지방산이 아미드 결합으로 결합된 합성물
실시예 1. 3차원 구형의 고농도 광과민제 합성물 제조
70.4mg(2 mmol)의 옥타암모늄 폴리실세퀴녹세인(화학식 1)을 1:1.5(v:v)비율의 증류수와 DMSO 25 mL에 첨가하였다. 그 후, 5 mL의 DMSO에 화학식 2로 기재되는 클로린(e6) 107mg(6 mmol)을 녹여 옥타암모늄 폴리실세퀴녹세인 용액에 천천히 적하하였고, 클로린(e6)의 1.5배 mole에 해당하는 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDC)와 N-하이드로숙시니미드(N-hydrosuccinimide; NHS)를 첨가한 후 상온에서 24시간 동안 교반하였다. 이후 상기 반응액에 25.4mg(3 mmol)의 올레산을 DMSO에 녹여 올레산의 1.5 mole에 해당하는 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드와 N-하이드로숙시니미드를 첨가한 후 상온에서 24시간 동안 교반하였다. 상기 반응물을 PCO라고 명명하며 반응 과정은 하기 반응식 1에서 보는 바와 같다.
비교예 1: 올레산을 포함하지 않는 3차원 구형 광과민제의 합성
3 mmol의 올레산을 합성과정을 제외하고는, 상기 실시예 1과 동일한 방법으로 3차원 구형 광과민제를 합성하였다. 상기 반응물을 PC라고 명명한다.
Figure 112014015397846-pat00005

실시예 2. 본 발명 3차원 구형의 고농도 광과민제 합성물의 특성 분석
상기 제조예에서 합성된 3차원 구형의 고농도 광과민제의 평균 입자 형상과 크기의 관찰, 화학적 특성, 구조 관찰, CQC측정, 단일항 산소 측정, 세포의 광독성평가를 통해 우수한 효과를 확인하였다.
실험예 1: 본 발명 3차원 구형의 광과민제 합성물의 입자 표면 분석
본 발명 3차원 구형의 광과민제 합성물의 입자 표면 분석은 상기 실시예1 에 따라 제조된 3차원 구형의 광과민제 합성물 표면을 투과전자현미경(TEM, H-7600, HITACHI, 100kV), 전반사 측정 푸리에 변환 적외선 분광법(ATR-FTIR, alpha, BRUK ER,) 및 제타전위 측정기(Zeta-PSA, ELSZ, Photal)를 이용하여 관찰하는 방법을 통하여 수행하였다.
관찰결과, 도 1은 (a)는 비교예 1이며, (b)는 상기예 1의 TEM 이미지이다. TEM이미지를 통해 합성된 비교예 1와 상기예 1는 구형을 지니고 있으며, 입자 사이즈는 각각 47.3 nm와 47.4 nm으로 확인되었다. 하지만 PSA 측정결과, 비교예 1는 62 nm, 상기예 1는 63 nm로 측정되었다. 이는 EPR effect(Enhanced Permeability and Retention effect : 혈관이 약하며 느슨한 구조를 갖는 암, 염증 등의 조직에서 200 nm이하의 나노입자들이 쉽게 혈관 내로 통과할 수 있다.)를 위한 이상적인 사이즈이다. TEM과 PSA의 결과가 차이가 나는 것은 친수성인 옥타암모늄 실세스퀴녹세인에 기인한 것으로, 건조 상태에서 측정되는 TEM과 달리 수용액상에 분산하여 측정되는 PSA에서 입자의 swelling에 의한 것으로 판단할 수 있다.
또한, 본 발명물의 IR 관찰 결과, 도 2에서 알 수 있듯이, 구형 고분자인 옥타암모늄 실세스퀴녹세인의 Asymmetric Si-O-Si stretching을 1100cm-1에서 관찰하였다. 또한 클로린(e6)의 특성 피크인 2964cm-1을 (a)비교예 1와 (b)상기예 1에서 확인하였다. 특히 1658, 1558, 1241cm-1의 Amide bond 피크를 통해 비교예 1와 상기예 1의 각 분자가 Amide bond로 결합하였다고 여겨진다. 올레산의 경우 특성피크가 2972cm-1에서 나타나며, 이는 (b)그래프에서 클로린(e6)과 상당부분 겹쳐서 관찰된다. 즉 (b)의 2964cm-1의 피크가 (a)보다 강해졌으며 이는 올레산의 첨가에 따른 결과로 사료된다.
