WO2016114634A2 - 사이클램 유도체 화합물 및 이의 약학적 용도 - Google Patents

사이클램 유도체 화합물 및 이의 약학적 용도 Download PDF

Info

Publication number
WO2016114634A2
WO2016114634A2 PCT/KR2016/000478 KR2016000478W WO2016114634A2 WO 2016114634 A2 WO2016114634 A2 WO 2016114634A2 KR 2016000478 W KR2016000478 W KR 2016000478W WO 2016114634 A2 WO2016114634 A2 WO 2016114634A2
Authority
WO
WIPO (PCT)
Prior art keywords
cxcr4
amd
peg
formula
dspe
Prior art date
Application number
PCT/KR2016/000478
Other languages
English (en)
French (fr)
Other versions
WO2016114634A3 (ko
Inventor
오유경
김진영
한정훈
김건우
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority claimed from KR1020160005420A external-priority patent/KR101759688B1/ko
Publication of WO2016114634A2 publication Critical patent/WO2016114634A2/ko
Publication of WO2016114634A3 publication Critical patent/WO2016114634A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to CXCR4 binding cyclam derivative compounds that selectively recognize CXCR4 (C-X-C Chemokine receptor type 4) that is overexpressed on the surface of cancer cells and pharmaceutical use thereof.
  • Chemokines are small secretory proteins that regulate the transport of leukocytes in the immune response, a group of about 50 small proteins that regulate cell transport and neovascularization and also play an important role in the tumor microenvironment. It is divided into two main subfamily, CC and CXC, based on the position of the NH 2 -terminal cysteine residue, which binds to the receptor linked to G-protein, and these major subfamily are named CCR and CXCR. do.
  • One group of CXCRs, CXCR4 is a seven transmembrane G-protein coupled receptor that is overexpressed on lymphocytes and activates chemotaxis.
  • CXCR4 is also expressed at low levels in endothelial and epithelial cells, astrocytes, and neurons (Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM., J. Biol. Chem. 1998, 273 (7).
  • the present inventors have attempted to develop a technology for synthesizing a compound that binds CXCR4 and mounting it on nanoparticles with drugs or imaging materials to specifically deliver cancer cells.
  • the present invention provides a compound represented by the following formula (1):
  • A represents at least one hydrophobic substance selected from the group consisting of lipids, biodegradable polymers, graphene and low molecular compounds having ⁇ - ⁇ bonds and absorbance at near infrared wavelengths and oligomers of peptides having aromatic rings,
  • L is a spacer
  • R 1 to R 6 are each independently hydrogen or, Wherein R 7 to R 9 are each independently hydrogen or to be.
  • the invention also provides CXCR4 cognitive nanocomposites of target cells with the compounds of the invention.
  • the invention also relates to CXCR4 cognitive nanocomposites of target cells of the invention; And one or more drugs selected from the group consisting of therapeutic agents and diagnostic agents.
  • the present invention is also a form in which the compound of the present invention is bonded to a graphene material nanosheet selected from graphene, graphene oxide and reduced graphene oxide through ⁇ - ⁇ bond.
  • a pharmaceutical composition for use in photothermal therapy of cancer comprising a CXCR4 cognitive nanocomposite of a target cell having the formulation of.
  • the CXCR4 binding cyclam derivative compound according to the present invention has the property of specifically binding to CXCR4 on the surface of CXCR4 overexpressed cancer cells, efficient drug delivery is possible and only reduces the toxicity of non-selective drug delivery.
  • the effect of the drug in the target cell can be enhanced to alleviate the side effects of the drug.
  • FIG. 1 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-0, using Maldi-TOF (B).
  • FIG. 2 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-1, using Maldi-TOF (B).
  • FIG. 2 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-1, using Maldi-TOF (B).
  • FIG. 3 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-3, using Maldi-TOF (B).
  • FIG. 3 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-3, using Maldi-TOF (B).
  • FIG. 5 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-24, using Maldi-TOF (B).
  • FIG. 5 shows the structure (A) and the structure of the Cyclam lipid derivative compound of the present invention, DSPE-PEG 2000 -AMD-24, using Maldi-TOF (B).
  • FIG. 6 shows the structure (A) and the structure of the Cyclam derivative compound of the present invention, PLA-PEG 2000 -AMD-6 using Maldi-TOF (B).
  • FIG. 6 shows the structure (A) and the structure of the Cyclam derivative compound of the present invention, PLA-PEG 2000 -AMD-6 using Maldi-TOF (B).
  • Fig. 7 shows the structure (A) and the structure of the cyclic ram derivative compound of the present invention, IR-808-PEG 2000- AMD-6 using Maldi-TOF (B).
  • FACS fluorescence flow cytometer
  • FIG. 9 is a KB cell surface CXCR4 recognition of the polymer nanoagent containing the CXCR4 binding cyclim lipid derivative compound (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in KB, a nasopharyngeal epidermal cancer cell line overexpressing CXCR4. The results were analyzed using a fluorescence flow cytometer.
  • CXCR4 of graphene nanosheets containing CXCR4 binding cyclim lipid derivative compound (DSPE-PEG 2000- AMD-0 ⁇ 24) of the present invention in KB, a nasopharyngeal epidermal cancer cell line overexpressing CXCR4. Cognitive abilities were analyzed using a fluorescence flow cytometer.
  • FIG. 11 shows KBC surface CXCR4 recognition ability of polymer nanoparticles containing CXCR4 binding cyclim lipid derivative compound (DSPE-PEG 2000 -AMD-6) of the present invention in KB, a nasopharyngeal epidermal cancer cell line overexpressing CXCR4.
  • A is an untreated group
  • B is a result of a group treated with the polymer nanoparticles of Comparative Example 2 and C in Example 28.
  • FIG. 13 is a fluorescence flow cytometer for SCC7 cell surface CXCR4 recognition ability of polymer nanoparticles containing CXCR4 binding cyclam lipid derivative compound (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in an SCC7 cell line expressing CXCR4. This is the result of analysis using.
  • FIG. 14 shows fluorescent flow cytometry of SCC7 cell surface CXCR4 cognition of graphene nanosheets containing CXCR4 binding cyclam lipid derivative compound (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in SCC7 cell line overexpressing CXCR4. This is the result of analysis using the analyzer.
  • FIG. 15 shows SCC7 cells of graphene nanosheets containing CXCR4 binding cycle near-infrared fluorescent substance (IR-808) derivative compounds (IR-825-PEG 2000 -AMD-6) of the present invention in SCC7 cell lines overexpressing CXCR4.
  • IR-808 near-infrared fluorescent substance
  • IR-825-PEG 2000 -AMD-6 derivative compounds
  • FIG. 15 shows SCC7 cells of graphene nanosheets containing CXCR4 binding cycle near-infrared fluorescent substance (IR-808) derivative compounds (IR-825-PEG 2000 -AMD-6) of the present invention in SCC7 cell lines overexpressing CXCR4.
  • Figures 16a-c are fluorescent lipid-containing liposomes containing the CXCR4 binding cyclim lipid derivative compound (DSPE-PEG 2000 -AMD-0-24) of the present invention in an A549 cell line that overexpresses CXCR4 and is known to be paclitaxel resistant.
  • A is an untreated group
  • B is Comparative Example 1
  • C is Example 8
  • D is Example 9
  • E is Example 10
  • F is Example 11
  • G is the result of the group treated with the liposome of Example 12.
  • Figure 17 A549 cell surface of the polymer nanoparticles containing the CXCR4 binding cyclam lipid derivative compound (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in the A549 cell line overexpressing CXCR4 and known as paclitaxel resistance cells CXCR4 cognition was analyzed using a fluorescence flow cytometer.
  • FIG. 18 shows A549 cells of graphene nanosheets containing the CXCR4 binding cyclim lipid derivative compound (DSPE-PEG 2000- AMD-0-24) of the present invention in an A549 cell line that overexpresses CXCR4 and is known as paclitaxel resistance cells.
  • Surface CXCR4 recognition was analyzed using a fluorescence flow cytometer.
  • FIG. 19 shows H1299 cells of fluorescent lipid-containing liposomes containing CXCR4 binding cyclim lipid derivative compounds (DSPE-PEG 2000- AMD-0-24) of the present invention in H1299 cell line overexpressing CXCR4 and known to be paclitaxel resistant Surface CXCR4 recognition was analyzed using a fluorescence flow cytometer.
  • FIG. 20a-c shows H1299 of polymeric nanoparticles containing CXCR4 binding cyclim lipid derivative compounds (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in H1299 cell line overexpressing CXCR4 and known to be paclitaxel resistant cells
  • A is an untreated group
  • B is Comparative Example 2
  • C is Example 13
  • D is Example 14
  • E is Example 15
  • F is Example 16
  • G is the result of the group which processed the polymer nanoparticle of Example 17.
  • Figure 21a-c is a graphene nanosheet containing CXCR4 binding cyclim lipid derivative compounds (DSPE-PEG 2000 -AMD-0 ⁇ 24) of the present invention in H1299 cell line overexpressing CXCR4 and known to be paclitaxel resistance cells
  • FIG. 21A-C A is an untreated group
  • B Comparative Example 3
  • C Example 18
  • D Example 19
  • E Example 20
  • F is Example 21
  • G is the result of the group treated with the graphene nanosheets of Example 22.
  • FIG. 22 shows KBC surface CXCR4 cognition of fluorescent lipid-containing liposomes containing CXCR4 binding cyclim lipid derivative compounds (DSPE-PEG 2000- AMD-6) of the present invention in nasopharyngeal epidermal cancer KB cell lines overexpressing CXCR4.
  • a and D are the untreated group
  • B and E are the comparative examples
  • C and F are the results of the group treated with the liposome of Example 11.
  • FIG. 23 shows the results of confirming cancer cell killing effect by paclitaxel liposomes containing CXCR4-binding Cyclam lipid derivative compounds (DSPE-PEG 2000- AMD-6) of the present invention recognizable in KB cell lines using MTT staining.
  • FIG. 24 shows cancer cell killing effects of paclitaxel polymer nanoparticles containing CXCR4 binding cyclimide lipid derivative compounds (DSPE-PEG 2000- AMD-6) of the present invention recognizable by CXCR4 in a KB cell line using MTT staining. The result is.
  • FIG. 25 shows MTT effect of cancer cell death by the photothermal treatment effect of graphene nanosheets containing CXCR4-binding cyclam near-infrared fluorescent substance derivative compounds of the present invention (IR-808-PEG 2000- AMD-6). The staining method was used to confirm the SCC7 cell line.
  • FIG. 26 is an optical image (A) of the biodistribution of a tumor animal model of a fluorescent lipid-containing liposome containing CXCR4-binding Cyclam lipid derivative compound of the present invention (DSPE-PEG 2000- AMD-6). It is the result of evaluation by the graph (B) which quantified the fluorescence intensity of an optical image, and the optical image (C) of the liposome distributed by organ.
  • A optical image of the biodistribution of a tumor animal model of a fluorescent lipid-containing liposome containing CXCR4-binding Cyclam lipid derivative compound of the present invention
  • FIG. 27 is an optical image (A) of a biodistribution of a tumor animal model of fluorescent substance-containing polymer nanoparticles containing the CXCR4-binding Cyclam lipid derivative compound (DSPE-PEG 2000- AMD-6) of the present invention. And a graph (B) in which the fluorescence intensity of the optical image was quantified.
  • FIG. 28 is an optical image obtained by evaluating the biodistribution of fluorescent substance-containing polymer nanoparticles containing CXCR4-binding Cyclam lipid derivative compounds (DSPE-PEG 2000- AMD-6) of the present invention recognizable by CXCR4; , A is an optical image of the nanoparticles distributed by organ after 2 hours after nanoparticle treatment, B is an optical image of the nanoparticles distributed by organ after 24 hours after nanoparticle treatment.
  • A is an optical image of the nanosheets distributed by organ after 2 hours after graphene nanosheet treatment
  • B is an optical image of the nanosheets distributed by organ after 24 hours after graphene nanosheet treatment.
  • the present invention relates to a compound represented by Formula 1:
  • A represents at least one hydrophobic substance selected from the group consisting of lipids, biodegradable polymers, graphene and low molecular compounds having ⁇ - ⁇ bonds and absorbance at near infrared wavelengths and oligomers of peptides having aromatic rings,
  • L is a spacer
  • R 1 to R 6 are each independently hydrogen or, Wherein R 7 to R 9 are each independently hydrogen or to be.
  • the compound of formula 1 of the present invention is a CXCR4 binding cyclam derivative compound, and has a structure in which a hydrophobic material (A) and a cyclic ram derivative (B), which are required to prepare a nano-formulation, are connected by a spacer (L).
  • the hydrophobic material may be selected from lipids, biodegradable polymers, low molecular weight compounds having an ⁇ - ⁇ bond with graphene and absorbance at near infrared wavelengths or peptide oligomers having aromatic rings,
  • the spacer may be a hydrophilic material having a reactor capable of reacting with each of a hydrophobic material and a CXCR4 binding cyclam derivative, and the cyclam derivative may be a compound of Formula 2.
  • the lipid is 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (1,2-distearoly-sn-glycero-3-phosphoethanolamine (DPE)), phosphatidylethanolamine (PE), Phosphatidylcholine (PC), phosphatidylserine (phosphatidylserine (PS)), phosphatidylglycerol (PG) or cholesterol (cholesterol) and the like may be used alone or in combination.
  • DPE 1,2-distearoyl-sn-glycero-3-phosphoethanolamine
  • PE phosphatidylethanolamine
  • PC Phosphatidylcholine
  • PS phosphatidylserine
  • PG phosphatidylglycerol
  • cholesterol cholesterol
  • the biodegradable polymer may be polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (caprolactone-lactide) random copolymer (PCLA), poly ( Caprolactone-glycolide) random copolymer (PCGA) or poly (lactide-glycolide) random copolymer (PLGA).
  • the low molecular weight compound having ⁇ - ⁇ bond with graphene and absorbance at near-infrared wavelengths exhibits selective fluorescence upon near-infrared irradiation and at the same time enables ⁇ - ⁇ bonding with graphene. It is bound by - ⁇ binding and can be effectively used for photothermal treatment of cancer by near-infrared irradiation.
  • heptamatin die IR-808 (heptamathine dye IR-808), heptamathine dye IR-825 (heptamathine dye IR-825), indocyanine Green (ICG), chlorine e6 (chlorin) e6, Ce6), mitoxanthrone or doxorubicin (DOX) and the like may be used alone or in combination of two or more.
  • oligomer of the peptide having the aromatic ring phenylalanine oligomer or tryptophan oligomer may be used alone or in combination of two or more.
  • the spacer is a material capable of realizing in vivo stability due to excellent biocompatibility / biodegradability
  • polyethylene glycol, polypropylene glycol, polyglycerol, poloxamer, polythoxylated tallow amine (POEA) or Polyethylenimine etc. can be used individually or 2 types or more.
  • POEA polythoxylated tallow amine
  • Polyethylenimine etc. can be used individually or 2 types or more.
  • polyethylene glycol Preferably polyethylene glycol.
  • the weight average molecular weight of the polyethylene glycol can be used that is 300 to 5000.
  • a modified compound having a form in which a hydrophobic material and a spacer are combined may be combined with a Cyclam derivative of Formula 2.
  • the cyclic derivative of Formula 2 may be a compound represented by any one of Formulas 2a to 2e:
  • the cyclic ram derivative of Chemical Formula 2 binds a Boc protecting group to three non-reactive nitrogen atoms of a cyclic ram (Compound No. 1) under a catalyst (Compound No. 2), as shown in Scheme 1 below.
  • a cyclic ram Compound No. 2
  • a dibromo xylene compound having a Boc protecting group bonded to a nitrogen atom By reacting a cyclic ram (Compound No. 2) and a dibromo xylene compound having a Boc protecting group bonded to a nitrogen atom, a intermediate (Compound No. 3) was synthesized, and then the compound No. 2 and the intermediate (Compound No. 3) were synthesized.
  • AMD-0 (1,4-bis ((1,4,9,11-tetraazacyclotetradecan-1-yl) methyl) benzene)
  • AMD-1 (1,8-bis (4-((1,4,8,11-tetraazacyclotetradecan-1-yl) methyl) benzyl) -1,4,8,11-tetraazacyclotetradecane)
  • the substance (Compound No. 3) can be synthesized by reacting under a catalyst.
  • AMD-3 (1,4,8,11-tetrakis (4-((1,4,8,11-tetraazacyclotetradecan-1-yl) methyl) benzyl) -1,4,8,11-tetraazacyclotetradecane) (Compound No. 1) and the intermediate (Compound No. 3) can be synthesized by reacting under a catalyst.
  • AMD-6 (1,4-bis ((1,4,8,11-tris (4-((1,4,8,11-tetraazacyclotetradecan-1-yl) methyl) benzyl) -1,4,8, 11-tetraazacyclotetradecan-1-yl) methyl) benzene) can be synthesized by reacting AMD-0 with the intermediate (compound 3) under a catalyst.
  • the cycle lam derivatives of the above formula (2) are all at the ends of NH and the nitrogen atom of the cyclic ram in the mother-nucleus structure, the nitrogen atom of the cyclic ram located in the central chain from the mother-nucleus structure, or the branch branched from the mother-nucleus structure.
  • Nitrogen atoms of the clam may be linked to the spacer directly through the reaction (for example, alkylation) or indirectly through an amide bond, urea formation, etc., and thus the position at which the cyclic derivative of Formula 2 is bonded to the spacer is not particularly limited. .
  • the compound of Formula 1 may be synthesized by mixing a hydrophobic material, a spacer and a cyclic derivative in a molar ratio in an organic solvent under a catalyst and reacting for a predetermined time at room temperature.
  • the following examples disclose CXCR4 binding cyclam derivative compounds prepared by selecting the above-described exemplary hydrophobic materials and various kinds of cyclic ram derivatives.
  • hydrophobic material and the cyclic derivative may be mixed in an appropriate molar ratio as necessary, but is not particularly limited thereto.
  • the catalyst may be appropriately selected depending on the type of the hydrophobic material and the cyclic derivative, but is not particularly limited.
  • the catalyst may be N, N-diisopropylethylamine ( N , N- Diisopropylethylamine), EDC (ethylene dichloride), HOBt (hydroxybenzotriazole), or the like. May be used alone or in combination of two or more.
  • the compound of Formula 1 may be, for example, a compound represented by any one of the following Formulas 1a to 1g:
