WO2018124758A2 - 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 - Google Patents
베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 Download PDFInfo
- Publication number
- WO2018124758A2 WO2018124758A2 PCT/KR2017/015613 KR2017015613W WO2018124758A2 WO 2018124758 A2 WO2018124758 A2 WO 2018124758A2 KR 2017015613 W KR2017015613 W KR 2017015613W WO 2018124758 A2 WO2018124758 A2 WO 2018124758A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- independently
- preparation
- integer
- alkyl
- Prior art date
Links
- 0 CCC(C)[C@@](C(CC(O)=O)OC)N(C)C([C@](C(C)C)NC(C(C(C)C)N(C)*)=O)=O Chemical compound CCC(C)[C@@](C(CC(O)=O)OC)N(C)C([C@](C(C)C)NC(C(C(C)C)N(C)*)=O)=O 0.000 description 10
- RSHBLZQBIVURPD-UHFFFAOYSA-N C=CCOCCN Chemical compound C=CCOCCN RSHBLZQBIVURPD-UHFFFAOYSA-N 0.000 description 1
- XENWHSDXTUGFFE-UHFFFAOYSA-N CC(C)C(CCC(C(O)=O)NC(c(cc1)ccc1NCc(cn1)nc2c1N=C(N)NC2=O)=O)=O Chemical compound CC(C)C(CCC(C(O)=O)NC(c(cc1)ccc1NCc(cn1)nc2c1N=C(N)NC2=O)=O)=O XENWHSDXTUGFFE-UHFFFAOYSA-N 0.000 description 1
- PGDLTEOSMVVCHO-ZYXZCXLHSA-N CC(C)C(CCCC[C@@H](C1N2)SCC1NC2=O)=O Chemical compound CC(C)C(CCCC[C@@H](C1N2)SCC1NC2=O)=O PGDLTEOSMVVCHO-ZYXZCXLHSA-N 0.000 description 1
- CVQYRSDPSXFEIY-DNKZHYAASA-N CC(C)Nc(cc1)ccc1C(CC1C=Nc(cc2OCCCOc(cc(c3c4)N=C[C@H](CC(c(cc5)ccc5OC)=C5)N5C3=O)c4OC)c3cc2OC)=CN1C3=O Chemical compound CC(C)Nc(cc1)ccc1C(CC1C=Nc(cc2OCCCOc(cc(c3c4)N=C[C@H](CC(c(cc5)ccc5OC)=C5)N5C3=O)c4OC)c3cc2OC)=CN1C3=O CVQYRSDPSXFEIY-DNKZHYAASA-N 0.000 description 1
- AHKNMEGHOFEBAR-VFMGQYKMSA-N CC([C@H](C1NCCC1)OC)C(NC(Cc1ccccc1)C(OC)=O)=O Chemical compound CC([C@H](C1NCCC1)OC)C(NC(Cc1ccccc1)C(OC)=O)=O AHKNMEGHOFEBAR-VFMGQYKMSA-N 0.000 description 1
- MFRNYXJJRJQHNW-ZMIVEIKQSA-N CCC(C)C(C(CC(N(CCC1)C1C(C(C)C(NC(Cc1ccccc1)C(O)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)NC)=O)=O Chemical compound CCC(C)C(C(CC(N(CCC1)C1C(C(C)C(NC(Cc1ccccc1)C(O)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)NC)=O)=O MFRNYXJJRJQHNW-ZMIVEIKQSA-N 0.000 description 1
- WRVLBJXFSHALRZ-HVVHHONHSA-N CCC(C)C(C(CC(N(CCC1)C1C(C(C)C(NC(Cc1ccccc1)C(OC)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)NC)=O)=O Chemical compound CCC(C)C(C(CC(N(CCC1)C1C(C(C)C(NC(Cc1ccccc1)C(OC)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)NC)=O)=O WRVLBJXFSHALRZ-HVVHHONHSA-N 0.000 description 1
- SIUHBQXBIZUXSG-LUXKRDDPSA-N CCC(C)[C@@H](C(CC(N(CCC1)[C@@H]1[C@@H]([C@@H](C)C(NC(Cc1ccccc1)C(O)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)[N](C)(C)C)=O)=O Chemical compound CCC(C)[C@@H](C(CC(N(CCC1)[C@@H]1[C@@H]([C@@H](C)C(NC(Cc1ccccc1)C(O)=O)=O)OC)=O)OC)N(C)C([C@H](C(C)C)NC([C@H](C(C)C)[N](C)(C)C)=O)=O SIUHBQXBIZUXSG-LUXKRDDPSA-N 0.000 description 1
- DNFJAHRRHWZTFE-UHFFFAOYSA-N C[Si](C)(C)C#CCCCN Chemical compound C[Si](C)(C)C#CCCCN DNFJAHRRHWZTFE-UHFFFAOYSA-N 0.000 description 1
- KECMLGZOQMJIBM-UHFFFAOYSA-N OCCOCCOCCCl Chemical compound OCCOCCOCCCl KECMLGZOQMJIBM-UHFFFAOYSA-N 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N c1ccccc1 Chemical compound c1ccccc1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
Definitions
- the present invention relates to a compound comprising a self-immolative linker into which ⁇ -galactoside is introduced, and more particularly, to a ⁇ -galactoside introduced self.
- Compounds containing sacrificial groups are proteins (eg oligopeptides, polypeptides, antibodies, etc.) or ligands having binding specificity for a target of interest, active agents (eg, drugs, toxins, ligands, detection) having specific functions or activities Probes, etc.) and self-immolative groups that form glycosidic bonds to selectively release the active agent within the target cell.
- ADCs Antibody-drug conjugates
- Brentuximab vedotin (Adcetris) is a treatment for Hodgkin's lymphoma
- ado-trastuzumab emtansine (Kadcyla) is a HER2-positive breast cancer treatment in 2011 and 2013, respectively. Approved.
- These substances are present in a mixture in the form of linking drugs to the thiols of cysteine and amino groups of lysine. As of 2016, more than 15 ADCs are in clinical trials.
- the low molecular ligand-drug complex has advantages in that it is easy to manufacture and has high cancer tissue permeability compared to an antibody having a large molecular weight.
- Folic acid (Ac. Chem. Res. 2008, 41, 120-129) and prostate-specific membrane antigen (PSMA, J. Nucle. Med. 2014, 55, 1791-1798), somatostatin Derivatives (somatostatin analogues, Proc. Natl. Acad. Sci. USA 2006, 103, 16436-16441), carbonic anhydrase IX, CAIX, Nat. Chem. 2015, 7, 241-249; Chem. Sci 2014, 5, 3640-3644), Integrin targeted peptide, Bioorg.Med. Chem. 2016, 24, 294-303; Current Topics in Medicinal Chemistry, 2016, 16, 314-329, etc. This is ongoing, and studies using bifolic acid and PSMA are the most active (Nat. Rev. Drug Discovery 2015, 14, 203-219).
- Target-oriented anticancer agents consist of a targeting group and a drug that can selectively bind to cancer cells, and a linker that connects the targeting group and the drug.
- Targeting groups include antibodies, proteins, ligands, and the like, and specifically bind to antigens or receptors overexpressed in cancer cells, thereby effectively delivering drugs to cancer cells. Therefore, target-oriented anticancer drugs can significantly reduce the risk of side effects compared to conventional anticancer drugs. In practice, however, the number of antigens or receptors expressed on the surface of cancer cells is low ( ⁇ 1X10 5 receptors / cell), so most of them have sufficient cancer cell death effect by connecting drugs that are 100-1000 times more cytotoxic than general anticancer drugs.
- linkers mainly used in complex studies can be divided into non-cleavable linkers and cleavable linkers.
- Uncleaved linkers consist mainly of thioether bonds, and are formed by reaction of thiol groups with maleimide or haloacetamide groups. This is the case with a complex of T-DM1 (Cancer Res 2008, 68, 9280-9290) and anti-CD70-mc-MMAF (SGN-75, Clin Cancer Res 2008, 14, 6171-6180).
- T-DM1 Cancer Res 2008, 68, 9280-9290
- anti-CD70-mc-MMAF SGN-75, Clin Cancer Res 2008, 14, 6171-6180.
- the drug cytotoxic drug
- Cleavable linkers can be divided into chemically labile linkers and enzyme cleavable linkers (Bioconjugate Chem. 2010, 21, 5-13).
- Chemically variable linkers mainly utilize mechanisms in which drugs are released through hydrolysis or disulfide exchange through disulfide bonds, hydrazones, or oxime bonds.
- Linkers that form disulfide bonds use the principle of intracellular drug release using high levels of intracellular glutathione compared to the extracellular phase, but during intracellular circulation, Although lower, the disadvantage of drug separation due to free thiols such as glutathione and cysteine in the blood is inevitable (Bioconjugate Chemistry 2008 (19) 759-765). Hydrazones or oxime linkers are relatively stable in the blood but unstable under high acidic conditions and can hydrolyze at high rates, resulting in toxic effects on normal cells as well as target cancer cells (Bioconjugate Chemistry 2010, 21). , 5-13).
- Enzyme cleavable linkers include structures designed to specifically separate drugs by lysosomal hydrolase, such as cathepsin B or ⁇ -glucuronidase, which are overexpressed in cancer cells. Mainly used.
- Val-Cit (valine-citrulline) and Phe-Lys (phenylalanine-lysine), which are mainly used as peptide linkers, are known to be selectively hydrolyzed by kadipsin B. Compared with chemically variable linkers, the stability is excellent, but the solubility in water is poor, so that aggregation is generated (US 8,568,728 / US 7,091,186).
- the drug is more hydrophilic than the peptide linker, is overexpressed in the lysosomes, and is rarely expressed in the blood of a normal person, but the drug can be separated by enzymes (e.g., ⁇ -glucuronidase, ⁇ -galatosidase) that are expressed in lysosomes of cancer cells in particular.
- enzymes e.g., ⁇ -glucuronidase, ⁇ -galatosidase
- Studies have been made on ⁇ -glucuronide and ⁇ -galatosides designed to be able to be designed (Chem. Rev. 2015, 115, 3388-3432; European Journal of Med. Chem., 2014, 74, 302-313; Chem Commun., 2015, 51, 15792-15795).
- ⁇ -glucuronidase (EC 3.2.1.31) hydrolyzes glycocidic bonds of glucuronide with ⁇ -configuration and Although rarely present, it is expressed in cancer cells and surrounding tissues.
- the drug is rarely released in the blood but is selectively released in the targeted cancer cells.
- ⁇ -glucuronide linker has a greater hydrophilicity than the peptide linker has the advantage of improving the physical properties of the complex has been widely used in the production of antibody-drug complex (J. Med. Chem. 1999, 42, 3623-3628) .
- Human ⁇ -galactosidase (EC 3.2.1.23, ⁇ -Gal) is a protein present in intracellular lysosomes and is an enzyme that hydrolyzes ⁇ -galactosidic bonds.
- the enzyme forms a dimer in its active form only at low pH, and as a monomer in its inactive form at physiological pH 7.4, the introduction of a new ⁇ -galactoside linker releases the drug in the body's circulation. Risk can be significantly reduced (J Biol Chem 2012, 287, 1801-1812, J Biol Chem 1974, 249, 7969-7976).
- the activity of ⁇ -glucuronides and ⁇ -galactosidase is increased in the blood of cancer patients, while ⁇ -glucuronides shows twice as high activity in serum of breast cancer patients compared to normal subjects. Seadas is reported to have increased only 24% activity in serum of invasive colorectal cancer patients (Journal of Chinese Clinical Medicine, 2010. Vol 5, 480-482; Postepy Hig Med Dosw (online), 2013; 67: 896-900) .