실험예 2: 본 발명 3차원 구형의 광과민제 합성물의 화학적 특성 및 구조 분석
상기 실시예 1 에 따라 제조한 본 발명 3차원 구형의 광과민제 합성물의 화학적 특성과 구조는 핵자기공명(NMR, ATR-FTIR, AVANCE 400, BRUKER BIOSPIN, NMR 1H 400MHz)을 이용하여 측정하였다.
분석결과, 본 발명품의 구조를 도 3 NMR 스펙트럼에 나타낸 바와 같이 관찰하였다. (a)는 비교예 1, (b)는 실시예 1의 NMR 스펙트럼이다. 9.09ppm(20H), 6.43 ppm(151-CH2)에서 클로린(e6)의 특성피크를 확인하였다. 특히 3.02ppm(17H)의 클로린(e6) 특성피크는 옥타암모늄 폴리실세퀴녹세인과의 결합에 의해 shift된 것을 관찰하였다. 또한 (b)의 스펙트럼에서 올레산의 합성에 따라 올레산 특성 피크인 5.3ppm(20H)을 확인하였다.
실험예 3: 본 발명 3차원 구형의 광과민제 합성물의 단일항 산소 발생 측정
상기 실시예 1 에 따라 제조한 본 발명 3차원 구형의 광과민제 합성물의 단일 항산소 발생 측정은 단일 항산소에 따라 형광이 감소하는 9,10-dimethylanthra cence(DMA, Santa cruz biotechnology)을 이용하여 측정하였다. 20mM의 DMA stock용액을 N,N-Dimethylformamide(DMF, sigma)를 이용하여 만들고, 최종농도를 20M으로 적정한다. 비교예 1 과 실시예 1 의 발명품 및 클로린(e6)를 DMF와 증류수에 각각 첨가한 후, DMA용액을 첨가한다. 혼합용액에 670nm laser로 50 mW/cm2의 강도로 3분 동안 조사한다. 레이저 처리 후 형광광도계로 측정하였다(ex = 360 nm, scan speed = 500nm/min, Ex slit = 10nm, Em slit = 2.5nm, time = 0-100초).
분석결과, 도 4 (a) PBS에서 비교예 1 과 실시예 1 의 3차원 구형의 광과민제 발명품 및 클로린(e6)의 단일 항산소를 측정한 그래프이다. 레이저 조사전과 조사 10분후의 형광강도 차를 구한 결과를 나타내었다. 가장 높은 차이 값은 실시예 1의 합성물이며, 다음으로 비교예 1, 클로린(e6) 순으로 많은 단일 항산소를 확인하였다. 즉, 수용액상에서 실시예 1이 가장 높은 단일 항산소 야기를 나타내며, 비교예 1, 클로린(e6) 순으로 단일 항산소 생산을 관찰할 수 있었다. 도 4 (b)는 DMF에서 비교예 1 과 실시예 1 의 3차원 구형의 광과민제 발명품 및 클로린(e6)의 단일 항산소를 측정한 그래프이다. 형광강도의 차를 구한 결과, 세 물질 모두 비슷한 양상을 보인다. 레이저 조사전과 조사 후의 형광강도가 유사하여 차이가 거의 발생하지 않았음으로 두 값의 차이를 나타낸 그래프에서 큰 변화를 확인할 수 없었다.
실험예 4: 본 발명 3차원 구형의 광과민제 합성물의 CQC( Critical Self - que nching Concentration )측정
본 발명에 따른 합성물이 형태를 이루려면 어느 정도의 농도가 필요한지를 형광간섭의 성질을 이용하여 계산할 수 있는 실험방법이다. 나노복합체 내에 파이렌(Pyrene)이라는 형광물질을 봉입하여 그 형광물질의 형광이 급격히 사라지는 점을 이용하여 농도를 확인한다.
상기 실시예 1 및 비교예 1 에 따라 제조한 본 발명 3차원 구형의 광과민제 합성물의 단일 항산소 발생 측정은 Pyrene으로 측정하였다. 도 5의 CQC 측정결과, 비교예 1의 PC(●)는 5mg/mL, 실시예 1 의 PCO(∇)의 경우 4mg/mL로 관찰하였다. 이는 PCO가 PC보다 낮은 농도에서 Self-quenching을 이룬다는 것을 의미한다. 올레산의 첨가에 따라 증가한 Hydrophobic interaction에 의한 것으로 여겨진다. PC와 PCO의 임상적용을 위해 정맥 투여 시, 낮은 CQC로 인하여 부작용 줄여줄 것으로 예상된다.
