WO2018097403A1 - 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물 - Google Patents

항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물 Download PDF

Info

Publication number
WO2018097403A1
WO2018097403A1 PCT/KR2017/001636 KR2017001636W WO2018097403A1 WO 2018097403 A1 WO2018097403 A1 WO 2018097403A1 KR 2017001636 W KR2017001636 W KR 2017001636W WO 2018097403 A1 WO2018097403 A1 WO 2018097403A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
diosgenin
conjugate
anticancer agent
linker
Prior art date
Application number
PCT/KR2017/001636
Other languages
English (en)
French (fr)
Inventor
전창주
채방영
정교
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2018097403A1 publication Critical patent/WO2018097403A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/554Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a steroid plant sterol, glycyrrhetic acid, enoxolone or bile acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle

Definitions

  • the present invention relates to a conjugate of an anticancer agent and diosgenin, a preparation method thereof, and an anticancer composition comprising the same.
  • Cancer is the most common disease with circulatory disease in Korea. Normally, cells divide, grow and die by intracellular regulation, and live in balance of cell numbers. When these cells are damaged, abnormal growth and suppression of abnormal cells become uncontrolled and excessive proliferation, as well as invading surrounding tissues and organs, resulting in mass formation and destruction of normal tissues. This condition is defined as cancer or cancer.
  • Tumors include benign and malignant tumors, and benign tumors grow relatively slowly and are tumors that do not spread, metastasize, or can be removed and healed in many parts of the body. It does not cause it.
  • Malignant tumors on the other hand, are tumors that are life-threatening by rapid growth, invasive (digging or spreading) growth, and spreading metastases (moving away from their original location) to each part of the body.
  • the mechanism by which cancer cells develop is that the cells undergo growth, differentiation, or programmed apoptosis, or the growth is stopped, but some of the genes in the cells are abnormal. It is thought that the characteristics of protein, a product of genes, are changed, and as a result, abnormality in cell growth regulation occurs and cancer cells are produced.
  • DG diosgenin
  • the present invention was completed.
  • hydrophilic anticancer agent when forming a conjugate with hydrophobic diosgenin (DG), it shows both lipophilic properties, confirming that it enables self-assembly of stable nanoparticles and the present invention. Completed.
  • Non-Patent Document 1 Nutrients 2015, 7, 4938-4954
  • An object of the present invention is to provide a conjugate in which an anticancer agent and diosgenin are linked with a linker, or a pharmaceutically acceptable salt thereof, which can overcome the anticancer drug resistance and enhance the permeability of the cancer cell membrane to improve anticancer activity.
  • Another object of the present invention is to provide a method for preparing a conjugate in which the anticancer agent and diosgenin are combined with a linker.
  • Still another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, comprising as an active ingredient a conjugate in which the anticancer agent and diosgenin are combined with a linker, or a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is to provide a conjugate anticancer formulation wherein the anticancer agent and diosgenin are linked with a linker.
  • Still another object of the present invention is to provide a nanoparticle in which a conjugate in which the anticancer agent and diosgenin are bonded by a linker is formed by self-assembly.
  • the present invention provides a conjugate in which an anticancer agent and diosgenin are combined with a linker, or a pharmaceutically acceptable salt thereof.
  • step 1 Adding carbonochloridic acid to diosgenin to obtain compound 4 (step 1);
  • step 1 Adding carbonochloridic acid to diosgenin to obtain compound 4 (step 1);
  • step 2 Adding compound 7 to compound 4 to obtain compound 8 (step 2);
  • n is an integer of 0-2.
  • step 1 Adding succinic anhydride to diosgenin to obtain compound 10 (step 1);
  • step 1 Adding succinic anhydride to diosgenin to obtain compound 10 (step 1);
  • the present invention provides a pharmaceutical composition for preventing or treating cancer containing the conjugate of the anticancer agent and the diosgenin as a linker, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides an anticancer formulation of a conjugate in which an anticancer agent and diosgenin are combined with a linker.
  • the present invention provides a nanoparticle is formed by the self-assembly conjugate conjugated to the anticancer agent and Diosgenin (Diosgenin) linker.
  • Conjugates in which the anticancer agent and the diosgenin according to the present invention are combined with a linker are conjugated with a target anticancer agent by using a diosgenin (DG), which is similar to a constituent of the cancer cell membrane, to overcome the anticancer drug resistance and to prevent cancer cells. It has the effect of remarkably improving the anticancer activity by enhancing the permeability of the membrane.
  • hydrophilic anticancer agents exhibit both lipophilic properties when forming conjugates with hydrophobic diosgenin (DG), which enables self-assembly of stable nanoparticles, resulting in nanoparticles of 200 nm or less. Can be self-assembled.
  • Figure 1 (A) is a graph measuring the cell survival rate 48 hours after administration of DG, DSA, DOX, DOX-DG to HepG2 (human-derived liver cancer cells).
  • Figure 1 (B) is a graph measuring the cell survival rate 48 hours after administration of DG, DSA, DOX, DOX-DG to L929 cells (murine fibroblast cell line).
  • Example 2 is a graph measuring the amount of DOX released by the DOX-DG conjugate prepared in Example 3 according to a change in pH environment.
  • FIG. 3 shows (a) MTX, (b) Example 1 (Compound 1a), (c) Example 1 (Compound 1a) + GSH, (d) Example 2 (Compound 1b3), (e) Example 2 ( HPLC analysis of compound 1b3) + GSH.
  • FIG. 5 is a graph confirming the critical aggregation concentration (CAC) of the Cyt-DG conjugate by LC-MS spectrum.
  • Example 6 is (a) dynamic light scattering (DLS) and (b) transmission electron microscopy (TEM) to determine particle size distribution, zeta potential, and morphology of the Cyt-DG conjugate nanoparticles prepared in Example 5, respectively. The result of the analysis.
  • DLS dynamic light scattering
  • TEM transmission electron microscopy
  • FIG. 7 is a graph of (a) diameter change of Cyt-DG conjugate nanoparticles in 0.1M PBS, 5% glucose solution by DLS, and (b) Cyt-DG conjugate in 1% and 10% FBS solution. The diameter change of the gate nanoparticles is measured by DLS.
  • Figure 8 is a schematic diagram showing the process of cellular uptake of the Cyt-DG conjugate nanoparticles prepared in Example 5.
  • the present invention provides a conjugate in which an anticancer agent and diosgenin are combined with a linker, or a pharmaceutically acceptable salt thereof.
  • the diosgenin is similar to the components of the cancer cell membrane to improve cancer cell membrane permeability, there is an effect that can overcome the anticancer drug resistance.
  • the anticancer agent may be methotrexate (Methotrexate, MTX), doxorubicin (DOX), cytarabine (Cytarabine, Cyt) and the like.
  • linker As the linker , , , , , Etc. can be used.
  • Preferred examples of the conjugate in which the anticancer agent and the diosgenin according to the present invention are linked with a linker may include a conjugate represented by the following Chemical Formulas 1a to 1d.
  • n is an integer of 0
  • Conjugate conjugated with the anticancer agent and the diosgenin according to the present invention is conjugated with the target anticancer agent using diosgenin (DG), which is similar to the components of the cancer cell membrane, to enhance the permeability of the cancer cell membrane to enhance the anticancer agent.
  • DG diosgenin
  • the anticancer agent-diogenin conjugate of the present invention may be used in the form of a pharmaceutically acceptable salt, and acid salts formed by pharmaceutically acceptable free acid are useful as salts.
  • pharmaceutically acceptable salt refers to a concentration that is relatively nontoxic to the patient and has a harmless effective action, and that any side effects caused by the salt do not degrade the beneficial efficacy of the anticancer agent-diogenin conjugate. It means an organic or inorganic addition salt.
  • These salts may include inorganic acids and organic acids as free acids, hydrochloric acid, bromic acid, nitric acid, sulfuric acid, perchloric acid, phosphoric acid, and the like, and citric acid, acetic acid, lactic acid, maleic acid, and fumarine as organic acids.
  • Acids Gluconic Acid, Methanesulfonic Acid, Glyconic Acid, Succinic Acid, Tartaric Acid, Galluturonic Acid, Embonic Acid, Glutamic Acid, Aspartic Acid, Oxalic Acid, (D) or (L) Malic Acid, Maleic Acid, Methanesulphonic Acid, Ethene Sulfur Phonic acid, 4-toluenesulfonic acid, salicylic acid, citric acid, benzoic acid or malonic acid and the like can be used.
  • salts also include alkali metal salts (sodium salts, potassium salts, and the like), alkaline earth metal salts (calcium salts, magnesium salts, and the like) and the like.
  • acid addition salts include acetates, aspartates, benzates, besylates, bicarbonates / carbonates, bisulfates / sulfates, borates, camsylates, citrates, disylates, ecylates, formates, fumarates, Gluceptate, Gluconate, Glucuronate, Hexafluorophosphate, Hibenzate, Hydrochloride / chloride, Hydrobromide / Bromide, Hydroiodide / Iodide, Isetionate, Lactate, Maleate, Mali Eate, malonate, mesylate, methylsulfate, naphthylate, 2-naphsylate, nicotinate, nitrate, orotate,
  • the acid addition salt according to the present invention is a precipitate produced by dissolving an anticancer agent-diogenin conjugate in an organic solvent, for example, methanol, ethanol, acetone, methylene chloride, acetonitrile, and the like by adding an organic acid or an inorganic acid.
  • an organic solvent for example, methanol, ethanol, acetone, methylene chloride, acetonitrile, and the like by adding an organic acid or an inorganic acid.
  • the solvent may be prepared by filtration, drying, or by distillation under reduced pressure of the solvent and excess acid, followed by drying or crystallization under an organic solvent.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
  • Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg, silver nitrate).
  • the present invention includes not only the anticancer agent-diogenin conjugate and pharmaceutically acceptable salts thereof, but also all possible solvates, hydrates, isomers, and the like that can be prepared therefrom.
  • step 1 Adding carbonochloridic acid to diosgenin to obtain compound 4 (step 1);
  • step 1 is a step of obtaining compound 4 by adding carbonochloridic acid to diosgenin.
  • anhydrous THF anhydrous THF
  • anhydrous DCM anhydrous DCM
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time can be reacted for 5-10 hours.
  • triphosgene As the catalyst, triphosgene, phosgene or imidazolium chloride derivatives and anhydrous pyridine may be used.
  • Step 2 is a step of obtaining Compound 6 by adding Compound 5 to Compound 4.
  • solvents usable in step 2 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH 2 Cl 2 , hexane, dimethylformamide (DMF), diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • DCM dichloromethane
  • THF tetrahydrofuran
  • benzene KOH / MeOH, MeOH, toluene
  • CH 2 Cl 2 hexane
  • dimethylformamide (DMF) diisopropyl ether
  • diethyl ether diethyl ether
  • dioxane dimethylacetamide
  • DMSO dimethyl sulfoxide
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time may be reacted for 1-24 hours.
  • Step 3 is a step of obtaining compound 1a by adding methotrexate (MTX) to compound 6.
  • MTX methotrexate
  • solvents usable in step 3 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time may be reacted for 30 minutes to 5 days.
  • step 1 Adding carbonochloridic acid to diosgenin to obtain compound 4 (step 1);
  • step 2 Adding compound 7 to compound 4 to obtain compound 8 (step 2);
  • n is an integer of 0-2.
  • Step 1 is the same as Step 1 of Preparation Method 1.
  • Step 2 is a step of obtaining Compound 8 by adding Compound 7 to Compound 4.
  • solvents usable in step 2 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH 2 Cl 2 , hexane, dimethylformamide (DMF), diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • DCM dichloromethane
  • THF tetrahydrofuran
  • benzene KOH / MeOH, MeOH, toluene
  • CH 2 Cl 2 hexane
  • dimethylformamide (DMF) diisopropyl ether
  • diethyl ether diethyl ether
  • dioxane dimethylacetamide
  • DMSO dimethyl sulfoxide
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time may be reacted for 1-24 hours.
  • Step 3 is a step of obtaining compound 9 by adding methotrexate (MTX) to compound 8.
  • MTX methotrexate
  • solvents usable in step 3 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time may be reacted for 30 minutes to 5 days.
  • Step 4 is a step of obtaining Compound 2 by removing the protecting group (Boc, tert-Butyloxycarbonyl) from Compound 9.
  • the protecting group Boc, tert-Butyloxycarbonyl
  • all known methods such as using TFA, can be used.
  • solvents usable in step 4 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene, chloroform and the like can be used alone or in combination,
  • DCM dichloromethane
  • THF tetrahydrofuran
  • benzene KOH / MeOH, MeOH, toluene, CH2Cl2, hexane
  • dimethylformamide (DMF) Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO),
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time can be reacted for 2-6 hours.
  • step 1 Adding succinic anhydride to diosgenin to obtain compound 10 (step 1);
  • Step 1 is a step of obtaining compound 10 by adding succinic anhydride to diosgenin.
  • DMAP 4-dimethylaminopyridine
  • pyridine may be further used for the reaction of Step 1.
  • solvents usable in step 1 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • the reaction temperature can be reacted at 25-75 °C
  • the reaction time can be reacted for 10-30 hours.
  • Step 2 is a step of obtaining compound 11 by adding N-hydroxysuccinimide to compound 10.
  • DCC N, N'-dicyclohexylcarbodiimide
  • Step 2 may be further used for the reaction of Step 2.
  • solvents usable in step 2 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • DCM dichloromethane
  • THF tetrahydrofuran
  • benzene KOH / MeOH, MeOH, toluene, CH2Cl2, hexane
  • dimethylformamide (DMF) Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlor
  • the reaction temperature can be reacted at 0-30 °C,
  • the reaction time can be reacted for 4-8 hours.
  • Step 3 is a step of obtaining Compound 1c by adding Doxorubicin (DOX) to Compound 11.
  • Doxorubicin DOX
  • TAA triethylamine
  • solvents usable in step 3 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • the reaction temperature can be reacted at 10-40 °C,
  • the reaction time can be reacted for 10-30 hours.
  • step 1 Adding succinic anhydride to diosgenin to obtain compound 10 (step 1);
  • Step 1 is the same as Step 1 of Preparation Method 3.
  • step 2 is the same as step 2 of the preparation method 3.
  • Step 3 is to obtain compound 1d by adding cytarabine (Cytarabine, Cyt) to compound 11.
  • cytarabine Cytarabine, Cyt
  • triethylamine TAA may be additionally used for the reaction of Step 3.
  • solvents usable in step 3 include dichloromethane (DCM), t-butanol, ethanol, tetrahydrofuran (THF), benzene, KOH / MeOH, MeOH, toluene, CH2Cl2, hexane, dimethylformamide (DMF) , Diisopropyl ether, diethyl ether, dioxane, dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), acetone, chlorobenzene and the like can be used alone or in combination,
  • the reaction temperature can be reacted at 10-40 °C,
  • the reaction time can be reacted for 10-30 hours.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer containing an conjugate of an anticancer agent and diosgenin as a linker, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the cancer may be breast cancer, liver cancer, various forms of leukemia (acute and chronic leukemia), lymph cancer (lymphoma), colon cancer, rectal cancer, prostate cancer, gastric cancer, and the like, preferably breast cancer or liver cancer.
  • the conjugate in which the anticancer agent and the diosgenin are bound by a linker is characterized in that it inhibits the resistance of the anticancer agent and also increases the permeability of the cancer cell membrane.
  • the anticancer agent-diogenin conjugate according to the present invention may be administered in various oral and parenteral formulations during clinical administration, and when formulated, the commonly used fillers, extenders, binders, wetting agents, disintegrants, surfactants, etc. Prepared using diluents or excipients.