  • the solvent used for synthesizing the compound of Chemical Formula 1 or 2 may be used without limitation an organic solvent such as dimethylformamide.
  • the invention also relates to CXCR4 cognitive nanocomposites of target cells comprising the compounds of the invention.
  • the compound of Formula 1 is a CXCR4-binding Cyclam lipid and polymer derivative compound based on the Cyclam nucleus, and has a characteristic of selectively recognizing CXCR4 overexpressed in cancer cells.
  • Nanocomposites of the present invention may have a formulation using lipids such as liposomes, micelles, or formulations of polymeric nanoparticles.
  • auxiliary lipids selected from positively charged lipids, neutral lipids and negatively charged lipids may be additionally used in addition to the compound of Formula 1 of the present invention.
  • positively charged lipids and neutral lipids for the preparation of cationic liposomes, neutral lipids for the preparation of neutral liposomes, negatively charged lipids and neutral lipids for the preparation of anionic liposomes, and the organic compounds of Formula 1 It can be prepared by mixing on a solvent and evaporating all organic solvents followed by hydration with a buffer of neutral pH.
  • Positively charged lipids, neutral lipids and negatively charged lipids that can be used for the preparation of lipid nanoparticles are known in the art.
  • lipid nanoparticles or polymer nanoparticles of various formulations using the compound of formula (1) of the present invention Drugs, such as therapeutic or diagnostic agents, that are intended to be delivered to target cells, may be enclosed into the formulation or bound to the surface of the formulation when the nanoparticles are prepared.
  • drugs such as therapeutic or diagnostic agents, that are intended to be delivered to target cells, may be enclosed into the formulation or bound to the surface of the formulation when the nanoparticles are prepared.
  • fluorescent lipids, anticancer agents, etc. in the preparation of nanoparticles.
  • the compound of Formula 1 is selected from graphene (graphene), graphene oxide (graphene oxide) and reduced graphene oxide (reduced graphene oxide) through the ⁇ - ⁇ bond nano It may have a formulation in the form bound to the sheet.
  • the graphene material nanosheet may be any one of graphene, graphene oxide, and reduced graphene oxide.
  • 'graphene' is used interchangeably with 'graphene nanosheets' or 'graphene material nanosheets', and a layered graphite is peeled through mechanical or ultrasonic treatment, or epitaxial growth, It is synthesized by chemical vapor deposition (CVD), has a two-dimensional sheet shape of several layers, and its structural and electrical properties (electric conductivity) are similar to graphite.
  • CVD chemical vapor deposition
  • Graphite oxide synthesized by the oxidation of the graphite has a layered structure similar to graphite, the oxygen-containing functional group (oxygen, hydroxy, carboxyl group, etc.) in the interlayer and layer surface Present and have an interlayer distance of about 0.7 nm or more wider than graphite (0.34 nm). This increase in interlayer distance can be easily exfoliated due to the electrostatic repulsion between interlayer oxygen, and the exfoliated graphite oxide is called 'graphene oxide or graphene oxide nanosheet'.
  • the oxide present in graphene oxide is covalently bonded to carbon, and the sp2 bond between carbons is changed to sp3, so the electrical conductivity is very low.
  • Graphene synthesized by removing oxygen to improve low electrical conductivity is called 'reduced graphene oxide or reduced graphene oxide nanosheet'.
  • Reduction of graphene oxide is mainly carried out by thermal or chemical methods, and when oxygen is removed by thermal reduction, it is removed in the form of CO or CO 2 , and a large number of defects exist on the surface and remain when oxygen is removed by chemical reduction. There are a lot of oxygen.
  • the reduced graphene oxide having such defects and residual oxygen is inferior in electrical conductivity to graphene synthesized by exfoliation of graphite.
  • Target cells receiving drugs through the CXCR4 cognitive nanocomposites of the present invention may be cells that require treatment or diagnosis.
  • Such target cells may be CXCR4 overexpressing cancer cells.
  • cancer cells overexpressing CXCR4 may be leukemia, lymphoma, pancreatic cancer, breast cancer, ovarian cancer, lung cancer, colorectal cancer, melanoma or prostate cancer, but are not particularly limited thereto.
  • the CXCR4 cognitive nanocomposite of the present invention can be used as a drug carrier for selectively delivering drugs by targeting CXCR4 of target cells.
  • the present invention provides a CXCR4 cognitive nanocomplex of the target cell; And one or more drugs selected from the group consisting of therapeutic agents and diagnostic agents.
  • Drugs that can be delivered to target cells using the CXCR4 cognitive nanocomposites of the present invention may be therapeutic and / or diagnostic agents.
  • the CXCR4 cognitive nanocomposites of the present invention can deliver a therapeutic agent and a diagnostic agent either individually or simultaneously.
  • a diagnostic agent may be bound to a hydrophilic space in a liposome, and a fat-soluble drug or a negatively charged substance may be bound to an external lipid bilayer.
  • the therapeutic agent may be a chemotherapeutic agent.
  • Chemotherapy means an organic compound that exhibits a pharmacological effect on any disease.
  • Chemotherapeutic agents usually have non-selective delivery to cells through the bloodstream, and when selective treatment is required for cells or tissues to reduce the side effects of drugs, it is preferable to use the CXCR4 cognitive nanocomposites of the present invention.
  • Representative examples of such chemotherapeutic agents include anticancer chemotherapeutic agents.
  • the anticancer chemotherapeutic agents include paclitaxel, docetaxel, cisplatin, carboplatin, oxaliplatin, doxorubicin, daunorubicin, and epirubicin.
  • Epirubicin idarubicin, valubicin, mitoxantrone, curcumin, gefitinib, erlotinib, irinotecan, irinotecan, topo Topotecan, vinblastine or vincristine may be used, but is not particularly limited thereto.
  • the CXCR4 cognitive nanocomposites of the present invention can be used for photothermal therapy of cancer by near-infrared radiation in addition to treatment by drug delivery. Therefore, the present invention is a compound of Formula 1 is bonded to the graphene material nanosheet selected from graphene (graphene), graphene oxide (graphene oxide) and reduced graphene oxide (reduced graphene oxide) through ⁇ - ⁇ bond
  • a pharmaceutical composition for use in photothermal therapy of cancer comprising a CXCR4 cognitive nanocomposite of a target cell having a formulation of the present invention is provided.
  • the CXCR4 cognitive nanocomposite uses IR-808 as a hydrophobic material and is bound to graphene-based nanosheets, markedly enhanced death of cancer cells is observed upon near-infrared irradiation.
  • the diagnostic agent can be used without limitation as long as the substance can detect and recognize the target cells.
  • near-infrared fluorescent substance that can penetrate the living body such as cyanine, allophycocyanin, fluorescein, tetramethylrhodamine, BODIPY or Alexa ) Etc; Calcium-47, Carbon-11, Carbon-14, Chromium-51, Cobalt-57, Cobalt-58, Erbium-169, Fluorine-18, Gallium-67, Gallium-68, Hydrogen-3, Indium-111, Iodine- Radiopharmaceuticals such as 123, Iodine-131, Technetium-99m; Or MRI contrast agents.
  • the pharmaceutical composition of the present invention may be administered to tissues or cells isolated from a diagnosis subject and used by the compound of Formula 1 and / or a diagnostic agent to detect a signal and obtain an image.
  • a magnetic resonance imaging apparatus or an optical imaging apparatus may be used.
  • the magnetic resonance imaging apparatus places a living body in a strong magnetic field and irradiates radio waves of a specific frequency to absorb energy into atomic nuclei such as hydrogen in biological tissues to make the energy high, and then stops propagating the atomic nuclei such as hydrogen. It is a device that allows energy to be emitted and converts this energy into a signal that is processed by a computer and imaged. Since magnetism or propagation is not obstructed by bone, clear three-dimensional tomograms can be obtained at longitudinal, transverse, and arbitrary angles around solid bones or tumors of the brain or bone marrow.
  • the magnetic resonance imaging apparatus is preferably a T2 spin-spin relaxation magnetic resonance imaging apparatus.
  • the pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier.
  • the carrier includes carriers and vehicles commonly used in the pharmaceutical field, and specifically, ion exchange resins, alumina, aluminum stearate, lecithin, serum proteins (eg, human serum albumin), buffer substances (eg, various phosphates, glycine, Sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids), water, salts or electrolytes (e.g.
  • protamine sulfate disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride and zinc salts
  • colloidal silica magnesium trisilicate
  • Polyvinylpyrrolidone Polyvinylpyrrolidone, cellulose based substrates, polyethylene glycol, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene glycols or wool, and the like.
  • composition of the present invention may further include a lubricant, a humectant, an emulsifier, a suspending agent, or a preservative in addition to the above components.
  • the pharmaceutical composition according to the present invention may be prepared as a water-soluble solution for parenteral administration, preferably a buffered solution such as Hanks' solution, Ringer's solution or physically buffered saline. Can be used.
  • Aqueous injection suspensions can be added with a substrate that can increase the viscosity of the suspension, such as sodium carboxymethylcellulose, sorbitol or dextran.
  • composition of the invention may be in the form of sterile injectable preparations of sterile injectable aqueous or oily suspensions.
  • Such suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents (eg Tween 80) and suspending agents.
  • the sterile injectable preparation may be a sterile injectable solution or suspension (eg, a solution in 1,3-butanediol) in a nontoxic parenterally acceptable diluent or solvent.
  • Vehicles and solvents that may be used include mannitol, water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, nonvolatile oils are conventionally employed as a solvent or suspending medium. For this purpose any non-irritating non-volatile oil can be used including synthetic mono or diglycerides.
  • the resulting AMD-0, NHS-PEG 2000 -DSPE and DIPEA were reacted for 12 hours with dimethylformamide as a solvent at a molar ratio of 1: 1: 4 (m / m) and then distilled water and methanol using a filtration membrane. The unreacted material was filtered off. Thereafter, the solvent was removed using a depressurizer, followed by drying to obtain a product. The reaction was confirmed by thin layer chromatography and MALDI-TOF (see FIG. 1).
  • AMD-0 synthesized in Example 1 using the carbonate as a catalyst compound 3 as an intermediate in a molar ratio of 1: 1 (m / m) in acetone nitrile solvent for 24 hours at room temperature after the reaction the triple product
  • the reaction mixture was filtered for 4 hours with a solution of chloroacetic acid and dichloromethane at a ratio of 1: 1 (v / v) and then filtered to obtain a product (AMD-1).
  • the resulting AMD-1, NHS-PEG 2000 -DSPE and DIPEA were reacted for 12 hours with dimethylformamide as a solvent at a molar ratio of 1: 1: 4 (m / m), followed by distilled water and methanol using a filtration membrane. The unreacted material was filtered off. Thereafter, the solvent was removed using a depressurizer, followed by drying to obtain a product. The reaction was confirmed using thin layer chromatography and MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA) (see Fig. 2).
  • compound 3 which is a cyclic ram, was reacted with acetonitrile solvent at a molar ratio of 4: 1 (m / m) for 24 hours at room temperature, the last product was trichloroacetic acid and dichloromethane. was reacted for 4 hours with a solution mixed at 1: 1 (v / v) and then filtered to obtain a product (AMD-3).
  • the resulting AMD-3, NHS-PEG 2000 -DSPE and DIPEA were reacted for 12 hours with dimethylformamide as a solvent at a molar ratio of 1: 1: 4 (m / m), and then distilled water and methanol were used for filtration. The unreacted material was filtered off. Thereafter, the solvent was removed using a depressurizer, followed by drying to obtain a product. The reaction was confirmed using thin layer chromatography and MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA) (see FIG. 3).
  • the resulting AMD-6, NHS-PEG 2000 -DSPE and DIPEA were reacted for 12 hours with dimethylformamide as a solvent at a molar ratio of 1: 1: 4 (m / m), and then distilled water and methanol were used for filtration. The unreacted material was filtered off. Thereafter, the solvent was removed using a depressurizer, followed by drying to obtain a product. The reaction was confirmed by thin layer chromatography and MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA) (see FIG. 4).
  • AMD-6 synthesized in Example 4 using a carbonate as a catalyst compound 3 as an intermediate in a molar ratio of 1: 6 (m / m) in acetone nitrile solvent at room temperature for 24 hours, the final product is triple After reacting for 4 hours with a solution of chloroacetic acid and dichloromethane 1: 1 (v / v) for 4 hours to obtain a product by filtering (AMD-6).
  • the AMD-6, NHS-PEG 2000 -DSPE and DIPEA produce 1: 1: 4 (m / m) ratio by using a filtration membrane after 12 hours and the dimethylformamide as the solvent of the reaction with distilled water and methanol. The material that did not get filtered. Thereafter, the solvent was removed using a depressurizer, followed by drying to obtain a product. The reaction was confirmed using thin layer chromatography and MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA) (see FIG. 5).
  • AMD-6 and NHS-PEG 2000 -NHFmoc synthesized in Example 4 were reacted at room temperature for 12 hours using a dimethylformamide solvent using DIPEA as a catalyst in a ratio of 1: 1 (m / m),
  • the product and Boc2 were reacted at room temperature for 12 hours using dichloromethane solvent using triethylamine as a catalyst to substitute all the amine groups of AMD-6 with Boc.
  • the product was then added to a solvent mixed with piperidine and dimethylformamide 1: 1 (v / v) and reacted for 6 hours to remove Fmoc, followed by IR-808 (Xu Tan et al., Biomaterials, 2012 33: pp.
  • lipid multilamellar vesicles 1 ml of a phosphate buffer solution was added to the thin film, and the vial was sealed at 37 ° C., and then stirred (voltexing) for 3 minutes. To make a uniform size, it was prepared by passing a 0.22 mm polycarbonate membrane three times using a particle homogenizer (Extruder, Northern Lipid Inc., Canada). The obtained CXCR4 binding lipid derivative (DSPE-PEG 2000 -AMD-0) containing liposomes was stored at 4 ° C. until use.
  • Liposomes containing CXCR4 binding lipid derivatives were prepared in the same manner as in Example 8 except that the CXCR4 binding cyclim lipid derivative compounds synthesized in Example 2 were used.
  • Liposomes containing CXCR4 binding lipid derivatives were prepared in the same manner as in Example 8 except that the CXCR4 binding cyclim lipid derivative compounds synthesized in Example 3 were used.
  • Liposomes containing CXCR4 binding lipid derivatives were prepared in the same manner as in Example 8 except that the CXCR4 binding cyclim lipid derivative compounds synthesized in Example 4 were used.
  • Liposomes containing CXCR4 binding lipid derivatives were prepared in the same manner as in Example 8 except that the CXCR4 binding cyclim lipid derivative compounds synthesized in Example 5 were used.
  • Example 13 Preparation of Polymer Nanoparticles Containing CXCR4 Binding Cyclam Lipid Derivative Compound (DSPE-PEG 2000- AMD-0) and Fluorescent Paclitaxel of Example 1
  • Cyclam lipid derivative compound synthesized in Example 1 mPEG 2000 -PLA and fluorescent paclitaxel (Oregon Green® 488 Taxol), an anticancer agent combined with fluorescent substance, was taken by 5, 100 and 1 mg, respectively.
  • 4ml of dichloromethane (Dichloromethane) was added to the rotary vacuum distillation, and the polymer was completely dissolved in a 40 ⁇ 60 °C water bath until a uniform solution.
  • a vacuum pump was used to produce a thin film by rotary evaporation until all the dichloromethane was evaporated under reduced pressure. After the vacuum was released, 3 mL of distilled water, which had been heated to 40 to 60 ° C.
  • Polymer nanoparticles containing CXCR4 binding lipid derivatives (DSPE-PEG 2000 -AMD-1) were prepared using the same method as Example 13 except that the CXCR4 binding cyclim lipid derivative compound synthesized in Example 2 was used. It was.
  • the CXCR4 binding lipid derivative (DSPE-PEG 2000 -AMD-3) -containing polymer nanoparticles were prepared in the same manner as in Example 13 except that the CXCR4 binding cyclim lipid derivative compound synthesized in Example 3 was used. Prepared.
  • Example 16 Preparation of Polymer Nanoparticles Containing CXCR4 Binding Cyclam Lipid Derivative Compound of Example 4 (DSPE-PEG 2000- AMD-6) and Fluorescent Paclitaxel
  • Polymer nanoparticles containing CXCR4 binding lipid derivatives (DSPE-PEG 2000 -AMD-6) were prepared using the same method as Example 13, except that the CXCR4 binding cyclim lipid derivative compounds synthesized in Example 4 were used. It was.
  • Example 17 Preparation of Polymer Nanoparticles Containing CXCR4 Binding Cyclam Lipid Derivative Compound of Example 5 (DSPE-PEG 2000- AMD-24) and Fluorescent Paclitaxel
  • Polymer nanoparticles containing CXCR4 binding lipid derivatives were prepared using the same method as Example 13 except that the CXCR4 binding cyclim lipid derivative compound synthesized in Example 5 was used. It was.
  • Example 18 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Lipid Derivative Compound of Example 1 (DSPE-PEG 2000- AMD-0) and Fluorescent Material (Cy5.5)
  • Example 19 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Lipid Derivative Compound (DSPE-PEG 2000- AMD-1) and Phosphor (Cy5.5) of Example 2
  • Example 20 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Lipid Derivative Compound (DSPE-PEG 2000- AMD-3) and Phosphor (Cy5.5) of Example 3
  • the CXCR4 binding cyclim lipid derivative compound synthesized in Example 3, the reduced graphene nanosheets, and DSPE-PEG 5000- Cy5.5 were mixed at 2: 1: 0.1 (w / w) and stirred well before use. Store at 4 ° C.
