WO2010151073A2 - 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물 - Google Patents

항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물 Download PDF

Info

Publication number
WO2010151073A2
WO2010151073A2 PCT/KR2010/004132 KR2010004132W WO2010151073A2 WO 2010151073 A2 WO2010151073 A2 WO 2010151073A2 KR 2010004132 W KR2010004132 W KR 2010004132W WO 2010151073 A2 WO2010151073 A2 WO 2010151073A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
conjugate
chemotherapeutic agent
chlorine
composition
Prior art date
Application number
PCT/KR2010/004132
Other languages
English (en)
French (fr)
Other versions
WO2010151073A3 (ko
Inventor
안웅식
배수미
바토그토크흐간트므르
문란영
Original Assignee
주식회사 진코스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진코스 filed Critical 주식회사 진코스
Publication of WO2010151073A2 publication Critical patent/WO2010151073A2/ko
Publication of WO2010151073A3 publication Critical patent/WO2010151073A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/14Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • A61K47/546Porphyrines; Porphyrine with an expanded ring system, e.g. texaphyrine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a conjugate of an anticancer chemotherapeutic agent-chlorine derivative, a photosensitizer containing the same, and a composition for treating cancer comprising the same.
  • Photodynamic therapy is a medical treatment using a combination of light and photosensitizer (PS).
  • PS photosensitizer
  • the mechanism of action is largely dependent on the molecular mechanism of tumor-selective accumulation of photosensitive agents and the interaction of light with photosensitive agents. It can be divided into tumor destruction mechanism. Each factor is not harmful by itself, but when combined with oxygen, they can produce lethal cytotoxic agents that inactivate tumor cells [Sternberg ED et al., Tetrahedron , 1998, 54 : 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6 : 158-161.
  • PDT exhibits dual selectivity, in which the PS is preferentially absorbed by the diseased tissue, and the PS is activated by irradiating light in specific areas. PDT kills cells through the production of singlet oxygen and other reactive oxygen species (ROS), which overwhelms numerous antioxidant defense mechanisms in the cell and causes oxidative damage to the cell's macromolecules [Weisberger KR et al., Cancer Res , 1976, 36 : 2326-2329.
  • ROS reactive oxygen species
  • the photochemical reaction to generate ROS with singlet oxygen is represented by a modified Jablonsky diagram (FIG. 1).
  • the PS is electrically excited from the bottom singlet state (S 0 ) through the excited singlet state [S 1 , ( ⁇ 10 -6 s)] with short half-life [T 1. , ( ⁇ 10 -2 s)].
  • the excited singlet state PS which has a short half-life, can perform a non-radioactive process of intersecting systems (ISC).
  • the excited triplet state PS can perform two kinds of reactions [Macdonald JI et al., J Porphyrins Phthalocyanines , 2001, 5 : 105-129.]. First, it can participate in an electron-transfer process with a biological substrate to form radicals and radical ions that can produce superoxide ions, peroxide products such as O 2 ⁇ after interaction with oxygen [Type I reaction]. Alternatively, it can carry out a photochemical process known as a type II reaction in which stable triplet oxygen ( 3 O 2 ) is converted to singlet oxygen ( 1 O 2 ) with a short half-life but high reactivity.
  • the tumor cell killing effect of PDT is related to the depth of light penetration within the cancer mass.
  • the effect of light in tissues decreases exponentially with distance [Moser JG. In Photodynamic Tumor Therapy-2 nd & 3 rd Generation Photosensitizers . Harwood Academic Publishers, London, 1997: 3-8].
  • Tissue weakness is affected by optimal absorption, scattering by endogenous molecules and drug chromophores themselves.
  • the maximum transmittance of skin tissue is in the 700-800 nm region, and development of a photosensitizer that exhibits the maximum absorption in this region is required.
  • Effective penetration at 630 nm was between 1 and 3 mm, while light penetration of at least 6 mm was observed at 700-850 nm.
  • the ideal PS should exhibit strong absorption in the near infrared region.
  • PS is defined as a species that induces chemical or physical modification of other species under the absorption of light.
  • Clinicians and chemists have different views on the ideal PS [Kirchner C et al., Nano Lett, 2005, 5 , 331.].
  • chemists can place more emphasis on high degree of extinction and high quantum yield of singlet oxygen, while clinicians can further emphasize low toxicity and high selectivity.
  • both clinical PDTs and ideal PSs are clinically appropriate and allison et al. [Zheng H. Technology in Cancer Research & Treatment , 2005, 4 : 283-293] and Castano et al. [Anna C et al., Photochem] Photobiol , 2006, 82 : 617-625] agree that at least some of the following criteria reported by:
  • tetrapyrrole macrocycles are often used as PS. Strong absorption in the red region of the visible spectrum is a very desirable feature for effective photosensitisers because it allows for the treatment of thicker tumors (Johnson CK et al., Tetrahedron Lett , 1998, 39 : 4619-4622). . For this reason, tetrapyrroles such as porphyrin, chlorine, bacteriochlorin, porphysin, phthalocyanine, naphthalocyanine, and expanded porphyrin have been synthesized and PDT efficacy has been evaluated. PS can be classified by their chemical structure and origin.
  • porphyrin-based eg photoprine, ALA / PpIX and BPD-MA
  • chlorine-based eg perpurin and bacteriochlorine
  • dyes eg phthalocyanine, naphthalocyanine
  • Paclitaxel is a mitosis inhibitor used in cancer chemotherapy. It was discovered in 1967 when Monroe E. Wall and Mansukh C. Wani separated Taxk breyifolia from the bark of a Pacific yew tree named 'taxol' as Taxus breyifolia . Paclitaxel is currently used to treat patients with advanced forms of lung, ovarian, breast cancer, head and neck cancer, and Kaposi's sarcoma. By 1988, especially in Potier's publication, it was clear for Holton that the actual semi-synthetic production route would be important. In 1992, Holton patented an improved process with 80% yield. In recent years, extensive research has been conducted to find ways to alleviate the side effects of paclitaxel by changing its dosage. DHA-paclitaxel, PG-paclitaxel, and tumor-activated paclitaxel prodrugs have been tested in succession and are actually being introduced into a wide range of clinical uses.
  • Chemotherapeutic agents are most effective at killing rapidly dividing cells. Unfortunately, chemotherapeutic agents do not know the difference between cancer cells and normal cells. Its clinical usefulness has often been limited due to the development of drug resistance and severe side effects such as nephrotoxicity, toxic and neurotoxicity [Mauro, V. de .A et al., J. Braz. Chem. Soc . 2006 , 17, 1266-1273. There is a need to develop new generations of drugs to reduce the toxicity and avoid resistance of cis-platinum and paclitaxel.
  • An object of the present invention is to conjugate the anticancer chemotherapeutic agent-chlorine derivative which can reduce the toxicity and avoid resistance of the anticancer chemotherapeutic agent by conjugating the anticancer chemotherapeutic agent having cell proliferation inhibitory activity and the chlorine derivative having photodynamic activity. It is to provide.
  • Another object of the present invention is to conjugate the anticancer chemotherapeutic agent-chlorine derivative which can reduce the toxicity and avoid the resistance of the anticancer chemotherapeutic agent by conjugating the anticancer chemotherapeutic agent having cell proliferation inhibitory activity and the chlorine derivative having photodynamic activity. It is to provide a method for producing.
  • the present invention provides a conjugate of an anticancer chemotherapeutic agent-chlorine derivative.
  • the anticancer chemotherapeutic agent is preferably an anticancer chemotherapeutic agent having cell proliferation inhibitory activity such as cisplatin and paclitaxel, but is not limited thereto.
  • the chlorine derivative is preferably methylfeophoride-a, pyrophorovide-a or methylpyrophorovide-a, but is not limited thereto.
  • the conjugate of the anticancer chemotherapeutic agent-chlorine derivative of the present invention reduces the toxicity and resistance of the anticancer chemotherapeutic agent by combining the anticancer chemotherapeutic agent with cell proliferation inhibitory activity with the chlorine derivative with photodynamic activity and the toxicity as a photosensitizer. As well as reducing the selectivity can be enhanced to effectively inhibit the proliferation of cancer cells while minimizing side effects on normal cells.
  • the present invention provides a conjugate of an anticancer chemotherapeutic agent-chlorine derivative having the structure of Formula 1 below.
  • the present invention provides a conjugate of an anticancer chemotherapeutic agent-chlorine derivative having the structure of formula (2).
  • the present invention provides a conjugate of an anticancer chemotherapeutic agent-chlorine derivative having the structure of Formula 3 below.
  • the present invention provides a method for preparing a conjugate of an anticancer chemotherapeutic agent-chlorine derivative comprising the following steps:
  • chlorine derivatives are compounds that can be activated by light in order to exhibit a photodynamic therapeutic effect.
  • the linker functional group is preferably ethylenediamine.
  • the chlorine derivative may be extracted from Spirulina maxima algae.
  • the present invention provides a photosensitizer containing a conjugate of an anticancer chemotherapeutic agent-chlorine derivative.
  • the photosensitizer is characterized in that it exhibits photosensitizing activity for light rays in the range of 650 nm to 800 nm.
  • the present invention provides a composition for treating cancer, comprising a conjugate of an anticancer chemotherapeutic agent-chlorine derivative as an active ingredient.
  • the cancer treatment composition may be used for photodynamic therapy.
  • the cancer may be selected from the group consisting of skin, digestive, urinary, genital, respiratory, circulatory, brain and nervous system cancers.
  • the cancer is lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma Cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute Among the group consisting of leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma and pituitary adenoma It may be selected, but is not necessarily limited thereto.
  • CNS central nervous system
  • composition for treating cancer of the present invention includes intravenous injection, intraperitoneal injection, intramuscular injection, intracranial injection, intratumoral injection, intraepithelial injection, dermal penetration, esophageal administration, abdominal administration, arterial injection, intraarticular injection, and oral cavity. Administration may be by a route selected from the group consisting of administration.
  • composition according to the present invention can be formulated into a preparation for parenteral administration in the form of a sterile aqueous solution, a non-aqueous solvent, a suspension, an emulsion or an emulsion according to a conventional method.
  • a sterile aqueous solution a non-aqueous solvent
  • a suspension an emulsion or an emulsion according to a conventional method.
  • it may be prepared using diluents or excipients such as surfactants commonly used.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used.
  • Preferred dosages of the conjugates according to the invention vary depending on the condition and weight of the patient, the extent of the disease, the form of the drug, the route of administration and the duration, and may be appropriately selected by those skilled in the art. However, for the desired effect, the conjugate of the present invention may be administered in an amount of 0.0001 to 100 mg / kg, preferably in an amount of 0.001 to 100 mg / kg once to several times daily.
  • the present invention provides a composition
  • a composition comprising a photosensitive agent containing a conjugate of an anticancer chemotherapeutic agent-chlorine derivative as an active ingredient;
  • kits for cancer treatment for use in photodynamic therapy comprising a light source for irradiating light with a wavelength in the range of 650 nm to 800 nm.
  • Chlorine is a compound having a structure represented by the following Chemical Formula 4 and is a large heterocyclic aromatic ring composed of pyrrole and pyrroline connected by four methine linkages at the center.
  • Magnesium-containing chlorine is called chlorophyll and is the central photosensitive pigment in the chloroplast.
  • the chlorine derivative means a compound having the chlorine as a basic skeleton structure.
  • Chlorine and chlorine derivatives are effectively used as photosensitizers in photodynamic therapy because of their photosensitization.
  • chlorine and chlorine derivatives are more useful for synthesizing photosensitizers, on the one hand because they have good spectral properties and low toxicity, and on the other hand have many reaction centers that enable various chemical conversions to be carried out. Can be used.
  • the chlorine derivatives usable in the present invention include, but are not limited to, methylfeophoride-a, pyrophorovide-a and methylpyrophorovide-a, which can be obtained in particular from chlorophyll.
  • the methylfeophoride-a, the pyrophorovide-a and the methylpyrophorovide-a may be selected from the It is used as a kind of new compound with potential because it is activated with much longer red light at ⁇ 670 nm and can produce less long-term normal tissue phototoxicity.
  • the chlorine derivatives used in the present invention have the advantages of good PDT effect at low concentrations, high selectivity in tumors, high yields during extraction, and excellent commercial utility. However, higher concentrations result in darker toxicity.
  • methylfeophoride-a MP-a
  • pyrophorovide-a methyl obtained from Spirulina Maxima
  • Spirulina Maxima a kind of algae that produces a mixture of natural chlorine as a chlorine derivative.
  • Pyrophorovide-a MPP-a was used as starting material for preparing the conjugates of the present invention.
  • the chemotherapy agent is a generic name for a chemical substance that has the property of inhibiting the proliferation of tumor cells, that is, cancer.
  • Anticancer chemotherapeutic agents aim to destroy harmful tumor cells without damaging normal cells as much as possible, but since cancer cells are substantially similar to normal cells, they often have toxicity to normal cells.
  • cisplatin and paclitaxel are used as representative anticancer chemotherapeutic agents, but the present invention is not limited thereto.
  • a conjugate of a chlorine derivative obtained from chlorophyll as a chlorine derivative and representative anticancer chemotherapeutic agents such as cisplatin and paclitaxel is provided.
  • the term "inhibition of cell proliferation", “inhibition of cell growth” or similar form is used to suppress an increase in cell number, to any extent to any inhibition, for example, about 20% or more, about 50% or more, about That means containing over 90%, over 99% and complete inhibition ie 100% inhibition.
  • photodynamic therapy refers to a treatment by a combination of a photosensitizer (drug), light and oxygen.
  • a photosensitizer drug
  • oxygen oxygen
  • a conjugate of an anticancer chemotherapeutic agent-chlorine derivative is synthesized by combining an anticancer chemotherapeutic agent such as cisplatin and paclitaxel with a derivative of natural chlorine, especially the most abundant chlorophyll-a.
  • an anticancer chemotherapeutic agent such as cisplatin and paclitaxel
  • Such conjugates of anticancer chemotherapeutic agent-chlorine derivatives should have cell proliferation inhibitory activity of the anticancer chemotherapeutic moiety and photodynamic activity of chlorine derivative photosensitizers under irradiation.
  • the linker functional group should be selected so as not to affect the activity of each of the anticancer chemotherapeutic agent and the chlorine derivative.
  • ethylenediamine is used as the linker functional group, but any linker functional group capable of conjugating the two compounds without affecting the activity of the anticancer chemotherapeutic agent and the chlorine derivative can be used.
  • the anticancer chemotherapeutic agent and the chlorine derivatives were conjugated after their conjugation, that is, cell proliferation inhibitory activity and activity as a light sensitizer when there was light.
  • FIG. 23 and FIG. 24 show that when PDT is not performed in terms of cell growth inhibitory effect, the effect is higher than that of a single substance. It was confirmed that the same effect as the single material.
  • the present invention when the PDT was not performed, that is, in the absence of a laser, the present invention at a concentration of 0.25uM, cisplatin alone does not have a cell growth inhibitory effect on cancer cells or normal cells, and chlorine derivatives do not show their own toxicity. It can be seen that the conjugate of has a cell growth inhibitory effect on cancer cells. That is, even at a concentration of 0.25 uM, the conjugate of the present invention exhibits a cell growth inhibitory effect on cancer cells.
  • the conjugate of the present invention has superior cell proliferation inhibitory activity even at low concentrations compared to the anticancer chemotherapeutic agent alone, so that toxicity to normal cells is reduced and resistance to low concentrations is reduced. Toxicity known to be a disadvantage of normal cells and at low concentrations can be seen that can overcome the resistance without cell proliferation inhibitory effect.
  • the conjugate of the present invention can be used as a composition for treating cancer without an adverse effect on normal cells because of excellent cancer treatment effect even at low concentrations when there is no laser.
