WO2010126319A2 - 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자 - Google Patents

항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자 Download PDF

Info

Publication number
WO2010126319A2
WO2010126319A2 PCT/KR2010/002718 KR2010002718W WO2010126319A2 WO 2010126319 A2 WO2010126319 A2 WO 2010126319A2 KR 2010002718 W KR2010002718 W KR 2010002718W WO 2010126319 A2 WO2010126319 A2 WO 2010126319A2
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
lipid
antigen
glycero
liposomes
Prior art date
Application number
PCT/KR2010/002718
Other languages
English (en)
French (fr)
Other versions
WO2010126319A3 (ko
Inventor
오유경
장래성
유용희
김원기
Original Assignee
고려대학교 산학협력단
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 서울대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2010126319A2 publication Critical patent/WO2010126319A2/ko
Publication of WO2010126319A3 publication Critical patent/WO2010126319A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0082Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion micelle, e.g. phospholipidic micelle and polymeric micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0084Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion liposome, i.e. bilayered vesicular structure

Definitions

  • the present invention provides a novel lipopeptide comprising a peptide (Fc-binding peptide) that specifically binds to an Fc region of an antibody, a lipid nanoparticle comprising the same, an antigen-recognized lipid nanoparticle in which an antibody is non-covalently bound to the lipid nanoparticle.
  • a pharmaceutical composition comprising particles, said antigen-recognized lipid nanoparticles and drugs, and the use of said lipopeptides, said lipid nanoparticles or said antigen-recognized lipid nanoparticles for the preparation of antigen-specific drug carriers.
  • these drugs act mainly on fast-proliferating cells, and spread throughout the body's bloodstream and spread all over the body, rapidly proliferating normal cells other than cancer cells, such as bone marrow cells, heads, and It affects hair follicle cells that make hair grow faster, genital cells that produce eggs and sperm, and gastrointestinal mucosa, which can cause side effects.
  • Drugs for other refractory diseases also have several side effects due to the lack of the ability to target only target diseased cells.
  • biopharmaceuticals such as proteins or nucleic acids, have a disadvantage in that they cannot reach their intended state in the original state to be easily decomposed in the blood and thus have no effect.
  • Liposomes which have been widely studied among lipid nanoparticles, are composed of bilayers of phospholipids, which are basic structures of biological membranes, and point to microvesicles having a hydrophilic space inside and a closed double lipid membrane outside. Liposomes can contain water-soluble molecules (including DNA) or drugs in the central hydrophilic space, and lipid-lipid membranes can be attached with fat-soluble drugs or can bind positively or negatively charged materials.
  • Phospholipids are amphipathic substances that have a bipolar layer of anionic or amphoteric ions and two nonpolar fat-soluble chains with varying degrees of unsaturation of about 16 hydrocarbons. To form.
  • lipid nanoparticles target only target disease cells, side effects caused by drug delivery to non-target cells or tissues can be minimized, and a diagnostic agent can be enclosed to enable non-invasive diagnosis of target disease cells or tissues. Therefore, there is a need for the development of drug carriers that target receptors that do not exist in non-target cells or that are overexpressed on the surface of target disease cells with low expression levels.
  • Targeting of target cells via lipid nanoparticles can be accomplished by modifying the lipid nanoparticles to selectively deliver their effective amount to the target cells.
  • antigen-recognizing lipid nanoparticles in which antibodies that target molecules specifically overexpressed in target cells are modified on the surface.
  • Such antigen-recognized lipid nanoparticles have the advantage of selectively sending various therapeutic or diagnostic agents to disease cells or tissues that overexpress antigen.
  • methods for preparing liposomes containing an anti-HER2 antibody targeting HER2, a receptor that is overexpressed in tumor cells, and enclosing anticancer agents such as doxorubicin have been used. 2006-0269542).
  • lipid nanoparticles Existing antigen-recognized lipid nanoparticles have been produced predominantly by covalent conjugation methods.
  • the covalent conjugation method forms covalent bonds between lipids and respective antibodies, which is time-consuming and inefficient in preparing antigen- recognition lipid nanoparticles.
  • the antibody since the antibody is non-selectively covalently bonded to the surface of the lipid nanoparticles as shown in FIG. 1, all the bound antibodies cannot have the right orientation and recognize the Fc region or antigen of the antibody. If there is an amino acid capable of reacting with the lipid in both Fab regions, binding between the Fab region and the lipid of the antibody may be achieved.
  • the Fab region of the antibody is covalently bound to the surface of the lipid nanoparticles, the antibody does not recognize the antigen and thus does not perform its intended function, and thus the number and antigen recognition ability of the antibody molecules bound to the lipid nanoparticles. The difference between them has been raised as a problem.
  • An object of the present invention is to provide an antigen-recognized lipid nanoparticle capable of efficiently recognizing an antigen by selectively binding the lipid nanoparticle to the Fc region of an antibody.
  • an object of the present invention is to provide a novel lipopeptide having a peptide and a lipid specifically bound to the Fc region of an antibody, and a lipid nanoparticle comprising the same.
  • Another object of the present invention is to provide an antigen-recognized lipid nanoparticle in which an antibody is non-covalently bound to a lipid nanoparticle including an Fc-binding lipopeptiide of an antibody, and a pharmaceutical composition comprising the same.
  • the present invention provides an Fc region-binding lipopeptide of an antibody in which an Fc-binding peptide (FcBP) of the antibody and a lipid are covalently bound to the antibody.
  • FcBP Fc-binding peptide
  • 2A is a diagram schematically illustrating the Fc region-binding lipopeptides of the antibodies according to the present invention. As can be seen in FIG. 2A, the Fc region binding peptide of the antibody is covalently bound to the lipid to allow the Fc region of the antibody to selectively bind to the lipid via the Fc region binding peptide of the antibody.
  • the Fc region binding peptide of an antibody means a peptide capable of binding to the Fc region of any antibody.
  • Fc region binding peptides of such antibodies are known in the art.
  • Conventionally known Fc region binding peptides of antibodies have been used for the purpose of proliferating the half-life of a biological material by binding to a biological material such as a protein, or for labeling an antigen with a fluorescent material by binding to a fluorescent material. .
  • the Fc region binding peptide of the antibody was combined with lipids to prepare the Fc region binding lipopeptides of the antibody, which has not been used to impart the target directivity of the antigen recognition lipid nanoparticles.
  • any of the Fc region binding peptides of the antibody can be used as long as the peptide can selectively recognize the Fc region of the antibody and efficiently bind thereto.
  • DCAWHLGELVWCT WL DeLano, MH Ultsch, AM de Vos, JA Wells, Convergent solutions to binding at a protein-protein interface, Science 287 (2000) 1279-1283.
  • HWRGWV HWRGWV
  • HYFKFD H. Yang, PV Gurge, RG Carbonell, Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography, J. Chromatogr. A 1216 (2009) 910-918.
  • the Fc region selective binding peptide of the present invention is, for example, a peptide having an amino acid sequence represented by the following SEQ ID NOS: 1 to 5, which is one of the Fc region binding peptides of the known antibody, or a branched form having the amino acid sequence represented by the following Structural Formula 1. It may be a peptide.
  • peptide having the amino acid sequence of SEQ ID NO: 1 two cysteines form a disulfide bond with each other, thus showing a U-shaped structure.
  • the peptide having the amino acid sequence of SEQ ID NO: 2 also shows a U-shaped structure because the second cysteine and the third cysteine form disulfide bonds with each other.
  • the branched peptide of Formula 1 is the first lysine (Lysine) of SEQ ID NO: 6 (GKKYTR) is combined with the first lysine (Lysine) of SEQ ID NO: 7 (KYTR), the first lysine (Lysine) of SEQ ID NO: 7 (KYTR) The first tyrosine of SEQ ID NO: 8 (YTR) is bound, and the second Lysine of SEQ ID NO: 6 (GKKYTR) is bound to the first Tyrosine of SEQ ID NO: 9 (YTR). This is the N terminus.
  • Peptides having the amino acid sequence of SEQ ID NO: 1 or peptides having the amino acid sequence of SEQ ID NO: 2 may be amidated at their C termini. Amidation can be performed to counteract the negative charge of the C-terminal carboxyl group and to prevent the C-terminal carboxyl group from binding to the N-terminal amine group of the other peptide.
  • the Fc region binding peptide and the lipid of the antibody are covalently linked.
  • the mode of covalent binding of the antibody with the Fc region binding peptide and the lipid is not particularly limited. However, since the lipopeptides of the present invention are used for the formation of lipid nanoparticles, the lipopeptides are preferably covalently bonded to the ends of the head groups of the lipids.
  • the Fc region binding peptide of an antibody may be covalently linked with a lipid via its sulfhydryl group (-SH) or N-terminal amine group (-NH 2 ).
  • Lipids used for the preparation of the lipopeptides of the present invention are not limited as long as they are capable of covalently binding to the Fc region binding peptide of the antibody.
  • lipids having functional groups that are easy to covalently bind with Fc region binding peptides can be used.
  • the lipid is -COOH, -CHO, -NH 2 , -SH,-which can bind to the sulfhydryl group (-SH) or the N-terminal amine group (-NH 2 ) of the Fc region binding peptide.
  • One or more selected from the group consisting of a mid group and a -alkyl group may have a functional group or may be modified to have such a functional group.
  • Such lipids can be purchased and used by synthesis or commercially available through known methods.
  • the lipid may be a lipid containing a saturated or unsaturated hydrocarbon having 3 to 24 carbon atoms.
  • a lipid comprising a saturated or unsaturated hydrocarbon having 14 to 20 carbon atoms, which is the carbon number of the lipid generally used for preparing lipid nanoparticles.
  • the lipid is a carboxyl group, maleimide group, PDP (pyri) capable of binding to the sulfhydryl group (-SH) or N-terminal amine group (-NH 2 ) of the Fc region binding peptide
  • PDP pyri
  • a functional group such as dithio group substituted with dill
  • it is a lipid having the above functional group capable of directly covalently binding an Fc region binding peptide to the hydrophilic portion of the lipid, or a lipid into which the functional group can be further introduced using a linker.
  • the lipid may be a compound of Formula 1 below.
  • R 1 and R 2 each independently represent alkyl having 3 to 24 carbon atoms or alkenyl having 3 to 24 carbon atoms,
  • X represents -R 3 -NH-CO-
  • R 3 represents alkylene having 1 to 6 carbon atoms, n represents 0 or 1,
  • Y represents alkylene having 1 to 12 carbon atoms,-(OCH 2 CH 2 ) p- , or -R 4 -R 5- ,
  • R 4 and R 5 each independently represent alkylene of 1 to 6 carbon atoms, cycloalkylene of 3 to 8 carbon atoms, or arylene of 5 to 12 carbon atoms,
  • Z represents -R 6 -NH-CO-R 7 -or -R 8 -R 9- ,
  • R 6 and R 7 each independently represent a single bond, alkylene having 1 to 6 carbon atoms or —O—, and R 8 and R 9 each independently represent alkylene having 1 to 6 carbon atoms or —O— and m Represents 0 or 1,
  • Q represents a dithio group substituted with -COOH, -SH, succinimidyl group, maleimidyl group or pyridyl.
  • the compound of Formula 1 includes 3- (N-succinimidyloxyglutaryl) aminopropyl, polyethylene glycol-carbamyl distearoylphosphatidylethanolamine (3- (N-succinimidyloxyglutaryl) aminopropyl, polyethyleneglycol-carbamyl distearoylphosphatidylethanolamine);
  • Consisting of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- (dodecanoyl) (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- (dodecanoyl)) It may be selected from the group, but is not limited thereto.
  • the Fc region binding lipopeptides of the antibody can be easily prepared by reacting the Fc region binding peptide with the lipid in the presence of an organic solvent for 1 to 10 hours.
  • the ratio of the peptide and the lipid for the preparation of the Fc region-binding lipopeptides of the antibody is not particularly limited, but may be 1: 0.5 to 1: 2 equivalents.
  • the organic solvent is not particularly limited, but solvents such as dimethylformamide, dichloromethane, acetonitrile and chloroform may be used.
  • EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • NHS N -Hydroxysuccinimide
  • CMC cyclohexyl-3- (2-morpholinoethyl) carbodiimide
  • DCC Dicyclohexyl carbodiimide
  • one or more binders such as CDI (N, N 'Carbonyldiimidazole) may be used, and these binders may be added in amounts of 0.5 to 3 equivalents of lipids, for example, about 1.5 equivalents. have.
  • the amine group or sulfhydryl group of the Fc region-binding peptide and the carboxy group, maleimide group, or PDP group of the lipid are covalently bonded through an amide bond, a thioether bond, or a disulfide bond to bind the Fc region of the antibody.
  • the method for producing a lipopeptide is specifically illustrated.
  • FIG. 2B is a diagram schematically illustrating a lipid nanoparticle including an Fc region-binding lipopeptiide of an antibody according to the present invention.
  • the Fc region binding lipopeptides of the antibody can be used as part of the lipids that make up the lipid nanoparticles, such as liposomes, to provide the lipid nanoparticles with a position to which the Fc region of the antibody can bind.
  • Lipid nanoparticles comprising the Fc region-binding lipopeptides of such antibodies can be mixed with a desired antibody when the user wants to give a target.
  • the Fc region of the antibody selectively binds, regardless of the type of antibody It is available and is very useful.
  • the Fc region of the antibody having a target for a specific antigen is expressed in the Fc region binding lipopeptide of the antibody included in the lipid nanoparticle.
  • the antibody By binding to the region binding peptide, the antibody has the right orientation, which makes the lipid nanoparticles an excellent target.
  • the lipid nanoparticles are not limited thereto, but may have a formulation selected from the group consisting of liposomes, micelles, emulsions, and solid lipid nanoparticles. have.
  • auxiliary lipids selected from positively charged lipids, neutral lipids and negatively charged lipids may be additionally used to prepare lipid nanoparticles having various formulations.
  • positively charged lipids and neutral lipids for the production of cationic liposomes neutral lipids for the preparation of neutral liposomes
  • negatively charged lipids and neutral lipids for the production of anionic liposomes the Fc region selective binding liposomes of the present invention. It can be prepared by mixing the peptides on an organic solvent and evaporating all the organic solvents and then hydrating with a neutral pH buffer.
  • Positively charged lipids, neutral lipids and negatively charged lipids that can be used for the preparation of lipid nanoparticles are known in the art.
  • positively charged lipids include 1,2-dimyristoyl-3-trimethylammonium-propane, 1,2-dipalmitoyl-3-trimethylammoniumpropane (1 , 2-dipalmitoyl-3-trimethylammonium-propane), 1,2-disteroyl-3-trimethylammoniumpropane (1,2-distearoyl-3-trimethylammonium-propane), 1,2-dioleoyl-3-trimethyl Ammonium propane (1,2-dioleoyl-3-trimethylammonium-propane), 1,2-dimyristoyl-3-dimethylammonium-propane (1,2-dimyristoyl-3-dimethylammonium-propane), 1,2-di Palmitoyl-3-dimethylammonium propane (1,2-dipalmitoyl-3-dimethylammonium-propane), 1,2-stearoyl-3-dimethylammonium-propane (1,2-distearoyl
  • Neutral lipids include La-phosphatidylcholine, 1,2-propionoyl-sn-glycero-3-phosphocholine (1,2-propionoyl-sn-glycero-3-phosphocholine), 1,2- Butanoyl-sn-glycero-3-phosphocholine (1,2-butanoyl-sn-glycero-3-phosphocholine), 1,2-pentanoyl-sn-glycero-3-phosphocholine (1,2 -pentanoyl-sn-glycero-3-phosphocholine), 1,2-caproyl-sn-glycero-3-phosphocholine (1,2-caproyl-sn-glycero-3-phosphocholine), 1,2-hepta Noyl-sn-glycero-3-phosphocholine (1,2-heptanoyl-sn-glycero-3-phosphocholine), 1,2-capriloyl-sn-glycero-3-phosphocholine (1,2 -
  • Phosphocholine (1,2-lauroyl-sn-glycero-3-phosphocholine), 1,2-tridecanoyl-sn-glycero-3-phosphocholine (1,2-tridecanoyl-sn-glycero-3- phosphocholine), 1,2-myristoyl-sn-glycero-3-phosphocholine (1,2-myristoyl-sn-glycero-3-phosphocholine), 1,2-pentadecanoyl-sn-glycero- 3-phosphocholine (1,2-pentadecanoyl-sn-glycero-3-phosphocholine), 1,2-palmitoyl-sn-glycero-3-phosphocholine (1,2-palmitoyl-sn-glycero-3 -phosphocholine), 1,2-heptadecanoyl-sn-glycero-3-phosphocholine (1,2-heptadecanoyl-sn-glycero-3-phosphocholine), 1,2-stea
  • negatively charged lipids include La-phosphatidylglycerol, 1,2-dicaproyl-sn-glycero-3-phosphoglycerol (1,2-dicaproyl-sn-glycero-3-phosphoglycerol), 1, 2-dioctanoyl-sn-glycero-3-phosphoglycerol (1,2-dioctanoyl-sn-glycero-3-phosphoglycerol), 1,2-dicapryl-sn-glycero-3-phosphoglycerol ( 1,2-dicapryl-sn-glycero-3-phosphoglycerol), 1,2-dilauroyl-sn-glycero-3-phosphoglycerol (1,2-dilauroyl-sn-glycero-3-phosphoglycerol), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (1,2-dimyristoyl-sn-glycero-3-phosphoglycerol), 1,2-
  • the lipid nanoparticles may further comprise a surfactant.
  • surfactants can be used with the lipopeptides and auxiliary lipids of the present invention for the formation of micelle or emulsion formulations.
  • Such surfactants may use one or more selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • nonionic surfactants include polysorbate-based, such as Tween 20 or Tween 80; Alkylphenol polyethylene oxides such as Triton-X-100; Polyethylene glycol monooleyl ether, ethylene glycol monododecyl ether, diethylene glycol monohexyl ether, triethylene glycol monododecyl ether alkyl (poly) ethylene glycol systems such as ether); Phloxamers; Alkyl polyglucosides such as octyl glucoside or cyclohexylmethyl -D-maltoside; Alkylamine oxides such as lauryldimethylamine-oxide or dodecyl dimethylamine oxide; Pentaerythrityl palmitate or nonanoylmethylglucamine (N-nonanoyl-N-methylglucamine).
  • polysorbate-based such as Tween 20 or Tween 80
  • Alkylphenol polyethylene oxides such as Triton-X-
  • Cationic surfactants include trimethylhexadecyl ammonium chloride, quaternary ammonium ions, dodecyltrimethyl ammonium bromide, cetyl trimethylammonium bromide, or hexadecyl ammonium bromide hexadecyl trimethyl ammonium bromide).
  • Zwitterionic surfactants include dodecyl betaine.
  • Anionic surfactants are also surfactants or laurosalcosine sodium salts containing sulfates, sulfonates or carboxylate anions such as 3- (N, Ndimethylpalmitylammonio) propane sulfonate (N) salts of fatty acids such as lauroylsarcosine sodium salt).
  • Drugs such as therapeutic or diagnostic agents, that are intended to be delivered to target cells, may be enclosed into the formulation or bound to the surface of the formulation in the preparation of lipid nanoparticles.
  • fluorescent lipids, anticancer agents, siRNAs, and the like are introduced into the lipid nanoparticles to prepare antigenic nanoparticles, and thus, antigen recognition and drug delivery ability of the lipid nanoparticles are evaluated.
  • the present invention provides an antigen-recognized lipid nanoparticle in which an antibody is non-covalently bound to the lipid nanoparticle.
  • Lipopeptides used in the preparation of lipid nanoparticles of the invention have Fc region specific binding capacity. Therefore, the Fc region of the antibody that binds the lipid nanoparticles is non-covalently bound to the lipopeptides of the lipid nanoparticles without a separate binding reaction.
  • antigen recognition ability and drug delivery ability are compared to the antigen recognition lipid nanoparticles of the present invention in which the antibody is selectively non-covalently bound, and the conventional antigen recognition lipid nanoparticles in which the antibody is non-covalently linked. Evaluated.
  • the existing antigen recognition lipid nanoparticles have been using a method of chemically modifying the antibody to bind to the lipid through a non-selective covalent bond, so the antigen specific ability of the antibody is inferior and They bind randomly to lipids regardless of orientation and also have poor targeting capabilities.
  • the present invention does not chemically modify the antibody while simultaneously targeting the antigen recognition site of the antibody to the outside of the antigen recognition lipid nanoparticles, thereby increasing the targeting ability of the antigen recognition lipid nanoparticles.
  • the antigen-recognized lipid nanoparticles of the present invention is a simple method of lipid nanoparticles and antibodies As it can be produced by mixing, the production is simple and quick.
  • Lipopeptides included in the lipid nanoparticles of the present invention may bind to the Fc region of any antibody.
  • an antibody that specifically binds to an antigen of a target cell for drug delivery is selected and noncovalently bound to the lipid nanoparticles. do.
  • Target cells that receive drugs through the antigen-recognized lipid nanoparticles of the invention may be cells that require treatment or diagnosis.
  • Such target cells can be, for example, cancer cells, inflammatory cells, and the like.
  • the antigen recognition ability and drug delivery ability of the antigen recognition lipid lipid nanoparticles of the present invention are evaluated using Burkitt's lymphoma cell line, glioma cell line, oral squamous cell carcinoma cell line, and the like.
  • the antigen-recognized lipid nanoparticles of the present invention can be used as drug carriers to selectively deliver drugs by targeting antigens of target cells. Accordingly, the present invention also provides a pharmaceutical composition comprising the antigen- recognition lipid nanoparticles and a drug.
  • the drug that can be delivered to target cells using the antigen-recognized lipid nanoparticles of the present invention may be one or more drugs selected from the group consisting of therapeutic agents and diagnostic agents.
  • the antigen- recognition lipid nanoparticles of the present invention may deliver a therapeutic agent and a diagnostic agent simultaneously.
  • a diagnostic agent such as magnetic nanoparticles can be bound to a hydrophilic space in the center of a liposome, and a negatively charged substance such as a fat-soluble drug or nucleic acid can be bound to an external lipid bilayer.
  • the therapeutic agent may be a chemotherapeutic agent, protein medicine or nucleic acid medicine.
  • Chemotherapy means an organic compound that exhibits a pharmacological effect on any disease.
  • Chemotherapeutic agents usually have non-selective delivery to cells through the bloodstream, and when selective treatment is required for cells or tissues to reduce the side effects of the drug, the use of antigen-recognized lipid nanoparticles of the present invention is preferred. desirable.
  • Representative examples of such chemotherapeutic agents include anticancer chemotherapeutic agents.
  • Known anticancer chemotherapeutic agents include, for example, paclitaxel, docetaxel, cisplatin, carboplatin, oxaliplatin, doxorubicin, daunorubicin, daunorubicin, Epirubicin, idarubicin, valubicin, mitoxantrone, curcumin, gefitinib, erlotinib, irinotecan , Topotecan, vinblastine, vincristine and the like.
  • the drug that can be delivered to the target cell using the antigen-recognition lipid nanoparticle of the present invention may be a protein drug or a nucleic acid drug.
  • peptides that specifically bind to specific receptors to block or inhibit signal transduction siRNAs that inhibit the expression of specific genes, and the like.
  • the nucleic acid is a plasmid deoxyribonucleic acid (plasmid DNA), ribonucleic acid (RNA), small interfering ribonucleic acid (siRNA), antisense oligonucleotide, microribonucleic acid (microRNA), locked nucleic acid (locked nucleic acid) acid), nucleic acid aptamers, and the like.
  • plasmid DNA plasmid DNA
  • RNA ribonucleic acid
  • siRNA small interfering ribonucleic acid
  • microRNA microribonucleic acid
  • locked nucleic acid locked nucleic acid
  • the diagnostic agent may be used as long as the substance can detect and recognize the target cell.
  • the diagnostic agent may be a magnetic nanoparticle or a known contrast agent for use in MRI.
  • Nucleic acid aptamers also have a target for specific antigens, so nucleic acid aptamers labeled with fluorescent materials and the like may be used as the diagnostic agent.
  • near infrared (near infra-red) -based fluorescent material that can penetrate the living body; Or Calcium-47, Carbon-11, Carbon-14, Chromium-51, Cobalt-57, Cobalt-58, Erbium-169, Fluorine-18, Gallium-67, Gallium-68, Hydrogen-3, Indium-111, Iodine Radiation drugs such as -123, Iodine-131 and Technetium-99m may also be used.
  • the antigen-recognized lipid nanoparticles of the present invention significantly increased the ability of the drug to be delivered to target cells than the non-targeted lipid nanoparticles, and were also prepared by covalent bonding through conventional chemical modification. It was confirmed that the ability to deliver to cells was increased. In addition, the reverse transcriptase polymerase chain reaction was used to increase the ability to inhibit the target gene expression was confirmed. Therefore, the pharmaceutical composition of the present invention comprising the antigen-recognition lipid nanoparticles and the drug is very excellent in drug delivery efficiency.
  • the present invention also relates to an antibody Fc region binding lipopeptide, a lipid nanoparticle comprising the antibody Fc region binding lipopeptide or a lipid nanoparticle comprising the antibody Fc region binding lipopeptide, wherein the antibody is non-covalently bound.
  • an antibody Fc region binding lipopeptide a lipid nanoparticle comprising the antibody Fc region binding lipopeptide or a lipid nanoparticle comprising the antibody Fc region binding lipopeptide, wherein the antibody is non-covalently bound.
  • Provided are uses for the preparation of antigen specific drug carriers of antigen recognition lipid nanoparticles.
  • the present invention also provides a composition for preparing an antigen-specific drug carrier containing the antibody Fc region-binding lipopeptides, a composition for preparing an antigen-specific drug carrier containing lipid nanoparticles comprising the antibody Fc region-binding lipopeptides and the antibody
  • a composition for preparing an antigen-specific drug delivery carrier containing an antigen-recognized lipid nanoparticle in which an antibody is non-covalently bound to a lipid nanoparticle including an Fc region-binding lipopeptiide is provided.
  • the present invention provides an antigen-specific drug comprising binding the antibody Fc region-binding lipopeptides with a lipid to prepare lipid nanoparticles, and non-covalently binding the antibody to the lipid nanoparticles to produce antigen- recognition lipid nanoparticles.