  • Example 21 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Lipid Derivative Compound (DSPE-PEG 2000- AMD-6) and Phosphor (Cy5.5) of Example 4
  • Example 22 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Lipid Derivative Compound of Example 5 (DSPE-PEG 2000 -AMD-24) and Fluorescent Material (Cy5.5)
  • a CXCR4 binding lipid derivative (PLA-PEG 2000 -AMD-6) -containing polymer nanoparticles was prepared in the same manner as in Example 13, except that the CXCR4 binding cyclim lipid derivative compound synthesized in Example 6 was used. It was.
  • Example 24 Preparation of Graphene Nanosheets Containing CXCR4 Binding Cyclam Near-Infrared Fluorescent Compound Compound of Example 7 (IR-808-PEG 2000 -AMD-6) and Phosphor (Cy5.5)
  • CXCR4 binding cyclim lipid derivative compound synthesized in Example 4 neutral lipid La-phosphatidylcholine (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'PC'), cholesterol (Cholesterol, Sigma, USA) and anti-cancer drug paclitaxel
  • 'PC' neutral lipid La-phosphatidylcholine
  • cholesterol Choesterol, Sigma, USA
  • Liposomes containing CXCR4 binding lipid derivatives (DSPE-PEG 2000 -AMD-6 were prepared in the same manner as in Example 8, except that 0.18: 4: 2: 0.02 mmole was used.
  • Example 26 Preparation of Polymer Nanoparticles Containing the CXCR4 Binding Cyclam Lipid Derivative Compound of Example 4 (DSPE-PEG 2000- AMD-6) and Paclitaxel
  • Example 13 The same method as in Example 13, except that 5, 100, 1 mg of the CXCR4 binding cyclim lipid derivative compound synthesized in Example 4, mPEG 2000- PLA, and paclitaxel (pacigaxel, Sigma, USA), respectively, were used.
  • CXCR4 binding lipid derivatives (DSPE-PEG 2000 -AMD-6) containing polymer nanoparticles were prepared using the polymer nanoparticles.
  • mPEG 2000 neutral lipid La-phosphatidylcholine, cholesterol and fluorescent lipid N- (7-nitrobenz-2-oxy-1,3-diazol-4-yl) -1,2-dihexadecanoyl-sn- Liposomes were prepared in the same manner as in Example 8, except that glycero-3-phosphoethanolamine was used at 0.18: 4: 2: 0.025 mmole, respectively.
  • Polymer nanoparticles were prepared in the same manner as in Example 13, except that 100 and 1 mg of fluorescent paclitaxel, an anticancer agent combined with mPEG 2000- PLA and a fluorescent substance, was used.
  • the reduced graphene nanosheets, DSPE-PEG 5000 -Cy5.5 were mixed at 1: 0.1 (w / w) and then stirred well and stored at 4 ° C until use.
  • Example 8 containing paclitaxel A liposome was prepared.
  • Polymer nanoparticles containing paclitaxel were prepared in the same manner as in Example 13, except that 100 and 1 mg of mPEG 2000- PLA and the anticancer agent paclitaxel were used, respectively.
  • the reduced graphene nanosheets, IR-808, were mixed at 2: 1 (w / w), and then stirred well and stored at 4 ° C until used.
  • the nasopharyngeal epidermal cancer cell line KB cell line known to overexpress CXCR4 was dispensed 1 ⁇ 10 5 per well in a 12 well plate the day before the experiment.
  • Comparative Example 1 and Examples 8-12 were treated in wells, and then cultured in a CO 2 incubator at 37 ° C. for 1 hour.
  • the cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 1 and 8 to 12 all contain fluorescent lipid NBD-PE as a component and use a fluorescent flow cytometer, BD FACS CALIBUR (BD Bioscience, USA), to shift the fluorescence intensity peak. Integrin CXCR4 recognition ability of the cell surface was analyzed and shown in FIG. 8.
  • the untreated group which was not treated with cells, did not shift the peak to the control group, and the liposome of Comparative Example 1 recognized and bound 6.1% of the cells, whereas the liposome treatment containing DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 87.8%
  • the proportion of cells labeled with fluorescence was 89.2%
  • DSPE-PEG 2000 -AMD-3 the proportion of cells labeled with fluorescence was 89.2% and DSPE-PEG 2000 -AMD-3.
  • the proportion of cells labeled with fluorescence in the liposome treatment group was 96.6%, and the proportion of cells labeled with fluorescence in the liposome treatment group containing DSPE-PEG 2000- AMD-6 was 99.4%, and the DSPE-PEG 2000- In the liposome treatment group containing AMD-24, the percentage of cells labeled with fluorescence was 96.5%, which significantly increased the CXCR4 recognition ability on the cell surface compared to the liposome treatment group of Comparative Example 1, and the CXCR4 binding of Examples 1-5.
  • Phosphorus of CXCR4 of Sex Cyclic Lipid Derivative Compounds Intelligence is similar.
  • Example 2 Compared to the cell surface CXCR4 recognition ability That was, in Example 1 it can be seen that a similar capability if 5 ⁇ CXCR4 CXCR4 of the coupling clamp between the lipid derivatives of the.
  • Comparative Example 3 contained DSPE-PEG 2000 -AMD-0, while 34.8% of the cells were recognized and bound by the graphene nanosheets.
  • the proportion of cells labeled with fluorescence was 74.1%
  • the proportion of cells labeled with fluorescent was 74.3%
  • the percentage of cells labeled with fluorescence was 71.9%
  • the graphene nanosheet treated group containing DSPE-PEG 2000 -AM-6 was fluorescent.
  • Comparative Example 2 and Example 23 containing Oregon Green 488-Paclitaxel as a component were treated with KB cell line and the integrin CXCR4 cognitive ability of the cell surface by shift of fluorescence intensity peak using the same method as Experimental Example 1 above.
  • the untreated group did not move to the control group without any treatment in the cells, and Comparative Example 1 treated liposomes containing DSPE-PEG 2000- AMD-0, while liposomes recognized and bound 15.1% of the cells.
  • the proportion of cells labeled with fluorescence was 98.9%, and in the liposome treatment group containing DSPE-PEG 2000 -AMD-1, the proportion of cells labeled with fluorescence was 99.6% and DSPE-PEG 2000 -AMD-3.
  • the proportion of cells labeled with fluorescence was 99.5%, and in the liposome treated group containing the DSPE-PEG 2000 -AMD-6, the proportion of cells labeled with fluorescence was 93.5% and DSPE-PEG 2000- .
  • the percentage of cells labeled with fluorescence was 92.1%, which significantly increased the CXCR4 recognition ability of the cell surface compared to the liposome treatment group of Comparative Example 1, and the CXCR4 binding of Examples 1 to 5 CXCR4 of Sex Cyclic Lipid Derivative Compounds It can be seen that the cognition is similar.
  • the untreated group did not move to the control group without any treatment in the cells, and the polymer nanoparticles of Comparative Example 2 recognized and bound 5.29% of the cells, while containing DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 79.3%
  • the proportion of cells labeled with fluorescence was 96.3% and DSPE-PEG.
  • the untreated group did not shift the peak to the control group, and the graphene nanosheets of Comparative Example 4 recognized and bound 40.6% of the cells, while containing DSPE-PEG 2000 -AMD-0.
  • the percentage of cells labeled with fluorescence was 92.0%, and in the graphene nanosheet treated group containing DSPE-PEG 2000 -AMD-1, the percentage of cells labeled with fluorescent was 97.9%
  • the proportion of cells labeled with fluorescence was 95.1%
  • the graphene nanosheet treated group containing DSPE-PEG 2000 -AM-6 fluorescent
  • the proportion of cells labeled with fluorescence was 90.7%.
  • FIG. 15 the untreated group in the cells did not shift the peak to the control group (FIG. 15A), and the graphene nanosheets of Comparative Example 6 recognized and bound 17.8% of the cells (FIG. 15B), while IR- In the graphene nanosheet treated group containing 808-PEG 2000 -AMD-6, the percentage of cells labeled with fluorescence was 94.8% (FIG. 15C), compared to the graphene nanosheet treated group of Comparative Example 6. It can be seen that the CXCR4 cognitive ability of significantly increased.
  • the untreated group did not shift the peak to the control group, and the liposomes of Comparative Example 1 recognized and bound 12.8% of the cells (FIG. 16B), but included DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 89.2% (FIG. 16C)
  • the proportion of cells labeled with fluorescence was 94.9% (FIG. 16D )
  • the ratio of cells labeled with fluorescence in the liposome treatment group containing DSPE-PEG 2000 -AMD-3 was 97.9% (FIG.
  • the untreated group without any treatment in the cells did not shift the peak to the control group, while the polymer nanoparticles of Comparative Example 2 recognized and bound 21.2% of the cells, while containing DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 94.2%
  • the proportion of cells labeled with fluorescence was 91.5% and DSPE-PEG.
  • the untreated group without any treatment in the cells did not shift the peak to the control group, and the graphene nanosheets of Comparative Example 4 recognized and bound 34.8% of cells, while including DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 96.3%
  • the proportion of cells labeled with fluorescent was 96.2%
  • the percentage of cells labeled with fluorescence was 96.8%
  • the graphene nanosheet treated group containing DSPE-PEG 2000 -AM-6 was fluorescent.
  • the untreated group did not shift the peak to the control group, and the liposome of Comparative Example 1 recognized and bound 19.3% of the cells, whereas the liposome treatment containing DSPE-PEG 2000 -AMD-0.
  • the proportion of cells labeled with fluorescence was 72.2%
  • the proportion of cells labeled with fluorescence was 68.3% and DSPE-PEG 2000 -AMD-3.
  • the proportion of cells labeled with fluorescence was 79.3%, and in the liposome treated group containing DSPE-PEG 2000 -AMD-6, the proportion of cells labeled with fluorescence was 73.4% and DSPE-PEG 2000- .
  • the ratio of cells labeled with fluorescence was 72.4%, which significantly increased the CXCR4 recognition ability of the cell surface compared to the liposome treatment group of Comparative Example 1, and the CXCR4 binding of Examples 1 to 5 CXCR of Sex Cyclic Lipid Derivative Compounds 4 cognitive ability is similar.
  • the untreated group without any treatment in the cells did not shift the peak to the control (FIG. 20A), while the polymer nanoparticles of Comparative Example 2 recognized and bound 22.8% of the cells (FIG. 20B), while DSPE-PEG In the polymer nanoparticle treatment group containing 2000 -AMD-0, the proportion of cells labeled with fluorescence was 86.6% (FIG. 20C), and the fluorescence in the polymer nanoparticle treatment group containing DSPE-PEG 2000 -AMD-1. The proportion of labeled cells was 92.5% (FIG. 20D), and the proportion of cells labeled with fluorescence was 91.3% (FIG.
  • Comparative Example 3 and the fluorescent material Cy5.5-PEG 5000 -DSPE is bonded to the graphene nanosheets of Examples 18-22 by ⁇ - ⁇ bond to the H1299 cell line to fluorescence using the same method as Experimental Example 1 Integrin CXCR4 cognitive ability of the cell surface by shifting the intensity peak was analyzed and shown in FIG. 21.
  • the untreated group did not shift the peak to the control group (FIG. 21A), and the graphene nanosheets of Comparative Example 4 recognized and bound 15.8% of cells (FIG. 21B), while DSPE- In the graphene nanosheet treated group containing PEG 2000 -AMD-0, the percentage of cells labeled with fluorescence was 86.7% (FIG. 21C), and the graphene nanosheet treated group containing DSPE-PEG 2000 -AMD-1. The percentage of cells labeled with fluorescence was 95.7% (FIG. 21D), and the percentage of cells labeled with fluorescence was 91.2% (FIG. 21E) for the graphene nanosheet treated group including DSPE-PEG 2000- AMD-3.
  • KB cell lines were dispensed 1 ⁇ 10 5 per well into 12-well plates on the day before the experiment, and when cells of each plate were uniformly grown by about 60 to 70%, Comparative Example 1 and the fluorescent lipid NBD-PE were contained as components.
  • the liposomes of Example 11 were treated in wells and then incubated for 1 hour in a CO 2 incubator at 37 ° C.
  • the cultured cells were collected and washed twice with phosphate buffer solution. Fluorescence microscopy (Leica, DM I1, Germany) was used to analyze CXCR4 cognition on the cell surface and is shown in FIG. 22.
  • the cells were dispensed into 48 wells to be 3 ⁇ 10 4 cells per well and incubated for 48 hours, and then Comparative Example 4 and Example 25 were added to the well plates, respectively, and cultured in a CO 2 cell incubator at 37 ° C. for 24 hours. It was. Then MTT solution (Sigma, USA) was added to 10% of the medium, incubated for another 2 hours, the supernatant was removed and DMSO added, followed by ELISA reader, Sunrise-Basic TECAN, MAnnedorf, Switzerland The absorbance was measured at 570 nm. As a control, no cells were used.
  • Figure 23 is a result of evaluating the anti-cancer efficacy of the paclitaxel-encapsulated liposome formulations as compared to the paclitaxel liposome of Comparative Example 4 cancer cell death of enhanced liposome composition containing DSPE-PEG 2000 -AMD-6 of Example 25 Show effect. From the anticancer efficacy results of FIG. 23, the liposomes containing DSPE-PEG 2000- AMD-6 of Example 25 exhibited enhanced anticancer efficacy by more effectively binding to KB cell lines overexpressing CXCR4 and delivering paclitaxel into cancer cells. It can be seen that.
  • the polymer nanoparticles having the paclitaxel of Comparative Example 5 encapsulated in SCC7 cells The pacyclictaxel polymer nanoparticles comprising the CXCR4 binding cyclim lipid derivative compound of 26 (DSPE-PEG 2000 -AMD-6) were respectively treated for each concentration of pacyclictaxel and MTT was prepared using the same method as in Experimental Example 16 above. Experimental evaluation was made by measuring cell viability.
  • the polymer nanoparticle composition including DSPE-PEG 2000 -AMD-6 of Example 26 exhibits enhanced cancer cell killing effect than the paclitaxel polymer nanoparticles of Comparative Example 5.
  • the polymer nanoparticles including DSPE-PEG 2000 -AMD6 of Example 26 more effectively bind to KB cell lines overexpressing CXCR4, thereby showing enhanced anticancer efficacy by delivering paclitaxel into cancer cells. It can be seen that.
  • the graphene nanosheets of Comparative Example 6 and the CXCR4 binding cycle near-infrared fluorescent substance of Example 24 in SCC7 cell lines The graphene nanosheets including the derivative compound (IR-808-PEG 2000 -AMD-6) were treated respectively, and the near-infrared ray was irradiated to the graphene nanosheets delivered into the cells to evaluate the survival rate of cancer cells by light heat.
  • Anticancer efficacy was evaluated by measuring cell viability by the method with MTT reagent.
  • the graphene nanosheets including IR-808-PEG 2000- AMD-6 of Example 24 exhibit cancer cell killing effects due to enhanced heat of heat than the graphene nanosheets of Comparative Example 6 Shows that. From the results of the anti-cancer efficacy by the light heat of FIG. 25, the graphene nanosheets including the IR-808-PEG 2000 -AMD-6 of Example 24 bind more effectively to the SCC7 cell line overexpressing CXCR4, thereby providing more graphene nanoparticles. It can be seen that by delivering the sheet into cancer cells, it exhibits anticancer efficacy by more enhanced light heat.
  • a tumor model was made by subcutaneously inoculating a KB cell line in nude mice, and a tumor model. 2 hours after the liposomes containing the fluorescent lipids of Comparative Example 1 and the liposomes containing the CXCR4 binding cyclimide lipid derivative compound (DSPE-PEG 2000 -AMD-6) of Example 11, respectively, were generated. Quantitatively measuring the fluorescence intensity of the fluorescent material delivered into the organs were extracted to confirm the biodistribution of liposomes.
  • FIG. 26A the liposome including DSPE-PEG 2000 -AMD-6 of Example 11 was confirmed to accumulate more in the tumor than the liposome of Comparative Example 2.
  • FIG. 26B is a quantification of fluorescence intensity, and in the case of the liposome including DSPE-PEG 2000 -AMD-6 of Example 11, it was confirmed that about 2 times more polymer nanoparticles were delivered to the tumor than the liposome of Comparative Example 2 .
  • FIG. 26C it was confirmed that more liposomes containing DSPE-PEG 2000 -AMD-6 were delivered to the tumors, and the liposomes specifically migrated to the tumors than other organs.
  • FIG. 27A polymer nanoparticles including DSPE-PEG 2000 -AMD-6 of Example 16 were found to accumulate more in tumors than polymer nanoparticles of Comparative Example 2.
  • FIG. 27B is a quantification of fluorescence intensity.
  • the polymer nanoparticles including DSPE-PEG 2000 -AMD-6 of Example 16 were approximately twice as large as those of the comparative polymer nanoparticles of Comparative Example 2. Confirmed delivery.
  • a tumor model was made by subcutaneously inoculating a KB cell line in nude mice, After the model was generated, the polymer nanoparticles containing the fluorescent materials Oregon Green 488-Pakclitaxel of Comparative Example 2 and Example 16 as components were treated in the tumor animal model, respectively. 2 hours and 24 hours after the treatment, the organs were extracted to quantitatively measure the fluorescence intensity of the biodistribution of the polymer nanoparticles.
  • FIG. 28A is an image showing biodistribution after 2 hours of treatment of a polymer nanoparticle including DSPE-PEG 2000 -AMD-6 of Example 16 and a polymer nanoparticle of Comparative Example 2 in a tumor animal model.
  • a polymer nanoparticle including DSPE-PEG 2000 -AMD-6 of Example 16 and a polymer nanoparticle of Comparative Example 2 in a tumor animal model.
  • the tumor was accumulated, but after 24 hours in the biodistribution image it was confirmed that the polymer nanoparticles containing DSPE-PEG 2000 -AMD-6 was more delivered to the tumor (Fig. 28B).
  • KB cell lines were subcutaneously inoculated into nude mice to generate tumor models. After the tumor model was generated, graphene nanosheets in which IR-808 and IR-808-PEG 2000- AMD-6 of Comparative Example 6 and Example 24 were combined with ⁇ - ⁇ bond were treated to tumor animal models. Organs were harvested 24 hours after treatment to quantitatively measure the fluorescence intensity of the biodistribution of graphene nanosheets.
  • 29A is a quantified fluorescence intensity of the graphene nanosheets including IR-808-PEG 2000- AMD-6 of Example 24, about twice the polymer nanoparticles of the graphene nanosheets of Comparative Example 6. Confirmed that it was delivered to the tumor more.
  • the present invention can be used in the field of anticancer therapy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 사이클램 유도체 화합물 및 이의 약제학적 용도에 관한 것으로, 상기 사이클램 유도체 화합물은 암 세포 표면에서 과발현되는 CXCR4를 선택적으로 인지하여 효율적인 약물 전달이 가능하고, 비선택적인 약물 전달의 독성을 감소시킬 뿐 아니라 표적세포에서의 약물의 효과를 증강시킬 수 있어 약물의 부작용을 완화할 수 있다.