  • the conjugate of the present invention exhibits low dark toxicity even at high concentration of 5-10uM compared to the chlorine derivative alone in the absence of light. It is important that the photosensitizer is cytotoxic in the absence of light and only cytotoxic in the presence of light. That is, the dark toxicity should be low. Since the conjugate of the present invention exhibits low dark toxicity even at high concentrations, it can be conjugated to anticancer chemotherapeutic agents that require high concentrations to simultaneously perform photodynamics and chemotherapy to effectively inhibit cell proliferation and treat cancer.
  • the conjugate of the present invention can be removed from the body faster than the chlorine derivative alone. This was noticeable after 48 hours of treatment.
  • the chlorine derivative used as the photosensitizer in the present invention exhibits lower toxicity and better tumor selectivity than other photosensitizers.
  • the conjugate of the present invention is conjugated with an anticancer chemotherapeutic agent to the chlorine derivative. Compared with the chlorine derivative alone, the dark toxicity is lower, the tumor selectivity is increased in the body, and the discharge time from the body is significantly faster. Therefore, the conjugate of the present invention can be usefully used as a photosensitizer for cancer treatment.
  • the method for preparing a conjugate of an anticancer chemotherapeutic agent-chlorine derivative according to an embodiment of the present invention includes the following steps (FIG. 2):
  • the method for preparing a conjugate of cisplatin-chlorine derivatives comprises the following steps (FIG. 3):
  • the method for preparing a conjugate of paclitaxel-chlorine derivatives includes the following steps (FIG. 4):
  • the anticancer chemotherapeutic agent is cisplatin
  • a method for preparing a conjugate of cisplatin-chlorine derivatives will be described in detail.
  • chlorophyll a may be obtained separately from spirulina or maxima or may be commercially available.
  • Methyl pyrophorovide-a is then treated with HCl in THF to give pyrophorovide-a (3 PPa). This process is briefly shown in Scheme 3 below.
  • pyrofeophoride-a was dissolved in dichloromethane with N-hydroxysuccinimide (NHS) and dicyclohexyl carbodiimide (DCC), followed by reaction by addition of triethylamine.
  • NHS N-hydroxysuccinimide
  • DCC dicyclohexyl carbodiimide
  • PPa-NHS N-hydroxysuccinimide
  • EDA ethylene diamine
  • Boc tert-Butoxycarbonyl
  • TFA trifluoroacetic acid
  • K 2 PtCl 4 was reacted with 17 3 -N-ethylenediamine pyrofeoffovide-a to mono-pyrophorovide-a-17 3 -N- (2-aminoethyl) amide platinum chloride [ mono-Pyropheophorbide-a-17 3 -N- (2-aminoethyl) amide platinum chloride, 5] or di-fatigue peoh formate bead -a-17 3 -N- (2- aminoethyl) amide platinum chloride [di-Pyropheophorbide -a-17 3 -N- (2-aminoethyl) amide platinum chloride, 6].
  • the terminal amine group of 17 3 -N-ethylenediamine pyropeoffovide-a binds to Pt of K 2 PtCl 4 to serve as a linker. This process is briefly shown in Scheme 5 below.
  • the anticancer chemotherapeutic agent is paclitaxel
  • a method for preparing a conjugate of paclitaxel-chlorine derivatives will be described in detail.
  • chlorophyll-a was extracted from Spirulina maxima algae and treated with methanol under acidic acid to obtain methylfeophoride-a (1 MPa), and then methylfeophoride-a was collidine. Reflux in to obtain methyl pyrophorovide-a (2 MPPa), and then until the step of treating methyl pyrophorovide-a with HCl in THF to obtain pyrophorovide-a (3 PPa), the cisplatin It is the same as the manufacturing method of the conjugate of a chlorine derivative.
  • paclitaxel is immediately reacted with the pyrophenovidide-a to obtain a pyrophenovidide-a-paclitaxel conjugate (PPa-taxol, 7). This process is briefly shown in Scheme 6 below.
  • the present invention can conjugate the proliferation of tumor cells and simultaneously perform photodynamic therapy by conjugating an anticancer chemotherapeutic agent having a cell proliferation inhibitory activity with a chlorine derivative having a photodynamic activity. It can be useful to treat cancer because it can be avoided.
  • 1 shows a modified Jablonsky diagram. Where 1 is absorption, 2 is non-radioactive decay, 3 is fluorescence, 4 is cross-over, 5 is phosphorescence, and 6 is energy transfer.
  • Figure 2 is a flow chart briefly illustrating the process of preparing a conjugate of the anticancer chemotherapeutic agent-chlorine derivative of the present invention.
  • Figure 3 briefly illustrates the synthesis of the conjugate of the cis-platin and chlorine derivatives.
  • Fig. 6 is the 1 H NMR spectrum of methylfeophoride-a.
  • Fig.11 is the 1 H NMR spectrum of pyrophorovide-a.
  • FIG. 13 is the UV spectrum of 17 3 -N-ethylenediamine pyropeoffovide-a.
  • FIG. 14 is a 1 H NMR spectrum of 17 3 -N-ethylenediamine pyropeoffovide-a.
  • FIG. 15 is a mass spectrometry spectrum of 17 3 -N-ethylenediamine pyropeoffovide-a.
  • FIG. 16 is the FT-IR spectrum of 17 3 -N-ethylenediamine pyropeoffovide-a.
  • FIG. 16 is the FT-IR spectrum of 17 3 -N-ethylenediamine pyropeoffovide-a.
  • FIG. 17 is the UV spectrum of pyrophorovide-a 17 3 -N-ethylenediamine platinum chloride.
  • FIG. 18 is a 1 H NMR spectrum of pyrophorovide-a 17 3 -N-ethylenediamine platinum chloride.
  • FIG. 19 is a mass spectrometry spectrum of pyrophorovide-a 17 3 -N-ethylenediamine platinum chloride.
  • FIG. 20 is the FT-IR spectrum of pyrophorovide-a 17 3 -N-ethylenediamine platinum chloride.
  • Figure 21 is a MALDI-mass spectrum of a pyrophorovide-a-paclitaxel conjugate.
  • FIG. 22 shows the HPLC results of the pyrophorovide-a-paclitaxel conjugate.
  • Figure 23 compares the results of the cancer cell growth inhibition effect of the chlorine derivative and cisplatin before the conjugation by the conjugate of the cisplatin-chlorine derivative of the present invention at 0.06125, 0.125 and 0.25 uM without PDT. The graph shown.
  • 24 is a graph showing the results of comparing the cancer cell growth inhibitory effect of the chlorine derivative and cisplatin before conjugation by the conjugate of the cisplatin-chlorine derivative of the present invention at 0.25 and 0.5 uM without PDT. to be.
  • 25 is a graph showing the results of comparing the cancer cell growth inhibitory effect of the chlorine derivative and cisplatin before the conjugation by the conjugate of the cisplatin-chlorine derivative of the present invention at 0.25 and 0.5 uM when PDT was performed.
  • Figure 26 is a graph showing the results of comparing the cancer cell growth inhibitory effect of the chlorine derivative and paclitaxel before the conjugation by the conjugate of the paclitaxel- chlorine derivative of the present invention at 5 and 10 uM without PDT .
  • Figure 27 is a graph showing the results of comparing the cancer cell growth inhibitory effect of the chlorine derivative and paclitaxel before the conjugation by the conjugate of the paclitaxel- chlorine derivative of the present invention at 5 and 10uM when PDT.
  • Figure 28 shows the results of the confocal microscopic analysis to investigate the tumor selectivity of the conjugate of the cisplatin- chlorine derivative of the present invention.
  • Figure 29 shows the results of the confocal microscopic analysis to investigate the release time in the tumor of the conjugate of the paclitaxel- chlorine derivative of the present invention.
  • the dried Spirulina maxima (Spirulina maxima) birds 500 g for 2 hours and refluxed to 2 L of acetone under nitrogen. The supernatant was then filtered over Whatman filter paper on a Buener funnel when hot and extra acetone was added to the remaining solid above. The extraction and filtration were repeated three times according to the same procedure. The green filtrate was evaporated and the residue was redissolved in 300 ml of acetone, cooled in a refrigerator and filtered to remove red solid impurities. The filtrate containing pheophytin-a was evaporated and treated with methanol solution of 5% sulfuric acid (500 ml) for 12.5 hours at room temperature under dark, nitrogen.
  • the solution was diluted with dichloromethane ( ⁇ 500 ml) and rinsed with water ( ⁇ 500 ml), rinsed with 10% aqueous sodium bicarbonate solution ( ⁇ 500 ml) and then rinsed three times with water.
  • the organic layer was separated, dried over anhydrous sodium sulfate and evaporated to dryness.
  • the residue was purified by column chromatography eluting with 2% acetone in dichloromethane on silica gel 60 (230-400 mesh).
  • the product was recrystallized from dichloromethane / methanol. As a result of measuring the UV spectrum of the product was as shown in FIG.
  • Methylphephorbide-a (1 g, 1.65 mmol) was dissolved in collidine (100 ml, re-distilled, stored on KOH) and refluxed for 2.5 h. After cooling, the solution was diluted with methyl chloride (MC), washed with 2N HCl (5 ⁇ 200 ml) and then twice with water. The combined organic phases were dried over anhydrous sodium sulfate and the solvent removed by vacuum rotator. The residue was purified by elution with 2% acetone (acetone, Ace) in MC on silica gel 60 (230-400 mesh) and recrystallized with methyl chloride (MC) / hexane (hexane, Hex).
  • MC methyl chloride
  • Methylpyrofeophoride-a (1.166 g, 2.125 mmol) was dissolved in THF (230 ml). An aqueous solution of 4N HCl (580 ml) was added to the mixture. The reaction mixture was stirred for 4 hours at room temperature under a nitrogen atmosphere. Dichloromethane (150 ml) was added to the reaction mixture and the aqueous layer was separated off and the organic layer washed several times with water to remove the acid. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was recrystallized from dichloromethane / hexanes.
  • Pyrophorovide-a (Compound 3, 200 mg, 0.374 mmol), Dicyclohexyl Carbodiimide (DCC) (116 mg, 0.563 mmol), N-hydroxysuccinimide (NHS) (64 mg, 0.348 mmol) was dissolved in 5 ml of anhydrous dichloromethane and 3 drops of triethylamine (TEA) were added to the reaction mixture. The reaction mixture was stirred for 22 hours at room temperature under dark atmosphere under nitrogen atmosphere. The reaction product was monitored by TLC using 30% methanol in acetone as eluent. Rf: 0.603 (5% methanol in dichloromethane)
  • Ethylene diamine (EDA) 120 mg was protected as (t) ert- (B) ut (o) xy (c) arbonyl (Boc) was added to the reaction product.
  • the reaction mixture was stirred for 30 minutes at room temperature under argon and monitored via TLC every 5 minutes using 5% methanol in dichloromethane as eluent. Then 1 ml of water was added to the reaction mixture and stirred for 20 minutes.
  • the reaction mixture was extracted with dichloromethane and the extract was washed twice with 100 ml of water. The organic layer was separated from water and dried over anhydrous sodium sulfate for 1 hour.
  • the purified compound was dissolved in 4 ml of anhydrous dichloromethane and 4 ml of trifluoric acid (TFA) was added to the solution.
  • TLC trifluoric acid
  • 1 ml of toluene was added to the mixture and evaporated under reduced pressure.
  • the residue was washed with hexane, ether and dried under reduced pressure.
  • the UV spectrum of the product was measured, and as in FIG. 13. 13, two base peaks of the chlorine ring were observed at ⁇ 410 nm and ⁇ 666.0 nm, respectively.
  • Example 5 Synthesis of mono-pyropheophoride-a-17 3 -N- (2-aminoethyl) amide platinum chloride (Compound 5) from 17 3 -N-ethylenediamine pyroferopide-a
  • FABMS (m-NBA): m / z; 842.2325 [M + 1].
  • FT-IR ⁇ KBr (cm -One ): 3450, 2850-2900, 1680, 1600, 1220, 520.
  • paclitaxel Commercially available and chemically identified paclitaxel was used in this example.
  • Pyrofeophoride-a (Compound 3) prepared in Example 3 (14.41 mg, 0.026 mmol), paclitaxel (PTX, paclitaxel) (23 mg, 0.026 mmol), dicyclohexyl carbodimide (DCC) (11.12 mg , 0.053 mmol) and 4-dimethylaminopyridine (DMAP, 4-Dimethylaminopyridine) (3.3 mg, 0.028 mmol) were dissolved in anhydrous dichloromethane (4 ml). The reaction mixture was stirred under argon at room temperature under dark conditions for 6 hours.
  • DMAP 4-dimethylaminopyridine
  • the MALDI-mass spectrum of the final product pyrofeophoride-a-paclitaxel conjugate is shown in FIG. 21, and the HPLC results are shown in FIG. 22.
  • the solvent system used acetone: methanol at 5:95 with a wavelength of 660 nm and purity of 99.4%.
  • TC-1 cell line in RPMI-1640 (Gibco BRL, Rockville, MD, USA) in 5% fetal bovine serum (FBS) (Gibco BRL), 0.22% sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA) , 400 mg / L G418 (Sigma-Aldrich), and streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • FBS fetal bovine serum
  • streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • TC-1 cell lines were dispensed in 96 well plates at 3 ⁇ 10 3 cells / well and incubated for 24 hours to prepare conjugates of 0.06125, 0.125, 0.25, 0.5 uM of chlorine derivatives, cisplatin and cisplatin-chlorine derivatives for 24 hours. Treated. Then, the control group was divided into the control and the treatment group treated with PDT at 1.56 J / cm2 using a laser of 662nm ⁇ 3nm, the control group was not subjected to PDT. Thereafter, 20 ⁇ l of 5 mg / ml MTT solution (Sigma-Aldrich) was added to each well of the control and treatment groups, and incubated at 37 ° C. for 4 hours.
  • 5 mg / ml MTT solution Sigma-Aldrich
  • DMSO dimethyl sulfoxide
  • FIGS. 23 to 25 The results are shown in FIGS. 23 to 25.
  • the PDT was not carried out at the concentration of 0.06125, 0.125, 0.25uM chlorine derivatives and cisplatin showed no cell growth inhibitory effect compared to the control, but no toxicity of the chlorine derivatives were observed
  • the conjugates of the cisplatin-chlorine derivatives at concentrations of 0.06125, 0.125, 0.25 uM at which the cisplatin did not show a cell growth inhibitory effect showed a statistically significant cell growth inhibitory effect compared to the control.
  • the conjugate of the cisplatin-chlorine derivative showed a statistically significant cell growth inhibitory effect compared to the chlorine derivative alone or cisplatin alone at 0.25 uM as well as 0.5 uM. .
  • the PDT implementation showed no difference in cell growth inhibitory effect between the conjugate of the chlorine derivative and the cisplatin-chlorine derivative, and the cell growth was inhibited by 90% or more.
  • TC-1 cell line in RPMI-1640 (Gibco BRL, Rockville, MD, USA) in 5% fetal bovine serum (FBS) (Gibco BRL), 0.22% sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA) , 400 mg / G418 (Sigma- Aldrich) of L, and was used by addition of streptomycin / penicillin (Gibco BRL), and incubated at 37 °C, 5% CO 2 incubator.
  • FBS fetal bovine serum
  • G418 Sigma-Aldrich
  • TC-1 cell lines were dispensed in 96 well plates at 3 ⁇ 10 3 cells / well, followed by incubation for 24 hours to treat conjugates of chlorine derivatives, paclitaxel, and paclitaxel-chlorine derivatives of 5 and 10 uM for 24 hours. Then, the control and treatment were divided into 6.25 J / cm2 PDT using a laser of 662nm ⁇ 3nm, the control was not PDT. Thereafter, the cells were further incubated for 24 hours, and 20 ⁇ l of 5 mg / ml MTT solution (Sigma-Aldrich) was added to each well of the control and treatment groups, followed by incubation at 37 ° C. for 4 hours.
  • 5 mg / ml MTT solution Sigma-Aldrich
  • DMSO dimethyl sulfoxide
  • ELISA-reader spectra max 250, Molecular Devices, Sunnyvale, CA, USA. Absorbance was measured at 570 nm.
  • FIGS. 26 and 27 The results are shown in FIGS. 26 and 27. As can be seen from FIG. 26 and FIG. 27, the toxicity of paclitaxel-chlorine derivative conjugates was significantly reduced at 5 and 10 uM where toxicity of chlorine derivatives were observed when PDT was not performed (FIG. 26), while chlorine was present for PDT. There was little difference in cell growth inhibitory effect between the derivative and the paclitaxel-chlorine derivative conjugate (FIG. 27).
  • TC-1 cell line in RPMI-1640 (Gibco BRL, Rockville, MD, USA) in 5% fetal bovine serum (FBS) (Gibco BRL), 0.22% sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA) , 400 mg / L G418 (Sigma-Aldrich), and streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • FBS fetal bovine serum
  • streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • the TC-1 cell line was dispensed in 6 well plates containing sterilized cover glass at 3 ⁇ 10 3 cells / well and incubated for 24 hours to incubate the conjugates of chlorine derivatives and cisplatin-chlorine derivatives of 0.25 and 0.5 uM for 12 hours. Treated during. After incubation, the medium was removed, washed twice with 1X PBS buffer, and cells were fixed by treating 1 ml of 1% paraformaldehyde for 15 minutes.
  • FIG. 28 shows that the chlorine derivative alone and the conjugate of the present invention were all saturated at 0.5 uM, but the concentration of the conjugate of the present invention was better accumulated in cancer cells at 0.25 uM, which is lower than that of the chlorine derivative alone. Therefore, it can be seen from FIG. 28 that the conjugate of the cisplatin-chlorine derivative has increased tumor selectivity compared to the same concentration of chlorine derivative.
  • TC-1 cell line in RPMI-1640 (Gibco BRL, Rockville, MD, USA) in 5% fetal bovine serum (FBS) (Gibco BRL), 0.22% sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA) , 400 mg / L G418 (Sigma-Aldrich), and streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • FBS fetal bovine serum
  • streptomycin / penicillin (Gibco BRL) were added and cultured in a 37 ° C., 5% CO 2 incubator.
  • TC-1 cell lines were dispensed in 6 well plates at 3 ⁇ 10 3 cells / well, followed by incubation for 24 hours to treat conjugates of 2 uM of each of the chlorine derivatives and paclitaxel-chlorine derivatives for 12, 24, 48 and 72 hours.
  • Confocal microscopy was performed in the same manner as in Experiment 3 above. However, at this time, 300 nM DAPI solution was treated for 5 minutes after fixation, and the shape change of the nucleus was simultaneously observed.
  • FIG. 29 shows that after 48 hours, the conjugate of the paclitaxel-chlorine derivative decreases the excretion time in the tumor compared to the same concentration of the chlorine derivative.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물에 관한 것으로, 세포 증식 억제 활성을 갖는 항암 화학요법제와 광역학적 활성을 갖는 클로린 유도체를 접합시킴으로써 종양세포의 증식을 억제하면서 동시에 광역학적 치료를 할 수 있으며, 항암 화학요법제의 독성을 감소시키고 내성을 피할 수 있으므로 암 치료에 유용하게 사용될 수 있다.

