CN112472807B - 一种载药纳米高分子囊泡制备方法 - Google Patents

一种载药纳米高分子囊泡制备方法 Download PDF

Info

Publication number
CN112472807B
CN112472807B CN202011415506.0A CN202011415506A CN112472807B CN 112472807 B CN112472807 B CN 112472807B CN 202011415506 A CN202011415506 A CN 202011415506A CN 112472807 B CN112472807 B CN 112472807B
Authority
CN
China
Prior art keywords
drug
fatty acid
unsaturated fatty
photosensitizer
amphiphilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011415506.0A
Other languages
English (en)
Other versions
CN112472807A (zh
Inventor
王生
张鑫璐
程国辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011415506.0A priority Critical patent/CN112472807B/zh
Publication of CN112472807A publication Critical patent/CN112472807A/zh
Application granted granted Critical
Publication of CN112472807B publication Critical patent/CN112472807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1273Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开一种载药纳米高分子囊泡及其制备方法,将不饱和脂肪酸两亲性聚合物和光敏剂衍生物金属螯合物通过自组装形成的囊泡状纳米粒子,并在其亲水空腔内包载水溶性化疗药物;其中:光敏剂为2‑((1’‑正己氧基)乙基)‑2‑二乙烯基‑焦脱镁叶绿酸‑a(HPPH),所述光敏剂衍生物为聚乙二醇‑HPPH键接物。囊泡疏水层的光敏剂分子可在激光照射下高效产生单线态氧,进而氧化高分子链上的不饱和脂肪酸分子,生成亲水性过氧化物基团,实现囊泡通透性变化及结构破坏,快速释放亲水内腔的化疗药物,不饱和脂肪酸过氧化物在催化剂的作用下,又可再次生成活性氧。