Description

사이클램 유도체 화합물 및 이의 약학적 용도
본 발명은 암 세포 표면에서 과발현되는 CXCR4(C-X-C Chemokine receptor type 4)를 선택적으로 인지하는 CXCR4 결합성 사이클램 유도체 화합물 및 이의 약제학적 용도에 관한 것이다.
케모카인(chemokines)은 면역 반응 시 백혈구의 이동을 조절하는 작은 분비 단백질로 세포 수송 및 신혈관형성을 조절하고 또한 종양 미세환경에서 중요한 역할을 하는 약 50개의 소 단백질 군이다. 이는, NH2- 말단 시스테인(cystein) 잔기의 위치에 기초하여 두 가지의 주요 서브패밀리, CC 및 CXC로 나누어지고, G-단백질과 연결된 수용체에 결합하며, 이들 주요 서브패밀리를 CCR 및 CXCR 이라 명명된다. CXCR의 한 그룹 중 하나인 CXCR4는 림프구 상에서 과발현되어있고 주화성을 활성화 시키는 7 트랜스멤브레인 G-단백질 결합 수용체(seven transmembrane G-protein coupled receptor)이다. 건강한 성인에서는 주로 B 및 T 세포, 단핵구, 대식세포, NK, 및 수지상 세포 등 조혈 계통 세포 상에서 발현되며 (문헌 [Lee MK, Heaton J, Cho MW., Virology. 1999, 257(2), 290]). 또한, 내피 및 상피 세포, 성상세포, 및 뉴런 상에서도 CXCR4가 저수준으로 발현된다(문헌 [Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM., J. Biol. Chem. 1998, 273(7), 4282]; [Hesselgesser J, Halks-Miller M, DelVecchio V, Peiper SC, Hoxie J, Kolson DL, Taub D, Horuk R., Curr. Biol. 1997, 7(2), 112]). 하지만 CXCR4는 백혈병, 림프종, 췌장, 유방, 난소, 폐, 전립선 및 결장직장 종양을 포함하는 많은 수의 암에서 과다발현되고 있다(문헌 [Mohle R, Failenschmid C, Bautz F, Kanz L.,Leukemia. 1999, 13(12), 1954]; [Kato M, Kitayama J, Kazama S, Nagawa H., Breast Cancer Res. 2003 5(5), 144]; [Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS., J. Cell. Biochem. 2003, 89(3), 462]; [Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM., Am. J. Respir. Crit. Care. Med., 2003, 167(12), 1676]; [Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR., Cancer Res. 2002 62(20), 5930]; [Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, Kawaguchi M, Kobayashi H, Doi R, Hori T, Fujii N, Imamura M., Clin. Cancer Res. 2000, 6(9), 3530]; [Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P, Ravetti JL, Zona G, Spaziante R, Florio T, Schettini G., Ann. N. Y. Acad. Sci. 2002 973, 60]).
이에, 본 발명자들은 CXCR4에 결합하는 화합물을 합성하고 이를 약물이나 이미징 물질들과 함께 나노 입자에 탑재하여 암 세포에 특이적으로 전달하는 기술을 개발하고자 하였다.
본 발명의 목적은 표적화 리간드로서 암 세포에서 과발현되어 있는 CXCR4에 특이적으로 결합하는 사이클램 유도체 화합물, 이를 포함하는 CXCR4 인지형 나노복합체 및 이의 약제학적 용도를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표현되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016000478-appb-I000001
[화학식 2]
Figure PCTKR2016000478-appb-I000002
상기 화학식 1 및 2에서,
A는 지질, 생분해성 고분자, 그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물 및 방향족 고리를 갖는 펩타이드의 올리고머로 이루어진 군에서 선택된 하나 이상의 소수성 물질을 나타내고,
L은 스페이서이며,
B는 상기 화학식 2의 화합물을 나타내고, 여기서, R1 내지 R6은 각각 독립적으로, 수소 또는,
Figure PCTKR2016000478-appb-I000003
를 나타내고, 여기서, R7 내지 R9는 각각 독립적으로 수소 또는
Figure PCTKR2016000478-appb-I000004
이다.
본 발명은 또한 본 발명의 화합물을 표적 세포의 CXCR4 인지형 나노복합체를 제공한다.
본 발명은 또한 본 발명의 표적 세포의 CXCR4 인지형 나노복합체; 및 치료제 및 진단제로 이루어진 군에서 선택된 하나 이상의 약물을 포함하는 의약 조성물을 제공한다.
본 발명은 또한 본 발명의 화합물이 π-π 결합을 통해 그래핀(graphene), 산화 그래핀(graphene oxide) 및 환원형 산화 그래핀(reduced graphene oxide) 중에서 선택된 그래핀 소재 나노시트에 결합된 형태의 제형을 가진 표적 세포의 CXCR4 인지형 나노복합체를 포함하는 암의 광열요법(photothermal therapy)에 사용하기 위한 의약 조성물을 제공한다.
본 발명에 따른 CXCR4 결합성 사이클램 유도체 화합물은 CXCR4 과발현된 암 세포 표면에 있는 CXCR4에 특이적으로 결합하는 특성을 가지므로, 효율적인 약물 전달이 가능하고, 비선택적인 약물 전달의 독성을 감소시킬 뿐 아니라 표적세포에서의 약물의 효과를 증강시킬 수 있어 약물의 부작용을 완화할 수 있다.
도 1은 본 발명의 사이클램 지질 유도체 화합물, DSPE-PEG2000-AMD-0의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 2는 본 발명의 사이클램 지질 유도체 화합물, DSPE-PEG2000-AMD-1의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 3은 본 발명의 사이클램 지질 유도체 화합물, DSPE-PEG2000-AMD-3의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 4는 본 발명의 사이클램 지질 유도체 화합물, DSPE-PEG2000-AMD-6의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 5는 본 발명의 사이클램 지질 유도체 화합물, DSPE-PEG2000-AMD-24의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 6는 본 발명의 사이클램 유도체 화합물, PLA-PEG2000-AMD-6의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 7은 본 발명의 사이클램 유도체 화합물, IR-808-PEG2000-AMD-6의 구조(A)와 그 구조를 Maldi-TOF를 사용해 분석한 결과이다(B).
도 8은 CXCR4를 과발현하는 비인두 표피암 세포주인 KB에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 형광 지질 함유 리포좀의 KB 세포 표면 CXCR4 인지능을 형광 유세포분석기(FACS)를 사용해 분석한 결과이다.
도 9는 CXCR4를 과발현하는 비인두 표피암 세포주인 KB에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 고분자 나노제제의 KB 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 10은 CXCR4를 과발현하는 비인두 표피암 세포주인 KB에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 그래핀 나노시트의 KB 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 11은 CXCR4를 과발현하는 비인두 표피암 세포주인 KB에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 고분자 나노입자의 KB 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과로 A는 미처리군, B는 비교예 2, C는 실시예 28의 고분자 나노입자를 처리한 군의 결과이다.
도 12는 CXCR4를 과발현하는 SCC7 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 리포좀의 SCC7 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 13은 CXCR4를 과발현하는 SCC7 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 고분자 나노입자의 SCC7 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 14는 CXCR4를 과발현하는 SCC7 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 그래핀 나노시트의 SCC7 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 15는 CXCR4를 과발현하는 SCC7 세포주에서 본 발명의 CXCR4 결합성 사이클램 근적외선 형광물질(IR-808) 유도체 화합물(IR-825-PEG2000-AMD-6)이 포함된 그래핀 나노시트의 SCC7 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과로, A는 미처리군, B는 비교예 6, C는 실시예 24의 그래핀 나노시트를 처리한 군의 결과이다.
도 16a-c는 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 A549 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 형광 지질 함유 리포좀의 A549 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과로, 도 16a-c에서 A는 미처리군, B는 비교예 1, C는 실시예 8, D는 실시예 9, E는 실시예 10, F는 실시예 11, G는 실시예 12의 리포좀을 처리한 군의 결과이다.
도 17은 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 A549 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 고분자 나노입자의 A549 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 18은 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 A549 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 그래핀 나노시트의 A549 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 19는 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 H1299 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 형광 지질 함유 리포좀의 H1299 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과이다.
도 20a-c는 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 H1299 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 고분자 나노입자의 H1299 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과로, 도 20a-c에서 A는 미처리군, B는 비교예 2, C는 실시예 13, D는 실시예 14, E는 실시예 15, F는 실시예 16, G는 실시예 17의 고분자 나노입자를 처리한 군의 결과이다.
도 21a-c는 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 H1299 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0~24)이 포함된 그래핀 나노시트의 H1299 세포 표면 CXCR4 인지능을 형광 유세포분석기를 사용해 분석한 결과로, 도 21a-c에서 A는 미처리군, B는 비교예 3, C는 실시예 18, D는 실시예 19, E는 실시예 20, F는 실시예 21, G는 실시예 22의 그래핀 나노시트를 처리한 군의 결과이다.
도 22는 CXCR4을 과발현하는 비인두 표피암 KB 세포주에서 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 형광 지질 함유 리포좀의 KB 세포 표면 CXCR4 인지능을 형광 현미경을 사용해 이미지화한 결과로, A 및 D는 미처리군, B 및 E는 비교예 1, C 및 F는 실시예 11의 리포좀을 처리한 군의 결과이다.
도 23은 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 파클리탁셀 리포좀에 의한 암 세포 사멸 효능을 MTT 염색법을 사용하여 KB 세포주에서 확인한 결과이다.
도 24는 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 파클리탁셀 고분자 나노입자에 의한 암 세포 사멸 효능을 MTT 염색법을 사용하여 KB 세포주에서 확인한 결과이다.
도 25는 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물(IR-808-PEG2000-AMD-6)이 포함된 그래핀 나노시트의 광열 치료 효과에 의한 암 세포 사멸 효능을 MTT 염색법을 사용하여 SCC7 세포주에서 확인한 결과이다.
도 26은 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 형광 지질 함유 리포좀의 종양동물모델에서의 생체분포를 광학 이미지(A), 상기 광학 이미지의 형광 강도를 정량화한 그래프(B), 장기별로 분포한 리포좀의 광학 이미지(C)로 평가한 결과이다.
도 27은 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 형광 물질 함유 고분자 나노입자의 종양동물모델에서의 생체분포를 광학 이미지(A)와 상기 광학 이미지의 형광 강도를 정량화한 그래프(B)로 평가한 결과이다.
도 28은 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)이 포함된 형광물질 함유 고분자 나노입자의 생체 분포를 장기를 적출하여 광학 이미지로 평가한 결과로, A는 나노입자 처리 후 2시간 후에 장기별로 분포한 나노입자의 광학 이미지이고, B는 나노입자 처리 후 24시간 후에 장기별로 분포한 나노입자의 광학 이미지이다.
도 29는 CXCR4 인지 가능한 본 발명의 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물(IR-808-PEG2000-AMD-6)이 포함된 그래핀 나노시트의 종양동물모델에서의 생체분포를 광학 이미지로 평가한 결과로, A는 그래핀 나노시트 처리 후 2시간 후에 장기별로 분포한 나노시트의 광학 이미지이고, B는 그래핀 나노시트 처리 후 24시간 후에 장기별로 분포한 나노시트의 광학 이미지이다.
도 30 내지 도 33은 본 발명의 CXCR4 결합성 사이클램 유도체 화합물의 합성에 사용되는 주요 예시 물질의 구조를 도시한 것이다.
이하 본 발명의 구성을 구체적으로 설명한다.
본 발명은 하기 화학식 1로 표현되는 화합물에 관한 것이다:
[화학식 1]
Figure PCTKR2016000478-appb-I000005
[화학식 2]
Figure PCTKR2016000478-appb-I000006
상기 화학식 1 및 2에서,
A는 지질, 생분해성 고분자, 그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물 및 방향족 고리를 갖는 펩타이드의 올리고머로 이루어진 군에서 선택된 하나 이상의 소수성 물질을 나타내고,
L은 스페이서이며,
B는 상기 화학식 2의 화합물을 나타내고, 여기서, R1 내지 R6은 각각 독립적으로, 수소 또는,
Figure PCTKR2016000478-appb-I000007
를 나타내고, 여기서, R7 내지 R9는 각각 독립적으로 수소 또는
Figure PCTKR2016000478-appb-I000008
이다.
본 발명의 화학식 1의 화합물은 CXCR4 결합성 사이클램 유도체 화합물로서, 나노 제형으로 제조하는데 필요한 소수성 물질(A)과 사이클램 유도체(B)가 스페이서(L)에 의해 연결된 구조를 가진다.
상기 소수성 물질은 지질, 생분해성 고분자, 그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물 또는 방향족 고리를 갖는 펩타이드 올리고머 중에서 선택될 수 있고,
상기 스페이서는 소수성 물질 및 CXCR4 결합성 사이클램 유도체 각각과 반응할 수 있는 반응기를 갖는 친수성 물질일 수 있으며, 상기 사이클램 유도체는 화학식 2의 화합물을 사용할 수 있다.
상기 지질은 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민(1,2-distearoly-sn-glycero-3-phosphoethanolamine, DSPE), 포스파티딜에탄올아민(phosphatidylethanolamine, PE), 포스파티딜콜린(phosphatidylcholine, PC), 포스파티딜세린(phosphatidylserine, PS), 포스파티딜글리세롤(phosphatidylglycerol, PG) 또는 콜레스테롤(cholesterol) 등을 단독 또는 2종 이상 사용할 수 있다.
상기 생분해성 고분자는 폴리락트산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리카프로락톤(polycaprolactone, PCL), 폴리(카프로락톤-락타이드) 랜덤 공중합체(PCLA), 폴리(카프로락톤-글리콜라이드) 랜덤 공중합체(PCGA) 또는 폴리(락타이드-글리콜라이드) 랜덤 공중합체(PLGA) 중 어느 하나일 수 있다.
상기 그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물은 근적외선 조사 시 선택적 형광을 나타내면서 동시에 그래핀과 π-π 결합이 가능하여 화학식 1의 화합물이 그래핀 소재 나노시트에 π-π 결합에 의해 결합되어 근적외선 조사에 의한 암의 광열 치료에 효과적으로 사용할 수 있다. 상기 저분자량 화합물질로, 헵타마틴 다이 IR-808(heptamathine dye IR-808), 헵타마틴 다이 IR-825(heptamathine dye IR-825), 인도시아닌 그린(Indocyanine Green, ICG), 클로린 e6(chlorin e6, Ce6), 미톡산트론(mitoxanthrone) 또는 독소루비신(doxorubicin, DOX) 등을 단독 또는 2종 이상 사용할 수 있다.
상기 방향족 고리를 갖는 펩타이드의 올리고머는 페닐알라닌 올리고머 또는 트립토판 올리고머 등을 단독 또는 2종 이상 사용할 수 있다.
상기 스페이서는 생체적합성/생분해성이 우수하여 생체내 안정성을 구현할 수 있도록 하는 물질로, 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 폴리글리세롤, 폴록사머, 폴리톡실레이티드 탈로우 아민(polythoxylated tallow amine, POEA) 또는 폴리에틸렌이민 등을 단독 또는 2종 이상 사용할 수 있다. 바람직하게는 폴리에틸렌글리콜일 수 있다. 상기 폴리에틸렌글리콜의 중량평균분자량이 300 내지 5000인 것을 사용할 수 있다.
상기 화학식 1의 화합물은 소수성 물질과 스페이서가 결합된 형태의 변형 화합물이 화학식 2의 사이클램 유도체와 결합되어 있을 수 있다.
상기 소수성 물질과 스페이서로 사용되는 대표적인 예시 물질의 구조는 하기 도면 30 내지 33에서 볼 수 있다.
상기 화학식 2의 사이클램 유도체는 바람직하게는, 하기 화학식 2a 내지 2e 중 어느 하나로 표시되는 화합물일 수 있다:
[화학식 2a]
Figure PCTKR2016000478-appb-I000009
[화학식 2b]
Figure PCTKR2016000478-appb-I000010
[화학식 2c]
Figure PCTKR2016000478-appb-I000011
[화학식 2d]
Figure PCTKR2016000478-appb-I000012
[화학식 2e]
Figure PCTKR2016000478-appb-I000013
상기 화학식 2의 사이클램 유도체는 일 구체예에 따르면, 하기 반응식 1과 같이, 촉매 하에서 사이클램(1번 화합물)의 3개의 비반응성 질소 원자에 Boc 보호기를 결합시키고(2번 화합물), 상기의 질소 원자에 Boc 보호기가 결합된 사이클램(2번 화합물)과 다이브로모 자일렌 화합물을 반응시켜 중간물질(3번 화합물)를 합성한 다음, 상기 2번 화합물과 상기 중간물질(3번 화합물)을 반응시켜 AMD-0(1,4-bis((1,4,9,11-tetraazacyclotetradecan-1-yl)methyl)benzene)을 합성할 수 있다. AMD-1(1,8-bis(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzyl)-1,4,8,11-tetraazacyclotetradecane)은 AMD-0와 상기 중간물질(3번 화합물)을 촉매 하에서 반응시켜 합성할 수 있다. AMD-3(1,4,8,11-tetrakis(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzyl)-1,4,8,11-tetraazacyclotetradecane)는 사이클램(1번 화합물)과 상기 중간물질(3번 화합물)을 촉매 하에서 반응시켜 합성할 수 있다. AMD-6(1,4-bis((1,4,8,11-tris(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzyl)-1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzene)은 AMD-0과 상기 중간물질(3번 화합물)을 촉매 하에서 반응시켜 합성할 수 있다. AMD-24(1,4-bis((4,8,11-tris(4-((4,8,11-tris(4-((1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzyl)-1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzyl)-1,4,8,11-tetraazacyclotetradecan-1-yl)methyl)benzene)는 AMD-6과 상기 중간물질(3번 화합물)을 촉매 하에서 반응시켜 합성할 수 있다.