Description

항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물
본 발명은 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물에 관한 것이다.
광역학적 치료(PDT)는 빛과 광감작제(PS)의 조합을 이용한 의학적 치료로서, 작용기전은 크게 광감각제의 종양 선택적 축적에 대한 분자적 기전과 광감각제와 빛의 상호작용에 따른 종양 파괴기전으로 나눌 수 있다. 각 인자는 그 자체로 해롭지 않으나, 산소와 결합되었을 때, 이들은 종양 세포를 비활성화하는 치사의 세포독성 작용제를 생산할 수 있다[Sternberg ED et al., Tetrahedron, 1998, 54: 4151-4202; Kadish KM et al., The Porphyrin Handbook. 2000, Vol 6: 158-161].
PDT는 이중 선택성을 나타내는데, 병든 조직에 의해서 PS가 우선적으로 흡수되고, 특정 영역의 빛을 조사함으로써 PS가 활성화된다. PDT는, 세포 내 수많은 항산화 방어 메커니즘을 압도하고 세포의 거대분자에 산화적 손상을 야기하는, 일중항산소 및 다른 반응산소종(ROS)의 생산을 통해 세포를 사멸시킨다[Weishaupt KR et al., Cancer Res, 1976, 36: 2326-2329].
PDT 도중 형성되는 세포독성 작용제인 일중항산소와 ROS를 발생시키는 광화학적 반응은 변형된 야블론스키 다이아그램(도 1)에 의해 나타내어진다. 요컨대, 빛의 흡수 이후에 PS는 반감기가 짧은 여기된 일중항 상태[S1, (~10-6s)]를 통해 바닥 일중항 상태(S0)로부터 전기적으로 여기된 삼중항 상태[T1, (~10-2s)]로 변형된다. PDT에 관한 특별히 중요한 것은 반감기가 짧은 여기된 일중항 상태 PS가 계간 교차(ISC)의 비-방사성 과정을 수행할 수 있다는 점이다. 이는 스핀 반전을 필요로 하여 이에 의하여 PS를 전자 스핀 평행을 가지는 상대적으로 반감기가 긴 여기된 삼중항 상태(T1)으로 전환하기 때문에 스핀-금지(spin-forbidden) 과정이다. 어떠한 '금지' 경로도 '허용' 과정보다 가능성이 더 낮으나, 우수한 PS는 매우 높은 효율로 '금지' ISC 경로를 수행한다. 여기된 삼중항 상태 PS는 두 가지 종류의 반응을 수행할 수 있다[Macdonald JI et al., J Porphyrins Phthalocyanines, 2001, 5: 105-129.]. 첫째, 이는 산소와 상호작용 이후에 슈퍼옥사이드 이온, O2 -과 같은 과산화 생성물을 생산할 수 있는 라디칼 및 라디칼 이온을 형성하기 위하여 생물학적 기질과 함께 전자-전달 과정에 참여할 수 있다[타입 I 반응]. 양자택일적으로, 이는 안정한 삼중항 산소(3O2)가 반감기는 짧으나 큰 반응성을 가지는 일중항 산소(1O2)로 전환하게 되는 타입 II 반응으로서 알려진 광화학적 과정을 수행할 수 있다.
더 나아가, PDT의 종양세포치사 효과는 암 덩어리 내의 빛 침투 깊이와 관련된다. 조직 내 빛의 영향은 거리에 대해 기하급수적으로 감소한다[Moser JG. In Photodynamic Tumor Therapy-2 nd & 3 rd Generation Photosensitizers. Harwood Academic Publishers, London, 1997: 3-8]. 조직의 약화는 최적의 흡수, 내인성 분자 및 약물 발색단 자체에 의한 산란에 의해 영향을 받는다. 피부 조직의 최대 투과율은 700-800 nm 영역에 있고, 이 영역 내에서 최대 흡수를 나타내는 광감작제의 개발이 요구된다. 630 nm에서의 유효한 침투는 1 내지 3 mm 사이인데 반하여, 700-850 nm에서는 최소한 6 mm의 빛 침투가 관찰되었다. 따라서, 이상적인 PS는 근적외선 영역에서 강한 흡수를 나타내야만 한다.
PS는 빛의 흡수 하에서 다른 화학종의 화학적 또는 물리적 변형을 유도하는 화학종으로서 정의된다. 임상의와 화학자는 이상적인 PS에 대해 다른 견해를 가진다[Kirchner C et al., Nano Lett, 2005, 5, 331.]. 예를 들어, 화학자는 높은 절멸 정도와 일중항 산소의 높은 양자 수율을 보다 더 강조할 수 있음에 반하여 임상의는 낮은 독성과 높은 선택성을 더욱 강조할 수 있다. 그럼에도 불구하고, 양쪽 모두 임상적 PDT와 이상적 PS가 임상적으로 적절하고 Allison 등[Zheng H. Technology in Cancer Research & Treatment, 2005, 4: 283-293]과 Castano 등[Anna C et al., Photochem Photobiol, 2006, 82: 617-625]에 의해 보고된 하기 기준의 몇몇을 최소한 충족해야만 한다는 점에 동의한다.
1. 가시광선 스펙트럼의 적색 부분에서의 강한 흡수(>650 nm),
2. 94 kJ/mol-1보다 큰 삼중항 에너지를 가진 삼중항 형성의 높은 양자 수율,
3. 일중항 산소 생성의 높은 양자 수율(반감기가 긴 여기 상태),
4. 낮은 암흑(dark) 독성,
5. 종양 조직 대 건강한 조직, 특별히 피부에서의 농축 선택성을 나타내야만 함; 일반적인 피부 감작은 피해야만 함; 특정 치료 모달리티는 피부 감작을 필요로 하며, 이때 피부의 급속한 감작 및 탈감작이 바람직함,
6. 약물의 단순한 제형화; 제형화된 약물은 긴 저장 기간을 가져야만 함,
7. 체내로부터 급속하게 제거되는 약물 동력학적 프로파일,
8. 상기 특성들의 향상을 가능하게 하는 용이한 유도체화(측쇄)의 선택권,
9. 쉽게 입수가능한 출발 물질로부터의 용이한 합성, 다수-킬로그램 스케일로의 쉬운 변형,
10. 1O2 양자 수율을 감소시키는 것으로 인한 체내에서의 자기-응집이 없음.
PDT 분야에서, 테트라피롤 거대 고리가 PS로서 종종 사용된다. 가시광선 스펙트럼의 적색 영역에서의 강한 흡수는 이것이 더 두꺼운 종양의 치료를 가능하게 하기 때문에 효과적인 광감작제를 위한 매우 바람직한 특징이다[Johnson CK et al., Tetrahedron Lett, 1998, 39: 4619-4622]. 이러한 이유 때문에, 포르피린, 클로린, 박테리오클로린, 포피신, 프탈로시아닌, 나프탈로시아닌, 그리고 확장된 포르피린과 같은 테트라피롤이 합성되어지고 PDT 효능이 평가되어 왔다. PS는 이들의 화학적 구조와 유래에 의하여 분류될 수 있다. 일반적으로 이들은 3 개의 넓은 부류로 나뉠 수 있다: (i) 포르피린-기초(예를 들어 포토프린, ALA/PpIX 및 BPD-MA), (ii) 클로린-기초(예를 들어 퍼푸린 및 박테리오클로린), 및 (iii) 염료(예를 들어 프탈로시아닌, 나프탈로시아닌).
한편, 플래티늄(II) 복합체의 생물학적 활성은 Rosenberg et al에 의해 1969년에 발견되었다. cis-디아민디클로로플래티늄(II)(또는 시스플라틴)은 광범위한 고형 암의 치료를 위한 가장 중요한 화학요법제 중 하나가 되어왔다. 이러한 화합물에 관련된 유독한 부작용으로 인하여 2세대의 약 개발이 뒤따랐다. 이들 중에, cis-디아민(1,1시클로부탄 디카르복실아토) 플래티늄(II)(또는 카보플라틴)이 임상시험에 들어갔다[Horst, K. et al., J. Phot. chem and Phot. bio A: Chem. 1998, 114, 193-195].
파클리탁셀은 암 화학요법에 사용되는 유사분열 억제제이다. 이는 Monroe E. Wall과 Mansukh C. Wani가 탁수스 브레이폴리아(Taxus breyifolia)로서 '탁솔(taxol)'로 명명된 태평양 주목 나무의 껍질로부터 분리해낸 1967년에 발견되었다. 파클리탁셀은 현재 폐, 난소, 유방암, 두경부암, 및 카포시육종의 진행된 형태를 가진 환자들을 치료하는데 사용된다. 1988년까지는 특별히 Potier의 간행물을 통해, Holton에게 있어 실제적 반-합성의 생산 루트가 중요할 것이라는 점이 명백하였다. 1992년에, Holton은 80% 수율을 가진 향상된 공정을 특허받았다. 최근 몇 년간, 광범위한 연구가 그것의 투약을 바꿈으로써 파클리탁셀의 부작용을 완화하는 방법을 찾기 위해 수행되어 왔다. DHA-파클리탁셀, PG-파클리탁셀, 및 종양-활성화 파클리탁셀 전구약물이 계속되는 테스트를 수행하였으며, 실제적으로 광범위한 임상적 사용으로 도입되는 중에 있다.
화학요법제는 급속하게 분열하는 세포를 죽이는데 가장 효과적이다. 불행하게도, 화학요법제는 암 세포와 정상 세포 간의 차이를 알지 못한다. 이의 임상적 유용성은 신독성, 이독성 및 신경독성과 같은 심한 부작용과 약물 내성의 발생으로 인해 자주 제한되어 왔다[Mauro, V. de .A et al., J. Braz. Chem. Soc. 2006, 17, 1266-1273]. 시스-플래티늄 및 파클리탁셀의 독성을 감소시키고 내성을 피하기 위하여 새로운 세대의 약물을 개발할 필요가 있다.
본 발명의 목적은 세포 증식 억제 활성을 갖는 항암 화학요법제와 광역학적 활성을 갖는 클로린 유도체를 접합시킴으로써 항암 화학요법제의 독성을 감소시키고 내성을 피할 수 있는 항암 화학요법제-클로린 유도체의 접합체를 제공하고자 하는 것이다.
본 발명의 다른 목적은 세포 증식 억제 활성을 갖는 항암 화학요법제와 광역학적 활성을 갖는 클로린 유도체를 접합시킴으로써 항암 화학요법제의 독성을 감소시키고 내성을 피할 수 있는 항암 화학요법제-클로린 유도체의 접합체를 제조하는 방법을 제공하고자 하는 것이다.
하나의 양태로서, 본 발명은 항암 화학요법제-클로린 유도체의 접합체를 제공한다.
본 발명에서, 상기 항암 화학요법제는 시스플라틴, 파클리탁셀 등의 세포 증식 억제 활성을 가진 항암 화학요법제인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 클로린 유도체는 메틸페오포르비드-a, 피로페오포르비드-a 또는 메틸피로페오포르비드-a인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 항암 화학요법제-클로린 유도체의 접합체는 세포 증식 억제 활성을 갖는 항암 화학요법제와 광역학적 활성을 갖는 클로린 유도체를 접합시킴으로써 항암 화학요법제의 독성과 내성을 감소시키고 광감작제로서의 독성을 감소시킬 뿐만 아니라 선택성이 증진되어 정상 세포에 대한 부작용을 최소화하면서 암세포의 증식을 효과적으로 억제할 수 있다.
바람직한 양태로서, 본 발명은 하기 화학식 1의 구조를 가지는 항암 화학요법제-클로린 유도체의 접합체를 제공한다.
화학식 1
Figure PCTKR2010004132-appb-C000001
바람직한 양태로서, 본 발명은 하기 화학식 2의 구조를 가지는 항암 화학요법제-클로린 유도체의 접합체를 제공한다.
화학식 2
Figure PCTKR2010004132-appb-C000002
바람직한 양태로서, 본 발명은 하기 화학식 3의 구조를 가지는 항암 화학요법제-클로린 유도체의 접합체를 제공한다.
화학식 3
Figure PCTKR2010004132-appb-C000003
다른 하나의 양태로서, 본 발명은 하기 단계를 포함하는 항암 화학요법제-클로린 유도체의 접합체의 제조방법을 제공한다:
링커 작용기를 가진 클로린 유도체를 제조하는 단계; 및
상기에서 제조된 링커 작용기를 가진 클로린 유도체에 항암 화학요법제를 접합시켜 항암 화학요법제-클로린 유도체의 접합체를 얻는 단계.
본 발명에서, 클로린 유도체는 광역학적 치료 효과를 나타내기 위하여 빛에 의하여 활성화될 수 있는 화합물이다.
본 발명에서, 상기 링커 작용기는 바람직하기로는 에틸렌디아민이다.
본 발명에서, 상기 클로린 유도체는 스피루리나 맥시마(Spirulina maxima) 조류로부터 추출된 것일 수 있다.
다른 하나의 양태로서, 본 발명은 항암 화학요법제-클로린 유도체의 접합체를 함유하는 광감작제를 제공한다.
본 발명에서, 상기 광감작제는 650 nm 내지 800 nm 범위의 광선에 대하여 광감작 활성을 보이는 것을 특징으로 한다.
다른 하나의 양태로서, 본 발명은 항암 화학요법제-클로린 유도체의 접합체를 유효성분으로 포함하는 암 치료용 조성물을 제공한다.
본 발명에서, 상기 암 치료용 조성물은 광역학 치료에 사용될 수 있다.
본 발명에서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택될 수 있다.
보다 구체적으로, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군 중에서 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다.
본 발명의 암 치료용 조성물은 정맥 주사, 복강내 주사, 근육내 주사, 두개 내 주사, 종양 내 주사, 상피내 주사, 피부관통전달, 식도 투여, 복부 투여, 동맥 주사, 관절내 주사, 및 구강내 투여로 이루어진 군 중에서 선택된 경로로 투여될 수 있다.
본 발명에 따른 조성물은 통상의 방법에 따라 멸균 수용액, 비수성용제, 현탁제, 에멀젼 또는 유제 등의 형태의 비경구 투여를 위한 제제로 제형화하여 사용될 수 있다. 제형화할 경우 보통 사용하는 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.
본 발명에 따른 접합체의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 바람직한 효과를 위해서 본 발명의 접합체는 0.0001 내지 100 mg/kg으로, 바람직하게는 0.001~100 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다.
다른 하나의 양태로서, 본 발명은 항암 화학요법제-클로린 유도체의 접합체를 함유하는 광감각제를 유효성분으로 포함하는 조성물; 및
파장이 650 nm 내지 800 nm 범위인 광선을 조사하기 위한 광원을 포함하는, 광역학 치료에 사용하기 위한 암 치료용 키트를 제공한다.
이하, 본 발명의 구성을 상세히 설명한다.
클로린(chlorin)은 하기 화학식 4의 구조를 가지는 화합물로서 중심에 4개의 메틴 결합(linkage)으로 연결된 피롤과 피롤린으로 이루어진 거대한 헤테로고리 방향성 환이다. 마그네슘-함유 클로린은 클로로필로 불리며, 엽록체 내 중심 광감작 색소이다.
화학식 4
Figure PCTKR2010004132-appb-C000004
본 발명에서, 클로린 유도체는 상기 클로린을 기본 골격 구조로 가지는 화합물을 의미한다. 클로린 및 클로린 유도체는 이들의 광감작성 때문에 광역학적 치료에서 광감작제로서 효과적으로 이용된다. 특히, 클로린 및 클로린 유도체는, 한편으로는 우수한 스펙트럼 특성과 낮은 독성을 가지며, 다른 한편으로는 다양한 화학적 전환이 수행되는 것을 가능하게 하는 많은 반응 중심점들을 가지기 때문에, 광감작제를 합성하는데 더욱 유용하게 사용될 수 있다.
본 발명에서 사용가능한 클로린 유도체로는, 그 중 특히 클로로필로부터 얻을 수 있는 메틸페오포르비드-a, 피로페오포르비드-a 및 메틸피로페오포르비드-a 가 있으나 이들 화합물에 제한되는 것은 아니다. 상기 메틸페오포르비드-a, 피로페오포르비드-a 및 메틸피로페오포르비드-a는 이들이 포토프린 II 보다 ~670 nm에서 훨씬 더 긴 적색 광선으로 활성화되고 장기간의 정상 조직 광독성을 덜 생산할 수 있기 때문에 잠재성이 있는 새로운 화합물의 한 종류로서 사용한다. 본 발명에서 사용한 클로린 유도체는 낮은 농도에서도 PDT 효과가 좋고, 종양 내 선택성이 높으며, 추출 과정에서 수율이 높아 상업적 유용성이 뛰어난 장점을 가진다. 그러나, 농도가 높아질수록 암흑 독성을 나타내게 된다.
본 발명의 일실시예에서는 클로린 유도체로서 천연 클로린의 혼합물을 생산하는 조류의 한 종류인 스피루리나 맥시마(Spirulina Maxima)로부터 얻어지는 메틸페오포르비드-a(MP-a), 피로페오포르비드-a 및 메틸 피로페오포르비드-a(MPP-a)를 본 발명의 접합체를 제조하기 위한 출발 물질로서 사용하였다.
한편, 항암 화학요법제(chemotherapeutic agent)는 종양세포, 즉 암의 증식을 억제하는 성질을 갖는 화학물질을 총칭한다. 항암 화학요법제는 가능한 정상세포의 손상 없이 유해한 종양세포를 파괴하는 것을 그 목적으로 하지만 실질적으로 암세포가 정상세포와 유사하기 때문에 정상세포에 대한 독성도 함께 가지고 있는 경우가 많다.
본 발명에서는 대표적인 항암 화학요법제로서 시스플라틴과 파클리탁셀을 사용하였으나 이에 한정되는 것은 아니다.
본 발명의 일구현예에 따르면, 클로린 유도체로서 클로로필로부터 얻을 수 있는 클로린 유도체와, 시스 플라틴 및 파클리탁셀과 같은 대표적인 항암 화학요법제의 접합체를 제공한다.
이러한 접근을 통해 세포 증식 억제 활성의 항암 화학요법제와 광역학적 활성의 클로린 유도체를 결합시킴으로써 항암 화학요법제에 의한 '세포 증식 억제 치료'와 클로린 화합물에 의한 '광역학적 치료'의 조합이 이루어지고 사실상 이들 작용의 상승작용이 일어나게 된다.
본 발명에서 "세포 증식 억제", "세포 성장 저해" 또는 이와 유사한 형태의 용어는 세포수의 증가현상을 억제하는 것으로 어느정도까지의 모든 저해, 예를 들어 약 20 % 이상, 약 50 % 이상, 약 90 % 이상, 약 99 % 이상과 완벽한 억제 즉, 100 % 저해를 포함하는 뜻이다.