- the linker incorporating ⁇ -galactoside, a substrate of enzymes with relatively weak activity in cancer blood is more stable and safer in cancer patients than the linker incorporating ⁇ -glucuronide. It is expected to be a comparative advantage.
- KR 10-2015-0137015 developed a self-immolative phase combined with ⁇ -glucuronide that is more stable in mouse plasma than a complex prepared using ⁇ -glucuronide developed by Jeffrey et al.
- the complex development research using ⁇ -glucuronide has a disadvantage in that it is difficult to bind drugs such as maytansinods and cryptophycin, which have a complicated drug structure and are difficult to handle depending on conditions.
- Prodrugs prepared by linking doxorubicin to ⁇ -galactoside showed more than 1000-fold safety compared to administration of drugs (Arch Pharm Res, 2007, 30, 723-732). Administration of such prodrugs to mice results in a higher maximum tolerated dose (MTD) when the drug itself is administered (Drug Development and Industrial Pharmacy 2008, 34, 789-795). This is because the ⁇ -glucuronide, such as Papot, described above, and the monomethylauristatin E (MMAE) conjugate showed 100-fold lower activity than the drug itself, compared to ⁇ -glucuronide in terms of safety. It is judged that lactoside is excellent.
- MTD maximum tolerated dose
- Papot Angew. Chem. Int. Ed. 2012, 51, 11606-11610; US 9,000,1357
- a galactoside prodrug was developed.
- the complex using ⁇ -galactoside has a disadvantage in that a mixture is prepared in an isomer rather than a single substance.
- the present invention while complementing the disadvantages of the existing ⁇ -glucuronide and ⁇ -galactoside described above, it is very stable in the blood and releases the drug only in the target cancer cells, and improves the physical properties of the complex and advantageous ⁇ - in the manufacturing process. It is intended to provide a compound comprising a self-immolative group having a galactoseside bound, and further having an excellent universality applicable to drugs which have been difficult to apply to ⁇ -glucuronide.
- the present invention has a high affinity for water and at the same time can be selectively cleaved by ⁇ -galactosidase, an enzyme that is overexpressed in cancer cells, ⁇ -galactoside coupled self-immolation designed to show the efficacy of the active agent. It is an object to provide a compound comprising a group.
- the present invention provides a compound comprising a self-immolative linker having a ⁇ -galactoside introduced therein represented by Formula 1 below:
- R is hydrogen or a hydroxy protecting group
- T is an activator
- n is an integer of 0 or 1;
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- W a1 and W a2 are each independently —NH—, —C ( ⁇ O) —, or —CH 2 —;
- W a3 And W a4 are each independently —NH—, —C ( ⁇ O) —, —CH 2 —, —C ( ⁇ O) NH—, —NHC ( ⁇ O) — or triazolylene;
- W b1 is an amide bond or triazolylene
- L is a linker linking W a2 and Z and is an amino acid, peptide or amide bond
- Z is a single bond, -W a5 - (CH 2) a2 -W b2 - (CH 2) a3 -W a6 - or -W a7 - (CH 2) a4 -CR'R '' - X '' - , and;
- R ' is C 1 -C 8 alkyl or BW a8 -Q 3 -W c1 - ( CH 2) a5 - and;
- R '' is BW a8 -Q 3 -W c1- (CH 2 ) a5- ;
- Q 1 , and Q 3 are each independently — (CH 2 ) a6 — (X 1 CH 2 CH 2 ) b1 — (CH 2 ) a7- ;
- X 1 and X 3 are each independently —O—, —S—, —NH— or —CH 2 —;
- W a5 , W a6 , W a7 , W a8 and W a9 are each independently —NH—, —C ( ⁇ O) —, or —CH 2 —;
- W b2 is an amide bond or triazolylene
- Q 2 is straight or branched saturated or unsaturated alkylene having 1 to 50 carbon atoms, and satisfying at least one of the following (i) to (iii);
- (ii) comprises at least one arylene or heteroarylene in said alkylene, or
- the alkylene is C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,-(CH 2 ) s2 CONR 4 R 5 and — (CH 2 ) s2 NR 4 R 5 is further substituted with one or more selected from the group consisting of;
- Arylene or heteroarylene of (ii) may be further substituted with nitro;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- X 2 is —O—, —S—, —NH— or —CH 2 —;
- U1 is a linking group selected from the following structures wherein B 'is bonded at the asterisk (*);
- R is C1-C10 alkyl, C6-20 aryl or C2-C20 heteroaryl
- B and B ' are each independently ligands or proteins that have the ability to selectively target, i.e., bind to, receptors within specific organs, tissues, or cells of the drug;
- a1, a2, a3, a4, a5, a6, a8, b1, p1, p2, p3 and p4 are each independently integers of 1 to 10;
- a7, y, s1, s2 and s4 are each independently an integer of 0 to 10;
- R 1 and R 2 are each independently hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
- the present invention also provides a compound represented by the following Chemical Formula 2 as an intermediate for preparing the Chemical Formula 1.
- R is hydrogen or a hydroxy protecting group
- X is —C ( ⁇ O) —, —NH—, —O—, —CH 2 —, or —S—;
- T is an activator
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- U is a single bond or ego
- W a3 And W a4 are each independently —NH—, —C ( ⁇ O) —, —CH 2 —, —C ( ⁇ O) NH—, —NHC ( ⁇ O) — or triazolylene;
- R 21 is C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,-(CH 2 ) s2 CONR 4 R 5 and — (CH 2 ) s 2 NR 4 R 5 ;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- s1 and s2 are each independently an integer of 0 to 10;
- a1 are each independently an integer of 1 to 10;
- s4 is an integer from 0 to 10;
- p3 and p4 are each independently an integer of 1 to 10;
- X 1 and X 3 are each independently —O—, —S—, —NH— or —CH 2 —;
- a6 and b1 are each independently an integer of 1 to 10;
- a7 is an integer of 0 to 10;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- R 1 and R 2 are each independently hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
- the self-immolative group into which the ⁇ -galactoside group according to the present invention is introduced is simpler to prepare than the conventionally known linker, and no side reactions occur, thereby making it easier to separate and purify.
- the hydrophilic property of water is good to improve the physical properties of the prepared composite using it.
- compounds comprising a self-immolative group into which the ⁇ -galactoside is introduced according to the present invention may be used for proteins (eg, oligopeptides, polypeptides, antibodies, etc.) or ligands having a specificity of binding to a target of interest, specific functions or Target cells, including active agents (e.g. drugs, toxins, ligands, detection probes, etc.) with activity and self-immolative groups that form glycosidic bonds to selectively release the active agent within the target cells
- active agents e.g. drugs, toxins, ligands, detection probes, etc.
- self-immolative groups that form glycosidic bonds to selectively release the active agent within the target cells
- the present invention relates to a compound comprising a self-immolative linker in which ⁇ -galactoside is introduced, wherein the self-immolative group is an ortho-position based on a substituted benzoic acid derivative as a basic skeleton. (ortho-position) has a ⁇ -galactoside which is hydrolyzed by an enzymatic reaction, and an active agent having a specific function or activity (e.g.
- carboxyl group of benzoic acid includes amide bonds in which a linker to which a protein (eg, oligopeptide, polypeptide, antibody, etc.) or ligand, etc., having a binding specificity for a desired target is bound, can be bound.
- a compound including a self-immolative group into which ⁇ -galactoside is introduced according to the present invention is represented by the following Chemical Formula 1.
- R is hydrogen or a hydroxy protecting group
- T is an activator
- n is an integer of 0 or 1;
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- W a1 and W a2 are each independently —NH—, —C ( ⁇ O) —, or —CH 2 —;
- W a3 And W a4 are each independently —NH—, —C ( ⁇ O) —, —CH 2 —, —C ( ⁇ O) NH—, —NHC ( ⁇ O) — or triazolylene;
- W b1 is an amide bond or triazolylene
- L is a linker linking W a2 and Z and is an amino acid, peptide or amide bond
- Z is a single bond, -W a5 - (CH 2) a2 -W b2 - (CH 2) a3 -W a6 - or -W a7 - (CH 2) a4 -CR'R '' - X '' - , and;
- R ' is C 1 -C 8 alkyl or BW a8 -Q 3 -W c1 - ( CH 2) a5 - and;
- R '' is BW a8 -Q 3 -W c1- (CH 2 ) a5- ;
- Q 1 , and Q 3 are each independently — (CH 2 ) a6 — (X 1 CH 2 CH 2 ) b1 — (CH 2 ) a7- ;
- X 1 and X 3 are each independently —O—, —S—, —NH— or —CH 2 —;
- W a5 , W a6 , W a7 , W a8 and W a9 are each independently —NH—, —C ( ⁇ O) —, or —CH 2 —;
- W b2 is an amide bond or triazolylene
- Q 2 is straight or branched saturated or unsaturated alkylene having 1 to 50 carbon atoms, and satisfying at least one of the following (i) to (iii);
- (ii) comprises at least one arylene or heteroarylene in said alkylene, or
- the alkylene is C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,-(CH 2 ) s2 CONR 4 R 5 and — (CH 2 ) s2 NR 4 R 5 is further substituted with one or more selected from the group consisting of;
- Arylene or heteroarylene of (ii) may be further substituted with nitro;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- X 2 is —O—, —S—, —NH— or —CH 2 —;
- U1 is a linking group selected from the following structures wherein B 'is bonded at the asterisk (*);
- R is C1-C10 alkyl, C6-20 aryl or C2-C20 heteroaryl
- B and B ' are each independently ligands or proteins that have the ability to selectively target, i.e., bind to, receptors within specific organs, tissues, or cells of the drug;
- a1, a2, a3, a4, a5, a6, a8, b1, p1, p2, p3 and p4 are each independently integers of 1 to 10;
- a7, y, s1, s2 and s4 are each independently an integer of 0 to 10;
- R 1 and R 2 are each independently hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
- the hydroxy protecting group is not limited to conventional protecting groups that can be used in organic synthesis, more preferably methyl ether, methoxymethyl ether (MOM), methylthiomethyl ether ( MTM), 2-methoxyethoxymethyl ether (MEM), bis (2-chloroethyoxy) methyl ether, tetrahydrophyranyl ether (THP), tetrahydrothiopyranyl ether, 4-methyoxytetrahydropyranyl ether, 4-methoxytetrahydrothiopyranyl ether, tetrahydrofuranyl ether, 1-ethyoxyethyl ether, 1-methyl -1-methoxyethyl ether, 2- (phenylselenyl) ethyl ether, t-butyl ether, allyl ether, benzyl ether, o-nitrobenzyl ether, tripheny
- L is a linker connecting W a2 and Z, and may be an amino acid or peptide unit or an amide bond, and the amino acid or peptide unit may be repeated one or more times. It may include one or two or more functional groups, such as amine groups, carboxylic acid groups, thiol groups, and the like that are residues of amino acids.
- Click chemical reactions are carried out under mild conditions, making it easier to handle proteins. Click chemical reactions show very high reaction specificities. Thus, even if the protein has other functional groups (eg, at side chain residues or at the C-terminus or N-terminus), the functional group is not affected by the click chemistry reaction. For example, a click chemical reaction between an azide group and an acetylene group of a protein may occur while other functional groups of the protein are not affected by the click chemical reaction.
- click chemical reactions can occur specifically without being affected by the ligand species involved.
- the ligand can be selected to improve the overall reaction efficiency. For example, azide-acetylene click chemistry can produce triazoles in high yields.
- Azide and acetylene groups are functional groups that are not present in the amino acid sequences of natural proteins. When conjugation reactions occur using such functional groups, none of the side chain residues and neither of the N-terminal or C-terminal functional groups are affected by the click chemistry reaction.