[반응식 1]
Figure PCTKR2016000478-appb-I000014
상기 화학식 2의 사이클램 유도체는 말단이 모두 NH로 되어 있어 모핵 구조에 있는 사이클램의 질소 원자, 모핵 구조로부터 중심 사슬에 위치한 사이클램의 질소 원자, 또는 모핵 구조로부터 가지가 갈라져 나간 위치에 있는 사이클램의 질소 원자가 반응에 관여하여 스페이서에 직접(예컨대, 알킬화) 또는 아마이드 결합, 우레아 포메이션 등을 통한간접적 결합을 통해 연결될 수 있어 상기 화학식 2의 사이클램 유도체가 스페이서에 결합되는 위치는 특별히 제한하지는 않는다.
상기 스페이서와 화학식 2의 사이클램 유도체 간의 결합의 일예로, 하기 반응식 2를 참조할 수 있다:
[반응식 2]
Figure PCTKR2016000478-appb-I000015
상기 화학식 1의 화합물은 촉매 하에서 소수성 물질, 스페이서 및 사이클램 유도체를 유기용매에서 일정 몰비로 혼합하고 실온에서 일정 시간 동안 반응시켜 합성할 수 있다. 하기 실시예들은 상술한 예시 소수성 물질과 다양한 종류의 사이클램 유도체를 선택하여 제조한 CXCR4 결합성 사이클램 유도체 화합물을 개시하고 있다.
상기 소수성 물질과 사이클램 유도체는 필요에 따라 적량의 몰비로 혼합할 수 있으나, 이에 특별히 제한하는 것은 아니다.
상기 촉매는 소수성 물질과 사이클램 유도체의 종류에 따라 적절히 선택할 수 있어 특별히 제한하지는 않으나, N,N-디이소프로필에틸아민(N,N-Diisopropylethylamine), EDC(ethylene dichloride), HOBt(hydroxybenzotriazole) 등을 단독 또는 2종 이상 사용할 수 있다.
상기 화학식 1의 화합물은 예컨대, 하기 화학식 1a 내지 1g 중 어느 하나로 표시되는 화합물일 수 있다:
[화학식 1a]
Figure PCTKR2016000478-appb-I000016
[화학식 1b]
Figure PCTKR2016000478-appb-I000017
[화학식 1c]
Figure PCTKR2016000478-appb-I000018
[화학식 1d]
Figure PCTKR2016000478-appb-I000019
[화학식 1e]
Figure PCTKR2016000478-appb-I000020
[화학식 1f]
Figure PCTKR2016000478-appb-I000021
[화학식 1g]
Figure PCTKR2016000478-appb-I000022
상술한 화학식 1 또는 2의 화합물의 합성에 사용되는 용매는 다이메틸포름아마이드 같은 유기용매를 제한 없이 사용할 수 있다.
본 발명은 또한 본 발명의 화합물을 포함하는 표적 세포의 CXCR4 인지형 나노복합체에 관한 것이다.
상기 화학식 1의 화합물은 사이클램 모핵에 기반한 CXCR4 결합성 사이클램 지질 및 고분자 유도체 화합물로, 암 세포에서 과발현된 CXCR4를 선택적으로 인지하는 특성을 가지고 있다.
본 발명의 나노복합체는 리포좀, 미셀 등 지질을 이용한 제형, 또는 고분자 나노입자의 제형을 가질 수 있다.
지질을 이용하여 상기 제형을 갖는 지질 나노입자를 제조하는 방법은 당업계에 잘 알려져 있다. 다양한 제형을 갖는 지질 나노입자의 제조를 위해서는 본 발명의 화학식 1의 화합물 이외에도 양하전 지질, 중성 지질 및 음하전 지질로부터 선택되는 보조 지질을 추가로 사용할 수 있다. 예를 들어, 양이온성 리포좀의 제조를 위해서는 양하전 지질 및 중성 지질을, 중성 리포좀의 제조를 위해서는 중성 지질을, 음이온성 리포좀의 제조를 위해서는 음하전 지질 및 중성 지질을 본 발명의 화학식 1의 화합물과 유기 용매상에서 혼합하고 유기 용매를 모두 증발시킨 후 중성 pH의 완충용액으로 수화시켜 제조할 수 있다. 지질 나노입자의 제조를 위해 사용할 수 있는 양하전 지질, 중성 지질 및 음하전 지질은 당업계에 공지되어 있다.
또한, 고분자 나노입자를 제조하는 방법은 당업계에 잘 알려져 있다.
하기 실시예에서는 본 발명의 화학식 1의 화합물을 이용하여 다양한 제형의 지질 나노입자 또는 고분자 나노입자를 제조하는 방법에 대해 구체적으로 설명한다. 표적 세포로 전달하고자 하는 치료제 또는 진단제와 같은 약물은 나노입자의 제조 시 제형 내로 봉입하거나, 제형의 표면에 결합시킬 수 있다. 하기 실시예에서는 나노입자의 제조 시 형광 지질, 항암제 등을 도입하여 본 발명의 나노복합체의 CXCR4 인지능과 약물전달능을 평가한다.
또한, 본 발명의 나노복합체는 상기 화학식 1의 화합물이 π-π 결합을 통해 그래핀(graphene), 산화 그래핀(graphene oxide) 및 환원형 산화 그래핀(reduced graphene oxide) 중에서 선택된 그래핀 소재 나노시트에 결합된 형태의 제형을 가질 수 있다.
상기 그래핀 소재 나노시트는 그래핀(graphene), 산화 그래핀(graphene oxide), 또는 환원형 산화 그래핀(reduced graphene oxide) 중 어느 하나일 수 있다.
본 명세서에서, 용어 '그래핀'은 '그래핀 나노시트' 또는 '그래핀 소재 나노시트'와 혼용되어 사용하며, 층상구조의 그래파이트(graphite)를 기계적 또는 초음파 처리를 통해 박리하거나, epitaxial growth, chemical vapor deposition(CVD) 법에 의하여 합성되며, 수 층의 2차원 시트 형상을 가지며, 구조적, 전기적 특성(전기전도도)이 그래파이트와 유사하다. 상기 그래파이트의 산화반응에 의해 합성되는 그래파이트 옥사이드(graphite oxide)는 그래파이트와 유사한 층상구조를 가지며, 층간 및 층 표면에 산소 함유 기능기(oxygen containing functional group), 예컨대, 에폭시, 하이드록시, 카르복실기 등이 존재하여 층간 거리가 그래파이트(0.34nm) 보다 넓은 약 0.7nm 이상을 가진다. 이러한 층간거리의 증가는 층간 산소 간의 정전기적 반발력으로 인해 쉽게 박리될 수 있으며, 이러한 박리된 그래파이트 옥사이드(graphite oxide)를 '산화 그래핀(graphene oxide) 또는 산화 그래핀 나노시트'라고 명명한다. 산화 그래핀에 존재하는 옥사이드는 탄소와 공유결합하여 원래 탄소간의 sp2 결합을 sp3로 바뀌어 전기전도도가 크게 낮은 특성을 보인다. 낮은 전기전도도를 향상시키기 위해 산소를 제거하여 합성되는 그래핀을 '환원형 산화 그래핀(reduced graphene oxide) 또는 환원형 산화 그래핀 나노시트'라고 명명한다. 산화 그래핀의 환원은 주로 열적 또는 화학적 방법으로 이뤄지며, 열적 환원에 의한 산소 제거 시 CO 또는 CO2 형태로 제거되어 표면에 다수의 디펙트(defect)가 존재하며, 화학적 환원에 의한 산소 제거 시 잔존하는 산소가 다수 존재한다. 이러한 디펙트(defect)와 잔존 산소가 존재하는 환원형 산화 그래핀은 그래파이트의 박리에 의해 합성된 그래핀(graphene)에 비해 전기전도도 특성이 떨어지는 특징이 있다.
본 발명의 CXCR4 인지형 나노복합체를 통해 약물을 전달받는 표적 세포는 치료 또는 진단이 요구되는 세포일 수 있다. 이러한 표적 세포는 CXCR4 과발현 암 세포일 수 있다. 예컨대, CXCR4를 과발현하는 암 세포는 백혈병, 림프종, 췌장암, 유방암, 난소암, 폐암, 결장직장암, 흑색종 또는 전립선암 등일 수 있으나, 이에 특별히 제한하는 것은 아니다.
이와 같이, 본 발명의 CXCR4 인지형 나노복합체는 표적세포의 CXCR4를 타겟팅하여 선택적으로 약물을 전달하는 약물전달체로 사용될 수 있다.
따라서, 본 발명은 상기 표적 세포의 CXCR4 인지형 나노복합체; 및 치료제 및 진단제로 이루어진 군에서 선택된 하나 이상의 약물을 포함하는 의약 조성물을 제공한다.
본 발명의 CXCR4 인지형 나노복합체를 이용하여 표적세포로 전달할 수 있는 약물은 치료제 및/또는 진단제일 수 있다. 본 발명의 CXCR4 인지형 나노복합체는 치료제와 진단제를 각각 또는 동시에 전달할 수 있다. 예컨대, 리포좀 내 친수성 공간에 진단제를, 외부의 지질 이중막에 지용성 약물이나 음전하 물질을 결합시킬 수 있다.
상기 치료제는 화학요법제일 수 있다. 화학요법제는 임의의 질환에 대한 약리 효과를 나타내는 유기 화합물을 의미한다. 화학요법제는 대개 혈류를 통해 비선택적으로 세포에 전달되는 특성을 갖는데, 약물의 부작용을 감소시키기 위해 세포 또는 조직에 선택적인 치료가 요구되는 경우에는 본 발명의 CXCR4 인지형 나노복합체를 이용하는 것이 바람직하다. 이러한 화학요법제의 대표적인 예로 항암 화학요법제를 들 수 있다. 상기 항암 화학요법제의 예로는, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신 (doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 발루비신(valubicin), 미톡산트론(mitoxantrone), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine) 또는 빈크리스틴(vincristine) 등을 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.
또한, 본 발명의 CXCR4 인지형 나노복합체는 약물 전달에 의한 치료 외에 근적외선 조사에 의한 암의 광열요법(photothermal therapy)에 사용될 수 있다. 따라서, 본 발명은 상기 화학식 1의 화합물이 π-π 결합을 통해 그래핀(graphene), 산화 그래핀(graphene oxide) 및 환원형 산화 그래핀(reduced graphene oxide) 중에서 선택된 그래핀 소재 나노시트에 결합된 형태의 제형을 가진 표적 세포의 CXCR4 인지형 나노복합체를 포함하는 암의 광열요법(photothermal therapy)에 사용하기 위한 의약 조성물을 제공한다.
본 발명의 일 구체예에 따르면, CXCR4 인지형 나노복합체가 IR-808을 소수성 물질로 사용하고, 그래핀 소재 나노시트에 결합되는 경우, 근적외선 조사 시 현저하게 증강된 암 세포의 사멸이 관찰된다.
한편, 상기 진단제는 표적세포를 탐지해내어 인식가능하게 할 수 있는 물질이라면 제한 없이 사용할 수 있다. 예컨대, 생체를 투과할 수 있는 근적외선 계열의 형광물질, 예컨대, 시아닌, 알로피코시아닌 (allophycocyanin), 플루오레신(fluorescein), 테트라메틸로드아민(tetramethylrhodamine), 보디피(BODIPY) 또는 알렉사(Alexa) 등; Calcium-47, Carbon-11, Carbon-14, Chromium-51, Cobalt-57, Cobalt-58, Erbium-169, Fluorine-18, Gallium-67, Gallium-68, Hydrogen-3, Indium-111, Iodine-123, Iodine-131, Technetium-99m와 같은 방사선의약품; 또는 MRI 조영제 등을 들 수 있다.
본 발명의 의약 조성물은 진단 대상에서 분리한 조직 또는 세포에 투여하여 화학식 1의 화합물 및/또는 진단제가 신호를 감지하여 영상을 수득하는데 이용될 수 있다. 이러한 신호를 감지하기 위해서는 자기공명영상장치 또는 광학영상장치를 이용할 수 있다.
상기 자기공명영상장치는 강력한 자기장 속에 생체를 넣고 특정 주파수의 전파를 조사하여 생체조직에 있는 수소 등의 원자핵에 에너지를 흡수시켜 에너지가 높은 상태로 만든 후, 상기 전파를 중단하여 상기 수소 등의 원자핵 에너지가 방출되게 하고 이 에너지를 신호로 변환하여 컴퓨터로 처리하여 영상화한 장치이다. 자기 또는 전파는 골에 방해를 받지 않기 때문에 단단한 골 주위 또는 뇌나 골수의 종양에 대하여 종단, 횡단, 임의의 각도에서 선명한 입체적인 단층상을 얻을 수 있다. 특히 상기 자기공명영상장치는 T2 스핀-스핀 이완 자기공명영상장치인 것이 바람직하다.
본 발명의 의약 조성물은 약제학적으로 허용가능한 담체를 더 포함할 수 있다. 상기 담체는 의약 분야에서 통상 사용되는 담체 및 비히클을 포함하며, 구체적으로 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 각종 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 또는 양모지 등을 포함하나 이에 제한되지 않는다.
또한, 본 발명의 의약 조성물은 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 또는 보존제 등을 추가로 포함할 수 있다.
한 양태로서, 본 발명에 따른 의약 조성물은 비경구 투여를 위한 수용성 용액으로 제조할 수 있으며, 바람직하게는 한스 용액(Hank's solution), 링거 용액(Ringer's solution) 또는 물리적으로 완충된 염수와 같은 완충 용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀룰로즈, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다.
본 발명의 의약 조성물의 다른 바람직한 양태는 멸균 주사용 수성 또는 유성 현탁액의 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예를 들면 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형화할 수 있다.
또한, 상기 멸균 주사용 제제는 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예를 들면 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 비휘발성 오일은 그 어느 것도 사용할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
<실시예 1> CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0)의 합성
[반응식 3]
Figure PCTKR2016000478-appb-I000023
사이클램과 다이-털트-부틸 다이카보네이트를 1:3 (m/m) 비율로 섞고 촉매인 트리에틸아민을 이용하여 다이클로로메탄 용매로 12시간 동안 상온에서 반응 시킨 후, 그 반응 생성물과 알파,알파‘-다이브로모-p-자이렌(α,α'-dibromo-p-xylene)을 촉매인 포타슘 카보네이트을 이용하여 아세톤나이트릴 용매로 48시간동안 반응시켰다. 카보네이트를 촉매로 하여 생성물을 다시 2번 화합물과 아세톤나이트릴 용매 하에 12시간동안 반응시킨 후 마지막 생성물을 트리플로로아세트산과 다이클로로메탄을 1:1 (v/v)로 섞은 용액으로 4시간동안 반응시킨후 필터하여 생성물을 얻었다(AMD-0).
생성된 AMD-0, NHS-PEG2000-DSPE와 DIPEA를 1:1:4 (m/m)의 몰 비율로 다이메틸포름아마이드를 용매로 하여 12시간 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF를 이용하여 확인하였다(도 1 참조).
<실시예 2> CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-1)의 합성
[반응식 4]
Figure PCTKR2016000478-appb-I000024
카보네이트를 촉매로 하여 실시예 1에서 합성한 AMD-0과 중간물질인 3번 화합물을 1:1 (m/m)의 몰 비율로 아세톤나이트릴 용매로 24시간 동안 상온에서 반응 후 마지막 생성물을 트리플로로아세트산과 다이클로로메탄을 1:1 (v/v)로 섞은 용액으로 4시간 동안 반응시킨 후 필터하여 생성물을 얻었다(AMD-1).
생성된 AMD-1, NHS-PEG2000-DSPE와 DIPEA를 1:1:4 (m/m)의 몰 비율로 다이메틸포름아마이드를 용매로 하여 12시간 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 2 참조).
<실시예 3> CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-3)의 합성
[반응식 5]
Figure PCTKR2016000478-appb-I000025
카보네이트를 촉매로 하여 사이클램과 중간물질인 3번 화합물을 4:1 (m/m)의 몰 비율로 아세톤나이트릴 용매로 24시간동안 상온에서 반응 후 마지막 생성물을 트리플로로아세트산과 다이클로로메탄을 1:1 (v/v)로 섞은 용액으로 4시간동안 반응시킨 후 필터하여 생성물을 얻었다(AMD-3).
생성된 AMD-3, NHS-PEG2000-DSPE와 DIPEA를 1:1:4 (m/m)의 몰 비율로 다이메틸포름아마이드를 용매로 하여 12시간 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 이 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 3 참조).
<실시예 4> CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)의 합성
[반응식 6]
Figure PCTKR2016000478-appb-I000026
카보네이트를 촉매로 하여 실시예 1에서 합성한 AMD-0과 중간물질인 3번 화합물을 1:6 (m/m)의 몰 비율로 아세톤나이트릴 용매로 24시간동안 상온에서 반응 후 마지막 생성물을 트리플로로아세트산과 다이클로로메탄을 1:1 (v/v)로 섞은 용액으로 4시간동안 반응시킨후 필터하여 생성물을 얻었다(AMD-6).
생성된 AMD-6, NHS-PEG2000-DSPE와 DIPEA를 1:1:4 (m/m)의 몰 비율로 다이메틸포름아마이드를 용매로 하여 12시간 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 4 참조).
<실시예 5> CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-24)의 합성
[반응식 7]
Figure PCTKR2016000478-appb-I000027
카보네이트를 촉매로 하여 실시예 4에서 합성한 AMD-6과 중간물질인 3번 화합물을 1:6 (m/m)의 몰 비율로 아세톤나이트릴 용매로 24시간동안 상온에서 반응 후 마지막 생성물을 트리플로로아세트산과 다이클로로메탄을 1:1 (v/v)로 섞은 용액으로 4시간동안 반응 시킨후 필터하여 생성물을 얻었다(AMD-6).
생성된 AMD-6, NHS-PEG2000-DSPE와 DIPEA를 1:1:4 (m/m)의 비율로 다이메틸포름아마이드를 용매로 하여 12시간 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 5 참조).
<실시예 6> CXCR4 결합성 사이클램 지질 유도체 화합물(PLA-PEG2000-AMD-6)의 합성
[반응식 8]
Figure PCTKR2016000478-appb-I000028
실시예 4에서 합성한 AMD-6과 NHS-PEG2000-PLA을 1:1 (m/m)의 몰 비율로 촉매인 DIPEA를 이용하여 다이메틸포름아마이드 용매를 이용하여 12시간동안 상온에서 반응시킨 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 6 참조).
<실시예 7> CXCR4 결합성 사이클램 지질 유도체 화합물(IR-808-PEG2000-AMD-0)의 합성
[반응식 9]
Figure PCTKR2016000478-appb-I000029
실시예 4에서 합성한 AMD-6과 NHS-PEG2000-NHFmoc을 1:1 (m/m)의 비율로 촉매인 DIPEA를 이용하여 다이메틸포름아마이드 용매를 이용하여 12시간동안 상온에서 반응시키고, 생성물과 Boc2을 촉매인 트리에틸아민을 이용하여 다이클로로메탄 용매를 이용하여 12시간동안 상온에서 반응시켜 AMD-6의 아민기를 모두 Boc으로 치환하였다. 그 후 피페리딘과 다이메틸포름아마이드 1:1 (v/v)로 섞은 용매에 생성물을 넣고 6시간동안 반응시켜 Fmoc를 제거한 뒤, IR-808 (문헌 [Xu Tan et al., Biomaterials, 2012; 33:pp. 2203~2239])을 반응의 촉매인 EDC, HOBt, DIPEA를 이용하여 다이메틸포름아마이드 용매를 이용하여 12시간 동안 반응시키고, 마지막으로 그 생성물을 TFA와 다이클로로메탄응 1:1 (v/v)로 섞은 용매에서 4시간동안 상온에서 반응시켰다. 반응 후 여과막을 이용하여 증류수와 메탄올로 반응하지 못한 물질들을 여과시켰다. 그 후 감압장치를 이용하여 용매를 제거한 후 건조하여 생성물을 얻었다. 반응 여부는 박막층 크로마토그래피법 및 MALDI-TOF (AD SCIEX, MALDI TOF-TOF 5800 System, USA)를 이용하여 확인하였다(도 7 참조).
<실시예 8> 실시예 1의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-0) 및 형광 지질을 함유하는 리포좀 제조
실시예 1에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 중성 지질인 L-a-포스파티딜콜린(Avanti Polar Lipid Inc., USA, 이하 ‘PC’라 함), 콜레스테롤(Cholesterol, Sigma, USA)과 형광 지질인 N-(7-니트로벤즈-2-옥시-1,3-디아졸-4-일)-1,2-디헥사데카노일-sn-글리세로-3-포스포에타올아민(Avanti Polar Lipid Inc., USA, 이하 ‘NBD-PE’라 함)을 각각 0.18 : 4 : 2 : 0.025 mmole씩 취하여 1ml의 클로로포름에 녹인 후 파이렉스 10ml-유리 격막 바이알에 넣어 혼합한 후 질소 환경에서 모든 클로로포름이 증발될 때까지 낮은 속도로 회전 증발시켜 지질 박막 필름으로 제조하였다. 지질 다층형 소구체 (multilamella vesicle)를 제조하기 위하여 이 박막 필름에 인산완충용액 1ml을 첨가하고 바이알을 37℃로 하여 밀봉 후 3분간 교반(voltexing)하였다. 균일한 크기를 만들기 위해 이를 입자 균질화 제조기(extruder, Northern Lipid Inc., Canada)를 사용하여 0.22mm 폴리카보네이트 막을 3번 통과시켜 제조하였다. 수득된 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-0) 함유 리포좀은 사용하기 전까지 4℃에서 보관하였다.
<실시예 9> 실시예 2의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-1) 및 형광 지질을 함유하는 리포좀 제조