  • Solid form preparations for oral administration include tablets, patients, powders, granules, capsules, troches, and the like, which form at least one excipient such as starch, calcium carbonate, water, or the like. It is prepared by mixing cross, lactose or gelatin. In addition to simple excipients, lubricants such as magnesium styrate talc are also used.
  • Liquid preparations for oral administration include suspensions, solutions, emulsions, or syrups, and include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. Can be.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerol, gelatin and the like can be used.
  • the effective dosage of the anticancer agent-diogeninine conjugate of the present invention to the human body may vary depending on the age, weight, sex, dosage form, health condition and degree of disease of the patient, and generally about 0.001 to 100 mg / kg / Day, preferably 0.01 to 35 mg / kg / day. Based on an adult patient with a weight of 70 kg, it is generally 0.07 ⁇ 7000 mg / day, preferably 0.7 ⁇ 2500 mg / day, once a day at regular intervals depending on the judgment of the doctor or pharmacist Multiple doses may be administered.
  • the present invention provides an anticancer formulation of a conjugate in which the anticancer agent and diosgenin are linked with a linker.
  • the anticancer formulations according to the invention may be particularly advantageous for patients who have developed resistance to conventional anticancer agents.
  • the present invention provides a nanoparticle in which a conjugate in which a hydrophilic anticancer agent and a hydrophobic diosgenin are linked by a linker is formed by self-assembly.
  • Nanoparticles according to the present invention is a hydrophilic anticancer agent and hydrophobic diosgenin to form a conjugate to exhibit both lipophilic, can be self-assembled into nanoparticles of 200nm or less.
  • nanoparticles were prepared using cytarabine (Cyt) as a hydrophilic anticancer agent.
  • Cyt-DG conjugated nanoparticles have ideal pharmaceutical properties as drug carriers. This is because, according to many conventional studies, nanoparticles having a particle size of 200 nm or less and a negative charge have a long half-life after intravenous administration, and have an enhanced permeation and retention effect at cancerous sites.
  • Compound 4 was prepared by dehydrating dioxenin (manufactured by Sigma-Aldrich) with chloroform acid. A solution of triphosgene (2.1 g, 7.2 mmol) was prepared in anhydrous THF (50 mL) in an ice bath, and diosgenin (6 g) dissolved in anhydrous THF (80 mL). , 14.4 mmol) was added dropwise over 2 hours. The reaction was warmed up to room temperature overnight. Thereafter, anhydrous pyridine (1.0 mL) diluted in anhydrous THF (10 mL) was added dropwise to the reaction at 0 ° C. The resultant was continuously stirred for 1 hour, and the precipitate was filtrated, the filtrate was concentrated and dried to obtain Compound 4, and the yield was calculated to calculate the yield. Used directly for the next step reaction.
  • the crude product is obtained as a white solid through filtration and solvent evaporation, and the crude product is purified by flash column chromatography (0.5% -1% methanol and aqueous ammonia in ethyl acetate) to obtain Compound 6. Got it.
  • Step 3 Preparation of the target compound 1a
  • Step 4 Preparation of the target compounds 1b2 and 1b3.
  • Doxorubicin (DOX) (0.02 mmol) and TEA (triethylamine) (10 mL) are dissolved in DMF (dimethylformamide), mixed well, and then compound 11 (0.05 mmol) is added. The mixture is dark stirred at room temperature for 24 hours. After reaction, dilute with DCM (Dichloromethane), wash with water and saturated brine and remove DMF. The organic layer was dried over Na 2 SO 4 , filtered, and distilled under reduced pressure to obtain a dark red powder, which was purified by a silica gel column to obtain Compound 1c, a final product.
  • DOX Doxorubicin
  • TEA triethylamine
  • Step 3 Preparation of the target compound 1d.
  • Cyt-DG conjugate nanoparticles used a known nanoprecipitation method [Y. Jin, R. Xin, P. Ai, and D. Chen, Int J Pharm, 350, pp. 330 (2008)].
  • MCF-7 human breast cancer cell line
  • MDA-MB-231 breast cancer cell line isolated from MTX-treated breast cancer patients who were resistant to MTX (resistance)
  • 10% FBS and 1% penicillin-streptomycin were fed and cultured in RPMI 1640 culture with 5% CO 2 and 37 ° C humid air conditions.
  • the cultured cells were dispensed in 96-well plates at 1 ⁇ 10 5 / well concentrations, and the wells filled with cells were treated with test compounds, and after 48 hours of incubation, 20 ⁇ L of MTT solution (5 mg / mL in phosphate-buffered). saline (PBS)) was added and further incubated for 4 hours.
  • PBS phosphate-buffered
  • the antiproliferative activity IC 50 values for the MDA-MB-231 breast cancer cell line are shown in Table 1 below.
  • the breast cancer cell line (MCF-7) that had never been treated with the anticancer agent MTX (MCF-7) showed an excellent anticancer activity when the MTX treatment
  • the breast cancer cell line (MDA-) that had been treated with MTX MB-231) is resistant to MTX, and it can be seen that anti-activity is rarely observed when treated with MTX alone.
  • the MTX-DG conjugate is treated as in Examples 1 and 2 according to the present invention, it can be seen that the effect that can overcome the MTX resistance.
  • compounds 1b1, 1b2, 1b3 is different in the length of the linker connecting between MTX and DG, the longer the linker was found to be more excellent anti-cancer activity by reducing the steric hindrance effect.
  • the linkers of Compounds 1b2 and 1b3 contained more amine groups than the linkers of Compound 1b1, and thus, the linkers of Compounds 1b1 were better absorbed into the cancer cell membrane.
  • diosgenin (DG) alone also showed anti-cancer activity from a concentration of 65 ⁇ M or more, it can be understood that the results of Table 1 came out.
  • the anticancer agent-diogenin conjugate according to the present invention is better to penetrate into cancer cells as compared to the case of using an anticancer agent alone, because it can overcome the anticancer drug resistance and improve anticancer activity, it can be useful as an anticancer agent formulation.
  • Experimental Example 2 is to evaluate the inhibitory effect using the kit to evaluate the activity of dihydrofolate reductase (DHFR) in vivo in the enzyme assay (enzyme assay), the actual dihydrofolate reductase (MTX-DG conjugate) DHFR) enzyme activity was evaluated.
  • DHFR dihydrofolate reductase
  • DHFR inhibition evaluation was assessed by monitoring NADPH oxidation in a microplate reader (340 nm) as described in the DHFR assay kit (Product Code CS0340, Saint Louis, Missouri 63103 USA).
  • DHFR inhibition IC 50 values are shown in Table 2 below.
  • the DHFR inhibitory activity of the MTX-DG conjugate was lower than that of MTX alone (3.39nM). This result is in agreement with previous studies that, after chemical modification of the glutamate residues of MTX, most of the conjugates result in decreased affinity for the target enzyme.
  • the inhibitory activity of the MTX-DG conjugate increased as the length of linker linking MTX and DG (1b1 ⁇ 1b2 ⁇ 1b3) increased. This result means that the length of the linker is important to maintain the affinity for the enzyme.
  • Example 1 Compound 1a
  • Example 2 Compound 1b3
  • the affinity to DHFR of Example 1 was higher, which was higher than that of Example 1 (Compound 1a). It is expected as a result of the disulfide bond present in the linker.
  • FIG. 3 shows (a) MTX, (b) Example 1 (Compound 1a), (c) Example 1 (Compound 1a) + GSH, (d) Example 2 (Compound 1b3), (e) Example 2 ( HPLC analysis of compound 1b3) + GSH.
  • FIG. 3 (c) shows the appearance of a new HPLC peak at 4.76 minutes of retention time, indicating rapid release of MTX from the MTX-DG conjugate of Example 1 (Compound 1a). Indicates.
  • the retention time of the MTX emitted from the MTX-DG conjugate in FIG. 3 (c) slightly differs from the MTX retention time in FIG. 3 (a), which is determined from the MTX-DG conjugate in FIG. 3 (c). This is because the released MTX is covalently linked to cysteamine through amide bonds.
  • the MTX-DG conjugate of Example 2 (Compound 1b3) in FIG.
  • DG dioxenin
  • DSA Compound 10
  • DOX doxorubicin
  • DOX-DG conjugate prepared in Example 3, respectively.
  • IC 50 was evaluated by the MTT quantification method, and the results are shown in Table 3 below.
  • Figure 1 (A) is a graph measuring the cell survival rate 48 hours after administration of DG, DSA, DOX, DOX-DG to HepG2 (human-derived liver cancer cells).
  • Figure 1 (B) is a graph measuring the cell survival rate 48 hours after the administration of DG, DSA, DOX, DOX-DG to L929 (mouse fibroblast cell line).
  • HepG2 human-derived liver cancer cells
  • Figure 1 (A) was shown that the DOX-DG conjugate of Example 3 has the highest cancer cell toxicity.
  • FIG. 1 (B) L929 (mouse fibroblast cell line; normal cell control) showed similar trends in all of DG, DSA, DOX, and DOX-DG.
  • the DOX-DG conjugate of Example 3 was most toxic to liver cancer cells (HepG2), and cytotoxicity was lower in fibroblasts (L929) than when DOX alone was administered.
  • Example 3 To determine the extent to which the DOX-DG conjugate prepared in Example 3 releases anticancer agents in response to changes in pH environment, the pH was set in 5.0, 6.5 and 7.4 conditions in vitro, and then the amount of DOX released was detected. The results are shown in FIG.
  • Example 2 is a graph measuring the amount of DOX released by the DOX-DG conjugate prepared in Example 3 according to a change in pH environment.
  • the relatively slow and low release of DOX at pH 7.4 indicates that the DOX-DG is relatively stable in the body's blood. Rapid and more release of DOX in acidic environments suggests selective release of tumor cells in endosomal / lysosomal environments.
  • the anticancer agent-diogenin conjugate according to the present invention selectively releases the anticancer agent in the vicinity of the tumor cells and is stable in the general body environment because it is not released, and thus may be useful as an anticancer agent formulation.
  • MCF-7 cell line was dispensed at a concentration of 1.0 ⁇ 10 4 cells on coverslips in a 12-well plate and incubated overnight. The cells were treated with 10 ⁇ g / mL Rhodamine B (fluorescent dye) or Rhodamine B labeled Cyt-DG conjugate nanoparticles and incubated at 37 ° C. for 4 hours. Next, the culture solution containing rhodamine B or rhodamine B labeled Cyt-DG conjugate nanoparticles was removed, washed twice with cold PBS, and then lysed with 1% Triton x-100 for 5 minutes.
  • Rhodamine B fluorescent dye
  • Rhodamine B labeled Cyt-DG conjugate nanoparticles was removed, washed twice with cold PBS, and then lysed with 1% Triton x-100 for 5 minutes.
  • the lid glass was treated with DAPI-containing encapsulant (3 ⁇ L), the cells were mounted on a microscope slide with the dispensed side facing down and sealed with nail polish. Confocal microscopy (Carl Zeiss LSM 510 system) was used to confirm cell uptake and dispersion trends.
  • Rhodamine B-labeled Cyt-DG conjugate nanoparticles As shown in FIG. 4, the cell uptake efficiency of Rhodamine B-labeled Cyt-DG conjugate nanoparticles was clearly higher than Rhodamine B alone. Rhodamine B alone is taken up by cells through passive diffusion, while Rhodamine B labeled Cyt-DG conjugate nanoparticles are taken up by cells by endocytosis (see FIG. 8).
  • cells were dispensed at a concentration of 1.0 ⁇ 10 5 cells / well in a 96-well plate, and when the wells were about 80% full, Cyt-DG conjugates were treated at various concentrations, and cultured for 48 hours or 72 hours. .
  • PBS buffer containing 10 ⁇ L of MTT (5 mg / mL) solution was added and incubated for another 4 hours. After incubation, the culture medium containing the drug was removed and replaced with 200 ⁇ L of isopropanol at room temperature. The absorbance of each well was quantified with a microplate reader (570 nm).
  • HL-60 Acute Promyelocytic Leukemia Cell Line
  • MCF-7 non-metastatic human breast cancer cell line
  • MDA-MB-231 metalastatic human breast cancer cell line
  • DG 100 > 100 73.98 Cyt > 1000 > 1000 > 1000 Cyt-DG Conjugate Nanoparticles 146.68 30.05 81.86
  • Cyt-DG conjugated nanoparticles As shown in Table 4, after 48 hours of incubation in HL-60 cell line, the anticancer activity of Cyt-DG conjugated nanoparticles was higher than that of DG and Cyt alone treatment group, and improved anticancer activity of Cyt-DG conjugated nanoparticles. Activity is expected to be due to increased accumulation into cancer cells. Cytarabine (Cyt) is generally not known to respond to solid cancer treatment, but surprisingly Cyt-DG conjugate nanoparticles in the MCF-7 cell line (solid cancer) showed an IC 50 30.05 ⁇ M value. Similarly, Cyt-DG conjugated nanoparticles showed IC 50 81.86 ⁇ M in the MDA-MB-231 cell line (solid cancer).
  • Cytarabine is a hydrophilic anticancer agent and diosgenin (DG) is a hydrophobic steroidal saponin. Cyt-DG conjugates exhibit both affinity, which allows for self-assembly of stable nanoparticles.
  • CAC Critical aggregation concentration
  • FIG. 5 is a graph confirming the critical aggregation concentration (CAC) of the Cyt-DG conjugate by LC-MS spectrum.
  • the Cyt-DG conjugate showed a very low critical aggregation concentration (12.5 ⁇ g / mL), indicating high stability to dilution.
  • Example 6 is (a) dynamic light scattering (DLS) and (b) transmission electron microscopy (TEM) to determine particle size distribution, zeta potential, and morphology of the Cyt-DG conjugate nanoparticles prepared in Example 5, respectively. The result of the analysis.
  • DLS dynamic light scattering
  • TEM transmission electron microscopy
  • the DLS analysis of FIG. 5 (a) showed that the particle size distribution was narrow in the 189.6 nm region and exhibited a surface charge of -8.42 mV.
  • the TEM image of Figure 5 (b) was confirmed that the nanoparticles exhibit a spherical shape, the particle size was found to have a diameter of approximately 75nm smaller than the DLS results. This result is expected to be due to the effect of reduced nanoparticles during the TEM sample preparation.
  • the label content of rhodamine B was less than 1%, the size of the rhodamine B labeled Cyt-DG conjugate nanoparticles did not increase.
  • Cyt-DG conjugated nanoparticles have ideal pharmaceutical properties as drug carriers. This is because, according to many conventional studies, nanoparticles having a particle size of 200 nm or less and a negative charge have a long half-life after intravenous administration, and have an enhanced permeation and retention effect at cancerous sites.
  • the physicochemical stability of Cyt-DG conjugate nanoparticles was evaluated by particle size change and polydiversity index (PDI) evaluation using DLS. Specifically, the particle size change of Cyt-DG conjugate nanoparticles in 0.1M PBS solution, 5% glucose solution, PBS solution containing 1% FBS, PBS solution containing 10% FBS was measured using DLS.
  • FIG. 7 is a graph of (a) diameter change of Cyt-DG conjugate nanoparticles in 0.1M PBS, 5% glucose solution by DLS, and (b) Cyt-DG conjugate in 1% and 10% FBS solution. The diameter change of the gate nanoparticles is measured by DLS.
  • the airtight cloth was filled to prepare a powder.
  • tablets were prepared by tableting according to a conventional method for producing tablets.
  • the capsule was prepared by filling in gelatin capsules according to the conventional method for producing a capsule.
  • the conjugate according to the invention was dissolved in an appropriate volume of sodium chloride BP for injection, the pH of the resulting solution was adjusted to pH 3.5 with dilute hydrochloric acid BP, and the volume was adjusted with sodium chloride BP for injection and thoroughly mixed. .
  • the solution was filled into a 5 ml Type I ampoule made of clear glass, encapsulated under an upper grid of air by dissolving the glass, and sterilized with an autoclave at 120 ° C. for at least 15 minutes to prepare an injection solution.
  • Conjugates in which the anticancer agent and the diosgenin according to the present invention are combined with a linker are conjugated with a target anticancer agent by using a diosgenin (DG), which is similar to a constituent of the cancer cell membrane, to overcome the anticancer drug resistance and to prevent cancer cells. It has the effect of remarkably improving the anticancer activity by enhancing the permeability of the membrane, and in the case of forming a conjugate with hydrophobic diosgenin (DG) in the case of a hydrophilic anticancer agent, it exhibits both lipophilic properties. It can be self-assembled, self-assembled into nanoparticles of 200nm or less, and thus may be useful as an anticancer formulation.
  • DG diosgenin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물에 관한 것으로, 본 발명에 따른 항암제와 디오스제닌이 링커로 결합된 컨쥬게이트는, 암세포 막의 구성성분과 유사한 디오스제닌(diosgenin, DG)을 이용하여 타겟 항암제와 컨쥬게이트(conjugate)하여, 항암제 내성을 극복하고, 암세포 막의 투과도를 증진하여 항암활성을 현저히 향상시키는 효과가 있다.

Description

항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
본 발명은 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물에 관한 것이다.
암은 우리나라에서 순환기 질환과 함께 가장 많이 발생하는 질환이다. 정상적으로 세포는 세포내 조절기능에 의해 분열하며 성장하고 죽어 없어지기도 하며 세포수의 균형을 유지하며 살아간다. 이러한 세포가 손상을 받는 경우, 증식과 억제가 조절되지 않는 비정상적인 세포들이 되어 통제되지 못하고 과다하게 증식할 뿐만아니라, 주위 조직 및 장기에 침입하여 종괴 형성 및 정상 조직의 파괴를 초래하는 경우가 있다. 이 상태를 암 또는 종양(cancer)이라 정의하고 있다.
종양에는 양성종양과 악성종양이 있으며, 양성종양은 비교적 서서히 성장하며, 신체 여러 부위에 확산, 전이하지 않으며 제거하여 치유시킬 수 있는 종양을 말하고 특이한 경우를 제외하고 대개의 양성종양은 생명에 위협을 초래하지는 않는다. 이와 달리 악성종양은 빠른 성장과 침윤성(파고들거나 퍼져 나감) 성장 및 체내 각 부위에 확산 전이(원래 장소에서 떨어진 곳까지 이동함)하여 생명에 위험을 초래하는 종양을 말한다.
암세포가 발생하는 기전은, 세포가 성장(Growth), 분화(Differentiation), 프로그램된 죽음(Apoptosis)의 과정을 밟거나 성장이 정지된 상태를 유지하고 있으나 세포의 유전자 중 일부에 이상이 발생하여 이들 유전자의 산물인 단백질의 특성이 바뀌게 되고 그 결과로 세포 성장 조절에 이상이 발생하여 암세포가 생기는 것으로 생각하고 있다.
항암제의 반복적인 투여로 암환자들의 부작용과 생체 내에서의 효율에 많은 변화가 발생한다. 이러한 반복투여로 인한 항암제의 내성을 극복하고 암세포로의 투과도를 증진시키는 것은 중요한 과제이다.
이에, 본 발명자들은 세포막의 구성성분과 유사한 디오스제닌(diosgenin, DG)을 이용하여 타겟 항암제와 컨쥬게이트(conjugate)하여, 항암제 내성을 극복하고, 세포막의 투과도를 증진하여 항암활성도 향상시킬 수 있음을 발견하고, 본 발명을 완성하였다. 또한, 친수성 항암제의 경우 소수성의 디오스제닌(diosgenin, DG)과 컨쥬게이트를 형성할 경우 양쪽 친매성을 나타내고, 이는 안정한 나노입자의 자가조립(self-assemble)을 가능하게 함을 확인하고 본 발명을 완성하였다.
[선행기술문헌]
비특허문헌 1: Nutrients 2015, 7, 4938-4954
본 발명의 목적은 항암제 내성을 극복하고, 암세포 막의 투과도를 증진하여 항암활성도 향상시킬 수 있는, 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.
본 발명의 다른 목적은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 항암제와 디오스제닌이 링커로 결합된 컨쥬게이트 항암 제형을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트가 자가조립에 의해 형성되는 나노입자를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 제공한다.
또한, 본 발명은 하기 반응식 1에 나타난 바와 같이,
디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
화합물 4에 화합물 5를 첨가하여, 화합물 6을 얻는 단계(단계 2); 및
화합물 6에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 1을 얻는 단계(단계 3);
를 포함하는 하기 화학식 1a로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 1]
Figure PCTKR2017001636-appb-I000001
나아가, 본 발명은 하기 반응식 2에 나타난 바와 같이,
디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
화합물 4에 화합물 7을 첨가하여, 화합물 8을 얻는 단계(단계 2);
화합물 8에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 9를 얻는 단계(단계 3); 및
화합물 9에서 보호기(Boc, tert-Butyloxycarbonyl)를 제거하여, 화합물 2를 얻는 단계(단계 4);
를 포함하는 하기 화학식 1b로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 2]
Figure PCTKR2017001636-appb-I000002
상기 반응식 2에서, n은 0-2의 정수이다.
또한, 본 발명은 하기 반응식 3에 나타난 바와 같이,
디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
화합물 11에 독소루비신(Doxorubicin, DOX)을 첨가하여, 화합물 3을 얻는 단계(단계 3);
를 포함하는 하기 화학식 1c로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 3]
Figure PCTKR2017001636-appb-I000003
나아가, 본 발명은 하기 반응식 4에 나타난 바와 같이,
디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
화합물 11에 시타라빈(Cytarabine, Cyt)을 첨가하여, 화합물 1d를 얻는 단계(단계 3);
를 포함하는 하기 화학식 1d로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 4]
Figure PCTKR2017001636-appb-I000004
또한, 본 발명은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물을 제공한다.
나아가, 본 발명은 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 항암 제형을 제공한다.
또한, 본 발명은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트가 자가조립에 의해 형성되는 나노입자를 제공한다.
본 발명에 따른 항암제와 디오스제닌이 링커로 결합된 컨쥬게이트는, 암세포 막의 구성성분과 유사한 디오스제닌(diosgenin, DG)을 이용하여 타겟 항암제와 컨쥬게이트(conjugate)하여, 항암제 내성을 극복하고, 암세포 막의 투과도를 증진하여 항암활성을 현저히 향상시키는 효과가 있다. 또한, 친수성 항암제의 경우 소수성의 디오스제닌(diosgenin, DG)과 컨쥬게이트를 형성할 경우 양쪽 친매성을 나타내고, 이는 안정한 나노입자의 자가조립(self-assemble)을 가능하게 하여, 200nm 이하의 나노입자로 자가조립될 수 있다.
도 1(A)는 HepG2(인간 유래 간암세포)에 DG, DSA, DOX, DOX-DG를 투여하고 48시간 후의 세포생존율을 측정한 그래프이다.
도 1(B)는 L929 세포(murine fibroblast cell line)에 DG, DSA, DOX, DOX-DG를 투여하고 48시간 후의 세포생존율을 측정한 그래프이다.
도 2는 실시예 3에서 제조한 DOX-DG 컨쥬게이트가 pH 환경 변화에 따른 DOX 방출량을 측정한 그래프이다.
도 3은 (a)MTX, (b)실시예 1(화합물 1a), (c)실시예 1(화합물 1a)+GSH, (d)실시예 2(화합물 1b3), (e)실시예 2(화합물 1b3)+GSH에 대한 HPLC 분석 결과이다.
도 4는 Cyt-DG 컨쥬게이트 나노입자의 세포흡수를 공초점 주사 레이져 현미경을 통해 확인한 형광 이미지이다.
도 5는 Cyt-DG 컨쥬게이트의 임계응집농도(CAC)를 LC-MS 스펙트럼으로 확인한 그래프이다.
도 6은 실시예 5에서 제조한 Cyt-DG 컨쥬게이트 나노입자의 입자크기분포, 제타포텐셜 및 모폴로지 각각을 알아보기 위해 (a) DLS(Dynamic light scattering) 및 (b) TEM(transmission electron microscopy)으로 분석한 결과이다.
도 7은 (a) 0.1M PBS, 5% glucose 용액 내에서 Cyt-DG 컨쥬게이트 나노입자의 직경 변화를 DLS로 측정한 그래프이고, (b) 1% 및 10% FBS 용액 내에서 Cyt-DG 컨쥬게이트 나노입자의 직경 변화를 DLS로 측정한 그래프이다.
도 8은 실시예 5에서 제조한 Cyt-DG 컨쥬게이트 나노입자가 세포 흡수되는 과정을 나타낸 모식도이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 제공한다. 여기서, 상기 디오스제닌은 암세포 막의 구성성분과 유사하여 암세포 막 투과도가 향상되고, 항암제 내성을 극복할 수 있는 효과가 있다.
상기 항암제로는 메토트렉세이트(Methotrexate, MTX), 독소루비신(Doxorubicin, DOX), 시타라빈(Cytarabine, Cyt) 등을 사용할 수 있다.
상기 링커로는
Figure PCTKR2017001636-appb-I000005
,
Figure PCTKR2017001636-appb-I000006
,
Figure PCTKR2017001636-appb-I000007
,
Figure PCTKR2017001636-appb-I000008
,
Figure PCTKR2017001636-appb-I000009
등을 사용할 수 있다.
본 발명에 따른 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 바람직한 예로는 하기 화학식 1a 내지 화학식 1d로 표시되는 컨쥬게이트를 예로들 수 있다.
[화학식 1a]
Figure PCTKR2017001636-appb-I000010
[화학식 1b]
Figure PCTKR2017001636-appb-I000011
(상기 화학식 2에서, n은 0-2의 정수이다)
[화학식 1c]
Figure PCTKR2017001636-appb-I000012
.
[화학식 1d]
Figure PCTKR2017001636-appb-I000013
본 발명에 따른 항암제와 디오스제닌이 링커로 결합된 컨쥬게이트는, 암세포 막의 구성성분과 유사한 디오스제닌(diosgenin, DG)을 이용하여 타겟 항암제와 컨쥬게이트(conjugate)하여, 암세포 막의 투과도를 증진하여 항암제 내성을 극복하고, 더불어 DG 본연의 항암활성도 있어 항암활성도 향상시키는 효과가 있다.
본 발명의 상기 항암제-디오스제닌 컨쥬게이트는 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 약학적으로 허용가능한 염이란 표현은 환자에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서 이 염에 기인한 부작용이 항암제-디오스제닌 컨쥬게이트의 이로운 효능을 떨어뜨리지 않는 항암제-디오스제닌 컨쥬게이트의 어떠한 유기 또는 무기 부가염을 의미한다.
이들 염은 유리산으로는 무기산과 유기산을 사용할 수 있으며, 무기산으로는 염산, 브롬산, 질산, 황산, 과염소산, 인산 등을 사용할 수 있고, 유기산으로는 구연산, 초산, 젖산, 말레산, 푸마린산, 글루콘산, 메탄설폰산, 글리콘산, 숙신산, 타타르산, 갈룩투론산, 엠본산, 글루탐산, 아스파르트산, 옥살산, (D) 또는 (L) 말산, 말레산, 메테인설폰산, 에테인설폰산, 4-톨루엔술폰산, 살리실산, 시트르산, 벤조산 또는 말론산 등을 사용할 수 있다.
또한, 이들 염은 알칼리 금속염(나트륨염, 칼륨염 등) 및 알칼리 토금속염(칼슘염, 마그네슘염 등) 등을 포함한다. 예를 들면, 산부가염으로는 아세테이트, 아스파테이트, 벤즈에이트, 베실레이트, 바이카보네이트/카보네이트, 바이설페이트/설페이트, 보레이트, 캄실레이트, 시트레이트, 에디실레이트, 에실레이트, 포메이트, 퓨마레이트, 글루셉테이트, 글루코네이트, 글루큐로네이트, 헥사플루오로포스페이트, 하이벤제이트, 하이드로클로라이드/클로라이드, 하이드로브로마이드/브로마이드, 하이드로요오디드/요오디드, 이세티오네이트, 락테이트, 말레이트, 말리에이트, 말로네이트, 메실레이트, 메틸설페이트, 나프틸레이트, 2-나프실레이트, 니코티네이트, 나이트레이트, 오로테이트, 옥살레이트, 팔미테이트, 파모에이트, 포스페이트/수소 포스페이트/이수소 포스페이트, 사카레이트, 스테아레이트, 석시네이트, 타르트레이트, 토실레이트, 트리플루오로아세테이트, 알루미늄, 알기닌, 벤자틴, 칼슘, 콜린, 디에틸아민, 디올아민, 글라이신, 라이신, 마그네슘, 메글루민, 올아민, 칼륨, 나트륨, 트로메타민, 아연염 등이 포함될 수 있으며, 이들 중 하이드로클로라이드 또는 트리플루오로아세테이트가 바람직하다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 항암제-디오스제닌 컨쥬게이트를 유기용매, 예를 들면 메탄올, 에탄올, 아세톤, 메틸렌클로라이드, 아세토니트릴 등에 녹이고 유기산 또는 무기산을 가하여 생성된 침전물을 여과, 건조하여 제조되거나, 용매와 과량의 산을 감압 증류한 후 건조하거나 유기용매 하에서 결정화시켜셔 제조할 수 있다.
또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은 염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻는다.
나아가, 본 발명은 상기 항암제-디오스제닌 컨쥬게이트 및 이의 약학적으로 허용되는 염뿐만 아니라, 이로부터 제조될 수 있는 가능한 용매화물, 수화물, 이성질체 등을 모두 포함한다.
제조방법 1
본 발명은 하기 반응식 1에 나타난 바와 같이,
디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
화합물 4에 화합물 5를 첨가하여, 화합물 6을 얻는 단계(단계 2); 및
화합물 6에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 1을 얻는 단계(단계 3);
를 포함하는 하기 화학식 1a로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 1]
Figure PCTKR2017001636-appb-I000014
본 발명에 따른 제법 1에 있어서, 상기 단계 1은 디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계이다.
구체적으로, 단계 1에서 사용가능한 용매로는 무수 THF (anhydrous THF), 무수 DCM 등을 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 5-10시간 동안 반응할 수 있다.
촉매로는 트라이포스겐(triphosgene), 포스겐(phosgene)이나 이미다졸리움 클로라이드 유도체(imidazolium chloride derivatives)와 무수 피리딘 (anhydrous pyridine) 등이 사용될 수 있다.
본 발명에 따른 제법 1에 있어서, 상기 단계 2는 화합물 4에 화합물 5를 첨가하여, 화합물 6을 얻는 단계이다.
구체적으로, 단계 2에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 1-24시간 동안 반응할 수 있다.
본 발명에 따른 제법 1에 있어서, 상기 단계 3은 화합물 6에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 1a를 얻는 단계이다.
구체적으로, 단계 3에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 30분 내지 5일 동안 반응할 수 있다.
제조방법 2
본 발명은 하기 반응식 2에 나타난 바와 같이,
디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
화합물 4에 화합물 7을 첨가하여, 화합물 8을 얻는 단계(단계 2);
화합물 8에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 9를 얻는 단계(단계 3); 및
화합물 9에서 보호기(Boc, tert-Butyloxycarbonyl)를 제거하여, 화합물 2를 얻는 단계(단계 4);
를 포함하는 하기 화학식 1b로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 2]
Figure PCTKR2017001636-appb-I000015
상기 반응식 2에서, n은 0-2의 정수이다.
본 발명에 따른 제법 2에 있어서, 상기 단계 1은 제법 1의 단계 1과 동일하다.
본 발명에 따른 제법 2에 있어서, 상기 단계 2는 화합물 4에 화합물 7을 첨가하여, 화합물 8을 얻는 단계이다.
구체적으로, 단계 2에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 1-24시간 동안 반응할 수 있다.
본 발명에 따른 제법 2에 있어서, 상기 단계 3은 화합물 8에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 9를 얻는 단계이다.
구체적으로, 단계 3에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 30분 내지 5일 동안 반응할 수 있다.
본 발명에 따른 제법 2에 있어서, 상기 단계 4는 화합물 9에서 보호기(Boc, tert-Butyloxycarbonyl)를 제거하여, 화합물 2를 얻는 단계이다. 보호기를 제거하기 위해서는 TFA를 사용하는 등 공지된 모든 방법을 사용할 수 있다.
구체적으로, 단계 4에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠, 클로로포름 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 2-6시간 동안 반응할 수 있다.
제조방법 3
본 발명은 하기 반응식 3에 나타난 바와 같이,
디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
화합물 11에 독소루비신(Doxorubicin, DOX)을 첨가하여, 화합물 3을 얻는 단계(단계 3);
를 포함하는 하기 화학식 1c로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 3]
Figure PCTKR2017001636-appb-I000016
본 발명에 따른 제법 3에 있어서, 상기 단계 1은 디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계이다. 여기서, 본 단계 1의 반응을 위해 DMAP(4-dimethylaminopyridine) 및 피리딘을 추가로 사용할 수 있다.
구체적으로, 단계 1에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 25-75℃에서 반응할 수 있으며,
반응시간으로는 10-30시간 동안 반응할 수 있다.
본 발명에 따른 제법 3에 있어서, 상기 단계 2는 화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계이다. 여기서, 본 단계 2의 반응을 위해 DCC(N,N'-dicyclohexylcarbodiimide)를 추가로 사용할 수 있다.
구체적으로, 단계 2에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 0-30℃에서 반응할 수 있으며,
반응시간으로는 4-8시간 동안 반응할 수 있다.
본 발명에 따른 제법 3에 있어서, 상기 단계 3은 화합물 11에 독소루비신(Doxorubicin, DOX)을 첨가하여, 화합물 1c를 얻는 단계이다. 여기서, 본 단계 3의 반응을 위해 TEA(triethylamine)를 추가로 사용할 수 있다.
구체적으로, 단계 3에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 10-40℃에서 반응할 수 있으며,
반응시간으로는 10-30시간 동안 반응할 수 있다.
제조방법 4
본 발명은 하기 반응식 4에 나타난 바와 같이,
디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
화합물 11에 시타라빈(Cytarabine, Cyt)을 첨가하여, 화합물 1d를 얻는 단계(단계 3);
를 포함하는 하기 화학식 1d로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법을 제공한다.
[반응식 4]
Figure PCTKR2017001636-appb-I000017
본 발명에 따른 제법 4에 있어서, 상기 단계 1은 제법 3의 단계 1과 동일하다.
본 발명에 따른 제법 4에 있어서, 상기 단계 2는 제법 3의 단계 2와 동일하다.
본 발명에 따른 제법 4에 있어서, 상기 단계 3은 화합물 11에 시타라빈(Cytarabine, Cyt)을 첨가하여, 화합물 1d를 얻는 단계이다. 여기서, 본 단계 3의 반응을 위해 TEA(triethylamine)를 추가로 사용할 수 있다.
구체적으로, 단계 3에서 사용가능한 용매로는 디클로로메탄(DCM), t-부탄올, 에탄올, 테트라하이드로퓨란(THF), 벤젠, KOH/MeOH, MeOH, 톨루엔, CH2Cl2, 헥산, 디메틸포름아미드(DMF), 디이소프로필에테르, 디에틸에테르, 디옥산, 디메틸아세트아미드(DMA), 디메틸설폭사이드(DMSO), 아세톤, 클로로벤젠 등을 단독으로 또는 혼합하여 사용할 수 있고,
반응온도로는 10-40℃에서 반응할 수 있으며,
반응시간으로는 10-30시간 동안 반응할 수 있다.
약학적 조성물
본 발명은 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물을 제공한다.
여기서, 상기 암은 유방암, 간암, 여러 다른 형태의 백혈병(급성 및 만성 백혈병), 림프암(lymphoma), 대장암, 직장암, 전립선암, 위암 등일 수 있고, 바람직하게는 유방암 또는 간암일 수 있다.
상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트는 항암제의 내성을 억제하는 것을 특징으로 하고, 또한 암세포 막의 투과도를 증가시키는 것을 특징으로 한다.
본 발명에 따른 항암제-디오스제닌 컨쥬게이트는 임상 투여시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있으며, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.
경구투여를 위한 고형 제제에는 정제, 환자, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 본 발명의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
또한, 본 발명의 항암제-디오스제닌 컨쥬게이트의 인체에 대한 효과적인 투여량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 달라질 수 있으며, 일반적으로 약 0.001~100 mg/kg/일이며, 바람직하게는 0.01~35 mg/kg/일이다. 몸무게가 70 ㎏인 성인 환자를 기준으로 할 때, 일반적으로 0.07~7000 mg/일이며, 바람직하게는 0.7~2500 ㎎/일이며, 의사 또는 약사의 판단에 따라 일정시간 간격으로 1일 1회 내지 수회로 분할 투여할 수도 있다.
항암 제형
본 발명은 상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 항암 제형을 제공한다. 본 발명에 따른 항암 제형은 종래 항암제에 대한 내성이 발현한 환자에게 특히 유리할 수 있다.
자가조립 나노입자
본 발명은 친수성 항암제와 소수성 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트가 자가조립에 의해 형성되는 나노입자를 제공한다. 본 발명에 따른 나노입자는 친수성 항암제와 소수성 디오스제닌이 컨쥬게이트를 형성하여 양쪽 친매성을 나타내게 되어, 200nm 이하의 나노입자로 자가조립될 수 있다.
일례로, 실시예 5에서 시타라빈(Cyt)을 친수성 항암제로 사용하여 나노입자를 제조하였다. Cyt-DG 컨쥬게이트 나노입자는 약물전달체로서 이상적인 약학적 성질을 갖고 있다. 왜냐하면, 많은 종래의 연구결과에서 200 nm 이하의 입자크기와 표면전하가 음전하인 나노입자는 정맥투여 이후에 반감기가 길고, 암종양 부위에서 증진된 투과 및 유지 효과가 있다는 것이 알려져 있기 때문이다.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
< 실시예 1> MTX-DG 컨쥬게이트의 제조 1 (화합물 1a)
Figure PCTKR2017001636-appb-I000018
단계 1: 화합물 4의 준비
디오스제닌 (제조사: Sigma-Aldrich)을 클로로포름산과 탈수반응시켜 화합물 4를 제조하였다. 얼음물(ice bath)에서 무수 THF(anhydrous THF) (50 mL)에 트라이포스겐(triphosgene, 2.1 g, 7.2 mmol) 용액을 제조하고, 여기에 무수 THF (anhydrous THF, 80 mL)에 녹인 diosgenin (6 g, 14.4 mmol) 용액을 한방울씩 (dropwise) 2시간 이상에 걸쳐거 첨가하였다. 그 반응물을 하루를 걸쳐서 (overnight) 실온(room temperature)까지 온도를 올렸다(warmed up). 그 이후에 무수 THF(anhydrous THF, 10 mL)에 희석된 무수 피리딘(anhydrous pyridine, 1.0 mL)이 그 반응물에 0℃에서 한방울씩 (dropwise) 첨가하였다. 그 결과물은 1시간동안 지속적으로 교반(stirred)하였고 그 침전물을 여과(filtrated)하여서 여과물을(filtrate) 농축 (concentrated)하고 건조(dried)하여 화합물 4를 얻고 수득률(yield)을 계산하여 정제과정 없이 바로 (directly) 다음 단계의 반응에 사용하였다.
단계 2: 화합물 6의 준비
화합물 5 (10 당량)를 녹인 무수 DCM(Dichloromethane) 용액(5mL)을 디오스게닐 클로로포르메이트 (화합물 4, 500mg, 1.05mmol, 1당량)를 녹인 무수 DCM 용액(20mL)에 얼음조에서 10시간 동안 천천히 첨가하여 얻은 반응혼합물을 상온에서 3시간 동안 두었다. 상기 반응혼합물을 DCM(25mL)로 희석한 다음, 물과 포화 염수 (2×25mL)로 세척하고, 무수 MgSO4로 건조하였다. 다음으로, 여과 및 용매 증발과정을 통해 조생성물(crude products)을 흰색 고체로 얻고, 상기 조생성물을 플래쉬 컬럼크로마토그래피(0.5% -1% methanol and aqueous ammonia in ethyl acetate)로 정제하여 화합물 6을 얻었다.
단계 3: 목적 화합물 1a의 제조
메토트렉세이트(Methotrexate, MTX) (100mg, 0.22 mmol)과 N-methylmorpholine (0.05mL, 0.44mmol)을 녹인 무수 DMF(dimethylformamide) (5mL) 용액에 TBTU(70.6mg, 0.44mmol)을 녹인 DMF 용액 (5mL)을 얼음조에서 천천히 45분간 첨가하였다. 다음으로, 단계 1에서 제조한 화합물 6 (143.7mg, 0.25mmol)을 고체 상태로 첨가하고, 0℃에서 45분간 교반하고, 질소 분위기하에서 빛을 차단한 상태로 5일간 상온으로 온도를 올렸다. 반응물은 클로르포름 (30mL)으로 희석시키고, 1N HCl 용액 및 증류수로 씻어내고, MgSO4 하에서 건조하고 농축하여 조생성물을 얻고, 이를 플래쉬크로마토그래피(5-10% methanol in chloroform)를 이용하여 최종생성물인 화합물 1을 노란색의 고체로 얻었다.
Yield = 65%;
Analytical HPLC, retention time: 41.37 min;
1H NMR (400 MHz, DMSO-d6 ) δ 8.56 (s, 1H), 8.10 (s, 1H), 7.77(s, 2H), 7.757.63 (d. 2H), 7.41 (s, 2H), 7.26 (s, 1H), 6.82 (d, 2H), 6.60 (s,2H), 5.33 (d, 1H), 4.77(s, 2H), 4.31 (m, 2H), 2.76 (t, 4H), 0.96 (s, 3H), 0.90 (d, 3H), 0.73 (s, 6H);
13C NMR (500 MHz, DMSO-d6) δ 173.71, 172.86,166.59, 165.83, 163.30, 163.17, 156.14, 155.64, 151.33, 149.61, 146.46, 140.23, 129.48, 128.93,122.34,122.13,121.90,111.63,108.87,80.65,79.63, 73.52, 66.39, 62.26, 56.17, 55.34, 53.96, 49.87, 19.47, 17.55, 16.46, 15.12;
HRMS (ESI): m/z 1027.6061 (M-1), calculated (C52H72N10O8S2) 1028.50.
<실시예 2> MTX-DG 컨쥬게이트의 제조 2 (화합물 1b)
Figure PCTKR2017001636-appb-I000019
실시예 2a: n=0 (화합물 1b1)
실시예 2b: n=1 (화합물 1b2)
실시예 2c: n=2 (화합물 1b3)
단계 1: 화합물 4의 준비
실시예 1과 동일하게 실시하여 화합물 4를 얻었다.
단계 2: 화합물 8의 준비
상기 실시예 1의 단계 2에서 화합물 5 (10 당량) 대신에 화합물 7(n=0, 8당량)을 사용한 것을 제외하고는 동일하게 실시하여 화합물 8을 얻었다.
단계 3: 화합물 9 또는 목적 화합물 1b1의 제조
상기 실시예 1의 단계 3에서 화합물 6 대신에 화합물 8(n=0)을 사용한 것을 제외하고는 동일하게 실시하여 화합물 9 또는 목적 화합물 1b1을 얻었다. 여기서, 상기 화합물 9는 목적 화합물 1b2 및 1b3의 제조를 위한 다음 단계에 사용된다.
화합물 1b1:
Yield = 71%;
Analytical HPLC, retention time = 29.71 min;
1H NMR (400 MHz, DMSO-d6, ppm) δ 8.55 (s, 1H), 7.91 (s, 1H), 7.77-7.75 (d, J = 8.87, 1H), 7.69-7.65 (d, J = 8.87, 2H), 7.41 (s. 2H), 7.10 (s,1H), 6.83-6.80 (dd, J= 9.10, 2H), 5.31 (s, 1H), 4.78 (s, 2H), 4.29-4.26 (m, 2H), 3.42(dd, 1H) 3.10 (t, 4H), 0.94 (s, 3H), 0.90 (d, 3H), 0.73 (s, 6H);
13C NMR (500 MHz, DMSO-d6) δ 173.51, 172.92, 166.66, 165.93, 163.19, 163.14, 156.19, 155.47, 151.21, 149.56, 146.58, 140.26, 129.49, 129.02, 122.28, 122.03, 121.90, 111.61, 108.87, 80.64, 79.63, 73.40, 66.37, 62.24, 56.16,55.29,54.09,49.87,19.43,17.52,16.43,15.09;
HRMS (ESI): m/z 935.6147 (M-1), calculated (C50H68N10O8) 936.52.
단계 4: 목적화합물 1b2 및 1b3의 제조
화합물 9(n=1)를 첨가한 무수 클로로포름 용액에 TFA (10당량)를 얼음조에서 천천히 첨가하였다. 4시간 후에, TFA를 진공하에 제거하고 시료를 클로로포름으로 희석한 다음, 물과 염수로 세척하였다. 얻어진 조생성물을 HPLC로 정제하여 목적화합물 1b2를 노란색 고체로 얻었다.
화합물 1b2:
Yield = 54%;
Analytical HPLC, retention time = 25.91 min;
1H NMR (400 MHz, DMSO-d6, ppm) δ 8.57 (s, 1H), 8.15 (s, 1H), 7.86(s, 2H), 7.757.63 (d. 2H), 7.42 (s, 1H), 7.26 (s, 1H), 6.82 (d, 2H), 6.60 (s,2H), 5.31 (d, 1H), 4.78 (s, 2H), 4.29 (m, 2H), 0.96 (s, 3H), 0.90 (d, 3H), 0.73 (s, 6H);
13C NMR (600 MHz, DMSO-d6) δ 174.86, 172.98, 167.31, 163.11, 156.26, 155.55, 151.23, 149.58, 146.44, 140.16, 131.97, 129.09, 128.98, 122.04, 121.86, 111.58, 108.85, 80.62, 73.63, 66.34, 62.20, 56.11, 55.27, 49.80,19.47, 17.50, 16.42, 15.09;
HRMS (ESI): m/z 978. 6692 (M-1), calculated (C52H73N11O8) 979.56.
화합물 9(n=2)를 첨가한 무수 클로로포름 용액에 TFA (10당량)를 얼음조에서 천천히 첨가하였다. 4시간 후에, TFA를 진공하에 제거하고 시료를 클로로포름으로 희석한 다음, 물과 염수로 세척하였다. 얻어진 조생성물을 HPLC로 정제하여 목적화합물 1b3을 연노란색 고체로 얻었다.
화합물 1b3:
Yield = 51%;
Analytical HPLC, retention time: 18.45 min;
1H NMR (300 MHz, DMSO-d6, ppm) δ 8.64 (s, 1H), 8.27 (s, 1H), 8.16 (s, 2H), 7.81-7.74 (dd, 2H), 7.36-7.26 (s. 2H), 6.82-6.80 (dd, 2H), 5.31 (s, 1H), 4.83 (s, 1H), 4.28 (m, 3H), 3.23 (s, 3H), 2.99 (s, 3H), 2.20 (t, 2H), 0.96 (s, 3H), 0.91 (d, 3H), 0.73 (s, 6H);
13C NMR (500 MHz, DMSO-d6) δ 174.12, 172.99, 166.77, 163.09,156.55, 155.32, 151.55, 149.24, 144.94, 140.14, 129.61, 129.44, 122.53, 122.17, 121.99, 111.19,108.87, 80.61, 73.90, 66.35, 62.19, 56.12, 55.94, 49.83, 19.42, 17.50, 16.40, 15.07;
HRMS (ESI): m/z 1021.7123 (M-1), calculated (C54H78N12O8) 1022.61.
<실시예 3> DOX-DG 컨쥬게이트의 제조 (화합물 1c)
Figure PCTKR2017001636-appb-I000020
단계 1: 화합물 10(DSA)의 준비
디오스제닌(0.4mmol), 숙신산무수물(1mmol), DMAP(4-dimethylaminopyridine)(0.5mmol)을 DCM(Dichloromethane)에 녹이고 잘 혼합한 후에 피리딘(0.5mL)을 첨적하여 18시간 동안 교반하면서 50℃에서 환류(reflux)하였다. 반응액을 TLC로 확인하면서 최종 용액을 실온으로 냉각하고 물과 염산액으로 씻어낸 다음, 유기용매층을 MgSO4로 건조하고, 유기용매는 증발시켜 옅은 흰색 가루를 얻었고, 이를 실리카겔 컬럼으로 정제하여 화합물 10을 얻었다.
단계 2: 화합물 11의 준비
화합물 10 (0.1mmol), DCC(N,N'-dicyclohexylcarbodiimide) (0.3mmol)와 NHS(N-hydroxysuccinimide) (0.3mmol)을 DCM(Dichloromethane)에 얼음냉탕에서 녹이고 6시간 동안 잘 섞는다. 반응액을 TLC(thin layer chromatography)로 확인하면서, 혼합물 안의 DCC를 필터하여 제거하고, DCM도 증류 제거하여, 화합물 11을 흰색의 가루로 얻었다.
단계 3: 목적 화합물 1c의 제조
독소루비신(Doxorubicin, DOX) (0.02mmol), TEA(triethylamine) (10mL)를 DMF(dimethylformamide)에 녹이고 잘 섞은 다음, 화합물 11 (0.05mmol)을 첨가한다. 혼합물을 실온에서 24시간 동안 암실 교반한다. 반응 후에 DCM(Dichloromethane)으로 희석하고 물과 포화 소금물로 씻고 DMF를 제거한다. 유기물층을 Na2SO4로 건조, 여과, 그리고 감압하에 증류하여, 짙은 빨강 가루를 얻었고, 이를 실리카겔 컬럼으로 정제하여 최종생성물인 화합물 1c를 얻었다.
Yield = 47.5%;
1H NMR (300 MHz, DMSO-d6) δ 7.90 (d, J = 4.7 Hz, H3 & H1 of DOX), 7.68 - 7.56 (m, H2 of DOX), 5.57 (d, J = 8.0 Hz, H1' & H8 of DOX), 5.47 (s, -NHC=O- of DOX-DG), 5.33 (s, c'-OH of DOX), 5.25 (d, 3'-CH of DOX), 4.94 (s, b'-OH of DOX), 4.73 (d, J = 5.9 Hz, H3 of DG), 4.58 (t, J = 5.9 Hz, 4'-OH of DOX), 4.41 (s, H16 of DG), 3.98 (s, H4 of DOX), 2.98 (s, H7 of DOX), 2.77 (dd, H29&30 of DG) 2.38 (s, 2H), 2.27 - 2.13 (m, 3H), 1.91 (dd, J = 26.8, 13.4 Hz, 5H), 1.74 (s, 3H), 1.70 (s, 3H), 1.64 (d, J = 3.4 Hz, 2H), 1.63 - 1.46 (m, 11H), 1.37 (s, 4H), 1.24 (s, 9H), 1.22 - 1.09 (m, 12H), 1.09 - 0.94 (m, 13H), 0.93 - 0.71 (m, 18H), 0.70 - 0.58 (m, 3H).
<실시예 4> Cyt-DG 컨쥬게이트의 제조 (화합물 1d)
Figure PCTKR2017001636-appb-I000021
단계 1: 화합물 10의 준비
실시예 3의 단계 1과 동일하게 실시하여 화합물 10을 얻었다.
단계 2: 화합물 11의 준비
실시예 3의 단계 2와 동일하게 실시하여 화합물 11을 얻었다.
단계 3: 목적 화합물 1d의 제조
시타라빈(Cytarabine)을 녹인 DMF 용액에 상기 단계 2에서 얻은 화합물 11을 첨가하고 질소 분위기하의 상온에서 48시간 교반하였다. 진공하에 용매를 제거하고 플래쉬 크로마토그래피(1-5% methanol in CHCl3)로 정제하여 목적 화합물 1d를 흰색 고체로 얻었다.
Yield = 32%;
Purity = 98%;
Analytic HPLC, retention time = 28.69 min;
1H NMR (300 MHz, DMSO-d6) δ 10.90 (s, 1H), 8.05 (d, 1H), 7.16 (d, 1H), 6.05 (d, 1H), 5.49 (s, 2H) 5.34 (d, 1H), 5.07 (s, 1H), 4.45 (m, 1H), 4.28 (q,1H), 4.05 (s, 1H), 3.92 (s, 1H), 3.82 (m, 1H), 3.61 (s, 2H), 2.67 (t, 2H), 2.54 (t, 2H), 2.26 (d, 2H), 2.10-1.00 overlap peaks 0.97 (s, 3H), 0.91 (dd, 3H), 0.72(m, 6H);
13C-NMR (100 MHz, DMSO-d6) δ 173.11, 172.01, 162.49, 155.04, 147.15, 139.90, 122.39, 108.92 94.85, 87.46, 86.17, 80.63, 76.55, 74.93, 73.85, 66.35, 62.18, 61.43, 56.12, 49.80, 41.51, 40.20, 38.03, 31.19, 30.21, 28.87, 20.77, 19.33, 17.49, 16.40, 15.06;
HRMS (ESI): m/z 739.4809 (M-H)-, calculated (C40H57N3O10) 739.40.
<실시예 5> Cyt-DG 컨쥬게이트 나노입자의 제조
Cyt-DG 컨쥬게이트 나노입자는 공지의 나노침전(nanoprecipitation) 방법을 이용하였다[Y. Jin, R. Xin, P. Ai, and D. Chen, Int J Pharm, 350, pp.330 (2008)].
구체적으로, 실시예 4에서 제조한 Cyt-DG 컨쥬게이트를 녹인 THF 용액(0.5 mg, at 1mg/mL)을 상온에서 1000rpm으로 교반하면서, 5% THF를 함유한 정제수 1mL를 적가하였다. 유기 용매를 상온의 진공하에 제거하고 잔여 유기용매를 제거하기 위해 반응물(서스펜션)을 투석 튜브 (MWCO 2000)와 탈이온수로 1일 동안 정제하였다.
<실험예 1> MTX(Methotrexate)의 항암 내성 감소 평가 (MTT assay)
항암제인 MTX를 처치한 경험이 있는 유방암 환자의 경우 내성이 발현하여, MTX를 단독으로 투여할 경우 암세포의 막 투과율이 현저히 감소하게 된다. 본 실험예 1에서는 MTX-DG를 사용할 경우 MTX 단독 투여시 발생하는 내성을 감소할 수 있는지 알아보기 위하여 다음과 같이 실험하였다.
MCF-7(인간 유방암 세포주) 및 MDA-MB-231(MTX에 내성(저항성)이 있는 세포주로서, MTX 처치한 경험이 있는 유방암 환자로부터 분리한 유방암 세포주)는 한국세포주은행으로부터 분양받아 사용하였고, 10% FBS 및 1% penicillin-streptomycin을 공급하며 RPMI 1640 배양액에서, 5% CO2 및 37℃의 습한 공기 조건으로 배양하였다. 배양한 세포는 96-웰플레이트에 각각 1×105/well 농도로 분주하였고, 세포가 가득찬 웰에는 테스트 화합물을 처리하고, 48시간 배양 후에, 20μL의 MTT 용액 (5mg/mL in phosphate-buffered saline (PBS))을 첨가하고, 4시간 더 배양하였다. 다음으로, 배양액을 폐기하고 상온에서 200μL의 이소프로판올로 대체하였다. 각 웰의 흡광도를 마이크로플레이트 리더기(570nm)로 측정하여, 각 테스트 화합물의 IC50 값을 정량하였다. 본 실험결과로 MDA-MB-231 유방암 세포주에 대한 항증식 활성 IC50 값을 하기 표 1에 나타내었다.
MCF-7(인간 유방암 세포주) 항증식 활성에 대한 IC50 (μM) 값 MDA-MB-231(MTX 처치한 경험이 있는 유방암 환자로부터 분리한 유방암 세포주) 항증식 활성에 대한 IC50 (μM) 값
DG(디오스제닌 단독) - 73.98±6.84
MTX(메토트렉세이트 단독) 15.2 714.54±14.3
MTX-DG(실시예 1, 화합물 1a) - 4.1±2.25
MTX-DG(실시예 2, 화합물 1b1) - 89.2±7.19
MTX-DG(실시예 2, 화합물 1b2) - 59.67±1.59
MTX-DG(실시예 2, 화합물 1b3) - 24.64±7.86
상기 표 1에 나타난 바와 같이, 항암제인 MTX를 처치한 적이 없는 유방암 세포주(MCF-7)의 경우 MTX를 처치할 경우 항암활성이 우수하게 나타나는 반면에, MTX를 처치한 적이 있는 유방암 세포주(MDA-MB-231)의 경우 MTX에 대한 내성이 생겨 MTX 단독으로 처치할 경우 항활성이 거의 나타나지 않음을 알 수 있다. 그러나, 본원발명에 따른 실시예 1 및 2와 같이 MTX-DG 컨쥬게이트를 처치할 경우 MTX 내성을 극복할 수 있는 효과가 나타남을 알 수 있었다. 한편, 화합물 1b1, 1b2, 1b3은 MTX와 DG 사이를 연결하는 링커의 길이가 상이한데, 링커의 길이가 길수록 입체장애 효과가 감소하여 항암활성이 더욱 우수하게 나타나는 것을 알 수 있었다. 또한, 화합물 1b1의 링커에 비해 화합물 1b2 및 1b3의 링커는 아민기를 더 많이 포함하고 있어, 암세포의 막에 더 잘 흡수되는 것을 알 수 있었다. 또한, 암세포 막을 투과한 이후부터는 디오스제닌(DG) 단독으로도 역시 65μM 농도 이상부터는 항암활성이 나타나므로, 상기 표 1의 결과가 나온 것으로 이해할 수 있다.
따라서, 본 발명에 따른 항암제-디오스제닌 컨쥬게이트는 항암제를 단독으로 사용하는 경우에 비하여 암세포로의 침투가 잘 이루어져, 항암제 내성을 극복하고 항암활성도 향상되므로, 항암제 제형으로 유용할 수 있다.
<실험예 2> DHFR(Dihydrofolate reductase) 억제 평가
본 실험예 2는 생체 내에서 일어나는 dihydrofolate reductase(DHFR)의 활성도를 효소 정량(enzyme assay)으로 평가하고자 kit를 사용하여 억제효과(inhibitory effects)를 평가한 것으로 실제 MTX-DG 컨쥬게이트의 dihydrofolate reductase(DHFR) 효소활성도(enzyme activity)를 평가하였다.
DHFR 억제 평가는 DHFR assay kit (Product Code CS0340, Saint Louis, Missouri 63103 USA)의 설명서 내용에 따라 마이크로플레이트 리더기(340nm)에서 NADPH 산화를 모니터링하는 것으로 평가하였다.
구체적으로, 0.002 units의 DHFR 및 6 μL의 NADPH 용액을 테스트 화합물을 녹인 PBS 용액(5-l0 μL)과 함께 버퍼액에 첨가하였다(여기서, 대조군은 버퍼용액 단독). 평가 혼합물을 상온에서 5분간 배양하고, 5 μL의 dihydrofolic acid을 첨가하여 반응을 개시하였고, 340nm 파장대에서의 흡광 변화를 측정하였다. 실험결과는 대조군 대비 효소 활성의 % 억제율로 나타내었다. DHFR 억제 IC50 값을 하기 표 2에 나타내었다.
DHFR 억제 IC50 값 (nM)
DG(디오스제닌 단독) None detectable
MTX(메토트렉세이트 단독) 3.39±0.28
MTX-DG(실시예 1, 화합물 1a) 17.21±3.34
MTX-DG(실시예 2, 화합물 1b1) 167.32±6.01
MTX-DG(실시예 2, 화합물 1b2) 99.31±0.91
MTX-DG(실시예 2, 화합물 1b3) 58.31±3.36
상기 표 2에 나타난 바와 같이, MTX 단독(3.39nM)에 비해 MTX-DG 콘쥬게이트의 DHFR 억제 활성이 낮은 것으로 나타났다. 이 결과는 MTX의 글루타메이트 잔기에 화학적 개질을 진행한 후에 대부분의 콘쥬게이트 결과물은 타겟 효소에 대한 친화도가 감소하는 종래의 연구결과와 일치하였다. 실시예 2의 화합물 1b1, 1b2, 1b3에서 MTX와 DG를 연결하는 링커의 길이(1b1<1b2<1b3)가 증가할수록 MTX-DG 컨쥬게이트의 억제활성은 증가하는 경향을 나타냈다. 이 결과는 효소에 대한 친화도를 유지하기 위해서 링커의 길이가 중요한 것을 의미한다. 한편, 실시예 1(화합물 1a)과 실시예 2(화합물 1b3)의 링커 길이가 유사함에도 불구하고, 실시예 1의 DHFR에 대한 친화도가 더욱 높게 나타났는데, 이는 실시예 1(화합물 1a)의 링커에 다이설파이드 본드가 존재함에 따른 결과로 예상된다.
<실험예 3> 환원적 환경에서 MTX-DG 컨쥬게이트로부터 MTX의 분리 평가
실시예 1(화합물 1a) 및 실시예 2(화합물 1b3)에서 제조한 MTX-DG 컨쥬게이트로부터 MTX의 산화환원-반응 방출을 평가하기 위하여, 암세포의 환원적 환경과 유사하게 10mM의 글루타티온(GSH)을 사용하였다.
도 3은 (a)MTX, (b)실시예 1(화합물 1a), (c)실시예 1(화합물 1a)+GSH, (d)실시예 2(화합물 1b3), (e)실시예 2(화합물 1b3)+GSH에 대한 HPLC 분석 결과이다.
도 3에 나타난 바와 같이, 도 3(c)는 머무름 시간(retention time) 4.76분에서 새로운 HPLC 피크의 출현을 나타내며, 이는 실시예 1(화합물 1a)의 MTX-DG 컨쥬게이트로부터 MTX가 급속히 방출됨을 나타낸다. 상기 도 3(c)에서 MTX-DG 컨쥬게이트로부터 방출된 MTX의 머무름 시간은 도 3(a)의 MTX 머무름 시간과 약간의 차이가 발생하는데, 이는 도 3(c)에서 MTX-DG 컨쥬게이트로부터 방출된 MTX는 아마이드 결합을 통해 시스테아민에 공유결합으로 연결되기 때문이다. 그에 반해서, 도 3(e)에서 실시예 2(화합물 1b3)의 MTX-DG 컨쥬게이트는 글라타티온(GSH) 처리에도 MTX의 방출을 나타내지 않았다. 이 결과는 실시예 2(화합물 1b3)의 경우 링커에 산화환원-반응적 다이설파이드 결합이 없기 때문에 환원적 환경하에서 비교적 안정한 것으로 나타났다.
한편, 도 3(c)에서 머무름 시간 4.76분에 대해서 추가로 질량분석(UFLC-MS)을 실시하였다. 질량분석 결과(515.3023, M+2)는 MTX 시스테아민 컨쥬게이트의 예측 질량(513.19)과 거의 일치하여, 머무름 시간 4.76분의 피크가 실시예 1(화합물 1a)의 MTX-DG 컨쥬게이트로부터 방출된 MTX임을 확인하였다.
<실험예 4> DOX-DG 컨쥬게이트의 항암 활성 평가
실시예 3(화합물 1c)에서 제조한 DOX-DG 컨쥬게이트의 항암활성을 알아보기 위하여, 다음과 같이 실험하였다.
구체적으로, 디오스제닌(DG) 단독, 실시예 3의 단계 1에서 제조한 화합물 10(DSA), 항암제인 독소루비신(Doxorubicin, DOX) 단독, 및 실시예 3에서 제조한 DOX-DG 컨쥬게이트를 각각 L929 세포(생쥐 섬유아세포 세포주; 정상세포 대조군)와 HepG2(인간 유래 간암세포)에 투여하고 48시간 후에, MTT 정량법으로 세포 생존율을 각각 평가하였고, 그 결과를 도 1에 나타내었다. 또한, MTT 정량법으로 IC50를 평가하였고, 그 결과를 하기 표 3에 나타내었다.
도 1(A)는 HepG2(인간 유래 간암세포)에 DG, DSA, DOX, DOX-DG를 투여하고 48시간 후의 세포생존율을 측정한 그래프이다.
도 1(B)는 L929(생쥐 섬유아세포 셀 라인)에 DG, DSA, DOX, DOX-DG를 투여하고 48시간 후의 세포생존율을 측정한 그래프이다.
도 1에 나타난 바와 같이, 도 1(A)에서 HepG2(인간 유래 간암세포)는 실시예 3의 DOX-DG 컨쥬게이트가 가장 암세포 독성이 높은 것으로 나타났다. 도 1(B)에서 L929(생쥐 섬유아세포 세포주; 정상세포 대조군)는 DG, DSA, DOX, DOX-DG 모두 유사한 경향을 나타내었다.
IC50 (μM)
DOX DOX-DG(실시예3) DG DSA
HepG2(간암세포) 0.96±0.07 0.87±0.04 52.4±2.4 50.1±2.2
L929(섬유아세포) 21.8±2.8 30.2±2.5 84.13±3.2 73.1±4.3
상기 표 3에 나타난 바와 같이, 간암 세포(HepG2)에는 실시예 3의 DOX-DG 컨쥬게이트가 가장 독성이 높게 나타났고, 섬유아세포(L929)에는 DOX 단독 투여의 경우에 비해 세포 독성이 낮게 나타났다.
<실험예 5> DOX-DG 컨쥬게이트의 pH 환경에 따른 항암제의 방출 평가
실시예 3에서 제조한 DOX-DG 컨쥬게이트가 pH 환경 변화에 따라 항암제를 방출하는 정도를 알아보기 위하여, in vitro에서 pH를 5.0, 6.5 및 7.4 조건으로 설정한 다음, DOX 방출량을 검출하였고, 그 결과를 도 2에 나타내었다.
도 2는 실시예 3에서 제조한 DOX-DG 컨쥬게이트가 pH 환경 변화에 따른 DOX 방출량을 측정한 그래프이다.
도 2에 나타난 바와 같이, pH 7.4에서 상대적으로 느리고 적은 양의 DOX가 방출됨은 신체의 혈액내에서 상대적으로 DOX-DG가 안정적임을 나타낸다. 산성환경에서의 DOX 방출이 빠르고 좀 더 많이 방출됨은 종양세포의 endosomal/lysosomal environments에서 선택적으로 방출되는 것을 알 수 있다.
따라서, 본 발명에 따른 항암제-디오스제닌 컨쥬게이트는 종양세포 인근에서 선택적으로 항암제를 방출하고, 일반적인 체내 환경에서는 방출되지 않아 안정하므로, 항암제 제형으로 유용할 수 있다.
<실험예 6> Cyt-DG 컨쥬게이트 나노입자의 in vitro 세포흡수 평가
실시예 5에서 제조한 Cyt-DG 컨쥬게이트 나노입자의 in vitro 세포흡수 및 분산 경향을 알아보기 위하여, MCF-7 세포주(인간 유방암 세포주)를 이용하고 공초점 주사 레이져 현미경 및 HPLC(세포흡수 정량)를 사용하였다.
구체적으로, MCF-7 세포주를 12-웰플레이트 안에서 덮개유리(coverslips) 위에 1.0 x 104 cells 농도로 분주하고, 하룻밤 배양하였다. 상기 세포에 10 μg/mL의 로다민 B(형광염료) 또는 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자를 처치하고, 37℃에서 4시간 배양하였다. 다음으로, 로다민 B 또는 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자를 포함하는 배양액을 제거하고, 차가운 PBS로 2회 세척한 다음 1% Triton x-100으로 5분간 용해(lysed)하였다. 차가운 PBS로 다시 3회 세척한 후, 상기 덮개유리에 DAPI 함유 봉입제(3 μL)를 처리하고, 세포를 분주한 면이 아래로 향하게 현미경 슬라이드에 탑재하고 매니큐어로 밀봉하였다. 공초점 현미경(Carl Zeiss LSM 510 system)을 이용하여 세포흡수 및 분산 경향을 확인하였고, 그 결과를
도 4는 Cyt-DG 컨쥬게이트 나노입자의 세포흡수를 공초점 주사 레이져 현미경을 통해 확인한 형광 이미지이다.
도 4에 나타난 바와 같이, 로다민 B 단독에 비해서 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자의 세포흡수 효율이 명백히 높게 나타났다. 로다민 B 단독은 수동확산(passive diffusion)을 통해 세포에 흡수되는 반면에, 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자는 내포작용(endocytosis)으로 세포에 흡수된다(도 8 참조).
로다민 B의 세포내 농도를 정량하기 위해 HPLC 분석을 실시하였고, 그 결과 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자의 농도는 로다민 B 단독의 농도에 비해 2.5배 높게 나타났다. 이 결과는 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자의 세포흡수율이 더욱 우수함을 의미한다.
<실험예 7> Cyt-DG 컨쥬게이트 나노입자의 암세포 성장 억제 평가
실시예 4(화합물 1d)에서 제조한 Cyt-DG 컨쥬게이트의 in vitro 항암활성을 평가하기 위하여 MTT 평가를 실시하였다.
구체적으로, 96-웰플레이트에 1.0×105 cells/well 농도로 세포를 분주하고, 약 80% 정도 웰이 찼을때, 다양한 농도로 Cyt-DG 컨쥬게이트를 처치하고, 48시간 또는 72시간 배양하였다. 다음으로, 10 μL의 MTT (5mg/mL) 용액을 포함한 PBS 버퍼를 첨가하고 4시간 더 배양하였다. 배양 후에, 약물을 함유한 배양액을 제거하고 200 μL의 이소프로판올로 상온에서 대체하였다. 각 웰의 흡광도를 마이크로플레이트 리더기(570nm)로 정량하였다. 항암제인 시타라빈(Cyt) 단독을 녹인 PBS 용액, 디오스제닌(DG) 및 이들의 혼합물(Cyt/DG, 1/1) 모두를 5% PEG400에 용해하고, 이들의 항암활성을 MTT 평가 방법으로 평가하였다. 이때, PBS 또는 0.5% PEG400을 처리한 것을 대조군으로 사용하였다. Cyt-DG 컨쥬게이트 나노입자, DG, Cyt 각각의 IC50 (μM) 값을 계산하여 하기 표 4에 나타내었다.
HL-60(급성전골수성백혈병 세포주) MCF-7(비전이성 인간 유방암 세포주) MDA-MB-231(전이성 인간 유방암 세포주)
DG >100 >100 73.98
Cyt >1000 >1000 >1000
Cyt-DG 컨쥬게이트 나노입자 146.68 30.05 81.86
상기 표 4에 나타난 바와 같이, HL-60 세포주에서 48시간 배양 후 Cyt-DG 컨쥬게이트 나노입자의 항암활성은 DG 및 Cyt 단독 처치군에 비해 높게 나타났는데, Cyt-DG 컨쥬게이트 나노입자의 향상된 항암활성은 암세포로 축적이 증가함에 기인하는 것으로 예상된다. 한편, 시타라빈(Cyt)은 일반적으로 고형암 치료에는 반응하지 않는 것으로 알려져 있으나, 놀랍게도 MCF-7 세포주(고형암)에서 Cyt-DG 컨쥬게이트 나노입자는 IC50 30.05 μM 값을 나타내었다. 이와 유사한 현상으로 MDA-MB-231 세포주(고형암)에서도 Cyt-DG 컨쥬게이트 나노입자는 IC50 81.86 μM 값을 나타내었다.
<실험예 8> Cyt-DG 컨쥬게이트 나노입자의 동정
시타라빈(Cyt)은 친수성 항암제이고 디오스제닌(DG)는 소수성 스테로이달 사포닌이다. Cyt-DG 컨쥬게이트는 양쪽 친매성을 나타내고, 이는 안정한 나노입자의 자가조립(self-assemble)을 가능하게 한다.
나노입자의 임계응집농도 측정
형광프로브로 파이렌을 이용하여 임계응집농도(critical aggregation concentration, CAC)를 측정하였다. 구체적으로, 아세톤에 용해된 파이렌 용액(5μM) 10μL를 실시예 4에서 제조한 Cyt-DG 컨쥬게이트 용액(1.0 x 10-3 내지 0.4 mg/mL)에 첨가하고, 1분간 초음파 처리하였다. 아세톤을 증발시키고, 혼합용액을 상온의 암흑 조건에서 하룻밤 두어 파이렌이 수성 상태로 평형화되도록 하였다. 모든 용액의 형광 스펙트럼은 분광형광계(FP-6200; JASCO)로 390nm 파장의 발광을 측정하였다. 형광 강도 비율 대비 Cyt-DG 컨쥬게이트 농도 (log C)의 'I336/I334'를 CAC 결정에 사용하였다.
도 5는 Cyt-DG 컨쥬게이트의 임계응집농도(CAC)를 LC-MS 스펙트럼으로 확인한 그래프이다.
도 5에 나타난 바와 같이, Cyt-DG 컨쥬게이트는 매우 낮은 임계응집농도(12.5μg/mL)를 나타냈는데, 이는 희석에 대한 안정성이 높음을 의미한다.
입자크기, 표면전하 및 형태(모폴로지)
도 6은 실시예 5에서 제조한 Cyt-DG 컨쥬게이트 나노입자의 입자크기분포, 제타포텐셜 및 모폴로지 각각을 알아보기 위해 (a) DLS(Dynamic light scattering) 및 (b) TEM(transmission electron microscopy)으로 분석한 결과이다.
도 6에 나타난 바와 같이, 도 5(a)의 DLS 분석은 입자크기 분포가 189.6nm 영역에서 좁게 나타나고 있고, -8.42mV의 표면전하를 나타냄을 알 수 있었다. 도 5(b)의 TEM 이미지는 나노입자가 구 형태를 나타냄을 확인할 수 있었고, 입자크기는 DLS 결과 보다는 작은 대략 75nm 직경을 갖는 것으로 나타났다. 이 결과는 TEM 샘플 제조 과정에서 나노입자가 줄어든 영향때문인 것으로 예상된다. 로다민 B의 표지 함량이 1% 보다 적을 경우에는 로다민 B 표지 Cyt-DG 컨쥬게이트 나노입자의 크기가 증가하지 않았다.
Cyt-DG 컨쥬게이트 나노입자는 약물전달체로서 이상적인 약학적 성질을 갖고 있다. 왜냐하면, 많은 종래의 연구결과에서 200 nm 이하의 입자크기와 표면전하가 음전하인 나노입자는 정맥투여 이후에 반감기가 길고, 암종양 부위에서 증진된 투과 및 유지 효과가 있다는 것이 알려져 있기 때문이다.
Cyt-DG 컨쥬게이트 나노입자의 안정성
DLS를 이용하여 입자크기 변화 및 PDI(polydiversity index) 평가를 통해 Cyt-DG 컨쥬게이트 나노입자(실시예 5)의 물리화학적 안정성을 평가하였다. 구체적으로, 0.1M PBS 용액, 5% 글루코스 용액, 1% FBS 포함 PBS 용액, 10% FBS 포함 PBS 용액 내에서의 Cyt-DG 컨쥬게이트 나노입자의 입자크기 변화를 DLS를 이용하여 측정하였다.
도 7은 (a) 0.1M PBS, 5% glucose 용액 내에서 Cyt-DG 컨쥬게이트 나노입자의 직경 변화를 DLS로 측정한 그래프이고, (b) 1% 및 10% FBS 용액 내에서 Cyt-DG 컨쥬게이트 나노입자의 직경 변화를 DLS로 측정한 그래프이다.
도 7에 나타난 바와 같이, 4℃의 PBS 용액에서 1주일간 Cyt-DG 컨쥬게이트 나노입자는 안정한 것으로 나타났다(도 7(a)). 그러나, PBS 용액에서 FBS의 함량이 증가할수록 입자크기는 현저하게 줄어드는 경향을 확인할 수 있었다(도 7(b)).
<제제예 1> 약학적 제제의 제조
<1-1> 산제의 제조
본 발명의 컨쥬게이트 2 g
유당 1 g
상기의 성분을 혼합한 후, 기밀포에 충진하여 산제를 제조하였다.
<1-2> 정제의 제조
본 발명의 컨쥬게이트 100 ㎎
옥수수전분 100 ㎎
유 당 100 ㎎
스테아린산 마그네슘 2 ㎎
상기의 성분을 혼합한 후, 통상의 정제의 제조방법에 따라서 타정하여 정제를 제조하였다.
<1-3> 캡슐제의 제조
본 발명의 컨쥬게이트 100 ㎎
옥수수전분 100 ㎎
유 당 100 ㎎
스테아린산 마그네슘 2 ㎎
상기의 성분을 혼합한 후, 통상의 캡슐제의 제조방법에 따라서 젤라틴 캡슐에 충전하여 캡슐제를 제조하였다.
<1-4> 주사액제의 제조
본 발명의 컨쥬게이트 10 ㎍/㎖
묽은 염산 BP pH 3.5로 될 때까지
주사용 염화나트륨 BP 최대 1 ㎖
적당한 용적의 주사용 염화나트륨 BP 중에 본 발명에 따른 컨쥬게이트를 용해시키고, 생성된 용액의 pH를 묽은 염산 BP를 사용하여 pH 3.5로 조절하고, 주사용 염화나트륨 BP를 사용하여 용적을 조절하고 충분히 혼합하였다. 용액을 투명 유리로 된 5 ㎖ 타입 I 앰플 중에 충전시키고, 유리를 용해시킴으로써 공기의 상부 격자하에 봉입시키고, 120℃에서 15분 이상 오토클래이브로 살균하여 주사액제를 제조하였다.
본 발명에 따른 항암제와 디오스제닌이 링커로 결합된 컨쥬게이트는, 암세포 막의 구성성분과 유사한 디오스제닌(diosgenin, DG)을 이용하여 타겟 항암제와 컨쥬게이트(conjugate)하여, 항암제 내성을 극복하고, 암세포 막의 투과도를 증진하여 항암활성을 현저히 향상시키는 효과가 있고, 또한 친수성 항암제의 경우 소수성의 디오스제닌(diosgenin, DG)과 컨쥬게이트를 형성할 경우 양쪽 친매성을 나타내고, 이는 안정한 나노입자의 자가조립(self-assemble)을 가능하게 하여, 200nm 이하의 나노입자로 자가조립될 수 있으므로, 항암 제형으로 유용할 수 있다.

Claims (14)

  1. 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염.
  2. 제1항에 있어서,
    상기 항암제는 메토트렉세이트(Methotrexate, MTX), 독소루비신(Doxorubicin, DOX) 또는 시타라빈(Cytarabine, Cyt)인 것을 특징으로 하는 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염.
  3. 제1항에 있어서,
    상기 링커는
    Figure PCTKR2017001636-appb-I000022
    ,
    Figure PCTKR2017001636-appb-I000023
    ,
    Figure PCTKR2017001636-appb-I000024
    ,
    Figure PCTKR2017001636-appb-I000025
    또는
    Figure PCTKR2017001636-appb-I000026
    인 것을 특징으로 하는 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염.
  4. 제1항에 있어서,
    상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트는 하기 화학식 1a 내지 화학식 1d 중 어느 하나인 것을 특징으로 하는 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염:
    [화학식 1a]
    Figure PCTKR2017001636-appb-I000027
    [화학식 1b]
    Figure PCTKR2017001636-appb-I000028
    (상기 화학식 2에서, n은 0-2의 정수이다)
    [화학식 1c]
    Figure PCTKR2017001636-appb-I000029
    .
    [화학식 1d]
    Figure PCTKR2017001636-appb-I000030
  5. 하기 반응식 1에 나타난 바와 같이,
    디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
    화합물 4에 화합물 5를 첨가하여, 화합물 6을 얻는 단계(단계 2); 및
    화합물 6에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 1을 얻는 단계(단계 3);
    를 포함하는 하기 화학식 1a로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법.
    [반응식 1]
    Figure PCTKR2017001636-appb-I000031
  6. 하기 반응식 2에 나타난 바와 같이,
    디오스제닌에 카보노클로리딕산(carbonochloridic acid)을 첨가하여, 화합물 4를 얻는 단계(단계 1);
    화합물 4에 화합물 7을 첨가하여, 화합물 8을 얻는 단계(단계 2);
    화합물 8에 메토트렉세이트(Methotrexate, MTX)를 첨가하여, 화합물 9를 얻는 단계(단계 3); 및
    화합물 9에서 보호기(Boc, tert-Butyloxycarbonyl)를 제거하여, 화합물 2를 얻는 단계(단계 4);
    를 포함하는 하기 화학식 1b로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법:
    [반응식 2]
    Figure PCTKR2017001636-appb-I000032
    (상기 반응식 2에서, n은 0-2의 정수이다).
  7. 하기 반응식 3에 나타난 바와 같이,
    디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
    화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
    화합물 11에 독소루비신(Doxorubicin, DOX)을 첨가하여, 화합물 3을 얻는 단계(단계 3);
    를 포함하는 하기 화학식 1c로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법.
    [반응식 3]
    Figure PCTKR2017001636-appb-I000033
  8. 하기 반응식 4에 나타난 바와 같이,
    디오스제닌에 숙신산무수물(succinic anhydride)을 첨가하여, 화합물 10을 얻는 단계(단계 1);
    화합물 10에 N-하이드록시숙신이미드(n-hydroxysuccinimide)를 첨가하여, 화합물 11을 얻는 단계(단계 2); 및
    화합물 11에 시타라빈(Cytarabine, Cyt)을 첨가하여, 화합물 1d를 얻는 단계(단계 3);
    를 포함하는 하기 화학식 1d로 표시되는 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 제조방법.
    [반응식 4]
    Figure PCTKR2017001636-appb-I000034
  9. 제1항의 컨쥬게이트, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물.
  10. 제9항에 있어서,
    상기 암은 유방암, 간암, 급성 백혈병, 만성 백혈병, 림프암(lymphoma), 대장암, 직장암, 전립선암, 및 위암으로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 약학적 조성물.
  11. 제9항에 있어서,
    상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트는 항암제의 내성을 억제하는 것을 특징으로 하는 약학적 조성물.
  12. 제9항에 있어서,
    상기 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트는 암세포 막의 투과도를 증가시키는 것을 특징으로 하는 약학적 조성물.
  13. 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트의 항암 제형.
  14. 친수성 항암제와 디오스제닌(Diosgenin)이 링커로 결합된 컨쥬게이트가 자가조립에 의해 형성되는 나노입자.
PCT/KR2017/001636 2016-11-23 2017-02-15 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물 WO2018097403A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0156461 2016-11-23
KR1020160156461A KR101942159B1 (ko) 2016-11-23 2016-11-23 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물

Publications (1)

Publication Number Publication Date
WO2018097403A1 true WO2018097403A1 (ko) 2018-05-31

Family

ID=62196247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001636 WO2018097403A1 (ko) 2016-11-23 2017-02-15 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물

Country Status (2)

Country Link
KR (1) KR101942159B1 (ko)
WO (1) WO2018097403A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206472A (zh) * 2018-09-27 2019-01-15 华东理工大学 薯蓣皂苷元衍生物、其药物组合物及其应用
CN111298130A (zh) * 2019-12-21 2020-06-19 河南工业大学 一种不含胆固醇的薯蓣皂苷元-阿糖胞苷脂质体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150418B1 (ko) * 2019-01-09 2020-09-01 경북대학교 산학협력단 방사선 치료 증폭을 위한 사이토스테롤-독소루비신 유도체 및 이를 유효성분으로 포함하는 암 질환 예방 또는 치료용 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256069A1 (en) * 2003-04-17 2005-11-17 Muthiah Manoharan IRNA agents with biocleavable tethers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256069A1 (en) * 2003-04-17 2005-11-17 Muthiah Manoharan IRNA agents with biocleavable tethers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAI, B. ET AL.: "Design, Synthesis of Methotrexate-diosgenin Conjugates and Biological Evaluation of Their Effect on Methotrexate Transport-resistant Cells", STEROIDS, vol. 116, 19 October 2016 (2016-10-19), pages 45 - 51, XP029822668 *
JING, J.: "The Synthesis, Characterization and Anti-cancer Activity of the Doxorubicin Conjugate with Diosgenin as a Carrier", MASTER'S THESIS, February 2015 (2015-02-01), pages 1 - 34 *
LI, C. ET AL.: "A Self-assembled Nanoparticle Platform Based on Poly(ethylene glycol)-diosgenin Conjugates for Co-delivery of Anticancer Drugs", RSC ADVANCES, vol. 5, no. 91, 2015, pages 74828 - 74834, XP055487925 *
SANTOS, M. A. ET AL.: "Methotrexate y-hydroxamate Derivatives as Potential Dual Target Antitumor Drugs", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 15, no. 3, 2007, pages 1266 - 1274, XP005823067, DOI: doi:10.1016/j.bmc.2006.11.017 *
ZHANG, D. ET AL.: "Transporter-targeted Cholic Acid-cytarabine Conjugates for Improved Oral Absorption", INTERNATIONAL JOURNAL OF PHARMACEUTICS, [ELECTRONIC PUBLISHING, vol. 511, no. 1, 1 July 2016 (2016-07-01), pages 161 - 169, XP029698786 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206472A (zh) * 2018-09-27 2019-01-15 华东理工大学 薯蓣皂苷元衍生物、其药物组合物及其应用
CN111298130A (zh) * 2019-12-21 2020-06-19 河南工业大学 一种不含胆固醇的薯蓣皂苷元-阿糖胞苷脂质体及其制备方法

Also Published As

Publication number Publication date
KR20180057952A (ko) 2018-05-31
KR101942159B1 (ko) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2018182341A1 (ko) 피롤로벤조디아제핀 이량체 전구체 및 이의 리간드-링커 접합체 화합물
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2021162451A1 (ko) 담즙산 또는 이의 유도체, 바이구아나이드 계열 화합물 및 항바이러스제 중 2종 이상을 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
WO2020222461A1 (ko) 면역항암 보조제
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2016108489A1 (ko) 신규한 루테늄 화합물 및 이를 유효성분으로 함유하는 암 질환 예방 또는 치료용 약학 조성물
WO2020222541A1 (ko) 캐스파제 저해제의 프로드럭
WO2009093872A2 (ko) 신규한 디아민 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 암 치료용 약학 조성물
WO2019172605A1 (ko) 선택적으로 기능화된 타이로신을 가지는 생체 물질의 제조방법, 선택적으로 기능화된 타이로신을 가지는 생체 물질 및 이를 유효성분으로 함유하는 약학적 조성물
WO2011021864A2 (ko) 신규한 항암제 보조용 화합물, 이의 제조방법, 이를 포함하는 항암제 보조용 조성물 및 이를 이용한 항암제에 대한 내성을 감소시키는 방법
WO2021194228A1 (ko) 암의 예방 또는 치료용 약학적 조성물
WO2015115796A1 (ko) 페길레이션된 7-디하이드로콜레스테롤 유도체
WO2015099362A1 (ko) D-피니톨 프로드럭 및 이의 제조방법
WO2023113540A1 (ko) (2r, 3s)-2-(3-(4,5-디클로로-1h-벤조[d]이미다졸-1-일)프로필)피페리딘-3-올의 신규한 산부가염 및 결정형
WO2024096408A1 (ko) 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법
WO2022177307A1 (ko) 벤즈이미다졸 유도체를 유효 성분으로 포함하는 인터페론 유전자 자극제 조성물
WO2024106780A1 (ko) 약물 전달용 나노입자 조성물
WO2020190073A1 (ko) 신규한 아졸로피리미딘 헤테로고리 화합물을 유효 성분으로 함유하는 약제학적 조성물
WO2022045773A1 (ko) 시스테인 선택적 결합 퀴놀리논 유도체 화합물, 이의 펩티드 결합체 및 이를 포함하는 항체-약물 접합체
WO2023090935A1 (ko) 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법
WO2022203332A1 (en) Novel indoleamine 2,3-dioxygenase inhibitors, processes for the preparation thereof and pharmaceutical compositions comprising the same
WO2023090822A1 (ko) 신규한 카나비크로멘산 유도체, 이의 제조방법 및 이를 포함하는 인지기능 개선용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873051

Country of ref document: EP

Kind code of ref document: A1