- L may include one or more units represented by Formula A or Formula B below.
- R 11 is hydrogen, C 1 -C 8 alkyl,-(CH 2 ) s3 COOR 13 ,-(CH 2 ) s3 COR 13 ,-(CH 2 ) s3 CONR 14 R 15 or-(CH 2 ) s4 NR 14 R 15 ;
- R 13 , R 14 and R 15 are each independently hydrogen or C 1 -C 15 alkyl
- s3 and s4 are each independently an integer of 0 to 10;
- X 3 is -O-, -S-, -NH- or -CH 2- ;
- p3 and p4 are each independently an integer of 1-10.
- R 11 may be- (CH 2 ) s3 COOH or- (CH 2 ) s4 NH 2 , and s3 and s4 are each independently an integer of 0 to 10 Can be.
- Z is a single bond or is selected from the following structures.
- a2, a3, a4, a5, a6, a8 and b1 are each independently integers of 1 to 10;
- X 1 is —O—, —S—, —NH— or —CH 2 —;
- Z may be a single bond or may be selected from the following structures.
- a4, a5, a6, a8 and b1 are each independently an integer of 1 to 10;
- X 1 is —O—, —S—, —NH— or —CH 2 —;
- Q 2 may be selected from the following Formula C to Formula I.
- X 11 and X 12 are each independently —O—, —S—, —NH— or —CH 2 —;
- R 12 to R 14 are each independently hydrogen, C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,- (CH 2 ) s2 CONR 4 R 5 or-(CH 2 ) s2 NR 4 R 5 ;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- X 2 is —O—, —S—, —NH— or —CH 2 —;
- R a is hydrogen or nitro
- c1, c2, c3, c4 and d1 are each independently an integer of 1 to 10;
- q1 and q2 are each independently an integer of 0 to 5;
- s1 and s2 are each independently an integer of 0 to 5;
- p1 and p2 are each independently an integer of 1 to 10.
- the ⁇ -galactoside bound to the self-immolative group is first hydrolyzed by the ⁇ -galactosidase enzyme and then activated through an 1,6-removal reaction. Has a mechanism of releasing (Scheme 1).
- US 8,568,728 and KR 10-2015-037015 describe examples of preparation of antibody-drug complexes incorporating a self-immolative phase comprising ⁇ -glucuronide.
- the self-immolative phase comprising ⁇ -glucuronide described in KR 10-2015-037015 has improved stability in mouse plasma over self-immolative derivatives of similar structure described in US Pat. No. 8,568,728 but has several manufacturing problems. have.
- ⁇ -glucuronide has a longer manufacturing process than a self-immolative derivative including ⁇ -galactoside to be developed in the present invention, and is used as an intermediate glucuronyl bromide ( Low yield (50%) of glucuronyl bromide; methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate bromide, catalog number A8292, 334,000 won / 1g, www.sigmaaldrich.com The contents described in 2000, 328, 445-448 are prepared in lower 38% yield).
- the reaction is carried out under basic conditions to remove the acetyl group and the methyl group used to protect the alcohol group and the carboxylic acid group.
- these conditions there is a difference in reaction rate for two different protecting groups, so that a removal reaction occurs.
- the byproducts are not easily removed in the separation and purification process, and thus, the yield and purity of the final product are lowered.
- the Papot group published their findings on ⁇ -galactoside derivatives that can be hydrolyzed by ⁇ -galactosidase.
- the structure of the self-immolative phase has a structural feature in which benzyl alcohol groups are introduced to release the drug through 1,6-elimination (US 9,000,135; Arch Pharm Res Vol 30, No 6, 723-732, 2007; Journal of Medicinal Chemistry, 2009, 52, 537-543; Drug Development and Industrial Pharmacy, 34: 789-795, 2008).
- this material has a disadvantage in that the reaction rate is lower than that of the primary alcohol in the process of binding the drug to the secondary alcohol, and the yield is lower.
- the secondary alcohol group is synthesized in the form of a stereoisomer having chiral carbon and is a single substance. It is difficult to prepare a composite of a furnace.
- NO 2 groups are unstable under conditions such as reduction reactions in the manufacturing process, there are many restrictions in the manufacturing process of the substance, and when the body is metabolized into amines, the drug may be dissociated, resulting in toxicity.
- Self-sacrificing group including ⁇ -galactoside to be developed in the present invention (2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide catalog number A1750, 872,000 won / 100 g, www.sigmaaldrich.com) is performed quantitatively and ⁇ -glucuro using different protecting groups because the same protecting group (e.g., acetyl group) is used for the four alcohol groups of ⁇ -galactoside. Since no side reaction occurs during the preparation of the amide derivative, there is an advantage in that the yield is high.
- the active agent may be a drug, a toxin, an affinity ligand, a detection probe or a combination thereof.
- the drug includes erlotinib (TARCEVA; Genentech / OSI Pharm.); Bortezomib (VELCADE; Millenium Pharm.); Fulvestrant (FASLODEX; AstraZeneca); Sutent (SU11248; Pfizer); Letrozole (FEMARA; Novartis); Imatinib mesylate (GLEEVEC; Novartis); PTK787 / ZK 222584 (Novartis); Oxaliplatin (Eloxatin; Sanofi); 5-fluorouracil (5-FU); Leucovorin; Rapamycin (Syrolimus, RAPAMUNE; Wyeth); Lapatinib (TYKERB, GSK572016; GlaxoSmithKline); Lonafarnib (SCH 66336); Sorafenib, BAY43-9006; Bayer Labs .; Gefitinib (IRESSA; Astrazeneca); AG1478, AG1571 (SU 5271; Su
- dynemicin including dynemicin A); Bisphosphonate (eg, clodronate); Esperamicin, neocarzinostatin chromophore or related chromoprotein enediyne antibiotic chromophores, aclacinomysins, actinomycin anctinomycin (antrmycin), azaserine (azaserine), bleomycins, bactinomycin, carabicin, carinomycin, carninomycin, carzinophilin, chromomycins, docomycin Tinomycin, daunorubicin, detorubucin, 6-diazo-5-oxo-L-norleucine, ADRLIMYCIN® doxorubicin (ADRLIMYCIN® doxorubicin) (e.g.
- morpholino-doxorubicin cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubucin, liposome doxorubicin ( liposomal doxorubicin) Are deoxydoxorubicin), epirubicin, episorbin, esorubicin, marcelomycin, mitomycins (e.g.
- mycophenolic acid mycophenolic acid, nogalamycin, olivomycins, peplomycin, potpyromycin, potoromycin, puromycin, quelamycin, rodorubicin Streptomomigrin, streptozocin, tubercidin, ubenimex, zinostatin or zorubicin;
- Anti-metabolites eg 5-fluorouracil (5-FU)
- Folic acid analogues eg, denopterin, methotrexate, pteropterin or trimetrexate
- Purine analogs eg, fludarabine, 6-mercaptopurine, thiamiprine or thiguanine
- Pyrimidine analogs e.g.
- acitabine dideoxyuri Didineoxyuridine, doxifluridine, enocitabine or floxuridine; Androgens (eg, calusterone, dromostanolone propionate, epithiostanol, mepitiostane or testolactone); Anti-adrenals (eg, aminoglutethimide, mitotane or trilostane); Folic acid replenisher (eg, folinic acid); Aceglatone; Aldophosphamide glycoside; Aminolevulinic acid; Eniluracil; Amsacrine; Bestrabucil; Bisantrene; Edatraxate; Defofamine; Demecolcine; Diaziquone; Elfornithine; Elliptinium acetate; Epothilone; Etoglucid; Gallium nitrate; Hydroxyurea; Lentinan; Lon
- tricortesenes are T-2 toxin, verracurin A, roridin A A) or anguidine
- Mitoguazone Mitoxantrone; Mopidanmol; Nitrarine; Pentostatin; Phennamet; Pyrarubicin; Losoxantrone; 2-ethylhydrazide; Procarbazine; PSK® polysaccharide complexes; Razoxane; Rhizoxin; Sizofiran; Spirogermanium; Tenuazonic acid; Triaziquone; 2,2 ', 2 "-trichlorotriethylamine; trichothecenes (especially T-2 toxins, veracurin A, loridine A and anguidine); urethane ( urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitobronitol; mitolactol; pipobroman; pipo
- TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, NJ), ABRAXANE TM Crescent member blanket (ABRAXANE TM cremophor-free), albumin-paclitaxel processing nanoparticle formulation (albumin-engineered nanoparticle formulation of paclitaxel , American Pharmaceutical Partners, Schaumber, I11.) , or TAXOTERE® dock washing cell (TAXOTERE® doxetaxel) ((Rhone-Poulenc Rorer, Antony, France)); chloranbucil; gemcitabine; 6-thioguanine; mercaptopurine; platinum analog (e.g.
- cisplatin or carboplatin vinblastine; platinum Etoposide, ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantron; Teniposide; Edatrexate; Daunomycin; Aminopterin; Xeloda; Ibandronate; CPT-11; Topoisomerase inhibitor RFS 2000; Difluorometlhylornithine (DFMO); Retinoids (eg, retinoic acid); Capecitabine; And pharmaceutically acceptable salts, solvates, acids or derivatives thereof, but is not necessarily limited thereto.
- DFMO Difluorometlhylornithine
- Retinoids eg, retinoic acid
- Capecitabine And pharmaceutically acceptable salts, solvates, acids or derivatives thereof, but is not necessarily limited thereto.
- Additional drugs include, but are not limited to, (i) tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droroxifene, 4-hydroxytamoxifen, trioxyphene, keoxyphene, LY117018, Anti-hormonal agents that act to modulate or inhibit hormonal action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including onnapristone and FAREATON® toremifene; (ii) aromatase inhibitors that inhibit aromatase enzymes that regulate estrogen production in the adrenal glands, such as 4 (5) -imidazole, aminoglutetimides, MEGASE® megestrol acetate, AROMASIN® exemestane , FEMARA® letrozole and ARIMIDEX® anastrozole; (iii) anti-androgens such as flutamide, nilutamide, bicalutamide, reuprolide
- the drug may be a cytokine, an immunomodulatory compound, an anticancer agent, an antiviral agent, an antibacterial agent, an antifungal agent, an antiparasitic agent, or a combination thereof.
- cytokines are small cell-signaling protein molecules secreted by multiple cells and are a category of signaling molecules widely used for intracellular information exchange. This includes monokines, lymphokines, traditional polypeptide hormones, and the like.
- cytokines include, but are not limited to, growth hormones (such as human growth hormone, N-methionyl human growthth hormone or bovine growth hormone) bovinegrowth hormone)); Parathyroid hormone; Thyroxine; Insulin; Proinsulin; Relaxin; Prorelaxin; Glycoprotein hormones (eg follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH) or luteinizing hormone (LH)); Hepatic growth factor; Fibroblast growth factor; Prolactin; Placental lactogen; Tumor necrosis factor- ⁇ , tumor necrosis factor- ⁇ ; Mullerian-inhibiting substances; Mouse gonadotropin-associated peptide; Inhibin; Activin; Vascular endothelial growth factor; Integrin, thrombopo
- cytokine also includes recombinant cell cultures and biologically active equivalents of a cytokine from natural sources or from the base sequence cytokines.
- the immunomodulatory compounds include aminocaproic acid, azathioprine, azathioprine, bromocriptine, chloroquine, chloroambucil, cyclosporine, and cyclosporine A. ), Danazol, dehydroepiandrosterone (DHEA), dexamethasone (dexamethasone), etanercept, hydroxychloroquine, hydrocortisone, infliximab, meloxicam, Methotrexate, cyclophosphamide, mycophenylate mofetil, prednisone, sirolimus and tacrolimus.