Description

一种载药纳米高分子囊泡制备方法
技术领域
本发明属于药物技术领域,涉及一种载药纳米高分子囊泡制备方法。
背景技术
恶性肿瘤是威胁人类生命健康的重大疾病,并且恶性肿瘤的发病率和死亡率逐年提高。化学治疗是利用化学药物杀灭癌细胞的一种全身性治疗手段。随着近年来多种高效抗肿瘤药物的开发与应用,化疗在恶性肿瘤的临床治疗上发挥着重要的作用,但是由于大部分化疗药物选择性差,容易造成全身性分布,因此其在杀灭癌细胞的同时也会损伤人体正常的细胞,从而出现严重的药物副作用。近年来,纳米生物技术的发展为开发新型化疗制剂提供了一个全新的多功能平台,采用纳米技术可将小分子药物制备成纳米药物。与传统剂型相比,纳米药物既可增加药物稳定性,又可通过被动靶向、主动靶向等效应实现对肿瘤的靶向治疗,降低药物的全身性毒副作用并提高生物利用度。基于以上这些优点,纳米药物的开发与应用有望大幅度提高恶性肿瘤的治疗效率而受到广泛研究与关注。
近年来,将光动力治疗作为化疗的辅助治疗手段已受到广泛研究,并获得了比单一疗法更好的治疗效果。并且,采用活性氧敏感的纳米载体同时包载药物和光敏剂,不仅可实现药物的可控释放,还可以通过联合化学药物与活性氧的作用实现更好的治疗效果。然而,仍有一个瓶颈问题有待解决:通过消耗活性氧来实现药物的释放,虽提高了化疗效果,但却以降低活性氧治疗效果为代价,不能实现最优化的联合治疗。尤其是大部分肿瘤组织内氧含量不高,进一步限制了活性氧产量,因此解决上述瓶颈问题具有重要的意义。
发明内容
本发明为克服现有技术的不足,提供一种载药纳米高分子囊泡制备方法。
本发明为解决上述技术问题,提供的技术方案是一种载药纳米高分子囊泡制备方法,将不饱和脂肪酸两亲性聚合物和光敏剂衍生物金属螯合物通过自组装形成的囊泡状纳米粒子,并在其亲水空腔内包载水溶性化疗药物;
其中:光敏剂为2-((1’-正己氧基)乙基)-2-二乙烯基-焦脱镁叶绿酸-a(HPPH),所述光敏剂衍生物为聚乙二醇-HPPH键接物;
不饱和脂肪酸两亲性聚合物及光敏剂衍生物金属螯合物的结构分别如式(I)、(II)所示:
Figure BDA0002817551750000021
其中:m为1-5的整数;n为1-300的整数;各个X独立地为O或NH;
R1为聚乙二醇单甲醚,分子量为400~10000;
R2为-H、-CH3或-CH2CH3
R3为亚油酸、花生四烯酸或二十二碳六烯酸;
Z为铁、铜、锰或钴。
所述不饱和脂肪酸两亲性聚合物具有式(III)的优选结构:
Figure BDA0002817551750000022
所述光敏剂衍生物金属螯合物具有式(IV)的优选结构:
Figure BDA0002817551750000023
本发明具体包括如下步骤:
1)将不饱和脂肪酸两亲性聚合物与光敏剂金属螯合物溶于有机溶剂中,形成有机相;
2)将水溶性化疗药物溶于纯水中,形成药物水相;
3)在超声作用下,将药物水相加入到油相中,超声分散;
4)在超声作用下,继续加入纯水,超声形成均匀的乳液分散体系;
5)将上述乳液于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
所述步骤1)中不饱和脂肪酸两亲性聚合物与光敏剂金属螯合物的质量比为1~1000:1,在所得到的有机溶液中,不饱和脂肪酸两亲性聚合物的浓度为0.01mg/mL~100mg/mL。
所述步骤2)中药物的浓度为0.01mg/mL~10mg/mL。
所述步骤2)药物与步骤1)不饱和脂肪酸两亲性聚合物的质量比为1:2~100。
所述步骤3)中水相与油相体积比为1:1~50。
所述步骤4)中新加入水相与油相体积比为1~100:1。
有益效果
本发明涉及的包载药物的纳米高分子囊泡的性能包括:囊泡疏水层的光敏剂分子可在激光照射下高效产生单线态氧,进而氧化高分子链上的不饱和脂肪酸分子,生成亲水性过氧化物基团,实现囊泡通透性变化及结构破坏,快速释放亲水内腔的化疗药物,不饱和脂肪酸过氧化物在催化剂(光敏剂金属螯合物)的作用下,又可再次生成活性氧。
附图说明
图1是实施例1中制备的包载药物的纳米高分子囊泡的透射电镜照片;
图2是实施例1中制备的包载药物的纳米高分子囊泡的粒径表征结果;
图3是实施例1中制备的包载药物的纳米高分子囊泡的紫外吸收光谱。
具体实施方式
以下结合附图对本发明作进一步的说明。
实施例1
称取10mg基于亚油酸的两亲性聚合物、1mg聚乙二醇-HPPH铁离子螯合物溶于4mL二氯甲烷,称取1mg阿霉素盐酸盐溶于0.5mL纯水,将药物水溶液在超声作用下加入到二氯甲烷溶液中,超声分散后继续加入8mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。透射电镜照片如图1所示,粒径表征结果如图2所示,紫外吸收光谱如图3所示。
实施例2
称取8mg基于花生四烯酸的两亲性聚合物、0.5mg聚乙二醇-HPPH铁离子螯合物溶于2mL二氯甲烷,称取0.5mg阿霉素盐酸盐溶于1mL纯水,将药物水溶液在超声作用下加入到二氯甲烷溶液中,超声分散后继续加入5mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
实施例3
称取8mg基于花生四烯酸的两亲性聚合物、1mg聚乙二醇-HPPH铜离子螯合物溶于4mL三氯甲烷,称取0.8mg表阿霉素盐酸盐溶于1mL纯水,将药物水溶液在超声作用下加入到三氯甲烷溶液中,超声分散后继续加入10mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
实施例4
称取12mg基于亚油酸的两亲性聚合物、0.8mg聚乙二醇-HPPH铜离子螯合物溶于3mL三氯甲烷,称取1mg表阿霉素盐酸盐溶于2mL纯水,将药物水溶液在超声作用下加入到三氯甲烷溶液中,超声分散后继续加入6mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
实施例5
称取10mg基于二十二碳六烯酸的两亲性聚合物、0.6mg聚乙二醇-HPPH铁离子螯合物溶于8mL二氯甲烷,称取1mg伊立替康溶于3mL纯水,将药物水溶液在超声作用下加入到二氯甲烷溶液中,超声分散后继续加入20mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
实施例6
称取20mg基于花生四烯酸的两亲性聚合物、1mg聚乙二醇-HPPH铁离子螯合物溶于10mL二氯甲烷,称取1.8mg伊立替康溶于4mL纯水,将药物水溶液在超声作用下加入到二氯甲烷溶液中,超声分散后继续加入40mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
实施例7
称取18mg基于亚油酸的两亲性聚合物、1.8mg聚乙二醇-HPPH铜离子螯合物溶于6mL三氯甲烷,称取1mg伊立替康溶于2mL纯水,将药物水溶液在超声作用下加入到三氯甲烷溶液中,超声分散后继续加入10mL纯水,超声形成均匀的乳液分散体系,于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。