실시예 2에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 8과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-1) 함유 리포좀을 제조하였다.
<실시예 10> 실시예 3의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-3) 및 형광 지질을 함유하는 리포좀 제조
실시예 3에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 8과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-3) 함유 리포좀을 제조하였다.
<실시예 11> 실시예 4의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6) 및 형광 지질을 함유하는 리포좀 제조
실시예 4에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 8과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-6) 함유 리포좀을 제조하였다.
<실시예 12> 실시예 5의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-24) 및 형광 지질을 함유하는 리포좀 제조
실시예 5에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 8과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-24) 함유 리포좀을 제조하였다.
<실시예 13> 실시예 1의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-0) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 1에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, mPEG2000-PLA와 형광물질이 결합된 항암제인 형광 파클리탁셀(Oregon Green® 488 Taxol)을 각각 5, 100, 1 mg씩 취하여 둥근바닥플라스크(round bottom flask)에 넣은 후, 4ml의 디클로로메테인(Dichloromethane)을 넣고 회전식 감압증류기에 장착한 후 40~60℃ 수욕조에서 균일한 용액이 될 때까지 고분자를 완전히 녹였다. 진공펌프를 이용하여 감압하면서 모든 디클로로메테인이 증발될 때까지 회전 증발시켜 박막 필름으로 제조하였다. 진공을 해제한 후 생성된 박막필름에 미리 40~60℃ 가열해 놓은 3차 증류수 4mL을 가하여 고분자가 완전히 용해되어 나노입자가 생성될 때까지 플라스크를 회전시켰다. 증류수에 고분자가 완전히 녹은 것을 확인하고 실온으로 냉각한 후 0.22 mm membrane filter로 무균 여과하였다. 수득된 CXCR4 결합성 지질 유도체 (DSPE-PEG2000-AMD-0) 함유 고분자 나노입자는 사용하기 전까지 4℃에서 보관하였다.
<실시예 14> 실시예 2의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-1) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 2에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 13과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-1) 함유 고분자 나노입자를 제조하였다.
<실시예 15> 실시예 3의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-3) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 3에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물 화합물을 사용한 것을 제외하고는 실시예 13과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-3) 함유 고분자 나노입자를 제조하였다.
<실시예 16> 실시예 4의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 4에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 13과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-6) 함유 고분자 나노입자를 제조하였다.
<실시예 17> 실시예 5의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-24) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 5에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고는 실시예 13과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-24) 함유 고분자 나노입자를 제조하였다.
<실시예 18> 실시예 1의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-0) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 1에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 19> 실시예 2의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-1) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 2에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 20> 실시예 3의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-3) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 3에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 21> 실시예 4의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 4에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 22> 실시예 5의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-24) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 5에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 23> 실시예 6의 CXCR4 결합성 사이클램 고분자 유도체 화합물 (PLA-PEG2000-AMD-6) 및 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 6에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물을 사용한 것을 제외하고, 실시예 13과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체(PLA-PEG2000-AMD-6) 함유 고분자 나노입자를 제조하였다.
<실시예 24> 실시예 7의 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물 (IR-808-PEG2000-AMD-6) 및 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
실시예 7에서 합성한 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물, 환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 2 : 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실시예 25> 실시예 4의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6) 및 파클리탁셀을 함유하는 리포좀 제조
실시예 4에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, 중성 지질인 L-a-포스파티딜콜린(Avanti Polar Lipid Inc., USA, 이하 ‘PC’라 함), 콜레스테롤(Cholesterol, Sigma, USA)과 항암제인 파클리탁셀을 각각 0.18 : 4 : 2 : 0.02 mmole씩 사용한 것을 제외하고는, 실시예 8과 같은 방법을 사용하여 CXCR4 결합성 지질 유도체 (DSPE-PEG2000-AMD-6) 함유 리포좀을 제조하였다.
<실시예 26> 실시예 4의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6) 및 파클리탁셀을 함유하는 고분자 나노입자 제조
실시예 4에서 합성한 CXCR4 결합성 사이클램 지질 유도체 화합물, mPEG2000-PLA와 항암제인 파클리탁셀(paclitaxel, Sigma, USA)을 각각 5, 100, 1 mg씩 사용한 것을 제외하고, 실시예 13과 동일한 방법을 사용하여 CXCR4 결합성 지질 유도체(DSPE-PEG2000-AMD-6) 함유 고분자 나노입자를 제조하였다.
<비교예 1> 형광물질(NBD-PE)을 함유하는 리포좀 제조
mPEG2000, 중성지질인 L-a-포스파티딜콜린, 콜레스테롤과 형광 지질인 N-(7-니트로벤즈-2-옥시-1,3-디아졸-4-일)-1,2-디헥사데카노일-sn-글리세로-3-포스포에타올아민을 각각 0.18 : 4 : 2 : 0.025 mmole씩 사용한 것을 제외하고, 실시예 8과 같은 방법을 사용하여 리포좀을 제조하였다.
<비교예 2> 형광-파클리탁셀을 함유하는 고분자 나노입자 제조
mPEG2000-PLA와 형광물질이 결합된 항암제인 형광 파클리탁셀을 각각 100, 1 mg씩 사용한 것을 제외하고는, 실시예 13과 같은 방법을 사용하여 고분자 나노입자를 제조하였다.
<비교예 3> 형광물질(Cy5.5)을 함유하는 그래핀 나노시트 제조
환원된 그래핀 나노시트, DSPE-PEG5000-Cy5.5를 1 : 0.1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<비교예 4> 파클리탁셀을 함유하는 리포좀 제조
mPEG2000, 중성지질인 L-a-포스파티딜콜린, 콜레스테롤과 항암제인 파클리탁셀(paclitaxel, Sigma, USA)을 각각 0.18 : 4 : 2 : 0.02 mmole씩 사용한 것을 제외하고, 실시예 8과 같은 방법을 사용하여 파클리탁셀을 함유하는 리포좀을 제조하였다.
<비교예 5> 파클리탁셀을 함유하는 고분자 나노입자 제조
mPEG2000-PLA와 항암제인 파클리탁셀을 각각 100, 1 mg씩 사용한 것을 제외하고는, 실시예 13과 같은 방법을 사용하여 파클리탁셀을 함유하는 고분자 나노입자를 제조하였다.
<비교예 6> 근적외선 형광물질(IR-808)을 함유하는 그래핀 나노시트 제조
환원된 그래핀 나노시트, IR-808을 2 : 1 (w/w)으로 섞은 후 잘 교반시켜 사용하기 전까지 4℃에서 보관하였다.
<실험예 1> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 리포좀의 KB 세포 표면 CXCR4 인지능 측정 : FACS
CXCR4를 과발현하는 것으로 알려진 비인두 표피암 세포주 KB 세포주를 실험 전날 12웰 플레이트에 웰당 1×105 개씩 분주하였다. 각 플레이트의 세포가 60~70 % 정도 균일하게 성장했을 때, 비교예 1과 실시예 8~12를 각각 웰에 처리한 후 37℃의 CO2 배양기에서 1시간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 1과 실시예 8~12에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하고 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하였고 이를 도 8에 나타내었다.
도 8에서, 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 1의 리포좀은 6.1 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 87.8 %, DSPE-PEG2000-AMD-1을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 89.2 %, DSPE-PEG2000-AMD-3을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 96.6 %, DSPE-PEG2000-AMD-6을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 99.4 %, DSPE-PEG2000-AMD-24를 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 96.5 %를 나타내어 비교예 1의 리포좀 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가 되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능은 비슷한 것을 알 수 있다.
<실험예 2> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 고분자 나노입자의 KB 세포 표면 CXCR4 인지능 측정 : FACS
비교예 2과 형광물질 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 실시예 13~17의 고분자 나노입자들을 KB 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하였고 이를 도 9에 나타내었다.
도 9에서, 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 2를 처리한 군은 2.56 %의 세포를 고분자 나노입자가 인지하여 결합한 반면, DSPE-PEG2000-AMD-0)을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 99.3%, DSPE-PEG2000-AMD-1을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 99.3%, DSPE-PEG2000-AMD-3을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 98.8%, DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 98.9%, DSPE-PEG2000-AMD-24을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 99.4%를 나타내어 비교예 2의 고분자 나노입자 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 3> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 그래핀 나노시트의 KB 세포 표면 CXCR4 인지능 측정 : FACS
비교예 3과 형광물질 Cy5.5-PEG5000-DSPE가 π-π 결합으로 결합한 실시예 18~22의 그래핀 나노시트들을 KB 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 10에 나타내었다.
도 10에서, 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 3은 34.8 %의 세포를 그래핀 나노시트가 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 74.1 %, DSPE-PEG2000-AMD-1을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 74.3 %, DSPE-PEG2000-AMD-3을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 71.9 %, DSPE-PEG2000-AMD-6을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 79.3 %, DSPE-PEG2000-AMD-24을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 82.2 %를 나타내어 비교예 3의 그래핀 나노시트 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 4> CXCR4 결합성 사이클램 고분자 유도체 화합물을 포함하는 고분자 나노입자의 KB 세포 표면 CXCR4 인지능 측정 : FACS
비교예 2와 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 실시예 23을 KB 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 11에 나타내었다.
도 11에서 세포에 아무 처리 하지 않은 미처리군은 대조군으로, 피크가 이동하지 않았고(도 11A), 비교예 2의 고분자 나노입자는 23.5 %의 세포를 고분자 나노입자가 인지하여 결합한 반면(도 11B), DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 96.5%를 나타내어(도 11C) 비교예 2의 고분자 나노입자 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었음을 알 수 있다.
<실험예 5> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 리포좀의 SCC7 세포 표면 CXCR4 인지능 측정 : FACS
비교예 1과 형광 지질인 NBD-PE를 구성성분으로 함유하는 실시예 8~12 리포좀을 CXCR4를 과발현하는 것으로 알려진 SCC7 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 12에 나타내었다.
도 12에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 1은 15.1 %의 세포를 리포좀이 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 98.9 %, DSPE-PEG2000-AMD-1을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 99.6 %, DSPE-PEG2000-AMD-3을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 99.5%, DSPE-PEG2000-AMD-6을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 93.5 %, DSPE-PEG2000-AMD-24을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 92.1 %를 나타내어 비교예 1의 리포좀 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 6> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 고분자 나노입자의 SCC7 세포 표면 CXCR4 인지능 측정 : FACS
비교예 2과 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 실시예 13~17의 고분자 나노입자들을 SCC7 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 13에 나타내었다.
도 13에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 2의 고분자 나노입자는 5.29 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 79.3 %, DSPE-PEG2000-AMD-1을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 96.3%, DSPE-PEG2000-AMD-3을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 87.2%, DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 84.5%, DSPE-PEG2000-AMD-24을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 79.8% 를 나타내어 비교예 2의 고분자 나노입자 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 7> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 그래핀 나노시트의 SCC7 세포 표면 CXCR4 인지능 측정 : FACS
비교예 3과 Cy5.5-PEG5000-DSPE가 π-π 결합으로 결합되어 있는 실시예 18~22의 그래핀 나노시트를 SCC7 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 14에 나타내었다.
도 14에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 4의 그래핀 나노시트는 40.6 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 92.0 %, DSPE-PEG2000-AMD-1을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 97.9 %, DSPE-PEG2000-AMD-3을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 95.1 %, DSPE-PEG2000-AMD-6을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 95.9 %, DSPE-PEG2000-AMD-24를 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 90.7 %를 나타내어 비교예 3의 그래핀 나노시트 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 8> CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물을 포함하는 그래핀 나노시트의 SCC7 세포 표면 CXCR4 인지능 측정 : FACS
비교예 6과 근적외선 형광물질 IR-808이 π-π 결합으로 결합되어 있는 실시예 24의 그래핀 나노시트를 SCC7 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 15에 나타내었다.