본 발명에서 "광역학 치료(PDT)"란 광감작제(약물), 빛 그리고 산소의 조합에 의한 치료를 말한다. 구체적으로, 먼저 광감작제를 인체에 투여하게 되면 광감작제가 병소 즉, 종양 조직에 축적되게 되고 이후 가시광선을 조사하게 되면 일중항산소의 생산을 최대화하여 종양이 선택적으로 파괴되는 것이다.
본 발명의 일 실시예에서는 시스플라틴, 파클리탁셀과 같은 항암 화학요법제와 천연 클로린, 특별히 가장 풍부한 클로로필 a의 유도체를 결합시켜 항암 화학요법제-클로린 유도체의 접합체를 합성한다. 이러한 항암 화학요법제-클로린 유도체의 접합체는 항암 화학요법제 부분의 세포 증식 억제 활성과, 방사선 조사 하에 클로린 유도체 광감작제의 광역학적 활성을 가져야만 한다.
본 발명에서, 링커 작용기는 항암 화학요법제와 클로린 유도체 각각의 활성에 영향을 미치지 않는 것으로 선택해야 한다. 본 발명에서는 이러한 링커 작용기로서 에틸렌디아민을 사용하였으나, 항암 화학요법제와 클로린 유도체 각각의 활성에 영향을 미치지 않으면서 상기 두 화합물을 접합시킬 수 있는 링커 작용기라면 어느 것이나 사용 가능하다.
본 발명의 구체적 실시예에서, 항암 화학요법제와 클로린 유도체는 접합된 후 각각 그 활성 즉, 세포증식 억제활성과 빛이 있을 때 광감작제로서의 활성이 보존됨을 확인하였다.
구체적으로, 도 23과 도 24를 보면 세포성장 억제 효과면에서 PDT를 실시하지 않았을 때 각각 단독 물질에 비해 그 이상의 효과가 나타났으며, 도 25를 보면 광감작 활성 면에서 PDT를 실시한 경우 각각의 단독 물질들과 동등한 효과를 나타냄을 확인하였다.
특히, 도 24를 보면 PDT를 실시하지 않았을 때 즉, 레이저가 없는 상태에서 시스플라틴 단독 물질이 암세포 또는 정상세포에 대해 세포성장 저해 효과가 없고 클로린 유도체 또한 자체 독성을 나타내지 않는 농도인 0.25uM에서 본 발명의 접합체는 암세포에 대하여 세포 성장 억제 효과를 나타냄을 확인할 수 있다. 즉, 0.25uM의 농도만으로도 본 발명의 접합체는 암세포에 대해 세포성장 억제 효과를 나타낸다.
상기 결과를 통해, 본 발명의 접합체는 항암 화학요법제 단독물질에 비하여 낮은 농도로도 세포증식 억제 활성이 우수하므로 정상 세포에 대한 독성은 감소되고 낮은 농도에 대한 내성이 감소되어 종래 항암 화학요법제의 단점으로 알려진 정상세포에 대한 독성과 낮은 농도일 때 세포증식 억제효과가 없는 내성을 극복할 수 있음을 알 수 있다.
따라서, 본 발명의 접합체는 레이저가 없을 때 낮은 농도로도 암치료 효과가 뛰어나 정상세포에 대한 부작용 없이 암치료용 조성물로서 사용할 수 있다.
한편, 도 26을 보면 본 발명의 접합체는 빛이 없을 때 클로린 유도체 단독에 비하여 5-10uM의 고농도에서도 낮은 암흑독성을 나타냄을 알 수 있다. 광감작제는 빛이 없을 때 세포 독성이 없고 빛이 있을 때만 세포 독성을 나타내는 것이 중요하다. 즉, 암흑 독성이 낮아야 한다. 본 발명의 접합체는 고농도에서도 낮은 암흑독성을 나타내기 때문에 고농도가 필요한 항암 화학요법제에 접합하여 광역학과 화학요법을 동시에 수행하여 효율적으로 세포증식을 억제하여 암을 치료할 수 있다.
더 나아가, 도 28을 보면 0.5uM에서는 클로린 유도체 단독 물질과 본 발명의 접합체가 모두 포화 축적되었으나 이보다 낮은 농도인 0.25uM에서는 클로린 유도체 단독 물질에 비해 본 발명의 접합체가 암세포에 더욱 잘 축적되는 것을 알 수 있다.
또한, 도 29를 보면 본 발명의 접합체는 클로린 유도체 단독 물질에 비해 체내로부터 빨리 제거될 수 있음을 알 수 있다. 이는 처리 48시간 이후에 확연히 차이가 났다.
본 발명에서 광감작제로서 사용한 클로린 유도체는 다른 광감작제에 비해 낮은 독성을 나타내고 종양 선택성이 우수한데, 상기 내용을 종합해 볼 때 본 발명의 접합체는 이러한 클로린 유도체에 항암 화학요법제가 접합됨에 따라 클로린 유도체 단독 물질에 비하여 암흑독성도 더욱 낮고 체내에서의 종양 선택성이 더욱 증가하며 체내로부터의 배출 시간도 더욱 현저히 빨라졌다. 따라서, 본 발명의 접합체는 암치료를 위한 광감작제로서 유용하게 사용할 수 있다.
본 발명의 일실시예에 따른 항암 화학요법제-클로린 유도체의 접합체를 제조하는 방법은 하기 단계를 포함한다(도 2):
클로로필-a로부터 메틸페오포르비드-a를 합성하는 단계;
상기 메틸페오포르비드-a로부터 메틸 피로페오포르비드-a를 합성하는 단계;
상기 메틸 피로페오포르비드-a로부터 피로페오포르비드-a를 합성하는 단계;
상기 피로페오포르비드-a로부터 173-N-에틸렌디아민 피로페오포르비드-a를 합성하는 단계; 및
상기 173-N-에틸렌디아민 피로페오포르비드-a에 항암 화학요법제를 결합시키는 단계.
본 발명의 바람직한 일 구현예로서, 항암 화학요법제가 시스플라틴인 경우 시스플라틴-클로린 유도체의 접합체를 제조하는 방법은 하기 단계를 포함한다(도 3):
클로로필-a로부터 메틸페오포르비드-a를 합성하는 단계;
상기 메틸페오포르비드-a로부터 메틸 피로페오포르비드-a를 합성하는 단계;
상기 메틸 피로페오포르비드-a로부터 피로페오포르비드-a를 합성하는 단계;
상기 피로페오포르비드-a로부터 173-N-에틸렌디아민 피로페오포르비드-a를 합성하는 단계; 및
상기 173-N-에틸렌디아민 피로페오포르비드-a에 K2PtCl4를 반응시켜 피로페오포르비드-a 173-N-에틸렌디아민 플래티늄 클로라이드를 합성하는 단계.
본 발명의 바람직한 일 구현예로서, 항암 화학요법제가 파클리탁셀인 경우 파클리탁셀-클로린 유도체의 접합체를 제조하는 방법은 하기 단계를 포함한다(도 4):
클로로필-a로부터 메틸페오포르비드-a를 합성하는 단계;
상기 메틸페오포르비드-a로부터 메틸 피로페오포르비드-a를 합성하는 단계;
상기 메틸 피로페오포르비드-a로부터 피로페오포르비드-a를 합성하는 단계; 및
상기 피로페오포르비드-a에 파클리탁셀을 반응시켜 피로페오포르비드-a-파클리탁셀 접합체를 합성하는 단계.
이하, 본 발명의 항암 화학요법제-클로린 유도체의 접합체를 제조하는 방법을 상세히 설명한다.
먼저, 본 발명의 바람직한 일 구현예로서, 항암 화학요법제가 시스플라틴인 경우 시스플라틴-클로린 유도체의 접합체를 제조하는 방법을 상세히 설명한다.
스피루리나 맥시마(Spirulina maxima) 조류에 아세톤을 처리하여 클로로필 a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸페오포르비드-a(1 MPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 1과 같다.
[반응식 1]
Figure PCTKR2010004132-appb-I000001
본 발명에서, 클로로필 a는 스피루리나 맥시마로부터 분리하여 얻을 수도 있고 상업적으로 입수 가능한 것을 사용할 수도 있다.
그 다음, 메틸페오포르비드-a를 콜리딘 내에서 환류시켜 메틸 피로페오포르비드-a(2 MPPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 2와 같다.
[반응식 2]
Figure PCTKR2010004132-appb-I000002
이후, 메틸 피로페오포르비드-a를 THF 내에서 HCl로 처리하여 피로페오포르비드-a(3 PPa)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 3과 같다.
[반응식 3]
Figure PCTKR2010004132-appb-I000003
그 다음, 피로페오포르비드-a(PPa)를 N-히드록시숙시닉이미드(NHS) 및 디시클로헥실 카르보디미드(DCC)와 함께 디클로로메탄에 용해시킨 후 트리에틸아민을 첨가하여 반응시킴으로써 PPa-NHS를 얻고, 여기에 tert-Butoxycarbonyl (Boc)으로 보호된 에틸렌 디아민(EDA)를 첨가하여 반응시킴으로써 PPa-EDA-Boc을 얻은 다음, 여기에 트리플루오르아세트산(TFA)을 첨가하여 반응시킴으로써 173-N-에틸렌디아민 피로페오프로비드-a(173-N-EDA-PPa, 4)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 4와 같다.
[반응식 4]
Figure PCTKR2010004132-appb-I000004
(I) 디클로로메탄 내 디시클로헥실 카르보디이미드 (DCC), N-히드록시숙시닉이미드 (NHS), 및 트리에틸아민(TEA); (II) 디클로로메탄 내 EDA-Boc, (III) 디클로로메탄 내 트리플루오르아세트산(Trifluoroacetic acid, TFA).
마지막으로, 173-N-에틸렌디아민 피로페오프로비드-a에 시스플라틴을 결합시키게 된다.
시스플라틴을 결합시키기 위하여 173-N-에틸렌디아민 피로페오프로비드-a에 K2PtCl4를 반응시켜 모노-피로페오포르비드-a-173-N-(2-아미노에틸)아미드 플래티늄 클로라이드[mono-Pyropheophorbide-a-173-N-(2-aminoethyl)amide platinum chloride, 5] 또는 디-피로페오포르비드-a-173-N-(2-아미노에틸)아미드 플래티늄 클로라이드[di-Pyropheophorbide-a-173-N-(2-aminoethyl)amide platinum chloride, 6]를 얻는다. 173-N-에틸렌디아민 피로페오프로비드-a의 말단 아민기가 K2PtCl4의 Pt와 결합하여 링커 역할을 감당하게 된다. 이 과정을 간략히 나타내면 하기 반응식 5와 같다.
[반응식 5]
Figure PCTKR2010004132-appb-I000005
둘째로, 본 발명의 바람직한 다른 일 구현예로서, 항암 화학요법제가 파클리탁셀인 경우 파클리탁셀-클로린 유도체의 접합체를 제조하는 방법을 상세히 설명한다.
파클리탁셀을 결합시키는 경우에도 스피루리나 맥시마(Spirulina maxima) 조류에서 클로로필 a를 추출 분리하고 이를 산성 하에서 메탄올로 처리하여 메틸페오포르비드-a(1 MPa)를 얻은 다음, 메틸페오포르비드-a를 콜리딘 내에서 환류시켜 메틸 피로페오포르비드-a(2 MPPa)를 얻는 이후, 메틸 피로페오포르비드-a를 THF 내에서 HCl로 처리하여 피로페오포르비드-a(3 PPa)를 얻는 단계까지는 상기 시스플라틴-클로린 유도체의 접합체 제조 방법과 동일하다.
이후, 상기 피로페오포르비드-a에 곧바로 파클리탁셀을 반응시켜 피로페오포르비드-a-파클리탁셀 접합체(PPa-taxol, 7)를 얻는다. 이 과정을 간략히 나타내면 하기 반응식 6과 같다.
[반응식 6]
Figure PCTKR2010004132-appb-I000006
본 발명은 세포 증식 억제 활성을 갖는 항암 화학요법제와 광역학적 활성을 갖는 클로린 유도체를 접합시킴으로써 종양세포의 증식을 억제하면서 동시에 광역학적 치료를 할 수 있으며, 항암 화학요법제의 독성을 감소시키고 내성을 피할 수 있으므로 암 치료에 유용하게 사용될 수 있다.
도 1은 변형된 야블론스키 다이아그램을 나타낸 것이다. 여기에서 1은 흡수, 2는 비방사성 붕괴, 3은 형광, 4는 계간 교차, 5는 인광, 6은 에너지 전달을 의미한다.
도 2는 본 발명의 항암 화학요법제-클로린 유도체의 접합체를 제조하는 과정을 간략히 나타낸 흐름도이다.
도 3은 시스-플라틴과 클로린 유도체의 접합체 합성 과정을 간략히 나타낸 것이다.
도 4는 파클리탁셀과 클로린 유도체의 접합체 합성 과정을 간략히 나타낸 것이다.
도 5는 메틸페오포르비드-a의 UV 스펙트럼이다.
도 6은 메틸페오포르비드-a의 1H NMR 스펙트럼이다.
도 7은 메틸 피로페오포르비드-a의 UV 스펙트럼이다.
도 8은 메틸 피로페오포르비드-a의 1H NMR 스펙트럼이다.
도 9는 메틸 피로페오포르비드-a의 질량 분석 스펙트럼이다.
도 10은 피로페오포르비드-a의 UV 스펙트럼이다.
도 11은 피로페오포르비드-a의 1H NMR 스펙트럼이다.
도 12는 피로페오포르비드-a의 질량 분석 스펙트럼이다.
도 13은 173-N-에틸렌디아민 피로페오프로비드-a의 UV 스펙트럼이다.
도 14는 173-N-에틸렌디아민 피로페오프로비드-a의 1H NMR 스펙트럼이다.
도 15는 173-N-에틸렌디아민 피로페오프로비드-a의 질량 분석 스펙트럼이다.
도 16은 173-N-에틸렌디아민 피로페오프로비드-a의 FT-IR 스펙트럼이다.
도 17은 피로페오포르비드-a 173-N-에틸렌디아민 플래티늄 클로라이드의 UV 스펙트럼이다.
도 18은 피로페오포르비드-a 173-N-에틸렌디아민 플래티늄 클로라이드의 1H NMR 스펙트럼이다.
도 19는 피로페오포르비드-a 173-N-에틸렌디아민 플래티늄 클로라이드의 질량 분석 스펙트럼이다.
도 20은 피로페오포르비드-a 173-N-에틸렌디아민 플래티늄 클로라이드의 FT-IR 스펙트럼이다.
도 21은 피로페오포르비드-a-파클리탁셀 접합체의 MALDI-질량 스펙트럼이다.
도 22는 피로페오포르비드-a-파클리탁셀 접합체의 HPLC 결과를 나타낸다.
도 23은 PDT를 실시하지 않은 경우 0.06125, 0.125 및 0.25uM에서 본 발명의 시스플라틴-클로린 유도체의 접합체에 의한 암세포 성장 억제 효과를 접합되기 전의 클로린 유도체 및 시스플라틴 각각의 암세포 성장 억제 효과와 비교한 결과를 나타낸 그래프이다.
도 24는 PDT를 실시하지 않은 경우 0.25 및 0.5uM에서 본 발명의 시스플라틴-클로린 유도체의 접합체에 의한 암세포 성장 억제 효과를 접합되기 전의 클로린 유도체 및 시스플라틴 각각의 암세포 성장 억제 효과와 비교한 결과를 나타낸 그래프이다.
도 25는 PDT를 실시한 경우 0.25 및 0.5uM에서 본 발명의 시스플라틴-클로린 유도체의 접합체에 의한 암세포 성장 억제 효과를 접합되기 전의 클로린 유도체 및 시스플라틴 각각의 암세포 성장 억제 효과와 비교한 결과를 나타낸 그래프이다.
도 26은 PDT를 실시하지 않은 경우 5 및 10uM에서 본 발명의 파클리탁셀-클로린 유도체의 접합체에 의한 암세포 성장 억제 효과를 접합되기 전의 클로린 유도체 및 파클리탁셀 각각의 암세포 성장 억제 효과와 비교한 결과를 나타낸 그래프이다.
도 27은 PDT를 실시한 경우 5 및 10uM에서 본 발명의 파클리탁셀-클로린 유도체의 접합체에 의한 암세포 성장 억제 효과를 접합되기 전의 클로린 유도체 및 파클리탁셀 각각의 암세포 성장 억제 효과와 비교한 결과를 나타낸 그래프이다.
도 28은 본 발명의 시스플라틴-클로린 유도체의 접합체의 종양 선택성을 조사하기 위하여 공초점 현미경 분석을 수행한 결과를 나타낸 것이다.
도 29는 본 발명의 파클리탁셀-클로린 유도체의 접합체의 종양에서의 배출 시간을 조사하기 위하여 공초점 현미경 분석을 수행한 결과를 나타낸 것이다.
이하, 본 발명을 실시 예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시 예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시 예에 한정되는 것은 아니다.
실시예 1: 스피루리나 맥시마 조류로부터 메틸페오포르비드-a(MPa, 화합물 1)의 합성
건조된 스피루리나 맥시마(Spirulina maxima) 조류 500 g을 2 시간 동안 질소 하에서 2 L의 아세톤으로 환류시켰다. 그 다음 상청액을 뜨거울 때 뷰너 깔때기 상에서 와트만 여과지로 여과시키고, 여분의 아세톤을 상기에서 남은 고형물에 첨가하였다. 상기 동일한 과정에 따라 추출과 여과 과정을 3회 반복하였다. 녹색 여과액을 증발시키고 잔사물을 300 ml의 아세톤에 다시 용해시킨 후 냉장고에서 냉각시킨 다음 적색의 고형 불순물을 제거하기 위하여 여과하였다. 페오피틴-a를 함유하는 여과액을 증발시키고, 질소 하, 어두운 곳, 실온에서 12.5 시간 동안 5% 황산의 메탄올 용액(500 ml)으로 처리하였다. 상기 용액을 디클로로메탄(~500 ml)으로 희석하고 물(~500 ml)로 헹구고, 10% 탄산수소나트륨 수용액(~500 ml)으로 헹군 다음 다시 물로 3회 헹구었다. 유기층을 분리해내고 무수 황산나트륨 상에서 건조한 다음 건조한 상태가 되도록 증발시켰다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 디클로로메탄 내 2% 아세톤으로 용출시켜 컬럼 크로마토그래피함으로써 정제하였다. 생성물을 디클로로메탄/메탄올로 재결정시켰다. 생성물의 UV 스펙트럼을 측정한 결과 도 5와 같았다. 도 5를 보면, 클로린 고리의 2개의 베이스 피크가 λ412.5 (1.52) nm 및 λ667.6(0.655) nm에서 관찰되었으며, 다른 작은 피크들이 λ - 507,9nm; 537,7nm; 610,4nm에서 관찰되었다. 한편, 생성물(MPa)의 500 MHz 1H NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 6에 나타내었다. δ 및 J H-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 39개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 11개의 단일, 4개의 다중, 3개의 이중 및 1개의 4중 시그널로서 관찰되었으며, 이로부터 메틸페오포르비드-a가 형성됨을 확인할 수 있었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 - 4 ppm에서 넓은 시그널로 나타났다.