  • an antigen-specific drug comprising binding the antibody Fc region-binding lipopeptides with a lipid to prepare lipid nanoparticles, and non-covalently binding the antibody to the lipid nanoparticles to produce antigen- recognition lipid nanoparticles.
  • the drug may be introduced into the lipid nanoparticles through known methods during the preparation of the lipid nanoparticles or after the preparation of the lipid nanoparticles or the antigen-recognized lipid nanoparticles.
  • the antigen-recognized lipid nanoparticle of the present invention has a lipopeptide capable of binding to the Fc region of the antibody on the surface of the lipid nanoparticle, the physically simple mixing of the antibody to be bound to the surface of the lipid nanoparticle with the lipid nanoparticle The specific binding of the antibody to the Fc region of the antibody and the lipopeptide. Therefore, unlike conventional antigen recognition lipid nanoparticles prepared by non-selective covalent conjugation of antibodies and lipids, lipopeptides bound to the lipid nanoparticles are used to bind the antibody to the lipid nanoparticles without degrading antigen recognition. It can be bonded to the surface of the.
  • the antigen- recognition lipid nanoparticles of the present invention can significantly enhance the transport efficiency of various drugs such as therapeutic agents and diagnostic agents to target cells.
  • the lipid nanoparticles including the Fc-binding lipopeptides of the present invention are bound to the antibody through non-covalent and selective binding between the lipopeptides and the antibody, the antibody and the lipid nanoparticles are bound by non-selective covalent bonds.
  • the reaction time is shorter than that of the conventional antigen- recognition lipid nanoparticles, and the selective reaction is induced by simple mixing.
  • FIG. 1 is a schematic view of existing antigen recognition lipid nanoparticles in which an antibody is non-selectively covalently bound to the surface of lipid nanoparticles and thus does not have the right orientation.
  • FIG. 2A is a diagram schematically illustrating an Fc region-binding lipopeptiide of an antibody according to the present invention
  • FIG. 2B is an example of a lipid nanoparticle comprising an Fc region-binding lipopeptiide of an antibody according to the present invention
  • 2C is a diagram schematically illustrating a state in which an antibody binds to the lipid nanoparticles and has a right orientation.
  • FIG. 3 shows the results of analyzing the Ramos cell surface CXCR4 antigen recognition ability of the fluorescent lipid-containing liposomes in which the Fc portion of the CXCR4 antibody is non-covalently bound to human leukemia cell line Ramos using a fluorescence flow cytometer (FACS).
  • FACS fluorescence flow cytometer
  • Figure 4 shows the results of analyzing the U937 cell surface CXCR4 antigen recognition ability of the fluorescent lipid-containing liposomes in which the Fc portion of the CXCR4 antibody is non-covalently bound in U937, a human leukemia cell line, using a fluorescence flow cytometer (FACS).
  • FACS fluorescence flow cytometer
  • FIG. 5 shows the results of analysis of the HeLa cell line surface CXCR4 antigen recognition ability of the fluorescent lipid-containing liposomes in which the Fc portion of the CXCR4 antibody is non-covalently bound in HeLa, a human cervical cancer epithelial cell line, using a fluorescent flow cytometer (FACS).
  • FACS fluorescent flow cytometer
  • FIG. 6 shows the results of analysis of U87 cell surface EGFR antigen recognition ability of fluorescent lipid-containing liposomes in which the Fc portion of the EGFR antibody is non-covalently bound to human glioma cell line U87 using a fluorescent flow cytometer (FACS).
  • FACS fluorescent flow cytometer
  • FIG. 7 shows the KB cell surface EGFR antigen recognition ability of fluorescent lipid-containing liposomes in which the Fc portion of the EGFR antibody is non-covalently bound in KB, a cell line derived from human nasopharyngeal epidermal cancer tissue, using a fluorescent flow cytometer (FACS). The result of the analysis.
  • FIG. 8 shows fluorescence flow cytometry (FACS) of MDA-MB-231 cell surface EGFR antigen recognition ability of fluorescent lipid-containing liposomes in which the Fc portion of the EGFR antibody is non-covalently bound in human breast cancer cell line MDA-MB-231. The result of the analysis.
  • FIG. 9 shows the results of analysis of MCF7 cell surface EGFR antigen recognition ability of fluorescent lipid-containing liposomes in which the Fc portion of the EGFR antibody is non-covalently bound to human breast cancer cell line MCF7 using a fluorescence flow cytometer (FACS).
  • FACS fluorescence flow cytometer
  • FACS 10 is a fluorescence flow cytometer (FACS) for the recognition of MDA-MB-453 cell surface HER2 antigens of fluorescent lipid-containing liposomes in which the Fc portion of the HER2 antibody is non-covalently bound in human breast cancer cell line MDA-MB-453. The result of the analysis.
  • FIG. 11 shows the fluorescence flow cytometry (FACS) of SK-BR-3 cell surface HER2 antigen recognition ability of fluorescent lipid-containing liposomes in which the Fc portion of the HER2 antibody is noncovalently bound to human breast cancer cell line SK-BR-3. The result of the analysis.
  • FIG. 12 shows the results of analysis of U87 cell surface EGFR antigen recognition ability of fluorescent lipid-containing micelles in which the Fc portion of the EGFR antibody is non-covalently bound in human glioma cell line U87 using a fluorescent flow cytometer (FACS).
  • FACS fluorescent flow cytometer
  • FIG. 13 is a result of analyzing the transfer efficiency of the fluorescent lipid-containing emulsion in which the Fc portion of the EGFR antibody is non-covalently bound in KB, a cell line derived from human nasopharyngeal epidermal cancer tissue, using a fluorescence flow cytometer (FACS) .
  • FACS fluorescence flow cytometer
  • FIG. 14 shows a fluorescence flow cytometer (FACS) of the surface EGFR antigen recognition ability of solid lipid nanoparticles in which the Fc portion of the EGFR antibody is non-covalently bound in human breast cancer cell line MDA-MB-231. The result of the analysis.
  • FACS fluorescence flow cytometer
  • FACS fluorescence flow cytometer
  • FIG. 16 shows MTT (tetrazolium 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide) staining effect of cancer cell death by paclitaxel-containing liposomes in which the Fc portion of the HER2 antibody is non-covalently selected. It is confirmed in the MCF cell line using.
  • Figure 17 shows the results of confirming the cancer cell killing effect by docetaxel-containing liposomes in which the Fc portion of the EGFR antibody is non-covalently selected in the U87 cell line using MTT staining.
  • Figure 18 shows the results of confirming the cancer cell killing effect by doxorubicin-containing liposomes in which the Fc portion of the CXCR4 antibody is non-covalently selected in the Ramos cell line using MTT staining.
  • Example 1 Synthesis of antibody Fc region selective binding lipopeptides via amide linkage of antibody Fc region binding peptide and polyethylene glycol lipid
  • NHS N-hydroxy-succinimide
  • Mal-PEG-DSPE which is a polyethylene glycol residue-containing lipid generally used in the art for covalent antibody binding, as a comparative example of the novel lipopeptides including the polyethylene glycol residues prepared in Examples 1 to 4 above. (Avanti Inc., USA) was used by dissolving in chloroform at a concentration of 10 mg / ml.
  • 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine- which is generally used in the art as a comparative example for the lipopeptide without a polyethylene glycol residue prepared in Examples 5 to 10 above.
  • N- [4- (p-maleimidomethyl) cyclohexane-carboxamide (Avanti Inc., USA) was used by dissolving in chloroform at a concentration of 10 mg / ml.
  • Example 11 Preparation of Anionic Liposomes Containing the Antibody Fc Region Selective Lipopeptide and Fluorescent Lipid of Example 1
  • lipid thin film After the rotary evaporation at low speed until all the chloroform evaporated in a nitrogen environment to prepare a lipid thin film.
  • a lipid multilamellar vesicle 1 ml of a phosphate buffer solution was added to the thin film, and the vial was sealed at 37 ° C., and then stirred (vortexing) for 3 minutes.
  • Vortexing To make a uniform size, it was prepared by three passes of a 0.2 ⁇ m polycarbonate membrane using a particle homogenization maker (extruder, Northern Lipid Inc., Canada). The obtained lipopeptide containing anionic liposomes were stored at 4 ° C. until use.
  • Lipopeptide, PC, cholesteryl hemisuccinate prepared in Example 2 (Sigma, USA, hereinafter referred to as 'CHEMS') and NBD-PE for fluorescent labeling were taken 0.1: 2: 1: 0.025 ⁇ mole, respectively, in 1 ml of chloroform. After melting, the mixture was placed in a Pyrex 10 ml glass diaphragm vial and mixed to prepare anionic liposomes for antibody binding in the same manner as in Example 11. The resulting lipopeptide containing anionic liposomes were stored at 4 ° C. until use.
  • Lipopeptide, PC, Cardiolipin (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'CA') prepared in Example 3, and NBD-PE for cholesterol and fluorescent labeling were respectively 0.1: 1: 0.5: 1: 0.025 ⁇ mole.
  • Each was taken and dissolved in 1 ml of chloroform, and mixed in a Pyrex 10 ml glass septum vial, followed by mixing in the same manner as in Example 11 to prepare anionic liposomes for antibody binding.
  • the resulting lipopeptide containing anionic liposomes were stored at 4 ° C. until use.
  • Lipopeptide, PC, NBD-PE for cholesterol and fluorescent labeling prepared in Example 5 were taken in 0.1: 2: 1: 0.025 ⁇ mole, respectively, dissolved in 1 ml of chloroform and mixed in a Pyrex 10 ml glass diaphragm vial.
  • Neutral liposomes for antibody binding were prepared in the same manner as in Example 11. The resulting lipopeptide-containing neutral liposomes were stored at 4 ° C. until use.
  • the lipopeptides prepared in Example 6, L-alpha-Dioleoyl Phosphatidylethanolamine (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'DOPE'), and NBD-PE for cholesterol and fluorescent labeling were respectively 0.1: 1: 1: 0.025. After taking ⁇ mole each, it was dissolved in 1 ml of chloroform, mixed in a Pyrex 10 ml glass diaphragm vial, and then neutral liposomes for antibody binding were prepared in the same manner as in Example 11. The resulting lipopeptide-containing neutral liposomes were stored at 4 ° C. until use.
  • Example 17 Preparation of cationic liposomes containing the antibody Fc region selective binding lipopeptides and fluorescent lipids of Example 1
  • Lipopeptide prepared in Example 1 the positively charged lipid N- [1- (2,3-dioleyloxy) propyl] -N, N, N- trimethylammonium methyl sulfate (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'DOTAP' DOPE and NBD-PE for fluorescent labeling were taken in 0.1: 1: 1: 0.025 ⁇ mole, respectively, dissolved in 1 ml of chloroform, mixed in a 10 ml glass diaphragm vial and mixed in the same manner as in Example 11. Cationic liposomes were prepared for binding. The resulting lipopeptide containing cationic liposomes were stored at 4 ° C. until use.
  • Example 18 Preparation of a Cationic Liposome Containing the Antibody Fc Region Selective Lipopeptide and Fluorescent Lipid of Example 2
  • Lipopeptide prepared in Example 2 cholesteryl-3 (beta) N-dimethyl aminoethyl (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'DC-chol'), DOPE and NBD-PE for fluorescent labeling were each 0.1 1: 1: 1: 0.025 ⁇ moleo was taken and dissolved in 1 ml of chloroform, mixed in a Pyrex 10 ml glass septum vial, and mixed.
  • Cationic liposomes for antibody binding were prepared in the same manner as in Example 11. The resulting lipopeptide containing cationic liposomes were stored at 4 ° C. until use.
  • Example 19 Preparation of cationic liposomes containing the antibody Fc region selective binding lipopeptides and fluorescent lipids of Example 3
  • Lipopeptide prepared in Example 3 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (Avanti Polar Lipid Inc., USA, hereinafter referred to as 'DOEPC'), DOPE and NBD-PE for fluorescent labeling, respectively
  • Cationic liposomes for antibody binding were prepared in the same manner as in Example 11 after mixing 0.1: 1: 1: 0.025 ⁇ mole and dissolving in 1 ml of chloroform and mixing them in a Pyrex 10 ml glass diaphragm vial. The resulting lipopeptide containing cationic liposomes were stored at 4 ° C. until use.
  • Example 20 Preparation of micelle nanoparticles containing the antibody Fc region selective binding lipopeptides and fluorescent lipids of Example 8
  • Example 22 Preparation of Solid Lipid Nanoparticles Containing Antibody Fc Region Selective Lipopeptide and Fluorescent Lipid of Example 10
  • Lipopeptide, PC, PG, cholesterol and paclitaxel (pacigaxel, Sigma, USA) prepared in Example 1 were taken in 0.1: 1: 1: 1: 0.02 ⁇ mole, respectively, dissolved in 1 ml of chloroform, and then Pyrex 10 ml glass.
  • Lipopeptide-containing paclitaxel anionic liposomes were prepared in the same manner as in Example 11 after mixing into a septum vial. The resulting paclitaxel anionic liposomes were stored at 4 ° C. until use.
  • Lipopeptide-containing docetaxel anionic liposomes were prepared in the same manner as in Example 11 after mixing into a glass septum vial. The docetaxel anionic liposomes obtained were stored at 4 ° C. until use.
  • Lipopeptide, PC, PG, and cholesterol prepared in Example 3 were taken in 0.1: 1: 1: 1: 0.02 ⁇ mole, respectively, dissolved in 1 ml of chloroform and mixed in a Pyrex 10 ml glass septum vial, followed by mixing with Example 11 and In the same manner, anionic liposomes for antibody binding were prepared. 100 ⁇ g of positively charged doxorubicin (Sigma, USA) is mixed and electrostatically bound to the surface of the anionic liposome, and the remaining doxorubicin, which is not contained in the liposome, is PD-10 Column (GE healthcare, UK) It was removed using. The resulting lipopeptide-containing doxorubicin anionic liposomes were stored at 4 ° C. until use.
  • Example 26 Preparation of Cationic Liposomes Containing Antibody Fc Region Selective Lipopeptides of Example 4
  • Lipopeptide, DOTAP, and DOPE prepared in Example 4 were dissolved in 1 ml of chloroform in a molar ratio of 0.1: 1: 1, and then mixed in a Pyrex 10 ml glass diaphragm vial and mixed, and cationic in the same manner as in Example 3. Liposomes were prepared and stored at 4 ° C. until use.
  • NBD-PE for PC Cholesterol and Fluorescent Labels were taken 1: 1: 0.025 ⁇ mole each, dissolved in 1 ml of chloroform and mixed in a Pyrex 10 ml glass diaphragm vial to prepare neutral liposomes in the same manner as in Example 11. It was. The resulting fluorescent lipid-containing neutral liposomes were stored at 4 ° C. until use.
  • mPEG-DSPE, DOPE, DOTAP, a positively charged lipid, and NBD-PE, a fluorescently labeled lipid were taken in 0.1: 1: 1: 0.025 ⁇ mole, respectively, dissolved in 1 ml of chloroform and mixed in a Pyrex 10 ml glass diaphragm vial.
  • Cationic liposomes were prepared in the same manner as in Example 11. The resulting fluorescent lipid containing cationic liposomes were stored at 4 ° C. until use.
  • mPEG-DSPE, PC, PG, cholesterol and paclitaxel were each taken in 0.1: 1: 1: 1: 0.02 ⁇ mole and dissolved in 1 ml of chloroform, mixed in 10 ml glass diaphragm vials in the same manner as in Example 11.
  • Anionic liposomes encapsulated with paclitaxel were prepared.
  • the resulting paclitaxel containing anionic liposomes were stored at 4 ° C. until use.
  • mPEG-DSPE, PC, PG, cholesterol and docetaxel were each taken in 0.1: 1: 1: 0.02 ⁇ mole, dissolved in 1 ml of chloroform, mixed in 10 ml glass diaphragm vials in the same manner as in Example 11.
  • Anionic liposomes encapsulated with docetaxel were prepared.
  • the resulting docetaxel containing anionic liposomes were stored at 4 ° C. until use.
  • mPEG-DSPE, PC, PG and Cholesterol, 0.1: 1: 1: 1: 0.02 ⁇ mole, respectively, were taken in 1 ml of chloroform and mixed in a Pyrex 10 ml glass diaphragm vial and mixed.
  • Liposomes were prepared. 100 ⁇ g of positively charged doxorubicin (Sigma, USA) is mixed and electrostatically bound to the surface of the anionic liposome, and the remaining doxorubicin, which is not contained in the liposome, is PD-10 Column (GE healthcare, UK) It was removed using. The resulting doxorubicin containing anionic liposomes were stored at 4 ° C. until use.
  • mPEG-DSPE, DOTAP, and DOPE were dissolved in 1 ml of chloroform at a molar ratio of 0.1: 1: 1, and then mixed in a Pyrex 10 ml glass diaphragm vial to prepare a cationic liposome in the same manner as in Example 3.
  • the cationic liposomes obtained were stored at 4 ° C. until use.
  • Lipid, PC, PG, cholesterol and fluorescent lipids, NBD-PE were taken in 0.1: 1: 1: 1: 0.025 ⁇ mole, respectively, dissolved in 1 ml of chloroform and mixed in a Pyrex 10 ml glass diaphragm vial and mixed.
  • Anionic liposomes were prepared in the same manner. The anionic liposomes obtained were stored at 4 ° C. until use.
  • Lipid, PC, cholesterol and fluorescent lipids, NBD-PE were taken in 0.1: 1: 1: 0.025 ⁇ mole each, dissolved in 1 ml of chloroform, mixed in a Pyrex 10 ml glass septum vial, and mixed in the same manner as in Example 11. Liposomes were prepared. The obtained neutral liposomes were stored at 4 ° C. until use.
  • Lipids, DOTAP, DOPE and fluorescent lipids, NBD-PE were taken in 0.1: 1: 1: 0.025 ⁇ mole each, dissolved in 1 ml of chloroform, mixed in a 10 ml glass diaphragm vial and mixed with cations in the same manner as in Example 11. Sex liposomes were prepared. The cationic liposomes obtained were stored at 4 ° C. until use.
  • Lipid, PC, PG, cholesterol and paclitaxel were taken 0.1: 1: 1: 1: 0.02 ⁇ mole each, dissolved in 1 ml of chloroform, mixed in a 10 ml glass diaphragm vial and mixed in the same manner as in Example 11. Encapsulated anionic liposomes were prepared. The resulting paclitaxel containing anionic liposomes were stored at 4 ° C. until use.
  • Lipid, PC, PG, cholesterol and docetaxel were each taken in 0.1: 1: 1: 1: 0.02 ⁇ mole, dissolved in 1 ml of chloroform, mixed in a 10 ml glass diaphragm vial and mixed with docetaxel in the same manner as in Example 11.
  • Encapsulated anionic liposomes were prepared. The resulting docetaxel containing anionic liposomes were stored at 4 ° C. until use.
  • Lipids, DOTAP, and DOPE were dissolved in 1 ml of chloroform at a molar ratio of 0.1: 1: 1, and then mixed in a Pyrex 10 ml glass diaphragm vial and mixed to prepare cationic liposomes in the same manner as in Example 3.
  • the cationic liposomes obtained were stored at 4 ° C. until use.
  • Example 27 Preparation of CXCR4 Antigen Recognition Liposomes in which the Fc portion of the CXCR4 Antibody is Non-Covalently Selectively Bonded to the Anionic Liposomal Surface of Example 11
  • Example 11 5 ⁇ g of anti-CXCR4 antibody per 10 ⁇ l of an anionic liposome containing the antibody Fc region selective binding lipopeptides and fluorescent lipids prepared in Example 11 were mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to give CXCR4 CXCR4 antigen recognition type anionic liposomes in which the Fc portion of the antibody was selectively noncovalently linked were prepared.
  • Example 28 Preparation of CXCR4 Antigen Recognition Liposomes in which the Fc portion of the CXCR4 antibody is non-covalently linked to the anionic liposome surface of Example 12
  • Example 30 Preparation of an EGFR Antigen Recognition Liposome with a Noncovalently Selective Binding of the Fc Part of an EGFR Antibody to the Neutral Liposome Surface of Example 14
  • Example 31 Preparation of EGFR Antigen Recognition Liposomes in which the Fc portion of the EGFR antibody is non-covalently linked to the neutral liposome surface of Example 15
  • Example 32 Preparation of an EGFR antigen recognition liposome with a non-covalently selective binding of the Fc portion of an EGFR antibody to the neutral liposome surface of Example 16.
  • Example 33 Preparation of HER2 Antigen-Recognized Liposomes with Non-Covalently Selective Binding of the Fc Part of the HER2 Antibody to the Cationic Liposomal Surface of Example 17
  • Example 17 5 ⁇ g of the HER2 antibody per 10 ⁇ l of the cationic liposome of Example 17 was mixed in an Eppendorf tube and mixed for 30 minutes at room temperature to prepare a cationic liposome having the HER2 antibody non-covalently bound to the surface.
  • Example 34 Preparation of an HER2 Antigen Recognition Liposome with Non-Covalent Selection of the Fc Portion of the HER2 Antibody to the Cationic Liposomal Surface of Example 18
  • Example 18 5 ⁇ g of the HER2 antibody per 10 ⁇ l of the cationic liposome of Example 18 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a cationic liposome having the HER2 antibody non-covalently bound to the surface.
  • Example 35 Preparation of an HER2 Antigen Recognition Liposome with Non-Covalent Selection of the Fc Portion of the HER2 Antibody to the Cationic Liposomal Surface of Example 19
  • Example 19 5 ⁇ g of the HER2 antibody per 10 ⁇ l of the cationic liposome of Example 19 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a cationic liposome in which the HER2 antibody was non-covalently bound to the surface.
  • Example 36 Preparation of EGFR antigen recognition micelles in which the Fc portion of the EGFR antibody is non-covalently linked to the micelle surface of Example 20.
  • Example 20 5 ⁇ g of the EGFR antibody per 10 ⁇ l of the micelle of Example 20 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a micelle in which the EGFR antibody was covalently bound to the surface.
  • Example 37 Preparation of an EGFR antigen recognition emulsion in which the Fc portion of the EGFR antibody is non-covalently linked to the emulsion surface of Example 21
  • Example 38 Preparation of EGFR Antigen-Recognized Solid Lipid Nanoparticles in which the Fc portion of the EGFR Antibody Covalently Selectively Coupled to the Solid Lipid Nanoparticle Surface of Example 22
  • Example 22 5 ⁇ g of the EGFR antibody per 10 ⁇ l of the solid lipid nanoparticles prepared in Example 22 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare solid lipid nanoparticles in which the EGFR antibody was non-covalently bound to the surface.
  • Example 39 Preparation of an Iba1 Antigen Recognition Liposome with Non-Covalently Selective Binding of the Fc Part of the Iba1 Antibody to the Cationic Liposomal Surface of Example 26
  • Example 26 5 ⁇ g of the Iba1 antibody per 10 ⁇ l of the cationic liposome of Example 26 was mixed in an Eppendorf tube and mixed for 30 minutes at room temperature to prepare a cationic liposome with non-covalently bound Iba1 antibody on the surface.
  • Example 40 Preparation of HER2 Antigen-Recognized Paclitaxel Liposomes in which the Fc portion of the HER2 antibody is non-covalently linked to the paclitaxel-containing liposome surface of Example 23
  • Paclitaxel Containment of Example 23 5 ⁇ g of the HER2 antibody per 10 ⁇ l of the anionic liposome was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a HER2 antigen recognition type paclitaxel liposome in which the HER2 antibody was covalently bound to the surface.
  • Example 41 Preparation of EGFR Antigen-Recognized Docetaxel Liposomes in which the Fc portion of the EGFR antibody is non-covalently linked to the docetaxel-containing liposome surface of Example 24
  • Docetaxel Containment of Example 24 5 ⁇ g of the EGFR antibody per 10 ⁇ l of the anionic liposome was mixed in an Eppendorf tube and mixed for 30 minutes at room temperature to prepare an EGFR antigen recognition type docetaxel anionic liposome in which the EGFR antibody was non-covalently bound to the surface.
  • Example 42 Preparation of CXCR4 Antigen Recognized Doxorubicin Liposomes in which the Fc portion of the CXCR4 Antibody is Non-Covalently Selected to the Doxorubicin-Containing Liposomes of Example 25
  • Doxorubicin Containing Example 25 5 ⁇ g of CXCR4 antibody per 10 ⁇ l of liposomes was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a CXCR4 antigen recognition doxorubicin liposome with CXCR4 antibody non-covalently bound to the surface.
  • Example 43 Preparation of an EGFR Antigen Recognizing Cationic Liposome with Non-Covalent Selection of the Fc Portion of the EGFR Antibody to the Cationic Liposomal Surface of Example 26
  • Example 26 5 ⁇ g of the EGFR antibody per 10 ⁇ l of the cationic liposome of Example 26 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare an EGFR antigen recognition type and a ribonucleic acid loaded cationic liposome to which the EGFR antibody was non-covalently bound to the surface. It was.
  • Example 44 Preparation of a CXCR4 Antigen Recognizing Cationic Liposome with Non-Covalent Selection of the Fc Portion of the CXCR4 Antibody to the Cationic Liposome Surface of Example 26
  • Example 26 5 ⁇ g of the CXCR4 antibody per 10 ⁇ l of the cationic liposome of Example 26 was mixed in an Eppendorf tube and mixed at room temperature for 30 minutes to prepare a CXCR4 antigen- recognition cationic liposome in which the CXCR4 antibody was non-covalently bound to the surface.
  • Comparative Example 17 Preparation of Liposomes with Non-Selective Covalent Coupling of CXCR4 Antibody on the Anionic Liposomal Surface of Comparative Example 10
  • Comparative Example 18 Preparation of Liposomes with Non-Selective Covalent EGFR Antibody on the Neutral Liposomal Surface of Comparative Example 11
  • 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution to a concentration of 20 ⁇ m, and 16.6 ⁇ l of this solution and 5 ⁇ g of EGFR antibody were mixed for 1 hour.
  • the reaction was carried out at room temperature to prepare an antibody modified with a thiol group.
  • 5 ⁇ g of a thiol-group-modified antibody was added per 10 ⁇ l of the neutral liposome of Comparative Example 11, and reacted at 37 ° C. for 4 hours to prepare a liposome in which an EGFR antibody was covalently bound to the surface.
  • 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m, and 16.6 ⁇ l of this solution and 5 ⁇ g of anti-HER2 antibody were mixed. The reaction was carried out at room temperature for a time to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol-group-modified antibody was added per 10 ⁇ l of the cationic liposome of Comparative Example 12, and reacted at 37 ° C. for 4 hours to prepare a liposome with surface-modified HER2 antibody covalently bound.
  • 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m, and 16.6 ⁇ l of this solution and 5 ⁇ g of anti-Iba1 antibody were mixed. The reaction was carried out at room temperature for a time to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol-group-modified antibody was added per 10 ⁇ l of the cationic liposome of Comparative Example 16, and reacted at 37 ° C. for 4 hours to prepare a liposome in which the Iba1 antibody was covalently modified.
  • Anticancer agent 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m in order to modify the HER2 antibody into a conventional covalent bond on the surface of the liposome containing paclitaxel, and 16.6 ⁇ l and 5 ⁇ g of the anti-HER2 antibody were dissolved. The mixture was reacted at room temperature for 1 hour to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol group-modified antibody per 10 ⁇ l of the anionic liposome encapsulated with paclitaxel of Comparative Example 13 was added and reacted at 37 ° C. for 4 hours to prepare a paclitaxel liposome with surface-modified HER2 antibody covalently bound.
  • Comparative Example 22 Preparation of docetaxel liposomes in which the EGFR antibody was non-selectively covalently bound to the docetaxel anionic liposome surface of Comparative Example 14