도 15에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고(도 15A), 비교예 6의 그래핀 나노시트는 17.8 %의 세포를 인지하여 결합한 반면(도 15B), IR-808-PEG2000-AMD-6을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 94.8 %를 나타내어(도 15C), 비교예 6의 그래핀 나노시트 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었음을 알 수 있다.
<실험예 9> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 리포좀의 A549 세포 표면 CXCR4 인지능 측정 : FACS
비교예 1과 형광 지질인 NBD-PE를 구성성분으로 함유하는 실시예 8~12의 리포좀을 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 A549 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 16에 나타내었다.
도 16A의 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 1의 리포좀은 12.8 %의 세포를 인지하여 결합한 반면(도 16B), DSPE-PEG2000-AMD-0을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 89.2 %(도 16C), DSPE-PEG2000-AMD-1을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 94.9 %(도 16D), DSPE-PEG2000-AMD-3을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 97.9 %(도 16E), DSPE-PEG2000-AMD-6을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 98.4 %(도 16F), DSPE-PEG2000-AMD-24를 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 99.4 %를 나타내어(도 16G) 비교예 1의 리포좀 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가 되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 10> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 고분자 나노입자의 A549 세포 표면 CXCR4 인지능 측정 : FACS
비교예 2과 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 실시예 13~17의 고분자 나노입자를 A549 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 17에 나타내었다.
도 17에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 2의 고분자 나노입자는 21.2 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 94.2%, DSPE-PEG2000-AMD-1을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 91.5%, DSPE-PEG2000-AMD-3을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 95.2%, DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 95.9%, DSPE-PEG2000-AMD-24을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 98.6%를 나타내어 비교예 2의 고분자 나노입자 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 11> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 그래핀 나노시트의 A549 세포 표면 CXCR4 인지능 측정 : FACS
비교예 3과 형광물질 Cy5.5-PEG5000-DSPE가 π-π 결합으로 결합되어 있는 실시예 18~22의 그래핀 나노시트를 A549 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 18에 나타내었다.
도 18에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 4의 그래핀 나노시트는 34.8 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 96.3 %, DSPE-PEG2000-AMD-1을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 96.2 %, DSPE-PEG2000-AMD-3을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 96.8 %, DSPE-PEG2000-AMD-6을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 96.3 %, DSPE-PEG2000-AMD-24를 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 96.5 %를 나타내어 비교예 3의 그래핀 나노시트 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 12> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 리포좀의 H1299 세포 표면 CXCR4 인지능 측정 : FACS
비교예 1과 형광 지질인 NBD-PE를 구성성분으로 함유하는 실시예 8~12의 리포좀을 CXCR4를 과발현하며 파클리탁셀 내성을 갖는 세포로 알려진 H1299 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 19에 나타내었다.
도 19에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 비교예 1의 리포좀은 19.3 %의 세포를 인지하여 결합한 반면, DSPE-PEG2000-AMD-0을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 72.2 %, DSPE-PEG2000-AMD-1을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 68.3 %, DSPE-PEG2000-AMD-3을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 79.3 %, DSPE-PEG2000-AMD-6을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 73.4 %, DSPE-PEG2000-AMD-24을 포함하는 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 72.4 %를 나타내어 비교예 1의 리포좀 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 13> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 고분자 나노입자의 H1299 세포 표면 CXCR4 인지능 측정 : FACS
비교예 2과 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 실시예 13~17의 고분자 나노입자를 H1299 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 20에 나타내었다.
도 20에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고(도 20A), 비교예 2의 고분자 나노입자는 22.8 %의 세포를 인지하여 결합한 반면(도 20B), DSPE-PEG2000-AMD-0을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 86.6 %(도 20C), DSPE-PEG2000-AMD-1을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 92.5 %(도 20D), DSPE-PEG2000-AMD-3을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 91.3 %(도 20E), DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 98.7 %(도 20F), DSPE-PEG2000-AMD-24를 포함하는 고분자 나노입자 처리군의 경우 형광으로 표지된 세포의 비율이 98.5 %를 나타내어(도 20G), 비교예 2의 고분자 나노입자 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 14> CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 그래핀 나노시트의 H1299 세포 표면 CXCR4 인지능 측정 : FACS
비교예 3과 형광물질 Cy5.5-PEG5000-DSPE가 π-π 결합으로 결합되어 있는 실시예 18~22의 그래핀 나노시트를 H1299 세포주에 처리하여 상기 실험예 1과 같은 방법을 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 인테그린 CXCR4 인지능을 분석하고 이를 도 21에 나타내었다.
도 21에서, 세포에서 아무 처리 하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고(도 21A), 비교예 4의 그래핀 나노시트는 15.8 %의 세포를 인지하여 결합한 반면(도 21B), DSPE-PEG2000-AMD-0을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 86.7 %(도 21C), DSPE-PEG2000-AMD-1을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 95.7 %(도 21D), DSPE-PEG2000-AMD-3을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 91.2 %(도 21E), DSPE-PEG2000-AMD-6을 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 94.3 %(도 21F), DSPE-PEG2000-AMD-24를 포함하는 그래핀 나노시트 처리군의 경우 형광으로 표지된 세포의 비율이 94.2 %를 나타내어(도 21G), 비교예 3의 그래핀 나노시트 처리군에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었으며, 실시예 1~5의 CXCR4 결합성 사이클램 지질 유도체 화합물의 CXCR4 인지능이 비슷한 것을 알 수 있다.
<실험예 15> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 리포좀의 KB 세포 표면 CXCR4 인지능 관찰 : 형광현미경 이미지 분석
KB 세포주를 실험 전날 12웰 플레이트에 웰당 1×105 개씩 분주하고, 각 플레이트의 세포가 60~70 % 정도 균일하게 성장했을 때, 비교예 1과 형광 지질인 NBD-PE를 구성성분으로 함유하는 실시예 11의 리포좀을 각각 웰에 처리한 후 37℃의 CO2 배양기에서 1시간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 형광현미경(Leica, DM I1, Germany)을 사용하여 세포 표면의 CXCR4 인지능을 분석하였고 도 22에 나타내었다.
도 22에서, 세포에서 아무 처리하지 않은 미처리군은 대조군으로 형광이 관찰되지 않았고(도 22A, D), 비교예 1의 형광 리포좀을 처리한 세포군(도 22B, E)에 비해 DSPE-PEG2000-AMD-6이 포함된 실시예 11를 처리군의 경우 형광이 강하게 발현되었음을 알 수 있다(도 22C, F).
<실험예 16> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 리포좀의 항암 효능 평가 : MTT 분석
본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 파클릭탁셀 리포좀의 표적세포 내 항암제 전달 효율에 관한 평가를 위하여 하기와 같은 과정으로 실험을 수행하였다. KB 세포주에 비교예 4의 파클리탁셀이 봉입된 리포좀과 실시예 25의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)을 포함하는 파클릭탁셀 리포좀을 파클릭탁셀의 농도별로 각각 처리하고 세포 내로 전달된 항암제에 의한 암 세포의 생존율을 평가하였다. 항암 효능은 3-(4,5-디메틸티아졸-2-일)-2,5-디페닐 테트라졸륨 브로마이드(MTT) 시약에 의한 방법으로 세포 생존율을 측정하여 평가하였다.
구체적으로, 세포를 웰 당 3×104 세포가 되도록 48 웰에 분주하고 48시간 배양한 후 비교예 4와 실시예 25를 각각 웰 플래이트에 첨가하여 37℃의 CO2 세포배양기에서 24시간 동안 배양하였다. 그 후 MTT 용액(Sigma, USA)을 배지의 10%가 되도록 가하고, 2시간 더 배양한 다음 상층액을 제거하고 DMSO를 첨가한 후에 엘라이져 리더(ELISA reader, Sunrise-Basic TECAN, MAnnedorf, Switzerland)를 이용하여 570nm에서 그 흡광도를 측정하였다. 대조군으로는 아무것도 처리하지 않은 세포가 사용되었다.
도 23은 상기의 파클리탁셀이 봉입된 리포좀 제형들의 항암 효능을 평가한 결과로 비교예 4의 파클리탁셀 리포좀보다 실시예 25의 DSPE-PEG2000-AMD-6이 포함된 리포좀 조성이 더 증강된 암 세포 사멸효과를 나타낸다는 것을 보여준다. 이러한 도 23의 항암 효능 결과로부터 실시예 25의 DSPE-PEG2000-AMD-6을 포함하는 리포좀의 경우 CXCR4를 과발현하는 KB 세포주에 보다 효과적으로 결합하여 파클리탁셀을 암 세포내로 전달함으로써 증강된 항암 효능을 나타내는 것을 알 수 있다.
<실험예 17> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 고분자 나노입자의 항암 효능 평가 : MTT 분석
본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 파클릭탁셀 고분자 나노입자의 표적세포 내 항암제 전달 효율에 관한 평가를 하기 위하여 SCC7 세포에 비교예 5의 파클리탁셀이 봉입된 고분자 나노입자와 실시예 26의 CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 파클릭탁셀 고분자 나노입자를 파클릭탁셀의 농도별로 각각 처리하고 상기 실험예 16과 같은 방법을 사용하여 MTT 실험으로 세포 생존율을 측정하여 평가하였다.
도 24에 나타난 바와 같이, 비교예 5의 파클리탁셀 고분자 나노입자보다 실시예 26의 DSPE-PEG2000-AMD-6이 포함된 고분자 나노입자 조성이 더 증강된 암 세포 사멸효과를 나타낸다는 것을 보여준다. 이러한 도 24의 항암 효능 결과로부터 실시예 26의 DSPE-PEG2000-AMD6을 포함하는 고분자 나노입자의 경우 CXCR4를 과발현하는 KB 세포주에 보다 효과적으로 결합하여 파클리탁셀을 암 세포내로 전달함으로써 증강된 항암 효능을 나타내는 것을 알 수 있다.
<실험예 18> CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물 (IR-808-PEG2000-AMD-6)을 포함하는 그래핀 나노시트의 광열 항암 효능 평가 : MTT 분석
본 발명의 CXCR4 결합성 사이클램 근적외선 유도체 화합물을 포함하는 그래핀 나노시트의 광열 항암 효능을 평가하기 위하여 SCC7 세포주에 비교예 6의 그래핀 나노시트와 실시예 24의 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물(IR-808-PEG2000-AMD-6)을 포함하는 그래핀 나노시트를 각각 처리하고 세포 내로 전달된 그래핀 나노시트에 근적외선을 조사하여 광열에 의한 암 세포의 생존율을 평가하였다. 항암 효능은 MTT 시약에 의한 방법으로 세포 생존율을 측정하여 평가하였다.
세포를 웰 당 3×104 세포가 되도록 48 웰에 분주하고 48시간 배양한 후 비교예 6과 실시예 24을 각각 웰 플레이트에 첨가하여 37℃의 CO2 세포배양기에서 4시간 동안 배양하였다. 배지를 한번 갈아 준 후, 근적외선을 1.5W의 세기로 세포에 조사한 뒤, 2시간 후에 MTT 실험을 수행하였고, 대조군으로는 아무것도 처리하지 않은 세포가 사용되었다.
도 25에 나타난 바와 같이, 비교예 6의 그래핀 나노시트보다 실시예 24의 IR-808-PEG2000-AMD-6이 포함된 그래핀 나노시트가 더 증강된 광열에 의한 암 세포 사멸효과를 나타낸다는 것을 보여준다. 이러한 도 25의 광열에 의한 항암 효능 결과로부터 실시예 24의 IR-808-PEG2000-AMD-6을 포함하는 그래핀 나노시트의 경우 CXCR4를 과발현하는 SCC7 세포주에 보다 효과적으로 결합하여 더 많은 그래핀 나노시트를 암 세포내로 전달함으로써 더 증강된 광열에 의한 항암 효능을 나타내는 것을 알 수 있다.
<실험예 19> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 리포좀의 종양동물모델에서의 전달능 평가 : 광학 이미지 (the eXplore Optix System)
본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하면서, 형광지질을 함유하는 고분자 나노입자의 표적세포 내 전달 효율을 평가하기 위해, KB 세포주를 누드 마우스에 피하 접종하여 종양 모델을 만들고, 종양 모델이 생성된 후 비교예 1의 형광지질을 함유하는 리포좀과 실시예 11의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)을 포함하는 리포좀을 각각 처리하고 2시간 후 암 세포 내로 전달된 형광 물질의 형광 강도를 정량적으로 측정한 뒤 장기들을 적출하여 리포좀의 생체 분포를 확인하였다.
도 26A의 이미지에서 실시예 11의 DSPE-PEG2000-AMD-6을 포함하는 리포좀의 경우 비교예 2의 리포좀에 비해 종양에 더 축적된 것을 확인하였다. 도 26B는 형광 강도를 정량화시킨 것으로 실시예 11의 DSPE-PEG2000-AMD-6을 포함하는 리포좀의 경우 비교예 2의 리포좀에 비해 약 2 배 정도의 고분자 나노입자가 더 종양으로 전달되었음을 확인하였다. 도 26C의 이미지에서도 DSPE-PEG2000-AMD-6을 포함하는 리포좀이 종양에 더 많이 전달된 것을 확인하였으며 또한 리포좀이 다른 장기보다 종양으로만 특이적으로 이동하는 것을 확인하였다.
<실험예 20> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 고분자 나노입자의 종양동물모델에서의 전달능 평가 : 광학 이미지 (the eXplore Optix System)
본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하고, 형광물질인 오레곤그린488-팍클리탁셀을 함유하는 고분자 나노입자의 표적세포 내 전달 효율을 평가하기 위해, 상기 실험예 19에 기재된 방법과 동일하게 종양 모델을 만들고, 비교예 2의 형광물질을 함유하는 고분자 나노입자와 실시예 16의 CXCR4 결합성 사이클램 지질 유도체 화합물(DSPE-PEG2000-AMD-6)을 포함하는 고분자 나노입자를 각각 처리하여 암 세포 내로 전달된 형광물질의 형광 강도를 정량적으로 측정하였다.
도 27A의 이미지에서 실시예 16의 DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자의 경우 비교예 2의 고분자 나노입자에 비해 종양에 더 축적된 것을 확인하였다. 도 27B는 형광 강도를 정량화 시킨 것으로 실시예 16의 DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자의 경우 비교예 2의 고분자 나노입자에 비해 약 2 배 정도의 고분자 나노입자가 더 종양으로 전달되었음을 확인하였다.
<실험예 21> CXCR4 결합성 사이클램 지질 유도체 화합물 (DSPE-PEG2000-AMD-6)을 포함하는 고분자 나노입자의 종양동물모델에서의 전달능 평가 (ex vivo) : 광학 이미지 (the eXplore Optix System)
본 발명의 CXCR4 결합성 사이클램 지질 유도체 화합물을 포함하는 고분자 나노입자를 종양동물모델에서의 종양 세포 내 전달 효율에 관한 평가를 하기 위하여, KB 세포주를 누드 마우스에 피하 접종하여 종양 모델을 만들고, 종양 모델이 생성된 후 비교예 2과 실시예 16의 형광 물질 오레곤그린488-팍클리탁셀을 구성성분으로 함유하는 고분자 나노입자를 각각 종양동물모델에 처리하였다. 처리한 뒤 2시간, 24시간 후에 장기들을 적출하여 고분자 나노입자의 생체 분포를 형광 강도를 정량적으로 측정하였다.
도 28A는 종양동물모델에 실시예 16의 DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자와 비교예 2의 고분자 나노입자를 처리한 후 2시간 후에 생체 분포를 적출한 이미지로, 생체 분포에서는 모두 종양으로 많이 축적되는 결과를 보였지만, 24시간 후에 생체 분포 이미지에서는 DSPE-PEG2000-AMD-6을 포함하는 고분자 나노입자가 종양에 더 많이 전달된 것을 확인하였다(도 28B).
<실험예 22> CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물 (IR-808-PEG2000-AMD-6)을 포함하는 그래핀 나노시트의 종양동물모델에서의 전달능 평가 (in vivo) : 광학 이미지 (the eXplore Optix System)
본 발명의 CXCR4 결합성 사이클램 근적외선 형광물질 유도체 화합물을 포함하는 그래핀 나노시트를 종양동물모델에서의 종양 세포 내 전달 효율에 관한 평가를 하기 위하여, KB 세포주를 누드 마우스에 피하 접종하여 종양 모델을 만들고, 종양 모델이 생성된 후 비교예 6과 실시예 24의 IR-808과 IR-808-PEG2000-AMD-6를 π-π 결합으로 결합시킨 그래핀 나노시트를 종양동물모델에 처리하였다. 처리한 뒤 24시간 후에 장기들을 적출하여 그래핀 나노시트의 생체 분포를 형광 강도를 정량적으로 측정하였다.
도 29A의 이미지에서 실시예 24의 IR-808-PEG2000-AMD-6을 포함하는 그래핀 나노시트의 경우 비교예 6의 그래핀 나노시트에 비해 종양에 더 축적된 것을 확인하였다. 도 29B는 형광 강도를 정량화 시킨 것으로 실시예 24의 IR-808-PEG2000-AMD-6을 포함하는 그래핀 나노시트의 경우 비교예 6의 그래핀 나노시트에 비해 약 2 배 정도의 고분자 나노입자가 더 종양으로 전달되었음을 확인하였다.
본 발명은 항암요법 분야에서 사용할 수 있다.