Claims (9)

1.一种载药纳米高分子囊泡制备方法,其特征在于,将不饱和脂肪酸两亲性聚合物和光敏剂衍生物金属螯合物通过自组装形成的囊泡状纳米粒子,并在其亲水空腔内包载水溶性化疗药物;
其中:光敏剂为2-((1’-正己氧基)乙基)-2-二乙烯基-焦脱镁叶绿酸-a(HPPH),所述光敏剂衍生物为聚乙二醇-HPPH键接物;
不饱和脂肪酸两亲性聚合物及光敏剂衍生物金属螯合物的结构分别如式(I)、(II)所示:
Figure FDA0003954400140000011
其中:m为1-5的整数;n为1-300的整数;各个X独立地为O或NH;
R1为聚乙二醇单甲醚,分子量为400~10000;
R2为-H、-CH3或-CH2CH3
R3为亚油酸、花生四烯酸或二十二碳六烯酸;
Z为铁、铜、锰或钴。
2.根据权利要求1所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述不饱和脂肪酸两亲性聚合物具有式(III)的结构:
Figure FDA0003954400140000012
3.根据权利要求1所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述光敏剂衍生物金属螯合物具有式(IV)的结构:
Figure FDA0003954400140000021
4.根据权利要求1所述的一种载药纳米高分子囊泡制备方法,其特征在于,包括如下步骤:
1)将不饱和脂肪酸两亲性聚合物与光敏剂衍生物金属螯合物溶于有机溶剂中,形成油相;
2)将水溶性化疗药物溶于纯水中,形成药物水相;
3)在超声作用下,将药物水相加入到油相中,超声分散;
4)在超声作用下,继续加入纯水,超声形成均匀的乳液分散体系;
5)将上述乳液于旋转蒸发仪上进行旋蒸,至有机溶剂完全挥发,得到包载药物的纳米高分子囊泡。
5.根据权利要求4所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述步骤1)中不饱和脂肪酸两亲性聚合物与光敏剂衍生物金属螯合物的质量比为1~1000:1,在所得到的有机溶液中,不饱和脂肪酸两亲性聚合物的浓度为0.01mg/mL~100mg/m L。
6.根据权利要求4所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述步骤2)中药物的浓度为0.01mg/mL~10mg/mL。
7.根据权利要求4所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述步骤2)药物与步骤1)不饱和脂肪酸两亲性聚合物的质量比为1:2~100。
8.根据权利要求4所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述步骤3)中水相与油相体积比为1:1~50。
9.根据权利要求4所述的一种载药纳米高分子囊泡制备方法,其特征在于,所述步骤4)中新加入水相与油相体积比为1~100:1。
CN202011415506.0A 2020-12-04 2020-12-04 一种载药纳米高分子囊泡制备方法 Active CN112472807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011415506.0A CN112472807B (zh) 2020-12-04 2020-12-04 一种载药纳米高分子囊泡制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011415506.0A CN112472807B (zh) 2020-12-04 2020-12-04 一种载药纳米高分子囊泡制备方法