  • Anticancer agent 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m in order to modify the EGFR antibody into a conventional covalent bond on the liposome containing docetaxel, and 16.6 ⁇ l and 5 ⁇ g of the anti-EGFR antibody were dissolved. The mixture was reacted at room temperature for 1 hour to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol-group-modified antibody was added per 10 ⁇ l of the anionic liposome encapsulated with docetaxel of Comparative Example 14, and reacted at 37 ° C. for 4 hours to prepare a docetaxel liposome with surface-modified EGFR antibody.
  • 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m, and 16.6 ⁇ l of this solution and 5 ⁇ g of anti-EGFR antibody were mixed. The reaction was carried out at room temperature for 1 hour to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol-group-modified antibody was added per 10 ⁇ l of the cationic liposome of Comparative Example 16, and reacted at 37 ° C. for 4 hours to prepare a cationic liposome in which the EGFR antibody was covalently modified.
  • Comparative Example 25 Preparation of CXCR4 Antigen Recognition Liposomes Covalently Non-Selectively Coupling CXCR4 Antibody to the Cationic Liposomal Surface of Comparative Example 16
  • 2-iminothiolane was dissolved in a pH 8.0 phosphate buffer solution at a concentration of 20 ⁇ m, and 16.6 ⁇ l of this solution and 5 ⁇ g of CXCR4 antibody were mixed for 1 hour. While reacting at room temperature to prepare an antibody modified with a thiol group. Thereafter, 5 ⁇ g of a thiol group-modified antibody was added per 10 ⁇ l of the cationic liposome of Comparative Example 16, and reacted at 37 ° C. for 4 hours to prepare a cationic liposome in which the CXCR4 antibody was covalently modified.
  • Ramos and U937 cell lines of human leukemia cells U87 cell line of glioma, KB cell line derived from nasopharyngeal epithelial cancer tissue, HeLa cell line of cervical cancer carcinoma, MCF7, MDA-MB-231, MDA- MB-453 and SK-BR-3, MG5 cell lines, which are microglia, were purchased from ATCC (American Type Culture Collection, USA).
  • HeLa, Ramos, U937 and MDA-MB-231 cell lines were RPMI (Gibco, USA), U87, MCF7, MDA-MB-453 and MG5 cell lines were DMEM (Dulbecco's modified eagles medium, Gibco, USA), KB and SK-BR
  • the -3 cell line was incubated with 10% fetal calf serum w / v (HyClone laboratories Inc, USA) and 100 unit / ml penicillin or 100 ⁇ g / ml streptomycin in MEM (Minimum Essential Medium, Gibco, USA).
  • Ramos cell lines known to overexpress CXCR4 were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the fluorescent lipid-containing anionic liposome of Comparative Example 3 the fluorescent anionic liposome surface-modified by CXCR4 antibody by the conventional covalent bond of Comparative Example 17, Example 27 CXCR4 antibody-recognized fluorescent anionic liposomes in which the CXCR4 antibody was non-covalently bound to the surface were added, and then incubated in a CO 2 incubator at 37 ° C. for 30 minutes. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 3, 17 and Example 27 all contained fluorescent lipids NBD-PE as constituents and were used for the shift of fluorescence intensity peak using the fluorescence flow cytometer, BD FACS CALIBUR (BD Bioscience, USA). CXCR4 antigen recognition ability of the cell surface was analyzed, which is shown in FIG. 3.
  • FIG. 3B is an anionic liposome of Comparative Example 3
  • FIG. Sex liposomes FIG. 3D is a cell group treated with anionic liposomes surface-bound with CXCR4 antibody of Example 27.
  • FIG. 3B 3.97% and 59.53% of cells were detected by liposomes.
  • the liposomes used in Comparative Examples 3, 17 and Example 28 all contained fluorescent lipids NBD-PE as constituents, and the fluorescent flow cytometry, BD FACS CALIBUR (BD Bioscience, USA), was used to shift the fluorescence intensity peaks. CXCR4 antigen recognition ability of the cell surface was analyzed, which is shown in FIG. 4.
  • Figure 4B is an anionic liposome of Comparative Example 3
  • Figure 4C is an anionic liposome covalently linked to the CXCR4 antibody of Comparative Example 17
  • Figure 4D is a cell group treated with antigen-coated anionic liposomes in which the CXCR4 antibody of Example 28 was non-covalently surface-bound.
  • FIG. 4B 4.36% and 50.33% of cells were fluorescently labeled.
  • HeLa cell lines known to overexpress CXCR4 were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the fluorescent anionic liposomes of Comparative Example 3 the fluorescent anionic liposomes of which the CXCR4 antibody of Comparative Example 17 was covalently modified, and the CXCR4 antibody of Example 29 were nostrils.
  • Oil-bound fluorescent anionic liposomes were added to each other and incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 3, 17 and Example 29 all contained the fluorescent lipid NBD-PE as a component, and the fluorescent flow cytometry, BD FACS CALIBUR (BD Bioscience, USA), was used to shift the fluorescence intensity peak. CXCR4 antigen recognition ability of the cell surface was analyzed, which is shown in FIG.
  • Figure 5B is a fluorescent anionic liposome of Comparative Example 3
  • Figure 5C is a fluorescent anionic liposome covalently linked to CXCR4 of Comparative Example 17
  • FIG. 5D shows a cell group treated with non-covalently bound fluorescent anionic liposomes of Example 29.
  • FIG. 5B shows 1.55% and 72.45% of FIG. 5C
  • CXCR4 of Example 29 of the present invention is noncovalently.
  • the bound fluorescent anionic liposome treatment group showed 99.48%, indicating that the CXCR4 antigen recognition ability of the HeLa cell line surface was increased compared to the anionic liposome treatment groups of Comparative Examples 3 and 17.
  • U87 cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the fluorescent lipid-containing neutral liposome of Comparative Example 4 the fluorescent lipid-containing neutral liposome of which the EGFR antibody of Comparative Example 18 was covalently modified
  • the EGFR of Example 30 Fluorescent lipid-containing neutral liposomes with non-covalently bound antibodies were added to the surface, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. Cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 4, 18 and Example 30 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) was used to analyze the EGFR antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak, which is shown in FIG.
  • FIG. 6B is a neutral liposome containing NBD-PE, a fluorescent lipid of Comparative Example 4, and FIG. 6C is shared by the EGFR antibody of Comparative Example 18 on the surface.
  • NBD-PE-containing neutral liposomes modified by binding FIG. 6D is a cell group treated with NBD-PE-containing neutral liposomes in which the EGFR antibody of Example 30 was covalently bound to the surface.
  • FIG. 6B is 10.00%
  • FIG. 6C is 42.45%.
  • KB cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing neutral liposome of Comparative Example 4 the NBD-PE-containing neutral liposome covalently bonded to the surface of the EGFR antibody of Comparative Example 18, Example After adding NBD-PE-containing neutral liposomes in which 31 EGFR antibodies were non-covalently bound to the surface, each was incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 4, 18 and 31 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) was used to analyze the EGFR antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak, which is shown in FIG.
  • FIG. 7B is an NBD-PE neutral liposome of Comparative Example 4
  • FIG. 7C is an NBD- covalently bonded to the surface of the EGFR antibody of Comparative Example 18.
  • PE-containing neutral liposomes FIG. 7D is a cell group treated with NBD-PE-containing neutral liposomes in which the EGFR antibody of Example 31 is non-covalently bound to the surface, respectively
  • FIG. 7B shows 12.48% and 67.85% shows cells with fluorescence.
  • the NBD-PE-containing neutral liposome to which the EGFR antibody of Example 31 of the present invention was covalently bound showed a fluorescent label of 99.03%, thereby covalently binding the antibody in the conventional manner of Comparative Example 4 and Comparative Example 18. It can be seen that the efficiency of recognizing the EGFR antigen on the cell surface is significantly increased compared to the liposomes.
  • MDA-MB-231 cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing neutral liposome of Comparative Example 4 the NBD-PE-containing neutral liposome covalently bonded to the surface of the EGFR antibody of Comparative Example 18, Example NBP-PE-containing neutral liposomes in which 32 EGFR antibodies were non-covalently bound to the surface were added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 4, 18 and Example 32 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) was used to analyze the EGFR antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak, which is shown in Figure 8.
  • FIG. 8B shows NBD-PE neutral liposome of Comparative Example 4
  • FIG. 8C shows NBD- covalently bound to the surface of EGFR antibody of Comparative Example 18.
  • PE-containing neutral liposomes FIG. 8D is a cell group treated with NBD-PE-containing neutral liposomes in which the EGFR antibody of Example 32 was non-covalently bound to the surface, respectively
  • FIG. 8B shows 3.55%
  • FIG. 8C shows 70.49% cells labeled with fluorescence.
  • the fluorescent labeling rate was 92.02% to covalently bind the antibody in the conventional manner of Comparative Example 4 and Comparative Example 18. It can be seen that the efficiency of recognizing the EGFR antigen on the cell surface is significantly increased compared to liposomes.
  • MCF7 cell lines known to overexpress HER2 were seeded 3 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing cationic liposome of Comparative Example 5 the NBD-PE-containing cationic liposome covalently bonded to the surface of HER2 antibody of Comparative Example 19, NBD-PE-containing cationic liposomes in which the HER2 antibody of Example 33 was covalently bound to the surface were added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 5, 19 and 33 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) HER2 antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak was analyzed, which is shown in FIG.
  • FIG. 9B is NBD-PE cationic liposome of Comparative Example 5
  • FIG. 9C was NBD in which the HER2 antibody of Comparative Example 19 was covalently bound to the surface.
  • -PE containing cationic liposomes FIG. 9D is a cell group treated with NBD-PE containing cationic liposomes in which the HER2 antibody of Example 33 was non-covalently bound to the surface, respectively
  • FIG. 9B is 27.75%
  • MDA-MB-453 cell line known to overexpress HER2 was seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing cationic liposome of Comparative Example 5 the NBD-PE-containing cationic liposome covalently bonded to the surface of HER2 antibody of Comparative Example 19, NBD-PE-containing cationic liposomes in which the HER2 antibody of Example 34 was covalently bound to the surface were added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 5, 19 and 34 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) HER2 antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak was analyzed, which is shown in FIG.
  • FIG. 10B is NBD-PE cationic liposome of Comparative Example 5
  • FIG. 10C is NBD in which the HER2 antibody of Comparative Example 19 was covalently bound to the surface.
  • -PE containing cationic liposomes FIG. 10D is a cell group treated with NBD-PE containing cationic liposomes in which the HER2 antibody of Example 34 was non-covalently bound to the surface, respectively
  • FIG. 10B is 34.61%
  • FIG. Was labeled with fluorescence, whereas in FIG.
  • the NBD-PE-containing cationic liposome to which the HER2 antibody of Example 34 of the present invention was noncovalently bound showed a fluorescent labeling rate of 95.20% to that of Comparative Example 5 and Comparative Example 19. It can be seen that the liposome nanoparticles to which the HER2 antibody is noncovalently bound to the liposomes in which the antibody is covalently bound to the surface by the conventional method have significantly increased the efficiency of recognizing the HER2 antigen on the cell surface.
  • SK-BR-3 cell lines known to overexpress HER2 were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing cationic liposome of Comparative Example 5 the NBD-PE-containing cationic liposome covalently bonded to the surface of HER2 antibody of Comparative Example 19, NBD-PE-containing cationic liposomes in which the HER2 antibody of Example 35 was non-covalently bound to the surface were respectively added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the liposomes used in Comparative Examples 5, 19 and 35 all contained the fluorescent lipid NBD-PE as a component, and the cells labeled with the fluorescent labeled neutral liposomes were BD FACS CALIBUR (BD Bioscience, USA). ) HER2 antigen recognition ability of the cell surface by the shift of the fluorescence intensity peak was analyzed, which is shown in FIG.
  • FIG. 11B is NBD-PE cationic liposome of Comparative Example 5
  • FIG. 11C was NBD in which the HER2 antibody of Comparative Example 19 was covalently bound to the surface.
  • -PE containing cationic liposome FIG. 11D is a cell group treated with NBD-PE containing cationic liposomes in which the HER2 antibody of Example 35 was non-covalently bound to the surface, respectively
  • FIG. 11B shows 14.70%
  • FIG. 11C shows 61.14% of cells.
  • the NBD-PE-containing cationic liposome to which the HER2 antibody of Example 35 of the present invention was noncovalently bound showed a high fluorescence labeling rate of 98.53%, Comparative Example 5 and Comparative Example 19
  • the cationic liposome nanoparticles of Example 35, wherein the HER2 antibody was noncovalently bound to the liposomes in which the antibody was covalently bound to the surface by the conventional method significantly increased the efficiency of recognizing the HER2 antigen on the cell surface. The can be seen.
  • U87 cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing neutral liposome of Comparative Example 4 the NBD-PE-containing neutral liposome covalently bonded to the surface of the EGFR antibody of Comparative Example 18, Example NBD-PE containing micelles in which 36 EGFR antibodies were non-covalently bound to the surface were respectively added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • the nanoparticle formulations used in Comparative Examples 4, 18 and Example 36 all contained the fluorescent lipid NBD-PE as a component, and the fluorescence intensity peaks were determined using a fluorescent flow cytometer, BD FACS CALIBUR (BD Bioscience, USA). The EGFR antigen recognition ability of the cell surface by the migration was analyzed, which is shown in FIG.
  • FIG. 12B shows the NBD-PE neutral liposome of Comparative Example 4
  • FIG. 12C shows the NBD- covalently bonded to the surface of the EGFR antibody of Comparative Example 18.
  • PE-containing neutral liposomes FIG. 12D is a cell group treated with NBD-PE-containing micelle nanoparticles in which the EGFR antibody of Example 36 was non-covalently bound to the surface, respectively.
  • FIG. 12B shows 0.52%
  • FIG. 12C shows 46.22% of cells.
  • KB cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing neutral liposome of Comparative Example 4 the NBD-PE-containing neutral liposome covalently bonded to the surface of the EGFR antibody of Comparative Example 18,
  • Example NBD-PE containing emulsions in which 37 EGFR antibodies were non-covalently bound to the surface were added, and then incubated for 30 minutes in a CO 2 incubator at 37 ° C. The cultured cells were collected and washed twice with phosphate buffer solution.
  • Comparative Examples 4, 18 and Example 37 all contained the fluorescent lipid NBD-PE as a component, and the fluorescent flow cytometry BD FACS CALIBUR (BD Bioscience, USA) was used to shift the fluorescence intensity peak. EGFR antigen recognition ability of the cell surface was analyzed, which is shown in FIG.
  • FIG. 13B is NBD-PE neutral liposome of Comparative Example 4
  • FIG. 13C was NBD- covalently bound to the surface of EGFR antibody of Comparative Example 18.
  • PE-containing neutral liposomes FIG. 13D is a cell group treated with an NBD-PE-containing emulsion in which the EGFR antibody of Example 37 was non-covalently bound to the surface, respectively.
  • FIG. 13B is 8.36% and 53.75% is labeled by fluorescence.
  • FIG. 13D is 8.36% and 53.75% is labeled by fluorescence.
  • the NBD-PE-containing cationic liposome to which the EGFR antibody of Example 37 of the present invention was covalently bound showed a high fluorescence labeling rate of 94.73%, according to the conventional methods of Comparative Example 4 and Comparative Example 18. It can be seen that the efficiency of recognizing the EGFR antigen on the cell surface was significantly increased in the emulsion of Example 37 in which the EGFR antibody was covalently bound to the liposome to which the antibody was covalently bound to the surface.
  • MDA-MB-231 cell lines known to overexpress EGFR were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the NBD-PE fluorescent lipid-containing neutral liposome of Comparative Example 4 the NBD-PE-containing neutral liposome covalently bonded to the surface of the EGFR antibody of Comparative Example 18,
  • Example NBD-PE-containing solid lipid nanoparticles in which 38 EGFR antibodies were non-covalently bound to the surface were added, respectively, and then incubated in a CO 2 incubator at 37 ° C. for 30 minutes. The cultured cells were collected and washed twice with phosphate buffer solution.
  • Comparative Examples 4, 18 and Example 38 all contained the fluorescent lipid NBD-PE as a component and were used for the shift of the fluorescence intensity peak using a fluorescent flow cytometer, BD FACS CALIBUR (BD Bioscience, USA). EGFR antigen recognition ability of the cell surface was analyzed, which is shown in FIG.
  • FIG. 14A shows NBD-PE neutral liposome of Comparative Example 4
  • FIG. 14C shows NBD- covalently bound to the surface of EGFR antibody of Comparative Example 18.
  • PE-containing neutral liposomes FIG. 14D is a cell group treated with NBD-PE-containing solid lipid nanoparticles in which the EGFR antibody of Example 38 was non-covalently bound to its surface.
  • FIG. 14B shows 25.19% and 55.33% of cells. While labeled with fluorescence, NBD-PE-containing solid lipid nanoparticles to which the EGFR antibody of Example 37 of the present invention was covalently bound in FIG.
  • Example 14D showed a high fluorescence labeling rate of 93.03%
  • Comparative Example 4 and Comparative Example 18 The solid lipid nanoparticles of Example 38 in which the EGFR antibody was noncovalently bound to the surface compared to liposomes in which the antibody was covalently bound to the surface by the conventional method showed that the efficiency of recognizing the EGFR antigen on the cell surface was significantly increased. Able to know.
  • MG5 cell lines known to overexpress Iba1 were seeded 3 ⁇ 10 5 per well in 6 well plates the day before the experiment.
  • the cationic liposomes of Comparative Example 9 the cationic liposomes of which the Iba1 antibody of Comparative Example 20 was covalently bonded to the surface, and the Iba1 antibody of Example 39 were non-covalently Cationic liposomes bound to the surface and 50 ⁇ l of serum-free medium were added, and 20 pmoles of Block-iT (Invitrogen, USA), each of double-stranded ribonucleic acid labeled with fluorescent markers, was added.
  • Block-iT Invitrogen, USA
  • FIG. 15B shows the complex of the cationic liposome of Comparative Example 9 and the fluorescent double-stranded ribonucleic acid
  • FIG. 15C shows the surface of Iba1 antibody of Comparative Example 20.
  • FIG. 15D shows that the complex of cationic liposome and fluorescent double-stranded ribonucleic acid, in which the Iba1 antibody of Example 39 was non-covalently bound to the surface, respectively
  • FIG. 15B was delivered to 60.73% and FIG.
  • Example 39 of the present invention was 97.61 in the complex treatment group of cationic liposomes and fluorescent double-stranded ribonucleic acid, which were covalently bound to the surface. It can be seen that the percentage of cells labeled with fluorescence increased the intracellular double helix ribonucleic acid transfer efficiency compared to the cationic liposomes of Comparative Examples 9 and 20.
  • the cells were seeded in 48 wells for 2 ⁇ 10 4 cells per well and incubated for 12 hours, followed by anionic liposomes containing Paclitaxel of Comparative Example 6 and the HER2 antibody of Comparative Example 21 covalently bound to the surface.
  • Paclitaxel anionic liposomes, 10 l of paclitaxel anionic liposomes in which the HER2 antibody of Example 40 was non-covalently bound to the surface were added to each well plate and incubated in a CO 2 cell incubator at 37 ° C for 24 hours.
  • MTT solution (Sigma, USA) was added to 10% of the medium, incubated for 4 hours more, the supernatant was removed and 0.04 N isopropanol solution was added, followed by ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland), the absorbance was measured at 570 nm. As a control, cells treated with nothing were used.
  • Figure 16 shows the anti-cancer efficacy of the paclitaxel-encapsulated liposome formulations as a result of the paclitaxel-containing anionic liposome of Comparative Example 6 or HER2 antibody of Example 40 than the paclitaxel liposome covalently bonded to the surface of Comparative Example 21 Shows that paclitaxel liposome composition that is non-covalently bound to the surface shows more enhanced cancer cell killing effect. From the anti-cancer efficacy results of FIG.
  • the HER2 antigen was more effectively bound to the MCF cell line expressing the cell surface, thereby delivering paclitaxel into cancer cells. Inferring efficacy can be inferred.
  • Example 17 is a result of the anticancer efficacy evaluation experiments of the docetaxel-encapsulated compositions as shown in Example 41 than docetaxel-containing anionic liposomes of Comparative Example 7 or EGFR antibody of Comparative Example 22 covalently modified anionic docetaxel liposomes It is shown that the anionic docetaxel liposome composition to which the EGFR antibody of non-covalently bound shows more increased anticancer efficacy.
  • the intracellular delivery ability of doxorubicin is improved by more effectively binding to the Ramos cell line overexpressing the CXCR4 antigen on the cell surface.
  • SiRNA for inducing expression of survivin gene (Gene bank accession number: NM_001168) was purchased from Samchully Pharmaceuticals, Seoul, Korea. The final concentration of siRNA included in the media was set to 50 nM. After slowly pipetting and mixing, the mixture was allowed to stand at room temperature for 20 minutes, and a complex of the prepared liposomes and small interfering ribonucleic acid was added to each well plate and incubated in a CO 2 cell incubator at 37 ° C. for 24 hours.
  • RNA total ribonucleic acid
  • Trizol reagent Invitrogen, Carlsbad, CA, USA
  • the RNA was reverse transcribed into cDNA using AccuPowerRT PreMix (Bioneer, Daejeon, Korea).
  • the polymerase chain reaction was performed by denature the template DNA for 5 minutes at 95 °C, 95 °C / 1 minutes; 57 ° C./1 min; And 72 ° C./1 min in one cycle, the final 30 times were repeated, and finally, the reaction was carried out at 72 ° C. for 5 minutes.
  • the primers specific for survivin were 5'-GGACCACCGCATCTCTACAT-3 '(forward), 5'-CTTTCTCCGCAGTTTCCTCA-3' (reverse), and the size of the polymerase chain reaction product was 347 base pairs.
  • the level of survivin gene expression was 1% agarose gel electrophoresis, and the band density of survivin-specific chain reaction product was amplified by the amplification of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. The change in quantitative expression was measured by calibration.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • FIG. 19 compares the expression of transcripts of survivin, a target gene, in the density of bands in U87 cells when each composition is treated.
  • the survivin-specific small interfering ribonucleic acid was not delivered into the cell, so that the expression of the survivin gene was not changed, and the complex-treated group of the cationic liposome and ribonucleic acid in which the antibody of Comparative Example 9 was not present, Comparative Example Cationic liposomes and survivin in which the EGFR antibody of Example 43 was non-covalently bound to the surface compared to the complex treatment group of cationic liposomes and survivin-specific small interfering ribonucleic acid covalently bound to the surface of 24 EGFR antibodies In the complex treatment group of specific small interfering ribonucleic acid, survivin gene expression was significantly suppressed in cells.
  • Example 43 the mRNA expression level of survivin gene was most increased.
  • the CXCR4 antibody in which the Fc portion was selectively non-covalently bound to the surface of liposome, increased the efficiency of delivering survivin-specific small interfering ribonucleic acid into cells. It is interpreted as a phenomenon that appears.
  • HeLa cell lines known to overexpress CXCR4 on the surface were seeded 2 ⁇ 10 5 cells per well in 12 well plates the day before the experiment.
  • siRNA 20 pmole for suppressing survivin gene expression 10 ⁇ l of cationic liposome of Comparative Example 9, and CXCR4 antibody of Comparative Example 25 were added to the Eppendorf tube.
  • 10 ⁇ l of a cationic liposome covalently bound to the surface, and a cationic liposome to which the CXCR4 antibody of Example 44 was noncovalently bound to the surface were added, respectively.
  • the final concentration of siRNA included in the media was set to 50 nM.
  • RNA total ribonucleic acid in cells was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA), and the RNA was reverse transcribed into cDNA using AccuPowerRT PreMix (Bioneer, Daejeon, Korea). .
  • the polymerase chain reaction was performed by denature the template DNA for 5 minutes at 95 °C, 95 °C / 1 minutes; 57 ° C./1 min; And 72 ° C./1 min in one cycle, the final 30 times were repeated, and finally, the reaction was carried out at 72 ° C. for 5 minutes.
  • the primers specific for survivin were 5'-GGACCACCGCATCTCTACAT-3 '(forward), 5'-CTTTCTCCGCAGTTTCCTCA-3' (reverse), and the size of the polymerase chain reaction product was 347 base pairs.
  • the level of survivin gene expression was 1% agarose gel electrophoresis, and the band density of survivin-specific chain reaction product was amplified by the amplification of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. The change in quantitative expression was measured by calibration.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • FIG. 20 compares the expression of transcripts of survivin, a target gene, in the density of bands in HeLa cells when each composition is treated.
  • the survivin-specific small interfering ribonucleic acid was not delivered into the cell, and thus the expression of the survivin gene was not changed.
  • survivin gene expression was significantly suppressed in cells.
  • Example 44 the expression of the survivin gene mRNA level was most increased because the CXCR4 antibody with non-covalently bound Fc on the surface of liposomes increased the efficiency of delivering survivin-specific small interfering ribonucleic acid into cells. It is interpreted as a phenomenon that appears.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 항체의 Fc 영역에 특이적으로 결합하는 펩타이드(Fc-binding peptide, FcBP)를 포함하는 신규 리포펩타이드, 이를 포함하는 지질 나노입자, 상기 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자, 상기 항원 인지형 지질 나노입자 및 약물을 포함하는 의약 조성물 및 항원 특이적 약물전달체의 제조를 위한 상기 리포펩타이드, 상기 지질 나노입자 또는 상기 항원 인지형 지질 나노입자의 용도에 관한 것이다. 본 발명의 항원 인지형 지질 나노입자는 지질 나노입자의 표면에 항체의 Fc 영역과 결합할 수 있는 리포펩타이드가 존재하므로 지질 나노입자의 표면에 항체를 비선택적으로 공유결합(random conjugation) 시켰던 기존의 항원 인지형 지질 나노입자와는 달리 지질 나노입자에 결합된 리포펩타이드를 통해 항원 인지능의 저하 없이 항체를 지질 나노입자의 표면에 결합시킬 수 있게 된다. 따라서, 본 발명의 항원 인지형 지질 나노입자는 치료제, 진단제 등의 다양한 약물의 표적 세포로의 수송 효율을 현저히 증강시킬 수 있다. 또한, 본 발명의 Fc 결합성 리포펩타이드를 포함하는 지질 나노입자는 리포펩타이드와 항체 사이의 비공유적이고 선택적인 결합을 통해 항체와 결합되므로, 비선택적 공유결합을 통해 항체와 지질 나노입자가 결합되어 있던 기존의 항원 인지형 지질 나노입자의 제조에 비해 반응 시간이 짧고, 단순 혼합을 통해 선택적인 반응이 유도되므로 공정이 간편하여 대량 생산시 경제성이 높다.