실험예 5: 본 발명 3차원 구형의 광과민제 합성물의 세포독성 평가
상기 실시예 1에서 제조한 본 발명에 따른 합성물에 대해 광조사 유무에 따른 세포 독성 시험을 수행하였다. 세포독성 시험을 위해 사용한 세포주는 유방암세포주인 MCF-7를 사용하였다. 보다 구체적으로 세포독성 실험을 위해, 먼저, 10%의 Fetal Bovine Serum와 1%의 penicillin이 포함되어 있는 RPMI1640 배양액을 이용하여 상기 암 세포주를 5% CO2 및 37의 온도조건에서 배양하였다. 이후 배양된 MCF-7세포를 96 well 플레이트에 1 × 104 세포수로 분주하여 24시간 동안 배양시킨 후, 이튿날 본 발명에 따른 복합체 및 비교예 1 또는 클로린(e6)을 농도별로 각각 희석하여 각 웰에 첨가하였다. 이후, 본 발명에 따른 복합체 및 비교예 또는 소수성 광감작제인 클로린(e6; free Ce6)가 세포에 작용할 수 있도록 3시간 더 배양기에서 배양시켜 준 다음, 근적외선 파장대의 빛(670nm)에서 50mW/cm2의 양으로 조사하였다. 24시간 후에 배양액을 세척한 후, 세포에 MTT 시약 또는 Trypan Blue 시약을 처리하여 4시간 동안 다시 배양시켜 주었고, 이후 배양액의 광학밀도를 MTT의 경우 ELIZA 분석기를 이용하여 570nm에서 흡광도를 측정하였고, Trypan Blue 시약의 경우 광학 현미경으로 세포의 생존률을 분석하였다.
그 결과, 도 6 의 그래프와 같이 약물의 농도가 증가함에 따라 독성이 차츰 증가하였다. 특히 2g/ml의 농도에서 비교예 1의 PC의 경우 10%의 암독성으로 세 약물 중 가장 높은 수치를 보인다. 이는 클로인(e6)에 반응하지 않은 옥타암모늄 폴리실세퀴녹세인 분자의 아민기에 의한 세포독성으로 추측된다. 단일 약물인 클로린 (e6; Free Ce6)의 암독성은 7 %로 두 번째로 높은 암독성을 보인다. 가장 낮은 암독성은 실시예 1 의 PCO로 3 %로 관찰하였다. PCO의 낮은 암독성은 PC에 올레산의 결합으로 인해 옥타암모늄 폴리실세퀴녹세인 분자의 아민기 감소와 올레산의 유방암세포 성장촉진 능력에 의한 것으로 여겨진다. 또한 앞선 결과를 통해 PCO의 우수한 세포 내 이입을 관찰하였다. 하지만 암독성 결과를 통해 PCO의 우수한 세포내 이입은 암독성에 영향을 끼치지 않음을 확인하였다. 또한 올레산는 유방암 세포주에서 성장촉진의 특성을 가지고 있으며, 이는 PCO의 완화된 암독성으로 검증하였다. 도 6 의 (b)그래프는 농도별 광독성을 관찰한 그래프이다. 암독성과 마찬가지로 농도 증가에 따라 세 약물에서 광독성이 증가하였다. 모든 농도에서 PCO가 가장 높은 광독성을 보인다. 특히 2g/ml의 농도에서 Free Ce6는 26%, PC는 82%, PCO는 95%의 광독성으로 가장 높은 수치를 관찰하였다. 이는 세 약물 중 가장 우수한 세포내 이입양과 Singlet oxygen에 기인한 것으로 PCO가 낮은 암독성과 높은 광독성을 지니는 것을 입증하였다.
도 7 은 Trypan blue staining을 통해 관찰한 결과이다. Trypan blue stain ing은 죽었거나 죽어가는 세포의 막 투과성이 높은 trypan blue를 이용하여 염색하여 관찰하는 방법이다. 도 7의 (A)의 경우 단일 약물인 클로린(e6; Free Ce6)를 처리한 세포이다. 레이저를 조사하기 전에 비해 조사 후 약간의 파란 점들을 확인하였다. (B)는 비교예 1 인 PC를 처리한 세포로 (A)에 비해 파란색 점들이 늘어난 것을 관찰하였다. 레이저를 조사하지 않은 세포에서도 파란 점들을 볼 수 있었으며, PC의 암독성에 의한 것이다. (C)는 실시예 1인 PCO를 처리한 세포로 레이저 조사 전의 세포는 거의 염색이 되지 않았지만 레이저 조사 후 많은 파란 점들을 확인하였다. 이는 MTT assay결과와 상응한다.