- the anticancer agent is methotrexate, taxol, L-asparaginase, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cytarabine, Cyclophosphamide, ifosfamide, nitrosourea, cisplatin, carboplatin, mitomycin, dacarbazine, procarbazine procarbazine, topotecan, nitrogen mustard, cytoxan, etoposide, 5-fluorouracil, bis-chloroethylnitrosourea, irinotecan ), Camptothecin, bleomycin, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, plicamycin, mitoxan Mitoxantrone, asparagase inase, vinblastine, vincristine, vinorelbine, paclit
- the viral agent is pencicyclovir, valcyclovir, gancicyclovir, foscarnet, ribavirin, idoxuridine, vidorabine, triple Trifluridine, acyclovir, famcicyclovir, amantadine, rimantadine, cidofovir, antisense oligonucleotide, immunoglobulin and It can be selected from the group consisting of interferon.
- the antibacterial agent is chloramphenicol, vancomycin, vancomycin, metronidazole, trimethoprin, sulfamethazole, quinupristin, dalfopristin, dalfopristin, and rifampin (dalfopristin). rifampin), spectinomycin and nitrofurantoin.
- amphotericin B amphotericin B
- Candicidin Candicidin
- the Philippines filament
- hamycin hamycin
- natamycin nystatin
- limosidin limocidin
- non- Nazol Butoconazole
- Clotrimazole Ecoconazole, Fenticonazole, Isoconazole, Ketoconazole, Luliconazole , Myconazole, Omoconazole, Oxiconazole, Sertaconazole, Sulconazole, Thioconazole, Albaconazole, Fluconazole (Fluconazole), Isavuconazole, Itraconazole, Posaconazole, Ravuconazole, Terconazole, Vorconazole, Abafungin, Amorolfin, Butenafine, Naftifine, Terbinaf ine, Anidulafungin, Caspofungin, Caspofungin, and
- the repellents are mebendazole, pyrantel pamoate, thiabendazole, diethylcarbamazine, ivermectin, niclosamide, praziquantel (praziquantel), albendazole, rifampin, amphotericin B, melrsoprol, eflornithine, metronidazole, tinidazole And miltfosine.
- the toxin is a toxic substance produced in living cells or organisms. Small toxins, peptides or proteins that can cause disease upon contact with or absorption by biological macromolecules, for example, body tissues that interact with enzymes or cellular receptors. Can be. Toxins also include plant toxins and animal toxins. Examples of animal toxins include, but are not limited to, diphtheria toxin, botulium toxin, tetanus toxin, dysentery toxin, cholera toxin, tetrodotoxin (tetrodotoxin), brevetoxin, ciguatoxin. Examples of plant toxins include, but are not limited to, lysine and AM-toxin.
- small molecule toxins include, but are not limited to, auristatin, tubulysin, geldanamycin (Kerr et al., 1997, Bioconjugate Chem. 8 (6): 781 784), maytansinoid (EP 1391213, ACR 2008, 41, 98-107), calicheamycin (US 2009105461, Cancer Res. 1993, 53, 3336-3342), daunomycin (aunomycin), doxorubicin, methotrexate, bindesine, SG2285 (Cancer Res.
- Toxins may exhibit cytotoxicity and cell growth inhibitory activity by tubulin binding, DNA binding, topoisomerase inhibition, and the like.
- the affinity ligand is a molecule capable of forming a complex with a target biomolecule, and is a molecule that binds to a predetermined position of the target protein and transmits a signal. It may be a substrate, inhibitor, stimulant, neurotransmitter or radioisotope.
- Detection moiety refers to a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, radioactive or chemical means.
- useful labels include 32 P, 35 S, fluorescent dyes, electron-dense reagents, enzymes (e.g. those commonly used in ELISA), biotin-strep Biotin-streptavidin, dioxygenin, haptens, and proteins for which antisera or monoclonal antibodies are available, or have sequences complementary to the target Nucleic acid molecules with a sequence complementary to a target.
- Detectable residues often generate measurable signals such as radioactive, chromogenic or fluorescent signals that can be used to quantify the amount of detectable residue bound in a sample.
- Quantification of the signal is accomplished by, for example, scintillation counting, density meter, flow cytometry, ELISA or direct analysis (mass spectrometry of one or more digested peptides) (one or more peptides may be assayed).
- scintillation counting for example, scintillation counting, density meter, flow cytometry, ELISA or direct analysis (mass spectrometry of one or more digested peptides) (one or more peptides may be assayed).
- the detecting probe may comprise (i) a detectable signal provided by the first or second probe, such as fluorescence resonance energy transfer (FRET), by (i) providing a detectable signal or (ii) interacting with the first or second probe. Altering signals, (iii) stabilizing interactions with antigens or ligands, increasing binding affinity, or (iv) affecting electrical mobility or cell-invasive action by physical parameters such as charge, hydrophobicity, etc. Or (v) a substance capable of modulating ligand affinity, antigen-antibody binding or ionic complex formation.
- FRET fluorescence resonance energy transfer
- the ligand of B refers to molecules such as antibodies, hormones, drugs and the like that bind to the receptor.
- Ligands are substances that selectively target drugs within specific organs, tissues, or cells. Ligands specifically bind to receptors that are overexpressed in cancer cells compared to normal cells, and can be classified into monoclonal antibodies (mAbs), antibody fragments, and small molecule non-antibody ligands. .
- tumor cell-specific peptides identified in library screens, tumor cell-specific peptides, tumor cell-specific aptamers, tumor cell-specific carbohydrates , Tumor cell specific monoclonal antibodies or polyclonal antibodies (tumor cell-specific monoclonal or polyclonal antibodies), preferably selected from the group consisting of antibody fragments.
- ligands include, but are not limited to, carnitine, inositol, lipoic acid, pyridoxal, ascorbic acid, niacin, pantothenic acid ), folic acid (folic acid), riboflavin (riboflavin), thiamin (thiamine), biotin (biotin), vitamin B 12 (vitamin B 12), other water-soluble vitamin giant amphipods vitamin B, fat-soluble vitamins (vitamins A, D, E, K), RGD (Arg-Gly-Asp), NGR (Asn-Gly-Arg), transferein, VIP (vasoactive intestinal peptide) receptor, APRPG (Ala-Pro-Arg-Pro-Gly) peptide, TRX-20 (thioredoxin -20), integrin, nucleolin, Aminopeptidase N, CD13, endoglin, vascular epithelial growth factor receptor, low density lipoprotein receptor (-20) low density lipoprotein receptor, transferrin receptor
- the protein of B comprises oligopeptides, polypeptides, antibodies, fragments of antigenic polypeptides and phosphorus.
- the protein is two or more independently selected natural or non-natural amino acids conjugated by covalent bonds (eg, peptide bonds), and the peptides are 2, 3, 4, 5, 6, 7, 8 conjugated by peptide bonds , 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more natural or non-natural amino acids.
- Polypeptides include full length proteins (eg, pre-processed proteins) as well as shorter amino acid sequences (eg, fragments of natural proteins or synthetic polypeptide fragments).
- the antibody recognizes and specifically binds a target, such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combination thereof, through one or more antigen recognition sites in the variable portion of an immunoglobulin molecule.
- a target such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combination thereof.
- the antibody may be an intact polyclonal antibody, an intact monoclonal antibody, an antibody fragment (e.g., Fab, Fab ', F, as long as the antibody exhibits the desired biological activity).
- Antibodies can have any of five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, or these, based on the identity of their heavy chain persistent domains, denoted alpha, delta, epsilon, gamma and mu, respectively. Subclassification of isotypes (eg IgGl, IgG2, IgG3, IgG4, IgAl and IgA2). Different classes of immunoglobulins have different and well known subunit structures and three-dimensional forms.
- antibody fragment refers to a portion of a circular antibody and refers to an antigenic determining variable portion of a circular antibody.
- antibody fragments include, but are not limited to, multispecific antibodies formed from Fab, Fab ', F (ab') 2 , Fd and Fv fragments, linear antibodies, single chain antibodies and antibody fragments.
- a “monoclonal antibody” refers to a homologous antibody population involved in the highly specific recognition and binding of a single antigenic determinant or epitope. This is in contrast to polyclonal antibodies, which typically include different antibodies directed against different antigenic determinants.
- the term “monoclonal antibody” includes both circular and full length monoclonal antibodies, as well as antibody fragments (eg, Fab, Fab ', F (ab') 2 , Fd, Fv), single chain (scFv) mutations, antibody portions. Any other modified immunoglobulin molecule, including a fusion protein and an antibody recognition site.
- “monoclonal antibodies” refer to such antibodies made in any number of ways, including but not limited to hybridomas, phage selection, recombinant expression, and transgenic animals.
- humanized antibody refers to the form of a non-human (eg, murine) antibody that is a specific immunoglobulin chain, chimeric immunoglobulin, or a fragment thereof containing a minimum of non-human (eg, murine) sequences.
- humanized antibodies are replaced by residues from non-human species (eg, mice, rats, rabbits, hamsters) whose residues from the complementary determinants (CDRs) have the desired specificity, affinity, and likelihood.
- Human immunoglobulin see Jones et al., 1986, Nature, 321: 522-525; Riechmann et al., 1988, Nature, 332: 323-327; Verhoeyen et al., 1988, Science, 239: 1534). -1536).
- Fv framework region (FR) residues of human immunoglobulins are replaced with corresponding residues in an antibody from a non-human species having the desired specificity, affinity, and likelihood.
- Humanized antibodies may be further modified by substitution of additional residues at the Fv framework site and / or in substituted non-human residues to improve and optimize antibody specificity, affinity and / or potential.
- humanized antibodies comprise one or more, typically two or three, variable domains containing substantially all or substantially all of the CDR sites corresponding to a non-human immunoglobulin, while the entire or substantially entire FR sites are Has a human immunoglobulin matching sequence.
- Humanized antibodies may comprise an immunoglobulin constant region or domain (Fc), typically at least a portion of a human immunoglobulin. Examples of methods used to generate humanized antibodies are described in US Pat. No. 5,225,539.
- human antibody refers to an antibody having an amino acid sequence corresponding to an antibody produced by a human or an antibody produced by a human made using any technique known in the art.
- This definition of human antibody includes antibodies comprising one or more human heavy and / or light chain polypeptides, such as circular or full length antibodies, fragments thereof and / or antibodies, eg, murine light and human heavy chain polypeptides. .
- chimeric antibody refers to an antibody in which the amino acid sequence of an immunoglobulin molecule is derived from two or more species.
- variable portions of both the light and heavy chains correspond to the variable regions of antibodies derived from one species of mammal (eg, mouse, rat, rabbit, etc.) with the desired specificity, affinity, and likelihood, while at some site Are homologous to intrabody sequences derived from each other (typically humans) to avoid inducing an immune response of the species.
- epitope or “antigen determinant” are used interchangeably herein and refer to the portion of an antigen that can be recognized and specifically bound by a particular antibody. If the antigen is a polypeptide, the epitope may be formed from both adjacent and nonadjacent amino acids paralleled by tertiary folding of the protein. Epitopes formed from contiguous amino acids are typically retained upon protein denaturation, whereas epitopes formed by tertiary folding are typically lost upon protein denaturation. Epitopes typically comprise at least 3, at least 5, or 8 to 10 or more amino acids in a unique spatial form.
- an antibody “specifically binds" to an epitope or antigen molecule means that the antibody binds to the epitope or antigen molecule more frequently, more rapidly, for a longer time, with greater affinity, or in part above, than an alternative material, including an unrelated protein. Reacts or binds in combination.
- “specifically binds”, for example, means that the antibody binds to a protein having a K D of about 1.0 mM or less, more typically less than about 1 ⁇ M.