Description

항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자
본 발명은 항체의 Fc 영역에 특이적으로 결합하는 펩타이드(Fc-binding peptide)를 포함하는 신규 리포펩타이드, 이를 포함하는 지질 나노입자, 상기 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자, 상기 항원 인지형 지질 나노입자 및 약물을 포함하는 의약 조성물 및 항원 특이적 약물전달체의 제조를 위한 상기 리포펩타이드, 상기 지질 나노입자 또는 상기 항원 인지형 지질 나노입자의 용도에 관한 것이다.
암, 자가면역질환, 신경계질환과 같은 난치성 질환을 치료하기 위해 수술, 방사선 요법, 또는 표적 질환 세포에 직접 또는 간접적으로 작용하는 화학의약이나 생물의약을 이용한 약물 치료법이 행해지고 있다.
그러나, 상기 약물들, 특히 항암제들은 주로 빠르게 증식하는 세포에 작용하는 약물로서, 전신의 혈류를 타고 온몸으로 퍼져서 암세포 이외의 빠르게 증식하는 정상세포, 예를 들면, 혈액을 생성하는 골수세포, 머리 및 수염을 빠르게 자라게 하는 모낭세포, 난자 및 정자를 생성하는 생식기 세포, 소화기 점막세포 등에 영향을 끼쳐 부작용을 나타내게 된다. 또한 기타 난치성 질환에 대한 약물들도 표적 질환 세포만을 표적화하는 능력의 부재로 여러 가지 부작용을 낳고 있다. 또한 단백질이나 핵산 등의 생물의약은 혈중에서 쉽게 분해되기에 원하는 표적 지역까지 본래의 상태로 도달할 수 없어 효력을 나타낼 수 없는 단점이 있다.
이러한 상기의 약물의 단점을 극복하기 위하여, 표적 조직의 세포 내부로 약물을 효과적으로 전달하기 위한 약물 전달체로서 지질 나노입자에 대한 연구가 본격화되었다.
지질 나노입자 중 널리 연구되어온 리포좀은 생체막의 기본 구조인 인지질의 이중층(bilayer)으로 구성되어 있으며, 내부에는 친수성의 공간이 있고 외부로는 닫힌 이중의 지질막을 가지고 있는 미세 소포체를 가리킨다. 리포좀은 중앙의 친수성 공간에 수용성 분자(DNA 포함) 또는 약물을 내포할 수 있으며, 외부의 지질 이중막에는 지용성 약물을 붙이거나, 또는 양전하 또는 음전하 물질을 결합시킬 수 있다. 인지질은 양친매성(amphipathic) 물질로서, 음이온성 또는 양쪽성 이온의 극성 분자단과 탄화수소 16개 내외의 다양한 불포화도를 갖는 2개의 비극성 지용성 사슬을 가지고 있는 분자구조이기 때문에 인지질이 물에 분산되면 자발적으로 이중층을 형성한다.
이러한 지질 나노입자가 표적 질환 세포만을 표적화 한다면, 비표적 세포 또는 조직에 약물이 전달되어 일어나는 부작용을 최소화 할 수 있으며, 진단제를 봉입하여 표적 질환 세포 또는 조직의 비침투적 진단을 가능케 할 것이다. 따라서 비표적 세포에는 존재하지 않거나 발현량이 적으면서 표적 질환 세포 표면에는 과발현 되는 수용체를 표적화하는 약물전달체의 개발이 필요하다. 지질 나노입자를 통한 표적 세포의 표적화는 그의 유효량을 표적 세포에 선택적으로 전달하도록 지질 나노입자를 변형시켜 달성할 수 있다.
현재, 표적 세포에 특이적으로 과발현되는 분자들을 표적화하는 항체가 표면에 수식되어 있는 항원 인지형 지질 나노입자(antigen-recognizing lipid nanoparticle)에 대한 연구가 활발히 진행 중에 있다. 이러한 항원 인지형 지질 나노입자는 항원을 과발현하는 질환세포 또는 조직으로 다양한 치료제 또는 진단제를 선택적으로 보낼 수 있는 장점이 있다. 예를 들어, 종양 세포에 과발현되는 수용체인 HER2를 표적화하는 항-HER2 항체를 함유하는 리포좀을 제조하고 이에 독소루비신등의 항암제를 봉입하여 표적화 약물 전달체를 제조하는 방법 등이 이용되어 왔다(미국공개특허 제2006-0269542호).
기존의 항원 인지형 지질 나노입자는 공유적 접합 (covalent conjugation) 방법에 의해 주로 제조되어 왔다. 공유적 접합 방법은 지질과 각각의 항체 간에 공유결합을 형성시키는 것으로, 항원 인지형 지질 나노입자의 제조에 많은 시간이 소요되어 비효율적이다. 뿐만 아니라, 항체는 도 1에 도시한 바와 같이 비선택적으로 지질 나노입자 표면에 공유결합하게 되기 때문에 결합된 모든 항체가 올바른 방향성(right orientation)을 가지게 할 수 없으며 항체의 Fc 영역이나 항원을 인지하는 Fab 영역 모두에 지질과 반응 가능한 아미노산이 있는 경우 항체의 Fab 영역과 지질 간의 결합이 이루어질 수 있다. 그러나 항체의 Fab 영역이 지질 나노입자의 표면에 공유결합된 경우, 이 항체는 항원을 인지하지 못하게 되므로 소기의 목적한 기능을 발휘하지 못하게 되어 지질 나노입자에 결합된 항체 분자들의 개수와 항원 인지능 사이에는 차이가 생기는 현상이 문제점으로 제기되어 왔다.
본 발명은 지질 나노입자가 항체의 Fc 영역과 선택적으로 결합함으로써 항원을 효율적으로 인지할 수 있는 항원 인지형 지질 나노입자를 제공하는 것을 목적으로 한다.
이를 위해, 본 발명은 항체의 Fc 영역에 특이적으로 결합하는 펩타이드와 지질이 결합된 신규 리포펩타이드 및 이를 포함하는 지질 나노입자를 제공하는 것을 목적으로 한다.
또한 본 발명은 항체의 Fc 결합성 리포펩타이드를 포함하는 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자 및 이를 포함하는 약학적 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 항원 특이적 약물전달체의 제조를 위한 상기 리포펩타이드, 상기 지질 나노입자 또는 상기 항원 인지형 지질 나노입자의 용도를 제공하는 것을 목적으로 한다.
본 발명은 항체의 Fc 영역 결합 펩타이드(Fc-binding peptide, FcBP)와 지질이 공유결합되어 있는 항체의 Fc 영역 결합성 리포펩타이드를 제공한다. 도 2A는 본 발명에 따른 항체의 Fc 영역 결합성 리포펩타이드를 예시적으로 모식화한 도면이다. 도 2A에서 볼 수 있는 바와 같이, 항체의 Fc 영역 결합 펩타이드는 지질과 공유결합되어 있어 항체의 Fc 영역이 항체의 Fc 영역 결합 펩타이드를 통해 지질에 선택적으로 결합할 수 있도록 하고 있다.
항원을 인식하는 Fab 영역이 항체마다 그 구조가 다른 것과는 달리, 항체의 Fc 영역은 대부분의 항체에서 그 구조가 보존되어 있다. 따라서, 본 발명에서, 항체의 Fc 영역 결합 펩타이드는 임의의 항체의 Fc 영역과 결합할 수 있는 펩타이드를 의미한다. 이러한 항체의 Fc 영역 결합 펩타이드는 당업계에 공지되어 있다. 종래에 공지된 항체의 Fc 영역 결합 펩타이드는 단백질 등의 생체 물질과 결합시켜 생체 물질의 체내 반감기를 증식시키고자 하는 용도, 또는 형광 물질과 결합시켜 항원을 형광 물질로 레이블링 하려는 용도 등으로 이용되어 왔다. 그러나, 이제까지 항체의 Fc 영역 결합 펩타이드를 지질과 결합시켜 항체의 Fc 영역 결합성 리포펩타이드를 제조함으로써, 항원 인지형 지질 나노입자의 표적 지향성을 부여하기 위해 이용한 적은 없었다.
따라서, 본 발명에 있어서, 항체의 Fc 영역 결합 펩타이드는 항체의 Fc 영역을 선택적으로 인식하고 이와 효율적으로 결합할 수 있는 펩타이드라면 어떠한 것이든 사용 가능하다.
항체의 Fc 영역을 선택적으로 인식하는 펩타이드들로서 DCAWHLGELVWCT (W.L. DeLano, M.H. Ultsch, A.M. de Vos, J.A. Wells, Convergent solutions to binding at a protein-protein interface, Science 287 (2000) 1279-1283.), HWRGWV, HYFKFD, HFRRHL (H. Yang, P.V. Gurge, R.G. Carbonell, Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography, J. Chromatogr. A 1216 (2009) 910-918.), 하기 구조식 1의 형태의 (RTY)4K2KG (G. Fassina, A Verdoliva, M.R. Odierna, M. Ruvo and G. Cassini, Protein A mimetic peptide ligand for affinity purification of antibodies, J. Mol. Recognit. 9 (1996) 564-569.) 등의 서열의 펩타이드들이 알려져 있다. 이들 Fc 영역 선택적 결합 펩타이드의 경우 혼합물에서 항체를 선택적으로 분리하는 용도로 사용되었다.
본 발명의 Fc 영역 선택적 결합 펩타이드는 예를 들어, 상기 공지의 항체의 Fc 영역 결합 펩타이드중 하나인 하기 서열번호 1 내지 5의 아미노산 서열을 갖는 펩타이드 또는 하기 구조식 1로 표시되는 아미노산 서열을 갖는 분지형 펩타이드일 수 있다.
서열번호 1: DCAWHLGELVWCT
서열번호 2: CDCAWHLGELVWCT
서열번호 3: HWRGWV
서열번호 4: HYFKFD
서열번호 5: HFRRHL
[구조식 1]
Figure PCTKR2010002718-appb-I000001
서열번호 1의 아미노산 서열을 갖는 펩타이드는 두 개의 시스테인이 서로 이황화 결합을 형성하고 있어 U자 구조를 나타낸다. 서열번호 2의 아미노산 서열을 갖는 펩타이드 또한 두번째 시스테인과 세번째 시스테인이 서로 이황화 결합을 형성하고 있어 U자 구조를 나타낸다.
상기 구조식 1의 분지형 펩타이드는 서열번호 6(GKKYTR)의 첫번째 리신(Lysine)이 서열번호 7(KYTR)의 첫번째 리신(Lysine)과 결합되어 있고, 서열번호 7(KYTR)의 첫번째 리신(Lysine)이 서열번호 8(YTR)의 첫번째 티로신(Tyrosine)과 결합되어 있고, 또한 서열번호 6(GKKYTR)의 두번째 리신(Lysine)이 서열번호 9(YTR)의 첫번째 티로신(Tyrosine)과 결합되어 있는 것으로서 오른쪽이 N 말단이다.
서열번호 1의 아미노산 서열을 갖는 펩타이드 또는 서열번호 2의 아미노산 서열을 갖는 펩타이드는 그들의 C 말단이 아미드화 되어 있을 수 있다. 아미드화는 C 말단의 카복실기의 음전하를 상쇄시키고 C 말단의 카복실기가 다른 펩타이드의 N 말단의 아민기와 결합하는 것을 방지하기 위해 수행될 수 있다.
본 발명의 리포펩타이드에 있어서, 항체의 Fc 영역 결합 펩타이드와 지질은 공유결합되어 있다. 항체의 Fc 영역 결합 펩타이드와 지질과의 공유결합의 방식은 특별히 제한되지 않는다. 다만, 본 발명의 리포펩타이드는 지질 나노입자의 형성을 위해 사용되는 것이므로 리포펩타이드가 지질의 헤드기의 말단에 공유결합되는 것이 바람직할 것이다.
한 구체예에서, 항체의 Fc 영역 결합 펩타이드는 그의 설프하이드릴기(-SH) 또는 N 말단의 아민기(-NH2)를 통해 지질과 공유결합될 수 있다.
본 발명의 리포펩타이드의 제조를 위해 사용되는 지질 또한 항체의 Fc 영역 결합 펩타이드와 공유결합할 수 있는 것이라면 어떠한 것이든 제한되지 아니한다.
리포펩타이드의 제조의 편의를 위해, Fc 영역 결합 펩타이드와의 공유결합이 용이한 기능기를 가지고 있는 지질을 이용할 수 있다. 예를 들어, 상기 지질은 Fc 영역 결합 펩타이드의 설프하이드릴기(-SH) 또는 N 말단의 아민기(-NH2)와 결합할 수 있는 -COOH, -CHO, -NH2, -SH, -S-S-, -CONH2, -PO3H, -PO4H, -SO3H, -SO4H, -OH, -술포네이트, -니트레이트, -포스포네이트, -숙신이미딜기, -말레이미드기, 및 -알킬기로 이루어진 그룹으로부터 선택되는 하나 이상이 기능기를 가지고 있거나, 이러한 기능기를 갖도록 변형된 것일 수 있다. 이러한 지질은 공지의 방법을 통해 합성하거나 시판되고 있는 것을 구입하여 사용할 수 있다.
Fc 영역 결합 펩타이드의 설프하이드릴기(-SH) 또는 N 말단의 아민기(-NH2)와 결합할 수 있는 지질의 기능기의 공유결합의 대표적 예를 하기 표 1에 기재하였다.
표 1
I II III
R-NH2 R'-COOH R-NHCO-R'
R-NH2 R'-CON3 R-NHCO-R'
R-NH2 R'-OP(O2-)OH R-OP(O2-)-NH-R'
R-NH2 R'-SH R-NHCO(CH2)2SS-R'
RH-NH2 R'-(에폭시기) R-NHCH2C(OH)CH2-R'
R-NH2 R'-COH R-N=CH-R'
R-NH2 R'-NCO R-NHCONH-R'
R-NH2 R'-NCS R-NHCSNH-R'
R-SH R'-COCH2 R'-COCH2S-R
R-SH R'-O(C=O)X R-OCH2(C=O)O-R'
R-SH R'-(아지리딘기) R-CH2CH(NH2)CH2S-R'
R-SH R'-CH=CH2 R-CH2CHS-R'
R-SH R'-COCH2X R-SCH2CO-R'
R-SH R'-X R-S-R'
R-SH R'-SH R-SS-R
R-SH R'-(에폭시기) R-SCH2C(OH)CH2-R'
I: Fc 영역 결합 펩타이드 작용기 II: 지질의 기능기 III: I과 II의 반응에 따른 공유 결합예
한편, 상기 지질은 탄소수 3 내지 24의 포화 또는 불포화 탄화수소를 포함하는 지질일 수 있다. 바람직하게는 탄소수 14 내지 20 의 포화 또는 불포화 탄화수소를 포함하는 지질이며 이는 지질 나노입자 제조에 일반적으로 사용되는 지질의 탄소수이다.
본 발명의 한 구체예에서, 상기 지질은 Fc 영역 결합 펩타이드의 설프하이드릴기(-SH) 또는 N 말단의 아민기(-NH2)와 결합할 수 있는 카복실기, 말레이마이드기, PDP(피리딜로 치환된 디티오기) 등과 같은 기능기를 갖도록 변형되어 있으며, 탄소수 3 내지 24의 포화 또는 불포화 탄화수소를 포함하는 공지의 지질일 수 있다. 따라서 지질의 친수성 부분에 Fc 영역 결합 펩타이드와 직접 공유 결합할 수 있는 상기의 기능기를 가진 지질이나 상기의 기능기를 링커(linker)를 사용하여 추가로 도입할 수 있는 지질이다.
예를 들어, 상기 지질은 하기 화학식 1의 화합물을 사용할 수 있다.
화학식 1
Figure PCTKR2010002718-appb-C000001
상기 식에서,
R1 및 R2는 각각 독립적으로 탄소수 3 내지 24의 알킬, 또는 탄소수 3 내지 24의 알케닐을 나타내고,
X는 -R3-NH-CO-를 나타내며,
여기서 R3은 탄소수 1 내지 6의 알킬렌을 나타내고, n은 0 또는 1을 나타내며,
Y는 탄소수 1 내지 12의 알킬렌, -(OCH2CH2)p-, 또는 -R4-R5-를 나타내고,
여기서 p는 1 내지 100의 정수를 나타내며, R4 및 R5는 각각 독립적으로 탄소수 1 내지 6의 알킬렌, 탄소수 3 내지 8의 사이클로알킬렌, 또는 탄소수 5 내지 12의 아릴렌을 타나내고,
Z는 -R6-NH-CO-R7- 또는 -R8-R9-를 나타내며,
여기서 R6 및 R7은 각각 독립적으로 단일결합, 탄소수 1 내지 6의 알킬렌 또는 -O-를 나타내고, R8 및 R9는 각각 독립적으로 탄소수 1 내지 6의 알킬렌 또는 -O-를 나타내며 m은 0 또는 1을 나타내고,
Q는 -COOH, -SH, 숙신이미딜기, 말레이미딜기 또는 피리딜로 치환된 디티오기를 나타낸다.
상기 화학식 1의 화합물은 3-(N-숙신이미딜옥시클루타릴) 아미노프로필, 폴리에틸렌글리콜-카바밀 디스테아로일포스파티딜에탄올아민(3-(N-succinimidyloxyglutaryl) aminopropyl, polyethyleneglycol-carbamyl distearoylphosphatidylethanolamine);
1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민-N-[말레이미드(폴리에틸렌글리콜)2000](1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)2000]);
1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민-N-[카복시(폴리에틸렌 글리콜)2000](1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000]);
1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민-N-[PDP(폴리에틸렌 글리콜)2000](1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[PDP(polyethylene glycol)2000]);
1,2-디팔미토일-sn-글리세로-3-포스포티오에탄올(1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol);
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-[4-(p-말레이미도메틸)사이클로헥산-카복사미드(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide]);
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-[4-(p-말레이미도메틸)사이클로헥산-카복사미드](1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide]);
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-[4-(p-말레이미도페닐)뷰티라미드](1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide]);
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-[4-(p-말레이미도페닐)뷰티라미드 (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide]);
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-[3-(2-피리딜디티오)프로피오네이트](1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate]);
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-[3-(2-피리딜디티오)프로피오네이트](1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate]);
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-(숙시닐)(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl));
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-(숙시닐)(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl));
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-(글루타릴)(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Glutaryl));
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-(글루타릴)(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl));
1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민-N-(도데카노일)(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(dodecanoyl)); 및
1,2-디올레오일-sn-글리세로-3-포스포에탄올아민-N-(도데카노일)(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(dodecanoyl))으로 구성된 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.
상기 항체의 Fc 영역 결합성 리포펩타이드는 Fc 영역 결합성 펩타이드와 상기 지질을 유기 용매의 존재하에 1 내지 10시간 동안 반응시켜 용이하게 제조할 수 있다. 상기 항체의 Fc 영역 결합성 리포펩타이드의 제조를 위한 상기 펩타이드와 지질의 비율은 특별히 제한되지 않으나, 1:0.5 내지 1:2당량일 수 있다. 상기 유기 용매는 특별히 제한되는 것은 아니나, 디메틸포름아미드, 디클로로메탄, 아세토니트릴, 클로로포름과 같은 용매를 사용할 수 있다. 또한, 상기 펩타이드와 상기 지질의 아미드 결합을 위해서는 EDC(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS(N-Hydroxysuccinimide), CMC(cyclohexyl-3-(2-morpholinoethyl) carbodiimide), DCC(Dicyclohexyl carbodiimide), DIC(Diisopropyl carbodiimide), CDI(N,N' Carbonyldiimidazole) 등과 같은 결합제를 하나 이상 사용할 수 있으며, 이들 결합제는 지질의 0.5 내지 3 당량, 예컨대, 1.5 당량 정도의 양으로 첨가할 수 있다.
하기 실시예에서는 Fc 영역 결합성 펩타이드의 아민기 또는 설프하이드릴기와 지질의 카복시기, 말레이미드기, 또는 PDP기를 아미드 결합, 티오에테르 결합, 또는 이황화 결합을 통해 공유결합시켜 항체의 Fc 영역 결합성 리포펩타이드를 제조하는 방법에 대해 구체적으로 예시한다.
본 발명은 또한 상기 항체의 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자(lipid nanoparticle)를 제공한다. 도 2B는 본 발명에 따른 항체의 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자를 예시적으로 모식화한 도면이다. 도 2B에서 볼 수 있는 바와 같이, 항체의 Fc 영역 결합성 리포펩타이드는 리포좀과 같은 지질 나노입자를 구성하는 지질의 일부로서 사용되어 지질 나노입자에 항체의 Fc 영역이 결합할 수 있는 위치를 제공할 수 있다. 이러한 항체의 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자는 사용자가 표적성을 부여하고자 할 때 원하는 항체와 혼합하여 사용할 수 있는데, 항체의 Fc 영역이 선택적으로 결합하게 되므로 항체의 종류에 관계없이 사용할 수 있어 매우 유용하다. 상기 지질 나노입자는 항체와 혼합하게 되면 도 2C에서 볼 수 있는 바와 같이, 특정 항원에 대한 표적성을 갖는 항체의 Fc 영역이, 상기 지질 나노입자에 포함된 항체의 Fc 영역 결합성 리포펩타이드 상의 Fc 영역 결합 펩타이드에 결합하여 항체가 올바른 방향성 (right orientation) 을 갖게 됨으로써 지질 나노입자가 탁월한 표적성을 갖게 된다.
본 발명에 있어서, 상기 지질 나노입자는 이에 제한되는 것은 아니나, 리포좀(liposome), 미셀(micelle), 에멀젼(emulsion) 및 고형 지질 나노입자(solid lipid nanoparticle)로 구성된 군으로부터 선택되는 제형을 가질 수 있다.
지질을 이용하여 상기 제형을 갖는 지질 나노입자를 제조하는 방법은 당업계에 잘 알려져 있다. 다양한 제형을 갖는 지질 나노입자의 제조를 위해서는 본 발명의 리포펩타이드 이외에도 양하전 지질, 중성 지질 및 음하전 지질로부터 선택되는 보조 지질을 추가로 사용할 수 있다. 예를 들어, 양이온성 리포좀의 제조를 위해서는 양하전 지질 및 중성 지질을, 중성 리포좀의 제조를 위해서는 중성 지질을, 음이온성 리포좀의 제조를 위해서는 음하전 지질 및 중성 지질을 본 발명의 Fc 영역 선택 결합성 리포펩타이드와 유기 용매상에서 혼합하고 유기 용매를 모두 증발시킨 후 중성 pH의 완충용액으로 수화시켜 제조할 수 있다. 지질 나노입자의 제조를 위해 사용할 수 있는 양하전 지질, 중성 지질 및 음하전 지질은 당업계에 공지되어 있다.
예를 들어, 양하전 지질에는 1,2-디미리스토일-3-트리메틸암모늄프로판 (1,2-dimyristoyl-3-trimethylammonium-propane), 1,2-디팔미토일-3-트리메틸암모늄프로판 (1,2-dipalmitoyl-3-trimethylammonium-propane), 1,2-디스테로일-3-트리메틸암모늄프로판 (1,2-distearoyl-3-trimethylammonium-propane), 1,2-디올레오일-3-트리메틸암모늄프로판 (1,2-dioleoyl-3-trimethylammonium-propane), 1,2-디미리스토일-3-디메틸암모늄-프로판 (1,2-dimyristoyl-3-dimethylammonium-propane), 1,2-디팔미토일-3-디메틸암모늄-프로판 (1,2-dipalmitoyl-3-dimethylammonium-propane), 1,2-스테아로일-3-디메틸암모늄-프로판 (1,2-distearoyl-3-dimethylammonium-propane), 1,2-디올레오일-3-디메틸암모늄-프로판 (1,2-dioleoyl-3-dimethylammonium-propane), 3'-[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤 (3'-[N-(N',N'-dimethylaminoethane)carbamoyl] cholesterol; DC-Chol), 디메틸디옥타데실암모늄 브로마이드 (dimethyldioctadecylammonium bromide), 1,2-디라유로일-sn-글리세로-3-에틸포스포콜린 (1,2-dilauroyl-sn-glycero-3-ethylphosphocholine), 1,2-디미리스토일-sn-글리세로-3-에틸포스포콜린 (1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine), 1,2-디팔미토일-sn-글리세로-3-에틸포스포콜린 (1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine), 1,2-디스테아로일-sn-글리세로-3-에틸포스포콜린 (1,2-distearoyl-sn-glycero-3-ethylphosphocholine), 1,2-디올레오일-sn-글리세로-3-에틸포스포콜린 (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine), 1,2-팔미토일올레오일-sn-글리세로-3-에틸포스포콜린 (1,2-palmitoyloleoyl-sn-glycero-3-ethylphosphocholine) 등이 포함된다.
중성 지질에는 L-a-포스파티딜콜린 (L-a-phosphatidylcholine), 1,2-프로피오노일-sn-글리세로-3-포스포콜린 (1,2-propionoyl-sn-glycero-3-phosphocholine), 1,2- 부타노일-sn-글리세로-3-포스포콜린 (1,2-butanoyl-sn-glycero-3-phosphocholine), 1,2-펜타노일-sn-글리세로-3-포스포콜린 (1,2-pentanoyl-sn-glycero-3-phosphocholine), 1,2-카프로일-sn-글리세로-3-포스포콜린 (1,2-caproyl-sn-glycero-3-phosphocholine), 1,2-헵타노일-sn-글리세로-3-포스포콜린 (1,2-heptanoyl-sn-glycero-3-phosphocholine), 1,2-카프리로일-sn-글리세로-3-포스포콜린 (1,2-capryloyl-sn-glycero-3-phosphocholine), 1,2-노나노일-sn-글리세로-3-포스포콜린 (1,2-nonanoyl-sn-glycero-3-phosphocholine), 1,2-카프릴-sn-글리세로-3-포스포콜린 (1,2-capryl-sn-glycero-3-phosphocholine), 1,2-언데카노일-sn-글리세로-3-포스포콜린 (1,2-undecanoyl-sn-glycero-3-phosphocholine), 1,2-라우로일-sn-글리세로-3-
포스포콜린 (1,2-lauroyl-sn-glycero-3-phosphocholine), 1,2-트리데카노일-sn-글리세로-3-포스포콜린 (1,2-tridecanoyl-sn-glycero-3-phosphocholine), 1,2-미리스토일-sn-글리세로-3-포스포콜린 (1,2-myristoyl-sn-glycero-3-phosphocholine), 1,2-펜타데카노일-sn-글리세로-3-포스포콜린 (1,2-pentadecanoyl-sn-glycero-3-phosphocholine), 1,2-팔미토일-sn-글리세로-3-포스포콜린 (1,2-palmitoyl-sn-glycero-3-phosphocholine), 1,2-헵타데카노일-sn-글리세로-3-포스포콜린 (1,2-heptadecanoyl-sn-glycero-3-phosphocholine), 1,2-스테아로일-sn-글리세로-3-포스포콜린 (1,2-stearoyl-sn-glycero-3-phosphocholine), 1,2-노나데카노일-sn-글리세로-3-포스포콜린 (1,2-nonadecanoyl-sn-glycero-3-phosphocholine), 1,2-아라키도일-sn-글리세로-3-포스포콜린 (1,2-arachidoyl-sn-glycero-3-phosphocholine), 1,2-헤니에코사노일-sn-글리세로-3-포스포콜린 (1,2-heniecosanoyl-sn-glycero-3-phosphocholine), 1,2-베헤노일-sn-글리세로-3-포스포콜린 (1,2-behenoyl-sn-glycero-3-phosphocholine), 1,2-트루시사노일-sn-글리세로-3-포스포콜린 (1,2-trucisanoyl-sn-glycero-3-phosphocholine), 1,2-리그노세로일-sn-글리세로-3-포스포콜린 (1,2-lignoceroyl-sn-glycero-3-phosphocholine), 1,2-미리스톨레오일-sn-글리세로-3-포스포콜린 (1,2-myristoleoyl-sn-glycero-3-phosphocholine), 1,2-미리스텔라이도일-sn-글리세로-3-포스포콜린 (1,2-myristelaidoyl-sn-glycero-3-phosphocholine), 1,2-팔미톨레오일-sn-글리세로-3-포스포콜린 (1,2-palmitoleoyl-sn-glycero-3-phosphocholine), 1,2-팔미텔라이도일-sn-글리세로-3-포스포콜린 (1,2-palmitelaidoyl-sn-glycero-3-phosphocholine), 1,2-페트로셀리노일-sn-글리세로-3-포스포콜린 (1,2-petroselinoyl-sn-glycero-3-phosphocholine), 1,2-올레오일-sn-글리세로-3-포스포콜린 (1,2-oleoyl-sn-glycero-3-phosphocholine), 1,2-엘라이도일-sn-글리세로-3-포스포콜린 (1,2-elaidoyl-sn-glycero-3-phosphocholine), 1,2-리놀레오일-sn-글리세로-3-포스포콜린 (1,2-linoleoyl-sn-glycero-3-phosphocholine), 1,2-리놀레노일-sn-글리세로-3-포스포콜린 (1,2-linolenoyl-sn-glycero-3-phosphocholine), 1,2-아이코세노일-sn-글리세로-3-포스포콜린 (1,2-eicosenoyl-sn-glycero-3-phosphocholine), 1,2-아라키도노일-sn-글리세로-3-포스포콜린 (1,2-arachidonoyl-sn-glycero-3-phosphocholine), 1,2-이루코일-sn-글리세로-3-포스포콜린 (1,2-erucoyl-sn-glycero-3-phosphocholine), 1,2-너보노일-sn-글리세로-3-포스포콜린 (1,2-nervonoyl-sn-glycero-3-phosphocholine), L-a-포스파티딜에탄올아민 (L-a-phosphatidylethanolamine), 1,2-디카프로일-sn-글리세로-3-포스포에탄올아민 (1,2-dicaproyl-sn-glycero-3-phosphoethanolamine), 1,2-디옥타노일-sn-글리세로-3-포스포에탄올아민 (1,2-dioctanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디카프릴-sn-글리세로-3-포스포에탄올아민 (1,2-dicapryl-sn-glycero-3-phosphoethanolamine), 1,2-디라우로일-sn-글리세로-3-포스포에탄올아민 (1,2-dilauroyl-sn-glycero-3-phosphoethanolamine), 1,2-디미리스토일-sn-글리세로-3-포스포에탄올아민 (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine), 1,2-디펜타데카노일-sn-글리세로-3-포스포에탄올아민 (1,2-dipentadecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민 (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), 1,2-디파이타노일-sn-글리세로-3-포스포에탄올아민 (1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디팔미톨레오일-sn-글리세로-3-포스포에탄올아민 (1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디헵타데카노일-sn-글리세로-3-포스포에탄올아민 (1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민 (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디엘라이도일-sn-글리세로-3-포스포에탄올아민 (1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine), 1,2-디리노에오일-sn-글리세로-3-포스포에탄올아민 (1,2-dilinoeoyl-sn-glycero-3-phosphoethanolamine), 1,2-디리놀레노일-sn-글리세로-3-포스포에탄올아민 (1,2-dilinolenoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아라키도노일-sn-글리세로-3-포스포에탄올아민 (1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine), 1,2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민 (1,2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 콜레스테롤(cholesterol) 등이 포함된다.