따라서 이러한 결과를 통해 본 발명의 합성물은 레이저를 조사하지 않는 경우에는 세포 독성을 유발하지 않고, 레이저 조사 시에만 암 세포 내에서 단일 항산소를 발생시켜 항암활성을 유도할 수 있음을 알 수 있었다. 또한 기존 광감작제보다 본 발명의 합성물이 저농도에서 보다 효과적으로 암세포를 사멸시켜 우수한 항암 효과를 갖는다는 사실을 알 수 있었다.
실험예 6: 본 발명 3차원 구형의 광과민제 합성물의 광독성 평가
상기 실시예 1에서 제조한 합성물의 광독성을 평가하기 위해 합성물의 암세포 내 이입량을 수치적으로 측정하였다. 인간 유방암세포 MCF-7를 배양한 후 2㎍/㎖의 농도로 세포에 처리한 후 시간에 따라 완충용액으로 세척한 세포의 약물을 정량하였다.
또한 상기 합성물의 광독성의 Apoptosis를 평가하기 위해 상기 실험예 5와 동일한 방법으로 준비된 플레이트에 RIPA buffer를 이용하여 세포내 약물의 양을 정량하였으며, ANNEXIN V-FITC(BD Pharmingen)와 DePsipher(R&D systems), Cytoch rome C(R&D systems) 를 수행하였다. 제조사의 지침에 따라 실험에 적용하였다.
수행 결과, 도 8은 상기 합성물의 세포 내 유입량을 측정한 결과이다. 초기 배양시간(1 ∼ 2h)에서 단일 약물인 클로린(e6; Free Ce6)가 높은 이입량을 보인다. 이는 비교예 1 인 PC와 실시예 1인 PCO보다 작은 분자인 클로린(e6)의 확산능력 때문이다. 하지만 4시간 이후 PCO에서 가장 많은 이입양이 관찰된다. 이 결과를 통해 올레산의 우수한 세포내 이입 능력에 기반하여 PCO가 가장 높은 이입량을 확인하였다.
도 9는 상기 합성물의 ANNEXIN V-FITC를 측정한 결과이다. 단일약물인 클로린(e6; Free Ce6)을 처리한 세포인 도 9 (a)에서 보듯 ANNEXIN V에 의한 초록색 형광을 거의 관찰할 수 없었지만, (b)의 비교예 1 인 PC와 (c)의 실시예 1 인 PCO에서는 ANNEXIN V에 기인한 녹색 형광을 확인하였다. 이를 통해 PC(b)와 PCO(c)에 의해 발생한 광독성은 초기 apoptosis를 야기하는 것으로 여겨진다.
Apoptosis에 의한 미토콘드리아 막 손상을 확인하기 위해 DePsipher로 염색하여 광독성을 관찰한 결과가 도 10 이다. 도 10 (A)에서 보듯 단일약물인 클로린 (e6; free Ce6)를 처리한 세포에서 붉은 형광(590nm)이 나타나며, 이는 healthy cell에서 DePsipher의 형광색과 일치한다. 도 10의 (B)와 (C)는 각각 비교예 1인 PC와 실시예 1인 PCO를 처리한 세포에서 DePsipher염색한 결과이다. (A)와 달리 붉은 형광은 거의 관찰되지 않는다. 반면에 녹색 형광(530nm)이 관찰된다. 이 결과를 통해 미토콘드리아 막 손상이 야기되었다고 여겨진다.
미토콘드리아 막 손상으로 인한 세포질 내 Cytochrome C 방출량을 조사한 결과가 도 11이다. 레이저를 조사하기 전 단일약물인 클로린(e6; Free Ce6)와 비교예 1인 PC의 Cytochrome C의 방출량은 각각 2.31, 1.8 ng/ml로 유사한 수치를 나타낸다. 반면에 본 발명품인 실시예 1인 PCO의 Cytochrome C 방출량은 0.89 ng/ml으로 클로린(e6)와 PC에 비해 적은 방출량을 관찰하였다. 이는 유방암세포에 증진을 도모하는 올레산에 기인한 것으로 사료된다. 레이저를 조사한 후 Cytochrome C방출량은 클로린(e6), PC와 PCO가 각각 13, 14, 15ng/ml으로 확인된다. PCO에서 가장 많은 Cytochrome C가 방출되었다. 이는 PCO의 우수한 세포 내 이입양과 단일 항산소 생산 능력에 기인한다.