Claims (15)

  1. 하기 화학식 1로 표현되는 화합물:
    [화학식 1]
    Figure PCTKR2016000478-appb-I000030
    [화학식 2]
    Figure PCTKR2016000478-appb-I000031
    상기 화학식 1 및 2에서,
    A는 지질, 생분해성 고분자, 그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물 및 방향족 고리를 갖는 펩타이드의 올리고머로 이루어진 군에서 선택된 하나 이상의 소수성 물질을 나타내고,
    L은 스페이서이며,
    B는 상기 화학식 2의 화합물을 나타내고, 여기서, R1 내지 R6은 각각 독립적으로, 수소 또는,
    Figure PCTKR2016000478-appb-I000032
    를 나타내고, 여기서, R7 내지 R9는 각각 독립적으로 수소 또는
    Figure PCTKR2016000478-appb-I000033
    이다.
  2. 제1항에 있어서,
    지질은 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민(1,2-distearoly-sn-glycero-3-phosphoethanolamine, DSPE), 포스파티딜에탄올아민(phosphatidylethanolamine, PE), 포스파티딜콜린(phosphatidylcholine, PC), 포스파티딜세린(phosphatidylserine, PS), 포스파티딜글리세롤(phosphatidylglycerol, PG) 및 콜레스테롤(cholesterol)로 이루어진 군에서 선택된 하나 이상인 화합물.
  3. 제1항에 있어서,
    생분해성 고분자는 폴리락트산(polylactic acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리카프로락톤(polycaprolactone, PCL), 폴리(카프로락톤-락타이드) 랜덤 공중합체(PCLA), 폴리(카프로락톤-글리콜라이드) 랜덤 공중합체(PCGA) 또는 폴리(락타이드-글리콜라이드) 랜덤 공중합체(PLGA) 중 어느 하나인 화합물.
  4. 제1항에 있어서,
    그래핀과 π-π 결합성이 있고 근적외선 파장에서 흡광도를 갖는 저분자 화합물은 헵타마틴 다이 IR-808(heptamathine dye IR-808), 헵타마틴 다이 IR-825(heptamathine dye IR-825), 인도시아닌 그린(Indocyanine Green, ICG), 클로린 e6(chlorin e6, Ce6), 미톡산트론(mitoxanthrone) 및 독소루비신(doxorubicin, DOX)으로 이루어진 군에서 선택된 하나 이상인 화합물.
  5. 제1항에 있어서,
    방향족 고리를 갖는 펩타이드의 올리고머는 페닐알라닌 올리고머 및 트립토판 올리고머로 이루어진 군에서 선택된 하나 이상인 화합물.
  6. 제1항에 있어서,
    스페이서는 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 폴리글리세롤, 폴록사머, 폴리톡실레이티드 탈로우 아민(polythoxylated tallow amine, POEA) 및 폴리에틸렌이민으로 이루어진 군에서 선택된 하나 이상인 화합물.
  7. 제1항에 있어서,
    화학식 2의 화합물은 하기 화학식 2a 내지 2e 중 어느 하나로 표시되는 화합물:
    [화학식 2a]
    Figure PCTKR2016000478-appb-I000034
    [화학식 2b]
    Figure PCTKR2016000478-appb-I000035
    [화학식 2c]
    Figure PCTKR2016000478-appb-I000036
    [화학식 2d]
    Figure PCTKR2016000478-appb-I000037
    [화학식 2e]
    Figure PCTKR2016000478-appb-I000038
  8. 제7항에 있어서,
    화학식 1의 화합물은 하기 화학식 1a 내지 1g 중 어느 하나로 표시되는 화합물:
    [화학식 1a]
    Figure PCTKR2016000478-appb-I000039
    [화학식 1b]
    Figure PCTKR2016000478-appb-I000040
    [화학식 1c]
    Figure PCTKR2016000478-appb-I000041
    [화학식 1d]
    Figure PCTKR2016000478-appb-I000042
    [화학식 1e]
    Figure PCTKR2016000478-appb-I000043
    [화학식 1f]
    Figure PCTKR2016000478-appb-I000044
    [화학식 1g]
    Figure PCTKR2016000478-appb-I000045
  9. 제1항의 화합물을 포함하는 표적 세포의 CXCR4 인지형 나노복합체.
  10. 제9항에 있어서,
    표적 세포의 CXCR4 인지형 나노복합체는 리포좀, 미셀 및 고분자 나노입자로 이루어진 군에서 선택된 제형을 가진 것인 표적 세포의 CXCR4 인지형 나노복합체.
  11. 제9항에 있어서,
    표적 세포의 CXCR4 인지형 나노복합체는 제1항의 화합물이 π-π 결합을 통해 그래핀(graphene), 산화 그래핀(graphene oxide) 및 환원형 산화 그래핀(reduced graphene oxide) 중에서 선택된 그래핀 소재 나노시트에 결합된 형태의 제형을 가진 것인 표적 세포의 CXCR4 인지형 나노복합체.
  12. 제9항의 표적 세포의 CXCR4 인지형 나노복합체; 및
    치료제 및 진단제로 이루어진 군에서 선택된 하나 이상의 약물을 포함하는 의약 조성물.
  13. 제12항에 있어서,
    치료제는 항암 화학요법제인 의약 조성물.
  14. 제13항에 있어서,
    항암 화학요법제는 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신 (doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 발루비신(valubicin), 미톡산트론(mitoxantrone), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine) 및 빈크리스틴(vincristine)으로 이루어진 군에서 선택된 하나 이상인 의약 조성물.
  15. 제13항에 있어서,
    진단제는 근적외선 계열의 형광물질, 방사성의약품 또는 조영제인 의약 조성물.
PCT/KR2016/000478 2015-01-16 2016-01-15 사이클램 유도체 화합물 및 이의 약학적 용도 WO2016114634A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150008178 2015-01-16
KR10-2015-0008178 2015-01-16
KR1020160005420A KR101759688B1 (ko) 2015-01-16 2016-01-15 사이클램 유도체 화합물 및 이의 약학적 용도
KR10-2016-0005420 2016-01-15

Publications (2)

Publication Number Publication Date
WO2016114634A2 true WO2016114634A2 (ko) 2016-07-21
WO2016114634A3 WO2016114634A3 (ko) 2016-10-27

Family

ID=56406548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000478 WO2016114634A2 (ko) 2015-01-16 2016-01-15 사이클램 유도체 화합물 및 이의 약학적 용도

Country Status (1)

Country Link
WO (1) WO2016114634A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586280A (zh) * 2017-11-03 2018-01-16 梯尔希(南京)药物研发有限公司 一种普乐沙福杂质的制备方法
EP3728137A4 (en) * 2017-12-22 2021-12-08 North Carolina State University POLYMERIC FLUOROPHORES, COMPOSITIONS OF THIS, AND METHOD FOR THEIR MANUFACTURE AND USE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875410B1 (fr) * 2004-09-23 2012-11-16 Guerbet Sa Composes de diagnostique pour le ciblage de recpteur a chimiokines
AU2006280945A1 (en) * 2005-08-19 2007-02-22 Genzyme Corporation Methods to enhance chemotherapy
EP2149567A1 (en) * 2008-07-18 2010-02-03 Bayer Schering Pharma Aktiengesellschaft Cyclic polyamines for binding phosphatidylserine
WO2013056250A2 (en) * 2011-10-14 2013-04-18 Wayne State University Cxcr4 inhibiting carriers for nucleic acid delivery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107586280A (zh) * 2017-11-03 2018-01-16 梯尔希(南京)药物研发有限公司 一种普乐沙福杂质的制备方法
EP3728137A4 (en) * 2017-12-22 2021-12-08 North Carolina State University POLYMERIC FLUOROPHORES, COMPOSITIONS OF THIS, AND METHOD FOR THEIR MANUFACTURE AND USE

Also Published As

Publication number Publication date
WO2016114634A3 (ko) 2016-10-27

Similar Documents

Publication Publication Date Title
WO2012002759A2 (ko) 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도
WO2010126319A2 (ko) 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자
WO2018030789A1 (ko) 세포투과성이 향상된 펩티드 핵산 복합체 및 이를 포함하는 약학적 조성물
WO2018182341A1 (ko) 피롤로벤조디아제핀 이량체 전구체 및 이의 리간드-링커 접합체 화합물
WO2011002239A2 (ko) 포유류의 유핵세포에서 유래된 마이크로베시클 및 이의 용도
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
WO2018165913A1 (zh) 靶向nkg2dl的特异性嵌合抗原受体及其car-t细胞以及它们的应用
WO2016114634A2 (ko) 사이클램 유도체 화합물 및 이의 약학적 용도
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
CN109464654B (zh) 鹅膏毒肽类抗体偶联物
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2019156366A1 (ko) 핵산 복합체를 함유하는 피부 투과성 전달체 및 이의 용도
WO2020222461A1 (ko) 면역항암 보조제
US20100331355A1 (en) Substituted Quinolines for the Treatment of Cancer
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2009107971A2 (ko) 포스파티딜세린과 특이적으로 결합하는 폴리펩티드 및 이의 용도
WO2016111602A2 (ko) 신규 유기 화합물 및 이를 포함하는 근적외선 형광 조영제, 그리고 조영제의 나노입자화 방법
RU2697519C1 (ru) Средство пептидной природы, включающее псма-связывающий лиганд на основе производного мочевины, способ его получения и применение для получения конъюгата с лекарственным и диагностическим агентом
WO2022086257A1 (ko) 항암제를 포함한 미토콘드리아 및 이의 용도
WO2021194228A1 (ko) 암의 예방 또는 치료용 약학적 조성물
WO2010128793A2 (ko) 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체
WO2021137611A1 (ko) 나노 구조체가 부착된 면역세포
WO2019034175A1 (zh) 一种非天然鹅膏毒肽类抗体偶联物
WO2021066573A1 (ko) 신규 화합물 및 이의 자가면역질환 치료 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737598

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737598

Country of ref document: EP

Kind code of ref document: A2