또한 음하전 지질에는 L-a-포스파티딜글리세롤 (L-a-phosphatidylglycerol), 1,2-디카프로일-sn-글리세로-3-포스포글리세롤 (1,2-dicaproyl-sn-glycero-3-phosphoglycerol), 1,2-디옥타노일-sn-글리세로-3-포스포글리세롤 (1,2-dioctanoyl-sn-glycero-3-phosphoglycerol), 1,2-디카프릴-sn-글리세로-3-포스포글리세롤 (1,2-dicapryl-sn-glycero-3-phosphoglycerol), 1,2-디라우로일-sn-글리세로-3-포스포글리세롤 (1,2-dilauroyl-sn-glycero-3-phosphoglycerol), 1,2-디미리스토일-sn-글리세로-3-포스포글리세롤 (1,2-dimyristoyl-sn-glycero-3-phosphoglycerol), 1,2-디팔미토일-sn-글리세로-3-포스포글리세롤 (1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol), 1,2-디파이타노일-sn-글리세로-3-포스포글리세롤 (1,2-diphytanoyl-sn-glycero-3-phosphoglycerol), 1,2-디헵타데카노일-sn-글리세로-3-포스포글리세롤 (1,2-diheptadecanoyl-sn-glycero-3-phosphoglycerol), 1,2-디스테아로일-sn-글리세로-3-포스포글리세롤 (1,2-distearoyl-sn-glycero-3-phosphoglycerol), 1,2-디올레오일-sn-글리세로-3-포스포글리세롤 (1,2-dioleoyl-sn-glycero-3-phosphoglycerol), 1,2-디엘라이도일-sn-글리세로-3-포스포글리세롤 (1,2-dielaidoyl-sn-glycero-3-phosphoglycerol), 1,2-디리놀레오일-sn-글리세로-3-포스포글리세롤 (1,2-dilinoleoyl-sn-glycero-3-phosphoglycerol), 1,2-디리놀레노일-sn-글리세로-3-포스포글리세롤 (1,2-dilinolenoyl-sn-glycero-3-phosphoglycerol), 1,2-디아라키도노일-sn-글리세로-3-포스포글리세롤 (1,2-diarachidonoyl-sn-glycero-3-phosphoglycerol), 1,2-도코사헥사에노일-sn-글리세로-3-포스포글리세롤 (1,2-docosahexaenoyl-sn-glycero-3-phosphoglycerol), L-a-포스파티딜이노시톨 (L-a-phosphatidylinositol), 1,2-디올레오일-sn-글리세로-3-포스포이노시톨 (1,2-dioleoyl-sn-glycero-3-phosphoinositol), d-에리스로-스핑고실 포스포이노시톨 (d-erythro-sphingosyl phosphoinositol), L- -포스파티딕산 (L-a-phosphatidic acid), 1,2-디헥사노일-sn-글리세로-3-포스페이트 (1,2-dihexanoyl-sn-glycero-3-phosphate), 1,2-디옥타노일-sn-글리세로-3-포스페이트 (1,2-dioctanoyl-sn-glycero-3-phosphate), 1,2-디테카노일-sn-글리세로-3-포스페이트 (1,2-didecanoyl-sn-glycero-3-phosphate), 1,2-디도데카노일-sn-글리세로-3-포스페이트 (1,2-didodecanoyl-sn-glycero-3-phosphate), 1,2-디테트라데카노일-sn-글리세로-3-포스페이트 (1,2-ditetradecanoyl-sn-glycero-3-phosphate), 1,2-디헥사테카노일-sn-글리세로-3-포스페이트 (1,2-dihexadecanoyl-sn-glycero-3-phosphate), 1,2-디파이타노일-sn-글리세로-3-포스페이트 (1,2-diphytanoyl-sn-glycero-3-phosphate), 1,2-디헵타데카노일-sn-글리세로-3-포스페이트 (1,2-diheptadecanoyl-sn-glycero-3-phosphate), 1,2-디옥타데카노일-sn-글리세로-3-포스페이트 (1,2-dioctadecanoyl-sn-glycero-3-phosphate), 1,2-디옥타데카디에노일-sn-글리세로-3-포스페이트 (1,2-dioctadecadienoyl-sn-glycero-3-phosphate), 1,2-디이코사테트라에노일-sn-글리세로-3-포스페이트 (1,2-dieicosatetraenoyl-sn-glycero-3-phosphate), 1,2-디도코사헥사에노일-sn-글리세로-3-포스페이트 (1,2-didocosahexaenoyl-sn-glycero-3-phosphate), L-a-포스파티딜세린 (L-a-phosphatidylserine), 1,2-디헥사노일-sn-글리세로-3-포스포세린 (1,2-dihexanoyl-sn-glycero-3-phosphoserine), 1,2-디옥타노일-sn-글리세로-3-포스포세린 (1,2-dioctanoyl-sn-glycero-3-phosphoserine), 1,2-디데카노일-sn-글리세로-3-포스포세린 (1,2-didecanoyl-sn-glycero-3-phosphoserine), 1,2-디도데카노일-sn-글리세로-3-포스포세린 (1,2-didodecanoyl-sn-glycero-3-phosphoserine), 1,2-디테트라데카노일-sn-글리세로-3-포스포세린 (1,2-ditetradecanoyl-sn-glycero-3-phosphoserine), 1,2-디헥사데카노일-sn-글리세로-3-포스포세린 (1,2-dihexadecanoyl-sn-glycero-3-phosphoserine), 1,2-디파이타노일-sn-글리세로-3-포스포세린 (1,2-diphytanoyl-sn-glycero-3-phosphoserine), 1,2-디헵타데카노일-sn-글리세로-3-포스포세린 (1,2-diheptadecanoyl-sn-glycero-3-phosphoserine), 1,2-디옥타데카노일-sn-글리세로-3-포스포세린 (1,2-dioctadecanoyl-sn-glycero-3-phosphoserine), 1,2-디옥타데세노일-sn-글리세로-3-포스포세린 (1,2-dioctadecenoyl-sn-glycero-3-phosphoserine), 1,2-디옥타데카디에노일-sn-글리세로-3-포스포세린 (1,2-dioctadecadienoyl-sn-glycero-3-phosphoserine), 1,2-디이코사테트라에노일-sn-글리세로-3-포스포세린 (1,2-dieicosatetraenoyl-sn-glycero-3-phosphoserine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포세린 (1,2-didocosahexaenoyl-sn-glycero-3-phosphoserine), 콜레스테릴 헤미숙시네이트 (cholesteryl hemisuccinate; CHEMS), 카디올리핀 (cardiolipin), 1',3'-비스[1,2-디테트라데카노일-sn-글리세로-3-포스포]-sn-글리세롤 (1',3'-bis[1,2-ditetradecanoyl-sn-glycero-3-phospho]-sn-glycerol), 1',3'-비스[1,2-디옥타데세노일-sn-글리세로-3-포스포]-sn-글리세롤 (1',3'-bis[1,2-dioctadecenoyl-sn-glycero-3-phospho]-sn-glycerol) 등이 포함된다.
한 구체예에서, 상기 지질 나노입자는 계면활성제를 추가로 포함할 수 있다. 예를 들어, 미셀 또는 에멀젼 제형의 형성을 위해서는 본 발명의 리포펩타이드 및 보조 지질과 함께 계면활성제를 사용할 수 있다.
이러한 계면활성제는, 음이온성 계면활성제, 양이온성 계면활성제, 양쪽이온성 계면활성제 및 비이온성 계면활성제로 구성된 군으로부터 선택되는 하나 이상을 사용할 수 있다.
예를 들어 비온성 계면활성제는 트윈 20 (Tween 20) 또는 트윈 80 (Tween 80)과 같은 폴리솔베이트계; 트리톤 X-100(Triton-X-100)와 같은 알킬페놀 폴리에틸렌옥사이드계; 폴리에틸렌글리콜 모노올레일 에테르(polyethylene glycol monooleyl ether), 에틸렌글리콜 모노도데실 에테르 (ethylene glycol monododecyl ether), 디에틸렌글리콜 모노헥실 에테르 (diethylene glycol monohexyl ether), 트리에틸렌 글리콜 모노도데실 에테르 (triethylene glycol monododecyl ether)와 같은 알킬(폴리)에틸렌 글리콜계; 플록사머계(Poloxamers); 옥틸 글루코사이드(octyl glucoside) 또는 사이클로헥실 베타 말토사이드 (cyclohexylmethyl -D-maltoside)와 같은 알킬 폴리글루코사이드계; 라우릴에메틸아민옥사이드 (lauryldimethylamine-oxide) 또는 도데실 디메틸아민 산화물(dodecyl dimethylamine oxide)과 같은 알킬아민옥사이드계; 펜타에리스리틸 팔미테이트(pentaerythrityl palmitate) 또는 노나노일메틸글루카민 (N-nonanoyl-N-methylglucamine)를 포함한다.
양이온성 계면활성제는 4급 암모늄 이온을 포함하는 트리메틸헥사데실 암모늄 클로라이드(trimethylhexadecyl ammonium chloride), 도데실트리메틸 암모늄 클로라이드 (dodecyltrimethyl ammonium bromide), 세틸 브롬화 트리메틸암모늄염(cetyl trimethylammonium bromide), 또는 헥사데실 브롬화 암모늄염(hexadecyl trimethyl ammonium bromide)을 포함한다.
양쪽이온성 계면활성제는 도데실 베타인(dodecyl betaine)을 포함한다.
또한 음이온성 계면활성제는 디메틸팔미토일암모니오프로판 설포네이트(3-(N,Ndimethylpalmitylammonio) propane sulfonate)와 같은 설페이트, 설포네이트 또는 카르복실레이트 음이온을 포함하는 계면활성제 또는 라우로살코신 소듐염(N-lauroylsarcosine sodium salt) 등과 같은 지방산의 염을 포함한다.
하기 실시예에서는 본 발명의 Fc 영역 결합성 리포펩타이드를 이용하여 다양한 제형의 지질 나노입자를 제조하는 방법에 대해 구체적으로 설명한다. 표적 세포로 전달하고자 하는 치료제 또는 진단제와 같은 약물은 지질 나노입자의 제조시 제형 내로 봉입하거나 제형의 표면에 결합시킬 수 있다. 하기 실시예에서는 지질 나노입자의 제조시 형광 지질, 항암제, siRNA 등을 지질 나노입자에 도입하여 본 발명의 지질 나노입자의 항원 인지능과 약물전달능을 평가한다.
또한, 본 발명은 상기 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자를 제공한다. 본 발명의 지질 나노입자의 제조에 사용되는 리포펩타이드가 Fc 영역 특이적 결합능을 가지고 있다. 따라서, 별도의 결합 반응 없이도 지질 나노입자에 결합하는 항체의 Fc 영역이 지질 나노입자의 리포펩타이드에 비공유결합된다.
하기 실시예에서는, 항체가 선택적으로 비공유결합되어있는 본 발명의 항원 인지형 지질 나노입자와 항체가 비선택적으로 공유결합되어 있는 종래의 항원 인지형 지질 나노입자에 비한 항원 인지능과 약물전달능을 평가하였다.
하기 실시예에서 확인할 수 있는 바와 같이, 기존의 항원 인지형 지질 나노입자는 항체를 화학적으로 변형하여 비선택적 공유 결합을 통해 지질에 결합하는 방법을 사용해왔으므로 항체 고유의 항원 인지 능력이 떨어지며 항체의 방향에 상관없이 무작위로 지질에 결합되어 또한 표적화 능력이 떨어진다. 이와 달리, 본 발명에서는 항체를 화학적으로 변형시키지 않음과 동시에 항체의 항원 인지 부위가 항원 인지형 지질 나노입자의 바깥쪽을 향하게 하여 항원 인지형 지질 나노입자의 표적화 능력을 증가시켰다.
또한, 기존의 항원 인지형 지질 나노입자의 제조시 지질과 항체의 공유결합으로 인해 공정이 복잡하고 시간이 많이 소요되었던 것과는 달리, 본 발명의 항원 인지형 지질 나노입자는 지질 나노입자와 항체의 단순 혼합을 통해 제조될 수 있는 바, 제조가 간단하고 신속하다.
본 발명의 지질 나노입자에 포함되는 리포펩타이드는 임의의 항체의 Fc 영역과 결합할 수 있다. 본 발명의 항원 인지형 지질 나노입자의 제조시에는 지질 나노입자에 항원 표적능을 부여하기 위해 약물 전달을 원하는 표적 세포의 항원에 특이적으로 결합하는 항체를 선택하여 이를 지질 나노입자에 비공유결합시키게 된다.
본 발명의 항원 인지형 지질 나노입자를 통해 약물을 전달받는 표적 세포는 치료 또는 진단이 요구되는 세포일 수 있다. 이러한 표적 세포는 예를 들어, 암 세포, 염증 세포 등일 수 있다. 하기 실시예에서는 버키트 림프종 세포주, 신경교종 세포주, 구강 편평세포암 세포주 등을 이용하여 본 발명의 항원 인지형 지질 나노입자의 항원 인지능 및 약물 전달능을 평가한다.
이와 같이, 본 발명의 항원 인지형 지질 나노입자는 표적 세포의 항원을 타겟팅하여 선택적으로 약물을 전달하는 약물전달체로서 사용될 수 있다. 따라서, 본 발명은 또한 상기 항원 인지형 지질 나노입자 및 약물을 포함하는 의약 조성물을 제공한다.
본 발명의 항원 인지형 지질 나노입자를 이용하여 표적 세포로 전달할 수 있는 약물은 치료제(therapeutic agent) 및 진단제(diagnostic agent)로 구성된 군으로부터 선택되는 하나 이상의 약물일 수 있다. 본 발명의 항원 인지형 지질 나노입자는 치료제와 진단제를 동시에 전달할 수도 있다. 예를 들어, 리포좀의 중앙의 친수성 공간에 자성나노입자와 같은 진단제를, 외부의 지질 이중막에 지용성 약물이나 핵산과 같은 음전하 물질을 결합시킬 수 있다.
상기 치료제는 화학요법제, 단백질 의약 또는 핵산의약일 수 있다. 화학요법제는 임의의 질환에 대한 약리 효과를 나타내는 유기 화합물을 의미한다. 화학요법제는 대개 혈류를 통해 비선택적으로 세포에 전달되는 특성을 갖는데, 약물의 부작용을 감소시키기 위해 세포 또는 조직에 선택적인 치료가 요구되는 경우에는 본 발명의 항원 인지형 지질 나노입자를 이용하는 것이 바람직하다. 이러한 화학요법제의 대표적인 예로는 항암 화학요법제를 들 수 있다. 공지의 항암 화학요법제로는 예를 들어, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신 (doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 발루비신(valubicin), 미토산트론(mitoxantrone), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine), 빈크리스틴(vincristine) 등이 있다.
본 발명의 항원 인지형 지질 나노입자를 이용하여 표적세포에 전달할 수 있는 의약은 단백질 의약 또는 핵산의약일 수 있다. 예를 들어, 특정 수용체에 특이적으로 결합하여 신호 전달을 차단하거나 억제하는 펩타이드, 특정 유전자의 발현을 저해하는 siRNA 등이 이에 해당된다.
본 발명에 있어서, 핵산은 플라스미드 디옥시리보핵산(plasmid DNA), 리보핵산(RNA), 작은 간섭 리보핵산(siRNA), 안티센스 올리고핵산(antisense oligonucleotide), 마이크로 리보핵산 (microRNA), 잠금형 핵산 (locked nucleic acid), 핵산 앱타머(aptamer) 등을 포함한다.
한편, 상기 진단제는 표적 세포를 탐지해 내어 인식가능하게 할 수 있는 물질이면 어떠한 것이든 이용가능하다. 예를 들어, 상기 진단제는 MRI 등에서 사용하기 위한 자성나노입자나 공지의 조영제일 수 있다. 핵산 앱타머 또한 특정 항원에 대한 표적성을 가지므로 형광물질 등이 레이블링되어 있는 핵산 앱타머는 상기 진단제로 사용될 수 있을 것이다. 또한, 생체를 투과할 수 있는 근적외선(near infra-red) 계열의 형광물질; 또는 Calcium-47, Carbon-11, Carbon-14, Chromium-51, Cobalt-57, Cobalt-58, Erbium-169, Fluorine-18, Gallium-67, Gallium-68, Hydrogen-3, Indium-111, Iodine-123, Iodine-131, Technetium-99m와 같은 방사선의약품도 사용될 수 있다.
하기 실험예에서는 본 발명의 항원 인지형 지질 나노입자 및 약물을 포함하는 의약 조성물이 표적 세포 내로 전달되는 효율에 대해 평가하였다. 모델 약물인 형광으로 표지된 지질 또는 형광으로 표지된 작은간섭리보핵산을 본 발명의 항원 인지형 지질 나노입자에 도입함으로써 이들의 전달 효율을 형광 유세포 분석기(fluorescent-activated cell sorting, FACS)를 통하여 평가하였으며, 본 발명의 항원 인지형 지질 나노입자에 의해 전달된 작은 간섭 리보핵산의 유전자 발현 억제 능력을 평가하기 위하여 역전사 중합효소 연쇄반응을 이용하였다. 그 결과, 본 발명의 항원 인지형 지질 나노입자는 비표적화 지질 나노입자보다 약물의 표적 세포로의 전달 능력을 현저히 증가시켰고 또한 기존의 화학적 변형을 통한 공유결합 방식으로 제조한 항원 인지형 지질 나노입자보다도 세포로의 전달 능력을 증가시키는 것을 확인하였다. 또한 역전사 중합효소 연쇄반응을 이용하여 표적 유전자 발현 억제 능력도 증가됨을 확인하였다. 따라서 항원 인지형 지질 나노입자 및 약물을 포함하는 본 발명의 의약 조성물은 약물 전달 효율이 매우 우수하다.
그러므로 본 발명은 또한, 항체 Fc 영역 결합성 리포펩타이드, 상기 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자 또는 상기 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자의 항원 특이적 약물전달체의 제조를 위한 용도를 제공한다.
본 발명은 또한 상기 항체 Fc 영역 결합성 리포펩타이드를 함유하는 항원 특이적 약물전달체 제조용 조성물, 상기 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자를 함유하는 항원 특이적 약물전달체 제조용 조성물 및 상기 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자를 함유하는 항원 특이적 약물전달체 제조용 조성물를 제공한다.
또한 본 발명은 상기 항체 Fc 영역 결합성 리포펩타이드를 지질과 결합시켜 지질 나노입자를 제조하고, 상기 지질 나노입자에 항체를 비공유결합시켜 항원 인지형 지질 나노입자를 제조하는 것을 포함하는 항원 특이적 약물전달체의 제조 방법을 제공한다. 앞서 설명한 바와 같이 약물은 지질 나노입자의 제조시 또는 지질 나노입자나 항원 인지형 지질 나노입자의 제조 후 공지의 방법을 통해 지질 나노입자에 도입될 수 있다.
본 발명의 항원 인지형 지질 나노입자는 지질 나노입자의 표면에 항체의 Fc 영역과 결합할 수 있는 리포펩타이드가 존재하므로 지질 나노입자의 표면에 결합시키고자 하는 항체를 지질 나노입자와 물리적으로 단순혼합시키면 항체의 Fc 영역과 리포펩타이드가 특이적으로 결합하게 된다. 따라서, 항체와 지질을 비선택적으로 공유결합(random conjugation)시켜 제조한 기존의 항원 인지형 지질 나노입자와는 달리 지질 나노입자에 결합된 리포펩타이드를 통해 항원 인지능의 저하 없이 항체를 지질 나노입자의 표면에 결합시킬 수 있게 된다. 따라서, 본 발명의 항원 인지형 지질 나노입자는 치료제, 진단제 등의 다양한 약물의 표적 세포로의 수송 효율을 현저히 증강시킬 수 있다. 또한, 본 발명의 Fc 결합성 리포펩타이드를 포함하는 지질 나노입자는 리포펩타이드와 항체 사이의 비공유적이고 선택적인 결합을 통해 항체와 결합되므로, 비선택적 공유결합을 통해 항체와 지질 나노입자가 결합되어 있던 기존의 항원 인지형 지질 나노입자의 제조에 비해 반응 시간이 짧고, 단순 혼합을 통해 선택적인 반응이 유도되므로 공정이 간편하여 대량 생산시 경제성이 높다.
도 1은 항체가 비선택적으로 지질 나노입자의 표면에 공유결합되어 올바른 방향성 (right orientation) 을 가지지 못하는 있는 기존의 항원 인지형 지질 나노입자를 모식화한 도면이다.
도 2A는 본 발명에 따른 항체의 Fc 영역 결합성 리포펩타이드를 예시적으로 모식화한 도면이고, 도 2B는 본 발명에 따른 항체의 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자를 예시적으로 모식화한 도면이며, 도 2C는 상기 지질 나노입자에 항체가 결합하여 올바른 방향성 (right orientation) 을 가지는 상태를 예시적으로 모식화한 도면이다.
도 3은 사람의 백혈병 세포주인 Ramos 에서 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 Ramos 세포 표면 CXCR4 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 4는 사람의 백혈병 세포주인 U937 에서 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 U937 세포 표면 CXCR4 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 5는 사람의 자궁경부암 상피 세포주인 HeLa에서 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 HeLa 세포주 표면 CXCR4 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 6은 사람의 신경교종 세포주인 U87 에서 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 U87세포 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 7은 사람의 비인두 표피암 조직에서 유래된 세포주인 KB 에서 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 KB 세포 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 8은 사람의 유방암 세포주인 MDA-MB-231 에서 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 MDA-MB-231 세포 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 9는 사람의 유방암 세포주인 MCF7 에서 EGFR항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 MCF7 세포 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 10은 사람의 유방암 세포주인 MDA-MB-453 에서 HER2항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 MDA-MB-453 세포 표면 HER2 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 11은 사람의 유방암 세포주인 SK-BR-3 에서 HER2항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 리포좀의 SK-BR-3 세포 표면 HER2 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 12는 사람의 신경교종 세포주인 U87 에서 EGFR항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 미셀의 U87 세포 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 13은 사람의 비인두 표피암 조직에서 유래된 세포주인 KB 에서 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 형광 지질 함유 에멀젼의 전달 효율 정도를 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 14는 사람의 유방암 세포주인 MDA-MB-231 에서 EGFR항체의 Fc 부분이 비공유적으로 선택 결합된 고형 지질 나노입자의 MDA-MB-231 세포주 표면 EGFR 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 15는 사람의 미세 신경교세포 세포주인 MG5 에서 Iba1 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀와 형광 마커로 표지된 이중 나선 리보핵산의 복합체의 MG5 세포 표면 Iba1 항원 인지능을 형광 유세포분석기 (FACS)를 사용해 분석한 결과이다.
도 16은 HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 파클리탁셀 함유 리포좀에 의한 암세포 사멸 효능을 MTT (tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) 염색법을 사용하여 MCF 세포주에서 확인한 결과이다.
도 17은 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 도세탁셀 함유 리포좀에 의한 암세포 사멸 효능을 MTT 염색법을 사용하여 U87 세포주에서 확인한 결과이다.
도 18은 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 독소루비신 함유 리포좀에 의한 암세포 사멸 효능을 MTT 염색법을 사용하여 Ramos 세포주에서 확인할 결과이다.
도 19는 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 양하전 리포좀을 이용하여 서바이빈 발현 억제 siRNA에 의해 매개된 서바이빈 전사체 발현 억제 효능을 U87 세포주에서 역전사 중합효소 연쇄반응을 통해 확인한 결과를 보여준다.
도 20은 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 양하전 리포좀을 이용하여 서바이빈 발현 억제 siRNA에 의해 매개된 서바이빈 전사체 발현 억제 효능을 HeLa 세포주에서 역전사 중합효소 연쇄반응으로 확인한 결과를 보여준다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
<항체 결합을 위한 신규한 지질 결합체의 합성>
실시예 1. 항체 Fc 영역 결합 펩타이드와 폴리에틸렌 글리콜 지질의 아미드 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 1의 아미노산 서열을 갖는 펩타이드 11.46 mg(1.5 당량) 과 폴리에틸렌 글리콜 사슬의 분자량이 2000인 3-(N-succinimidyloxyglutaryl) aminopropyl, polyethyleneglycol-carbamyl distearoylphosphatidyl-ethanolamine(NOF corporation, Japan) 14.98 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 2. 항체 Fc 영역 결합 펩타이드와 폴리에틸렌 글리콜 지질의 티오에테르 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 2의 아미노산 서열을 갖는 펩타이드 12.24 mg(1.5 당량) 과 폴리에틸렌 글리콜 사슬의 분자량이 2000인 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)2000](Avanti Polar Lipid Inc., USA, 이하 Mal-PEG-DSPE라 함.) 14.71 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 3. 항체 Fc 영역 결합 펩타이드와 폴리에틸렌 글리콜 지질의 아미드 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
폴리에틸렌 글리콜 사슬의 분자량이 2000인 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000](Avanti Polar Lipid Inc., USA) 14.25 mg(1 당량)과 EDC(1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide) 2.23 mg(1.5당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 2 시간 동안 질소 하 반응시킨 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 NHS(N-hydroxy-succinimide) 0.86 mg(1.5당량)을 천천히 적하시키고 실온에서 1 시간 동안 질소 하 반응시켰다. 반응 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 서열번호 1의 아미노산 서열을 갖는 펩타이드 11.46 mg(1.5 당량)을 천천히 적하시켜 실온에서 8 시간 동안 질소 하 반응시켰다. 최종 반응 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 4. 항체 Fc 영역 결합 펩타이드와 폴리에틸렌 글리콜 지질의 이황화 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 2의 아미노산 서열을 갖는 펩타이드 12.24 mg(1.5 당량) 과 폴리에틸렌 글리콜 사슬의 분자량이 2000인 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[PDP(polyethylene glycol)2000](Avanti Polar Lipid Inc., USA) 14.94 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 5. 항체 Fc 영역 결합 펩타이드와 지질의 아미드 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)(Avanti Polar Lipid Inc., USA) 4.07 mg(1 당량)과 EDC(1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide) 2.23 mg(1.5당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 2 시간 동안 질소 하 반응시킨 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 NHS(N-hydroxy-succinimide) 0.86 mg(1.5당량)을 천천히 적하시키고 실온에서 1 시간 동안 질소 하 반응시켰다. 반응 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 서열번호 1의 아미노산 서열을 갖는 펩타이드 11.46 mg(1.5 당량)을 천천히 적하시켜 실온에서 8 시간 동안 질소 하 반응시켰다. 최종 반응 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 6. 항체 Fc 영역 결합 펩타이드와 지질의 아미드 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl)(Avanti Polar Lipid Inc., USA) 4.14 mg(1 당량)과 EDC(1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide) 2.23 mg(1.5당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 2 시간 동안 질소 하 반응시킨 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 NHS(N-hydroxy-succinimide) 0.86 mg(1.5당량)을 천천히 적하시키고 실온에서 1 시간 동안 질소 하 반응시켰다. 반응 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 서열번호 1의 아미노산 서열을 갖는 펩타이드 11.46 mg(1.5 당량)을 천천히 적하시켜 실온에서 8 시간 동안 질소 하 반응시켰다. 최종 반응 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 7. 항체 Fc 영역 결합 펩타이드와 지질의 아미드 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(dodecanoyl)(Avanti Polar Lipid Inc., USA) 4.63 mg(1 당량)과 EDC(1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide) 2.23 mg(1.5당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 2 시간 동안 질소 하 반응시킨 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 NHS(N-hydroxy-succinimide) 0.86 mg(1.5당량)을 천천히 적하시키고 실온에서 1 시간 동안 질소 하 반응시켰다. 반응 후, 디메틸포름아미드(dimethylformamide) 0.5 ml에 녹인 서열번호 1의 아미노산 서열을 갖는 펩타이드 11.46 mg(1.5 당량)을 천천히 적하시켜 실온에서 8 시간 동안 질소 하 반응시켰다. 최종 반응 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 8. 항체 Fc 영역 결합 펩타이드와 지질의 티오에테르 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 2의 아미노산 서열을 갖는 펩타이드 12.24 mg(1.5 당량) 과 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide(Avanti Polar Lipid Inc., USA) 4.67 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 9. 항체 Fc 영역 결합 펩타이드와 지질의 티오에테르 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 2의 아미노산 서열을 갖는 펩타이드 12.24 mg(1.5 당량) 과 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide](Avanti Polar Lipid Inc., USA) 4.78 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
실시예 10. 항체 Fc 영역 결합 펩타이드와 지질의 이황화 결합을 통한 항체 Fc 영역 선택 결합성 리포펩타이드의 합성
서열번호 2의 아미노산 서열을 갖는 펩타이드 12.24 mg(1.5 당량) 과 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate](Avanti Polar Lipid Inc., USA) 4.56 mg(1 당량)을 디메틸포름아미드(dimethylformamide) 5 ml에 실온에서 12 시간 동안 질소 하 반응시킨 후, 진공으로 감압 농축하고 얻은 생성물을 클로로포름(chloroform)으로 재결정하여 미반응 펩타이드와 부산물을 제거시켰다.
비교예 1. 폴리에틸렌 글리콜 잔기를 가지는 기존의 항체 공유결합용 지질
상기의 실시예 1 내지 4에서 제조한 폴리에틸렌 글리콜 잔기를 포함하는 신규한 리포펩타이드에 대한 비교예로서 기존의 항체 공유결합 용도로 당분야에서 일반적으로 사용되고 있는 폴리에틸렌 글리콜 잔기 포함 지질인 Mal-PEG-DSPE (Avanti Inc., 미국)를 클로로포름에 10 mg/ml 의 농도로 녹여서 사용하였다.
비교예 2. 폴리에틸렌 글리콜 잔기가 없는 기존의 항체 공유결합용 지질
상기의 실시예 5 내지 10에서 제조한 폴리에틸렌 글리콜 잔기가 없는 리포펩타이드에 대한 비교예로서 기존의 항체 공유 결합 용도로 당분야에서 일반적으로 사용되고 있는 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidomethyl)cyclohexane-carboxamide (Avanti Inc., 미국)를 클로로포름에 10 mg/ml 의 농도로 녹여서 사용하였다.
<지질 나노입자의 제조>
실시예 11. 실시예 1의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 음이온성 리포좀(anionic liposome)의 제조
실시예 1에서 제조한 리포펩타이드, 중성 지질인L-a-phosphatidylcholine(Avanti Polar Lipid Inc., USA, 이하 'PC'라 함), 음하전 지질인 L-a-phosphatidylglycerol (Avanti Polar Lipid Inc., USA, 이하 'PG'라 함), 콜레스테롤(cholesterol, Sigma, USA)과 형광 지질인 N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Avanti Polar Lipid Inc., USA, 이하 'NBD-PE'라 함)을 각각 0.1:1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 질소 환경에서 모든 클로로포름이 증발될 때까지 낮은 속도로 회전 증발시켜 지질 박막 필름으로 제조하였다. 지질 다층형 소구체 (multilamella vesicle)를 제조하기 위하여 이 박막필름에 인산완충용액 1 ml을 첨가하고 바이알을 37℃로 하여 밀봉 후 3 분간 교반(vortexing)하였다. 균일한 크기를 만들기 위해 이를 입자 균질화 제조기 (extruder, Northern Lipid Inc., Canada)를 사용하여 0.2 ㎛폴리카보네이트 막을 3 번 통과시켜 제조하였다. 수득된 리포펩타이드 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 12. 실시예 2의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 음이온성 리포좀(anionic liposome)의 제조