지금까지 본 발명을 바람직한 실시예로서 설명하였으나, 본 발명은 이에 한정되지 않고 발명의 요지를 이탈하지 않는 범위 내에서 다양하게 변형하여 실시할 수 있음은 물론이다.

Claims (10)

  1. 광역학 치료용 고분자-광감작제 복합체에 있어서, 상기 고분자는 수용성 3차원 구형 거대분자로서, 옥타암모늄 폴리실세퀴녹세인(OctaAmmonium POSS)이고, 상기 복합체는 고분자와 클로린(e6)의 광감작제 및 올레산의 불포화 지방산이 펩타이드 결합을 통해 이루어지는 것으로, 수용액상에서 나노 미립구 형태인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  2. 제 1항에 있어서, 상기 폴리실세스퀴녹세인 용액은 아미노프로필아이소부틸 폴리실세스퀴녹세인(Aminopropylisobutyl POSS), 아미노프로필아이소옥틸 폴리실세스퀴녹세인(Amin opropylisooctyl POSS), 아미노프로필페닐 폴리실세스퀴녹세인(A mino propylphenyl POSS), 아미노에틸아미노프로필아이소부틸 폴리실세스퀴녹세인(Aminoethylaminopr opylisobutyl POSS), 옥타아미노페닐 폴리실세스퀴녹세인(Octaaminophenyl POSS), 옥타암모늄 폴리실세스퀴녹세인(Octaammonium POSS), 아미노페닐사이클로헥실 폴리실세스퀴녹세인(Aminophenyl cyclohexyl POSS), 아미노페닐아이소부틸 폴리실세스퀴녹세인(Aminophenyl isobutyl POSS)로 이루어진 군으로부터 선택되는 1종 또는 2종인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  3. 제 1항에 있어서, 상기 광과민제 합성물은 포르피린계(phorphyrins) 화합물, 클로린계(chlori ns) 화합물, 박테리오클로린계(bacteriochlorins) 화합물, 프탈로시아닌계(phtalo cyanine) 화합물, 나프탈로시아닌계(naphthalocyanines) 화합물 및 5-아미노레불린 에스테르계(5-aminoevuline esters) 화합물로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  4. 제 1항에 있어서, 상기 불포화 지방산은 올레산(Oleic acid, OA), 알파 리놀렌산(-Linol enic acid, ALA), 감마 리놀렌산(-linolenic acid, GLA), 리놀레산(Linoleic acid, LA), 아라키돈산(arachidonic acid, AA), 도코사헥사엔산(Docosahexaenoic acid)로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  5. 제 3항에 있어서, 상기 클로린계(chlorins) 화합물은 카르복실기를 갖는 클로린 e6(Chlorin e6)인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  6. 제 2항 또는 제 3항에 따른 합성물을 유효성분으로 포함하는 암 치료용 또는 진단용 합성물인 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  7. 제 6항에 있어서, 상기 암은 뇌종양, 양성성상세포종, 악성성상세포종, 뇌하수체 선종, 뇌수막종, 뇌림프종, 핍지교종, 두개내인종, 상의세포종, 뇌간종양, 두경부 종양, 후두암, 구인두암, 비강/부비동암, 비인두암, 침샘암, 하인두암, 갑상선암, 구강암, 흉부종양, 소세포성 폐암, 비소세포성 폐암, 흉선암, 종격동 종양, 식도암, 유방암, 남성유방암, 복부종양, 위암, 간암, 담낭암, 담도암, 췌장암, 소장암, 대장암, 항문암, 방광암, 신장암, 전립선암, 자궁경부암, 자궁내막암, 난소암, 자궁육종 및 피부암으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물.
  8. (a)옥타암모늄 폴리실세퀴녹세인을 초순수에 용해시키는 단계; (b) 클로린(e6)의 광감작제와 촉매를 유기용매에 용해시키는 단계; (c) 올레산의 불포화 지방산과 촉매를 유기용매에 용해시키는 단계; 및 (d) 상기 (a)단계와 (b) 및 (c)단계에서 제조된 용액을 혼합하여 반응시키는 단계를 포함하는 것을 특징으로 하는 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법.