- “specifically binds” means that the antibody sometimes binds to a protein having a K D of at least about 0.1 ⁇ M or less, in other cases at least about 0.01 ⁇ M or less.
- specific binding can include antibodies that recognize more than one species of a particular protein. It is understood that the antibody or binding moiety that specifically binds to the first target may or may not specifically bind to the second target. As such, “specific binding” does not necessarily require (but may include) exclusive binding, ie, binding to a single target. In general, though not necessarily, reference to binding means specific binding.
- Antibodies including fragments / derivatives thereof and monoclonal antibodies, can be obtained using methods known in the art (see McCafferty et al., Nature 348: 552-554 (1990); Clackson et al., Nature 352: 624-628; Marks et al., J. Mol. Biol. 222: 581-597 (1991); Marks et al., Bio / Technology 10: 779-783 (1992); Waterhouse et al., Nucleic Acids Res. 21: 2265-2266 (1993); Morimoto et al., Journal of Biochemical and Biophysical Methods 24: 107-117 (1992); Brennan et al., Science 229: 81 (1985); Carter et al.
- the antibody is, but is not limited to, muromonab-CD3 Abciximab, Rituximab, Daclizumab, Palivizumab, Infliximab (Infliximab), Trastuzumab (also known as Herceptin), Etanercept, Basiliximab, Gemtuzumab ozogamicin, Alemtuzumab, Alemtuzumab Iritumomab tiuxetan, Adalimumab, Alefacept, Omalizumab, Efalizumab, Tositumomob-I 131 (Tositumomob-I 131 ), Cetuximab, Bevacizumab, Natalizumab, Ranibizumab, Panitumumab, Eculizumab, Rilonacept ), Certolizumab pegol, Romiplostim, AMG-531, CNTO-148 , CNTO
- Repebody is a polypeptide optimized based on the consensus design by fusion based on the similarity of the structure of the VLR with the N-terminus of an internalin having an LRR protein structure, and includes all proteins belonging to the LRR family having a repeat module.
- the method can include all fusion LRR family proteins that enhance water soluble expression and protein biophysical properties.
- the protein is a monoclonal antibody
- one or more light chains of the monoclonal antibody, one or more heavy chains or both of the monoclonal antibodies may comprise amino acid sites having an amino acid motif that can be recognized by an isoprenoid transferase.
- a protein that selectively binds a target of interest eg, a target cell of a subject.
- a target of interest eg, a target cell of a subject.
- proteins exemplified above include fragments of antibodies or antigens that specifically bind to a target of interest.
- the protein is more preferably an antibody or phosphorus (Repebody).
- the compound comprising the self-immolative group according to the present invention may be more preferably selected from the following structures.
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- W 1 is selected from the following structures
- W 2 is selected from the following structures
- X 1, X 11 and X 12 are each independently —O—, —S—, —NH— or —CH 2 —;
- R 11 is hydrogen, C 1 -C 8 alkyl,-(CH 2 ) s3 COOR 13 ,-(CH 2 ) s3 COR 13 ,-(CH 2 ) s3 CONR 14 R 15 or-(CH 2 ) s4 NR 14 R 15 ;
- R 13 , R 14 and R 15 are each independently hydrogen or C 1 -C 15 alkyl
- X 3 is -O-, -S-, -NH- or -CH 2- ;
- R 12 to R 14 are each independently hydrogen, C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,- (CH 2 ) s2 CONR 4 R 5 or-(CH 2 ) s2 NR 4 R 5 ;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- X 2 is —O—, —S—, —NH— or —CH 2 —;
- R a is hydrogen or nitro
- a1, a2, a3, a4, a5, a6, a8, b1, c1, c2, c3, c4, d1, p1, p2, p3 and p4 are each independently integers of 1 to 10;
- q1 and q2 are each independently an integer of 0 to 5;
- s1, s2, s3 and s4 are each independently integers of 0 to 5;
- B is a ligand selected from the following structures
- T is a drug selected from the following structures
- w is an integer from 1 to 10.
- W 1 may be selected from the following structures.
- W 2 may be selected from the following structures.
- R 12 to R 14 are each independently C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOH,-(CH 2 ) s2 NH 2 or-(CH 2 ) s1 COR 3 ;
- R 3 is C 1 -C 8 alkoxy;
- R a is hydrogen or nitro;
- c1, c2, c3, c4 and d1 are each independently an integer of 1 to 10;
- s1 and s2 are each independently an integer of 0 to 5;
- q1 and q2 are each independently an integer of 1-5.
- the active agent may be prepared by using a method of preparing a composition known to those skilled in the art, for example, a subject requiring an active agent. Can be used to treat a subject by delivery to a target cell.
- composition is prepared in injectable form as a liquid solution or as a suspension.
- Solid forms suitable for injection may also be prepared as emulsions or with polypeptides encapsulated in liposomes.
- the compound comprising the self-immolative group may be combined with a pharmaceutically acceptable carrier, including any carrier that does not induce the production of antibodies harmful to the subject receiving the carrier.
- Suitable carriers typically include large macromolecules that are slowly metabolized, such as proteins, polysaccharides, polylactic acid, polyglycolic acid, polymeric amino acids, amino acid copolymers, lipid aggregates, and the like. Such carriers are well known to those skilled in the art.
- the composition may also contain diluents such as water, saline, glycerol, ethanol. Auxiliary materials may also be present, such as wetting or emulsifying agents, pH buffering materials and the like. Proteins can be formulated into vaccines in neutral or salt form.
- the composition may be administered parenterally by injection; Such injections can be subcutaneous or intramuscular. Additional formulations are suitable for other dosage forms, such as, for example, by suppository or orally.
- Oral compositions can be administered as a solvent, suspension, tablet, pill, capsule or sustained release formulation.
- the composition is administered in a manner compatible with the dosage form.
- the composition comprises a compound comprising a therapeutically effective amount of a self-immolative group.
- therapeutically effective amount is meant a composition administered in a single dose or multiple dose schedule, which is effective for the treatment or prevention of a disease or disorder. Dosages vary depending on the subject being treated, the health and physical condition of the subject, the degree of protection desired and other related factors. The exact amount of active ingredient required is at the discretion of the physician.
- a compound comprising a therapeutically effective amount of a self-immolative group or a composition comprising the same can be administered to a patient suffering from cancer or a tumor to treat the cancer or tumor.
- a compound comprising a therapeutically effective amount of a self-immolative phase or a composition comprising the same can be administered to a patient to treat or prevent infection by a pathogen (eg, virus, bacteria, fungus, parasite, etc.).
- pathogen eg, virus, bacteria, fungus, parasite, etc.
- Such methods include administering to a mammal a compound comprising a therapeutic or prophylactic amount of a self-immolative group sufficient to treat the disease or disorder or symptoms thereof, under conditions such that the disease or disorder is prevented or treated.
- the compound comprising a self-immolative group according to the present invention or a composition comprising the same may be administered in the form of a pharmaceutically acceptable salt or solvate thereof.
- it may be administered with a pharmaceutically acceptable carrier, pharmaceutically acceptable excipients and / or pharmaceutically acceptable additives.
- Pharmaceutically effective amounts and types of pharmaceutically acceptable salts or solvates, excipients and additives can be measured using standard methods (see Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 18th edition, 1990). .
- terapéuticaally effective amount reduces cancer cell numbers; Reduce cancer cell size; Inhibit or reduce invasion of cancer cells into the surrounding line; Inhibit or reduce the spread of cancer cells to other lines; Inhibit the growth of cancer cells; By an amount that can ameliorate one or more symptoms associated with cancer.
- the effectiveness of the drug can be assayed by tumor to tumor progression (TTP) and / or response (response) rate (RR).
- terapéuticaally effective amount relating to infection by a pathogen means an amount that can prevent, treat or reduce the symptoms associated with the infection.
- pharmaceutically acceptable salts includes organic salts and inorganic salts. Examples thereof include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate Isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantonate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, Gluconate, glucononate, saccharide, formate, benzoate, glutamate, methane sulfonate, ethane sulfonate, benzene sulfonate, p-toluene sulfonate and pamoate (ie, 1,1'-methylenebis- ( 2-hydroxy-3-
- Exemplary solvates that may be used in the pharmaceutically acceptable solvates of compounds comprising self-immolative groups according to the present invention include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid and Ethanol amine.
- R is hydrogen or a hydroxy protecting group
- X is —C ( ⁇ O) —, —NH—, —O—, —CH 2 —, or —S—;
- T is an activator
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- U is a single bond or ego
- W a3 And W a4 are each independently —NH—, —C ( ⁇ O) —, —CH 2 —, —C ( ⁇ O) NH—, —NHC ( ⁇ O) — or triazolylene;
- R 21 is C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,-(CH 2 ) s2 CONR 4 R 5 and — (CH 2 ) s 2 NR 4 R 5 ;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- s1 and s2 are each independently an integer of 0 to 10;
- a1 are each independently an integer of 1 to 10;
- s4 is an integer from 0 to 10;
- p3 and p4 are each independently an integer of 1 to 10;
- X 1 and X 3 are each independently —O—, —S—, —NH— or —CH 2 —;
- a6 and b1 are each independently an integer of 1 to 10;
- a7 is an integer of 0 to 10;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- R 1 and R 2 are each independently hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
- the compound of Formula 2 may be represented by the following formula (3).
- Y is hydrogen, haloC 1 -C 8 alkyl, halogen, cyano or nitro;
- z is an integer from 1 to 3, and when z is an integer of 2 or more, each Y may be the same or different from each other;
- z1 is an integer of 0 or 1;
- U is a single bond or ego
- R 21 is C 1 -C 20 alkyl, C 6 -C 20 arylC 1 -C 8 alkyl,-(CH 2 ) s1 COOR 3 ,-(CH 2 ) s1 COR 3 ,-(CH 2 ) s2 CONR 4 R 5 and — (CH 2 ) s 2 NR 4 R 5 ;
- R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C 15 alkyl
- s1 and s2 are each independently an integer of 0 to 10;
- a1 are each independently an integer of 1 to 10;
- s4 is an integer from 0 to 10;
- p3 and p4 are each independently an integer of 1 to 10;
- X 1 and X 3 are each independently —O—, —S—, —NH— or —CH 2 —;
- a6 and b1 are each independently an integer of 1 to 10;
- T is a drug selected from the following structures
- w is an integer from 1 to 10.
- the FG is a hetero-diesel reaction, nucleophilic substitution reaction, 1,3-bipolar ring addition reaction, non-aldol type carbonyl reaction, carbon-carbon multiple bonds It may further include a functional group capable of performing the addition reaction, oxidation reaction or click reaction for.
- FG of Formula 2 is a functional group capable of directly connecting with B (thiol, haloacetamide, maleimide, halide, tosylate, aldehyde, sulfonate, phsphonic acid, ketone, carboxylic acid, acetylene, azide, amine, hydroxy, hydroxy amine , Hydrazine, etc.).
- the FG may be -C ⁇ CH or -N 3 .
- the compound of Chemical Formula 1 may be prepared by clicking a ligand or protein having a functional group capable of clicking reaction with FG of Chemical Formula 2 and a compound of Chemical Formula 2 by clicking.
- FG of Formula 2 is ,
- the compound of Formula 1 may be prepared by directly bonding with B.
- Triethylene glycol (15.14 g, 100.87 mmol) was dissolved in THF (500 mL) at 0 ° C. under a nitrogen atmosphere, then NaH (60% wt, 672 mg, 16.81 mmol) was added and stirred for 5 minutes.
- Prozazyl bromide (80% w / w in toluene, 2.5 g, 16.81 mmol) was added to the mixture, followed by stirring at room temperature for 5 hours.