실시예 2에서 제조한 리포펩타이드, PC, cholesteryl hemisuccinate (Sigma, USA, 이하 'CHEMS'라 함)와 형광 표지를 위한 NBD-PE를 각각 0.1:2:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 음이온성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 13. 실시예 3의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 음이온성 리포좀(anionic liposome)의 제조
실시예 3에서 제조한 리포펩타이드, PC, Cardiolipin (Avanti Polar Lipid Inc., USA, 이하 'CA'라 함), 콜레스테롤과 형광 표지를 위한 NBD-PE를 각각 0.1:1:0.5:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 음이온성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 14. 실시예 5의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 중성 리포좀 (neutral liposome)의 제조
실시예 5에서 제조한 리포펩타이드, PC, 콜레스테롤과 형광 표지를 위한 NBD-PE를 각각 0.1:2:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 중성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 중성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 15. 실시예 6의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 중성 리포좀 (neutral liposome)의 제조
실시예 6에서 제조한 리포펩타이드, L-alpha-Dioleoyl Phosphatidylethanolamine(Avanti Polar Lipid Inc., USA, 이하 'DOPE'라 함), 콜레스테롤과 형광 표지를 위한 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 중성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 중성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 16. 실시예 7의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 중성 리포좀 (neutral liposome)의 제조
실시예 7에서 제조한 리포펩타이드, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine(Avanti Polar Lipid Inc., USA, 이하 'DPPC'라 함), 콜레스테롤과 형광 표지를 위한 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 중성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 중성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 17. 실시예 1의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 양이온성 리포좀 (cationic liposome)의 제조
실시예 1에서 제조한 리포펩타이드, 양하전 지질인 N-[1-(2,3- dioleyloxy)propyl]-N,N,N- trimethylammonium methyl sulfate(Avanti Polar Lipid Inc., USA, 이하 'DOTAP'이라 함), DOPE와 형광 표지를 위한 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 양이온성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 18. 실시예 2의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 양이온성 리포좀 (cationic liposome)의 제조
실시예 2에서 제조한 리포펩타이드, cholesteryl-3(beta)N-dimethyl aminoethyl(Avanti Polar Lipid Inc., USA, 이하 'DC-chol'이라 함), DOPE와 형광 표지를 위한 NBD-PE를 각각 0.1:1:1:0.025 μmoleo씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 양이온성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 19. 실시예 3의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 양이온성 리포좀 (cationic liposome)의 제조
실시예 3에서 제조한 리포펩타이드, 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine(Avanti Polar Lipid Inc., USA, 이하 'DOEPC'라 함), DOPE와 형광 표지를 위한 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 양이온성 리포좀을 제조하였다. 얻어진 리포펩타이드 함유 양이온성 리포좀은 사용하기 전까지 4℃ 에서 보관하였다.
실시예 20. 실시예 8의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 미셀 (micelle) 나노입자 제조
실시예 8에서 제조한 리포펩타이드, 계면활성제인 Tween 20, NBD-PE를 각각 0.1:1:0.025 μmole씩 취하여 유리 격막 바이알에 혼합한 다음 인산완충용액 1 ml을 첨가하고 3분 동안 초음파 발생기를 사용하여 항체 결합을 위한 미셀을 제조하였다. 얻어진 리포펩타이드 함유 미셀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 21. 실시예 9의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 에멀젼(emulsion)의 제조
실시예 9에서 제조한 리포펩타이드, 계면활성제인 Tween 80, NBD-PE를 각각 0.1:1:0.025μmole씩 취하여 유리 격막 바이알에 혼합한 다음 스쿠알렌(squalene, Sigma, USA) 100 ㎕와 인산완충용액 1 ml을 첨가하고 3분 동안 초음파 발생기를 사용하여 항체 결합을 위한 에멀젼을 제조하였다. 얻어진 리포펩타이드 함유 에멀젼은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 22. 실시예 10의 항체 Fc 영역 선택결합성 리포펩타이드 및 형광 지질을 함유하는 고형 지질나노입자 (solid lipid nanoparticles)의 제조
실시예 10에서 제조한 리포펩타이드, 계면활성제인 Twenn 20, Tween 80, NBD-PE, 라우릭산(lauric acid, Sigma, USA)을 각각 0.1:10:10:0.025:100 μmole씩 취하여 유리 격막 바이알에 혼합한 다음 70 ℃에서 완전히 용융시킨 후 70 ℃의 인산완충용액 1 ml을 첨가하고 5분 동안 초음파 발생기를 사용하여 고형 지질나노입자를 제조하였다. 얻어진 리포펩타이드 함유 고형지질나노입자는 사용하기 전까지 4 ℃에서 보관하였다.
실시예 23. 실시예 1의 항체 Fc 영역 선택결합성 리포펩타이드 및 파클리탁셀이 함유된 음이온성 리포좀 (anionic liposome)의 제조
실시예 1에서 제조한 리포펩타이드, PC, PG, 콜레스테롤과 항암제인 파클리탁셀(paclitaxel, Sigma, USA)을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 리포펩타이드 함유 파클리탁셀 음이온성 리포좀을 제조하였다. 얻어진 파클리탁셀 음이온성 리포좀은 사용하기 전까지 4℃ 에서 보관하였다.
실시예 24. 실시예 2의 항체 Fc 영역 선택결합성 리포펩타이드 및 도세탁셀이 함유된 음이온성 리포좀 (anionic liposome)의 제조
실시예 2에서 제조한 리포펩타이드, PC, PG, 콜레스테롤과 항암 의약인 도세탁셀(docetaxel, Sigma, USA)을 각각 0.1:1:1:1:0.02 mole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 리포펩타이드 함유 도세탁셀 음이온성 리포좀을 제조하였다. 얻어진 도세탁셀 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 25. 실시예 3의 항체 Fc 영역 선택결합성 리포펩타이드 및 독소루비신이 함유된 음이온성 리포좀 (anionic liposome)의 제조
실시예 3에서 제조한 리포펩타이드, PC, PG, 콜레스테롤을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 항체 결합을 위한 음이온성 리포좀을 제조하였다. 여기에 양전하로 하전 된 독소루비신(doxorubicin, Sigma, USA) 100 ㎍을 혼합하여 음이온성 리포좀 표면에 정전기적으로 결합시킨 다음, 리포좀에 함유되지 않고 남아있는 독소루비신은 PD-10 Column(GE healthcare, UK)을 사용하여 제거하였다. 얻어진 리포펩타이드 함유 독소루비신 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
실시예 26. 실시예 4의 항체 Fc 영역 선택결합성 리포펩타이드를 함유하는 양이온성 리포좀의 제조
실시예 4에서 제조한 리포펩타이드, DOTAP, DOPE를 각각 몰비 0.1:1:1의 비율로 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 3과 동일한 방법으로 양이온성 리포좀을 제조하고 사용하기 전까지 4℃ 에서 보관하였다.
비교예 3. 형광 지질을 함유하는 음이온성 리포좀의 제조
폴리에틸렌 글리콜 사슬의 분자량이 2000인 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (Avanti Polar Lipid Inc., USA, 이하 mPEG-DSPE라 함.), PC, PG, 콜레스테롤과 형광 표지를 위한 지질인 NBD-PE를 각각 0.1:1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 음이온성 리포좀을 제조하였다. 얻어진 음이온성 리포좀은 사용하기 전까지 4 ℃ 에서 보관하였다.
비교예 4. 형광 지질을 함유하는 중성 리포좀의 제조
PC, 콜레스테롤과 형광 표지를 위한 NBD-PE를 각각 1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 중성 리포좀을 제조하였다. 얻어진 형광 지질 함유 중성 리포좀은 사용하기 전까지 4℃ 에서 보관하였다.
비교예 5. 형광 지질을 함유하는 양이온성 리포좀의 제조
mPEG-DSPE, DOPE, 양하전 지질인 DOTAP와 형광 표지된 지질인NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 양이온성 리포좀을 제조하였다. 얻어진 형광 지질 함유 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 6. 파클리탁셀이 봉입된 음이온성 리포좀의 제조
mPEG-DSPE, PC, PG, 콜레스테롤과 파클리탁셀을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 파클리탁셀이 봉입된 음이온성 리포좀을 제조하였다. 얻어진 파클리탁셀 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 7. 도세탁셀이 봉입된 음이온성 리포좀의 제조
mPEG-DSPE, PC, PG, 콜레스테롤과 도세탁셀을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 도세탁셀이 봉입된 음이온성 리포좀을 제조하였다. 얻어진 도세탁셀 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 8. 독소루비신이 봉입된 음이온성 리포좀의 제조
mPEG-DSPE, PC, PG, 콜레스테롤을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 음이온성 리포좀을 제조하였다. 여기에 양전하로 하전 된 독소루비신(doxorubicin, Sigma, USA) 100㎍을 혼합하여 음이온성 리포좀 표면에 정전기적으로 결합시킨 다음, 리포좀에 함유되지 않고 남아있는 독소루비신은 PD-10 Column(GE healthcare, UK)을 사용하여 제거하였다. 얻어진 독소루비신 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 9. 양이온성 리포좀의 제조
mPEG-DSPE, DOTAP, DOPE를 각각 몰비 0.1:1:1의 비율로 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 3과 동일한 방법으로 양이온성 리포좀을 제조하였으며, 얻어진 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 10. 비교예 1의 항체 공유결합용 지질 및 형광 지질을 함유한 음이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, PC, PG, 콜레스테롤과 형광 지질인 NBD-PE를 각각 0.1:1:1:1:0.025μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 음이온성 리포좀을 제조하였다. 얻어진 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 11. 비교예 2의 항체 공유결합용 지질 및 형광 지질을 함유한 중성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 2의 항체 공유결합용 지질, PC, 콜레스테롤과 형광 지질인 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 중성 리포좀을 제조하였다. 얻어진 중성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 12. 비교예 1의 항체 공유결합용 지질 및 형광 지질을 함유한 양이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, DOTAP, DOPE와 형광 지질인 NBD-PE를 각각 0.1:1:1:0.025 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 양이온성 리포좀을 제조하였다. 얻어진 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 13. 비교예 1의 항체 공유결합용 지질 및 파클리탁셀이 봉입된 음이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, PC, PG, 콜레스테롤과 파클리탁셀을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 파클리탁셀이 봉입된 음이온성 리포좀을 제조하였다. 얻어진 파클리탁셀 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 14. 비교예 1의 항체 공유결합용 지질 및 도세탁셀이 함유된 음이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, PC, PG, 콜레스테롤과 도세탁셀을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 도세탁셀이 봉입된 음이온성 리포좀을 제조하였다. 얻어진 도세탁셀 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 15. 비교예 1의 항체 공유결합용 지질 및 독소루비신이 함유된 음이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, PC, PG, 콜레스테롤을 각각 0.1:1:1:1:0.02 μmole씩 취하여 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 11과 동일한 방법으로 음이온성 리포좀을 제조하였다. 여기에 양전하로 하전 된 독소루비신(doxorubicin, Sigma, USA) 100 ㎍을 혼합하여 음이온성 리포좀 표면에 정전기적으로 결합시킨 다음, 리포좀에 함유되지 않고 남아있는 독소루비신은 PD-10 Column(GE healthcare, UK)을 사용하여 제거하였다. 얻어진 독소루비신 함유 음이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
비교예 16. 비교예 1의 항체 공유결합용 지질을 함유하는 양이온성 리포좀의 제조
당분야에서 일반적으로 사용되는 비교예 1의 항체 공유결합용 지질, DOTAP, DOPE를 각각 몰비 0.1:1:1의 비율로 1 ml의 클로로포름에 녹인 후 파이렉스 10 ml 유리 격막 바이알에 넣어 혼합한 후 실시예 3과 동일한 방법으로 양이온성 리포좀을 제조하였다. 얻어진 양이온성 리포좀은 사용하기 전까지 4 ℃에서 보관하였다.
<항원 인지형 지질 나노입자의 제조>
실시예 27. 실시예 11의 음이온성 리포좀 표면에 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 CXCR4 항원 인지형 리포좀의 제조
실시예 11에서 제조된 항체 Fc 영역 선택 결합성 리포펩타이드 및 형광 지질을 함유하는 음이온성 리포좀(anionic liposome) 10㎕당 항-CXCR4 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 CXCR4 항체의 Fc 부분이 선택적으로 비공유적으로 선택 결합된 CXCR4 항원 인지형 음이온성 리포좀을 제조하였다.
실시예 28. 실시예 12의 음이온성 리포좀 표면에 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 CXCR4 항원 인지형 리포좀의 제조
실시예 12에서 제조된 음이온성 리포좀 10 ㎕당 CXCR4 항체 5㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 CXCR4 항체가 표면에 비공유적으로 결합된 음이온성 리포좀을 제조하였다.
실시예 29. 실시예 13의 음이온성 리포좀 표면에 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 CXCR4 항원 인지형 리포좀의 제조
실시예 13에서 제조된 음이온성 리포좀 10 ㎕당 CXCR4 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 CXCR4 항체가 표면에 비공유적으로 결합된 음이온성 리포좀을 제조하였다.
실시예 30. 실시예 14의 중성 리포좀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 리포좀의 제조
실시예 14의 중성 리포좀 10 ㎕당 EGFR 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR항체가 표면에 비공유적으로 결합된 중성 리포좀을 제조하였다.
실시예 31. 실시예 15의 중성 리포좀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 리포좀의 제조
실시예 15의 중성 리포좀 10㎕ 당 EGFR 항체 5㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR항체가 표면에 비공유적으로 결합된 중성 리포좀을 제조하였다.
실시예 32. 실시예 16의 중성 리포좀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 리포좀의 제조
실시예 16의 중성 리포좀 10 ㎕ 당 EGFR 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR항체가 표면에 비공유적으로 결합된 중성 리포좀을 제조하였다.
실시예 33. 실시예 17의 양이온성 리포좀 표면에 HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 HER2 항원 인지형 리포좀의 제조
실시예 17의 양이온성 리포좀 10 ㎕ 당 HER2 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 HER2 항체가 표면에 비공유적으로 결합된 양이온성 리포좀을 제조하였다.
실시예 34. 실시예 18의 양이온성 리포좀 표면에 HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 HER2 항원 인지형 리포좀의 제조
실시예 18의 양이온성 리포좀 10 ㎕ 당 HER2 항체 5㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 HER2 항체가 표면에 비공유적으로 결합된 양이온성 리포좀을 제조하였다.
실시예 35. 실시예 19의 양이온성 리포좀 표면에 HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 HER2 항원 인지형 리포좀의 제조
실시예 19의 양이온성 리포좀 10 ㎕ 당 HER2 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 HER2 항체가 표면에 비공유적으로 결합된 양이온성 리포좀을 제조하였다.
실시예 36. 실시예 20의 미셀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 미셀의 제조
실시예 20의 미셀 10 ㎕당 EGFR 항체 5㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR 항체가 표면에 비공유적으로 결합된 미셀을 제조하였다.
실시예 37. 실시예 21의 에멀젼 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 에멀젼의 제조
실시예 21의 에멀젼 10 ㎕당 EGFR 항체 5㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR 항체가 표면에 비공유적으로 결합된 에멀젼을 제조하였다.
실시예 38. 실시예 22의 고형지질나노입자 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 고형 지질 나노입자의 제조
실시예 22에서 제조된 고형지질나노입자 10 ㎕ 당 EGFR 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 EGFR 항체가 표면에 비공유적으로 결합된 고형지질나노입자를 제조하였다.
실시예 39. 실시예 26의 양이온성 리포좀 표면에 Iba1 항체의 Fc 부분이 비공유적으로 선택 결합된 Iba1 항원 인지형 리포좀의 제조
실시예 26의 양이온성 리포좀 10 ㎕ 당 Iba1 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 Iba1 항체가 표면에 비공유적으로 결합된 양이온성 리포좀을 제조하였다.
실시예 40. 실시예 23의 파클리탁셀 함유 리포좀 표면에 HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 HER2 항원 인지형 파클리탁셀 리포좀의 제조
실시예 23의 파클리탁셀 함유 음이온성 리포좀 10 ㎕ 당 HER2 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 HER2 항체가 표면에 비공유적으로 결합한 HER2 항원 인지형 파클리탁셀 리포좀을 제조하였다.
실시예 41. 실시예 24의 도세탁셀 함유 리포좀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 도세탁셀 리포좀의 제조
실시예 24의 도세탁셀 함유 음이온성 리포좀 10 ㎕ 당 EGFR 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여, EGFR 항체가 표면에 비공유적으로 결합한 EGFR항원 인지형 도세탁셀 음이온성 리포좀을 제조하였다.
실시예 42. 실시예 25의 독소루비신 함유 리포좀에 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 CXCR4 항원 인지형 독소루비신 리포좀의 제조
실시예 25의 독소루비신 함유 리포좀 10 ㎕ 당 CXCR4 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여, CXCR4 항체가 표면에 비공유적으로 결합한 CXCR4 항원 인지형 독소루비신 리포좀을 제조하였다.
실시예 43. 실시예 26의 양이온성 리포좀 표면에 EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 EGFR 항원 인지형 양이온성 리포좀의 제조
실시예 26의 양이온성 리포좀 10 ㎕ 당 EGFR 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여, EGFR 항체가 표면에 비공유적으로 결합한 EGFR 항원 인지형 및 리보핵산 탑재 양이온성 리포좀을 제조하였다.
실시예 44. 실시예 26의 양이온성 리포좀 표면에 CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 CXCR4 항원 인지형 양이온성 리포좀의 제조
실시예 26의 양이온성 리포좀 10 ㎕ 당 CXCR4 항체 5 ㎍을 에펜도르프 튜브에 섞고 상온에서 30 분 동안 혼합하여 CXCR4 항체가 표면에 비공유적으로 결합한 CXCR4 항원 인지형 양이온성 리포좀을 제조하였다.
비교예 17. 비교예 10의 음이온성 리포좀 표면에 CXCR4 항체가 비선택적으로 공유결합된 리포좀의 제조
기존의 공유결합을 이용한 항체의 나노입자 표면 수식을 위하여 2-iminothiolane(Traut's reagent, Thermo Fisher Scientific Inc., USA)을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 CXCR4 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 10의 음이온성 리포좀 10 ㎕당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃ 에서 반응시켜 CXCR4 항체가 표면에 공유결합된 리포좀을 제조하였다.
비교예 18. 비교예 11의 중성 리포좀 표면에 EGFR 항체가 비선택적으로 공유결합된 리포좀의 제조
리포좀 표면에 EGFR 항체를 기존의 공유결합으로 수식하기 위하여, 2-iminothiolane을 pH 8.0의 인산완충용액 에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 EGFR 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 11의 중성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 EGFR 항체가 표면에 공유결합 형태로 연결된 리포좀을 제조하였다.
비교예 19. 비교예 12의 양이온성 리포좀 표면에 HER2 항체가 비선택적으로 공유결합된 리포좀의 제조
리포좀 표면에 HER2 항체를 기존의 공유결합으로 수식하기 위하여, 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 항-HER2 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 12의 양이온성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 HER2 항체가 공유결합으로 표면 수식된 리포좀을 제조하였다.
비교예 20. 비교예 16의 양이온성 리포좀 표면에 Iba1 항체가 비선택적으로 공유결합된 리포좀의 제조
리포좀 표면에 Iba1 항체를 기존의 공유결합으로 수식하기 위하여, 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 항-Iba1 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 16의 양이온성 리포좀 10 ㎕당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 Iba1 항체가 공유결합으로 표면 수식된 리포좀을 제조하였다.
비교예 21. 비교예 13의 파클리탁셀 음이온성 리포좀 표면에 HER2 항체가 비선택적으로 공유결합된 파클리탁셀 리포좀의 제조
항암제인 파클리탁셀을 함유하는 리포좀 표면에 HER2 항체를 기존의 공유결합으로 수식하기 위하여 2-iminothiolane을 pH 8.0의 인산완충용액에 20㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 항-HER2 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 13의 파클리탁셀이 봉입된 음이온성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을을 첨가하고 4 시간동안 37 ℃에서 반응시켜 HER2 항체가 공유결합으로 표면 수식된 파클리탁셀 리포좀을 제조하였다.
비교예 22. 비교예 14의 도세탁셀 음이온성 리포좀 표면에 EGFR 항체가 비선택적으로 공유결합된 도세탁셀 리포좀의 제조
항암제인 도세탁셀을 함유하는 리포좀 표면에 EGFR 항체를 기존의 공유결합으로 수식하기 위하여 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 항-EGFR 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 14의 도세탁셀이 봉입된 음이온성 리포좀 10 ㎕당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 EGFR 항체가 공유결합으로 표면 수식된 도세탁셀 리포좀을 제조하였다.
비교예 23. 비교예 15의 독소루비신 음이온성 리포좀 표면에 CXCR4 항체가 비선택적으로 공유결합된 독소루비신 리포좀의 제조
독소루비신을 함유하는 리포좀 표면에 CXCR4 항체를 기존의 공유결합으로 수식하기 위하여 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 CXCR4 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 15의 독소루비신이 봉입된 음이온성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 CXCR4항체가 공유결합으로 표면 수식된 독소루비신 리포좀을 제조하였다.
비교예 24. 비교예 16의 양이온성 리포좀 표면에 EGFR 항체가 비선택적으로 공유결합된 EGFR 항원 인지형 리포좀의 제조
EGFR 항체를 기존의 공유결합으로 양이온성 리포좀 표면에 수식하기 위하여 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 항-EGFR 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 16의 양이온성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 EGFR 항체가 공유결합으로 표면 수식된 양이온성 리포좀을 제조하였다.
비교예 25. 비교예 16의 양이온성 리포좀 표면에 CXCR4 항체가 비선택적으로 공유결합된 CXCR4 항원 인지형 리포좀의 제조
CXCR4 항체를 기존의 공유결합으로 양이온성 리포좀 표면에 수식하기 위하여 2-iminothiolane을 pH 8.0의 인산완충용액에 20 ㎛ 농도가 되도록 용해시키고, 이 용액 16.6 ㎕와 5 ㎍의 CXCR4 항체를 혼합하여 1 시간동안 상온에서 반응시켜 티올기가 수식된 항체를 제조하였다. 이후 비교예 16의 양이온성 리포좀 10 ㎕ 당 티올기가 수식된 항체 5 ㎍을 첨가하고 4 시간동안 37 ℃에서 반응시켜 CXCR4 항체가 공유결합으로 표면 수식된 양이온성 리포좀을 제조하였다.
[실험예]
세포 배양
사람의 백혈병 세포인 Ramos 및 U937 세포주, 신경교종인 U87 세포주, 비인두표피암 조직에서 유래된 KB 세포주, 세포자궁경부암 상피 세포인 HeLa 세포주, 사람의 유방암 세포주인 MCF7, MDA-MB-231, MDA-MB-453 및 SK-BR-3, 미세 신경교세포인 MG5 세포주는 ATCC (American Type Culture Collection, USA)로부터 구입하여 사용하였다. HeLa, Ramos, U937 및 MDA-MB-231 세포주는 RPMI(Gibco, USA), U87, MCF7, MDA-MB-453 및 MG5 세포주는 DMEM(Dulbecco's modified eagles medium, Gibco, USA), KB 및 SK-BR-3 세포주는 MEM(Minimum Essential Medium, Gibco, USA)에 10% 우태아 혈청 w/v (HyClone laboratories Inc, USA)와 100 unit/ml 페니실린 또는 100㎍/ml 스트렙토마이신을 포함하여 배양하였다.
실험예 1. CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 Ramos 세포
표면 CXCR4 항원 인지능 측정: FACS 분석
CXCR4를 과발현하는 것으로 알려진 Ramos 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 3의 형광지질 함유 음이온성 리포좀, 비교예 17의 기존의 공유결합으로 CXCR4항체가 표면수식된 형광 음이온성 리포좀, 실시예 27의 CXCR4항체가 비공유적으로 표면에 결합된 CXCR4 항원 인지형 형광 음이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 3, 17 및 실시예 27에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR (BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 CXCR4 항원 인지능을 분석하였고, 이를 도 3에 나타내었다.
도 3A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 3B는 비교예 3의 음이온성 리포좀, 도 3C는 비교예 17의 기존의 공유결합으로 CXCR4항체가 표면수식된 음이온성 리포좀, 도 3D는 실시예 27의 비공유적으로 CXCR4 항체가 표면 결합된 음이온성 리포좀을 처리한 세포군으로 도 3B는 3.97 %, 도 3C는 59.53 %의 세포를 리포좀이 인지하여 결합한 반면, 본 발명의 실시예 27의 CXCR4 항원 인지형 리포좀 처리군의 경우 형광으로 표지된 세포의 비율이 96.53 % 를 나타내어 비교예 3의 음이온성 리포좀 처리군에 비하여 세포 표면의 항원 인지능이 현저히 증가되었고 기존의 방법대로 제조한 비교예 17의 CXCR4 항체가 공유결합된 음이온성 리포좀보다 Ramos 세포 결합 비율이 37% 정도 증가되었음을 알 수 있다.
실험예 2. CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 U937 세포
표면 CXCR4 항원 인지능 측정: FACS 분석
CXCR4를 세포 표면에 과발현하는 것으로 알려진 U937 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 3의 형광지질 함유 음이온성 리포좀, 비교예 17의 기존의 공유결합으로 CXCR4항체가 표면수식된 형광 음이온성 리포좀, 실시예 28의 CXCR4 항체가 비공유적으로 표면 결합된 음이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 3, 17 및 실시예 28에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 CXCR4 항원 인지능을 분석하였고, 이를 도 4에 나타내었다.