수율: 0.4%. R f : 불순물로부터 분리된 순수한 MPa에 대하여 0.4(디클로로메탄 내 2% 아세톤). UV-vis (CH 2 Cl 2 ): λ max, nm (log ε) 667.6 (0.655), 610.4 (0.124), 537.7 (0.145), 507.9 (0.158), 412.5 (1.52). 1 H-NMR (300 MHz, CDCl 3 , TMS int ): δ H, ppm 9.50 (1H, s, 5-meso-H), 9.35 (1H, s, 10-meso-H), 8.55 (1H, s, 20-meso-H), 7.97 (1H, m, 31-CH), 6.30 및 6.19 (2H, dd, 32-CH 2 ), 6.25 (1H, s, 132-CH), 4.46 (1H, m, 18-CH), 4.21 (1H, m, 17-CH), 3.88 (3H, s, 134-OCH 3 ), 3.65 (2H, q, 81-CH 2 ), 3.68 (3H, s, 174-OCH 3 ), 3.57 (3H, s, 121-CH 3 ), 3.39 (3H, s, 21-CH 3 ), 3.21 (3H, s, 71-CH 3 ), 2.63-2.17 (4H, m, 171 및 172 - 2 × CH 2 ), 1.81 (3H, d, 181-CH 3 ), 1.68 (3H, t, 82-CH 3 ), 0.53 및 -1.63 (2H, 각각 s, br, 2 × NH).
실시예 2: 메틸페오포르비드-a로부터 메틸피로페오포르비드-a(MPPa, 화합물 2) 합성
메틸페오포르비드-a(1 g, 1.65 mmol)를 콜리딘(100 ml, 재증류된 것, KOH 상에서 보관된 것)에 용해시켜 2.5 시간 동안 환류시켰다. 냉각시킨 후, 상기 용액을 메틸 클로라이드(methyl chloride, MC)로 희석시키고 2N HCl(5×200 ml)로 세척한 다음 물로 2 번 세척하였다. 복합 유기 상을 무수 황산나트륨 상에서 건조시키고 용매를 진공 로테이터로 제거하였다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 MC 내 2% 아세톤(acetone, Ace)으로 용출하여 정제하고, 메틸 클로라이드(methyl chloride, MC)/헥산(hexane, Hex)으로 재결정시켰다. 생성물의 UV 스펙트럼을 측정한 결과 도 7과 같았다. 도 7을 보면, 클로린 고리의 2개의 베이스 피크가 λ414.1 nm 및 λ667.7 nm에서 관찰되었으며, 다른 작은 피크들이 λ =508,5nm; 539,2nm and 610,5nm에서 관찰되었다. 한편, 생성물(MPPa)의 500 MHz 1H NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 8에 나타내었다. δ 및 J H-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 37개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 10개의 단일, 4개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 이로부터 이전 화합물과 다른 2개의 양성자에 의해 메틸피로페오포르비드-a가 형성됨을 확인할 수 있었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 - 4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물(MPPa)의 질량 스펙트럼을 도 9에 나타내었다. 생성물의 분자량은 548,7g/mol으로서 계산되었으며, EI-질량 분석법을 통한 분석을 통해 549 (M+, 100)로서 검출되었다.
수율: 85.15%. R f : 0.28 (MC 내 2% Ace). UV-vis (CH 2 Cl 2 ): λ max, nm (log ε) 667.7 (0.24), 610.5 (0.036), 539.2 (0.043), 508.5 (0.049), 414.1 (0.558). 1 H-NMR (300 MHz, CDCl 3 , TMS int ): δ H, ppm 9.46 (1H, s, 5-meso-H), 9.35 (1H, s, 10-meso-H), 8.56 (1H, s, 20-meso-H), 8.04 (1H, m, 31-CH), 6.31 및 6.19 (각각 1H, dd, 32-CH 2 ), 5.31 및 5.15 (2H, q, J=20.1 Hz, 132-CH 2 ), 4.51 (1H, m, 18-CH), 4.29 (1H, m, 17-CH), 3.66 (5H, s, 174-OCH 3 81-CH 2 서로 다른 것과 겹침), 3.63 (3H, s, 121-CH 3 ), 3.41 (3H, s, 21-CH 3), 3.22 (3H, s, 71-CH 3 ), 2.70-2.58 (2H, m, 171-CH 2 ), 2.33-2.31 (2H, m, 172-CH 2 ), 1.82 (3H, d, 181-CH 3 ), 1.69 (3H, t, 82-CH 3 ), 0.44 및 -1.70 (각각 1H, br, s, 2×NH).
실시예 3: 메틸피로페오포르비드-a로부터 피로페오포르비드-a(PPa, 화합물 3) 합성
메틸피로페오포르비드-a (1.166 g, 2.125 mmol)를 THF(230 ml)에 용해시켰다. 4N HCl의 수용액(580 ml)를 상기 혼합물에 첨가하였다. 반응 혼합물을 4 시간 동안 질소 대기 하, 실온에서 교반하였다. 디클로로메탄(150 ml)을 상기 반응 혼합물에 첨가하고 수용성 층을 분리해내고 유기 층을 산을 없애기 위하여 물로 수회 세척하였다. 유기 층을 무수 황산나트륨 상에서 건조시키고 여과한 다음 농축하였다. 잔사물을 디클로로메탄/헥산으로 재결정시켰다. 잔사물을 실리카 겔 60(230-400 메쉬) 상에서 MC 내 5% MeOH로 용출시켜 정제하였다. 생성물의 UV 스펙트럼을 측정한 결과 도 10과 같았다. 도 10을 보면, 클로린 고리의 2개의 베이스 피크가 λ413.9 nm 및 λ667.5 nm에서 관찰되었으며, 다른 작은 피크들이 λ =508,9 nm; 539 nm; 609.8 nm에서 관찰되었다. 한편, 생성물(PPa)의 500 MHz 1H NMR 스펙트럼을 클로로포름 내에서 측정한 결과를 도 11에 나타내었다. δ 및 J H-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 34(1)개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 8개의 단일, 5개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 이로부터 이전 화합물과 다른 2개의 양성자에 의해 피로페오포르비드-a가 형성됨을 확인할 수 있었다. 카르복실기의 양성자는 상기 양성자가 중수소에 의해 교환되기 때문에 나타나지 않았다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 - 4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물(PPa)의 질량 스펙트럼을 도 12에 나타내었다. 생성물의 분자량은 534,7g/mol으로서 계산되었으며, EI-질량 분석법을 통한 분석을 통해 535 (M+, 100%)로서 검출되었다.
수율: 1.0 g (88.5%). R f : 0.25 (MC 내 5% MeOH). UV-vis (CH 2 Cl 2 ): λ max, nm (log ε) 667.5 (0.52), 609.8 (0.08), 539.0 (0.094), 508.9 (0.107), 413.9 (1.24). 1 H-NMR (300 MHz, CDCl 3 , TMS int ): δ H, ppm 9.45 (1H, s, 5-meso-H), 9.34 (1H, s, 10-meso-H), 8.53 (1H, s, 20-meso-H), 8.02 (1H, m, 31-CH), 6.29 및 6.17 (2H, dd, 32-CH 2 ), 5.29 및 5.13 (2H, dd, 132-CH 2 ), 4.48 (1H, m, 18-CH), 4.32 (1H, m, 17-CH), 3.66 (2H, q, 81-CH 2 ), 3.63 (3H, s, 121-CH 3 ), 3.38 (3H, s, 21-CH 3), 3.20 (3H, s, 71-CH 3 ), 2.72-2.58 (2H, m, 171-CH 2 ), 2.38-2.25 (2H, m, 172-CH 2 ), 1.82 (3H, d, J=7.2 Hz, 181-CH 3 ), 1.67 (3H, t, J=7.8 Hz, 82-CH 3 ), 0.48 및 -1.70 (1H, br, s, NH). EI-MS(아세톤): m/z; 535 [M+].
실시예 4: 피로페오포르비드-a로부터 173-N-에틸렌디아민 피로페오프로비드-a(173-N-EDA-PPa, 화합물 4) 합성
피로페오포르비드-a(화합물 3, 200 mg, 0.374 mmol), 디시클로헥실 카르보디미드(DCC)(116 mg, 0.563 mmol), N-히드록시숙시닉이미드(NHS)(64 mg, 0.348 mmol)을 5 ml의 무수 디클로로메탄에 용해시키고, 3 방울의 트리에틸아민(TEA)을 상기 반응 혼합물에 첨가하였다. 반응 혼합물을 22 시간 동안 실온에서 어두운 조건으로 질소 대기 하에서 교반하였다. 반응 생성물을 아세톤 내 30%의 메탄올을 용리액으로 사용하여 TLC에 의하여 모니터하였다. Rf: 0.603 (디클로로메탄 내 5 % 메탄올)
(t)ert-(B)ut(o)xy(c)arbonyl(Boc)로서 보호된 에틸렌 디아민(EDA)(120 mg)을 상기 반응 생성물에 첨가하였다. 반응 혼합물을 30 분 동안 실온에서 아르곤 하에 교반하고, 매 10분 마다 디클로로메탄 내 5% 메탄올을 용리액으로 사용하여 TLC를 통해 모니터하였다. 그 다음, 1 ml의 물을 상기 반응 혼합물에 첨가하고 20 분 동안 교반하였다. 반응 혼합물을 디클로로메탄으로 추출한 다음 상기 추출물을 100 ml의 물로 두 번 세척하였다. 유기 층을 물로부터 분리해내고 무수 황산나트륨 상에서 1 시간 동안 건조시켰다. 그 다음, 디클로로메탄의 추출물을 깔대기 상에서 면을 통해 여과하고 증발 회전기를 통해 농축시켰다. 그 후, 잔사물을 소량의 디클로로메탄에 용해시키고 냉장고에서 냉각시켰다. 냉각된 용액을 깔대기 상에서 탈지면을 통해 여과하고, 차가운 디클로로메탄으로 세척한 다음 증발 회전기를 통해 농축시켰다. 건조된 PPa-EDA-Boc을 용리액으로서 디클로로메탄 내 5% 메탄올을 사용하여 컬럼 크로마토그래피를 통해 실리카 겔(70-230 메쉬; h=10cm, d=3.5cm) 상에서 정제하였다. 그 다음 잔사물을 농축시키고 아세톤으로 헹군 후 디클로로메탄에 용해시키고 건조시켰다. Rf:0.276 (디클로로메탄 내 5% 메탄올)
1 H-NMR (500 MHz, CDCI 3 , TMS int ): δH ppm 9.32 (s, 1H, 10-meso-H), 9.27 (s, 1H, 5-meso-H), 8.53 (s, 1H, 20-meso-H), 7.82 (dd, 1H, 31-CH, J=12Hz, J=12Hz), 6.22(dd, 1H, 32-CH (trans), J=0,5 Hz, J=Hz) and 6.15 (dd, 1H, 32-CH (cis) J=3 Hz, J=1,5Hz), 5.97 (brs, 1H, 173-NH), 5.19 (p, 2H, 132-CH 2, J=68.5Hz), 4.76 (brs, 1H, 175-NH), 4.48 (m, 1H, 18-CH), 4.29 (m, 1H, 17-CH), 3.6 (q, 2H, 81-CH 2 ), 3.4 (s, 3H, 121-CH 3 ), 3.39 (s, 3H, 21-CH 3), 3.22 (s, 3H, 71-CH 3 ), 3.17(m, 2H, 174-CH2), 3.06 (m, 2H, 175-CH2), 2.682-2.010 (m, 4H, 171-CH 2 , 172-CH 2 ), 1.78 (d, 3H, J=7.5 Hz, 181-CH 3 ), 1.63 (t, 3H, J=7.5 Hz, 82-CH 3 ), 1.21(s, 9H, 176-3CH3), 0.4 (br.s, 1H, 21-NH), -1.64 (br.s, 1H, 22-NH).
정제된 화합물을 4 ml의 무수 디클로로메탄에 용해시키고, 4 ml의 트리플루오르산(TFA)를 상기 용액에 첨가하였다. 반응 혼합물을 20 분 동안 실온에서 대기 하에 교반하였다(TLC, CH2Cl2:MeOH, 95:5에 의해 용출). 1 ml의 톨루엔을 상기 혼합물에 첨가하고 감압 하에 증발시켰다. 잔사물을 헥산, 에테르로 세척하고, 감압 하에 건조시켰다. 생성물의 UV 스펙트럼을 측정한 결과 도 13과 같았다. 도 13을 보면, 클로린 고리의 2개의 베이스 피크가 λ410 nm 및 λ666.0 nm에서 각각 관찰되었다. 한편, 생성물(PPa-173-N-EDA)의 500 MHz 1H NMR 스펙트럼을 DMSO 내에서 측정한 결과를 도 14에 나타내었다. δ 및 J H-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 39개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 9개의 단일, 7개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 각각 173- NH, 174-CH2 175-CH2에 해당하는 δ 7,86, δ 3.1 및 2.61에서의 넓은 단일 시그널과 2개의 다중 시그널이 관찰되었다. 이로부터 이전 화합물과 다른 4개의 양성자에 의해 173-N-EDA 피로페오포르비드-a가 형성됨을 확인할 수 있었다. 또한, 대략 5 ppm에서 나타나는 피크의 모양이 변화되었고 상기 양성자가 근처 양성자와 접촉되기 때문에 다중 피크로 되었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 - 4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물(PPa-173-N-EDA)의 질량 스펙트럼을 도 15에 나타내었다. 생성물의 분자량은 576.7g/mol으로서 계산되었으며, EI-질량 분석법을 통한 분석에서 나타난 베이스 피크는 577 m/z M+1(100%)에서 관찰되었다. 더 나아가, 생성물(PPa-173-N-EDA)의 FT-IR 스펙트럼을 도 16에 나타내었다. 도 16을 보면, 에틸렌 디아민 단량체의 아민기와 아미드기의 피크가 각각 3450 cm-1, 1220 cm-1에서 명백히 다르게 나타났다. 또한, 피로페오포르비드-a의 C-H 스트레치, 케톤기, 에스테르기 및 비닐기(C=C) 피크들이 2850-2900 cm-1, 1680 cm-1 and 1600 cm-1에 명백히 나타났다.
수율: 80 mg (37%). R f : 0.28 (아세톤 내 30% MeOH). UV-vis (MeOH): λ m ax, nm (abso) 666 (0.391), 538.5 (0.180), 511.7 (0.140), 410 (0.688), 340 (0.323), 323(0.376), 264(0.513). 1 H-NMR (300 MHz, DMSO, TMS int ): δH, ppm 9.74 (s, 1H, 10-meso-H), 9.46 (s, 1H, 5-meso-H), 8.91 (s, 1H, 20-meso-H), 8.23 (dd, 1H, 31-CH, J=17.5Hz, J=12Hz), 7.86 (brs, 1H, 173-NH), 6.39(dd, 1H, 32-CH (trans), J=17,7 Hz, J=1,5Hz) 및 6.22 (dd, 1H, 32-CH (cis) J=11,5 Hz, J=1,5Hz), 5.19 (q, 2H, 132-CH 2, J=19.5Hz), 4.58 (m, 1H, 18-CH), 4.33 (1H, m, 17-CH), 3.71 (q, 2H, 81-CH 2 ), 3.62 (s, 3H, 121-CH 3 ), 3.48 (s, 3H, 21-CH 3), 3.22 (s, 3H, 71-CH 3 ), 3.10(m, 2H, 174-CH2), 2.61 (m, 2H, 175-CH2), 2.05-2.39 (m, 4H, 171-CH 2 , 172-CH 2 ), 1.79 (d, 3H, J=6.5 Hz, 181-CH 3 ), 1.63 (t, 3H, J=7.5 Hz, 82-CH 3 ), 0.28(br.s, 1H, 21-NH), -1.95 (br.s, 1H, 22-NH). FABMS (m-NBA): m/z ; 577 [M+1]. FT-IR ν KBr(cm-1): 3450, 2850-2900, 1680, 1600, 1220.
실시예 5: 173-N-에틸렌디아민 피로페오프로비드-a로부터 모노-피로페오포르비드-a-173-N-(2-아미노에틸)아미드 플래티늄 클로라이드(화합물 5) 합성