  9. 제 8항에 있어서, 상기 유기용매는 디메틸설폭사이드(Dimethylsulfoxide: DMSO), 포름아마이드(Formamide) 및 디메틸포름아마이드(Dimethylformamide: DMF)로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법.
  10. 제 8항에 있어서, 상기 촉매는 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드 (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDC)와 N-하이드로숙시니미드(N-hydrosuccini mide; NHS) 또는 이들의 혼합물인 것을 특징으로 하는 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 제조방법.
KR1020140018072A 2014-02-17 2014-02-17 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법 KR101582252B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140018072A KR101582252B1 (ko) 2014-02-17 2014-02-17 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140018072A KR101582252B1 (ko) 2014-02-17 2014-02-17 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20150097032A KR20150097032A (ko) 2015-08-26
KR101582252B1 true KR101582252B1 (ko) 2016-01-04

Family

ID=54059095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140018072A KR101582252B1 (ko) 2014-02-17 2014-02-17 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101582252B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295254A (zh) * 2018-01-19 2018-07-20 东南大学 一种用于调控细胞核膜通透性的纳米试剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404136B (zh) * 2018-01-30 2019-12-03 天津大学 一种基于穿膜肽的三元基因递送系统及其应用
CN109575068A (zh) * 2018-10-31 2019-04-05 泰山学院 一种溶剂调控制备不同形貌的卟啉-poss聚集体的方法及应用
CN112451680B (zh) * 2020-11-24 2022-07-19 吉林化工学院 一种具有协同诱导光动力治疗和铁死亡的ros敏感性纳米试剂及其制备方法
CN112472807B (zh) * 2020-12-04 2023-04-07 天津大学 一种载药纳米高分子囊泡制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090333A2 (ko) * 2010-01-20 2011-07-28 주식회사 진코스 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anticancer Agents Med. Chem., Vol. 13(5), pp 821~832(2013년)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108295254A (zh) * 2018-01-19 2018-07-20 东南大学 一种用于调控细胞核膜通透性的纳米试剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20150097032A (ko) 2015-08-26

Similar Documents

Publication Publication Date Title
Youssef et al. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy
Ansari et al. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies
Zhao et al. Multifunctional core–shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells
Cui et al. Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light
KR101582252B1 (ko) 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법
Chen et al. Preparation and photodynamic therapy application of NaYF4: Yb, Tm–NaYF4: Yb, Er multifunctional upconverting nanoparticles
KR101035269B1 (ko) 고분자 유도체-광감작제 복합체를 이용한 새로운 광역학치료제
He et al. Self-assembled gold nanostar–NaYF 4: Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy
Zhang et al. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor
WO2007122956A1 (ja) 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
CN103566381A (zh) 一种多功能磁性纳米颗粒及其制备方法
JP2020526595A (ja) 光増感剤、その誘導体および用途
CN111742034B (zh) 具有高度非辐射衰减抑制的碗烯包裹的aie纳米点用于增强体内癌症光诊疗
Girma et al. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy
Compagnin et al. The cellular uptake of meta-tetra (hydroxyphenyl) chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins
Zhou et al. Monomer zinc phthalocyanine/upconversion nanoparticle coated with hyaluronic acid crosslinked gel as NIR light-activated drug for in vitro photodynamic therapy
US20220160892A1 (en) Single nir irradiation triggered upconversion nano system for synergistic photodynamic and photothermal cancer therapy
Wang et al. One-step self-assembly of ZnPc/NaGdF 4: Yb, Er nanoclusters for simultaneous fluorescence imaging and photodynamic effects on cancer cells
Mahajan et al. A potential mediator for photodynamic therapy based on silver nanoparticles functionalized with porphyrin
WO2015026963A2 (en) Phthalocy anine-dendrimer compositions and a method of using
CN111840570A (zh) 一种丝胶蛋白结合光敏剂的纳米颗粒的制备方法
Chen et al. Mitochondrion-targeting chemiluminescent ternary supramolecular assembly for in situ photodynamic therapy
KR20160003488A (ko) 히알루론산-탄소나노물질 결합체 및 이를 포함하는 광역학 치료용 조성물
Yu et al. A triple-stimulus responsive melanin-based nanoplatform with an aggregation-induced emission-active photosensitiser for imaging-guided targeted synergistic phototherapy/hypoxia-activated chemotherapy
Soleimany et al. Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191230

Year of fee payment: 5