- EA 150 mL
- distilled water 300 mL
- brine 100 mL
- MMAF is US 61 / 483,698, Chem Pharm Bull, 1995. 43 (10). Prepared in a similar manner as described in 1706-1718, US7423116, US7498298, and WO2002 / 088172.
- Hexaethylene glycol (5.0 g, 17.71 mmol) was dissolved in anhydrous DCM (dichloromethane) (178 mL) at room temperature under nitrogen atmosphere, followed by KI (249 mg, 1.17 mmol), Ag 2 O (4.92 g, 21.25 mmol), p -TsCl (p-Toluenesulfonyl chloride) (3.71 g, 19.48 mmol) was added dropwise and stirred overnight at room temperature. After the reaction was completed, Ag 2 O was removed using a celite filter, and then the filtered solution was concentrated under reduced pressure, and then the residue was subjected to column chromatography to obtain compound L-11a (5.98 g, 73%).
- Hexaethylene glycol (15.0 g, 77.23 mmol) was dissolved in DCM (400 mL) at 0 ° C. under nitrogen atmosphere, and then KOH (35.0 g, 617.8 mmol) and p-TsCl (29.5 g, 154.5 mmol) were added. Stir overnight at room temperature. After completion of the reaction, DCM (500 mL), distilled water (200 mL), and brine (100 mL) were added and extracted. The organic layer was dried over anhydrous Na 2 SO 4 , filtered, concentrated under reduced pressure, and used directly without purification in the next reaction. .
- Compound L-12a was prepared by a method similar to the method for preparing compound L-11a of Preparation Example 11.
- Compound L-12b was prepared by a method similar to the method for preparing compound L-11-1 of Preparation Example 11.
- Compound L-12c was prepared by a method similar to the method for preparing compound L-11a of Preparation Example 11.
- Compound L-12d was prepared by a method similar to the method for preparing compound L-11-1 of Preparation Example 11.
- Compound L-18c was prepared by a method similar to the preparation of Compound L-8d of Preparation Example 8 using compound L-18b and compound L-6. EI-MS m / z: 2484 (M + ).
- Compound L-19c was prepared by using a compound L-19c and a compound L-6, in a manner similar to the method for preparing compound L-18c (63%). EI-MS m / z: 2219 (M + ).
- Compound L-25 was prepared by the same method as the method for preparing compounds L-18c and L-18, using compound L-25c.
- N-Boc-Dap-OH (1 g, 4.89 mM) was dissolved in 1,4-dioxane (15 mL) and then Na 2 CO 3 (1.14 g, 10.76 mM) dissolved in H 2 O (10 mL) at 0 ° C. )
- Benzyl chloroformate (770 mg, 5.38 mM) was added sequentially and stirred at room temperature for 2 hours. After completion of the reaction, the mixture was extracted with EA (100 mL), 2M-HCl (100 mL), and the organic layer was dried over anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue was purified by column chromatography to give compound L-26a (1.25 g, 75%).
- Compound L-26a-4 was prepared in a similar manner to the preparation of Compound L-8b using Fmoc-Asp (OtBu) -OH (705 mg, 1.705 mM) and Compound L-26a-3 (450 mg, 1.55 mM). Obtained (99%).
- Compound L-26a-6 was obtained by a method similar to the method for preparing compound L-26a-4 (40%).
- Compound L-26a was obtained by a method similar to the method for preparing compound L-26a-5 (99%).
- Compound L-27a was prepared by a method similar to the method for preparing compound L-16c (50%).
- Compound L-27b was prepared by a method similar to the method for preparing compound L-16d (99%).
- Compound L-27 was prepared by a method similar to the method for preparing compound L-16 (99%).
- MPS-D1a (6.11 g, 20.52 mmol) was dissolved in EtOH (40 mL), MeOH (26 mL), followed by 4-Methoxybenzenethiol (2.55 g, 20.52 mmol) and piperidine (0.3 mL, 3.08 mmol) After the addition, the mixture was stirred at 100 ° C. for 16 hours. After the reaction was completed, the mixture was cooled to 0 ° C., stirred for 1 hour, filtered, and the solid was filtered and washed with ether (30 mL ⁇ 2) to obtain compound MPS-D1b (5.56 g, 90%).
- MPS-D1b (5.56 g, 18.51 mmol) was dissolved in MeOH (90 mL) and distilled water (90 mL) at room temperature under nitrogen atmosphere, and then cooled to 0 ° C. to add Oxone (25.03 g, 40.72 mmol). It was stirred for 14 hours at room temperature. After completion of the reaction, distilled water (100 mL) was added to dissolve and chloroform (150 mL X3) was extracted and washed with brine (200 mL). The obtained organic layer was dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure to give the compound MPS-D1 (5.29 g, 86%).
- Compound L-30d was obtained by a method similar to the method for preparing compound L-8b (71%).
- Trimesic acid (5.0 g, 23.73 mmol) was dissolved in methanol (200 mL) at room temperature under nitrogen atmosphere, and then H 2 SO 4 (1.5 mL) was added and stirred at 60 ° C. for 19 hours. After completion of the reaction, the solution was concentrated under reduced pressure, extracted with EA (500 mL) and NaHCO 3 aqueous solution (300 mL), and the organic layer was dried over anhydrous Na 2 SO 4 , filtered, and concentrated under reduced pressure. The residue was column chromatographed to give compound L-33a (5.88 g, 98%).
- Ligand-drug complex (2) was prepared in a similar manner to the preparation of Ligand-Drug Complex 1 using Compound L-9 (Preparation Example 8) and Compound S-9 (Example 1). EI-MS m / z: 2187 (M + ).
- Ligand-drug complex (3) was prepared in a similar manner to the preparation of Ligand-Drug Complex (1) using Compound L-23 (Preparation Example 20) and Compound S-9 (Example 1) (29.7%). .
- Ligand-drug complex (4) was prepared in a similar manner to the preparation of Ligand-Drug Complex (1) using Compound L-21 (Preparation Example 18) and Compound S-9 (Example 1). EI-MS m / z: 2487 (M + ), 1244 (M + / 2), 830 (M + / 3).
- the ligand-drug complex (5) was prepared in a similar manner to the preparation of the ligand-drug complex (1).
- the ligand-drug complex 6 was prepared in a similar manner to the preparation of the ligand-drug complex 5.
- ligand-drug complex 7 was prepared in a similar manner to the preparation of ligand-drug complex 1 (14%).
- Ligand-drug complex (8) was prepared in a similar manner to the preparation of Ligand-Drug Complex (1) using Compound L-19 (Preparation Example 16) and Compound S-9 (Example 1) (17.4%). .
- Ligand-drug complex (9) was prepared in a similar manner to the preparation of Ligand-Drug Complex (1) using Compound L-18 (Preparation Example 16) and Compound S-9 (Example 1) (24%). . EI-MS m / z: 1710 (M + ).
- Ligand-drug complex 10 was prepared in a similar manner to the preparation of ligand-drug complex 5 using compound 7-1 (26%). EI-MS m / z: 1277 (M + / 3).
- Ligand-drug complex (11) was prepared in a similar manner to the preparation of ligand-drug complex (6) using compound 7-1 (52%). EI-MS m / z: 1540 (M + / 3).
- Compound 12-2 was prepared in a similar manner to the method for preparing compound 5-3 of Example 5 using compound 12-1 (81%).
- FA-Cy5 is Anal. Biochem. It was prepared by a method similar to that described in 2013 , 432 , 59-62, and Cy5 NHS ester was purchased from Lab Service Korea.
- Ligand-drug complex (13) was prepared in a similar manner to the preparation of Ligand-Drug Complex (1) using Compound L-25 (Preparation Example 22) and Compound S-9 (Example 1) (23%). .
- the ligand-drug complex 14 was prepared in a similar manner to the preparation of the ligand-drug complex 1 (23%). .
- Ligand-drug complex 15 was prepared in a similar manner to the preparation of Ligand-Drug Complex 1 using Compound L-35 (Preparation Example 32) and Compound S-9 (Example 1) (23%). .
- Ligand-drug complex 15 was prepared in a similar manner to the preparation of Ligand-Drug Complex 1 using Compound L-35 (Preparation Example 32) and Compound S-9 (Example 1) (23%). .
- Each material was obtained by a method similar to the method described in Korean Patent Application Laid-Open No. 10-2015-0137015.
- compound A-7 was obtained from compound A-5 (1.0 g, 0.69 mmol) (801 mg, 89%).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 β-갈락토사이드(β-galactoside)가 도입된 자가-희생 기(self-immolative linker)를 포함하는 화합물에 관한 것으로, 보다 상세하게는 본 발명의 β-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물은 목적하는 표적에 대한 결합 특이성을 갖는 단백질(예: 올리고펩티드, 폴리펩티드, 항체 등) 또는 리간드, 특이적 기능 또는 활성을 갖는 활성제(예: 약물, 독소, 리간드, 검출용 탐침 등) 및 타겟 세포내에서 선택적으로 활성제가 방출될 수 있도록 글라이코사이드 결합(glycosidic bond)을 이루고 있는 자가-희생 기를 포함할 수 있다.
Description
본 발명은 β-갈락토사이드(β-galactoside)가 도입된 자가-희생 기(self-immolative linker)를 포함하는 화합물에 관한 것으로, 보다 상세하게는 본 발명의 β-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물은 목적하는 표적에 대한 결합 특이성을 갖는 단백질(예: 올리고펩티드, 폴리펩티드, 항체 등) 또는 리간드, 특이적 기능 또는 활성을 갖는 활성제(예: 약물, 독소, 리간드, 검출용 탐침 등) 및 타겟 세포내에서 선택적으로 활성제가 방출될 수 있도록 글라이코사이드 결합(glycosidic bond)을 이루고 있는 자가-희생 기를 포함할 수 있다.
화학치료요법제로 사용되는 많은 저분자 약물들은 암 조직외에 정상세포 및 조직에 작용하여 여러 부작용을 야기한다. 이러한 비선택성 문제를 해결하기 위해, 항체-약물, 펩타이드-약물, 저분자 리간드-약물 등의 표적 지향 복합체 연구 개발이 활발히 진행되고 있다(Recent Patents on Anti-Cancer Drug Discovery 2014, 9, 35-65; Bioorganic & Medicinal Chemistry 2015, 23, 2187-2194; Nature Reviews Drug Discovery 2015, 14, 203-219).
항체-약물 복합체(antibody-drug conjugate, ADC)는 항원과 항체간 선택적인 결합력을 통해, 항체에 결합된 약물이 타겟 암세포에서 효과적으로 방출되도록 설계한, 표적지향 함암제 중 가장 대표적인 치료 물질 범주에 속한다. 브렌툭시맵 베도틴(Brentuximab vedotin, 상품명 Adcetris)은 호지킨 림프종 치료제로, 아도-트라스트주맵 엠탄신(ado-trastuzumab emtansine, 상품명 Kadcyla)은 HER2양성형 유방암 치료제로 각각 2011년과 2013년에 FDA 승인을 받았다. 이들 물질은 시스테인의 티올 및 리신의 아미노 기에 약물을 연결시킨 형태로 혼합물 상태로 존재한다. 2016년 현재 15종 이상의 ADC가 임상시험 중이다.