173-N-에틸렌디아민 피로페오프로비드-a(20 mg, 0.093 mmol)를 3 ml의 메탄올과 1.5 ml의 아세톤에 용해시켰다. K2PtCl4(14 mg, 0.04 mmol)을 1 ml의 물에 용해시키고 교반하면서 상기 용액에 천천히 첨가하였다. 48시간 후에 침전물을 여과하고 물로 3 회 세척한 다음, 메탄올:에테르 1:9 혼합용매로 세척하고 에테르로 세척하였다. 잔사물을 건조시키고 용리액으로서 메탄올:아세톤 1:2 혼합용매를 사용하여 TLC를 통해 모니터하였다. 생성물의 UV 스펙트럼을 측정한 결과 도 17과 같았다. 도 17을 보면, 2개의 베이스 피크가 각각 410 nm 및 666 nm에서 416.2 nm 및 669 nm으로 변화됨을 알 수 있다. 다른 작은 피크들은 변화하지 않았다. 한편, 생성물의 500 MHz 1H NMR 스펙트럼을 DMSO 내에서 측정한 결과를 도 18에 나타내었다. δ 및 J H-H 값을 이용하여 정해진 시그널은 1D 양성자 스펙트럼에 마크되었다. 총 39개의 양성자에 해당하는 δ -2 내지 10 영역의 시그널은 NMR 스펙트럼 결과로부터 9개의 단일, 7개의 다중, 3개의 이중 및 2개의 4중 시그널로서 관찰되었으며, 각각 173- NH, 174-CH2 175-CH2에 해당하는 δ 7,86, δ 3.1 및 2.61에서의 넓은 단일 시그널과 2개의 다중 시그널이 관찰되었다. 이로부터 이전 화합물과 동일한 양성자에 의해 모노-피로페오포르비드-a-173-N-(2-아미노에틸)아미드 플래티늄 클로라이드가 형성됨을 확인할 수 있었다. 2개의 NH 양성자는 빠른 교환으로 인해 대략 - 4 ppm에서 넓은 시그널로 나타났다. 아울러, 생성물의 질량 스펙트럼을 도 19에 나타내었다. 도 19를 통해 확인할 수 있듯이, 상기 생성물의 분자량(M+2)에 해당하는 843 m/z에서 피크가 관찰되었다. 더 나아가, 생성물의 FT-IR 스펙트럼을 도 20에 나타내었다. 도 20을 보면, 에틸렌 디아민 단량체의 아민기와 아미드기의 피크가 각각 3450 cm-1, 1220 cm-1에서 명백히 다르게 나타났다. 또한, 피로페오포르비드-a의 C-H 스트레치, 케톤기, 에스테르기 및 비닐기(C=C) 피크들이 2850-2900 cm-1, 1680 cm-1 and 1600 cm-1에 명백히 나타났다. 착물 내 Pt-N의 피크는 520 cm-1에 나타났다.
따라서, 상기 스펙트럼의 결과를 통해 클로린 유도체와 플래티늄 접합체의 구조를 확인할 수 있었다.
청갈색(brown-blue) 고체, 수율: 50% UV-vis (DMSO): λ m ax, nm (abso) 669 (0.49), 540.3 (0.317), 512.8 (0.284), 416.2 (0.749), 339.5(0.386), 323(0.479). 1 H-NMR (500 MHz, DMSO, TMS int ): δH ppm 9.77 (s, 1H, 10-meso-H), 9.48 (s, 1H, 5-meso-H), 8.92 (s, 1H, 20-meso-H), 8.25 (dd, 1H, 31-CH, J=9 Hz, J=11.5 Hz), 7.56 (brs, 1H, 173-NH), 6.40(dd, 1H, 32-CH (trans), J=18 Hz, J=12 Hz) and 6.22 (dd, 1H, 32-CH (cis) J=12 Hz, J=1,5Hz), 5.23 (q, 2H, 132-CH 2, J=12.5Hz), 4.57 (m, 1H, 18-CH), 4.34 (1H, m, 17-CH), 3.73 (q, 2H, 81-CH 2 ), 3.64 (s, 3H, 121-CH 3 ), 3.46 (s, 3H, 21-CH 3), 3.28 (s, 3H, 71-CH 3 ), 3.10(m, 2H, 174-CH2), 2.64 (m, 2H, 175-CH2), 2.05-2.39 (m, 4H, 171-CH 2 , 172-CH 2 ), 1.80 (d, 3H, J=1.5 Hz, 181-CH 3 ), 1.64 (t, 3H, J=0.5 Hz, 82-CH 3 ), 0.3 (br.s, 1H, 21-NH), -1.93 (br.s, 1H, 22-NH). FABMS (m-NBA): m/z; 842.2325 [M+1]. FT-IR ν KBr(cm-1): 3450, 2850-2900, 1680, 1600, 1220, 520.
실시예 6: 피로페오포르비드-a(PPa, 화합물 3)로부터 피로페오포르비드-a-파클리탁셀 접합체(화합물 6) 합성
상업적으로 입수가능하고 화학적으로 확인된 파클리탁셀을 본 실시예에 사용하였다. 상기 실시예 3에서 제조한 피로페오포르비드-a(화합물 3)(14.41 mg, 0.026 mmol), 파클리탁셀(PTX, 파클리탁셀)(23mg, 0.026 mmol), 디시클로헥실 카르보디미드(DCC)(11.12 mg, 0.053 mmol) 및 4-디메틸아미노피리딘(DMAP, 4-Dimethylaminopyridine)(3.3 mg, 0.028 mmol)을 무수 디클로로메탄(4 ml)에 용해시켰다. 상기 반응 혼합물을 아르곤 하, 실온에서 어두운 조건으로 6 시간 동안 교반하였다. 디클로로메탄(50 ml)과 물(100 ml)을 상기 반응 혼합물에 첨가하고 수층을 물, 염산(5%), 염화나트륨과 물의 포화용액으로 세척하였다. 유기층은 무수 황산나트륨 상에서 건조시킨 다음, 여과하고 농축하였다. 그 다음 잔사물을 실리카 겔 60(230-400 메시) 상에서 디클로로메탄 내 10%의 아세톤으로 용리시킴으로써 정제하여 순수한 화합물 6, 피로페오포르비드-a-파클리탁셀 접합체를 얻었다. 마지막으로, 최종 생성물을 디클로로메탄/헥산으로 재결정하였다.
최종 생성물인 피로페오포르비드-a-파클리탁셀 접합체의 MALDI-질량 스펙트럼을 도 21에 나타내고, HPLC 결과를 도 22에 나타내었다. HPLC에서 용매 시스템은 아세톤:메탄올을 5:95로 사용하였고 파장은 660 nm이었으며 순도는 99.4%였다.
수율: 29.0 mg (81.5%); 갈회색 고체(brown-grey solid); Rf: 0.27 (2% 디클로로메탄 내 메탄올). UV-vis (in CDCI3): λ m ax, nm (Abs) 667.6 (0.94), 609.7 (0.289), 539.5 (0.322), 525.9 (0.0.248), 413.5(1.965), 323(0.596). 1H-NMR (500 MHz, DMSO, TMSint): δH, ppm 9.53 (s, 1H, 10-meso-H), 9.43 (s, 1H, 5-meso-H), 8.55 (s, 1H, 20-meso-H), 8.12(d, 2H, 3III, 7III-CH tax ), 8.03(dd, 1H, 31-CH, J=11Hz, J=11.5Hz), 7.65 (d, 2H, 3IIII, 7IIII-CH tax, J=6Hz), 7.48-7.31(m, 11H, 2II, 3II, 4II, 5II, 6II-CH, 4III, 5III, 6III-CH, 4IIII, 5IIII, 6IIII-CH tax), 6.79(d, 1H, 4I-NH tax, J=9Hz), 6.32(dd, 1H, 32-CH (trans), J=1.5 Hz, J=1 Hz) 및 6.2 (dd, 1H, 32-CH (cis), J=1.5 Hz, J=1.5Hz), 6.30(s, 1H, 10-CH tax), 6.25(t, 1H, 13-CH tax), 5.96(dd, 1H, 3I-CH tax, J=4Hz, J=3.5), 5.69(d, 1H, 2-CH tax, J=7Hz), 5.60(d, 1H, 21-CH tax, J=3.5Hz), 5.14 (q, 2H, 132-CH2, J=0.5Hz), 4.96(m, 1H, 5-CH tax, J=6Hz), 4.46-4.44(m, 2H, 18-CH and 7-CH tax, J=0.5Hz), 4.31-4.20 (m, 3H, 17-CH and 20-CH2 tax), 3.82(d, 1H, 3-CH tax, J=7Hz), 3.72 (q, 2H, 81-CH2, J=0), 3.67 (s, 3H, 121-CH3), 3.43 (s, 3H, 21-CH3), 3.27 (s, 3H, 71-CH3), 2.63-2.56(m, 7-OH tax), 2.63-2.33 (m, 5H, 171-CH2, 172-CH2 and 6a-CH tax), 2.44(s, 3H, 4-OAc-Me tax), 2.38-2.15(m, 2H, 14-CH2 tax), 2.23(s, 3H, 10-OAc-Me tax), 1.92(s, 3H, 19-CH3 tax), 1.89(m, 1H, 6b-CH tax), 1.83 (s,1-OH tax), 1.77 (d, 3H, 181-CH3, J=7.5 Hz), 1.72 (t, 3H, 82-CH3, J=0.5 Hz ), 1.69(s, 3H, 18-CH3 tax), 1.23(s, 3H, 17-CH3 tax), 1.14(s, 3H, 16-CH3 tax) 0.51 (br.s, 1H, 21-NH), -1.62 (br.s, 1H, 22-NH). MALDI-MS: C80H84O16N5에 대하여 m/z 1370.5734(100%).
실험예 1: 시스플라틴-클로린 유도체의 접합체에 의한 암세포의 성장 억제 효과 조사
상기 실시예 5에서 제조된 시스플라틴-클로린 유도체의 접합체인 173-N-에틸렌디아민 피로페오포르비드-a 플래티늄 디클로라이드(화합물 5)에 의한 암세포의 성장 억제 효과를 확인하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 세포성장 저해 효과를 조사하였다.
TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청 (FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다.
TC-1 세포주를 96 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 0.06125, 0.125, 0.25, 0.5uM의 클로린 유도체, 시스플라틴, 시스플라틴-클로린 유도체의 접합체를 24시간 동안 처리하였다. 그 다음 대조구와 처리구로 나누어 처리구는 662nm±3nm의 레이저를 사용하여 1.56 J/㎠로 PDT를 실시하고 대조구는 PDT를 실시하지 않았다. 이 후 대조구와 처리구 각각의 well에 5 ㎎/㎖의 MTT 용액 (Sigma-Aldrich)을 20 ㎕ 첨가하여 4 시간 동안 37℃에서 배양하고, 상층액을 제거 한 후, 디메틸설폭사이드 (DMSO, Sigma-Aldrich)를 100 ㎕/well로 첨가하여 쉐이커에서 10 초간 흔들어준 후, ELISA-reader (spectra max 250, Molecular Devices, Sunnyvale, CA, USA)로 570 nm 에서 흡광도를 측정하였다.
그 결과를 도 23 내지 도 25에 나타내었다. 도 23을 통해 알 수 있는 바와 같이, 0.06125, 0.125, 0.25uM의 농도에서 PDT를 실시하지 않은 경우 클로린 유도체와 시스플라틴은 대조군에 비해 세포성장 저해효과를 나타내지 않았으나, 클로린 유도체의 독성이 전혀 관찰되지 않으며 시스플라틴이 세포 성장 저해 효과를 나타내지 않는 농도인 0.06125, 0.125, 0.25uM에서 시스플라틴-클로린 유도체의 접합체는 대조군에 비해 통계적으로 유의한 세포성장 저해 효과를 나타내었다. 아울러, 도 24를 통해 알 수 있는 바와 같이 PDT를 실시하지 않은 경우 0.25uM는 물론 0.5uM에서도 시스플라틴-클로린 유도체의 접합체가 클로린 유도체 단독 또는 시스플라틴 단독에 비해 통계적으로 유의한 세포성장 저해 효과를 나타내었다. 한편, 도 25를 통해 알 수 있는 바와 같이 PDT 실시의 경우 클로린 유도체와 시스플라틴-클로린 유도체의 접합체 간의 세포 성장 저해 효과의 차이가 없었으며, 세포 성장을 90% 이상 저해하였음을 확인할 수 있었다.
실험예 2: 파클리탁셀-클로린 유도체의 접합체에 의한 암세포의 성장 억제 효과 조사
상기 실시예 6에서 제조된 파클리탁셀-클로린 유도체의 접합체인 피로페오포르비드-a-파클리탁셀 접합체(화합물 6)에 의한 암세포의 성장 억제 효과를 확인하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 세포성장 저해 효과를 조사하였다.
TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청 (FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다.
TC-1 세포주를 96 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 5 및 10uM 각각의 클로린 유도체, 파클리탁셀, 파클리탁셀-클로린 유도체의 접합체를 24시간 동안 처리하였다. 그 다음 대조구와 처리구로 나누어 처리구는 662nm±3nm의 레이저를 사용하여 6.25 J/㎠로 PDT를 실시하고 대조구는 PDT를 실시하지 않았다. 이 후 24시간을 더 배양하고, 대조구와 처리구 각각의 well에 5 ㎎/㎖의 MTT 용액 (Sigma-Aldrich)을 20 ㎕ 첨가하여 4 시간 동안 37℃에서 배양하였다. 이후 상층액을 제거하고 디메틸설폭사이드 (DMSO, Sigma-Aldrich)를 100 ㎕/well로 첨가하여 쉐이커에서 10 초간 흔들어준 후, ELISA-reader (spectra max 250, Molecular Devices, Sunnyvale, CA, USA)로 570 nm 에서 흡광도를 측정하였다.
그 결과를 도 26 및 도 27에 나타내었다. 도 26 및 도 27을 통해 알 수 있는 바와 같이, PDT를 실시하지 않은 경우 클로린 유도체의 독성이 나타나는 5 및 10uM에서 파클리탁셀-클로린 유도체 접합체의 독성은 현저히 감소한 반면(도 26), PDT 실시의 경우 클로린 유도체와 파클리탁셀-클로린 유도체 접합체 간의 세포 성장 저해 효과 차이는 거의 없는 것으로 나타났다(도 27).
실험예 3: 시스플라틴-클로린 유도체의 접합체의 공초점 현미경 분석
상기 실시예 5에서 제조된 시스플라틴-클로린 유도체의 접합체인 173-N-에틸렌디아민 피로페오포르비드-a 플래티늄 디클로라이드(화합물 5)의 종양 선택성을 조사하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 공초점 현미경 분석(Conforcal microscopy)을 수행하였다.
TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청 (FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다.
TC-1 세포주를 소독된 커버글라스를 넣은 6 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 0.25 및 0.5uM 각각의 클로린 유도체 및 시스플라틴-클로린 유도체의 접합체를 12시간 동안 처리하였다. 배양 후 배지를 제거하고, 1X PBS 완충액으로 2번 씻어주고, 1% 파라포름알데하이드 1 ml를 15분간 처리하여 세포를 고정하였다. 고정 후 상층액을 제거하고, 1X PBS 완충액으로 1번 씻어주고 mounting 용액을 떨어뜨린 슬라이드 글라스 위에 올려 말린 후, 공초점 현미경(Conforcal microscopy, TCS SP2, Leica, Wetzlar, Germany)을 이용하여 형광을 분석하였다. 분석시 사용된 excitation 파장은 600 nm이고, emission 파장은 545 nm이었다.
분석 결과를 도 28에 나타내었다. 도 28을 보면 0.5uM에서는 클로린 유도체 단독 물질과 본 발명의 접합체가 모두 포화 축적되었으나 이보다 낮은 농도인 0.25uM에서는 클로린 유도체 단독 물질에 비해 본 발명의 접합체가 암세포에 더욱 잘 축적되는 것을 알 수 있다. 따라서, 도 28을 통해 시스플라틴-클로린 유도체의 접합체가 같은 농도의 클로린 유도체에 비해 종양 선택성이 증가함을 알 수 있었다.
실험예 4: 파클리탁셀-클로린 유도체의 접합체의 공초점 현미경 분석
상기 실시예 6에서 제조된 파클리탁셀-클로린 유도체의 접합체인 피로페오포르비드-a-파클리탁셀 접합체(화합물 6)의 종양에서의 배출 시간을 조사하기 위하여 인유두종바이러스 16 E6/E7을 발현하는 TC-1 세포주에서 공초점 현미경 분석(Conforcal microscopy)을 수행하였다.
TC-1 세포주는 RPMI-1640 (Gibco BRL, Rockville, MD, USA)에 5% 우태아혈청 (FBS) (Gibco BRL), 0.22% 탄산수소나트륨 (Sigma-Aldrich, St. Louis, MO, USA), 400 ㎎/L의 G418 (Sigma-Aldrich), 그리고 스트렙토마이신/페니실린 (Gibco BRL)을 첨가하여 사용하였고, 37℃, 5% CO2 배양기에서 배양하였다.
TC-1 세포주를 6 웰 플레이트에 3 × 103 cells/well로 분주한 후, 24 시간동안 배양시켜 2uM 각각의 클로린 유도체 및 파클리탁셀-클로린 유도체의 접합체를 12, 24, 48 및 72 시간동안 처리하고, 상기 실험예 3에서 사용한 방법과 동일한 방법으로 공초점 현미경 분석(Conforcal microscopy)을 수행하였다. 다만, 이때에는 고정 후에 300nM의 DAPI 용액을 5분간 처리하여 핵의 모양 변화를 동시에 관찰하였다.
분석 결과를 도 29에 나타내었다. 도 29를 통해 48시간 이후 파클리탁셀-클로린 유도체의 접합체가 같은 농도의 클로린 유도체에 비해 종양에서의 배출 시간이 감소함을 알 수 있었다.