도 4A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 4B는 비교예 3의 음이온성 리포좀, 도 4C는 비교예 17의 CXCR4 항체가 공유결합으로 연결된 음이온성 리포좀, 도 4D는 실시예 28의 CXCR4 항체가 비공유적으로 표면 결합된 항원 인지형 음이온성 리포좀을 처리한 세포군으로 도 4B는 4.36 %, 도 4C는 50.33 % 의 세포가 형광으로 표지된 반면, 본 발명의 실시예 28의 CXCR4 항체가 비공유적으로 결합된 음이온성 리포좀 처리군의 경우 86.30 %의 세포가 형광으로 표지되어 비교예 3, 17의 음이온성 리포좀 처리군 각각에 비하여 세포 표면의 CXCR4 인지능이 현저히 증가되었음을 알 수 있다.
실험예 3. CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 HeLa 세포주 표면 CXCR4 항원 인지능 측정: FACS 분석
CXCR4를 과발현하는 것으로 알려진 HeLa 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 3의 형광 음이온성 리포좀, 비교예 17의 CXCR4 항체가 공유결합으로 수식된 형광 음이온성 리포좀, 실시예 29의 CXCR4 항체가 비공유적으로 결합된 형광 음이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 3, 17 및 실시예 29에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 CXCR4 항원 인지능을 분석하였고, 이를 도 5에 나타내었다.
도 5A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 5B는 비교예 3의 형광 음이온성 리포좀, 도 5C는 비교예 17의 CXCR4가 공유결합으로 연결된 형광 음이온성 리포좀, 도 5D는 실시예 29의 CXCR4가 비공유적으로 결합된 형광 음이온성 리포좀을 처리한 세포군으로 도 5B는 1.55 %, 도 5C는 72.45 % 전달 된 반면, 본 발명의 실시예 29의 CXCR4가 비공유적으로 결합된 형광 음이온성 리포좀 처리군의 경우 99.48 % 를 나타내어 비교예 3 및 17의 음이온성 리포좀 처리군에 비하여 HeLa 세포주 표면의 CXCR4 항원 인지능이 증가되었음을 알 수 있다.
실험예 4. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 U87세포 표면 EGFR 항원 인지능 측정 : FACS 분석
EGFR을 과발현하는 것으로 알려진 U87 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 공유결합으로 표면 수식된 형광 지질 함유 중성 리포좀, 실시예 30의 EGFR 항체가 표면에 비공유적으로 결합된 형광 지질 함유 중성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충 용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 30에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 6에 나타내었다.
도 6A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 6B는 비교예 4의 형광 지질인 NBD-PE 함유 중성 리포좀, 도 6C는 비교예 18의 EGFR 항체가 표면에 공유결합으로 수식된 NBD-PE 함유 중성 리포좀, 도 6D는 실시예 30의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 중성 리포좀을 처리한 세포군으로 도 6B는 10.00 %, 도 6C는 42.45 % 의 세포가 형광 리포좀에 의해 인지된 반면, 본 발명의 실시예 30의 EGFR 항체가 표면에 비공유적으로 결합된 중성 리포좀의 경우 97.38 %가 형광으로 표지화 되어 비교예 4 및 기존의 공유결합 방식으로 항체가 표면 수식된 비교예 18에 비하여서도 목적하는 세포 표면의 EGFR 항원을 인지하는 효율이 크게 증가한 것을 알 수 있다.
실험예 5. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 KB 세포 표면 EGFR 항원 인지능 측정 :FACS 분석
EGFR을 과발현한다고 알려진 KB 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 NBD-PE 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 실시예 31의 EGFR 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 중성 리포좀을 각각 첨가한 후 37℃ 의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 31에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 7에 나타내었다.
도 7A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 7B는 비교예 4의 NBD-PE 중성 리포좀, 도 7C는 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 도 7D는 실시예 31의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 중성 리포좀을 각각 처리한 세포군으로 도 7B는 12.48 %, 도 7C는 67.85 %의 세포가 형광으로 표지화 된 반면, 본 발명의 실시예 31의 EGFR 항체가 비공유적으로 결합된 NBD-PE 함유 중성 리포좀의 경우 99.03 % 의 형광 표지율을 나타내어 비교예 4 및 비교예 18의 기존 방식으로 항체를 공유결합시킨 리포좀에 비하여 세포 표면의 EGFR 항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 6. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 MDA-MB-231 세포 표면 EGFR 항원 인지능 측정 :FACS 분석
EGFR을 과발현한다고 알려진 MDA-MB-231 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 NBD-PE 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 실시예 32의 EGFR 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 중성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 32에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 8에 나타내었다.
도 8A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 8B는 비교예 4의 NBD-PE 중성 리포좀, 도 8C는 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 도 8D는 실시예 32의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 중성 리포좀을 각각 처리한 세포군으로 도 8B는 3.55 %, 도 8C는 70.49 % 세포가 형광으로 표지화 된 반면, 본 발명의 실시예 32의 EGFR 항체가 비공유적으로 결합된 NBD-PE 함유 중성 리포좀의 경우 92.02 % 의 형광 표지율을 나타내어 비교예 4 및 비교예 18의 기존 방식으로 항체를 공유결합시킨 리포좀에 비하여 세포 표면의 EGFR 항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 7. HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 MCF-7 세포 표면 HER2 항원 인지능 측정 : FACS 분석
HER2를 과발현한다고 알려진 MCF7 세포주를 실험 전날 6 웰 플레이트에 웰 당 3 105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 5의 NBD-PE 형광 지질 함유 양이온성 리포좀, 비교예 19의 HER2항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 실시예 33의 HER2 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 양이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 5, 19 및 실시예 33에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 HER2 항원 인지능을 분석하였고, 이를 도 9에 나타내었다.
도 9A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 9B는 비교예 5의 NBD-PE 양이온성 리포좀, 도 9C는 비교예 19의 HER2 항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 도 9D는 실시예 33의 HER2 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀을 각각 처리한 세포군으로 도 9B는 27.75 %, 도 9C는 79.62%의 세포가 형광으로 표지화 된 반면, 본 발명의 실시예 33의 HER2항체가 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀의 경우 90.57% 의 형광 표지율을 나타내어 비교예 5 및 비교예 19의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 세포 표면의 HER2 항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 8. HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 MDA-MB-453 세포 표면 HER2 항원 인지능 측정: FACS 분석
HER2를 과발현하는 것으로 알려진 MDA-MB-453 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 5의 NBD-PE 형광 지질 함유 양이온성 리포좀, 비교예 19의 HER2항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 실시예 34의 HER2 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 양이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 5, 19 및 실시예 34에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 HER2 항원 인지능을 분석하였고, 이를 도 10에 나타내었다.
도 10A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 10B는 비교예 5의 NBD-PE 양이온성 리포좀, 도 10C는 비교예 19의 HER2 항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 도 10D는 실시예 34의 HER2 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀을 각각 처리한 세포군으로 도 10B는 34.61%, 도 10C는 70.49%의 세포가 형광으로 표지화 된 반면, 도 10D에서 본 발명의 실시예 34의 HER2항체가 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀의 경우 95.20% 의 형광 표지율을 나타내어 비교예 5 및 비교예 19의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 비공유적으로 HER2 항체가 결합된 리포좀 나노입자의 경우 세포 표면의 HER2 항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 9. HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 SK-BR-3 세포 표면 HER2 항원 인지능 측정 : FACS 분석
HER2를 과발현하는 것으로 알려진 SK-BR-3 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 5의 NBD-PE 형광 지질 함유 양이온성 리포좀, 비교예 19의 HER2항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 실시예 35의 HER2 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 양이온성 리포좀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 5, 19 및 실시예 35에서 사용된 리포좀들은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 표지된 중성 리포좀이 부착된 세포들은 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 HER2 항원 인지능을 분석하였고, 이를 도 11에 나타내었다.
도 11A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 11B는 비교예 5의 NBD-PE 양이온성 리포좀, 도 11C는 비교예 19의 HER2 항체가 표면에 공유결합된 NBD-PE 함유 양이온성 리포좀, 도 11D는 실시예 35의 HER2 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀을 각각 처리한 세포군으로 도 11B는 14.70%, 도 11C는 61.14%의 세포가 형광으로 표지화 된 반면, 도 11D에서 본 발명의 실시예 35의 HER2항체가 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀의 경우 98.53%의 높은 형광 표지율을 나타내어 비교예 5 및 비교예 19의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 비공유적으로 HER2 항체가 결합된 실시예 35의 양이온성 리포좀 나노입자의 경우 세포 표면의 HER2 항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 10. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 미셀의 U87 세포 표면 EGFR 항원 인지능 측정 : FACS 분석
EGFR을 과발현한다고 알려진 U87 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 NBD-PE 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 실시예 36의 EGFR 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 미셀을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 36에서 사용된 나노입자 제형은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 12에 나타내었다.
도 12A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 12B는 비교예 4의 NBD-PE 중성 리포좀, 도 12C는 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 도 12D는 실시예 36의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 미셀 나노입자를 각각 처리한 세포군으로 도 12B는 0.52%, 도 12C는 46.22%의 세포가 형광으로 표지화 된 반면, 도 12D에서 본 발명의 실시예 35의 EGFR항체가 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀의 경우 79.85%의 높은 형광 표지율을 나타내어 비교예 4 및 비교예 18의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 비공유적으로 EGFR항체가 결합된 실시예 36의 미셀 나노입자의 경우 세포 표면의 EGFR항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 11. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 에멀젼의 KB 세포주 표면 EGFR 항원 인지능 측정: FACS 분석
EGFR을 과발현한다고 알려진 KB 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 NBD-PE 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 실시예 37의 EGFR 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 에멀젼을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 37에서 사용된 제형은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 13에 나타내었다.
도 13A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 13B는 비교예 4의 NBD-PE 중성 리포좀, 도 13C는 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 도 13D는 실시예 37의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 에멀젼을 각각 처리한 세포군으로 도 13B는 8.36%, 도 13C는 53.75%의 세포가 형광으로 표지화 된 반면, 도 13D에서 본 발명의 실시예 37의 EGFR항체가 비공유적으로 결합된 NBD-PE 함유 양이온성 리포좀의 경우 94.73%의 높은 형광 표지율을 나타내어 비교예 4 및 비교예 18의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 비공유적으로 EGFR항체가 결합된 실시예 37의 에멀젼의 경우 세포 표면의 EGFR항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 12. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 고형지질나노입자의 MDA-MB-231 세포 표면 EGFR 항원 인지능 측정 : FACS 분석
EGFR을 과발현하는 것으로 알려진 MDA-MB-231 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 4의 NBD-PE 형광 지질 함유 중성 리포좀, 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 실시예 38의 EGFR 항체가 비공유적으로 표면에 결합된 NBD-PE 함유 고형 지질 나노입자 (solid lipid nanoparticles)을 각각 첨가한 후 37 ℃의 CO2배양기에서 30분간 동안 배양하였다. 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 비교예 4, 18 및 실시예 38에서 사용된 제형은 모두 형광 지질인 NBD-PE를 구성성분으로 함유하는 것으로서 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 표면의 EGFR 항원 인지능을 분석하였고, 이를 도 14에 나타내었다.
도 14A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 14B는 비교예 4의 NBD-PE 중성 리포좀, 도 14C는 비교예 18의 EGFR 항체가 표면에 공유결합된 NBD-PE 함유 중성 리포좀, 도 14D는 실시예 38의 EGFR 항체가 표면에 비공유적으로 결합된 NBD-PE 함유 고형 지질 나노입자를 각각 처리한 세포군으로 도 14B는 25.19%, 도 14C는 55.33%의 세포가 형광으로 표지화 된 반면, 도 14D에서 본 발명의 실시예 37의 EGFR항체가 비공유적으로 결합된 NBD-PE 함유 고형 지질 나노입자의 경우 93.03%의 높은 형광 표지율을 나타내어 비교예 4 및 비교예 18의 기존 방법으로 항체를 표면에 공유 결합시킨 리포좀에 비하여 비공유적으로 EGFR항체가 표면에 결합된 실시예 38의 고형 지질 나노입자의 경우 세포 표면의 EGFR항원을 인지하는 효율이 현저히 증가되었음을 알 수 있다.
실험예 13. Iba1 항체의 Fc 부분이 비공유적으로 선택 결합된 리포좀의 MG5 세포 표면 Iba1 항원 인지능 측정 : FACS 분석
Iba1을 과발현하는 것으로 알려진 MG5 세포주를 실험 전날 6 웰 플레이트에 웰 당 3×105 개씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 비교예 9의 양이온성 리포좀, 비교예 20의 Iba1 항체가 표면에 공유결합된 양이온성 리포좀, 실시예 39의 Iba1 항체가 비공유적으로 표면에 결합된 양이온성 리포좀과, 혈청이 포함되지 않은 배지 50 ㎕씩을 넣고 형광 마커로 표지된 이중나선 리보핵산 물질인 Block-iT (Invitrogen, 미국) 20 pmole 씩을 각각 첨가하였다. 이후 37 ℃의 CO2배양기에서 12시간 동안 배양하였다. 이후 배양된 세포를 수집한 후 인산완충용액으로 2번 세척하였다. 리포좀에 의하여 형광 표지된 이중나선 리보핵산이 전달된 세포들을 형광 유세포 분석기인 BD FACS CALIBUR(BD Bioscience, USA)를 사용하여 형광 강도 피크의 이동에 의한 세포 전달 효율을 분석하였고, 이를 도 15에 나타내었다.
도 15A의 세포에 아무 처리하지 않은 미처리군은 대조군으로 피크가 이동하지 않았고, 도 15B는 비교예 9의 양이온성 리포좀과 형광 이중나선 리보핵산의 복합체, 도 15C는 비교예 20의 Iba1 항체가 표면에 공유결합된 양이온성 리포좀과 형광 이중나선 리보핵산의 복합체 처리군, 도 15D는 실시예 39의 Iba1 항체가 비공유적으로 표면에 결합된 양이온성 리포좀과 형광 이중나선 리보핵산의 복합체를 각각 처리한 세포군으로 도 15B는 60.73 %, 도 15C는 80.31 % 전달 된 반면, 본 발명의 실시예 39의 Iba1 항체가 비공유적으로 표면에 결합된 양이온성 리포좀과 형광 이중나선 리보핵산의 복합체 처리군의 경우 97.61 %의 세포가 형광으로 표지화 되어서 비교예 9 및 20의 양이온성 리포좀에 비하여 세포 내 이중 나선 리보핵산 전달 효율이 증가되었음을 알 수 있다.
실험예 14. HER2 항체의 Fc 부분이 비공유적으로 선택 결합된 파클리탁셀 리포좀의 항암 효능 평가 :MTT 분석
본 발명의 HER2 항체가 비공유적으로 결합된 파클리탁셀 리포좀의 표적세포 내 항암제 전달 효율에 관한 평가를 하기 위하여 하기와 같은 과정으로 실험을 수행하였다. HER2를 과발현하는 것으로 알려진 MCF-7 세포에 비교예 6의 파클리탁셀이 봉입된 음이온성 리포좀과 비교예 21의 HER2항체가 비선택적으로 공유결합된 파클리탁셀 음이온성 리포좀, 실시예 40의 HER2항체의 Fc 부분이 선택적으로 비공유 결합된 파클리탁셀 음이온성 리포좀을 각각 처리하고 세포 내로 전달된 항암제에 의한 암세포의 생존율을 평가하였다. 항암 효능은 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 시약에 의한 방법으로 세포 생존율을 측정하여 평가하였다.
세포를 웰 당 2×104 세포가 되도록 48 웰(well)에 분주 (seeding)하고 12시간 배양한 후 비교예 6의 파클리탁셀이 봉입된 음이온성 리포좀, 비교예 21의 HER2항체가 표면에 공유결합된 파클리탁셀 음이온성 리포좀, 실시예 40의 HER2항체가 표면에 비공유적으로 결합된 파클리탁셀 음이온성 리포좀 10 l를 각각 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 그 후 MTT 용액(Sigma, USA)을 배지의 10%가 되도록 가하고, 4시간 더 배양한 다음 상층액을 제거하고 0.04 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland)를 이용하여 570 nm에서 그 흡광도를 측정하였다. 대조군으로는 아무것도 처리하지 않은 세포가 사용되었다. 도 16는 상기의 파클리탁셀이 봉입된 리포좀 제형들의 항암 효능을 평가한 결과로 비교예 6의 파클리탁셀 함유 음이온성 리포좀이나 비교예 21의 HER2 항체가 표면에 공유결합된 파클리탁셀 리포좀 보다 실시예 40의 HER2 항체가 표면에 비공유적으로 결합된 파클리탁셀 리포좀 조성이 더 증강된 암세포 사멸효과를 나타낸다는 것을 보여준다. 이러한 도 16의 항암 효능 결과로부터 실시예 40의 HER2 항체가 표면에 비공유적으로 결합된 파클리탁셀 리포좀의 경우 HER2 항원을 세포 표면에 발현하는 MCF 세포주에 보다 효과적으로 결합하여 파클리탁셀을 암세포내로 전달하여 증강된 항암 효능을 나타내는 것을 추론할 수 있다.
실험예 15. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 도세탁셀 리포좀의 항암 효능 평가 : MTT 분석
본 발명의 EGFR 항체가 비공유적으로 결합된 도세탁셀 리포좀의 표적세포 내 항암제 전달 효율에 관한 평가를 하기 위하여 하기와 같은 과정으로 실험을 수행하였다. EGFR을 과발현한다고 알려진 U87 세포에 도세탁셀이 봉입된 비교예 7의 음이온성 리포좀과 도세탁셀이 봉입된 비교예 22의 EGFR 항체가 비선택적으로 공유결합된 음이온성 리포좀, 도세탁셀이 봉입된 실시예 41의 EGFR 항체의 Fc 부분이 선택적으로 비공유 결합된 음이온성 리포좀 조성을 처리하고 암세포의 사멸 정도를 평가하였다. 항암 효능은 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 시약에 의한 방법으로 평가하였다.
세포를 웰 당 2×104 세포가 되도록 48 웰(well)에 분주 (seeding)하고 12시간 배양한 후 비교예 7의 리포좀, 비교예 22의 리포좀, 실시예 41의 리포좀 10 ㎕를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 그 후 각각 MTT 용액(Sigma, USA)을 배지의 10%가 되도록 가하고, 4시간 더 배양한 다음 상층액을 제거하고 0.04 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland)를 이용하여 570 nm에서 그 흡광도를 측정하였다. 대조군으로는 아무것도 처리하지 않은 세포가 사용되었다. 도 17는 상기의 도세탁셀이 봉입된 조성들의 항암 효능 평가 실험을 수행한 결과로 비교예 7의 도세탁셀 함유 음이온성 리포좀이나 비교예 22의 EGFR 항체가 공유적으로 수식된 음이온성 도세탁셀 리포좀 보다 실시예 41의 EGFR 항체가 비공유적으로 결합된 음이온성 도세탁셀 리포좀 조성이 더 증가된 항암 효능을 나타낸다는 것을 보여준다. 따라서, 실시예 41의 EGFR항체가 표면에 비공유적으로 결합된 파클리탁셀 리포좀의 경우 EGFR 항원을 세포 표면에 과발현하는 MCF 세포주에 보다 효과적으로 결합하여 파클리탁셀을 암세포내로 전달하여 증강된 항암 효능을 나타내는 것으로 생각된다.
실험예 16. CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 독소루비신 리포좀의 항암 효능 평가 : MTT 분석
본 발명의 CXCR4 항체가 비공유적으로 결합된 독소루비신 리포좀의 표적세포 내 항암제 전달 효율에 관한 평가를 하기 위하여 하기와 같은 과정으로 실험을 수행하였다. CXCR4 항원을 표면에 과발현하는 것으로 알려진 Ramos 세포에 독소루비신이 봉입된 비교예 8의 음이온성 리포좀과 독소루비신이 봉입된 비교예 23의 CXCR4 항체가 표면에 공유결합된 음이온성 리포좀, 독소루비신이 봉입된 실시예 42의 CXCR4 항체의 Fc 부분이 표면에 비공유적으로 결합된 음이온성 리포좀 조성을 처리하고 항암 효능을 평가하였다. 암세포의 생존율은 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 시약에 의한 방법으로 평가하였다.
세포를 웰 당 2×104 세포가 되도록 48 웰(well)에 분주 (seeding)하고 12시간 배양한 후 비교예 8의 리포좀, 비교예 23의 리포좀, 실시예 42의 리포좀 10 ㎕를 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 그 후 각각 MTT 용액(Sigma, USA)을 배지의 10%가 되도록 가하고, 4시간 더 배양한 다음 상층액을 제거하고 0.04 N 염산 이소프로판올 용액을 첨가한 후에 엘라이져 리더 (ELISA reader, Sunrise-Basic TECAN, Mannedorf, Switzerland)를 이용하여 570 nm에서 그 흡광도를 측정하였다. 대조군으로는 아무것도 처리하지 않은 세포가 사용되었다. 도 18은 상기의 독소루비신이 봉입된 리포좀 조성들의 항암 효능 평가 실험을 수행한 결과로 비교예 8의 독소루비신 리포좀이나 비교예 23의 CXCR4 항체가 표면에 공유결합된 독소루비신 리포좀 보다 실시예 42의 CXCR4 항체가 표면에 비공유적으로 결합된 리포좀 조성이 더 증가된 암세포 사멸능을 나타낸다는 것을 보여준다. 따라서 도 18으로부터 CXCR4 항체가 표면에 비공유적으로 결합된 독소루비신 리포좀의 경우 CXCR4 항원을 세포 표면에 과발현하는 Ramos 세포주에 보다 효과적으로 결합하여 독소루비신의 세포 내 전달능력이 향상된 것을 알 수 있다.
실험예 17. EGFR 항체의 Fc 부분이 비공유적으로 선택 결합된 양하전 리포좀의 작은간섭 리보핵산 전달 효능 평가: 역전사 효소 중합 반응에 의한 mRNA 분석
EGFR을 세포 표면에 과발현하는 것으로 알려진 U87 세포주를 실험 전날 12 웰 플레이트에 웰 당 세포를 2×105 씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 에펜도르프 튜브에 서바이빈 유전자 발현을 선택적으로 억제하는 siRNA (siSurvivin) 20 pmole 씩과 비교예 9의 항체가 수식되지 않은 양이온성 리포좀 10 ㎕, 비교예 24의 EGFR항체가 비선택적으로 공유 결합된 양이온성 리포좀 10 ㎕, 실시예 43의 EGFR항체의 Fc 부분이 선택적으로 비공유 결합된 양이온성 리포좀을 각각 첨가하였다. 서바이빈 (survivin) 유전자(Gene bank accession number: NM_001168)의 발현 억제를 유도하기 위한 siRNA는 삼천리제약 (Samchully Pharmaceuticals, Seoul, Korea)에서 구입하여 사용하였다. 미디어에 포함된 siRNA의 최종 농도는 50 nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 리포좀과 작은간섭 리보핵산의 복합체를 각각 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 리보핵산 (RNA)을 분리하였으며, 이 RNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다. 중합효소연쇄반응은 95℃에서 5분간 주형 DNA를 전변성화시킨 후, 95℃/1분; 57℃/1분; 및 72℃/1분을 한 사이클로 하여 최종 30회 반복한 다음, 마지막으로 72℃에서 5분간 반응시키는 조건으로 수행하였다. 서바이빈(survivin)에 특이적인 프라이머의 서열은 5'-GGACCACCGCATCTCTACAT-3'(정방향), 5'-CTTTCTCCGCAGTTTCCTCA-3'(역방향)이며 중합효소연쇄반응 생성물의 크기는 347 염기쌍이었다. 서바이빈(survivin) 유전자 발현의 정도는 1 % 아가로스 겔 전기영동을 수행하여 서바이빈 특이적인 연쇄반응 생성물의 밴드 밀도를 GAPDH(glyceraldehyde-3-phosphate dehydrogenase) 유전자를 증폭하여 나타나는 밴드 밀도로 보정하여 정량적인 발현의 변화를 측정하였다.
도 19은 각각의 조성을 처리한 경우 U87 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 밴드의 밀도로 비교한 것이다. 대조군은 서바이빈 특이적인 작은간섭 리보핵산이 세포 내로 전달되지 않아 서바이빈 유전자의 발현에 변화가 없었고, 비교예 9의 항체가 존재하지 않는 양이온성 리포좀과 리보핵산의 복합체 처리군, 비교예 24의 EGFR항체가 표면에 공유적으로 결합한 양이온성 리포좀과 서바이빈 특이적 작은간섭 리보핵산의 복합체 처리군에 비하여 실시예 43의 EGFR항체가 표면에 비공유적으로 결합한 양이온성 리포좀과 서바이빈 특이적 작은간섭 리보핵산의 복합체 처리군의 경우 세포 내에서 서바이빈 유전자 발현이 현저히 억제되었다. 실시예 43에서 서바이빈 유전자의 mRNA 수준의 발현 억제능이 가장 증가한 것은 리포좀 표면에 Fc 부분이 선택적으로 비공유 결합된 CXCR4 항체가 세포 내로 서바이빈 특이적인 작은간섭 리보핵산을 전달하는 효율이 증가한 결과 나타나는 현상으로 해석된다.
실험예 18. CXCR4 항체의 Fc 부분이 비공유적으로 선택 결합된 양하전 리포좀의 작은간섭 리보핵산 전달 효능 평가: 역전사 효소 중합 반응에 의한 mRNA 분석
CXCR4를 표면에 과발현하는 것으로 알려진 HeLa 세포주를 실험 전날 12 웰 플레이트에 웰 당 세포를 2×105 씩 분주(seeding)하였다. 각 플레이트의 세포가 60-70 %정도 균일하게 성장했을 때, 에펜도르프 튜브에 서바이빈 유전자 발현 억제를 위한 siRNA 20 pmole 씩과 비교예 9의 양이온성 리포좀 10㎕, 비교예 25의 CXCR4 항체가 표면에 공유결합된 양이온성 리포좀 10㎕ , 실시예 44의 CXCR4 항체가 표면에 비공유적으로 결합된 양이온성 리포좀을 각각 첨가하였다. 미디어에 포함된 siRNA의 최종 농도는 50 nM이 되게 맞추었다. 이들을 서서히 피펫팅(pipetting)하여 혼합한 후 실온에서 20분간 방치하고 이렇게 제조된 리포좀과 작은간섭 리보핵산의 복합체를 각각 웰 플레이트에 첨가하여 37 ℃의 CO2세포배양기에서 24시간 동안 배양하였다. 24시간 후 Trizol 시약(Invitrogen, Carlsbad, CA, USA)을 사용하여 세포내에 존재하는 전체 리보핵산 (RNA)을 분리하였으며, 이 RNA는 AccuPowerRT PreMix (Bioneer, Daejeon, Korea)를 사용하여 cDNA로 역전사 하였다. 중합효소연쇄반응은 95℃에서 5분간 주형 DNA를 전변성화시킨 후, 95℃/1분; 57℃/1분; 및 72℃/1분을 한 사이클로 하여 최종 30회 반복한 다음, 마지막으로 72℃에서 5분간 반응시키는 조건으로 수행하였다. 서바이빈(survivin)에 특이적인 프라이머의 서열은 5'-GGACCACCGCATCTCTACAT-3'(정방향), 5'-CTTTCTCCGCAGTTTCCTCA-3'(역방향)이며 중합효소연쇄반응 생성물의 크기는 347 염기쌍이었다. 서바이빈(survivin) 유전자 발현의 정도는 1 % 아가로스 겔 전기영동을 수행하여 서바이빈 특이적인 연쇄반응 생성물의 밴드 밀도를 GAPDH(glyceraldehyde-3-phosphate dehydrogenase) 유전자를 증폭하여 나타나는 밴드 밀도로 보정하여 정량적인 발현의 변화를 측정하였다.
도 20은 각각의 조성을 처리한 경우 HeLa 세포내에서 타겟 유전자인 서바이빈의 전사체 발현을 밴드의 밀도로 비교한 것이다. 대조군은 서바이빈 특이적인 작은간섭 리보핵산이 세포 내로 전달되지 않아 서바이빈 유전자의 발현에 변화가 없었고, 비교예 9의 항체가 존재하지 않는 양이온성 리포좀과 리보핵산의 복합체 처리군, 비교예 25의 CXCR4항체가 표면에 공유적으로 결합한 양이온성 리포좀과 서바이빈 특이적 작은간섭 리보핵산의 복합체 처리군에 비하여 실시예 44의 CXCR4 항체가 표면에 비공유적으로 결합한 양이온성 리포좀과 서바이빈 특이적 작은간섭 리보핵산의 복합체 처리군의 경우 세포 내에서 서바이빈 유전자 발현이 현저히 억제되었다. 실시예 44에서 서바이빈 유전자의 mRNA 수준의 발현 억제능이 가장 증가한 것은 리포좀 표면에 Fc 부분이 비공유적으로 결합된 CXCR4 항체가 세포 내로 서바이빈 특이적인 작은간섭 리보핵산을 전달하는 효율이 증가한 결과 나타나는 현상으로 해석된다.