최근 연구 결과에 따르면 ADC의 경우, 투여된 ADC의 1% 미만이 암 조직으로 가는 것이 알려졌다. 이는 정상 세포(예, 간 혹은 내피조직)에도 약물이 작용하여 부작용을 초래할 수 있음을 암시한다(Cancer Immunol Res 2013, 134-143; World ADC Summit, October 27-28, 2010, ImmunoGen). 또한 항원-항체 복합체에 의한 내재화(internalization) 과정을 거쳐 세포내로 약물을 전달하는 과정에서 분자량이 큰 항체(~150kDa)는 암 조직 내부로의 침투하지 못하는 문제점이 보고되고 있다(J.Med.Chem. 2015, 58, 8751-8761). ADC에 사용하는 항체는 그 자체의 연구개발에 상당한 비용과 노력이 우선 요구된다. 이러한 문제점들을 극복하는 새로운 치료전략을 도출하기 위해 저분자 리간드-약물 복합체(small molecule drug conjugates, SMDC) 방법이 시도되고 있다(J. Med. Chem. 2015, 58, 8751-8761; Journal of Pharmaceutical and biomedical analysis 2016, 122, 148-156).
저분자 리간드-약물 복합체는 분자량이 큰 항체와 비교했을 때 제조가 용이하고 암조직 투과도가 높은 장점이 있다. 엽산(folic acid; Acc. Chem. Res. 2008, 41, 120-129) 및 전립선 특이적 막 항원(Prostate-specific membrane antigen, PSMA, J.Nucl.Med. 2014, 55, 1791-1798), 소마토스타틴 유도체(somatostatin analogues, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16436-16441), 탄산 무수화 효소 9(carbonic anhydrase IX, CAIX, Nat. Chem. 2015, 7, 241-249; Chem. Sci. 2014, 5, 3640-3644), 인테그린 타겟 펩타이드(Integrin targeted peptide, Bioorg. Med. Chem. 2016, 24, 294-303; Current Topics in Medicinal Chemistry, 2016, 16, 314-329)에 대한 연구 등이 진행되고 있으며, 이중 엽산 및 PSMA를 이용한 연구가 가장 활발히 진행 중이다(Nat. Rev. Drug Discovery 2015, 14, 203-219).
표적 지향 항암제는 암세포에 선택적으로 결합할 수 있는 targeting group과 약물, 그리고 targeting group과 약물을 연결하는 링커(linker)로 구성되어 있다. Targeting group에는 항체(antibody), 단백질(protein), 리간드(ligand) 등이 있으며, 암세포에 과다 발현되는 항원 또는 수용체와 특이적으로 결합함으로써 약물을 효과적으로 암세포로 전달하는 역할을 한다. 따라서 표적 지향형 항암제는 기존 항암제들에 비해 부작용의 위험성을 크게 낮출 수 있다. 그러나 실제로는 암세포 표면에 발현된 항원 혹은 수용체 개수가 적은 경우(~1X105 receptors/cell)가 대부분이라서 일반적인 항암제보다 100-1000배 이상 세포독성이 강한 약물을 연결시켜야 충분한 암세포 사멸 효과를 보인다.
복합체 연구에 사용되는 독성이 강한 약물들(예, pyrrolobenzodiazepine derivatives, maytansinoids, auristatinoid(s) 등)은 체내혈액 순환시 분리되지 않고 암세포내로 전달되도록 설계하는 것이 매우 중요하다. 대부분의 복합체는 시스테인과 말레이미드(maleimide)가 연결된 티올-말레이미드(thiol-maleimide) 링커로 결합되어 있다. 그러나 티올-말레이미드 구조는 생체내에서 쉽게 역반응(retro-Michael addition)이 일어나 티올과 말레이미드로 되돌아가는 불안정한 성질을 보임으로 인해 독성 문제가 심각하게 대두되고 있다(Bioconjugate Chemistry 2008, 19, 759-765; Bioconjugate Chemistry 2010, 21, 5-13). 즉, 복합체 제조시 불안정한 링커의 사용은 약효 및 독성, 그리고 PK 등에 큰 영향을 미칠 수 있으므로 안정한 링커의 개발은 복합체 제조에 핵심적인 기술로 작용한다.
현재까지 복합체 연구에 주로 사용되는 링커는 비절단형 링커(non-cleavable linker)와 절단형 링커(cleavable linker)로 나눌 수 있다.
비절단형 링커는 주로 티오에테르(thioether) 결합으로 이루어져 있으며, 티올(thiol) 기가 말레이미드(maleimide)나 할로아세트아미드(haloacetamide) 기와 반응하여 만들어진다. T-DM1(Cancer Res 2008, 68, 9280-9290)과 anti-CD70-mc-MMAF(SGN-75, Clin Cancer Res 2008, 14, 6171-6180)의 복합체의 경우가 이에 해당한다. 그러나 약물을 항체 또는 리간드 등에 직접적으로 연결하여 제조할 경우 약물(cytotoxic drug)이 비활성화(inactive)되거나 활성이 약물 자체의 효능보다 현저히 떨어지는 경향을 보이기 때문에 복합체 개발에 많은 어려움이 수반된다. 따라서 약물이 타겟 세포 내에서 절단/가수분해 될 수 있도록 절단형 링커(cleavable linker)를 적절히 도입하는 것이 매우 중요하다.
절단형 링커(cleavable linker)는 화학적 가변형 링커(chemically labile linker)와 효소 절단형 링커(enzyme cleavable linker)로 구분할 수 있다(Bioconjugate Chem. 2010, 21, 5-13).
화학적 가변형 링커로는 이황결합(disulfide bond), 히드라존(hydrazone) 또는 옥심(oxime) 결합 등을 통해 가수분해(hydrolysis) 되거나 디설파이드 상호치환(disulfide exchange) 반응으로 약물이 방출되는 메커니즘을 주로 활용한다. 이황결합을 이루는 링커는 세포외부와 비교했을 때 세포내 글루타사이온(glutathione) 농도가 높은 점을 이용하여 세포내에서 약물이 방출되는 원리를 이용하나, 채내 순환(systemic circulation)하는 동안 비록 세포 내보다 낮기는 하나 혈중 글루타사이온(glutathione), 시스테인(cysteine) 등의 자유 티올(free thiol) 때문에 약물이 분리되는 단점을 피할 수 없다(Bioconjugate Chemistry 2008(19) 759-765). 히드라존 혹은 옥심 링커는 혈액 내에서 상대적으로 안정하나 산성도가 높은 환경하에서 불안정하여 빠른 속도로 가수분해되어 타겟 암세포뿐만 아니라 정상세포에도 작용하여 독성을 유발하는 부작용을 초래할 수 있다(Bioconjugate Chemistry 2010, 21, 5-13).
효소 절단형 링커로는 암세포 내에서 과발현 되는 카뎁신 B(cathepsin B) 또는 β-글루쿠로니데이즈(β-glucuronidase) 등의 리소좀 가수분해 효소 작용에 의해 약물이 특이적으로 분리되도록 설계한 구조를 주로 사용한다.
펩타이드 링커로 주로 사용되는 Val-Cit(valine-citrulline)과 Phe-Lys(phenylalanine-lysine)은 카뎁신 B에 의해 선택적으로 가수분해 되는 것으로 알려져 있다. 화학적 가변형 링커 대비 안정성은 우수하나 물에 대한 용해도가 좋지 않아 응집체(aggregation)가 생성되는 문제점이 알려져 있다(US8,568,728/US7,091,186). 따라서 펩타이드 링커보다 친수성이 크며, 리소좀 내에서 과발현되어 있으며 정상인의 혈액에는 거의 발현되어 있지 않으면서도 특히 암세포의 리소좀에 많이 발현되는 효소(예, β-glucuronidase, β-galatosidase)에 의해 약물이 분리될 수 있도록 설계된 β-글루쿠로나이드(β-glucuronide) 및 β-갈락토사이드(β-galatoside)에 대한 연구가 이루어지고 있다(Chem. Rev. 2015, 115, 3388-3432; European Journal of Med. Chem., 2014, 74, 302-313; Chem Commun., 2015, 51, 15792-15795).
사람 β-글루쿠로니데이즈(β-glucuronidase, EC 3.2.1.31)는 β-배열(β-configuration)을 갖는 글루쿠로나이드(glucuronide)의 글리코사이드 결합(glycocidic bond)을 가수분해하며, 혈중에 거의 존재하지 않으나 암세포와 그 주변조직에서는 많이 발현된다. 이 효소에 의해 가수분해되는 β-글루쿠로나이드를 포함하는 복합체-약물의 경우, 이 약물이 혈중에서는 거의 방출되지 않으나 타겟으로 하는 암세포에서 선택적으로 방출된다. 특히 β-글루쿠로나이드 링커는 펩타이드 링커보다 친수성이 크므로 복합체의 물성개선 효과가 크다는 장점이 있어 항체-약물 복합체 제조에 많이 사용되고 있다(J. Med. Chem. 1999, 42, 3623-3628).
사람 β-갈락토시데이즈(β-galactosidase) (EC 3.2.1.23, β-Gal)는 세포내 리소좀에 존재하는 단백질로서 β-갈락토사이드 결합(β-galactosidic bond)을 가수분해하는 효소이다. 이 효소는 낮은 pH에서만 활성 형태인 다이머(dimer)를 형성하며, 생리적 pH인 7.4에서는 비활성 형태인 모노머(monomer)로 존재하기 때문에, 새로운 β-갈락토사이드 링커를 도입하면 체내 순환 중에 약물이 방출될 위험성을 현저히 줄일 수 있다(J Biol Chem 2012, 287, 1801-1812, J Biol Chem 1974, 249, 7969-7976).
또한 암환자의 혈액에서 β-글루쿠로니데이즈와 β-갈락토시데이즈의 활성이 증가하는데, β-글루쿠로니데이즈는 유방암 환자 혈청에서 정상인에 비해 2배나 높은 활성을 보이지만, β-갈락토시데이즈는 침윤성 대장암 환자 혈청에서 24% 활성 증가에 그치는 것으로 보고 되었다 (Journal of Chinese Clinical Medicine, 2010. Vol 5, 480-482; Postepy Hig Med Dosw (online), 2013; 67: 896-900). 이러한 결과들로 유추해보면 암환자 혈액에서의 활성이 상대적으로 약한 효소의 기질인 β-갈락토사이드를 도입한 링커가 β-글루쿠로나이드를 도입한 링커보다 암환자의 혈액에서의 안정성 및 안전성 면에서 비교 우위에 있을 것으로 예상된다.
Jeffrey (Bioconjugate Chem. 2009, 20, 1242-1250; ACS Med. Chem. Lett. 2010, 1, 277-280) 등은 β-글루쿠로나이드와 다양한 약물(예, doxorubicin, Camptothecin analog, CBI, Auristatins)을 결합시켜 복합체를 제조한 예들을 보고하였다. 이에 의하면, β-글루쿠로나이드로 제조된 항체-약물 복합체는 랫 혈장에서는 매우 안정하나 마우스 혈장에서의 안정성은 보고하지 않았다.
KR 10-2015-0137015에서는 Jeffrey 등이 개발한 β-글루쿠로나이드를 이용하여 제조된 복합체 보다, 마우스 혈장 내에서 다소 안정적인 β-글루쿠로나이드와 결합한 자가-희생기를 개발하였다. 그러나 궁극적으로 β-글루쿠로나이드를 이용한 복합체 개발 연구는 약물 구조가 복잡하고, 조건에 따라 핸들링이 어려운 maytansinods, cryptophycin 등과 같이 약물을 결합시키기에는 어려운 단점이 있다.
β-갈락토사이드에 doxorubicin을 연결하여 제조된 프로드럭(prodrug)의 경우 약물을 그대로 투여하는 것과 비교하면 1000배 이상의 안전성을 보였다(Arch Pharm Res, 2007, 30, 723-732). 마우스에 이러한 프로드럭(prodrug)을 투여하면 약물 자체 투여시 보다 높은 최대 내약용량(MTD)을 보인다(Drug Development and Industrial Pharmacy 2008, 34, 789-795). 이는 앞서 설명한 Papot 등의 β-글루쿠로나이드와 MMAE(monomethylauristatin E) 결합체의 경우, 약물 자체 투여에 비해 100배 낮은 활성을 보인 것과 비교하면, 안전성 측면에서 β-글루쿠로나이드 보다 β-갈락토사이드가 우수한 것으로 판단된다.