Publications (2)

Publication Number Publication Date
CN112472807A CN112472807A (zh) 2021-03-12
CN112472807B true CN112472807B (zh) 2023-04-07

Family

ID=74940421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011415506.0A Active CN112472807B (zh) 2020-12-04 2020-12-04 一种载药纳米高分子囊泡制备方法

Country Status (1)

Country Link
CN (1) CN112472807B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069431B (zh) * 2021-04-02 2022-07-01 天津大学 一种粒径可变的纳米诊疗剂及其制备方法
CN113289015B (zh) * 2021-05-13 2023-02-21 华中科技大学 调节光敏剂聚集程度的方法、纳米配位聚合物及其制备方法和应用
CN116283934B (zh) * 2023-03-21 2024-08-06 华中科技大学 一种多功能不饱和脂肪酸-半花菁偶联物、其制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200738278A (en) * 2006-04-03 2007-10-16 Univ Taipei Medical A liposome combination and the use thereof
KR101582252B1 (ko) * 2014-02-17 2016-01-04 대구가톨릭대학교산학협력단 3차원 구형 거대분자를 이용한 광역학 치료용 고농도 광과민제 합성물 및 그 제조방법
CN106727433B (zh) * 2017-03-20 2019-09-10 厦门大学 酸敏感可控释放单线态氧纳米材料及其制备方法与应用
CN110898007A (zh) * 2019-11-13 2020-03-24 中国药科大学 一种靶向抗肿瘤糖醛酸羧基游离多糖衍生物胶束的制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
不同价态锰对神经母细胞瘤细胞的氧化损伤作用;宣登峰 等;《工业卫生与职业病》;20040730;第30卷(第4期);第222页 *
口服枸杞对肺活量影响的相关性研究;杨学东;《数理医药学杂志》;20070615;第20卷(第3期);第375页 *

Also Published As

Publication number Publication date
CN112472807A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112472807B (zh) 一种载药纳米高分子囊泡制备方法
Zhou et al. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases
Rabiee et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy
Youssef et al. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy
Lee et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system
Shi et al. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging
Bhana et al. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy
Kalyane et al. Reactive oxygen nano-generators for cancer therapy
CN111617246B (zh) 一种纯光敏剂自组装纳米粒及其制备和应用
Yang et al. Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy
CN109054000B (zh) 一种基于聚水杨酸的纳米载药体系及其制备方法和应用
CN113398277A (zh) 脂肪酸/脂肪醇-抗肿瘤物质前药及其自组装纳米粒的制备方法
CN113350503B (zh) 一种无载体杂合纳米组装体及其制备方法与应用
Aghda et al. Design of smart nanomedicines for effective cancer treatment
Lin et al. A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity
CN107158377B (zh) 光控温敏脂质体及其制备方法和用途
Pourmadadi et al. Cisplatin-loaded nanoformulations for cancer therapy: A comprehensive review
Zuo et al. Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment
Zhu et al. Design of disintegrable nanoassemblies to release multiple small-sized nanoparticles
Guo et al. Acetic acid transporter-mediated, oral, multifunctional polymer liposomes for oral delivery of docetaxel
Li Nanoparticles for photodynamic therapy
Sun et al. Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors
Sun et al. Supramolecular nanomedicine for selective cancer therapy via sequential responsiveness to reactive oxygen species and glutathione
Dastidar et al. Recent developments in nanocarriers for cancer chemotherapy
CN113694211A (zh) 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant