WO2015137777A1 - 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법 - Google Patents

신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법 Download PDF

Info

Publication number
WO2015137777A1
WO2015137777A1 PCT/KR2015/002488 KR2015002488W WO2015137777A1 WO 2015137777 A1 WO2015137777 A1 WO 2015137777A1 KR 2015002488 W KR2015002488 W KR 2015002488W WO 2015137777 A1 WO2015137777 A1 WO 2015137777A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
drug
polyphosphazene
lysine
ppm
Prior art date
Application number
PCT/KR2015/002488
Other languages
English (en)
French (fr)
Inventor
손연수
전용주
구다 아바지프라카쉬
Original Assignee
(주)씨앤팜
손연수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150034030A external-priority patent/KR102078806B1/ko
Application filed by (주)씨앤팜, 손연수 filed Critical (주)씨앤팜
Priority to CN201580026199.8A priority Critical patent/CN106459420B/zh
Priority to ES15760898T priority patent/ES2786309T3/es
Priority to US15/125,543 priority patent/US10336867B2/en
Priority to EP15760898.5A priority patent/EP3118244B1/en
Priority to JP2016575280A priority patent/JP6659021B2/ja
Priority to EP20155255.1A priority patent/EP3735989A1/en
Publication of WO2015137777A1 publication Critical patent/WO2015137777A1/ko
Priority to US16/430,244 priority patent/US10590243B2/en
Priority to US16/430,230 priority patent/US10584214B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/605Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the macromolecule containing phosphorus in the main chain, e.g. poly-phosphazene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol

Definitions

  • the present invention relates to a conjugated compound which synthesizes a cationic linear polyphosphazene drug delivery compound having excellent cancer tissue selectivity and biocompatibility, and chemically binds a hydrophobic anticancer agent thereto, and a method for preparing the same.
  • anticancer agents are small molecular weight monomers having a molecular weight of less than 1000.
  • intravenous injection of anticancer drugs of these monomers results in severe toxicity and side effects due to lack of selectivity for normal cells and cancer cells in the body, and the half-life (1 to 2 hours) of drug staying in the blood is not expected to provide continuous therapeutic effects.
  • chemotherapy There is a limit to chemotherapy. Therefore, the most essential technology to overcome in the recent development of anticancer drugs is cancer targeting technology for selectively delivering anticancer drugs to the cancer site and release of the anticancer drugs at a timely and appropriate rate. Is an emission control technology.
  • the polymers used as drug carriers are organic polymers. Numerous natural or synthetic polymers have been researched and tried as drug carriers, but only a few of them have practical potential. The reason is that if the polymer material is to be used as an anticancer drug carrier, in addition to the cancer selectivity and drug release rate of the drug carrier carrying the anticancer drug described above, various physical properties such as water solubility, biodegradability, biotoxicity of the polymer itself, and compatibility with the drug may be used. It must be satisfied at the same time.
  • polyphosphazene an inorganic polymer skeleton called polyphosphazene, which is a long-term conjugated bond of inorganic nitrogen (N) and phosphorus (P) instead of organic carbon.
  • N inorganic nitrogen
  • P phosphorus
  • the company has been able to design hybrid organic / inorganic hybrid drug carriers (Youn Soo Sohn, et al. Macromolecules, 1995, 28, 7566) and has been working hard to develop new cancer tissue-selective polymer type anticancer drugs for the past decade.
  • hydrophilic polyethylene glycol (PEG) with various molecular weights and various hydrophobic oligopeptides were introduced to synthesize amphiphilic polyphosphazene, which has various properties such as temperature sensitivity.
  • Drug delivery vehicles have been developed.
  • Amphiphilic polyphosphazene forms various nanostructures such as temperature sensitive micelles and hydrogels, but it is difficult to use due to problems in biocompatibility such as reduced solubility in water and expression of toxicity due to hydrophobic oligopeptides. It became.
  • amphiphilic polymer When the amphiphilic polymer is heated in an aqueous solution, the affinity with the water molecule, which is a solvent, is lowered, and when the temperature reaches a certain temperature, the polymer falls into precipitation. The ionicity at this time is called a low critical solution temperature. In order to use intravenous drug delivery system, it is safe to use low-critical solution temperature much higher than body temperature (above 50 °C). These amphiphilic polyphosphazenes are mostly used in aqueous solution because it is lower than body temperature. Although suitable, intravenous drug delivery was not available.
  • typical hydrophobic anticancer drugs taxane anticancer drugs, namely, paclitaxel and docetaxel
  • paclitaxel and docetaxel are one of the most widely used anticancer drugs because they show excellent therapeutic effects on various types of cancers such as breast cancer, ovarian cancer, and small cell lung cancer in the current clinical practice.
  • these turbidity anticancer agents are hydrophobic and have very low solubility in water ( ⁇ 1 ⁇ g / ml) and thus cannot be used as injectables, and are used as surfactants such as polysorbate 80 or cremophore EL. And ethyl alcohol.
  • the formulated anti-cancer drugs are greatly limited in their use due to side effects such as neurotoxicity caused by surfactants and alcohols used as solubilizers and strong toxicity of the anti-cancer drugs themselves.
  • conjugated anticancer agents that are solubilized by chemically binding a hydrophilic group such as polyethylene glycol to a taxane molecule and a polymer conjugated anticancer agent that combines paclitaxel to water-soluble polyglutamic acid are currently in clinical trials. I'm in.
  • Polymeric prodrugs that conjugate small molecule anticancer agents to polymers prolong the residence time of the drug, and enhance the characteristics of cancer tissues and the "enhanced permeability and retention (EPR) of polymer particles". Effect (Maeda H, et al. J. Control. Release 65 (2000) 271-284) "to provide cancer tissue selectivity and control the rate of drug release to maximize therapeutic effect and dramatically reduce toxicity. It is expected to be the most rational approach.
  • the size of the polymer particles should be about 50 to 200 nm in order to show the cancer selectivity by the "enhanced transmission preservation (EPR) effect" for the polymer nanoparticles (Torchilin VP, J Control.Release 73 (2001) 137-172).
  • EPR enhanced transmission preservation
  • recent studies on gene transporters have shown that cationic polymers significantly improve the permeation efficiency in cells that have anion properties (Gabrielson, NP; Park, DWJ Control. Release 136 (2009) 54-). 61).
  • an object of the present invention is to provide a novel cationic polyphosphazene drug delivery compound that exhibits excellent cancer tissue selectivity, a conjugated compound chemically coupled to an anticancer agent to these polyphosphazene drug delivery compound, and a method for preparing the same. have.
  • the present inventors are working to develop an anticancer drug carrier that exhibits superior cancer tissue selectivity under the above technical background, and a hydrophilic polyethyleneglycol as a dissolving agent in a polyphosphazene skeleton and a hydrophobic anticancer agent are chemically linked to the polymer.
  • a new polyphosphazene compound for drug delivery was synthesized by introducing one species selected from the group consisting of amino acids, oligopeptides containing amino acids, and linear amino alcohols into a spacer group having a multifunctional group.
  • the polyphosphazene compound for drug delivery thus synthesized was found to have cancer tissue selectivity due to its long cationicity and retention time (more than 3 days).
  • the compound is a smart polymer type having excellent cancer tissue selectivity, biodegradability, and controlled release of the drug in cancer tissue.
  • the conjugate compound could be synthesized.
  • the present invention provides a linear polyphosphazene compound represented by the following formula (1).
  • n is an integer from 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • S is an oligopeptide comprising lysine, arginine, glutamine, asparagine, tyrosine, and lysine as spacer groups.
  • the present invention also provides a polyphosphazene-drug conjugate compound represented by the following formula (2).
  • n is an integer from 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • S is an oligopeptide comprising lysine, arginine, glutamine, asparagine, tyrosine, and lysine as spacer groups.
  • the present invention comprises the steps of (a) thermally polymerizing a hexafluorocyclic phosphazene starting material to synthesize a polydichlorophosphazene linear polymer and then reacted with the sodium salt of methoxy polyethylene glycol to obtain a polyphosphazene polymer intermediate;
  • step (d) introducing the drug precursor of step (c) into the polyphosphazene polymer drug carrier of step (b) to obtain a compound of Formula 2; It provides a method for producing a compound of Formula 2 comprising a.
  • the present invention comprises the steps of: (a) thermally polymerizing a hexafluorocyclic phosphazene starting material to synthesize a polydichlorophosphazene linear polymer and then reacted with the sodium salt of methoxy polyethylene glycol to obtain a polyphosphazene polymer intermediate;
  • step (d) binding a drug having an OH or NH 2 functional group to a linker of the polyphosphazene polymer drug carrier of step (c) to obtain a compound of Formula 2; It provides a method for preparing a compound of Formula 2 comprising a.
  • the linear polyphosphazene compound of the present invention has the effect of having very high cancer tissue selectivity.
  • the polyphosphazene compound and the polyphosphazene-drug conjugate compound of the present invention are new materials having high practical potential.
  • FIG. 1 is a diagram showing a particle size distribution of a polyphosphazene compound of Example 1.
  • FIG. (Average diameter 3.0 nm)
  • FIG. 2 is a diagram showing a result of zeta potential measurement showing the cationicity of the polyphosphazene compound of Example 1.
  • Figure 4 shows the results of the measurement of micelle critical concentration (CMC) using pyrene fluorescence of the polyphosphazene-paclitaxel conjugate compound of Example 17.
  • CMC micelle critical concentration
  • FIG. 6. 12 hours, 24 hours, 48 hours, 72 hours of injecting a drug carrier labeled with Cy5.5, a fluorescent dye, to the polyphosphazene compound of Example 1 in a mouse transplanted with A549 cancer cells
  • Figure showing ex vivo NIR fluorescence images taken by separating each organ. Where 1 represents the liver, 2 the lungs, 3 the kidneys, 4 the spleen, 5 the cancer tissue, and 6 the muscles.
  • (b) shows NIR fluorescence images of whole blood (WB) and plasma (PL) extracted at 12 hours, 24 hours, 48 hours, and 72 hours.
  • FIG. 7 The polyphosphazene-docetaxel conjugate compound of Example 12 was labeled with fluorescent dye Cy 5.5 and injected into mice transplanted with SCC7 cancer cells, and then tissue distribution was compared after 24 hours and 48 hours. Where 1 is the liver, 2 is the lungs, 3 is the spleen, 4 is the kidneys, 5 is the heart, and 6 is cancer tissue.
  • FIG. 8 is a diagram showing quantitative tissue distribution by measuring the fluorescence intensity ratio of the same tissue of control mice not treated with drug with the fluorescence intensity of each tissue obtained in the tissue distribution experiment performed in FIG. 7.
  • Plasma concentration profiles with time of docetaxel are shown in the results of pharmacokinetic experiments using Sprague-Dawly rats of the polyphosphazene-docetaxel conjugate compounds of Example 12.
  • Figure 10 shows the change in body weight of the nude mouse for 40 days from the start of drug administration to the end of the test.
  • the present invention provides a linear polyphosphazene compound represented by the following formula (1).
  • n is an integer from 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • S is an oligopeptide comprising lysine, arginine, glutamine, asparagine, tyrosine, and lysine as spacer groups.
  • the polyphosphazene compound of the present invention is a hydrophilic oligopeptide comprising lysine or lysine, which is hydrophilic and has a multifunctional group, and a hydrophilic polyethylene glycol (PEG) is introduced into a phosphazene skeleton.
  • PEG polyethylene glycol
  • the cancer tissue selectivity of the polyphosphazene itself is not yet clear, but is probably due to the cationicity of the phosphazene polymer due to the amine group of lysine bound to the polymer and the long circulation in the blood due to polyethylene glycol. do.
  • Glycylysine is a preferred example of the hydrophilic oligopeptide including the lysine.
  • the present invention also provides a polyphosphazene-drug conjugate compound represented by the following formula (2).
  • n is an integer from 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • S is an oligopeptide comprising lysine, arginine, glutamine, asparagine, tyrosine, and lysine as spacer groups.
  • S is preferably lysine or a dipeptide or tripeptide containing lysine, but is not limited thereto.
  • S is preferably aminoethanol or aminopropanol, but is not limited thereto.
  • the drug is a hydrophobic anticancer agent.
  • the hydrophobic anticancer agent may be one selected from the group consisting of docetaxel, doxytaxel, paclitaxel, camptothecin and [(trans-1,2-diaminocyclohexane) platinum (II)].
  • Formula 2 may be represented by any one of the following Formulas 19 to 21.
  • n is an integer of 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • D is docetaxel, paclitaxel, camptothecin and [(trans-1,2) -Diaminocyclohexane) platinum (II)]
  • R is C 1-6 linear, branched or cyclic alkyl, or OCH 2 Bz.
  • n is an integer of 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • D represents one selected from the group consisting of docetaxel, paclitaxel and chemtotesin
  • the conjugated inorganic phosphorus (P) and nitrogen (N) form a polymer skeleton, and the hydrophilic polyethylene on the phosphorus atom.
  • It is a new inorganic / organic hybrid type high molecular compound in which a lysine or an oligopeptide including lysine or a linear amino alcohol is introduced side by side as a spacer group capable of chemically binding a glycol and an anticancer drug.
  • the introduced lysine or the peptide containing the same can impart cationicity to the polyphosphazene polymer according to the intrinsic pKa value of the amino acid.
  • This cationicity can be adjusted according to the type of amino acid introduced into the spacer.
  • the polyethylene glycol used in the present invention methoxy polyethylene glycol having a molecular weight in the range of 300 to 2000 was used, and the content thereof was introduced at a ratio of 0.5 to 1.8, and the introduction ratio was determined by the solubility of the synthesized polymer compound and It can be adjusted according to the use according to the body behavior or the rate of hydrolysis. It can also be changed according to the conjugation ratio of the drug, and the drug can also be changed for cationic control in the conjugated polyphosphazene polymer compound.
  • the molecular weight of the polyphosphazene polymer compound is determined according to the number of repeating units (NP), and even in the case of having the same repeating unit, the molecular weight of the polyethylene glycol introduced can be adjusted.
  • the branched polymer compound of the present invention has a feature of having a high molecular weight but a small hydration volume as compared to general organic linear polymers. That is, since the density of atoms is very high compared with general linear polymer compounds, it has the characteristic of having high molecular weight compared with a volume. Because of this feature, even when forming micelles having a relatively small size, a polymer compound that maintains high cancer tissue selectivity can be obtained.
  • the drug bound to the branched polyphosphazene polymer compound of the present invention is a drug having at least one OH or NH 2 functional group, preferably a hydrophobic anticancer agent, a taxan-based drug, a camptothecin-based drug, etc.
  • platinum complex-based drugs are mainly used, but not always limited thereto. That is, in addition to the two classes of drugs described herein, any anticancer agents having functional groups such as OH and NH 2 may be introduced in the drug delivery system-spacer-linker system. Representatives known to fall off have been described using examples of two classes of drugs.
  • the polyphosphazene-taxane-based drug conjugate compound chemically bonded to the hydrophilic linear phosphazene polymer of the present invention described above with a hydrophobic taxane-based anticancer agent is an entirely new type of intravenous polymer anticancer agent that has not been reported worldwide.
  • the molecular weight distribution can be adjusted up to about 3,000 to 300,000 Da, and in particular, by separating a polymer having a molecular weight in the range of 30,000 to 100,000 Da, biocompatibility and efficiency can be maximized.
  • the hydrophilic polyphosphazene compound of the present invention cannot form a micelle, but the conjugated-drug compound to which a hydrophobic taxane-based anticancer molecule is bound forms micelle particles having a size of about 20 nm to 100 nm.
  • EPR effect "and excellent long-term circulation in the blood by polyethylene glycol forming the shell of micelles of the present polyphosphazene-taxine-based drug conjugate compound can secure excellent cancer tissue selectivity.
  • the phosphazene-taxane drug conjugate does not decompose in blood and normal tissues, but in cancer tissues / cells.
  • a linker such as anaconic anhydride which is degradable only in the environment
  • Docetaxel of Formula 3 below has four OH groups at 2, 7, 10, and 2 'positions, and among these, the most reactive 2' OH group is used to form a linker group and an ester bond (-COOD-). Then, the linker is conjugated with an amide bond (-CONH-) reaction with a spacer of polyphosphazene.
  • the most reactive 2'-OH is used to react with a linker and an ester bond, followed by conjugation by reacting the spacer introduced into polyphosphazene with an amide bond.
  • the reason why the linker is used is that the yield is very low when conjugating a drug having a lot of steric hindrance directly to the polymer by the ester bond, and there is a problem that various kinds of isomers may occur.
  • the reaction time is longer than 24 hours, so the risk of generating isomers of the docetaxel is very high. Therefore, the linker is introduced and the linker is introduced in a high yield within a short time by using a fast reaction between single molecules. This is because the high reactivity of the polyphosphazene can be reacted with a high yield in a short time.
  • Chemtothecin-based drugs used in the present invention include, but are not limited to, the following exemplified compounds, and include all pharmaceutically active derivatives.
  • it may include a chemtotesin-based drug of camptothecin, irinotecan, topotecan, and belotecan.
  • the spacer group is an amino acid having a primary amine group which can be used for linking with a linker and a primary amine group or an alcohol group that can be grafted to a polyphosphazene polymer backbone, that is, lysine, arginine, glutamine, asparagine, Tyrosine and an oligopeptide or linear aminoalcohol containing the same.
  • lysine or an oligomer comprising lysine.
  • amino acids are amino acids classified as basic amino acids, and when basic amino acids are introduced, they have a characteristic of imparting cationicity to the polymer at a specific pH according to the intrinsic pKa value of the amino acids. In addition, it does not include only simple amino acids, but spacers may be introduced through a combination of two or more amino acids. For example, glycidyl-lysine (Gly-Lys), alanyl-lysine (Ala-Lys) or tripeptides in combination using these amino acids can be used. In addition, in the case of a specific combination of amino acids or peptides, carboxyl esters, which are protecting groups, may be hydrolyzed to directly introduce a drug without introducing a linker. Representative amino acids that can be used for this is lysine, which was shown in the examples.
  • the amide bond (-CONH-) and / or the ester bond (-COO-) is used depending on the type of linker and drug in connecting the drug moiety and the polymer drug carrier.
  • This is a differentiation from the existing drug delivery system using a linker of the known acid-stimulated sensitive anaconic anhydride, thus enabling efficient controlled release of the drug. It is also a spacer-linker system that dramatically increases the scope of the drug because it is a linker that can be used for drugs that do not have an amine function in the drug.
  • This reaction can be carried out under general coupling reaction conditions and does not affect the reaction such as dichloromethane, chloroform, acetonitrile, 1,4-dioxane, dimethylformamide, and tetrahydrofuran.
  • kinds of organic solvents can also be used.
  • the entire reaction should proceed under a well-dried solvent and argon stream, and at low temperature (-10 ⁇ 0) to increase the reaction efficiency of the resulting unstable intermediate. Reaction was carried out while maintaining the temperature).
  • anhydrous cisaconic acid since anhydride rings are opened under basic conditions, there is a possibility that isomers may occur.
  • DPTS dimethylaminopyridine / p-toluene sulfonic acid (0.1-1.0 equiv) was used to select and react reaction conditions that can act as catalysts in a neutral state.
  • spacer-linker-drugs are amide (spacer-linker) / ester (linker-spacer) bonds, amide (spacer-linker) / amide (linker-spacer), and ester (spacer-linker) / Ester (linker-spacer) bonding is also possible.
  • linker used in the present invention, a linker of various cyclic anhydride series corresponding to the following Chemical Formulas 4 to 8 may be used, and preferably, the anionic anhydride of Chemical Formula 4 is used.
  • the following Scheme 5 which corresponds to the synthetic route of the present invention, does not first open the ring of anaconic anhydride, but first reacts the carboxylic acid portion of the branch with the drug first, and then the excess anhydrous ring of NHS ( It can be ring-opened using N-hydroxy succinimide) or ring-opened directly using a polymer with spacers containing primary amines.
  • ring opening using NHS forms a generally known active ester, and a derivative capable of easily forming an amide bond under basic conditions without further reagents with a substance having a primary amine. Can be obtained.
  • Another advantage of this reaction is that the linker group is used excessively in the process of making the ester bond, which is a relatively low yield process, to prevent the waste of the drug, and the end point of the reaction can be identified using a relatively simple TLC method. There is this.
  • it is a new synthetic method with the advantage that the ring opening of the anhydride ring is later opened, unlike conventional known reaction methods, so that isomers which are difficult to release the drug do not occur.
  • the present invention also provides a method for preparing the linear polyphosphazene compound and the polyphosphazene-drug conjugate compound.
  • MPEG methoxy polyethylene glycol
  • a polysaccharide phosphine compound a multifunctional lysine, an oligopeptide containing lysine or a linear amino alcohol, is used as a spacer, and anhydrous aconic acid is used as a linker.
  • Linking hydrophobic anticancer agents such as these to polyphosphazene polymers yields new polymeric linear polyphosphazene-drug conjugate compounds.
  • the conjugate compound of the present invention shows excellent cancer tissue selectivity that is selectively accumulated in a large amount of cancer tissue, by adjusting the values of x, y, z in Formula 1, high solubility in water, long residence time in the body, cancer An anticancer agent with excellent tissue selectivity can be prepared.
  • the one spacer selected from oligopeptides comprising lysine, arginine, glutamine, asparagine or tyrosine is preferably an oligopeptide comprising lysine and glycine, for example dipeptide to tripeptide. to be. More preferably, it is a dipeptide composed of glycylalysine.
  • the lysine in the oligopeptide is not particularly limited thereto, and it is preferable that the lysine is located at a terminal portion connected to the taxane anticancer agent (D).
  • S may be a lysine, Glidden Isil lysine, lysine ester or Glidden Isil lysine ester, preferably, the S is lysine, lysine-C 1- 6 alkyl ester or C 1- lysine Glidden Isil 6 alkyl ester, more preferably S is lysine ethyl ester or glycylalysine ethyl ester.
  • the one spacer selected from linear aminoalcohols is preferably aminoethanol, aminopropanol, aminobutanol, aminopentanol, aminohexanol and more preferably aminoethanol and aminopropanol.
  • the taxane-based anticancer agent (D) is connected to the polymer through an amine group or a carboxyl group of lysine.
  • the anticancer agent is linked to a carboxyl group of lysine
  • the amine group of the lysine is an amine protecting group (eg, t-Boc, FMOC, CBZ). Group).
  • L represents a linker chemically connecting the spacer (S) and the anticancer agent (D), and represents cis aconic anhydride, succinyl anhydride, maleic anhydride, and the like, more preferably L is aconi It is a tick anhydride.
  • the anticancer agent (D) a taxin anticancer agent, a chemtotesin anticancer agent, or a platinum complex anticancer agent may be used. , Oxaliplatin and the like, but are not necessarily limited thereto.
  • the conjugate compound of the present invention has a molecular weight of about 3,000 to 300,000, preferably a value of 30,000 to 100,000, and is well dissolved in an aqueous solution, and relatively large micelle particles having an average particle diameter of 20 to 200 nm. Form.
  • the polymer micelle-type conjugate compounds of the present invention exhibit excellent cancer tissue selectivity by the "enhanced penetration preservation (EPR) effect" described above.
  • Such polyphosphazene and polyphosphazene-taxine conjugate compounds of the present invention can be prepared by a synthetic process comprising the following four steps.
  • step (d) introducing the drug precursor of step (c) into the polyphosphazene polymer drug carrier of step (b) to obtain a compound of formula (2):
  • n is an integer of 3 to 300
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • S represents a lysine, an oligopeptide comprising lysine, aminoethanol, aminopropanol, aminobutanol
  • One is selected from the group consisting of aminopentanol and aminohexanol
  • L represents a linker capable of chemically linking the spacer group and the drug
  • D is a drug having an OH or NH 2 functional group.
  • x and y are each 0 to 0.5
  • z is greater than 0 and less than or equal to 1.0
  • x + y + z 1.
  • the drug having an OH or NH 2 functional group is selected from the group consisting of docetaxel, paclitaxel, camptothecin and [(trans-1,2-diaminocyclohexane) platinum (II)]. It may be one kind, but is not limited thereto.
  • the 4-step reaction from (a) to (d) may give some changes depending on the structure of the drug.
  • the linker is first polymerized in step (c) instead of introducing the precursor into the polyphosphazene polymer in step (c), and then preparing the precursor by reacting the drug and the linker in step (c). After binding to the drug in step (d) may be combined with the linker of the polymer.
  • All the following manufacturing processes are preferably performed using a vacuum and a nitrogen line so that moisture does not enter, and various solvents used in the reaction are preferably used to sufficiently remove moisture.
  • n is an integer of 3 to 300 degree of polymerization of polyphosphazene.
  • the monomethoxy polyethylene glycol of formula 11 was removed by using azotropic phenomenon of toluene and water, and then reacted with sodium, an alkali metal, to make sodium salt of methoxy polyethylene glycol of formula 12, followed by the presence of triethylamine. Under reaction with a polydichlorophosphazene linear polymer of formula (10).
  • a is a polymerization degree of 7 to 22 of MPEG
  • the a may be 7 to 22.
  • the monomethoxypolyethylene glycol of Formula 11 is reacted with 1.2 to 1.5 equivalents of a piece of sodium metal in an organic solvent, preferably tetrahydrofuran (THF), benzene, toluene or the like, to react the alkoxide type of Formula 12.
  • an organic solvent preferably tetrahydrofuran (THF), benzene, toluene or the like.
  • THF tetrahydrofuran
  • benzene benzene
  • toluene to react the alkoxide type of Formula 12.
  • sodium salt solution of methoxypolyethylene glycol of formula 12 is added dropwise 0.5 to 1.8 equivalents to 1 mole (1 repeat unit) of polydichlorophosphazene linear polymer of formula 10 dissolved in the same solvent.
  • the reaction solvent may be any solvent that does not inhibit the reaction, and preferably may be carried out in a solvent such as tetrahydrofuran, benzene, toluene, chloroform and the like.
  • a solvent such as tetrahydrofuran, benzene, toluene, chloroform and the like.
  • n is an integer of 3 to 300 degree of polymerization of polyphosphazene, a is 7 to 22 degree of polymerization of MPEG, and b is 0.5 to 1.8 in terms of substitution of MPEG.
  • esters of 1.5-1.8 equivalents of lysine esters or oligopeptides including lysine and 6 equivalents of triethylamine are selected from organic solvents, Preferably, a mixed solution dissolved in tetrahydrofuran, chloroform or dichloromethane solvent is added dropwise to the reaction solution, and the reaction is refluxed at 40 to 60 ° C for 12 hours to 3 days.
  • a mixed solution dissolved in tetrahydrofuran, chloroform or dichloromethane solvent is added dropwise to the reaction solution, and the reaction is refluxed at 40 to 60 ° C for 12 hours to 3 days.
  • the lysine ester for example, a substance represented by Formula 14 may be used, and as an ester of an oligopeptide containing lysine, a substance represented by Formula 15 may be used.
  • the glycine moiety may be replaced with amino acids such as leucine, phenylalanine, isoleucine, valine, etc
  • R is C 1-6 linear, branched or cyclic alkyl, or OCH 2 Bz
  • R ' is a protecting group of an amine group, t-Boc (tert-butoxycarbonyl) and Fmoc (fluorenylmethyloxycarbonyl) Or CBZ (carbozenyloxy) group.
  • R examples include methyl, ethyl, n-propyl, n-butyl, t-butyl, and the like, but are not particularly limited thereto.
  • reaction solution is centrifuged or filtered to remove excess precipitates (eg, Et 3 NHCl or NaCl) produced as a by-product, and the filtrate is concentrated under reduced pressure, and ethanol is further added thereto.
  • This operation was repeated twice to completely remove the organic solvent, and then, the oily reaction mixture was dissolved in a small amount of ethanol (100 ml) and recrystallized at low temperature by adding a large amount of water (900 ml). After 3 hours the solution is filtered using a 0.45 ⁇ m membrane to remove the precipitate.
  • the polyphosphazene polymer solution thus obtained may be lyophilized to obtain a polyphosphazene polymer derivative, for example, a polyphosphazene polymer derivative of Formula 16 or Formula 17 below.
  • n is an integer of 3 to 300 degree of polymerization of polyphosphazene
  • OMPEG represents a methoxy polyethylene glycol with an average molecular weight of 350 to 1000
  • b has a value of 0.5 to 1.8
  • R is a linear, branched or cyclic alkyl, or OCH 2 Bz of C 1- 6,
  • R ' represents a protecting group is t-Boc, Fmoc or CBZ group of the amine group.
  • the chemical direct coupling of a hydrophobic anticancer agent such as taxane to the polyphosphazene polymer drug carrier synthesized in the step (b) is not only easy due to the chemical structure of the polymer and drug, but also in the body even if it is conjugated to make a conjugate
  • the conjugate should be synthesized by linking the polymer drug carrier and the anticancer agent using an appropriate linker (L) so that it can be easily separated from the polymer carrier.
  • L linker
  • the linker group should be easily connected by using the functional group (-COOH, -NH 2 ) of the polyphosphazene polymer drug carrier and the functional group (-OH, -NH 2 ) of the anticancer agent. More importantly, the synthesized conjugated anticancer substance should be able to release the anticancer agent immediately after reaching the cancer tissue without injecting the anticancer agent in the blood.
  • the anhydrous acidic anhydride of the formula (18) below is an optimal linker, especially for the synthesis of taxane anticancer conjugates, and synthesized a precursor combined with taxane and anhydrous anaconic acid as follows.
  • a hydrophobic anticancer agent such as a taxane anticancer agent, is combined with the polyphosphazene polymer drug carrier obtained in step (b) to obtain a linear polyphosphazene-anticancer conjugate represented by Chemical Formula 2 of the present invention.
  • a method of binding a taxonomic anticancer agent to a polyphosphazene polymer derivative includes a method of connecting a lysine amine group of a polyphosphazene polymer to an amide bond using an aconic linker, and a lysine carboxyl group and a taxane of a polyphosphazene polymer.
  • the step (d) may be performed in the following two ways.
  • the dried phosphazene-based polymer and the anticancer agent to be introduced therein for example, docetaxel and a linker, for example, an aconottaxane prepared in the form of an ester activated by reacting it with anaconic acid anhydride in advance.
  • the NHS N-hydroxysuccinimidyl
  • the NHS is reacted under basic conditions for 12 hours. After 12 hours, the mixture was concentrated by distillation under reduced pressure, and then dissolved in ethanol and concentrated under reduced pressure to remove all of the used solvent and DIPEA (diisopropylethylamine) (37 ⁇ C, 5 mmbar).
  • the polymer mixture After dissolving the solvent, the polymer mixture is completely dissolved in 50 ml of ethanol, and then 950 ml of water is added and recrystallized in a refrigerator for 3 hours. After 3 hours, the solution obtained by filtration of the solution under reduced pressure was washed five times using 30% aqueous ethanol solution in the same manner as above using an ultrafiltration membrane apparatus, and again washed six times or more using pure water. All reaction drugs were removed and all used ethanol was removed to synthesize the desired polyphosphazene-docetaxel conjugates of Formula 19 or Formula 20. At this time, the number of dialysis was measured by measuring the UV spectrum of the filtered filtrate until the residual amount of docetaxel was less than 0.1%.
  • n is an integer of 3 to 300 degree of polymerization of polyphosphazene
  • OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000
  • L is a chemical bond between the spacer and the drug Linker and D represents an anticancer agent of a taxane system, a chemtotesin system or a platinum complex system
  • R is C 1-6 linear, branched or cyclic alkyl, or OCH 2 Bz.
  • x and y are each 0 to 0.5
  • z is greater than 0 and less than or equal to 1.0
  • x + y + z 1.
  • the ester of lysine of the obtained polyphosphazene polymer derivative may be hydrolyzed with alkali to acidify and then directly esterified with a taxane molecule.
  • the polyphosphazene polymer derivative of Chemical Formula 16 is dissolved in methanol, and the ester group is hydrolyzed using KOH or NaOH (1.5 to 2 times excess) to obtain a polyphosphazene in the form of a metal salt.
  • Methanol is removed by distillation under reduced pressure, and then the reaction mixture in solid state is dissolved in water (100 ml) and transferred to a separatory funnel.
  • n is a value representing the degree of polymerization of polyphosphazene, an integer of 3 to 300, OMPEG represents a methoxy polyethylene glycol having an average molecular weight of 350 to 1000, D in the group consisting of docetaxel, paclitaxel and chemtotesin 1 type selected is represented, and R 'represents a t-Boc, Fmoc, or CBZ group.
  • x and y are each 0 to 0.5
  • z is larger than 0 and has a value of 1.0 or less
  • x + y + z 1.
  • Aluminum trichloride (AlCl 3, 7.5 wt%) as a catalyst was added to phosphazene trimer ([NPCl 2 ] 3 , 11.54 g, 100 mmol), followed by the conventional method (Sohn YS et al. Macromolecules 1995, 28, 7566) was then subjected to melt polymerization at 250 ° C for 5 hours to synthesize polydichlorophosphazene ([NPCl 2 ] n ).
  • methoxy polyethylene glycol (MPEG550) (82.5 g, 150.0 mmol) and sodium (Na) metal (4.9 g, 200.4 mmol) having a molecular weight of 550 were added to a dried toluene solvent and stirred at 120 ° C. for 6 hours under an argon stream.
  • Sodium salt of methoxy polyethylene glycol was prepared.
  • the polydichlorophosphazene prepared above was transferred to a glass reactor, and the dried tetrahydrofuran (100 ml) was added thereto to dissolve. Then, the sodium salt solution of methoxypolyethylene glycol prepared in an ice bath (0 ° C.) for 60 minutes was dissolved. Added dropwise.
  • the polymer solution washed five times or more with distilled water was lyophilized to obtain a polyphosphazene polymer derivative.
  • the reaction solution was cooled in an ice bath, and triaethylamine was added to neutralize the solution. After confirming that it is completely neutralized, the organic solvent is completely removed by using a vacuum distillation, and again dissolved by adding NaHCO 3 solution to the polymer solution. If not completely dissolved, use a membrane filter to remove insoluble impurities.
  • the thick polymer solution is difficult to filter the membrane, so that the filter in the order of 0.45 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m to obtain a clean polymer solution.
  • the polymer solution thus obtained is first subjected to a desalting operation using an ultrafiltration membrane.
  • the desolving polymer solution is selectively extracted with a polymer having a molecular weight in a desired range by using an ultrafiltration membrane having various MWCO values.
  • the ultrafiltration membrane used in the present invention was used to extract a polyphosphazene polymer having a desired molecular weight range using an ultrafiltration membrane having a MWCO value of 3 kDa, 30 kDa, 100 kDa, 300 kDa.
  • the total yield of the polymer is 90%, and the yield for each molecular weight is obtained in the yield of (20, 30, 5, 30, 5%), respectively.
  • Phosphazene trichloride [NPCl 2 ] 3 , 11.54 g, 100 mmol), MPEG750 (112.5 g, 150 mmol), triethylamine (80.0 ml, 600 mmol), Boc-lysine ethyl ester (N ⁇ -BocLysEt , 20.5 g, 75.0 mmol) was used to synthesize a polyphosphazene polymer derivative in the same manner as in Example 1.
  • the synthesized polymer was separated and fractionated by molecular weight of 3 to 30 kDa, 30 to 100 kDa, 100 to 300 kDa, and 300 kDa or more using an ultrafiltration membrane and equipment in the same manner as in Example 1.
  • Polyphosphazene trichloride [NPCl 2 ] 3 , 11.54 g, 100 mmol), MPEG550 (69.0g, 126 mmol), triethylamine (80.0 ml, 600 mmol), N ⁇ -BocLysEt (27.4g, 100mmol)
  • Polyphosphazene polymer derivative was synthesized in the same manner as in Example 1. The synthesized polymer was separated and fractionated by molecular weight of 3 to 30 kDa, 30 to 100 kDa, 100 to 300 kDa, and 300 kDa or more using an ultrafiltration membrane and equipment in the same manner as in Example 1.
  • Phosphazene trimer [NPCl 2 ] 3 , 11.54 g, 100 mmol), MPEG550 (82.5 g, 150 mmol), triethylamine (80.0 ml, 600 mmol), N ⁇ -BocLysEt (20.5 g, 75 mmol
  • Synthesized derivatives (10g, 10mmol), NaOH (0.4g, 10mmol) is dissolved in methanol solvent to send the reaction at room temperature for 4 hours to hydrolyze. Hydrolysis is confirmed using 1 H-NMR, and the polymer solution confirmed to be hydrolyzed is distilled under reduced pressure to obtain a solid polymer.
  • Phosphazene trichloride [NPCl 2 ] 3 , (2.0 g, 5.72 mmol), aluminum trichloride as catalyst (AlCl 3, 7.0 wt%), methoxypolyethylene glycol (MPEG550) with molecular weight 550 (9.48 g, 17.2 mmol) and sodium (Na) metal (0.59 g, 25.7 mmol) were reacted in the same manner as in Example 1 to obtain a solution of phosphazene polymer intermediate substituted with MPEG550, while 2-aminoethanol (AE) (1.30 g, 21.3).
  • AE 2-aminoethanol
  • Phosphazene trichloride [NPCl 2 ] 3 , (2.0 g, 5.72 mmol), aluminum trichloride as catalyst (AlCl 3, 7.0 wt%), methoxypolyethylene glycol (MPEG750) with molecular weight 550 (12.9 g, 17.2 mmol), sodium (Na) metal (0.59 g, 25.7 mmol), 2-aminoethanol (AE) (1.30 g, 21.3 mol) and sodium hydride (0.61 g, 25.4 mmol) were reacted in the same manner as in Example 8.
  • a phosphazene polymer [NP (MPEG750) (AE)] n (yield: 78%) substituted with MPEG750 is obtained.
  • Aconitic anhydride (20mmol, 3.12g), DPTS (6.0g, 20mmol) and docetaxel (8.03g, 10.0mmol) were vacuum dried for 4 hours, cooled to low temperature (-10 ° C), and then well-dried tetrahydrofuran (100 ml) is added to completely dissolve the reaction. After the reaction is completely dissolved, DCI (20 mmol, 2.5 g) dissolved in well dried terahydrofuran is added slowly for 20 minutes. The reaction was sent for 6 hours while maintaining the temperature at -10 ° C, and then the reaction was again sent at 0 ° C for 6-12 hours.
  • an organic solvent such as chloroform or methylene chloride
  • Camptothecin-gly-NH 2 and cis- aconitic anhydride (0.57g, 3.63 mmol) obtained by reacting this intermediate compound in methylene chloride and acetic acid fluoride mixed solvent (10ml / 10ml) for 1 hour to remove t- Boc were dissolved in dimethylformaldehyde. After dissolving in (DMF) solvent (2 ml) and reacting at 0 ° C. for 16 hours, precipitated by adding ether to precipitate / filter / dry to obtain the camptothecin precursor 2'-Aconitic-glycamptothecin in 80% yield.
  • DMF dimethylformaldehyde
  • the polyphosphazene derivative (4.85 g, 5.0 mmol) obtained in Example 1 was dissolved in methylene chloride and cooled using an ice bath.
  • the 2'-aconitic docetaxel NHS ester of Example 8 (2'-aconitic-docetaxel) was dissolved in methylene chloride.
  • -NHS, 2.65 g, 2.5 mmol) is dissolved in methylene chloride and added to the reaction flask. After cooling sufficiently, DIPEA (10ml) was added and reacted while maintaining the low temperature (0 ⁇ 5 °C) for 12 hours.
  • the reaction solvent was removed by distillation under reduced pressure, and then dissolved in ethanol.
  • the polymer material obtained after distillation under reduced pressure is recrystallized from rust in a small amount of ethanol and a large amount of water.
  • insoluble precipitates are removed using a membrane filter, and finally, a clean solution is separated and purified using an ultrafiltration membrane.
  • purification using ultrafiltration membrane it is washed five times with 30% ethanol (v / v) solution at first and then changed to pure water and washed and concentrated five times.
  • Example 14 Polyphosphazene derivatives obtained in Example 1 (9.7 g, 10.0 mmol), 2'-aconatic docetaxel NHS ester of Example 8 (3.18 g, 3.0 mmol) and DIPEA (5 ml) were used as in Example 14.
  • the method gives the final polyphosphazene-drug conjugate compound, [NP (MPEG550) 1.5 (LysEt) 0.2 (LysEt-2'-aconitic-docetaxel) 0.3 ] n . (Yield 90%)
  • Composition formula C 112.4 H 203 N 4 O 51 .6. 8 P 2 .
  • Example 14 In the same manner as in Example 14, using the polyphosphazene (15.6 g, 10 mmol) of Example 3 and the 2'-aconicotic docetaxel active ester (5.3 g, 5.0 mmol) and DIPEA (10 mmol) of Example 8, The final polyphosphazene-docetaxel conjugate compound, [NP (MPEG1000) 1.5 (LysEt) 0.2 (LysEt-2'-aconitic-docetaxel) 0.3 ] n , is obtained. (Yield, 89%)
  • Example 6 The final poly was prepared in the same manner as in Example 14 using polyphosphazene (10.4 g, 10 mmol) and the 2'-aconicotic docetaxel NHS ester (5.3 g, 5.0 mmol) and DIPEA (10 mmol) of Example 8.
  • Phosphazene-docetaxel conjugate compound, [NP (MPEG550) 1.5 (GlyLysEt) 0.2 (GlyLysEt-2′-aconitic-docetaxel) 0.3 ] n . (Yield 89%)
  • composition formula C 114. 4 H 206 N 5 . 6 O 52 .8 P 2 .
  • Polyphosphazene (9.7 g, 10.0 mmol) of Example 1, and 2'-succinylpaclitaxol (5.26 g, 5.0 mmol) synthesized according to known methods in the literature were prepared by DCI (20 mmol, 2.54 g), and DIPEA (10 mmol). ) was chemically bonded to the polyphosphazene polymer using a common ester bonding method.
  • Composition C 113. 6 H 202 N 4 . 6 O 51 .8 P 2 .
  • Example 7 Polyphosphazene (9.57 g, 10.0 mmol), and docetaxel (10.6 g, 10.0 mmol) were vacuum dried and then dissolved in an organic solvent such as tetrahydrofuran, methylene chloride, or chloroform, which is a well-dried organic solvent. After cooling the reaction vessel using an ice bath, DCI (20 mmol, 2.54 g) and DIPEA (10 mmol) dissolved in the same solvent are gradually added to the reaction vessel. After the reaction was carried out at low temperature (0 ° C.) for 24 hours in this state, the reaction solution was filtered under reduced pressure, distilled under reduced pressure, and dried.
  • an organic solvent such as tetrahydrofuran, methylene chloride, or chloroform
  • Example 1 The polyphosphazene (9.7 g, 10.0 mmol) of Example 1 was reacted with the 20-aconitic-camptothecin-NHS ester (2.5 g, 5.03 mmol) of Example 12, which was synthesized above, in the same manner as in Example 14 to obtain a final polyphosphate.
  • the drug carrier [NP (MPEG550) (LysEt)] n (0.5 g, 0.25 mmol) of Example 5 and the chemtotesine precursor CPT-Gly-ACA-NHS ester (0.17 g, 0.25 mmol) synthesized in Example 13 were carried out.
  • the reaction was carried out in the same manner as in Example 14 to synthesize a final polyphosphazene-chemtothecin conjugate compound, [NP (MPEG550) (LysEt) (aconitic-glycylcamptothecin)] n (yield: 85%).
  • ACA linker aconic acid
  • Drug transporter of Example 5 [NP (MPEG550) (LysEt)] n (1 g, 1.28 mmol), the linker cis- aconitic anhydride (ACA) (2 g, 11.91 mmol) and Ba (OH) 2 .8H 2 O (0.44 g, 1.39 mmol) and (dach) Pt (SO 4 ) (0.52 g, 1.28 mmol) were prepared in the same manner as in Example 25.
  • the polymer platinum complex compound [NP (MPEG550) (LysEt) (ACA) Pt (dach)] n . (yield, 79%).
  • composition C 45 H 84 N 5 O 20 PPt.H 2 O
  • the polyphosphazene compound of Example 1 and the polyphosphazene-docetaxel conjugate of Example 11 were dissolved in water (0.2% wt./wt.), Respectively, and their particle size and zeta potential were measured by dynamic light scattering (DLS). potential, ⁇ ) was measured, and significant results are shown in FIGS. 1, 2, and 3.
  • DLS dynamic light scattering
  • the average particle size in the aqueous solution of the polyphosphazene polymer is about 3 nm to 4 nm, and the size of the hydrodynamic particles is shown without forming micelles.
  • the lysine substituent introduced into the polyphosphazene is cationic (FIG. 2) at pH 7.4, so it is in a hydrophilic highly homogenous state, and its average at a concentration of 0.2% when the hydrophobic drug docetaxel is conjugated It was confirmed that the diameter increased to the size of 60nm (Fig. 3).
  • the 20-fold increase in the average diameter of the particles was confirmed that the polyphosphazene drug carrier conjugated with the hydrophobic drug, the nature of the hydrophilic polymer is changed to amphiphilic polymer to form micelles.
  • the size of the micelle measured at intervals of 5 °C in the temperature range of 5 ⁇ 70 °C, it was confirmed that the particles have a constant particle size regardless of the temperature.
  • the polyphosphazene-docetaxel conjugate compounds of the present invention form micelles in an aqueous solution, and when these drugs are used as intravenous micelle injections, stable micelles are formed to protect hydrophobic drugs. Should function.
  • the stability of the micelle is expressed by the critical micelle concentration (CMC), and a variety of methods are known for measuring the critical concentration, but pyrene fluorescence is most widely used. Therefore, according to the method (Kalyanasundoram, K .; Thomas, J. K. J. Am. Chem. Soc., 1988, 99, 2039) was tested as follows.
  • a pyrene aqueous solution was prepared at a concentration of 6 ⁇ 10 ⁇ 7 M, and then a sample was prepared in which the polyphosphazene-paglitaxel conjugate of Example 17 was dissolved at a concentration of 5.0 to 0.0005% (wt / wt).
  • the fluorescence spectrum at 339 nm wavelength (l ex ) and the spectrum at 390 nm wavelength (l em ) were measured and the ratio of fluorescence intensity of band I and fluorescence intensity of band III Critical concentrations were determined and the results are shown in FIG. 4.
  • the critical concentration of the polyphosphazene-paclitaxel conjugate of Example 1 thus determined was measured at a very low concentration of 41 mg / L, and it is expected that the micelle form can be maintained in the blood when injected intravenously. This result is presumed to be due to the hydrophobicity of the drug.
  • the molecular weight is rapidly reduced by about 10,000 ⁇ 15,000 Da until the first two days, but gradually decreases from the fourth day.
  • pH 7.4 shows that the degree of degradation is slightly less than that at pH 5.4.
  • this half-life information is of great importance for the regulation of the extracorporeal release time of intravenous drug delivery.
  • polymers of various molecular weight ranges have been separated and separated, and their half-life, which is the body's behavior and excretion and hydrolysis, can be the basic data for the synthesis of polymeric drug carriers that can be discharged in vitro within a desired time.
  • the molecular weight range of the drug carrier suitable for the use of the drug can be selected and used.
  • Excitation and emition filter Omega Optical, Battlebor, VT (ex: 560 nm, em: 700 nm).
  • mice were prepared by preparing 8-week-old CH3 / HeN nude mice (Instityte of Medical Science, Tokyo) and feeding them with sterilized food and water in a sterilized place and freely exercising.
  • Cancer cells (A549) (1 ⁇ 10 6 ) were transplanted into mice, the cancer tissues were grown until the size of the cancer tissue was 300 mm 3 , and the mice were divided into two groups. One group was injected with polyphosphazene polymer with Cy5.5, and the other group was used as a control without drug treatment.
  • the mice were dissected and extracted with major tissues such as part of biceps femoris, cancer tissue, liver, kidney, lung, heart and spleen.
  • Near-infrared (680nm to 720nm) fluorescence images of the extracted tissues were measured with a CCD camera (Kodak Image Station 4000MM,).
  • the polyphosphazene-docetaxel conjugate synthesized in Example 12 was labeled with Cy 5.5 in the same manner as in Experimental Example 4, and the tissue distribution of the polyphosphazene-docetaxel conjugate was compared using a mouse model (FIG. 7). ). Quantitative determination of the tissue distribution of the conjugate was performed by measuring the ratio of near-infrared fluorescence intensity between the tissues of mice injected with the Cy 5.5 attached sample and the untreated control mouse tissues, and the results are shown in FIG.
  • the drug content was measured by the ratio of area integration value using 1 H-NMR (Varian 500 Hz) method, absorbance method using UV spectrum (Perkin Elmer, Lamda), and HPLC method.
  • 1 H-NMR Variant 500 Hz
  • UV spectrum Perkin Elmer, Lamda
  • HPLC HPLC
  • docetaxel (10.0 mg) was completely dissolved using a solution of water: acetonitrile in a 1: 1 mixture (10.0 mg), which was diluted six times by 1/2 times, that is, 1 mg / ml (1 mg).
  • the solution of which the concentration of the drug was determined by using the UV spectrum was put in 500 ⁇ l in a 2.0 ml HPLC vial. After the vial was incubated in a 37 ° C. incubator for a predetermined time interval, 500 ul of acetonitrile was added again to completely dissolve the precipitate before HPLC, and then the amount of docetaxel released according to the above docetaxel assay was quantified. It was.
  • Paclitaxel anticancer drugs have excellent therapeutic effects on female cancers such as breast cancer.
  • the cancer cells were cultured in a cell incubator at 37 ° C. supplied with 5% carbon dioxide and 95% air (Rita Song et al. J. Control. Release 105 (2005) 142-150). According to the cytotoxicity was measured.
  • Taxoteel ® Taxote, Sanofi Aventis, Inc.
  • a docetaxel preparation currently used in clinical practice as a control to confirm the in vivo behavior of the polyphosphazene-docetaxel conjugate synthesized in Example 12.
  • the initial concentration (C 0 ) of the polyphosphazene-docetaxel conjugate (0.263) was compared to that of the control (8.764 ⁇ g / ml), even though the same amount (5 mg / kg) was administered on the docetaxel basis. ⁇ g / ml), the polyphosphazene-docetaxel conjugate drug was circulated in the blood without degrading in almost neutral blood and showed little toxicity.
  • the table shows that the half-life (t 1/2 ) of the polyphosphazene-docetaxel conjugate compound is about 10 times slower than that of the control taxotel, and the AUC last value representing the bioavailability of the drug is about 2 times as the name. The efficacy is also excellent.
  • the drug dose was fixed at 10 mg / kg, known as the docetaxel optimal dose for the control taxotel, and the dose of the conjugate compound was 10 mg / kg and 20 mg / kg based on docetaxel three times (day 1, 5, 9).
  • the size of the cancer tissue was measured for 30 days after administration.
  • FIG. 10 shows anticancer activity against MKN28 cell line
  • FIG. 11 shows body weight change of experimental rats for 40 days from the start of administration of taxotel and conjugate compounds.
  • the anticancer effect of the conjugate compound is almost the same as the taxotel control.
  • the weight change of nude mice during the drug administration period shown in FIG. In detail, in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은, 친수성인 폴리에틸렌글리콜과 스페이서(spacer) 그룹으로 라이신, 라이신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택된 1종을 도입한 양이온성 선형 폴리포스파젠 화합물, 상기 화합물에 소수성 약물을 화학적으로 결합시킨 폴리포스파젠-약물 컨쥬게이트 화합물 및 이의 제조방법에 관한 것으로, 본 발명의 화합물은 암 조직 선택성이 탁월하고 독성이 아주 낮아 항암제로 실용화 가능성이 높은 신물질이다.

Description

신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
본 발명은 탁월한 암 조직 선택성과 생체적합성을 갖는 양이온성 선형 폴리포스파젠 약물전달체 화합물을 합성하고 여기에 소수성 항암제를 화학적으로 결합시킨 컨쥬게이트 화합물 및 그들의 제조 방법에 관한 것이다.
현재 임상에서 사용되고 있는 대부분의 항암제들은 분자량이 1000 미만인 소분자량의 단량체이다. 특히 이들 단량체의 항암제들을 정맥주사 할 경우 체내에서 정상세포와 암세포에 대한 선택성이 없어 심한 독성과 부작용을 동반하고, 약물이 혈중에 머무는 반감기(1~2시간)가 짧아 지속적인 치료효과를 기대할 수가 없어서 항암치료에 한계가 되고 있다. 따라서 최근의 항암제 신약 개발에 있어 극복해야 할 가장 핵심적인 기술은, 항암제 약물을 암 부위에 선택적으로 전달하는 암 표적화(tumor targeting) 기술과 암 부위에 도달된 약물이 적기에 적당한 속도로 항암제를 방출케 하는 방출제어기술이다. 이러한 항암제 치료의 한계를 극복하려는 연구 노력이 지난 수십 년간 세계적으로 활발하게 이루어져 왔고, 그 결과 고분자 약물전달체를 이용하는 것이 가장 효과적이고 실용적이라는 것을 알게 되어 최근에는 고분자 치료법 (polymer therapy)이라는 새로운 분야가 탄생하기에 이르렀다(R. Haag, F. Kratz, Angew. Chem. Int. Ed. 45(2006)1198-1215).
지금까지 약물전달체로 사용되고 있는 고분자는 대부분 유기계 고분자이다. 수많은 천연 또는 합성 고분자들이 약물전달체로 연구/시도 되었으나 실용화 가능성이 있는 고분자는 극소수에 불과하였다. 그 이유는 고분자 물질이 특히 항암제 전달체로 사용되려면, 위에서 설명된 항암제를 운반하는 약물전달체의 암 선택성과 약물방출속도 이외에 수용성, 생분해성, 고분자 자체의 생체독성, 약물과의 상용성 등 다양한 물성을 동시에 만족시켜야 하기 때문이다.
본 발명자들은 이러한 상황에 대처하여 오래전부터 유기계 탄소가 아닌 무기계 질소(N)와 인(P)이 번갈아 공액결합으로 연결된 폴리포스파젠 (polyphosphazene)이라고 하는 무기 고분자 골격에 다양한 유기그룹을 도입함으로서 다양한 물성의 유기/무기 하이브리드 약물전달체를 설계할 수 있음을 발견(Youn Soo Sohn, et al. Macromolecules, 1995, 28, 7566) 하고 지난 10 여년간 새로운 암조직 선택성 고분자형 항암제 개발에 총력을 경주하고 있다. 특히 본 연구 초기에는 다양한 분자량의 친수성 폴리에틸렌글리콜(PEG: poly(ethylene glycol))과 다양한 여러 형태의 소수성 올리고펩타이드 (oligopeptide)를 도입시켜 양친성 폴리포스파젠을 합성함으로서 온도 감응성 등 다양한 물성을 갖는 지능형 약물전달체를 개발하였다. 이러한 양친성 폴리포스파젠은 온도감응성 마이셀, 하이드로젤 등 다양한 나노구조체를 형성하지만 소수성 올리고펩타이드로 인한 물에 대한 용해도의 감소 및 독성의 발현 등 생체적합성에 문제가 발생함으로서 실용화에 어려움이 있음을 알게 되었다. 모든 양친성 고분자는 수용액에서 가열할 경우 용매인 물분자와의 친화력이 떨어져 일정 온도에 이르면 고분자가 침전으로 떨어지는데 이때의 이온도를 저임계용액온도(lower critical solution temperature)라 한다. 정맥주사용 약물전달체로 사용하려면 저임계용액온도가 체온보다 훨씬 높아야(50 ℃이상) 안전한데 이들 양친성 폴리포스파젠은 대부분 수용액에서 이 온도가 체온보다 낮아 피하 주사 등 국부전달용 항암제 전달체로는 적합하지만 정맥 주사용 약물전달체로는 사용이 불가능하였다.
한편, 대표적인 소수성 항암제인 탁세인 계 항암제, 즉 파클리탁셀 및 도세탁셀은 현재 임상에서 유방암, 난소암, 소세포 폐암 등 여러 종류의 암에 우수한 치료 효과를 나타내어 가장 널리 사용되는 항암제 중 하나이다. 그러나 이들 탁세인 계 항암제는 소수성이 강하여 물에 대한 용해도(< 1 μg/ml)가 아주 낮기 때문에 그대로 주사제로 사용되지 못하고, 계면활성제인 폴리조베이트 80(Polysorbate 80) 또는 크레머포어 (Cremophore EL)와 에틸알콜로 제제되어 사용되고 있다. 하지만 그렇게 제제화 된 탁세인 계 항암제는 용해제로 사용되는 계면활성제와 알콜에 기인하는 신경 독성 등의 부작용과 탁세인 계 항암제 자체의 강한 독성 때문에 그 사용이 크게 제한되고 있다.
따라서 이러한 문제들을 해결하기 위하여 특히 지난 10 여년간 세게적으로 많은 연구가 다방면으로 진행되고 있는데, 그 중에서도 특히 최근에는 유기계 고분자 마이셀 등 다양한 나노 구조체들을 이용하려는 연구가 활발히 진행되고 있다. 특히 친수성 블록과 소수성 블록으로 구성된 양친성 고분자 마이셀의 경우, 소수성 그룹이 마이셀 내부의 핵을 이루기 때문에 탁세인과 같은 소수성 약물을 마이셀의 핵 내부에 효율적으로 포집하여 가용화할 수 있다. 또한 탁세인 분자에 폴리에틸렌글리콜과 같은 친수성기를 직접 화학적으로 결합시켜 가용화한 컨쥬게이트형 항암제와, 수용성 폴리글루탐산에 파클리탁셀을 결합시킨 고분자 컨쥬게이트형 항암제 등 여러 종류의 고분자형 항암제가 현재 임상 시험 단계에 들어가 있다.
이와 같이 소분자량의 항암제를 고분자에 컨쥬게이션 시킨 고분자형 예비약물(prodrug)은 약물의 체내 체류시간을 연장하고, 암조직의 특성과 고분자 입자의 "향상된 투과보전(enhanced permeability and retention(EPR))효과 (Maeda H, et al. J. Control. Release 65 (2000) 271-284)"에 의해 암조직 선택성을 부여하며, 약물방출 속도를 제어함으로서 치료 효과를 극대화 하고, 또한 독성을 획기적으로 줄일 수 있다는 점에서 가장 합리적인 접근방법으로 기대되고 있다. 지금까지의 연구 보고에 의하면, 고분자 나노입자의 경우 "향상된 투과보전(EPR) 효과"에 의하여 암 선택성을 나타내려면 고분자 입자의 크기가 50~200 nm 정도는 되어야 하는 것으로 알려져 있다 (Torchilin V. P., J. Control. Release 73 (2001) 137-172). 또한 최근 유전자 전달체에 대한 연구에 따르면, 양이온성 고분자의 경우 음이온의 성질을 띠고 있는 세포내에 투과효율이 크게 향상된다는 사실이 알려져 있다(Gabrielson, N.P.; Park, D. W. J. Control. Release 136 (2009) 54-61). 그러나 현재 가장 진전된 제III상 임상시험 중에 있는 폴리글루멕스(poliglumex)는, 폴리글루탐산에 파클리탁셀을 에스터 결합으로 컨쥬게이션 시킨 예비약물로서 강한 음이온을 띄고 있는데, 파크리탁솔을 최대 30%까지 녹일 수 있는 특징을 가지고 있으나 암조직 이외의 다른 기관에 더 많이 축적되는 단점(Wallace S.; Li C. Adv. Drug Deliv. Rev. 60 (2008) 886-898)을 가지고 있어 실용화가 지연되고 있다.
따라서, 본 발명의 목적은 탁월한 암조직 선택성을 나타내는 새로운 양이온성 폴리포스파젠계 약물전달체 화합물 및 이들 폴리포스파젠계 약물전달체 화합물에 항암제를 화학적으로 결합시킨 컨쥬게이트형 화합물 그리고 그들의 제조방법을 제공하는데 있다.
본 발명자들은 전술한 기술적 배경 하에서 보다 탁월한 암 조직 선택성을 나타내는 항암제 약물 전달체를 개발하기 위해 노력하던 중, 폴리포스파젠 골격에 용해제로 친수성인 폴리에틸렌글리콜과, 소수성 항암제를 상기 고분자에 화학결합으로 연결시킬 수 있는 다중작용기를 가지고 있는 스페이서(spacer) 그룹으로 아미노산, 아미노산을 포함하는 올리고펩타이드 및 선형 아미노알콜로 이루어진 군으로부터 선택되는 1종을 도입하여 새로운 약물전달용 폴리포스파젠 화합물을 합성하였다. 이렇게 합성된 약물전달용 폴리포스파젠 화합물은 양이온(cation)성과 체내 잔류시간이 매우 길어(3일 이상) 암 조직 선택성을 갖는다는 사실을 발견하였다. 또한 이 화합물에 산성조건에서 약물을 방출할 수 있는 링커(linker)를 사용하여 소수성 항암제를 컨쥬게이션 시킴으로써 암 조직 선택성이 탁월하며, 생분해성을 갖고, 암조직에서 약물의 조절 방출이 가능한 스마트 고분자형 컨쥬게이트 화합물을 합성할 수 있었다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 선형의 폴리포스파젠 화합물을 제공한다.
[화학식 1]
Figure PCTKR2015002488-appb-I000001
상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, l은0~0.9이고 m은 0.1~1이며 l+m = 1이다.
또한, 본 발명은 하기 화학식 2로 표시되는 폴리포스파젠-약물 컨쥬게이트 화합물을 제공한다.
[화학식 2]
Figure PCTKR2015002488-appb-I000002
상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
또한 본 발명은 (a) 출발물질인 6염화 고리형 포스파젠을 열 중합하여 폴리디클로로포스파젠 선형 중합체를 합성한 후 메톡시폴리에틸렌글리콜의 나트륨 염과 반응시켜 폴리포스파젠 고분자 중간체를 얻는 단계;
(b) 상기 폴리포스파젠 고분자 중간체를 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군에서 선택되는 1종과 반응시켜 친수성 양이온성(cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 단계;
(c) OH, 또는 NH2 작용기를 갖는 약물을 링커(linker)를 이용하여 폴리포스파젠 고분자에 화학결합으로 결합시키기 용이한 약물 전구체(precursor)를 제조하는 단계; 및
(d) 상기 (b) 단계의 폴리포스파젠 고분자 약물전달체에 상기 (c) 단계의 약물 전구체(precursor)를 도입하여 상기 화학식 2의 화합물을 얻는 단계; 를 포함하는 상기 화학식 2의 화합물의 제조 방법을 제공한다.
또 본 발명은 (a) 출발물질인 6염화 고리형 포스파젠을 열 중합하여 폴리디클로로포스파젠 선형 중합체를 합성한 후 메톡시폴리에틸렌글리콜의 나트륨 염과 반응시켜 폴리포스파젠 고분자 중간체를 얻는 단계;
(b) 상기 폴리포스파젠 고분자 중간체를 스페이서 그룹인 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종과 반응시켜 친수성 양이온성(cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 단계;
(c) 상기 (b) 단계의 의 폴리포스파젠 고분자 약물전달체의 스페이서 그룹에 링커를 먼저 결합시키는 단계; 및
(d) 상기 (c) 단계의 폴리포스파젠 고분자 약물전달체의 링커에 OH 또는 NH2 작용기를 갖는 약물을 결합시켜 상기 화학식 2의 화합물을 얻는 단계; 를 포함하는 상기 화학식 2의 화합물의 제조방법을 제공한다.
본 발명의 선형 폴리포스파젠 화합물은 매우 높은 암조직 선택성을 갖는 효과가 있다. 또한 본 발명의 선형 폴리포스파젠-약물 컨쥬게이트 화합물은 종래의 유기계 고분자를 이용한 컨쥬게이트 약물과는 달리 체내의 간, 신장 등 주요기관에는 많이 쌓이지 않고 혈액 내에서 장기간 순환하며, 특히 암조직에 선택적으로 다량 축적되는 탁월한 암 조직 선택성을 나타내며, 중성의 혈액이나 조직에서는 소수성 항암제를 방출하지 않고 산성의(pH= 4~7) 암조직에서만 선택적으로 독성이 높은 항암제를 방출함으로써 체내에서 항암제에 의한 독성을 획기적으로 낮추는 등 항암제로서 탁월한 물성을 갖는 효과가 있다.
이와 같이 본 발명의 폴리포스파젠 화합물 및 폴리포스파젠-약물 컨쥬게이트 화합물은 실용화 가능성이 매우 높은 신물질이다.
도 1. 실시예 1의 폴리포스파젠 화합물의 입도분포를 나타낸 도면이다. (평균직경 = 3.0nm)
도 2. 실시예 1의 폴리포스파젠 화합물의 양이온성을 나타내는 제타전위 측정 결과를 나타낸 도면이다.
도 3. 실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물의 입도분포를 나타낸 도면이다. (평균직경 = 60nm)
도 4. 실시예 17의 폴리포스파젠-파클리탁셀 컨쥬게이트 화합물의 파이렌 형광을 이용한 마이셀 임계농도(CMC) 측정 결과를 나타낸 도면이다.
도 5. 실시예 17의 폴리포스파젠-파클리탁셀 컨쥬게이트 화합물의 분자량 변화를 나타낸 도면이다. 여기에서 (a)는 pH 7.4, (b) pH 5.4에서의 결과이다.
도 6. (a) A549 암세포를 이식한 마우스에 실시예 1의 폴리포스파젠 화합물에 형광염료인 Cy5.5로 표지한 약물 전달체를 혈액주사한 후 12시간, 24시간, 48 시간, 72시간 경화 후 각 기관을 분리하여 찍은 ex vivo NIR 형광 이미지를 나타낸 도면이다. 여기에서 1은 간, 2는 폐, 3은 콩팥, 4는 비장, 5는 암조직, 6은 근육을 나타낸다. (b) 는 12시간, 24 시간, 48 시간, 및 72 시간에 추출한 전체 혈액(WB)과 혈장(PL)의 NIR 형광 이미지를 나타낸 도면이다.
도 7. 실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물을 형광염료Cy 5.5로 표지한 후 SCC7 암세포를 이식한 마우스에 주입한 다음 24시간, 48시간후 조직 분포를 비교하였다. 여기에서 1은 간, 2는 폐, 3은 비장, 4는 콩팥, 5는 심장, 6은 암조직을 나타낸다.
도 8. 앞의 도 7에서 실시한 조직분포 실험에서 얻은 각 조직의 형광 세기를 약물로 처리되지 않은 대조군 마우스의 같은 조직의 형광세기의 비율을 측정해서 정량적인 조직분포를 표시한 도면이다.
도 9. 실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물의 Sprague-Dawly 랫트를 이용한 약물동력학 실험 결과 중 도세탁셀의 시간에 따른 플라즈마 농도 프로파일을 표시한다.
도 10. BALB/C 누드 마우스를 이용한 실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물의 위암 세포주 MKN-28에 대한 이종이식(xenograft) 시험결과이다.
도 11. 상기 도10에서 약물 투여 시작부터 시험 종료까지 40일간의 누드 마우스의 체중변화를 보여준다.
도 12. A549 암세포를 이식한 마우스를 이용한 이종이식(xenograft) 항암활성에 대한 실험 결과이다.
본 발명의 구성 및 작용을 좀더 자세히 설명한다. 본 발명은 아래 설명으로 구체화 되지만 그로 한정하는 것은 아니다.
이하, 본 발명의 구성 및 작용을 상세히 설명한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 선형의 폴리포스파젠 화합물을 제공한다.
[화학식 1]
Figure PCTKR2015002488-appb-I000003
상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, l은0~0.9이고 m은 0.1~1이며 l+m = 1이다.
상기 본 발명의 폴리포스파젠 화합물은, 친수성이면서 다기능성기(multifunctional group)를 보유하고 있는 라이신 또는 라이신을 포함하는 친수성 올리고펩타이드와 친수성 폴리에틸렌글리콜(PEG)를 포스파젠 골격에 도입한 것으로, 종래의 양친성 폴리포스파젠과 달리 저임계용액온도가 100 ℃ 이하에서는 관찰되지 않는다. 또한 체내 혈액 반감기가 획기적으로 연장됨과 동시에 고분자의 독성도 획기적으로 개선되고 특히 놀라운 것은 폴리포스파젠 자체가 높은 암조직 선택성을 나타낸다는 것이다. 이러한 폴리포스파젠 자체의 암조직 선택성은 아직 확실치는 않지만 아마도 고분자에 결합되어 있는 라이신의 아민기로 인한 포스파젠 고분자의 양이온성과 폴리에틸렌글리콜로 인한 혈액내에서의 장기순환(long circulation)에 기인하는 것으로 추정된다.
상기 라이신을 포함하는 친수성 올리고펩타이드의 바람직한 예로 글라이실라이신을 들 수 있다.
또한, 본 발명은 하기 화학식 2로 표시되는 폴리포스파젠-약물 컨쥬게이트 화합물을 제공한다.
[화학식 2]
Figure PCTKR2015002488-appb-I000004
상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
본 발명의 일 구현예에 있어서,
상기 S는 라이신 또는 라이신을 포함하는 다이펩타이드 내지 트라이펩타이드인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 다른 일 구현예에 있어서,
상기 S는 아미노에탄올 또는 아미노프로판올인 것이 바람직하나 이에 한정되지 않는다.
바람직하게는 상기 약물은 소수성 항암제이다.
상기 소수성 항암제는 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 켐토테신(camptothecin) 및 [(트란스-1,2-디아미노사이클로헥산)백금(II)]으로 이루어진 군으로부터 선택된 1종일 수 있다.
본 발명의 일 구현예에 있어서,
상기 화학식 2는 하기 화학식 19 내지 21 중 어느 하나로 표시로 될 수 있다.
[화학식 19]
Figure PCTKR2015002488-appb-I000005
[화학식 20]
Figure PCTKR2015002488-appb-I000006
상기 화학식 19 및 20에서, n은 3내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, D는 도세탁셀, 파클리탁셀, 켐토테신(camptothecin) 및 [(트란스-1,2-디아미노사이클로헥산)백금(II)]으로 이루어진 군으로부터 선택된 1종을 나타내며, R은 C1-6의 선형, 분지형 또는 고리형 알킬, 또는 OCH2Bz이다. 여기서, x와 y는 각각 0~0.5, z는 0보다 크고 1.0 이하의 값을 가지며, x+y+z = 1 이고,
[화학식 21]
Figure PCTKR2015002488-appb-I000007
상기 화학식 21에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, D 는 도세탁셀, 파클리탁셀 및 켐토테신으로 이루어진 군에서 선택되는 1종을 나타내고, R'는 t-Boc 또는 CBZ 그룹을 나타내며 여기서, x와 y는 각각 0~0.5, z는 0보다 크고 1.0 이하의 값을 가지며, x+y+z = 1 이다.
이하 각 성분을 구체적으로 설명한다.
[약물전달체]
본 발명에서 합성한 약물 전달체 폴리포스파젠 화합물은 탄소-탄소 결합이 골격을 이루는 유기계 고분자와 달리 무기계 원소인 인(P)과 질소(N)의 공액결합이 고분자 골격을 이루고, 인 원자에 친수성 폴리에틸렌글리콜과 항암제 약물을 화학적 결합시킬 수 있는 스페이서 그룹으로 라이신 또는 라이신을 포함하는 올리고펩타이드류 또는 선형 아미노알콜이 곁가지로 도입된 새로운 무기/유기 하이브리드형 고분자 화합물이다. 도입된 라이신 또는 이를 함유하는 펩타이드는 아미노산의 고유 pKa값에 따라서 폴리포스파젠 고분자체에 양이온성을 부여 할 수 있다. 이 양이온성은 스페이서로 도입된 아미노산의 종류에 따라 조절 가능하다. 본 발명에서 사용된 폴리에틸렌글라이콜은 분자량 300~2000의 범위의 메톡시폴리에틸렌 글라이콜을 사용하였으며, 그 함유량은 0.5~1.8의 비율로 도입되었으며, 이 도입 비율은 합성된 고분자 화합물의 용해도 및 체내 거동, 또는 가수분해되는 속도에 따라 그 용도에 맞게 조절할 수 있다. 또한 약물의 컨쥬게이션 비율에 따라서도 변화시킬 수 있으며, 약물이 컨쥬게이션된 폴리포스파젠 고분자 화합물에 양이온성 조절을 위해서도 변화시킬 수 있다. 폴리포스파젠 고분자 화합물의 분자량은 반복 단위체(NP)의 개수에 따라 정해지며, 같은 반복 단위를 갖는 경우에도 도입된 폴리에틸렌 글리콜의 분자량에 따라서도 조절 가능하다. 본 발명의 곁가지형 고분자(branched polymer) 화합물은 일반 유기계 선형 고분자에 비하여 높은 분자량을 갖지만 작은 수화 볼륨을 갖는 특징을 갖는다. 즉, 원자의 밀집도가 일반 선형 고분자 화합물에 비하여 매우 높기 때문에 볼륨에 비하여 높은 분자량을 갖는 특징을 갖는다. 이러한 특징 때문에 상대적으로 작은 크기를 갖는 마이셀을 형성하는 경우에도 높은 암조직 선택성을 유지하는 고분자 화합물을 얻을 수 있다.
[항암제 약물]
본 발명의 곁가지형 폴리포스파젠 고분자 화합물에 결합되는 약물은 OH 또는 NH2작용기를 최소한 하나 이상 가지고 있는 약물로 바람직하게는 소수성 항암제로 크게 탁세인(taxan)계 약물, 켐토테신 (camptothecin)계 약물 및 백금착물계 약물을 주로 사용하였지만 이에 한정하지는 않는다. 즉, 여기서 예를 든 두 가지 계열의 약물들 외에도 OH, NH2 등의 작용기를 가지고 있는 어떠한 항암제들도 본 약물전달체-스페이서-링커 시스템에서는 도입이 가능하며, 본 발명의 예시는 입체장애 때문에 반응성이 떨어지는 것으로 알려진 대표적은 두 가지 계열의 약물들에 대한 예들을 이용하여 설명하였다.
앞에서 설명된 본 발명의 친수성 선형 포스파젠 고분자에 소수성 탁세인 계 항암제를 화학적으로 결합시킨 폴리포스파젠-탁세인계 약물 컨쥬게이트 화합물은 아직 세계적으로 보고된바 없는 완전히 새로운 형태의 정맥주사용 고분자 항암제로서 그 분자량 분포를 약 3,000 내지 300,000 Da까지 조절 가능하며, 특히 분자량이 30,000 내지 100,000 Da 범위의 고분자를 분리해 냄으로써 생체적합성과 효율성을 극대화 할 수 있었다. 본 발명의 친수성 폴리포스파젠 화합물 자체는 마이셀을 형성할 수 없으나 소수성 탁세인계 항암제 분자가 결합된 컨쥬게이트- 약물 화합물은 약 20 nm ~100 nm 크기의 마이셀 입자들을 형성함으로써 상술한 "향상된 투과보전(EPR) 효과"와 본 폴리포스파젠-탁세인계 약물 컨쥬게이트 화합물의 마이셀의 껍질(shell)을 형성하는 폴리에틸렌글리콜에 의한 혈중 장기순환성(long circulation) 등에 의하여 탁월한 암 조직 선택성을 확보할 수 있었다. 마지막으로 우수한 항암효과를 위하여 가장 중요한 암 조직에 도달한 폴리포스파젠-탁세인계 약물 컨쥬게이트 화합물로부터 항암성분인 탁세인계 약물의 적기 방출을 유도하기 위하여 암조직/세포의 산성(pH= 4~7) 환경에서만 분해 가능한 무수아코니틱산과 같은 링커(linker)를 이용하여 포스파젠 고분자와 탁세인계 약물을 연결함으로서 포스파젠-탁세인계 약물 컨쥬게이트가 혈중 및 정상조직에서는 분해하지 않고 암조직/세포에 도달한 후에만 탁세인계 항암제를 방출할 수 있도록 설계함으로서 탁월한 항암효과와 동시에 체내에서 약물에 의한 독성을 획기적으로 낮출 수 있는 이상형의 새로운 고분자 컨쥬게이트 물질의 합성을 완성하였다.
아래 화학식 3의 도세탁셀은 2, 7, 10, 2' 위치에 4개의 OH 그룹을 가지고 있으며, 이 중 가장 반응성이 좋은 2' 위치의 OH 그룹을 이용하여 링커 그룹과 에스터 결합(-COOD-)을 시키고, 다시 이 링커와 폴리포스파젠의 스페이서와 아마이드 결합(-CONH-) 반응을 시켜서 컨쥬게이션 시킨다.
[화학식 3]
Figure PCTKR2015002488-appb-I000008
파클리탁셀의 경우에도 마찬가지고 가장 반응성이 좋은 2' 위치의 OH를 이용하여 링커와 에스터 결합으로 반응시킨 후, 이 링커를 이용하여 폴리포스파젠에 도입된 스페이서에 아마이드 결합으로 반응을 시켜 컨쥬게이션 시킨다.
이때, 링커를 사용하는 이유는 입체장애가 많이 생기는 약물을 에스터 결합으로 직접 고분자에 컨쥬게이션 시키는 경우에는 수율이 매우 떨어지며, 여러 종류의 이성질체가 생길 수 있는 문제점을 가지고 있다. 특히 도세탁셀의 경우 반응시간이 24시간 이상 길어지면, 자체의 이성질체가 생길 위험이 매우 높기 때문에, 링커를 도입하여 단분자간의 빠른 반응을 이용하여 빠른 시간내에 높은 수율로 링커를 도입하고, 도입된 링커의 높은 반응성을 이용하여 폴리포스파젠에 빠른 시간내에 높은 수율로 반응시킬 수 있기 때문이다.
본 발명에서 사용한 켐토테신 계의 약물은 다음 예시의 화합물들 포함하지만 이것들만 의미하는 것은 아니며, 약학적으로 활성이 있는 유도체들을 모두 포함한다. 특히, 켐토테신(camptothecin), 이리노테칸(irinotecan), 토포테칸(topotecan), 그리고 벨로테칸(belotecan)의 켐토테신 계의 약물을 포함할 수 있다.
[ 스페이서 (S)]
본 발명에서는 링커와 화학결합을 할 수 있는 스페이서 그룹을 도입하였다. 스페이서 그룹은 링커와의 결합에 사용할 수 있는 1차 아민기와 폴리포스파젠 고분자 골격에 결합(graft)이 가능한 1차 아민기 또는 알코올기를 가지고 있는 아미노산류, 즉 라이신, 알지닌, 글루타민, 아스파라진, 타이로신 및 이들을 포함하는 올리고펩타이드 또는 선형 아미노알콜로부터 선택되는 1종이다. 바람직하게는 라이신 또는 라이신을 포함하는 올리고머이다. 이러한 아미노산은 염기성 아미노산류로 분류되는 아미노산이며, 염기성 아미노산이 도입되는 경우에는 그 아미노산의 고유 pKa 값에 따라 특정 pH에서 고분자체에 양이온성을 부여하는 특징을 가지고 있다. 또한 단순한 아미노산류 만을 포함하는 것은 아니며, 두 개 이상의 아미노산 조합을 통해서 스페이서를 도입할 수 있다. 예를 들면, 글라이실-라이신(Gly-Lys), 알라닐-라이신(Ala-Lys) 또는 이러한 아미노산류를 이용한 조합인 트라이펩타이드 등이 사용될 수 있다. 또한, 특정 조합의 아미노산 또는 펩타이드의 경우에는 보호기인 카르복실 에스터를 가수분해하여, 링커를 도입하지 않고 약물을 직접 도입할 수도 있다. 이에 사용할 수 있는 대표적인 아미노산은 라이신이며, 실시예에서도 그 예를 보였다.
[링커(linker)]
고분자를 이용한 컨쥬게이트형 항암제의 경우에는 약물의 조절 방출이 약물의 활성에 있어서 가장 중요한 역할을 한다.
본 발명에서는 약물 부분과 고분자 약물전달체를 연결 시켜주는데 있어서 아마이드 결합(-CONH-) 및/또는 에스터 결합(-COO-) 중에서 링커와 약물의 종류에 따라서 선택하여 사용하였다. 이는 기존에 알려진 산-자극 감응성 무수아코니틱산을 링커(linker) 를 사용한 기존 약물전달시스템과의 차별점이며, 이에 따라서 효율적인 약물의 조절 방출이 가능하게 되었다. 또한 약물중 아민작용기를 갖지 않는 약물들에 대하여서도 사용할 수 있는 링커이기 때문에 약물의 적용범위를 획기적으로 높인 스페이서-링커 시스템이다.
이 반응은 일반적인 커플링(coupling) 반응 조건에서 모두 수행이 가능하며, 디클로로메탄, 클로로포름, 아세토니트릴, 1,4-다이옥산, 다이메틸포름아마이드, 그리고, 테트라하이드로퓨란 등 반응에 영향을 미치지 않는 어떠한 종류의 유기용매도 사용이 가능하다. 단, 링커 도입시에 에스터 결합을 만들기 위해 생성되는 중간체 물질들의 불안정성 때문에 전체 반응은 잘 건조된 용매와 아르곤 기류하에서 진행해야 하며, 생성된 불안정한 중간체의 반응 효율을 증가 시키기 위해 저온(-10~0 ℃)을 유지하며 반응을 진행시켰다. 또한, 무수시스아코니틱산의 경우에는 염기 조건에서 무수물 고리가 열리는 특징이 있기 때문에 이성질체가 생길 수 있는 가능성이 있으므로 일반적으로 에스터 결합 형성에 사용하는 염기성의 DMAP(dimethylaminopyridine) 촉매 대신에 DPTS(dimethylaminopyridine/p-toluene sulfonic acid, 0.1-1.0 당량) 를 사용하여 중성 상태에서 촉매역할을 할 수 있는 반응 조건을 선택하여 반응하였다. 이를 이용하여 복합체를 형성시킬 수 있는 약물들은 올리고펩타이드(oligopeptides), 폴리펩타이드(polypeptides), 단분자 약물들, 항체(antibody), 뉴클레오타이드(nucleotide), 리피드(lipid) 계열 등 -OH 또는 -NH2의 작용기를 가지고 있는 어떠한 물질도 가능하다. 가장 선호되는 스페이서-링커-약물의 결합 종류는 아마이드(스페이서-링커)/에스터(링커-스페이서) 결합이며, 아마이드(스페이서-링커)/아마이드(링커-스페이서), 그리고 에스터(스페이서-링커)/에스터(링커-스페이서) 결합도 가능하다.
본 발명에서 사용한 링커의 경우 아래 화학식 4 내지 8 에 해당하는 다양한 고리형 무수물 계열의 링커를 사용할 수 있으며 바람직하게는 아래 화학식 4의 아코니틱 무수물을 사용한다.
[화학식 4]
Figure PCTKR2015002488-appb-I000009
[화학식 5]
Figure PCTKR2015002488-appb-I000010
[화학식 6]
Figure PCTKR2015002488-appb-I000011
[화학식 7]
Figure PCTKR2015002488-appb-I000012
[화학식 8]
Figure PCTKR2015002488-appb-I000013
산성 조건 (pH=5.5)에서 약물의 방출이 쉽게 일어나는 것으로 알려진 링커인 무수아코니틱산의 경우에는 일반적으로 아래 반응식 3과 같은 반응 경로에 따라 합성된다. 하지만 이러한 합성방법의 경우에는 도식과 같이 약물을 방출할 수 없는 이성질체가 생길 수 있는 문제점을 가지고 있으며, 약물이 붙는 위치에 따라 약물의 방출 속도가 달라져 그 비율을 조절하는 것이 어려우며, 또한 그 비율에 따라 항암 활성이 달라지는 문제점을 가지고 있다. 특히, 스페이서/링커 그리고 링커/약물의 결합이 모두 아마이드 결합으로 연결되는 경우에는 가수분해에 의한 약물의 방출이 매우 어려운 이성질체(반응식 3-inactive)가 생성되기 때문에 약물의 효율성이 떨어지는 문제점을 가지고 있다.
[반응식 3]
Figure PCTKR2015002488-appb-I000014
또한 반응식 4의 경우에는 모두 에스터 결합으로 연결되는 링커로 작용하는 경우이며, 이 경우에도 비활성(inactive) 조합이 생길수 있으나 에스터 결합의 체내에서의 효소에 의한 가수분해 때문에 약물의 방출이 가능하기는 하지만, 이 경우에도 특정 조건인 산성 조건에서의 약물의 조절 방출이 다소 어려운 이성질체가 생성되는 단점이 있다. 또한, 약물의 -OH 기를 이용하여 무수물 고리를 개환하는 반응의 경우 친핵기로 작용하는 쪽이 과량으로 사용해야 하며, 특히나 입체 장애가 많이 생기는 약물의 경우에는 더 많은 량의 약물을 사용해야 하는 단점이 있다. 본 발명에 사용한 탁세인 계의 약물의 경우에는 적게는 20배 이상을 사용해야만 반응이 완결되는 것을 확인하였다. 이러한 경우 약물을 기초로 한 수율이 5 % 이하로 매우 낮기 때문에 상업화에 있어서 매우 큰 문제로 작용할 수 있다.
[반응식 4]
Figure PCTKR2015002488-appb-I000015
반면에 본 발명의 합성 경로에 해당하는 다음 반응식 5는 일예로 무수아코니틱산의 고리를 먼저 개환하지 않고, 가지부분의 카르복실산 부분을 약물과 먼저 반응시킨 후 무수물의 고리를 과량의 NHS(N-hydroxy succinimide)를 이용하여 개환하거나 1차 아민을 가지고 있는 스페이서가 도입된 고분자를 이용하여 직접 고리를 개환할 수 있다. 이때, NHS를 이용하여 고리를 개환하게 되면, 일반적으로 알려진 활성 에스터(active ester)를 형성하게 되고, 1차 아민을 가지고 있는 물질과 더 이상의 시약없이 염기 조건하에서 쉽게 아마이드 결합을 형성할 수 있는 유도체를 얻을 수 있다. 이 반응의 또 다른 장점은 비교적 수율이 낮은 과정인 에스터 결합을 만드는 과정에서 링커 그룹을 과량으로 사용하여 약물의 낭비를 막을 수 있으며, 반응의 종결점을 비교적 간단한 TLC 방법을 이용하여 확인할 수 있다는 장점이 있다. 또한, 기존의 알려진 반응방법과는 다르게 무수물 고리의 개환을 나중에 시키기 때문에 약물의 방출이 어려운 이성질체가 생기지 않는다는 장점을 가진 새로운 합성 방법이다.
[반응식 5]
Figure PCTKR2015002488-appb-I000016
또한 본 발명은 상기 선형 폴리포스파젠 화합물 및 폴리포스파젠-약물 컨쥬게이트 화합물의 제조방법을 제공한다.
이때 필요에 따라 사용되는 약물, 스페이서, 링커에 대해 구체적인 예를 들어 설명하나, 본 발명이 이들 예들에 한정되는 것은 아니다.
본 발명의 선형 폴리포스파젠 고분자 화합물은 3가의 질소(N)와 5가의 인(P)으로 구성된 포스파젠 기본 단위 골격(-N=P-)의 인 원자에 친수성이 강한 메톡시폴리에틸렌글리콜(MPEG)을 먼저 결합시킨 후 1차 아민기 2개와 카르복실기 1개를 갖고 있는 다기능성(multifunctional) 라이신, 라이신을 포함하는 올리고펩타이드 또는 선형 아미노알콜을 결합시켜 합성한다. 이렇게 합성한 폴리포스파젠 화합물의 곁가지 그룹인 다기능성 라이신, 라이신을 포함하는 올리고펩타이드 또는 선형 아미노알콜을 스페이서로 사용하고 무수 아코니틱산을 링커로 사용하여 탁세인 계, 백금 착물 계 또는 켐토테신 계 등의 소수성 항암제를 폴리포스파젠 고분자에 연결시키면 새로운 고분자형의 선형 폴리포스파젠-약물 컨쥬게이트 화합물을 얻을 수 있다.
본 발명의 컨쥬게이트 화합물은 암 조직에 선택적으로 다량 축적되는 탁월한 암조직 선택성을 나타내는데, 상기 화학식 1의 x, y, z의 값을 조절함으로써 물에 대한 용해도가 높고, 체내 체류시간이 길며, 암조직 선택성이 탁월한 항암제를 제조할 수 있다.
본 발명에서, 상기 라이신, 알지닌, 글루타민, 아스파라진 또는 타이로신을 포함하는 올리고펩타이드로부터 선택되는 1종의 스페이서는 바람직하게는 라이신 및 글라이신을 포함하는 올리고펩타이드로, 예를 들어 다이펩타이드 내지 트라이펩타이드이다. 더욱 바람직하게는 글라이실라이신으로 구성된 다이펩타이드이다. 이 때, 특별히 이에 제한되는 것은 아니나, 상기 올리고펩타이드에서 라이신은 탁세인 계 항암제(D)와 연결되는 말단 부위에 위치하는 것이 바람직하다. 구체적으로 예를 들면 상기 화학식 1에서 S는 라이신, 글라이실라이신, 라이신 에스터 또는 글라이실라이신 에스터일 수 있고, 바람직하게는 상기 S는 라이신, 라이신 C1- 6알킬에스터 또는 글라이실라이신 C1- 6알킬에스터이며, 더욱 바람직하게는 상기 S는 라이신 에틸에스터 또는 글라이실라이신 에틸에스터이다.
또한 선형 아미노알콜로부터 선택되는 1종의 스페이서는 바람직하게는 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올, 아미노헥산올이며 더욱 바람직하게는 아미노에탄올과 아미노프로판올이다.
본 발명에서 탁세인계 항암제(D)는 라이신의 아민기 또는 카르복실기를 통해 고분자에 연결되는데, 상기 항암제가 라이신의 카르복실기에 연결되는 경우, 라이신의 아민기는 아민 보호기(예: t-Boc, FMOC, CBZ 그룹)로 보호되어 있는 것이 바람직하다.
상기 화학식 1에서 L은 스페이서(S)와 항암제(D)를 화학적으로 연결시키는 링커로, 시스 아코니틱 무수물, 석시닐 무수물, 또는 말레익 무수물등을 나타내며, 더욱 바람직하게는 상기 L은 아코니틱 무수물이다.
한편 본 발명에서 항암제(D)로는 탁세인 계 항암제, 켐토테신 계 항암제 또는 백금착물계 항암제를 사용하며, 예를 들면 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 켐토테신, 토포테칸, 이리노테칸, 벨로테칸, 옥살리플라틴(Oxaliplatin) 등을 들 수 있으나, 반드시 이에 제한되는 것은 아니다.
본 발명의 컨쥬게이트 화합물은 분자량이 약 3,000~300,000의 값을 가지며, 바람직하게는 30,000~100,000의 값을 갖고, 수용액에서 잘 녹으며 평균 입자의 직경이 20~200 nm 크기의 비교적 큰 마이셀 입자들을 형성한다. 본 발명의 고분자 마이셀형 컨쥬게이트 화합물은 상술한 "향상된 투과보전(EPR) 효과"에 의하여 탁월한 암조직 선택성을 나타낸다.
이러한 본 발명의 폴리포스파젠 및 폴리포스파젠-탁세인 컨쥬게이트 화합물은 다음의 4단계를 포함하는 합성공정에 의해 제조될 수 있다.
(a) 출발물질인 6염화 고리형 포스파젠을 열 중합하여 폴리디클로로포스파젠 선형 중합체를 합성한 후 메톡시폴리에틸렌글리콜의 나트륨 염과 반응시켜 폴리포스파젠 고분자 중간체를 얻는 단계;
(b) 상기 폴리포스파젠 고분자 중간체를 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군에서 선택되는 1종과 반응시켜 친수성 양이온성(cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 단계;
(c) OH, 또는 NH2작용기를 갖는 약물을 링커(linker)를 이용하여 폴리포스파젠 고분자에 화학결합으로 결합시키기 용이한 약물 전구체(precursor)를 제조하는 단계; 및
(d) 상기 (b) 단계의 폴리포스파젠 고분자 약물전달체에 상기 (c) 단계의 약물 전구체(precursor)를 도입하여 하기 화학식 2의 화합물을 얻는 단계:
[화학식 2]
Figure PCTKR2015002488-appb-I000017
상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 라이신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
본 발명의 또 다른 일 구현예에 있어서,
상기 OH 또는 NH2 작용기를 갖는 약물은 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 켐토테신(camptothecin) 및 [(트란스-1,2-디아미노사이클로헥산)백금(II)] 으로 이루어진 군으로부터 선택되는 1종일 수 있으나 이에 한정되지 않는다.
상기 (a) 내지 (d)까지 4단계 반응은 약물의 구조에 따라 약간의 변화를 줄 수 있다. 예를 들면 백금 착물계 항암제의 경우 (c)단계에서 약물과 링커를 미리 반응시켜 전구체를 만든 다음 (d) 단계에서 전구체를 폴리포스파젠 고분자에 도입하는 대신, (c)단계에서 링커를 먼저 고분자에 결합시킨 후 (d)단계에서 약물을 고분자의 링커와 결합시킬 수도 있다.
다음의 모든 제조 과정은 수분이 들어가지 않도록 진공 및 질소라인을 이용하여 수행하는 것이 바람직하며, 반응에 사용하는 각종 용매는 수분을 충분히 제거하여 사용함이 바람직하다.
이하에서 제조 과정에 대해 상세하게 설명한다.
(a) 단계
우선, 아래의 화학식 9로 표시되는 6염화 고리형 포스파젠 삼합체 즉, (N=PCl2)3을 문헌에 제시된 방법(Youn Soo Sohn, et al. Macromolecules, 28, 7566(1995))에 따라 열 중합시켜, 평균 분자량이 104 ~ 105 범위인, 화학식 10으로 표시되는 폴리디클로로포스파젠 선형 중합체 (N=PCl2)n 을 얻는다.
[화학식 9]
Figure PCTKR2015002488-appb-I000018
[화학식 10]
Figure PCTKR2015002488-appb-I000019
상기 화학식 10에서, n은 폴리포스파젠의 중합도로 3 내지 300의 정수이다.
하기 화학식 11의 모노메톡시폴리에틸렌글리콜을 톨루엔과 물의 아조트로피 현상을 이용하여 수분을 제거시킨 후 알칼리금속인 나트륨과 반응시켜 화학식 12의 메톡시폴리에틸렌글리콜의 나트륨염으로 만든 다음, 트리에틸아민의 존재 하에서 화학식 10의 폴리디클로로포스파젠 선형 중합체와 반응시킨다.
[화학식 11]
Figure PCTKR2015002488-appb-I000020
[화학식 12]
Figure PCTKR2015002488-appb-I000021
상기 화학식 11 및 12에서, a 는 MPEG의 중합도로 7 내지 22이다
본 발명의 실시예에 따르면, 상기 a는 7~ 22가 될 수 있다.
상기 반응을 좀 더 상세히 설명하면, 먼저 상기 화학식 9의 6염화 포스파젠 삼합체 (N=PCl2)3 와 이에 대하여 3~10 중량%에 해당하는 양의 무수 염화알루미늄 (AlCl3)을 파이렉스 반응관에 넣고 진공상태에서 밀봉한 다음, 10~20 rpm 으로 회전시키며 230~250 ℃에서 3~5시간 동안 용융반응 시키면 화학식 10의 폴리디클로로포스파젠 선형 중합체를 얻는다. 다음 화학식 11의 모노메톡시폴리에틸렌글리콜을 1.2~1.5 당량의 나트륨 금속 조각과 함께 임의의 유기용매, 바람직하게는 테트라하이드로퓨란 (THF), 벤젠, 톨루엔 등의 용매에서 반응시켜 화학식 12의 알콕시드형의 나트륨 염으로 만든다. 이렇게 만든 화학식 12의 메톡시폴리에틸렌글리콜의 나트륨염 용액을 같은 용매에 녹인 화학식 10의 폴리디클로로포스파젠 선형 중합체 1 몰(1 반복단위)에 0.5~1.8 당량 적가한다. 이 때, 반응용매는 상기 반응을 저해하지 않는 임의의 용매가 될 수 있으며, 바람직하게는 테트라하이드로퓨란, 벤젠, 톨루엔, 클로로포름 등의 용매 중에서 수행될 수 있다. 화학식 10의 폴리디클로로포스파젠 용액을 0℃ 이하의 낮은 온도로 냉각시킨 후 화학식 12의 메톡시폴리에틸렌글리콜의 나트륨염 용액을 서서히 부가하는데, 바람직하게는 0 ℃ 이하에서 2~8시간 동안 반응시킨 후, 실온에서 6~24시간 동안 반응시켜 폴리에틸렌글리콜이 0.5~1.8 당량 치환된 하기 화학식 13의 고분자 중간체를 제조할 수 있다. 상기 저온에서 반응을 수행하기 위해서는 예를 들어, 얼음-중탕조를 이용하여 수행할 수 있다.
[화학식 13]
Figure PCTKR2015002488-appb-I000022
화학식 13에서, n은 폴리포스파젠의 중합도로 3 내지 300의 정수이고, a는 MPEG의 중합도로 7 내지 22 이며, b는 MPEG의 치환량으로 0.5~1.8 이다.
(b) 단계
상기 화학식 13의 폴리포스파젠 고분자 중간체의 미 치환된 2-b개의 염소에 대하여, 1.5~1.8 당량의 라이신 에스터 또는 라이신을 포함하는 올리고펩타이드의 에스터와 6당량의 트라이에틸아민을 임의의 유기용매, 바람직하게는 테트라하이드로퓨란, 클로로포름 또는 다이클로로메테인 용매에 녹인 혼합용액을 위의 반응액에 적가하고, 40~60 ℃에서 12시간 내지 3일간 환류 반응시킨다. 이 때, 상기 라이신 에스터로는 예를 들어 하기 화학식 14로 표시되는 물질을 사용할 수 있고, 라이신을 포함하는 올리고펩타이드의 에스터로는 하기 화학식 15로 표시되는 물질을 사용할 수 있다. 이때, 글라이신 부분은 글라이신 외에 루이신, 페닐알라닌, 아이소루이신, 발린 등의 아미노산류로 대체될 수 있다.
[화학식 14]
Figure PCTKR2015002488-appb-I000023
[화학식 15]
Figure PCTKR2015002488-appb-I000024
상기 화학식 14 및 15에서, R은 C1-6의 선형, 가지형 또는 고리형 알킬, 또는 OCH2Bz이고, R'는 아민 그룹의 보호기인 t-Boc (tert-butoxycarbonyl), Fmoc(fluorenylmethyloxycarbonyl) 또는 CBZ (carbozenyloxy) 그룹을 나타낸다.
본 발명에서, 상기 R의 구체적인 예로는 메틸, 에틸, n-프로필, n-부틸, 또는 t-부틸 등을 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
이어서 반응용액을 원심분리 또는 여과하여 부산물로 생성된 과량의 침전물들(예: Et3NHCl 또는 NaCl)을 제거한 후 여액을 감압 농축하고, 여기에 다시 에탄올을 첨가하여 다시 감압 농축 한다. 이 작업을 2회 반복하여 유기계 용매를 완전히 제거한 후에 오일 상태의 반응 혼합물을 다시 소량의 에탄올(100ml)에 녹인 후 다량의 물(900ml)을 첨가하여 저온에서 재결정한다. 3시간 후 용액을 0.45㎛ 멤브레인을 이용하여 필터하여, 침전물을 제거한다. 이 용액을 다시 0.2 um, 그리고 0.1㎛ 멤브레인을 이용하여 100 nm이상의 고분자 내지는 침전물들을 모두 제거한 후에, 한외여과막 장비와 한외여과막(MWCO=3,000 Da)를 이용하여 저분자량의 불순물들을 제거한다. 이때, 처음 3회 디솔팅작업에서는 물:에탄올 3:1 부피 비율의 용액으로 씻고, 이후 순수한 물로 6회 이상 세척작업, 정제작업, 그리고 농축작업을 거쳐 고농도의 고분자 용액을 얻는다. 이렇게 얻어진 폴리포스파젠 고분자 용액을 동결건조하여 폴리포스파젠 고분자 유도체, 예를 들면 하기 화학식 16 또는 화학식 17의 폴리포스파젠계 고분자 유도체를 얻을 수 있다.
[화학식 16]
Figure PCTKR2015002488-appb-I000025
[화학식 17]
Figure PCTKR2015002488-appb-I000026
상기 화학식 16 및 17에서, n은 폴리포스파젠의 중합도로 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌클리콜을 나타내고, b는 0.5 ~ 1.8의 값을 갖는다. 또한 R은 C1- 6 의 선형, 가지형 또는 고리형 알킬, 또는 OCH2Bz이고, R'는 아민 그룹의 보호기인 t-Boc, Fmoc 또는 CBZ 그룹을 나타낸다.
(c) 단계
상기 (b)단계서 합성한 폴리포스파젠 고분자 약물전달체에 탁세인과 같은 소수성 항암제를 화학적으로 직접 결합시키는 일은 고분자 및 약물의 화학구조상 용이하지 않을 뿐만 아니라 설사 결합시켜 컨쥬게이트를 만들 더라도 체내에서 약물이 고분자 전달체로부터 용이하게 떨어져 나올 수 있도록 적당한 링커(L)를 사용하여 고분자 약물전달체와 항암제를 연결시켜 컨쥬게이트를 합성하여야 한다. 컨쥬게이트 형 항암제 합성에 있어서 링커의 역할은 매우 주요하다. 특히 본 발명에 있어서 링커 그룹은 폴리포스파젠 고분자 약물전달체의 기능기(-COOH, -NH2)와 탁세인 항암제의 기능기(-OH, -NH2)를 이용하여 쉽게 연결 할 수 있어야 하며, 더욱 중요한 것은 이렇게 합성된 컨쥬게이트 항암물질이 체내 주입시 혈중에서는 항암제를 방출하지 않고 암조직에 도달 한 후에는 항암제를 바로 방출 할 수 있어야 하기 때문이다. 본 발명에서는 아래 화학식 18의 무수아코니틱산이 특히 탁세인 항암제 컨쥬게이트 합성에 최적의 링커임을 발견하고 다음과 같이 탁세인과 무수아코니틱산이 결합된 전구체를 합성하였다.
무수아코니틱산(2.0mmol, 312mg )과 도세탁셀(1.0mmol, 803mg)을 아르곤 기류하에서 섞은 후 저온으로 냉각시킨다. 여기에 THF 또는 디클로로메틸렌클로라이드 용매로 용해시키고 혼합한 후 저온(0˚C)을 유지하며, DIC (2.0mmol, 0.252g), DPTS (2.0mmol, 0.58g)를 차례로 넣어서 중성상태에서 무수아코니틱산의 카르복시산과 도세탁셀의 -OH(2')를 에스터 결합으로 12시간 동안 반응시킨다. 12시간 후 TLC를 이용하여 반응이 종결된 것을 확인한 후, NHS(N-hydroxysuccinimide)를 DIPEA와 함께 과량으로 첨가하여 무수아코니틱산의 무수고리를 개환한다. 무수아코니틱산의 고리는 염기성 용액에서 -OH 작용기 또는 -NH2 작용기에 의해 개환 반응이 쉽게 일어나는 것으로 알려져 있다. 첨가후 다시 12시간 동안 반응을 시키고, 반응액을 0℃로 3시간 동안 냉각 시킨다. 그 후 반응용액을 감압 필터하여 녹지 않은 불순물을 제거한다. 그후 감압증류하여 사용한 유기 용매를 모두 제거하고, 오일 상태의 반응 혼합물을 얻는다. 여기에 에탄올 (50ml)를 첨가하여 완전히 녹인후 다량의 물(500ml)를 첨가한 후 냉장고에서 3시간 동안 재결정한다. 상등액을 따라버리는 작업을 2회 반복한 후 오일 상태의 반응 물에 메틸렌클로라이드 300ml를 첨가하여 완전히 용해시킨다. 이 용액을 분별깔대기로 옮긴후 포화된 소금물(100ml)을 이용하여 3회 세척한다. 세척후 유기층을 모으고, 이 유기층을 무수 NaHCO3을 이용하여 건조한 후 감압필터하고 감압증류하여 -NH2 작용기를 갖는 스페이서(S)에 직접 아마이드 결합으로 결합시켜 링커가 도입된 약물 전구체를 95 % 이상의 고 수율로 얻을 수 있었다.
[화학식 18]
Figure PCTKR2015002488-appb-I000027
(d) 단계
상기 (b)단계에서 얻어진 폴리포스파젠 고분자 약물전달체에 소수성 항암제, 예를 들면 탁세인계 항암제를 결합시켜 본 발명의 화학식 2로 표시되는 선형 폴리포스파젠-항암제 컨쥬게이트 를 얻는다. 이 때 폴리포스파젠 고분자 유도체에 탁세인 항암제를 결합시키는 방법에는, 폴리포스파젠 고분자의 라이신 아민기와 아코니틱 링커를 이용하여 아마이드 결합으로 연결시키는 방법과, 폴리포스파젠 고분자의 라이신 카르복실기와 탁세인의 2'-알콜기를 에스터 결합으로 연결하는 방법 등 2가지가 있다. 따라서 본 (d) 단계는 하기의 2가지 방법으로 수행될 수 있다.
먼저 아마이드 결합방법의 경우, 상기 얻어진 폴리포스파젠 고분자 유도체, 예를 들어 화학식 16 또는 화학식 17의 고분자 유도체에 아민 보호기(t-Boc)를 삼불화아세트산(trifluoroacetic acid)과 메틸렌클로라이드의 2:1 혼합용액을 이용하여 6시간 이상 반응시켜 보호기를 제거한 후, 반응용액을 트라이에틸 아민을 이용하여 중화한 후에 감압 증류하여 농축한다. 이 농축액을 NaHCO3 포화용액에 다시 녹여 한외여과막(예: MWCO = 3,000)을 이용하여 물/에탄올의 혼합용액으로 3회 그리고 순수한 물로 6회 씻는 작업과 정제 작업을 거친후 200ml 이하로 농축하여 동결건조한다.
이렇게 건조된 포스파젠계 고분자와 여기에 도입하고자 하는 항암제, 예를들면 도세탁셀과 연결기 링커(linker), 예를들면 무수아코니틱산을 미리 반응시켜 활성화 된 에스터 형태로 제조된 아코니틱탁세인-NHS(N-hydroxysuccinimidyl) 에스터를 12시간동안 염기성 조건에서 반응 시켜준다. 12시간 후 감압 증류하여 농축하고, 다시 에탄올에 녹여 감압농축하여 사용한 용매 및 DIPEA (diisopropylethylamine) 를 모두 제거한다(37˚C, 5 mmbar). 용매가 모두 제거된 고분자 혼합물을 에탄올 50ml를 이용하여 깨끗이 녹인후에 물 950ml 를 첨가한 후 냉장고에서 3시간 동안 재결정한다. 3시간 후 용액을 감압필터하여 얻어진 용액을 한외여과막 장치를 이용하여, 위와 같은 방법으로 에탄올 30% 수용액을 이용하여 5회 세척하고, 다시 순수한 물을 이용하여 6회 이상 세척하여, 정제 작업과 미 반응 약물을 모두 제거하고, 추가로 사용한 에탄올을 모두 제거하여 원하는 화학식 19 또는 화학식 20의 폴리포스파젠-도세탁셀 컨쥬게이트를 합성하였다. 이때 투석횟수는 투석되어 나오는 여액의 UV spectrum을 측정하여 도세탁셀의 잔류량이 0.1%이하가 될 때까지 세척하였다.
[화학식 19]
Figure PCTKR2015002488-appb-I000028
[화학식 20]
Figure PCTKR2015002488-appb-I000029
상기 화학식 19 및 20에서, n은 폴리포스파젠의 중합도로 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, L은 스페이서와 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며 D는 탁세인 계, 켐토테신 계 또는 백금착물 계의 항암제를 나타내며, R은 C1-6의 선형, 분지형 또는 고리형 알킬, 또는 OCH2Bz이다. 여기서, x와 y는 각각 0~0.5이고 z는 0보다 크고 1.0이하의 값을 가지며, x+y+z = 1 이다.
다음 에스터 결합방법으로는, 얻어진 폴리포스파젠 고분자 유도체의 라이신의 에스터를 알칼리로 가수분해하여 산성화 한 후 탁세인 분자와 직접 에스테르화 반응시켜 수행될 수 있다. 구체적으로 예를 들면, 상기 화학식 16의 폴리포스파젠 고분자 유도체를 메탄올에 녹인 후 에스터 그룹을 KOH 또는 NaOH(1.5~2배 과량)를 이용하여 가수분해하여 금속염형태의 폴리포스파젠을 얻는다. 메탄올을 감압증류하여 제거한 후 고체상태의 반응혼합물을 물(100ml)에 녹인 후 분별깔대기로 옮긴다. 이 용액에 메틸렌클로라이드 또는 클로로포름(300ml)를 첨가한 후 유기산용액을 서서히 첨가하여 서서히 산성화 시킨다. 물층의 pH를 대략 4~3정도 떨어뜨린 후 첨가한 유기 용매로 고분자를 추출한다. 유기용매를 이용하여 3회 더 추출하여 모은 유기용매 층을 무수 NaHCO3를 이용하여 건조하고, 이를 필터한 후 감압여과하여 가수분해된 고분자를 얻는다. 가수 분해된 포스파젠계 고분자와 탁세인(예: 파클리탁셀)을 테트라하이드로퓨란 등의 임의의 유기용매에 녹인 후 N,N'-디시클로헥실카보디이미드와 트리에틸아민을 첨가하여 탁세인을 고분자체에 에스터 결합으로 컨쥬게이션 시킨다. 박층크로마토그라피법(예: CHCl3:MeOH = 10:1)을 이용하여 반응이 끝났음을 확인한 다음, 감압여과, 감압증류 하여 반응 용액을 농축시킨 후, 마지막으로 투석막(예: MWCO = 3,500)을 이용하여 분리 정제하고 동결 건조하면 본 발명의 컨쥬게이트 화합물, 예를 들어 하기 화학식 21의 폴리포스파젠-탁세인 컨쥬게이트 화합물을 얻을 수 있다.
[화학식 21]
Figure PCTKR2015002488-appb-I000030
상기 화학식 21에서, n은 폴리포스파젠의 중합도를 나타내는 값으로 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, D 는 도세탁셀, 파클리탁셀 및 켐토테신으로 이루어진 군에서 선택되는 1종을 나타내고, R'는 t-Boc, Fmoc 또는 CBZ 그룹을 나타낸다. 여기서, x와 y는 각각 0~0.5, z는 0보다 크고 1.0 이하의 값을 가지며, x+y+z = 1 이다.
이하 본 발명의 구성 및 작용을 실시예 및 실험예를 들어 설명하나, 본 발명의 권리범위가 반드시 이에 제한되는 것은 아니다.
실시예에서는 Perkin-Elmer C, H, N 분석기로 탄소, 수소 및 질소의 원소 분석을 수행하였다. 수소의 핵자기 공명 스펙트럼과 인 핵자기 공명 스펙트럼은 Varian Gemini-500 NMR Spectrometer를 사용하여 얻었다. 수용액 중에서의 나노 입자의 입도 분포는 Malvern Zetasizer (Nano-ZS)를 사용하여 측정하였다.
실시예
폴리포스파젠 화합물(약물전달체)의 합성.
실시예 1. [NP(MPEG550)1.5(LysEt)0.5]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol)에 촉매인 3염화알루미늄 (AlCl3, 7.5 wt %)을 첨가한 후 기존방법(Sohn Y. S. et al. Macromolecules 1995, 28, 7566) 대로 250 °C에서 5 시간 동안 용융 중합하여 폴리디클로로포스파젠 ([NPCl2]n)을 합성하였다. 한편, 분자량 550의 메톡시폴리에틸렌글리콜(MPEG550) (82.5 g, 150.0 mmol)과 나트륨(Na) 금속(4.9 g, 200.4 mmol)을 건조된 톨루엔 용매에 넣고 아르곤 기류 하에서 6시간 동안 120˚C에서 교반하여 메톡시폴리에틸렌글리콜의 나트륨염을 제조하였다. 위에서 만들어진 폴리디클로로포스파젠을 유리반응기에 옮긴 후 여기에 건조된 테트라하이드로퓨란 (100 ml)을 넣고 녹인 다음, 얼음 중탕(0℃)에서 앞서 제조한 메톡시폴리에틸렌글리콜의 나트륨염 용액을 60분 동안 적가하였다. 1시간 후에 얼음 중탕을 제거하고, 상온에서 12시간 동안 계속 반응시켜 MPEG550이 치환된 포스파젠 고분자 중간체 반응용액을 얻는다. 별도의 용기에서 건조된 클로로포름 용매(200 mL)에서 건조된 트라이에틸아민 (71.6 ml, 516 mmol)으로 중화한 Boc-lysine 에틸에스터 (N α-BocLysEt, 20.5g, 75.0 mmol)를 위의 고분자 반응용액에 서서히 가한 후, 상온에서 24시간 반응시켰다. 이 반응 용액을 여과하여 생성된 과량의 침전물 (NEt3·HCl 또는 NaCl)을 제거하고, 여액을 감압 농축한 후 다시 소량의 에탄올에 녹여 2회 감압 건조한다. 감압 건조 후 다시 물에 녹여 녹지 않는 침전물을 제거한 후 한외여과막(CE, MWCO=3,000)을 이용하여, 분자량 3000이하의 불순물을 제거한다. 증류수를 이용하여 5회이상 세척한 고분자 용액을 동결 건조하여 폴리포스파젠 고분자 유도체를 얻었다. 그 다음 폴리포스파젠 고분자 유도체로부터 보호기(t-Boc)를 제거하기 위하여, 상기 유도체를 30%(v/v) 트라이플루오로 아세틱산이 녹아있는 메틸렌클로라이드(200ml)에 다시 녹인 후, 6시간 동안 반응시켜 라이신 아민기의 보호기인 터셔리부틸옥시카보닐기가 완전히 제거된 약물 컨쥬게이션 용의 순수한 폴리포스파젠 유도체 [NP(MPEG550)1.5(LysEt)0.5]n 를 얻었다(수율 65 %, 3.37 g).
1H-MNR을 이용하여 라이신의 알파아민의 탈보호반응을 확인한 후 반응용액을 얼음 중탕하에 냉각시킨 후 트리아에틸아민을 첨가하여 용액을 중화시킨다. 완전히 중화된 것을 확인한 후에 감압증류기를 이용하여 유기 용매를 완전히 제거하고, 다시 고분자 용액에 NaHCO3용액을 첨가하여 완전히 녹인다. 완전히 녹지 않을 경우에는 멤브레인 필터를 이용하여 녹지 않는 불순물을 제거한다.
이때, 진한 고분자 용액은 멤브레인 필터가 어렵기 때문에 0.45㎛, 0.2㎛, 그리고 0.1㎛의 순서로 필터를 하여 깨끗한 고분자 용액을 얻는다.
이렇게 얻어진 고분자 용액은 우선 한외여과막을 이용하여 디솔팅(desalting) 작업을 한다. 디솔팅작업이 이루어진 고분자 용액은 다시 다양한 MWCO 값을 갖는 한외여과막을 이용하여 원하는 범위의 분자량을 갖는 고분자물질을 선택적으로 추출한다. 본 발명에서 사용한 한외여과막은 3 kDa, 30 kDa, 100 kDa, 300kDa의 MWCO 값을 갖는 한외여과막을 사용하여 원하는 분자량범위를 갖는 폴리포스파젠 고분자를 추출하여 사용하였다. 이때 고분자의 총 수율은 90%, 분자량별 수득률은 각각 (20, 30, 5, 30, 5%)의 수득률로 고분자 물질을 얻는다.
조성식: C83H170N4O41P2
원소분석 이론값(%):C,51.33; H, 8.82; N, 2.88.
측정값(%): C, 51.66; H, 8.59; N, 2.83.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.5H, Lys-OCH2CH3), 2.49 (br, 1.00H, suucinyl-CH2), 2.90 (br, 1.00H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG550-OCH3), 3.65 (br, 66.0H, MPEG550-OCH2CH2), 4.4(s, 1H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 2. [NP(MPEG750)1.5(LysEt)0.5]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG750 (112.5 g, 150 mmol), 트리에틸아민(80.0 ml, 600 mmol), Boc-lysine에틸에스터 (Nα-BocLysEt, 20.5 g, 75.0 mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 고분자 유도체를 합성하였다. 합성한 고분자는 실시예 1과 같은 방법으로 한외여과막과 장비을 이용하여 3~30kDa, 30~100kDa, 100~300kDa, 그리고 300kDa이상의 분자량 별로 분리 분취하였다.
[NP(MPEG750)1.5(LysEt)0.5]n 를 얻었다 (수율, 74%).
조성식: C107H218N4O53P2 .
원소분석 이론값(%): C,52.01; H, 8.89; N, 2.27. 측정값(%): C, 51.30; H, 8.99; N, 2.363.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.50H, Lys-OCH2CH3), 1.39-1.98 (br, 3.00H, Lys-CH2), 2.90 (br, 1H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG750-OCH3), 3.65 (br, 98.0H, MPEG750-OCH2CH2), 4.01(bs, 6H, MPEG 750-CH2), 4.45(m, 0.5H, Lys-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 3. [NP(MPEG1000)1.5(LysEt)0.5]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG1000 (150 g, 150 mmol), 트리에틸아민(80.0 ml, 600 mmol), Nα-BocLysEt, (20.5 g, 75.0 mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 고분자 유도체를 합성하였다. 합성한 고분자는 실시예 1과 같은 방법으로 한외여과막과 장비를 이용하여 3~30kDa, 30~100kDa, 100~300kDa, 그리고 300kDa이상의 분자량 별로 분리 분취하였다.
[NP(MPEG1000)1.5(LysEt)0.5]n 를 얻었다(수율, 74%).
조성식: C143H290N4O71P2,
원소분석 이론값(%): C, 52.62; H, 8.96; N, 1.72. 측정값(%): C, 53.01; H, 8.70; N, 1.93.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.50H, Lys-OCH2CH3), 1.39-1.98 (br, 3.00H, Lys-CH2), 2.90 (br, 1H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG750-OCH3), 3.65 (br, 130.0H, MPEG1000-OCH2CH2), 4.45(m, 0.5H, Lys-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 4. [NP(MPEG550)1.25(LysEt)0.75]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG550 (69.0g, 126 mmol), 트리에틸아민(80.0 ml, 600 mmol), Nα-BocLysEt (27.4g, 100mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 고분자 유도체를 합성하였다. 합성한 고분자는 실시예 1과 같은 방법으로 한외여과막과 장비을 이용하여 3~30 kDa, 30~100 kDa, 100~300kDa, 그리고 300 kDa이상의 분자량 별로 분리 분취하였다.
[NP(MPEG550)1.25(LysEt)0.75]n 를 얻었다(수율, 74%).
조성식: C74. 5H153N5O 35.5P2
원소분석 이론값(%): C, 51.14; H 8.82; N, 4.14. 측정값(%): C, 50.87; H, 9.028; N, 4.31.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 2.25H, Lys-OCH2CH3), 1.39-1.98 (br, 4.50H, Lys-CH2), 2.90 (br, 1.5H, Lys-ε-CH2), 3.38 (s, 3.75H, MPEG750-OCH3), 3.65 (br, 82.5H, MPEG550-OCH2CH2), 4.45(m, 0.7H, Lys-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 5. [NP(MPEG550)1.0(LysEt)1.0]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG550 (55.0g, 100 mmol), 트리에틸아민(80.0 ml, 600 mmol), Nα-BocLysEt, (35.6g, 130mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 고분자 유도체를 합성하였다. 합성한 고분자는 실시예 1과 같은 방법으로 한외여과막과 장비을 이용하여 3~30kDa, 30~100kDa, 100~300kDa, 그리고 300kDa이상의 분자량 별로 분리 분취하였다. [NP(MPEG550)1.0(LysEt)1.0]n 를 얻었다(수율, 74%).
조성식: C66H136N6O30P2
원소분석 이론값(%): C, 50.95; H, 8.81; N, 5.40. 측정값(%): C, 50.29; H, 8.95; N, 5.51.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 3.00H, Lys-OCH2CH3), 1.39-1.98 (br, 6.00H, Lys-CH2), 2.90 (br, 2.0H, Lys-ε-CH2), 3.38 (s, 3.0H, MPEG750-OCH3), 3.65 (br, 66.0H, MPEG500-OCH2CH2), 4.45(m, 1.0H, Lys-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 6. [NP(MPEG550)1.50(GlyLysEt)0.50]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG550 (82.5 g, 150 mmol), 트리에틸아민(80.0 ml, 600 mmol), Gly(Nε-BocLysEt(24.8 g, 90 mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 고분자 유도체를 합성하였다. 합성한 고분자는 실시예 1과 같은 방법으로 한외여과막과 장비을 이용하여 3~30kDa, 30~100kDa, 100~300kDa, 그리고 300kDa이상의 분자량 별로 분리 분취하였다.
[NP(MPEG550)1.5(GlyLysEt)0.5]n 를 얻었다(수율, 74%).
조성식: C85H173N5O42P2.
원소분석 이론값(%): C, 51.06; H, 8.72; N,3.50측정값(%): C, 50.75; H, 8.82; N, 3.61.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 3.00H, Lys-OCH2CH3), 1.39-1.98 (br, 6.00H, Lys-CH2), 2.90 (br, 2.0H, Lys-ε-CH2), 3.38 (s, 3.0H, MPEG750-OCH3), 3.65 (br, 66.0H, MPEG500-OCH2CH2), 3.92(bs, 2H, Gly-CH2), 4.45(m, 1.0H, Lys-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 7. [NP(MPEG550)1.5(Nα-BocLys)0.5]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, 11.54 g, 100 mmol), MPEG550 (82.5 g, 150 mmol), 트리에틸아민(80.0 ml, 600 mmol), Nα-BocLysEt(20.5g, 75 mmol)를 사용하여 실시예 1과 같은 방법으로 폴리포스파젠 스페이서의 아민그룹이 보호된 고분자 유도체를 합성하였다. 합성한 유도체(10g, 10mmol), NaOH(0.4g, 10mmol)을 메탄올 용매에 녹여 4시간 동안 상온에서 반응 보내서 가수분해한다. 가수분해는 1H-NMR을 이용하여 확인하고, 가수분해가 확인된 고분자 용액은 감압증류하여 고체 상태의 고분자를 얻는다. 이 고체를 증류수에 녹인 후 유기산 용액을 이용하여 pH를 3이하로 떨어뜨린 후 클로로포름 또는 메틸린클로라이드 용매를 이용하여 3회 추출한다. 추출한 유기층은 무수 NaHCO3를 이용하여 건조하고, 건조된 유기층은 다시 감압증류하여 카르복시산 형태의 폴리포스파젠 고분자를 얻는다. (수율: 95% 이상)
조성식: C86H174N4O43P2 .
원소분석 이론값(%): C, 51.28; H, 8.71; N, 2.78. 측정값(%): C, 51.02; H, 8.94; N, 2.91.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.32(s, 4.5H, Boc-CH3),
1.39-1.98 (br, 6.00H, Lys-CH2), 2.90 (br, 2.0H, Lys-ε-CH2), 3.38 (s, 3.0H, MPEG550-OCH3), 3.65 (br, 66.0H, MPEG550-OCH2CH2), 4.45(m, 1.0H, Lys-CH).
실시예 8. [NP(MPEG550)(AE)]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, (2.0 g, 5.72 mmol), 촉매인 3염화알루미늄 (AlCl3, 7.0 wt %), 분자량 550의 메톡시폴리에틸렌글리콜(MPEG550) (9.48 g, 17.2 mmol)과 나트륨(Na) 금속(0.59 g, 25.7 mmol)을 실시예 1과 같은 방법으로 반응시켜 MPEG550이 치환된 포스파젠 고분자 중간체 용액을 얻는다. 한편 2-아미노에탄올(AE) (1.30 g, 21.3 mol)과 수화나트륨 (0.61 g, 25.4 mmol)을 건조된 테트라하이드로퓨란 (50 ml) 용매에서 상온에서 5시간 반응시키면 노란색 2-아미노에탄올의 나트륨염이 침전으로 떨어진다. 이 침전을 여과하여 에틸이써(ethylether)로 충분히 씻은 후 디메칠설퍼옥사이드(DMSO)(50 ml) 용매에 녹인 후 이 용액을 위의 MPEG550이 치환된 포스파젠 중간체 용액에 서서히 가한 후 약 50 oC에서 24시간 반응시킨다. 반응액으로부터 부산물인 염화나트륨을 여과/제거한 후 여과액을 셀루로스 멤브레인(MWCO: 3.5 kDa)을 이용하여 투석한 후 동결건조하면 새로운 기능성 폴리포스파젠고분자 [NP(MPEG550)(AE)]n를 얻는다(수율, 70%).
조성식: C27H57N2O14P.H2O
원소분석 이론값(%): C, 47.45; H, 8.64; N, 4.10; 측정값(%): 47.38; H, 8.61; N, 3.95.
수소핵자기 공명 스펙트럼(D2O)(δ, ppm): 3.26 (s, 3H, OCH3 of MPEG), 3.50-3.52(m, 4H, (CH2)2 of aminoethanol), 3.54-3.81 (brm, 46H, CH2 of MPEG), 3.83-4.10 (brm, 2H, -P-O-CH2- of MPEG).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -2.66 (O-P-O).
실시예 9. [NP(MPEG750)(AE)]n 의 합성
6염화포스파젠 삼합체 ([NPCl2]3, (2.0 g, 5.72 mmol), 촉매인 3염화알루미늄 (AlCl3, 7.0 wt %), 분자량 550의 메톡시폴리에틸렌글리콜(MPEG750) (12.9 g, 17.2 mmol), 나트륨(Na) 금속 (0.59 g, 25.7 mmol), 2-아미노에탄올(AE) (1.30 g, 21.3 mol) 및 수화나트륨 (0.61 g, 25.4 mmol)을 실시예 8과 같은 방법으로 반응시켜 MPEG750이 치환된 포스파젠 고분자 [NP(MPEG750)(AE)]n (수율: 78%)를 얻는다.
조성식: C35H73N2O18P.H2O
원소분석 이론값(%): C, 48.89; H, 8.73; N, 3.26; 측정값(%): C, 48.02; H, 8.96; N, 3.55.
수소핵자기 공명 스펙트럼(D2O)(δ, ppm): 3.41 (s, 3H, OCH3 of MPEG), 3.49-3.53 (m, 4H, (CH2)2 of aminoethanol), 3.57-3.83 (brm, 62H, CH2 of MPEG), 3.83-4.05 (brm, 2H, -P-O-CH2- of MPEG).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -3.95 (O-P-O).
항암제-링커 전구체의 합성
실시예 10. 2'-Aconitic-docetaxel NHS ester의 합성
Aconitic anhydride (20mmol, 3.12g), DPTS (6.0g, 20mmol)과 도세탁셀(8.03g, 10.0 mmol)을 4시간동안 진공건조한 후 저온 (-10 ℃)으로 냉각시킨 후 잘 건조된 테트라하이드로퓨란 (100 ml)를 첨가하여 반응물을 완전히 녹인다. 반응물을 완전히 녹인 후 마찬가지로 잘 건조된 테르라하이드로퓨란에 녹인 DCI (20 mmol, 2.5g)을 20분 동안 서서히 첨가한다. -10℃를 유지한 채 6시간 반응 보낸 후 다시 0 ℃에서 6~12시간 반응을 보낸다. 반응의 진행 과정은 TLC(전개용매, MC: MeOH=95:5)를 이용하여 rf값이 0.4 정도인 도세탁셀의 점이 사라지는 것을 이용하여 확인하였다. 미반응 도세탁셀이 사라지는 것을 확인한 후 다시 한번 HPLC를 이용하여 최종 반응의 완결을 확인 한 후 이 반응 용액에 과량의 N-하이드록시석신이마이드(NHS, 11.5 g, 100 mmol)와 염기로는 DIPEA(diisopropyl ethyl amine)를 과량(5~10배)으로 첨가하여, basic 조건으로 만들어 추가로 12시간 동안 반응을 더 보냈다. 12 시간후, 반응 혼합물을 감압건조 하여 고체 상태의 반응 혼합물을 얻고, 이 혼합물을 다시 소량의 에탄올(50ml)에 녹인 후 과량의 물(950ml)을 첨가하여 0 ℃에서 3시간 동안 재결정 한다. 그 후, 상등액을 따라버린 후 진한갈색의 오일을 클로로포름 또는 메틸렌클로라이드 등의 유기 용매에 녹인다. 이 용액을 분별깔대기로 옮긴 후 소금물/산성(사이트릭산, pH=2)/염기성(NaHCO3, pH=9)/소금물의 순으로 세척한 후 유기층을 건조제(MgSO4)를 이용하여 건조한 후 필터, 그리고 감압증류하여 원하는 2'-aconitic-docetaxel-NHS ester를 얻을 수 있었다.
조성식: C53H60N2O21
원소분석 이론값(%): C, 59.99; H, 5.70; N, 2.64. 측정치 (%): C, 60.07; H, 5.86; N, 2.71.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 3H, C17-CH3), 1.24ppm(s, 3H, C16-CH3), 1.34ppm(s, 9H, C60-t Bu), 1.75 ppm (s, 3H, C19-CH3), 1.96ppm(s, 3H, C18-CH3), 2.18ppm(d, 2H, C14-CH2), 2.43ppm(s, 3H, C22-CH3), 2.64(t, 4H, NHS-CH2CH2), 2.92(s, 2H, aconitic-CH2), 4.21 ppm (d, 1H, C20-CHa), 4.24ppm(m, 1H, C7-CH), 4.32ppm(d, 1H, C20-CHb), 4.95ppm(dd, 1H, C5-CH), 5.23ppm(d, 1H, C10-CH), 5.40ppm(d, 1H, C30-CH), 5.69 ppm (d, 1H, C2-CH), 6.40-6.68(m, 1H, aconitic-CH), 7.51 ppm (m, 2H, C33, C27-CH), 7.53 (m, 6H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 2H, C25, C29-CH).
실시예 11. 2'-Aconitic-paclitaxel-NHS 에스터의 합성
아코니틱 무수물(3.12g, 20mmol), 파클리탁셀(8.53g, 10mmol), DPTS (5.88g, 20mmol,), NHS (100mmol, 11.5g), DIC(20mmol, 2.52g), 그리고 DIPEA (10ml)를 이용하여 실시예 6과 같은 방법으로 2'-Aconitic-paclitaxel-NHS 에스터를 얻는다.
조성식: C55H58N2O19 .
원소분석 이론값(%): C, 62.85; H, 5.56; N,2.67 측정치 (%): C, 61.90; H, 5.75; N, 2.80.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 3H, C17-CH3), 1.24 ppm (s, 3H, C16-CH3), 1.34 ppm (s, 9H, C60-t Bu), 1.75 ppm (s, 3H, C19-CH3), 1.96 ppm (s, 3H, C18-CH3), 2.18 ppm (d, 2H, C14-CH2), 2.43 ppm (s, 3H, C22-CH3), 2.64(t, 4H, NHS-CH2CH2), 2.92(s, 2H, aconitic-CH2), 4.21 ppm (d, 1H, C20-CHa), 4.24 ppm (m, 1H, C7-CH), 4.32 ppm (d, 1H, C20-CHb ), 4.95 ppm (dd, 1H, C5-CH), 5.23 ppm (d, 1H, C10-CH), 5.40 ppm (d, 1H, C30-CH), 5.69 ppm (d, 1H, C2-CH), 6.40-6.68(m, 1H, aconitic-CH), 7.51 ppm (m, 2H, C33, C27-CH), 7.53 (m, 6H,C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 2H, C25, C29-CH).
실시예 12. 2'-Aconitic-camptothecin-NHS 에스터의 합성
아코니틱 무수물(20mmol, 3.12g), 켐토테신(10mmol, 3.48g), DPTS (20mmol, 5.88g), NHS (100mmol, 11.5g), DIC(20mmol, 2.52g), 그리고 DIPEA (10ml)를 이용하여 실시예 6과 같은 방법으로 2'-Aconitic-camptothecin-NHS 에스터를 얻는다.
조성식: C30H23N3O11
원소분석 이론값(%): C, 59.90; H, 3.85; N, 6.99. 측정치 (%): C, 60.29.; H, 3.98; N, 6.57.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 0.9(t, 3H, C18-CH3), 2.0(m, 2H, C19-CH2), 2.64(t, 4H, NHS-CH2CH2), 2.92(s, 2H, aconitic-CH2), 4.20(d, 2H, C5-CH2), 4.76(m, 2H, C22-CH2), 6.40-6.68(m, 1H, aconitic-CH), 6.70(s, 1H, C14-CH), 7.59 (s, 1H, C11-CH), 7.80 (m, 2H, C12-CH; C7-CH), 8.0 (m, 2H, C9-CH; C12-CH)
실시예 13. 2’-Aconitic-glycamptothecin 합성
t-Boc-glycine (0.5g, 2.85 mmol)과 camptothecin(CPT) (0.5g, 1.43 mmol)을 무수염화메틸렌(20 ml)에 녹인 후 여기에 DIPC(0.36 ml, 2.85 mmol) 및 DMAP (0.31g, 2.53 mmol)를 가하고 실온에서 16시간 저어주며 반응시킨다. 반응 혼합물을 묽은 염산(pH 2)으로 추출한 후 무수 황상마그네슘으로 건조시킨 다음 회전건조기에서 건조시키면 t-Boc-glycamptothecin이 얻어진다. 이 중간 화합물을 염화메틸렌과 불화아세트산 혼합용매(10ml/10ml)에서 1시간 반응시켜 t-Boc을 제거하여 얻어진 camptothecin-gly-NH2cis-aconitic anhydride (0.57g, 3.63 mmol)를 디메틸포름알데히드(DMF) 용매(2 ml)에 녹인 후 0 oC에서 16시간 반응시킨 다음 이써를 가하여 침전시켜 여과/건조하면 camptothecin 전구체 2’-Aconitic-glycamptothecin가 80% 수율로 얻어진다.
조성식: C28H23N3O10
원소분석 이론값(%): C, 59.84; H, 4.09; N, 7.48; 측정치 (%): C, 59.72; H, 4.01; N, 7.39.
수소핵자기 공명 스펙트럼(DMSO)(δ, ppm): 0.88-0.93 (brm, 3H, -CH3 of CPT-C18), 2.12-2.16(m, 2H, -CH2 of CPT -C-19), 2.86(s, 2H, -CH2 of cis-aconitate), 3.92-4.42 (brm, 2H, -CH2 of glycine), 5 .27(brs, 2H, -CH2 of CPT- C5),5.49 (brs, 2H, -CH2 of CPT-C22), 5.97(s,1H, =CH of cis-aconitate), 7.18-7.21 (m, 1H, =CH of CPT-C14), 7.69-7.72 (m, 1H, =CH of CPT-C11), 7.84-7.89 (m, 1H, =CH of CPT-C10) 8.10-8.21 (m, 2H, =CH of CPT-C12 and C9), 8.68 (brs, 1H, =CH of CPT-C7), 12.3-12.8 (brs, -COOH of cis-aconitatic acid).
폴리포스파젠 -항암제 컨쥬게이트 화합물의 합성
실시예 14. [NP(MPEG550)1.5(LysEt-2'-aconitic-docetaxel)0.5]n 의 합성
실시예 1에서 얻어진 폴리포스파젠 유도체(4.85g, 5.0 mmol)를 메틸렌클로라이드에 녹인 후 얼음 탕을 이용하여 냉각시키고, 실시예 8의 2'-아코니틱 도세탁셀 NHS 에스터(2'-aconitic-docetaxel-NHS, 2.65g, 2.5 mmol)을 메틸렌클로라이드에 녹인 후 반응플라스크에 첨가한다. 충분히 냉각된 후, DIPEA(10ml)를 첨가한 후 12시간동안 저온(0~5℃)를 유지하며 반응 시킨다.
12시간 후 반응 용매를 감압증류하여 제거한 후 다시 에탄올에 녹여 감압증류 하는 과정을 2회 반복한다. 감압증류 후 얻어지는 고분자 물질을 다시 소량의 에탄올과 다량의 물에 녹에 재결정한다. 이때, 녹지 않는 침전물들은 멤브레인 필터를 이용하여 제거하고, 마지막으로 깨끗한 용액은 한외여과막을 이용하여 분리 정제한다. 한외여과막을 이용하여 정제 할 때는 초반에는 에탄올 30% (v/v) 용액을 이용하여 5회 세척한 후 다시 순수한 물로 바꾸어 5회 세척, 농축 시킨다. 이렇게 얻어진 농축용액을 동결건조하여, 최종의 폴리포스파젠-약물 컨쥬게이트 화합물, [NP(MPEG550)1.5(LysEt-2'-aconitic-docetaxel)0.5]n 을 얻는다. (수율, 90%)
조성식: C132H225N5O59P2.
원소분석 이론값(%): C, 54.89; H, 7.85; N, 2.42. 측정값(%): C, 53.62: H, 7.92; N, 2.67.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 1.5H, C17-CH3), 1.24 ppm (s, 1.5H, C16-CH3), 1.34 ppm (bs, 4.1H, C60-t Bu), 1.75 ppm (s, 1.5H, C19-CH3), 1.96 ppm (s, 1.5H, C18-CH3), 2.18 ppm (d, 1.0H, C14-CH2), 2.43 ppm (s, 1.5H, C22-CH3), 4.21 ppm (d, 0.5H, C20-CHa ), 4.24 ppm (m, 0.5H, C7-CH), 4.32 ppm (d, 0.5H, C20-CHb ), 4.95 ppm (dd, 0.5H, C5-CH), 5.23 ppm (d, 0.5H, C10-CH), 5.40 ppm (d, 0.5H, C30-CH), 5.69 ppm (d, 0.5H, C2-CH), 7.51 ppm (m, 1.0H, C33, C27-CH), 7.53 (m, 3.0H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-e-CH2), 3.38 ppm (s, 4.50H, CH3O-, PEG), and 3.63 ppm (m, 66.0H, -CH2CH2-O-), 4.4(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 15. [NP(MPEG550)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n 의 합성
실시예 1에서 얻어진 폴리포스파젠 유도체(9.7 g, 10.0 mmol), 실시예 8의 2'-아코니틱 도세탁셀 NHS 에스터 (3.18g, 3.0 mmol) 그리고 DIPEA(5ml)를 이용하여 실시예 14와 같은 방법으로 최종의 폴리포스파젠-약물 컨쥬게이트 화합물, [NP(MPEG550)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n 을 얻는다. (수율, 90%)
조성식: C112.4 H203N4 .6O 51.8P2.
원소분석 이론값(%): C, 53.79; H, 8.15; N, 2.57. 측정값(%): C, 53.48: H, 8.31; N, 2.64.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 0.9H, C17-CH3), 1.24 ppm (s, 0.9H, C16-CH3), 1.34 ppm (bs, 3.31H, C60-t Bu), 1.75 ppm (s, 0.9H, C19-CH3), 1.96 ppm (s, 0.9H, C18-CH3), 2.18 ppm (d, 0.6H, C14-CH2), 2.43 ppm (s, 0.9H, C22-CH3), 4.21 ppm (d, 0.3H, C20-CHa ), 4.24 ppm (m, 0.3H, C7-CH), 4.32 ppm (d, 0.3H, C20-CHb ), 4.95 ppm (dd, 0.31H, C5-CH), 5.23 ppm (d, 0.3H, C10-CH), 5.40 ppm (d, 0.3H, C30-CH), 5.69 ppm (d, 0.3H, C2-CH), 7.51 ppm (m, 0.6H, C33, C27-CH), 7.53 (m, 1.8H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-e-CH2), 3.38 ppm (s, 4.50H, CH3O-, PEG), and 3.63 ppm (m, 66.0H, -CH2CH2-O-), 4.4(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 16. [NP(MPEG750)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n 의 합성
실시예 2의 폴리포스파젠 (12.6.3.6g, 10mmol)과 실시예 8의 2'-아코니틱도세탁셀 NHS 에스터 (5.3g, 5.0 mmol) 그리고 DIPEA(10mml)를 이용하여 실시예 14 와 같은 방법으로 최종 폴리포스파젠-도세탁셀 컨쥬게이트 화합물, [NP(MPEG750)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n를 얻는다. (수율=89 %)
조성식: C136. 4H251N4 . 6O63 . 8 P2.
원소분석 이론값(%): C, 53.92; H, 8.33; N, 2.12. 측정값(%): C, 53.27: H, 8.45; N, 2.31.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 0.9H, C17-CH3), 1.24 ppm (s, 0.9H, C16-CH3), 1.34 ppm (bs, 3.31H, C60-t Bu), 1.75 ppm (s, 0.9H, C19-CH3), 1.96 ppm (s, 0.9H, C18-CH3), 2.18 ppm (d, 0.6H, C14-CH2), 2.43 ppm (s, 0.9H, C22-CH3), 4.21 ppm (d, 0.3H, C20-CHa ), 4.24 ppm (m, 0.3H, C7-CH), 4.32 ppm (d, 0.3H, C20-CHb ), 4.95 ppm (dd, 0.31H, C5-CH), 5.23 ppm (d, 0.3H, C10-CH), 5.40 ppm (d, 0.3H, C30-CH), 5.69 ppm (d, 0.3H, C2-CH), 7.51 ppm (m, 0.6H, C33, C27-CH), 7.53 (m, 1.8H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-ε-CH2), 3.38 ppm (s, 4.50H, CH3O-, PEG), and 3.63 ppm (m, 98.0H, -CH2CH2O-), 4.0(bs, 4H, MPEG 750-CH2), 4.51(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 17. [NP(MPEG1000)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n 의 합성
실시예 3의 폴리포스파젠 (15.6g, 10mmol)과 실시예 8의 2'-아코니틱도세탁셀 active ester (5.3g, 5.0 mmol) 그리고 DIPEA(10mml)를 이용하여 실시예 14와 같은 방법으로, 최종 폴리포스파젠-도세탁셀 컨쥬게이트 화합물, [NP(MPEG1000)1.5(LysEt)0.2(LysEt-2'-aconitic-docetaxel)0.3]n를 얻는다. (수율, 89 %)
조성식: C 172.4 H 323 N 4.6O 48. 2 P2 .
원소분석 이론값(%): C, 54.04, H, 8.50; N, 1.68. 측정값(%): C, 53.71: H, 8.74; N, 2.01.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 0.9H, C17-CH3), 1.24 ppm (s, 0.9H, C16-CH3), 1.34 ppm (bs, 3.31H, C60-t Bu), 1.75 ppm (s, 0.9H, C19-CH3), 1.96 ppm (s, 0.9H, C18-CH3), 2.18 ppm (d, 0.6H, C14-CH2), 2.43 ppm (s, 0.9H, C22-CH3), 4.21 ppm (d, 0.3H, C20-CHa ), 4.24 ppm (m, 0.3H, C7-CH), 4.32 ppm (d, 0.3H, C20-CHb ), 4.95 ppm (dd, 0.31H, C5-CH), 5.23 ppm (d, 0.3H, C10-CH), 5.40 ppm (d, 0.3H, C30-CH), 5.69 ppm (d, 0.3H, C2-CH), 7.51 ppm (m, 0.6H, C33, C27-CH), 7.53 (m, 1.8H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-ε-CH2), 3.38 ppm (s, 4.50H, MPEG-CH3O-), and 3.63 ppm (m, 128H, MPEG-CH2CH2O), 4.0(bs, 4H, MPEG1000-CH2), 4.51(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 18. [NP(MPEG550)1.0(LysEt)0.5(LysEt-2'-aconitic-docetaxel)0.5]n 의 합성
실시예 5의 폴리포스파젠 (7.7g, 10mmol)과 실시예 8의 2'-아코니틱도세탁셀 NHS 에스터(6.36g, 6.0 mmol) 그리고 DIPEA(10mml)를 이용하여 실시예 14와 같은 방법으로, 최종 폴리포스파젠-도세탁셀 컨쥬게이트 화합물, [NP(MPEG550)1.0(LysEt)0.5(LysEt-2'-aconitic-docetaxel)0.5]n를 얻는다. (수율=89 %)
조성식: C 115 H 191 N 7 O 48 P2..
원소분석 이론값(%): C,55.21; H, 7.70; N, 3.92. 측정값(%) : C, 54.92: H, 8.01; N, 3.99.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 0.9H, C17-CH3), 1.24 ppm (s, 0.9H, C16-CH3), 1.34 ppm (bs, 3.31H, C60-t Bu), 1.75 ppm (s, 0.9H, C19-CH3), 1.96 ppm (s, 0.9H, C18-CH3), 2.18 ppm (d, 0.6H, C14-CH2), 2.43 ppm (s, 0.9H, C22-CH3), 4.21 ppm (d, 0.3H, C20-CHa ), 4.24 ppm (m, 0.3H, C7-CH), 4.32 ppm (d, 0.3H, C20-CHb ), 4.95 ppm (dd, 0.31H, C5-CH), 5.23 ppm (d, 0.3H, C10-CH), 5.40 ppm (d, 0.3H, C30-CH), 5.69 ppm (d, 0.3H, C2-CH), 7.51 ppm (m, 0.6H, C33, C27-CH), 7.53 (m, 1.8H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 3.0H, Lys-OCH2CH3), 1.29(bs, 2H, Lys-CH2), 1.55 ppm (bs, 2H, Lys-CH2), 1.80(bs, 2H, Lys-CH2), 2.90(br, 2H, Lys-e-CH2), 3.38 ppm (s, 3.00H, CH3O-, PEG), and 3.63 ppm (m, 44.0H, -CH2CH2-O-), 4.4(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 19. [NP(MPEG550)1.5(GlyLysEt)}0.2(GlyLysEt-2'-aconitic-docetaxel)0.3]n의 합성
실시예 6 폴리포스파젠 (10.4g, 10mmol)과 실시예 8의 2'-아코니틱도세탁셀 NHS 에스터 (5.3g, 5.0 mmol) 그리고 DIPEA(10mml)를 이용하여 실시예 14와 같은 방법으로 최종 폴리포스파젠-도세탁셀 컨쥬게이트 화합물, [NP(MPEG550)1.5(GlyLysEt)0.2(GlyLysEt-2'-aconitic-docetaxel)0.3]n를 얻는다. (수율=89 %)
조성식: C114. 4H206N5 . 6O52 .8P2.
원소분석 이론값(%): C,53.53; H, 8.09; N, 3.06. 측정값(%): C, 52.98: H, 8.23; N, 3.19.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.13 ppm (s, 0.9H, C17-CH3), 1.24 ppm (s, 0.9H, C16-CH3), 1.34 ppm (bs, 3.31H, C60-t Bu), 1.75 ppm (s, 0.9H, C19-CH3), 1.96 ppm (s, 0.9H, C18-CH3), 2.18 ppm (d, 0.6H, C14-CH2), 2.43 ppm (s, 0.9H, C22-CH3), 4.21 ppm (d, 0.3H, C20-CHa ), 4.24 ppm (m, 0.3H, C7-CH), 4.32 ppm (d, 0.3H, C20-CHb ), 4.95 ppm (dd, 0.31H, C5-CH), 5.23 ppm (d, 0.3H, C10-CH), 5.40 ppm (d, 0.3H, C30-CH), 5.69 ppm (d, 0.3H, C2-CH), 7.51 ppm (m, 0.6H, C33, C27-CH), 7.53 (m, 1.8H, C32, C34-CH; C31, C35-CH; C26, C28-CH), 8.12(d, 0.6H, C25, C29-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-e-CH2), 3.38 ppm (s, 4.50H, CH3O-, PEG), and 3.63 ppm (m, 66.0H, -CH2CH2-O-), 3.98(bs, 2H, Gly-CH2), 4.4(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 20. [NP(MPEG550)1.50(LysEt)0.2(LysEt-2'-succinylpaclitaxel)0.3]n 의 합성
실시예 1의 폴리포스파젠 (9.7 g, 10.0 mmol), 과 문헌의 알려진 방법대로 합성한 2'-석시닐파클리탁솔 (5.26g, 5.0mmol)을 DCI(20mmol, 2.54g), 와 DIPEA(10mml)를 이용하여 일반적인 에스터 결합 방법을 이용하여 폴리포스파젠 고분자에 화학 결합시켰다. 반응액은 감압여과 후 감압 증류하여 건조한 후 실시예 14와 같은 방법으로 최종 폴리포스파젠-파클리탁솔 컨쥬게이트 화합물, [NP(MPEG550)1.50(LysEt)0.2(LysEt-2'-succinylpaclitaxel)0.3]n 를 합성한다. (수율, 90%)
조성식 : C113. 6H202N4 . 6O51 .8P2.
원소분석 이론값(%): C, 54.49; H, 8.12; N, 2.57. 측정값(%) : C, 54.15; H, 8.26; N, 2.61.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.5H, Lys-OCH2CH3), 2.49 (br, 1.00H, suucinyl-CH2), 2.90 (br, 1.00H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG550-OCH3), 3.65 (br, 66.0H, MPEG550-OCH2CH2), 1.13(s, 12H), 1.25(s, 12H), 1.35(s, 36H), 1.68(m, 8H), 1.75(s, 12H), 1.86(m, 8H), 1.96(s, 12H), 2.36(m, 20H), 2.60(m, 4H), 3.98(s, 8H), 4.06(d, 8H), 4.30(m, 12H), 4.33(m. 8H), 4.97 (d, 4H), 5.22(m, 4H), 5.36(s, 4H), 5.60(m, 4H), 5.69(m, 8H), 6.20(t, 4H), 7.33(m, 8H), 7.41(m, 8H), 7.52(m, 8H), 7.61(m, 4H), 7.33(m, 4H), 8.12(d, 8H)
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 21. [NP(MPEG550)1.50(GlyLysEt-2'-succinylpaclitaxel)0.50]n 의 합성
실시예 6 폴리포스파젠 (10.4g, 10mmol)과 문헌의 알려진 방법대로 합성한 2'-석시닐파클리탁솔 (7.36g, 7.0mmol)을 DCI(20mmol, 2.54g), 와 DIPEA(10mml)를 이용하여 일반적인 에스터 결합 방법을 이용하여 폴리포스파젠 고분자에 화학 결합시켰다. 반응액은 감압여과 후 감압 증류하여 건조한 후 실시예 14와 같은 방법으로 최종 폴리포스파젠-파클리탁솔 컨쥬게이트 화합물 [NP(MPEG550)1.50(GlyLysEt-2'-succinylpaclitaxel)0.50]n 를 합성한다. (수율=80%)
조성식 : C136H226N6O58 P2.
원소분석 이론값(%): C, 55.67; H, 7.76; N, 2.86. 측정값(%): C, 55.36: H, 7.99; N, 2.93.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.5H, Lys-OCH2CH3), 2.49 (br, 1.00H, suucinyl-CH2), 2.90 (br, 1.00H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG550-OCH3), 3.65 (br, 66.0H, MPEG550-OCH2CH2), 1.13(s, 12H), 1.25(s, 12H), 1.35(s, 36H), 1.68(m, 8H), 1.75(s, 12H), 1.86(m, 8H), 1.96(s, 12H), 2.36(m, 20H), 2.60(m, 4H), 3.98(s, 8H), 4.06(d, 8H), 4.30(m, 12H), 4.33(m. 8H), 4.97 (d, 4H), 5.22(m, 4H), 5.36(s, 4H), 5.60(m, 4H), 5.69(m, 8H), 6.20(t, 4H), 7.33(m, 8H), 7.41(m, 8H), 7.52(m, 8H), 7.61(m, 4H), 7.33(m, 4H), 8.12(d, 8H)
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 22. [NP(MPEG550)1.50(Nα-BocLys)0.2(Nα-BocLys-docetaxel)03]n 의 합성
실시예 7 폴리포스파젠 (9.57 g, 10.0 mmol), 과 도세탁셀 (10.6 g, 10.0mmol)을 진공건조 한 후 잘 건조된 유기용매인 테트라하이드로퓨란, 메틸렌클로라이드, 또는 클로로포름 등의 유기 용매에 녹인다. 반응용기를 얼음 중탕을 이용하여 냉각 시킨 후, 같은 용매에 녹인 DCI(20mmol, 2.54g), 와 DIPEA(10mml)를 서서히 반응 용기에 첨가한다. 이 상태로 저온(0 ℃)에서 24시간 반응시킨 후 반응액은 감압여과 후 감압 증류하여 건조한 후 실시예 14와 같은 방법으로 최종 폴리포스파젠-도세탁셀 컨쥬게이트 화합물, [NP(MPEG550)1.50(Nα-BocLys)0.2(Nα-BocLys-docetaxel)03]n를 합성한다. (수율, 60%)
조성식 : C113. 8H204 . 2N4 . 6O50 .8P2.
원소분석 이론값(%) : C, 54.42; H, 8.19; N, 2.57. 측정값(%) : C, 55.06; H, 7.98; N, 2.60.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1.25(s, 1.5H, Lys-OCH2CH3), 2.49 (br, 1.00H, suucinyl-CH2), 2.90 (br, 1.00H, Lys-ε-CH2), 3.38 (s, 4.50H, MPEG550-OCH3), 3.65 (br, 66.0H, MPEG550-OCH2CH2), 1.13(s, 12H), 1.25(s, 12H), 1.35(s, 36H), 1.68(m, 8H), 1.75(s, 12H), 1.86(m, 8H), 1.96(s, 12H), 2.36(m, 20H), 2.60(m, 4H), 3.98(s, 8H), 4.06(d, 8H), 4.30(m, 12H), 4.33(m. 8H), 4.97 (d, 4H), 5.22(m, 4H), 5.36(s, 4H), 5.60(m, 4H), 5.69(m, 8H), 6.20(t, 4H), 7.33(m, 8H), 7.41(m, 8H), 7.52(m, 8H), 7.61(m, 4H), 7.33(m, 4H), 8.12(d, 8H)
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 23. [NP(MPEG550)1.5(LysEt)0.2(LysEt-2'-aconitic-camptothecin)0.3]n 의 합성
실시예 1의 폴리포스파젠 (9.7 g, 10.0 mmol)과 앞서 합성한 실시예 12 의 20-aconitic-camptothecin-NHS 에스터 (2.5g, 5.03mmol)을 실시예 14와 같은 방법으로 반응시켜 최종 폴리포스파젠-켐토테신 컨쥬게이트 화합물, [NP(MPEG550)1.5(LysEt)0.2(LysEt-2'-aconitic-camptothecin)0.3]n를 합성한다(수율, 75%).
조성식 : C98. 6H180 . 8N5 . 2O45 . 8P2..
원소분석 이론값(%) : C, 53.01; H, 8.16; N, 3.26. 측정값(%): C, 52.61; H, 8.42; N, 3.34.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 0.9(t, 3H, C18-CH3), 2.0(m, 2H, C19-CH2), 2.64(t, 4H, NHS-CH2CH2), 2.92(s, 2H, aconitic-CH2), 4.20(d, 2H, C5-CH2), 4.76(m, 2H, C22-CH2), 6.40-6.68(m, 1H, aconitic-CH), 6.70(s, 1H, C14-CH), 7.59 (s, 1H, C11-CH), 7.80 (m, 2H, C12-CH; C7-CH), 8.0 (m, 2H, C9-CH; C12-CH), 1.24(s, 1.5H, Lys-OCH2CH3), 1.29(bs, 1H, Lys-CH2), 1.55 ppm (bs, 1H, Lys-CH2), 1.80(bs, 1H, Lys-CH2), 2.90(br, 1H, Lys-e-CH2), 3.38 ppm (s, 4.50H, CH3O-, PEG), and 3.63 ppm (m, 66.0H, -CH2CH2-O-), 4.4(s, 0.51H, Lysine-CH).
인 핵자기 공명 스펙트럼(CDCl3, ppm): δ -0.014 (s), δ -5.551 (s).
실시예 24. [NP(MPEG550)(LysEt)(aconitic-glycylcamptothecin)]n 의 합성
실시예 5의 약물전달체 [NP(MPEG550)(LysEt)]n (0.5g, 0.25 mmol)와 실시예 13에서 합성한 켐토테신 전구체 CPT-Gly-ACA-NHS 에스터(0.17 g, 0.25 mmol)를 실시예 14와 같은 방법으로 반응시켜 최종 폴리포스파젠-켐토테신 컨쥬게이트 화합물, [NP(MPEG550)(LysEt)(aconitic-glycylcamptothecin)]n를 합성한다(수율: 85 %).
조성식 : C111H191N7O50P2.
수소핵자기 공명 스펙트럼(CDCl3)(δ, ppm): 1H NMR (DMSO, ppm): 0.89-0.92 (brm, 3H, -CH3 of CPT-C18), 1.13-1.58(brm, 6H, -CH2 of lysine), 2.12-2.17(brm, 2H, -CH2 of CPT-C-19), 3.01(s, 2H, -CH2 of cis-aconitate), 3.21 (s, 9H, -OCH3 of MPEG), 3.34-3.54(brm, 144H, -CH2-CH2 of MPEG),3. 94-4.41(brm, 5H, -CH2 of g lycine, P-NH-CH2 of lysine and =CH of cis-aconitate), 5.29 (brs, 2H, -CH2 of CPT-C5), 5.47(brs, 2H, -CH2 of CPT-C22), 7.15-7.17(m, 1H, =CH of CPT-C14), 7.69-7.72(m, 1H, =CH of CPT-C11), 7.84-7.94(m, 1H, =CH of CPT-C10) 8.10-8.21(m, 2H, =CH of CPT-C12 and CPT-C9), 8.68(brs, 1H, =CH of CPT-C7). 31P NMR (DMSO, ppm): δ-5.19 (O-P-O), 0.85 (O-P-N).
실시예 25. [NP(MPEG550)(AE)(ACA)Pt(dach)]n 의 합성
실시예 8의 약물전달체 [NP(MPEG550)(AE)]n (1g, 1.5 mmol)를 0.5M 산성 탄산나트륨 수용액(pH = 9.0, 50 ml)에 녹인 후 여기에 cis-aconitic anhydride (2.35g, 15mmol)를 가한 후 4℃에서 5시간 반응시킨 후 셀루로스 멤브레인(MWCO: 3.5 kD)으로 투석하여 정제하면 링커인 아코니틱산(ACA)이 고분자에 결합된 중간체 [NP(MPEG550)(AE)(ACA)]n가 얻어진다. 이 용액에 수산화바륨(1.33 mmol)의 메탄올(20 ml) 용액을 가한 후 상온에서 5시간 저어준 다음 감압 증류하여 건조시킨다. 건조된 고체를 다시 증류수(10 ml)에 녹인 다음 여기에 백금착물 항암성분을 포함하는 황산염 (dach)Pt(SO4) (dach: trans-1,2-diaminocyclohexane) (0.49g, 1.21 mmol)의 수용액(10 ml)을 서서히 가한 후 상온에서 3시간 이상 반응시킨 다음 침전 부산물인 황산바륨을 여과/제거하고 셀루로즈 멤브레인(MWCO: 3.5 kD)으로 투석 후 동결 건조하면 화합물, [NP(MPEG550)(AE)(ACA)Pt(dach)]n를 얻는다(수율, 74%).
조성식 : C39H73N4O19PPt.H2O
원소분석 이론값(%): C, 40.83; H, 6.54; N, 4.88. 측정값: C, 40.54; H, 6.34; N, 4.62.
수소핵자기 공명 스펙트럼(D2O, ppm): 1.04-1.20 (brm, 4H, C-4, C-5 of dach), 1.44 (brs, 2H, C-3 of dach), 1.82-1.93 (brm, 2H, C-6 of dach), 2.02-2.52 (brm, 2H, C-1, C-2 of dach), 3.26 (s,3H, OCH3 of MPEG), 3.41-3.45 (m, 6H, CH2 of cis-aconitate and aminoethanol), 3.47-3.81 (brm, 46H, -O-CH2 of MPEG), 3.95-4.21 (brm, 2H, -P-O-CH2- of MPEG), 4.69 (s, 1H, -C=CH- of cis-aconitate).
인 핵자기 공명 스펙트럼(D2O, ppm): -4.53 (O-P-O).
실시예 26. [NP(MPEG750)(AE)(ACA)Pt(dach)]n 의 합성
실시예 9에서 합성한 약물전달체 [NP(MPEG750)(AE)]n (1g, 1.19 mmol), cis-aconitic anhydride (1.86g, 11.91 mmol), Ba(OH)2.8H2O (0.35g, 1.11mmol) 그리고 (dach)Pt(SO4) (0.4g, 0.99 mmol, pH = -7.2)를 사용하여 실시예 25와 같은 방법으로 고분자 백금착물 화합물, [NP(MPEG750)(AE)(ACA)Pt(dach)]n를 얻는다(수율, 72%).
조성식 : C47H89N4O23PPt.H2O
원소분석 이론값(%): C, 42.65; H, 6.88; N, 4.23. 측정값: C, C, 42.32; H, 7.64; N, 3.88.
수소핵자기 공명 스펙트럼(D2O, ppm): 1.05-1.21 (brm, 4H, C-4, C-5 of dach), 1.47 (brs, 2H, C-3 of dach), 1.80-1.93 (brm, 2H, C-6 of dach), 2.01-2.45 (brm, 2H, C-1, C-2 of dach), 3.27 (s, 3H, -OCH3ofMPEG),3.41-3.45(m,6H,-CH2ofcis-aconitate and aminoethanol), 3.50-3.72 (brm, 62H, -CH2 of MPEG), 3.99-4.13 (brm, 2H, -P-O-CH2 of MPEG), 4.70 (s, 1H, -C=CH- of cis-aconitate).
인 핵자기 공명 스펙트럼(D2O, ppm): -4.52 (O-P-O).
실시예 27. [NP(MPEG550)(LysEt)(ACA)Pt(dach)]n 의 합성
실시예 5의 약물전달체 [NP(MPEG550)(LysEt)]n (1g, 1.28 mmol), 링커인cis-aconitic anhydride(ACA) (2g, 11.91 mmol) 그리고 Ba(OH)2.8H2O(0.44g, 1.39mmol) 및(dach)Pt(SO4) (0.52g, 1.28mmol)를 실시예 25와 같은 방법으로 고분자 백금 착물 화합물, [NP(MPEG550)(LysEt)(ACA)Pt(dach)]n.를 얻는다(수율, 79%).
조성식 : C45H84N5O20PPt.H2O
원소분석 이론값(%): C, 42.88; H, 6.83; N, 5.56. 측정값: C, 42.63; H, 6.61; N, 5.42.
수소핵자기 공명 스펙트럼(D2O, ppm): 1.07-1.21 (brm, 7H, -CH3, -(CH2)2 of lysine), 1.43-1.48 (brm, 6H, -C-3, -C-4, C-5 of dach), 1.80-1.93 (brm, 8H, -CH2 lysine and -C-6 of dach), 2.02-2.26 (brm, 2H, C-1, C-2 of dach), 2.82 (brs, 2H, -CH2 of cis-aconitate), 3.26 (s, 3H, -OCH3 of MPEG), 3.44-3.72 (brm, 46H, -CH2-CH2 of MPEG), 3.96-4.03 (brm, 3H, -CH2 of ethylester and -N-CH of lysine), 4.62(s, 1H, =CH of cis-aconitate).
실험예
[물성 측정 및 효능시험]
실험예 1. 마이셀 형성에 대한 실험
실시예 1의 폴리포스파젠 화합물 및 실시예 11의 폴리포스파젠-도세탁셀 컨쥬게이트를 각각 물에 녹여(0.2% wt./wt.) DLS(Dynamic Light Scattering)법으로 이들의 입도와 제타전위(zeta potential, ξ)를 측정하였고, 유의미한 결과를 도 1, 도 2, 및 도 3에 나타내었다.
도 1에서 보면 도세탁셀을 컨쥬게이션 시키기 전에는 폴리포스파젠 고분자의 수용액에서의 평균 입자크기가 3nm~4nm정도로 마이셀을 형성하지 않고 유체역학적입자(hydrodynamic volume)의 크기를 나타내고 있다. 이는 폴리포스파젠에 도입된 라이신 치환기가 pH 7.4에서 양이온성(도 2)을 띄기 때문에 친수성이 강한 유니머(unimer) 상태로 있다가, 소수성 약물인 도세탁셀이 컨쥬게이션 되면 0.2 %의 농도에서 그 평균 직경이 60nm의 크기로 커지는 것이 확인 되었다(도 3). 이와 같이 입자의 평균 직경이 20배 가량 증가하는 것은 폴리포스파젠 약물전달체가 소수성 약물과 컨쥬게이션 되면서 친수성 고분자에서 양친성 고분자로 그 성격이 바뀌어 마이셀을 형성하는 것을 확인할 수 있었다. 또한 마이셀의 크기는, 5~70 ℃의 온도범위에서 5 ℃ 간격으로 측정한 결과, 온도와 상관없이 일정한 입자의 크기를 갖는다는 사실을 확인하였다.
실험예 2. 폴리포스파젠 - 파클리탁셀 컨쥬게이트의 마이셀 임계농도 측정
앞의 실험예 1에서 보듯이 본 발명의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물들은 수용액에서 마이셀을 형성하는데, 이들 약물들이 정맥주사용 마이셀 형태의 주사제로 사용되려면 안정한 마이셀이 형성되어 소수성의 약물을 보호하는 기능을 해야 한다. 이러한 마이셀의 안정도는 마이셀의 임계농도(CMC: critical micelle concentration)로 표시되며, 임계농도의 측정방법에는 여러 가지 방법이 알려져 있으나 pyrene 형광법이 가장 널리 사용되고 있다. 따라서 그 방법 (Kalyanasundoram, K.; Thomas, J. K. J. Am. Chem. Soc., 1988, 99, 2039)에 따라 다음과 같이 시험하였다.
우선, 6 × 10-7 M 의 농도로 pyrene 수용액을 만든 후, 실시예 17의 폴리포스파젠-파글리탁셀 컨쥬게이트를 5.0 ~ 0.0005% (wt/wt)의 농도로 녹인 시료를 만들었다. 형광 분광 분석기를 이용하여 339 nm 파장 (lex)에서의 형광 스펙트럼과 390 nm 파장 (lem)에서의 스펙트럼을 측정한 후 밴드 I의 형광세기와 밴드III의 형광세기의 비를 이용하여 마이셀의 임계농도를 결정하여 그 결과를 도 4에 표시하였다.
이렇게 결정된 실시예 1의 폴리포스파젠-파클리탁셀 컨쥬게이트의 임계농도는 41mg/L의 매우 낮은 농도로 측정되었으며, 정맥주사 할 경우 혈중에서도 마이셀 형태가 유지될 수 있을 것으로 기대된다. 이러한 결과는 약물의 소수성에서 기인된 것이라 추정된다.
실험예 3. 고분자 화합물의 생분해성에 대한 실험
장비: Yonglin GPC systems
유속: 1 ml/min
이동상: 물(8)/아세토나이트릴(2) (0.5% NaNO3 첨가제 첨가)
컬럼: Waters Hydrogel HR column (1xguard, 1xlinear, 2xHR2)
실시예 17의 폴리포스파젠-파클리탁셀 컨쥬게이트 250mg을 pH 5.4와 pH 7.4 의 버퍼(PBS) 용액 5ml에 각각 녹인 후 37 °C의 항온조에서 서서히 교반하면서 정해진 시간 별로 (0.5/ 1/ 2/ 4/ 6/ 8/ 16 Day) 500 μl씩 취하여 동결 건조하였다. 동결 건조된 각 시료에 THF를 첨가하여 잘 녹인 다음 0.45마이크로 시린지 필터로 여과 한 후 그 여과액을 감압 증류하여 진공건조 하였다. 그 다음 0.2% 의 터셔리 부틸암모니움 브로마이드를 함유한 THF를 사용하여 겔 투과 크로마토그래피(GPC:Gel Permeation Chromatography )로 분해된 고분자 분포를 분석하여 도 5에 표시하였다.
도 5에서 보듯이 초기 2일까지는 10,000~15,000 Da정도 분자량이 급격히 감소하지만 4일째부터는 분자량이 서서히 줄어든다. 또한 pH 7.4에서는 pH 5.4에서보다 분해되는 정도가 다소 적은 것을 알 수 있다. 이 같은 결과는 체내조건이 중성과 같은 pH 7.4에서는 폴리머 기본 골격이 상대적으로 안정하고, 암세포가 있는 조직의 pH와 같은 pH 5.4에서는 폴리머 기본 골격이 더 잘 분해된다는 것을 의미하는 것으로, 암세포 조직에서 약물을 체내에 더 잘 방출시킬 수 있는 것으로 추정된다. 그리고 폴리머 기본 골격의 반감기는 약 16일 정도로 긴 시간 동안 몸속에서 오랫동안 순환할 수 있어 약물을 운반하기에 적합한 물질로 예상된다. 또한, 이 반감기에 대한 정보는 정맥 주사용 약물전달체의 체외 배출 시간 조절에 있어서 매우 중요한 의미를 갖는다. 본 발명에서는 다양한 분자량 범위의 고분자를 분리 분취하였으며, 이들의 체내 거동과 배출 그리고 가수분해 되는 반감기를 이용하면, 원하는 시간내에 체외 배출 가능한 고분자형 약물전달체의 합성에 기초 자료가 될 수 있으며, 약물전달체의 분자량 분포와 그 반감기의 상관관계를 이용하여, 약물의 용도에 맞는 약물전달체의 분자량 범위를 선택하여 사용할 수 있다.
실험예 4. 폴리포스파젠 고분자 화합물의 암조직 선택성에 대한 실험
장비: Kodak image station 4000mm digital imaging system (Kodak, New Haven, CT).
Excitation and emition filter: Omega Optical, Battlebor, VT (ex: 560 nm, em: 700 nm).
실험동물은 8주령 CH3/HeN 누드 마우스(nude mouse) (Instityte of Medical Science, Tokyo)을 준비한 후 멸균된 장소에서 멸균된 먹이와 물을 먹이고 자유롭게 운동을 시키며 준비하였다. 암세포(A549) (1x106)를 마우스에 이식한 후 암조직의 크기가 300 mm3 일 때까지 암조직을 키운 다음 마우스를 두 그룹으로 나누었다. 한 그룹은 Cy5.5가 붙어있는 폴리포스파젠 고분자를 주입하고, 다른 한 그룹은 약물 처리하지 않고 대조군으로 사용하였다. 정해진 시간에 마우스를 해부하여 정상근육(part of biceps femoris), 암조직, 간, 콩팥, 폐, 심장, 비장 등 주요 조직을 통 채로 적출하였다. 적출된 조직들의 근적외선(680nm to 720nm) 형광 이미지 (NIR fluorescence image)를 CCD 카메라(Kodak Image Station 4000MM,)로 측정하였다.
실시예 1에서 합성한 폴리포스파젠계 고분자 화합물에 대한 암조직 선택성에 대한 실험을 Kodak image station 4000 mm을 이용한ex vivo 장기분포 실험을 통하여 확인하였다. 앞서 합성한 고분자에 NIRF(near infra-red fluorescence) 물질인 Cy 5.5로 표지한 마우스 모델을 이용하여 고분자 물질의 조직 분포 및 혈액 내 거동을 확인하였다. Cy5.5가 라벨링 되어 있는 폴리포스파젠계 고분자 화합물을 i.v. 로 마우스에 주사한 후 12시간, 24시간, 48시간 그리고 72시간의 시간 간격으로 주요장기인 간(1), 폐(2), 콩팥(3), 비장(4), 암조직(5), 정상조직(6), (도6-a) 그리고 혈액(도6-b)을 각각 적출하여 도6에 나타내었다. 특히 폴리포스파젠 고분자의 조직분포(도 6a)를 보면 형광세기로 보아 타 조직에 비하여 암조직(5)에 월등하게 많이 축적됨을 알 수 있었다. 앞의 실험예 1에서 보여주었듯이 폴리포스파젠 고분자는 친수성이며 입자의 크기도 아주 작은 유니머(unimer)로서 이렇게 우수한 암조직 선택성을 나타내는 이유는 고분자 성분인 라이신의 알파-아민기에 의한 양이온성(도 2 참조)과 입자의 표면을 이루는 폴리에틸렌글리콜에 의한 장기 순환성(long circulation) 때문이라 추정된다.
실험예 5. 폴리포스파젠 - 도세탁셀 컨쥬게이트의 암조직 선택성에 대한 실험
실시예 12에서 합성한 폴리포스파젠-도세탁셀 컨쥬게이트에 앞의 실험예 4와 같은 방법으로 Cy 5.5로 표지한 후 마우스 모델을 이용하여 폴리포스파젠-도세탁셀 컨쥬게이트의 조직 분포를 비교하였다(도 7). 컨쥬게이트의 조직 분포에 대한 정량은 Cy 5.5가 붙어 있는 시료가 주입된 마우스의 조직과 처리되지 않은 대조군 마우스 조직의 근적외선 형광세기의 비율을 측정해서 그 결과를 도 8에 나타내었다.
도 7에서 보는 바와 같이 24시간과 48시간 모두 암조직에서 높은 형광세기를 나타내는 것을 알 수 있었으며, 다른 기관에는 암조직에 비해 상대적으로 적게 분포하고 있다는 사실을 확인하였다. 또한 24시간 보다는 48시간 경과 후에 더 높은 형광세기를 나타내는 것으로 보아, 폴리포스파젠- 도세탁셀 컨쥬게이트가 혈액 내에서 장시간(>48시간) 순환하며, 특히 암조직에 많이 축적된다는 사실을 확인할 수 있었다. 또한, 각 조직별로 비교 측정한 폴리포스파젠-도세탁셀 컨쥬게이트의 조직 분포를 그래프로 나타내면 도 8과 같다. 이 그림에서 보면 본 발명의 폴리포스파젠-도세탁셀 컨쥬게이트 화합물이 체내 어느 주요 조직보다도 암 조직에 압도적으로 축적되고 있고, 따라서 탁월한 암조직 선택성을 나타냄을 분명히 보여주고 있다.
실험예 6. 폴리포스파젠 - 도세탁셀 컨쥬게이트 중의 도세탁셀 함량 측정법
약물의 함량은 1H-NMR(Varian 500Hz)법을 이용한 면적 적분 값의 비율, UV 스펙트럼(Perkin Elmer, Lamda)을 이용한 흡광도법, 그리고 HPLC법 등을 이용하여 측정하였다. 1H-NMR법을 이용할 경우에는 약물함량의 오차범위가 크게 측정이 되는 경향이 있어, UV 스펙트럼 또는 HPLC를 이용하여 약물의 함량을 측정하였다. 고농도이기는 하지만 약물이 폴리포스파젠 골격에 근접해 있기 때문에 NMR 법으로 약물의 함량을 측정하기에는 오차가 범위가 커서 UV 와 HPLC법을 교차 정량하여 약물의 함량을 측정하였다. 우선 1H-NMR을 이용한 방법에서는 폴리포스파젠 내에 있는 MPEG(-OCH2CH2OCH3) 의 터미널 methoxy (3H, -CH3) proton 의 갯수와 도세탁셀 의 7.33 ppm(C10, 2H)의 적분 값을 비교하여 정량하였다.
UV를 이용한 정량법을 서술하면, 물:아세토니트릴을 1:1로 섞은 용액(10ml)을 이용하여, 도세탁셀(10.0 mg)을 완전히 녹인 후 이를 1/2배씩 6번 희석 즉, 1mg/ml (1mg/ml), 1/2mg/ml(0.5mg/ml), 1/4mg/ml (0.25mg/ml), 1/8mg/ml(0.125mg/ml), 1/16mg/ml(0.0625mg/ml), 1/32mg/ml(0.03225mg/ml)로 희석하여 표준 정량 곡선 그래프를 얻었고, 이를 이용하여 고분자중의 도세탁셀의 함량을 정량하였다. 이때 간섭현상을 나타낼 수 있는 실시예 1과 실시예 11의 아코니틱 그룹의 스펙트럼은 정량에 사용한 230nm 파장에서 흡광이 없음을 확인하였으며, 따라서 이 방법이 고분자내의 도세탁셀의 정량에 가장 적합한 방법임을 확인하였고, 이를 이용하여 정량하였다.
실험예 7. 폴리포스파젠 -2'- 아코니틱 도세탁셀 컨쥬게이트의 in vitro약물 방출에 대한 실험
장비: Agilent 1100 series with DAD detector (230nm)
컬럼: Agilent Zobax Eclipse Plus C18 column (직경=4.6mm, 길이=150mm, particle size=3.5um)
유속: 1.0 ml/min
이동상 조성: A: 0.1% TFA in H2O; B: Acetonitrile (isocratic method)본 발명에 사용한 약물의 in vitro 환경하에서의 약물 방출 실험은 HPLC를 사용하여 진행하였다. 이때, 정량곡선은 앞서 실험예 5에서 제조한 표준 용액을 이용하여 얻었으며, 3회 반복측정 및 R2 값이 허용가능한 오차범위에 있음을 확인하여 표준 정량 곡선으로 이용하였다.
UV 스펙트럼을 이용하여 약물의 농도를 결정한 용액을 2.0ml HPLC용 바이알에 500 ㎕씩 담는다. 이 바이알을 37˚C 배양기에서 정해진 시간 간격 동안 배양한 후, HPLC를 찍기 전에 다시 500 ul의 아세토나이트릴을 첨가하여 침전물이 없이 완전히 녹인 후, 상기의 도세탁셀 분석법에 따라 방출된 도세탁셀의 양을 정량하였다.
또한 아코니틱 스페이서는 산성 조건에서 약물방출 속도가 빠르기 때문에 이 특징을 확인하기 위해서, 위와 같은 방법으로, pH 5.4, 6.4, 7.4, 에 대한 실험도 진행하였다. 단, pH가 조절된 방출 용매를 사용할 경우에는 아세토나이트릴이 첨가 되면 침전물을 형성할 수 있으므로, 아세토나이트릴을 첨가한 후 0.45 ㎛ 시린지 필터를 이용하여 침전물을 제거한 후 정량하였다.
실험예 8. 폴리포스파젠 - 파클리탁셀 컨쥬게이트의 체외 세포독성에 대한 실험
파클리탁셀 항암제는 유방암 등 여성암에 우수한 치료효과를 나타내므로 본 체외 세포독성 (in vitro cytotoxicity) 시험에서는 유방암(MCF-7)과 난소암(SK-OV3), 그리고 폐암(A549)과 위암(SNU638) 등을 선정하여 암 세포들을 이산화탄소 5 % 및 공기 95 %가 공급되는 37°C의 세포 배양기 안에서 배양한 후 문헌에 보고된 SRB법(Rita Song 외 J. Control. Release 105 (2005) 142-150)에 따라 세포독성을 측정하였다.
실험결과는 아래 표 1(체외 세포독성에 관한 실험결과)에 나타내었다. 표 1에서 보듯이, IC50값은 표준 파클리탁셀 보다 높게 나왔으며, 약물의 컨쥬게이션 양이 많은 실시예 17의 경우 전체적으로 더 높은 세포독성을 나타내었다. 이는 소수성 약물인 파클리탁셀의 컨쥬게이션 량이 많아지게 되면 CMC가 낮아지는 실험 결과와 일치하는 결과이며, IC50 값이 높은 것은 in vitro 실험 조건하에서 약물의 방출속도가 상대적으로 느리다는 것을 나타낸다.
IC50 값(nM) (mean±SD, n=3~4)
MCF-7 SK-OV3 A-549 SNU-638
파클리탁셀 3.47±0.62 15.32±2.6 6.63±2.84 10.89±0.90
실시예 17실시예 18 164.8±86.5316.7±141.1 587.5±47.8696.4±141.7 170.0±48.3154.3±41.8 364.4±201.7541.1±46.6
실험예 9. 폴리포스파젠 - 도세탁셀 컨쥬게이트의 약물동력학에 대한 실험
앞서 합성한 실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트의 체내 거동을 확인하기 위하여 현재 임상에서 사용하는 도세탁셀 제제인 탁소텔®(Taxotere, ㈜사노피 아벤티스)을 대조물질로 하여 Sprague-Dawly 랫트를 이용한 약물동력학 실험을 문헌(Jun et al. Int. J. Pharm. 422(2012) 374-380) 방법에 따라 수행하였으며, 도 9에 시간에 따른 도세탁셀의 플라즈마 농도 프로파일을 그리고 표 2에 약물동력학 파라미터를 표시하였다. 표와 그림에서 보면 도세탁셀 기준으로 같은 양(5 mg/kg)을 투여 했음에도 불구하고 초기 농도(C0)가 대조물질인 (8.764 ㎍/ml)에 비하여 본 폴리포스파젠-도세탁셀 컨쥬게이트의(0.263 ㎍/ml) 경우 매우 낮은 것으로 보아 폴리포스파젠-도세탁셀 컨쥬게이트 약물은 거의 중성인 혈중에서는 분해하지 않고 혈중에서 순환하고 있어 거의 독성을 나타내지 않고 있음을 확인할 수 있었다. 또한 표에서 보면 폴리포스파젠-도세탁셀 컨쥬게이트 화합물의 체내 반감기(t1/2)가 대조물질인 탁소텔에 비하여 약 10배 정도 느리고 더구나 약물의 생체이용률을 나타내는 AUClast값은 약 2배에 이름으로서 약효도 우수함을 뒷받침하고 있다.
약동학적 파라미터 탁소텔®(대조물질) 실시예 12
평균 표준편차 평균 표준편차
C0 (㎍/mL) 8.764 3.221 0.263 0.051
AUClast (㎍·h/mL) 0.651 0.098 1.192 0.380
AUCINF (㎍·h/mL) 0.678 0.098 1.439 0.531
t1/2 (h) 0.651 0.093 6.115 4.041
Vz (L) 1.758 0.159 7.287 2.231
Cl (L/h) 1.896 0.255 0.984 0.311
실험예 10. 폴리포스파젠 - 도세탁셀 컨쥬게이트의 xenograft 항암활성에 대한 실험
실시예 12의 폴리포스파젠-도세탁셀 컨쥬게이트의 약효를 시험하기 위하여 현재 임상에서 사용하는 도세탁셀 제제인 탁소텔®(Taxotere, ㈜사노피 아벤티스)을 대조물질로 하여 BALB/C누드마우스를 이용하여 인간 암세포주 중에서도 가장 난치암에 속하는 위암 세포주 MKN-28에 대한 in vivo xenograft 실험을 문헌(Jun et al. Int. J. Pharm. 422(2012) 374-380) 방법에 따라 수행하였다. 약물 투여량은 대조물질인 탁소텔의 경우 도세탁셀 기준 최적 투여량으로 알려진 10mg/kg으로 고정하고 본 컨쥬게이트 화합물 투여량은 도세탁셀 기준 10mg/kg 및 20mg/kg으로 하여 3회(day1, 5, 9)투여한 후 30일간 암조직의 크기를 측정하였다. 도10은 MKN28 세포주에 대한 항암활성을 나타내며, 도 11에서는 탁소텔 및 컨쥬게이트 화합물 투여 시작부터 40일간의 실험 쥐들의 체중변화를 나타낸다. 도 10에서 보면 컨쥬게이트 화합물의 항암효과가 대조물질인 탁소텔과 거의 대등함을 알 수 있다. 그러나 보다 중요한 것은 도 11에 표시된 약물투여기간 중 누드마우스들의 체중 변화이다. 즉 도 11에서 자세히 살펴보면 탁소텔의 경우 마우스들의 평균 체중이 약물투여 직후 초기 체중의 약 10%이상 감소하는데 비하여 컨쥬게이트 화합물의 경우 약물 투여 기간 중에도 생리식염수를 투여한 군과 동일하게 체중 증가가 관찰 되는 것으로 보아 약물에 의한 독성이 아주 낮은 것으로 판단된다. 같은 방법으로 수행한 폐암 세포주 A549에 대한 실험결과를 도 12에 표시하였다. 이 그림에서 보면 실시예 12의 컨쥬게이트 약물의 약효가 오히려 대조물질인 탁소텔 보다 우수하게 나타냄을 알 수 있다.

Claims (12)

  1. 하기 화학식 1로 표시되는 선형의 폴리포스파젠 화합물:
    [화학식 1]
    Figure PCTKR2015002488-appb-I000031
    상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, l은 0~0.9이고, m은 0.1~1이며, l+m = 1이다.
  2. 하기 화학식 2로 표시되는 폴리포스파젠-약물 컨쥬게이트 화합물:
    [화학식 2]
    Figure PCTKR2015002488-appb-I000032
    상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 알지닌, 글루타민, 아스파라진, 타이로신, 라이신을 포함하는 올리고펩타이드, 알지닌을 포함하는 올리고펩타이드, 글루타민을 포함하는 올리고펩타이드, 아스파라진을 포함하는 올리고펩타이드, 타이로신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
  3. 청구항 2에 있어서,
    상기 S는 라이신 또는 라이신을 포함하는 다이펩타이드 내지 트라이펩타이드인 것을 특징으로 하는 폴리포스파젠-약물 컨쥬게이트 화합물.
  4. 청구항 2에 있어서,
    상기 S는 아미노에탄올 또는 아미노프로판올인 것을 특징으로 하는 폴리포스파젠-약물 컨쥬게이트 화합물.
  5. 청구항 2에 있어서,
    상기 D는 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 켐토테신(camptothecin) 및 [(트란스-1,2-디아미노사이클로헥산)백금(II)]으로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 폴리포스파젠-약물 컨쥬게이트 화합물.
  6. 청구항 2에 있어서,
    상기 화학식 2 는 하기 화학식 19 내지 21 중 어느 하나로 표시되는 것을 특징으로 하는 폴리포스파젠-약물 컨쥬게이트 화합물:
    [화학식 19]
    Figure PCTKR2015002488-appb-I000033
    [화학식 20]
    Figure PCTKR2015002488-appb-I000034
    상기 화학식 19 및 20에서, n은 3 내지 300 의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, D는 도세탁셀, 파클리탁셀, 켐토테신(camptothecin) 및 [(트란스-1,2-디아미노사이클로헥산)백금(II)]으로 이루어진 군으로부터 선택된 1종을 나타내며, R은 C1-6의 선형, 분지형 또는 고리형 알킬, 또는 OCH2Bz이다. 여기서, x와 y는 각각 0~0.5, z는 0보다 크고 1.0 이하의 값을 가지며, x+y+z = 1 이고,
    [화학식 21]
    Figure PCTKR2015002488-appb-I000035
    상기 화학식 21에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, D 는 도세탁셀, 파클리탁셀 및 켐토테신으로 이루어진 군에서 선택되는 1종을 나타내고, R'는 t-Boc 또는 CBZ 그룹을 나타내며 여기서, x와 y는 각각 0~0.5, z는 0보다 크고 1.0 이하의 값을 가지며, x+y+z = 1 이다.
  7. (a) 출발물질인 6 염화 고리형 포스파젠을 열 중합하여 폴리디클로로포스파젠 선형 중합체를 합성한 후 메톡시폴리에틸렌글리콜의 나트륨 염과 반응시켜 폴리포스파젠 고분자 중간체를 얻는 단계;
    (b) 상기 폴리포스파젠 고분자 중간체를 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군에서 선택되는 1종과 반응시켜 친수성 양이온성(cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 단계;
    (c) OH 또는 NH2작용기를 갖는 약물을 링커(linker)를 이용하여 폴리포스파젠 고분자에 화학결합으로 결합시키기 용이한 약물 전구체(precursor)를 제조하는 단계; 및
    (d) 상기 (b) 단계의 폴리포스파젠 고분자 약물전달체에 상기 (c) 단계의 약물 전구체(precursor)를 도입하여 하기 화학식 2의 화합물을 얻는 단계;
    를 포함하는 하기 화학식 2의 화합물의 제조 방법:
    [화학식 2]
    Figure PCTKR2015002488-appb-I000036
    상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 라이신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
  8. 청구항 7에 있어서,
    상기 (a) 단계는 화학식 10의 폴리디클로로포스파젠 선형 중합체를 포함하는 용액을 0 ℃ 미만의 온도로 냉각시킨 후 화학식 12의 메톡시폴리에틸렌글리콜의 나트륨 염 용액을 서서히 가하여 화학식 13의 폴리포스파젠 고분자 중간체를 제조하는 것을 특징으로 하는 상기 화학식 2의 화합물의 제조 방법:
    [화학식 10]
    Figure PCTKR2015002488-appb-I000037
    상기 화학식 10에서, n은 3내지 300의 정수이고,
    [화학식 12]
    Figure PCTKR2015002488-appb-I000038
    상기 화학식 12에서, a 는 7 내지 22의 값이고,
    [화학식 13]
    Figure PCTKR2015002488-appb-I000039
    상기 화학식 13에서, n은 3 내지 300의 정수이고, a는 7 내지 22의 값이며, b는 0.5~1.8의 값이다.
  9. 청구항 7에 있어서,
    상기 (b) 단계는 상기 화학식 13의 폴리포스파젠 고분자 중간체를 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군에서 선택되는 1종과 반응시켜 하기 화학식 16 또는 화학식 17의 친수성 양이온성 (cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 것을 특징으로 하는 상기 화학식 2의 화합물의 제조방법:
    [화학식 16]
    Figure PCTKR2015002488-appb-I000040
    [화학식 17]
    Figure PCTKR2015002488-appb-I000041
    상기 화학식 16 및 17에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌클리콜을 나타내고, b는 0.5 ~ 1.8의 값을 갖는다. 또한 R은 C1-6의 선형, 분지형 또는 고리형 알킬, 또는 OCH2Bz이고, R'는 t-Boc 또는 CBZ 그룹을 나타낸다.
  10. 청구항 7에 있어서,
    상기 (c)단계에서 링커는 무수아코니틱산이고, 약물은 탁세인계 또는 켐토테신계 항암제인 것을 특징으로 하는 상기 화학식 2의 화합물의 제조방법.
  11. (a) 출발물질인 6염화 고리형 포스파젠을 열 중합하여 폴리디클로로포스파젠 선형 중합체를 합성한 후 메톡시폴리에틸렌글리콜의 나트륨 염과 반응시켜 폴리포스파젠 고분자 중간체를 얻는 단계;
    (b) 상기 폴리포스파젠 고분자 중간체를 스페이서 그룹인 라이신 에스터, 라이신을 포함하는 올리고펩타이드의 에스터, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종과 반응시켜 친수성 양이온성(cationic) 폴리포스파젠 고분자 약물전달체를 제조하는 단계;
    (c) 상기 (b) 단계의 폴리포스파젠 고분자 약물전달체의 스페이서 그룹에 링커를 먼저 결합시키는 단계; 및
    (d) 상기 (c) 단계의 폴리포스파젠 고분자 약물전달체의 링커에 OH 또는 NH2 작용기를 갖는 약물을 결합시켜 하기 화학식 2의 화합물을 얻는 단계;
    를 포함하는 하기 화학식 2의 화합물의 제조방법.
    [화학식 2]
    Figure PCTKR2015002488-appb-I000042
    상기 식에서, n은 3 내지 300의 정수이고, OMPEG는 평균 분자량 350 내지 1000의 메톡시폴리에틸렌글리콜을 나타내고, S는 스페이서 그룹으로 라이신, 라이신을 포함하는 올리고펩타이드, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올 및 아미노헥산올로 이루어진 군으로부터 선택되는 1종이고, L은 상기 스페이서 그룹과 상기 약물을 화학결합으로 연결시킬 수 있는 링커(linker) 를 나타내며, D는 OH 또는 NH2 작용기를 갖는 약물이고, x와 y는 각각 0~0.5이고, z는 0보다 크고 1.0이하이며, x+y+z = 1 이다.
  12. 청구항 11 에 있어서,
    상기 OH 또는 NH2작용기를 갖는 약물은 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 켐토테신(camptothecin) 및 [(트란스-1,2-디 아미노사이클로헥산)백금(II)] 으로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 상기 화학식 2의 화합물의 제조방법.
PCT/KR2015/002488 2014-03-14 2015-03-13 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법 WO2015137777A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580026199.8A CN106459420B (zh) 2014-03-14 2015-03-13 新型阳离子聚磷腈化合物、聚磷腈-药物偶联化合物和其制备方法
ES15760898T ES2786309T3 (es) 2014-03-14 2015-03-13 Nuevos compuesto de polifosfaceno cationico, compuesto de conjugado de fármacos de polifosfacenos y procedimiento para preparar los mismos
US15/125,543 US10336867B2 (en) 2014-03-14 2015-03-13 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
EP15760898.5A EP3118244B1 (en) 2014-03-14 2015-03-13 Novel cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
JP2016575280A JP6659021B2 (ja) 2014-03-14 2015-03-13 新規な陽イオン性ポリホスファゼン化合物、ポリホスファゼン−薬物コンジュゲート化合物およびその製造方法
EP20155255.1A EP3735989A1 (en) 2014-03-14 2015-03-13 Novel cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
US16/430,244 US10590243B2 (en) 2014-03-14 2019-06-03 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
US16/430,230 US10584214B2 (en) 2014-03-14 2019-06-03 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140030564 2014-03-14
KR10-2014-0030564 2014-03-14
KR1020150034030A KR102078806B1 (ko) 2014-03-14 2015-03-11 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
KR10-2015-0034030 2015-03-11

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/125,543 A-371-Of-International US10336867B2 (en) 2014-03-14 2015-03-13 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
US16/430,230 Continuation US10584214B2 (en) 2014-03-14 2019-06-03 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
US16/430,244 Continuation US10590243B2 (en) 2014-03-14 2019-06-03 Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same

Publications (1)

Publication Number Publication Date
WO2015137777A1 true WO2015137777A1 (ko) 2015-09-17

Family

ID=54072128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002488 WO2015137777A1 (ko) 2014-03-14 2015-03-13 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2015137777A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021113403A1 (en) * 2019-12-03 2021-06-10 Onselex Pharmaceuticals, Inc. Polyphosphazene drug carriers
US20210315998A1 (en) * 2020-04-13 2021-10-14 Cnpharm Co., Ltd. Synthesizing drug-organic-acid-anhydride conjugates without using coupling reagent
CN114983940A (zh) * 2022-06-28 2022-09-02 汉中职业技术学院 一种生物活性纳米胶束及其合成方法
CN115873170A (zh) * 2022-10-23 2023-03-31 北京化工大学 两亲性聚磷腈稳定含氟乳液制备含氟多孔材料和纳米微球

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092812A (ko) * 2003-04-29 2004-11-04 학교법인 이화학당 암 조직 선택성과 생분해성을 갖는폴리포스파젠-백금(ⅱ)착물 복합체 항암제 및 그 제조방법
KR100773029B1 (ko) * 2006-06-16 2007-11-05 이화여자대학교 산학협력단 수용성 미셀을 형성하는 생분해성 고리형 삼합체 포스파젠-탁솔 컨쥬게이트 항암제 및 이의 제조방법
KR20080110473A (ko) * 2007-06-14 2008-12-18 한국과학기술연구원 화학적 가교 결합을 가지는 포스파젠계 고분자 하이드로젤,그의 제조방법 및 그의 용도
KR101083419B1 (ko) * 2008-04-28 2011-11-14 (주)씨앤팜 가지형 올리고펩타이드-함유 고리형 포스파젠 삼량체, 그 제조방법, 및 그것을 포함하는 약물 전달체
US20130324490A1 (en) * 2010-09-07 2013-12-05 Johannes Kepler Universität Linz Biodegradable, water soluble and ph responsive poly(organo)phosphazenes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092812A (ko) * 2003-04-29 2004-11-04 학교법인 이화학당 암 조직 선택성과 생분해성을 갖는폴리포스파젠-백금(ⅱ)착물 복합체 항암제 및 그 제조방법
KR100773029B1 (ko) * 2006-06-16 2007-11-05 이화여자대학교 산학협력단 수용성 미셀을 형성하는 생분해성 고리형 삼합체 포스파젠-탁솔 컨쥬게이트 항암제 및 이의 제조방법
KR20080110473A (ko) * 2007-06-14 2008-12-18 한국과학기술연구원 화학적 가교 결합을 가지는 포스파젠계 고분자 하이드로젤,그의 제조방법 및 그의 용도
KR101083419B1 (ko) * 2008-04-28 2011-11-14 (주)씨앤팜 가지형 올리고펩타이드-함유 고리형 포스파젠 삼량체, 그 제조방법, 및 그것을 포함하는 약물 전달체
US20130324490A1 (en) * 2010-09-07 2013-12-05 Johannes Kepler Universität Linz Biodegradable, water soluble and ph responsive poly(organo)phosphazenes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021113403A1 (en) * 2019-12-03 2021-06-10 Onselex Pharmaceuticals, Inc. Polyphosphazene drug carriers
EP4069214A4 (en) * 2019-12-03 2023-11-22 Onselex Pharmaceuticals, Inc. POLYPHOSPHAZENE DRUG VECTORS
US20210315998A1 (en) * 2020-04-13 2021-10-14 Cnpharm Co., Ltd. Synthesizing drug-organic-acid-anhydride conjugates without using coupling reagent
CN114983940A (zh) * 2022-06-28 2022-09-02 汉中职业技术学院 一种生物活性纳米胶束及其合成方法
CN114983940B (zh) * 2022-06-28 2024-04-09 汉中职业技术学院 一种生物活性纳米胶束及其合成方法
CN115873170A (zh) * 2022-10-23 2023-03-31 北京化工大学 两亲性聚磷腈稳定含氟乳液制备含氟多孔材料和纳米微球
CN115873170B (zh) * 2022-10-23 2024-04-26 河北开滦航橡新材料有限公司 两亲性聚磷腈稳定含氟乳液制备含氟多孔材料和纳米微球

Similar Documents

Publication Publication Date Title
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
KR100359005B1 (ko) 중합체결합된캠프토테신유도체,이의제조방법및이를함유하는약제학적조성물
CN106459420B (zh) 新型阳离子聚磷腈化合物、聚磷腈-药物偶联化合物和其制备方法
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
WO2010126319A2 (ko) 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자
CN109464654B (zh) 鹅膏毒肽类抗体偶联物
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
DK2170821T3 (en) Process for the preparation of FMOC-based hydrolyzable linkers
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
CN109125736B (zh) 非天然鹅膏毒肽类抗体偶联物
WO2010128793A2 (ko) 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체
WO2016114634A2 (ko) 사이클램 유도체 화합물 및 이의 약학적 용도
WO2024106780A1 (ko) 약물 전달용 나노입자 조성물
WO2020060260A1 (ko) 헬리코박터 파일로리 인지용 고분자 복합체 및 이를 포함하는 광역학 치료용 조성물
WO2024096408A1 (ko) 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법
WO2023068894A1 (ko) 자연살해 세포의 면역 항암기능 증진을 위한 표면 개질용 고분자 화합물
WO2024101618A1 (ko) 양이온성 지질 및 이의 제조방법
WO2022270865A1 (ko) 이산화탄소 발생형 나노소재
WO2022065975A1 (ko) 난용성 약물을 포함하는 금속 (수)산화물 복합체, 이의 제조 방법 및 이를 포함하는 약학적 조성물
WO2022065618A1 (ko) 난용성 약물을 포함하는 금속 (수)산화물 복합체, 이의 제조 방법 및 이를 포함하는 약학적 조성물
WO2023090935A1 (ko) 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법
WO2022045773A1 (ko) 시스테인 선택적 결합 퀴놀리논 유도체 화합물, 이의 펩티드 결합체 및 이를 포함하는 항체-약물 접합체
WO2023163536A1 (ko) 신규 항체 약물 접합체
WO2024106715A1 (ko) 양이온성 지질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015760898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15125543

Country of ref document: US