Claims (23)

  1. 항체의 Fc 영역 결합 펩타이드(Fc-binding peptide)와 지질이 공유결합되어 있는 항체의 Fc 영역 결합성 리포펩타이드.
  2. 제1항에 있어서,
    상기 항체의 Fc 영역 결합 펩타이드가 서열번호 1내지 5의 아미노산 서열을 갖는 펩타이드 또는 하기 구조식 1로 표시되는 아미노산 서열을 갖는 분지형 펩타이드인 항체의 Fc 영역 결합성 리포펩타이드.
    서열번호 1: DCAWHLGELVWCT
    서열번호 2: CDCAWHLGELVWCT
    서열번호 3: HWRGWV
    서열번호 4: HYFKFD
    서열번호 5: HFRRHL
    [구조식 1]
    Figure PCTKR2010002718-appb-I000002
  3. 제1항에 있어서
    항체의 Fc 영역 결합 펩타이드의 설프하이드릴기(-SH) 또는 N 말단의 아민기(-NH2)에 지질이 공유결합되어 있는 항체의 Fc 영역 결합성 리포펩타이드.
  4. 제1항에 있어서,
    상기 지질이 -COOH, -CHO, -NH2, -SH, -S-S-, -CONH2, -PO3H, -PO4H, -SO3H, -SO4H, -OH, -술포네이트, -니트레이트, -포스포네이트, -숙신이미딜기, -말레이미드기, 및 -알킬기로 이루어진 그룹으로부터 선택되는 하나 이상이 기능기를 가지는 항체의 Fc 영역 결합성 리포펩타이드.
  5. 제1항에 있어서,
    상기 지질이 하기 화학식 1의 화합물인 항체의 Fc 영역 결합성 리포펩타이드:
    [화학식 1]
    Figure PCTKR2010002718-appb-I000003
    상기 식에서,
    R1 및 R2는 각각 독립적으로 탄소수 3 내지 24의 알킬, 또는 탄소수 3 내지 24의 알케닐을 나타내고,
    X는 -R3-NH-CO-를 나타내며,
    여기서 R3은 탄소수 1 내지 6의 알킬렌을 나타내고, n은 0 또는 1을 나타내며,
    Y는 탄소수 1 내지 12의 알킬렌, -(OCH2CH2)p-, 또는 -R4-R5-를 나타내고,
    여기서 p는 1 내지 100의 정수를 나타내며, R4 및 R5는 각각 독립적으로 탄소수 1 내지 6의 알킬렌, 탄소수 3 내지 8의 사이클로알킬렌, 또는 탄소수 5 내지 12의 아릴렌을 타나내고,
    Z는 -R6-NH-CO-R7- 또는 -R8-R9-를 나타내며,
    여기서 R6 및 R7은 각각 독립적으로 단일결합, 탄소수 1 내지 6의 알킬렌 또는 -O-를 나타내고, R8 및 R9는 각각 독립적으로 탄소수 1 내지 6의 알킬렌 또는 -O-를 나타내며 m은 0 또는 1을 나타내고,
    Q는 -COOH, -SH, 숙신이미딜기, 말레이미딜기 또는 피리딜로 치환된 디티오기를 나타낸다.
  6. 제1항 내지 제5항 중 어느 한 항의 항체의 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자(lipid nanoparticle).
  7. 제6항에 있어서,
    상기 지질 나노입자가 리포좀(liposome), 미셀(micelle), 에멀젼(emulsion) 및 고형 지질 나노입자(solid lipid nanoparticle)로 구성된 군으로부터 선택되는 제형을 가진 것인 지질 나노입자.
  8. 제6항에 있어서,
    상기 지질 나노입자가 양하전 지질, 중성 지질 및 음하전 지질로부터 선택되는 보조 지질을 추가로 포함하는 것인 지질 나노입자
  9. 제6항에 있어서,
    상기 지질 나노입자가 계면활성제를 추가로 포함하는 것인 지질 나노입자.
  10. 제 9항에 있어서,
    상기 계면활성제는 음이온성 계면활성제, 양이온성 계면활성제, 양쪽이온성(zwitterionic) 계면활성제 및 비이온성 계면활성제로 구성된 군으로부터 선택되는 하나 이상인 지질 나노입자.
  11. 제6항의 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자.
  12. 제11항에 있어서,
    상기 항체의 Fc 영역이 지질 나노입자의 리포펩타이드에 비공유결합되어 있는 것인 항원 인지형 지질 나노입자.
  13. 제11항에 있어서,
    상기 항체가 표적 세포의 항원에 결합하는 것인 항원 인지형 지질 나노입자.
  14. 제13항에 있어서,
    상기 표적 세포가 치료 또는 진단이 요구되는 세포인 항원 인지형 지질 나노입자.
  15. 제6항의 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자; 및
    치료제(therapeutic agent) 및 진단제(diagnostic agent)로 구성된 군으로부터 선택되는 하나 이상의 약물을 포함하는 의약 조성물.
  16. 제15항에 있어서,
    상기 치료제가 화학요법제, 단백질 의약 또는 핵산의약인 의약 조성물.
  17. 제16항에 있어서,
    상기 화학요법제가 항암 화학요법제인 의약 조성물.
  18. 제17항에 있어서,
    상기 항암 화학요법제가 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 시스플라틴(cisplatin), 카르보플라틴(carboplatin), 옥살리플라틴(oxaliplatin), 독소루비신 (doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 발루비신(valubicin), 미토산트론(mitoxantrone), 커큐민(curcumin), 제피티닙(gefitinib), 에를로티닙(erlotinib), 이리노테칸(irinotecan), 토포테칸(topotecan), 빈블라스틴(vinblastine) 및 빈크리스틴(vincristine)으로 구성되는 군으로부터 선택되는 하나 이상인 의약 조성물.
  19. 제16항에 있어서,
    상기 핵산은 플라스미드 디옥시리보핵산(plasmid DNA), 리보핵산(RNA), 작은 간섭 리보핵산(siRNA), 안티센스 올리고핵산(antisense oligonucleotide), 마이크로 리보핵산 (microRNA), 잠금형 핵산 (locked nucleic acid), 및 핵산 앱타머(aptamer)로 구성된 군으로부터 선택되는 것인 의약 조성물.
  20. 제15항에 있어서,
    상기 진단제가 근적외선(near infra-red) 계열의 형광물질, 방사성의약품(radiopharmaceuticals) 또는 조영제(contrast agent)인 의약 조성물.
  21. 항체 Fc 영역 결합성 리포펩타이드를 함유하는 항원 특이적 약물전달체 제조용 조성물.
  22. 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자를 함유하는 항원 특이적 약물전달체 제조용 조성물
  23. 항체 Fc 영역 결합성 리포펩타이드를 포함하는 지질 나노입자에 항체가 비공유결합되어 있는 항원 인지형 지질 나노입자를 함유하는 항원 특이적 약물전달체 제조용 조성물.
PCT/KR2010/002718 2009-04-30 2010-04-29 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자 WO2010126319A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0038212 2009-04-30
KR1020090038212A KR100953917B1 (ko) 2009-04-30 2009-04-30 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자

Publications (2)

Publication Number Publication Date
WO2010126319A2 true WO2010126319A2 (ko) 2010-11-04
WO2010126319A3 WO2010126319A3 (ko) 2011-03-03

Family

ID=42220153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002718 WO2010126319A2 (ko) 2009-04-30 2010-04-29 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자

Country Status (2)

Country Link
KR (1) KR100953917B1 (ko)
WO (1) WO2010126319A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579341A (zh) * 2011-01-11 2012-07-18 沈阳药科大学 一种多西他赛固体脂质纳米粒及其制备方法
CN103462933A (zh) * 2013-09-14 2013-12-25 浙江大学 死亡配体抗体偶联聚乙二醇修饰脂质纳米递药系统及应用
WO2015109325A1 (en) * 2014-01-20 2015-07-23 University Of Utah Research Foundation Compositions and methods for modifying the surface of cells and methods of use
US20160287152A1 (en) * 2015-03-30 2016-10-06 Verily Life Sciences Llc Functionalized Nanoparticles, Methods and In Vivo Diagnostic System
WO2019116062A1 (en) 2017-12-12 2019-06-20 Lead Biotherapeutics Ltd. Solid lipid nanoparticle for intracellular release of active substances and method for production the same
WO2019148282A1 (en) * 2018-02-01 2019-08-08 The Royal Institution For The Advancement Of Learning/Mcgill University Formulations for improving the delivery of hydrophobic agents
WO2024022009A1 (zh) * 2022-07-29 2024-02-01 河南大学 一种纳米蛋白降解工具、应用及其制备方法以及一种基于脂质的蛋白降解工具、应用及其制备方法
JP7467429B2 (ja) 2018-09-20 2024-04-15 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナ 標的化部分-薬物グラフト化免疫細胞組成物および使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055058A2 (ko) * 2011-10-12 2013-04-18 한국생명공학연구원 항체결합 펩타이드-페리틴 융합단백질 및 이의 용도
KR101609840B1 (ko) * 2012-07-12 2016-04-07 한국생명공학연구원 항체의 Fc 부위 결합 펩타이드를 이용한 항체 정제용 흡착 칼럼
WO2015009701A1 (en) * 2013-07-15 2015-01-22 North Carolina State University Protease-resistant peptide ligands
KR101664338B1 (ko) * 2014-05-30 2016-10-11 동국대학교 산학협력단 면역글로불린 G의 Fc 부위에 선택적으로 결합하는 신규 펩타이드

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080098216A (ko) * 2007-05-04 2008-11-07 한미약품 주식회사 캐리어 물질을 이용한 나트륨 배설 펩타이드 약물 결합체
US20090048178A1 (en) * 2005-11-24 2009-02-19 Peptide Door Co., Ltd. Lps or lipid a binding agent and novel peptide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090048178A1 (en) * 2005-11-24 2009-02-19 Peptide Door Co., Ltd. Lps or lipid a binding agent and novel peptide
KR20080098216A (ko) * 2007-05-04 2008-11-07 한미약품 주식회사 캐리어 물질을 이용한 나트륨 배설 펩타이드 약물 결합체

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENNADY M. VERKHIVKER ET AL: 'Monte Carlo Simulations of the Peptide Recognition at the Consensus Binding Site of the Constant Fragment of Human Immunoglobulin G: the Energy Landscape Analysis of a Hot Spot at the Intermolecular interface' PROTEINS vol. 48, no. 3, 15 August 2002, pages 539 - 557 *
HAIOU YANG ET AL.: 'Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography' J. CHROMATOGR A. vol. 1216, no. 6, 06 February 2009, pages 910 - 918 *
VLADIMIR A. SLEPUSHKI ET AL: 'Targeting of Liposomes to HIV-1-Infected Cells by Peptides Derived from the CD4 Receptor' BBRC vol. 227, 1996, pages 827 - 833 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579341A (zh) * 2011-01-11 2012-07-18 沈阳药科大学 一种多西他赛固体脂质纳米粒及其制备方法
CN103462933A (zh) * 2013-09-14 2013-12-25 浙江大学 死亡配体抗体偶联聚乙二醇修饰脂质纳米递药系统及应用
WO2015109325A1 (en) * 2014-01-20 2015-07-23 University Of Utah Research Foundation Compositions and methods for modifying the surface of cells and methods of use
CN106068119A (zh) * 2014-01-20 2016-11-02 犹他大学研究基金会 用于修饰细胞表面的组合物和方法及使用方法
US10279047B2 (en) 2014-01-20 2019-05-07 University Of Utah Research Foundation Compositions and methods for modifying the surface of cells and methods of use
US10869932B2 (en) 2014-01-20 2020-12-22 University Of Utah Research Foundation Compositions and methods for modifying the surface of cells and methods of use
US20160287152A1 (en) * 2015-03-30 2016-10-06 Verily Life Sciences Llc Functionalized Nanoparticles, Methods and In Vivo Diagnostic System
WO2019116062A1 (en) 2017-12-12 2019-06-20 Lead Biotherapeutics Ltd. Solid lipid nanoparticle for intracellular release of active substances and method for production the same
WO2019148282A1 (en) * 2018-02-01 2019-08-08 The Royal Institution For The Advancement Of Learning/Mcgill University Formulations for improving the delivery of hydrophobic agents
JP7467429B2 (ja) 2018-09-20 2024-04-15 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナ 標的化部分-薬物グラフト化免疫細胞組成物および使用方法
WO2024022009A1 (zh) * 2022-07-29 2024-02-01 河南大学 一种纳米蛋白降解工具、应用及其制备方法以及一种基于脂质的蛋白降解工具、应用及其制备方法

Also Published As

Publication number Publication date
KR100953917B1 (ko) 2010-04-22
WO2010126319A3 (ko) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2010126319A2 (ko) 항체의 Fc 영역에 특이적 결합능을 가지는 리포펩타이드 및 그를 포함하는 항원 인지형 지질 나노입자
WO2018030789A1 (ko) 세포투과성이 향상된 펩티드 핵산 복합체 및 이를 포함하는 약학적 조성물
WO2019156365A1 (ko) 엔도좀 탈출능을 갖는 펩티드 핵산 복합체 및 이의 용도
JP3645283B2 (ja) リソゾーム酵素開裂性抗腫瘍剤結合体
WO2013125891A1 (ko) 시스테인 잔기를 포함하는 모티프가 결합된 변형항체, 상기 변형항체를 포함하는 변형항체-약물 접합체 및 그 제조방법
WO2012011693A2 (ko) 양이온성 지질, 이의 제조 방법 및 이를 포함하는 세포내 이행성을 갖는 전달체
WO2013089522A1 (ko) 신규한 올리고뉴클레오티드 접합체 및 그 용도
WO2019156366A1 (ko) 핵산 복합체를 함유하는 피부 투과성 전달체 및 이의 용도
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
KR20120101981A (ko) 신규 접합체, 그의 제조법, 및 그의 치료 용도
CN101528263A (zh) 用于癌症的先天性免疫方法的缀合物
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
WO2020184944A1 (ko) 위치특이적 항체 콘쥬게이션 및 이의 구체예로서의 항체-약물 콘쥬게이트
JP7296396B2 (ja) アマニチン類抗体複合物
WO2022139528A1 (ko) 만노스를 포함하는 지질 나노입자 또는 이의 용도
WO2018124758A2 (ko) 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물
WO2015002512A1 (ko) 뎅기 바이러스 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 뎅기 바이러스 증식 억제용 조성물
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2022270941A1 (ko) 지질 나노 입자 및 그 제조방법
WO2019132579A2 (ko) 세포질 침투 항체에 융합된 rna 분해효소를 포함하는 면역독소
WO2016114634A2 (ko) 사이클램 유도체 화합물 및 이의 약학적 용도
WO2010128793A2 (ko) 지용성 비타민 및 그 유도체로 유도된 신규한 양이온성 키토산, 그의 제 조 방법 및 그를 포함하는 약물 전달체
WO2021225423A1 (ko) 신규 핵산 리간드 및 그의 식별방법
WO2022124864A1 (ko) 항-tigit 항체 및 이의 용도
WO2022086257A1 (ko) 항암제를 포함한 미토콘드리아 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769964

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769964

Country of ref document: EP

Kind code of ref document: A2