Claims (16)

  1. 항암 화학요법제-클로린 유도체의 접합체.
  2. 제1항에 있어서, 상기 항암 화학요법제는 시스플라틴 또는 파클리탁셀인 접합체.
  3. 제1항에 있어서, 상기 접합체는 하기 화학식 1의 구조를 가지는 것인 접합체:
    [화학식 1]
    Figure PCTKR2010004132-appb-I000007
  4. 제1항에 있어서, 상기 접합체는 하기 화학식 2의 구조를 가지는 것인 접합체:
    [화학식 2]
    Figure PCTKR2010004132-appb-I000008
  5. 제1항에 있어서, 상기 접합체는 하기 화학식 3의 구조를 가지는 것인 접합체:
    [화학식 3]
    Figure PCTKR2010004132-appb-I000009
  6. 제1항 내지 제5항 중 어느 한 항의 접합체를 유효성분으로 포함하는 암 치료용 조성물.
  7. 제6항에 있어서, 상기 조성물은 광역학 치료용인 것을 특징으로 하는 암 치료용 조성물.
  8. 제6항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군 중에서 선택되는 것을 특징으로 하는 조성물.
  9. 제8항에 있어서, 상기 암은 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군에서 선택되는 것을 특징으로 하는 조성물.
  10. 제6항에 있어서, 상기 조성물은 정맥 주사, 복강내 주사, 근육내 주사, 두개 내 주사, 종양 내 주사, 상피내 주사, 피부관통전달, 식도 투여, 복부 투여, 동맥 주사, 관절내 주사, 및 구강내 투여로 이루어진 군 중에서 선택된 경로로 투여되는 것을 특징으로 하는 조성물.
  11. 제1항 내지 제5항 중 어느 한 항의 접합체를 유효성분으로 포함하는 조성물; 및
    파장이 650 nm 내지 800 nm 범위인 광선을 조사하기 위한 광원을 포함하는, 광역학 치료에 사용하기 위한 암 치료용 키트.
  12. 제11항에 있어서, 상기 암은 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 및 신경계의 암으로 이루어진 군에서 선택되는 것을 특징으로 하는 암 치료용 키트.
  13. 제1항 내지 제5항 중 어느 한 항의 접합체를 함유하는 광감작제.
  14. 제13항에 있어서, 상기 광감작제는 650 nm 내지 800 nm 범위의 광선에 대하여 광감작 활성을 보이는 광감작제.
  15. 하기 단계를 포함하는 항암 화학요법제-클로린 유도체의 접합체의 제조방법:
    링커 작용기를 가진 클로린 유도체를 제조하는 단계; 및
    상기에서 제조된 링커 작용기를 가진 클로린 유도체에 항암 화학요법제를 접합시켜 항암 화학요법제-클로린 유도체의 접합체를 얻는 단계.
  16. 제15항에 있어서, 상기 링커 작용기는 에틸렌디아민인 제조방법.
PCT/KR2010/004132 2009-06-26 2010-06-25 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물 WO2010151073A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090057908 2009-06-26
KR10-2009-0057908 2009-06-26

Publications (2)

Publication Number Publication Date
WO2010151073A2 true WO2010151073A2 (ko) 2010-12-29
WO2010151073A3 WO2010151073A3 (ko) 2011-05-19

Family

ID=43387065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004132 WO2010151073A2 (ko) 2009-06-26 2010-06-25 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물

Country Status (2)

Country Link
KR (1) KR101288461B1 (ko)
WO (1) WO2010151073A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374820B1 (ko) * 2012-01-30 2014-03-17 광주과학기술원 페오포르바이드-α 컨쥬게이트 및 그의 용도
KR102320654B1 (ko) 2020-02-05 2021-11-02 가톨릭대학교 산학협력단 광역학 암조직 치료를 위한 광응답소재 조합 나노다이아몬드 입자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228871A1 (en) * 1999-06-03 2004-11-18 Tayyaba Hasan Treatment and analysis of proliferative disorders
KR100808630B1 (ko) * 2006-12-28 2008-02-29 광주과학기술원 클로린 화합물을 포함하는 경구투여용 항종양 조성물
KR20090027470A (ko) * 2007-09-12 2009-03-17 인제대학교 산학협력단 항암활성을 가지는 클로린 유도체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707655B1 (ko) 2005-07-18 2007-08-09 주식회사 라이트팜텍 포르피린 금속 착화합물 유도체
KR100896327B1 (ko) 2008-09-09 2009-05-07 다이아텍코리아 주식회사 스피루리나로부터 클로로필 a 및 클로린을 제조하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228871A1 (en) * 1999-06-03 2004-11-18 Tayyaba Hasan Treatment and analysis of proliferative disorders
KR100808630B1 (ko) * 2006-12-28 2008-02-29 광주과학기술원 클로린 화합물을 포함하는 경구투여용 항종양 조성물
KR20090027470A (ko) * 2007-09-12 2009-03-17 인제대학교 산학협력단 항암활성을 가지는 클로린 유도체

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JULIEN GRAVIER ET AL.: 'Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies' JOURNAL OF MEDICINAL CHEMISTRY vol. 51, 2008, pages 3867 - 3877 *
LINDA R. ET AL.: 'Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo' JOURNAL OF THE NATIONAL CANCER INSTITUTE vol. 91, no. 18, 1999, pages 1557 - 1563 *
VALERY A. ET AL.: 'Five years' experience of photodynamic therapy with new chlorin photosensitizer' PROCEEDINGS OF SPIE vol. 5863, 2005, pages 186 - 198 *

Also Published As

Publication number Publication date
WO2010151073A3 (ko) 2011-05-19
KR20110000523A (ko) 2011-01-03
KR101288461B1 (ko) 2013-07-26

Similar Documents

Publication Publication Date Title
WO2010151074A2 (ko) 양자점-클로린 유도체의 접합체를 함유하는 광감작제 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료 및 진단용 조성물
WO2011090333A2 (ko) 클로린 유도체와 불포화 지방산의 접합체, 이를 함유하는 광감작제, 및 이를 포함하는 광역학 치료에 사용하기 위한 암 치료용 조성물
WO2010126178A1 (ko) 신규한 클로린 e6-엽산 결합 화합물, 이의 제조방법 및 이를 함유하는 암 치료용 약학적 조성물
US5864035A (en) Synthesis of isoimide of chlorins and bacteriochlorins and their use for diagnosis and treatment of cancer
Ménard et al. Synthesis of tetraglucosyl-and tetrapolyamine–tetrabenzoporphyrin conjugates for an application in PDT
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
Lee et al. Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy
Luan et al. Phthalocyanine-cRGD conjugate: synthesis, photophysical properties and in vitro biological activity for targeting photodynamic therapy
Jinadasa et al. Syntheses and cellular investigations of di-aspartate and aspartate-lysine chlorin e 6 conjugates
WO1997032885A9 (en) Synthesis of isoimide of chlorins and bacteriochlorins and their use for diagnosis and treatment of cancer
Peng et al. Comparison between amine-terminated phthalocyanines and their chlorambucil conjugates: Synthesis, spectroscopic properties, and in vitro anticancer activity
WO2013051778A1 (ko) 표적 치료에 관한 종양에 선택성이 있는 콘쥬게이트
Poon et al. An amphiphilic ruthenium (II)–polypyridyl appended porphyrin as potential bifunctional two-photon tumor-imaging and photodynamic therapeutic agent
JP2002020389A (ja) 長波長吸収バクテリオクロリンアルキルエーテル類似体
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
Gushchina et al. Synthesis of amide derivatives of chlorin e6 and investigation of their biological activity
WO2018076526A1 (zh) 一种新型二氢卟吩e6衍生物及其药学上可接受的盐、其制备方法和应用
Chen et al. Syntheses and PDT activity of new mono-and di-conjugated derivatives of chlorin e6
Li et al. Synthesis, optical properties and preliminary in vitro photodynamic effect of pyridyl and quinoxalyl substituted chlorins
WO2010151073A2 (ko) 항암 화학요법제-클로린 유도체의 접합체, 이를 함유하는 광감작제 및 이를 포함하는 암 치료용 조성물
Zolottsev et al. Conjugates of pyropheophorbide a with androgen receptor ligands
Meng et al. Amino acid derivatives of pyropheophorbide-a ethers as photosensitizer: Synthesis and photodynamic activity
Wang et al. Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations
KR20080081310A (ko) 항암 효과가 높고 항말라리아 활성이 오래 지속되는트리옥산 이량체
Llamas et al. Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792355

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.03.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10792355

Country of ref document: EP

Kind code of ref document: A2