또한 Papot (Angew. Chem. Int. Ed. 2012, 51, 11606-11610; US 9,000,135) 등은 분자량이 커서 암세포를 투과하기 어려운 항체 대신 저분자 물질(예, 폴릭산과 같은 리간드)과 결합한 갈락토사이드 프로드럭(galactoside prodrug)을 개발하였다. 그러나 이 보고에 의하면 β-갈락토사이드를 이용한 복합체의 경우 단일물질이 아닌 이성질체로의 혼합물이 제조되는 단점이 있다.
따라서 본 발명에서는 지금까지 서술한 기존 β-글루쿠로나이드 및 β-갈락토사이드의 단점들을 보완하면서 혈중에서는 매우 안정하고 표적 암세포에서만 약물을 방출시키며, 복합체의 물성 개선 및 제조 공정상 유리한 β-갈락토사이드가 결합된 자가-희생기를 제공하고, 더 나아가 β-글루쿠로나이드에 적용이 어려웠던 약물들에 대해서도 적용 가능한 우수한 범용성을 갖는 자가-희생기를 포함하는 화합물을 제공하고자 한다.
본 발명은 물에 대해 높은 친화력을 가짐과 동시에 암세포에 과발현되어 있는 효소인 β-갈락토시데이즈에 의해 선택적으로 절단 가능하여 활성제의 효능을 보이도록 설계된 β-갈락토사이드가 결합된 자가-희생기를 포함하는 화합물을 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식 1로 표시되는 β-갈락토사이드가 도입된 자가-희생 기(self-immolative linker)를 포함하는 화합물을 제공한다:
[화학식 1]
상기 화학식 1에서,
R은 수소 또는 하이드록시 보호기이고;
X는 -C(=O)-, -NH-, -O- 또는 -S-이고;
T는 활성제이고;
n 은 0 또는 1의 정수이고;
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1은 0 또는 1의 정수이고;
Wa1 및 Wa2는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2- 이고;
Wa3
및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;
W b1는 아마이드 결합 또는 트리아졸릴렌이고;
L은 Wa2와 Z을 연결하는 링커로, 아미노산, 펩타이드 또는 아마이드 결합이고;
Z는 단일결합, -Wa5-(CH2)a2-Wb2-(CH2)a3-Wa6- 또는 -Wa7-(CH2)a4-CR'R''-X''- 이고;
R'는 C1-C8알킬 또는 B-Wa8-Q3-Wc1-(CH2)a5-이고;
R''는 B-Wa8-Q3-Wc1-(CH2)a5-이고;
Q1, 및 Q3는 각각 독립적으로 -(CH2)a6-(X1CH2CH2)b1-(CH2)a7-이고;
X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;
X''는 -NHC(=O)-(CH2)a8-Wa9- 또는 -C(=O)NH-(CH2)a8-Wa9-이고;
Wa5, Wa6, Wa7, Wa8 및 Wa9 는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2-이고;
Wb2는 아마이드 결합 또는 트리아졸릴렌이고;
Wc1는 -NHC(=O)- 또는 -C(=O)NH-이고;
Q2는 탄소수1 내지 50의 직쇄 또는 분쇄의 포화 또는 불포화 알킬렌으로, 하기 (i) 내지 (iii) 중 적어도 하나를 만족하며;
(i) 상기 알킬렌 내 적어도 하나의 -CH2-는 -NH-, -C(=O), -O- 및 -S-로부터 선택되는 하나 이상의 헤테로 원자로 치환되거나,
(ii) 상기 알킬렌 내에 적어도 하나의 아릴렌 또는 헤테로아릴렌을 포함하거나,
(iii) 상기 알킬렌은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환되며;
상기 (ii)의 아릴렌 또는 헤테로아릴렌은 니트로로 더 치환될 수 있으며;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
X2는 -O-, -S-, -NH- 또는 -CH2-이고;
U1은 하기 구조에서 선택되는 연결기로, 별표(*) 위치에 B'가 결합되며;
R은 C1-C10 알킬, C6-20 아릴 또는 C2-C20 헤테로아릴이고;
B 및 B'는 각각 독립적으로 약물의 특정 기관, 조직 또는 세포내에 선택적으로 타겟팅하는 즉, 수용체에 결합하는 특성을 갖는 리간드 또는 단백질이며;
a1, a2, a3, a4, a5, a6, a8, b1, p1, p2, p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
a7, y, s1, s2 및 s4는 각각 독립적으로 0 내지 10의 정수이고;
R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
또한, 본 발명은 상기 화학식 1을 제조하기 위한 중간체로, 하기 화학식 2로 표시되는 화합물을 제공한다.
[화학식 2]
상기 화학식 2에서,
R은 수소 또는 하이드록시 보호기이고;
X는 -C(=O)-, -NH-, -O-, -CH2- 또는 -S-이고;
Wa1는 -NH-, -CH2- 또는 -C(=O)-이고;
T는 활성제이고;
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
Wa2는 -NH-, -C(=O)- 또는 -CH2- 이고;
Wa3
및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;
R21은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 이고;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
s1 및 s2 는 각각 독립적으로 0 내지 10의 정수이고;
a1 은 각각 독립적으로 1 내지 10의 정수이고;
s4는 0 내지 10의 정수이고;
p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
FG는 -NH2, -C≡CH, C4-C10사이클로알키닐, -N3, -COOH, -SO3H, -OH, -NHOH, -NHNH2, -SH, 할로아세트아미드(-NHC(O)CH2-hal, hal은 할로겐), 말레이미드(), 할로겐, 토실레이트(TsO-), 알데히드(-COH), 케톤(-COR, R은 C1-C10알킬, C6-C20아릴, C2-C20 헤테로아릴), 다이엔, , 또는 -OP(=O)(OH)2이고;
X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2- 이고;
a6 및 b1는 각각 독립적으로 1 내지 10의 정수이고;
a7는 0 내지 10의 정수이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1는 0 또는 1의 정수이고;
R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
본 발명에 따른 β-갈락토사이드기가 도입된 자가-희생기는 기존에 알려진 링커보다 제조방법이 간단하고 부반응이 일어나지 않아 분리정제가 쉽다. 또한 물에 대한 친수성이 좋아 이를 이용하여 제조된 복합체의 물성을 개선한다.
또한, 본 발명에 따른 β-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물은 목적하는 표적에 대한 결합 특이성을 갖는 단백질(예: 올리고펩티드, 폴리펩티드, 항체 등) 또는 리간드, 특이적 기능 또는 활성을 갖는 활성제(예: 약물, 독소, 리간드, 검출용 탐침 등) 및 타겟 세포내에서 선택적으로 활성제가 방출될 수 있도록 글라이코사이드 결합(glycosidic bond)을 이루고 있는 자가-희생 기를 포함하여 타겟 세포에 과발현되어 있는 효소, β-갈락토시데이즈를 이용하여 활성제를 선택적으로 방출하도록 설계된 장점이 있다. 특히 β-글루쿠로나이드 적용이 어려운 약물 등에도 사용 가능함으로써 표적 치료 항암제 개발에 널리 활용될 수 있다.
도 1 - 갈락토실 브로마이드(Galactosyl bromide)[실시예 1] 와 글루쿠로닐 브로마이드 glucuronyl bromide) 한국 공개특허 제10-2015-0137015호의 실시예 1] 제조 공정 단계 및 수율의 비교
도 2 - β-글루쿠로나이드(BG; 위) 및 β-갈락토사이드(BGal; 아래)의 탈보호화 단계 비교
도 3 - 시험예 1의 Enzymatic cleavage assay 결과
도 4 - 시험예 2의 사람 혈장 내 안정성 평가 결과
도 5 - 시험예 2의 마우스 혈장 내 안정성 평가 결과
도 6 - 시험예 3의 리간드-약물 복합체의 수용체 binding affinity 결과
도 7 - 시험예 4의 리간드-약물 복합체의 in vitro cytotoxicity 평가
도 8 - 시험예 7의 리간드-약물 복합체의 enzymatic cleavage assay 평가
도 9 - 시험예 5에서 제조된 티오맵 약물 복합체(TDC, thiomab drug conjugate) Ab-17 및 Ab-18의 구조
본 발명은 β-갈락토사이드(β-galactoside)가 도입된 자가-희생 기(self-immolative linker)를 포함하는 화합물에 관한 것으로, 자가-희생 기는 치환된 벤조산 유도체를 기본 골격으로 하여 오쏘-위치(ortho-position)에 효소 반응에 의해 가수 분해되는 β-갈락토사이드가 결합되어 있고, 벤조산의 메타-위치에는 특이적 기능 또는 활성을 갖는 활성제(예: 약물, 독소, 리간드, 검출용 탐침 등)이 결합되어 있고, 벤조산의 카르복실기는 목적하는 표적에 대한 결합 특이성을 갖는 단백질(예: 올리고펩티드, 폴리펩티드, 항체 등) 또는 리간드 등이 결합할 수 있는 링커가 도입된 아마이드 결합을 포함한다.
보다 구체적으로 본 발명에 따른 β-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
상기 화학식 1에서,
R은 수소 또는 하이드록시 보호기이고;
X는 -C(=O)-, -NH-, -O- 또는 -S-이고;
T는 활성제이고;
n 은 0 또는 1의 정수이고;
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1은 0 또는 1의 정수이고;
Wa1 및 Wa2는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2- 이고;
Wa3
및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;
W b1는 아마이드 결합 또는 트리아졸릴렌이고;
L은 Wa2와 Z을 연결하는 링커로, 아미노산, 펩타이드 또는 아마이드 결합이고;
Z는 단일결합, -Wa5-(CH2)a2-Wb2-(CH2)a3-Wa6- 또는 -Wa7-(CH2)a4-CR'R''-X''- 이고;
R'는 C1-C8알킬 또는 B-Wa8-Q3-Wc1-(CH2)a5-이고;
R''는 B-Wa8-Q3-Wc1-(CH2)a5-이고;
Q1, 및 Q3는 각각 독립적으로 -(CH2)a6-(X1CH2CH2)b1-(CH2)a7-이고;
X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;
X''는 -NHC(=O)-(CH2)a8-Wa9- 또는 -C(=O)NH-(CH2)a8-Wa9-이고;
Wa5, Wa6, Wa7, Wa8 및 Wa9 는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2-이고;
Wb2는 아마이드 결합 또는 트리아졸릴렌이고;
Wc1는 -NHC(=O)- 또는 -C(=O)NH-이고;
Q2는 탄소수1 내지 50의 직쇄 또는 분쇄의 포화 또는 불포화 알킬렌으로, 하기 (i) 내지 (iii) 중 적어도 하나를 만족하며;
(i) 상기 알킬렌 내 적어도 하나의 -CH2-는 -NH-, -C(=O), -O- 및 -S-로부터 선택되는 하나 이상의 헤테로 원자로 치환되거나,
(ii) 상기 알킬렌 내에 적어도 하나의 아릴렌 또는 헤테로아릴렌을 포함하거나,
(iii) 상기 알킬렌은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환되며;
상기 (ii)의 아릴렌 또는 헤테로아릴렌은 니트로로 더 치환될 수 있으며;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
X2는 -O-, -S-, -NH- 또는 -CH2-이고;
U1은 하기 구조에서 선택되는 연결기로, 별표(*) 위치에 B'가 결합되며;
R은 C1-C10 알킬, C6-20 아릴 또는 C2-C20 헤테로아릴이고;
B 및 B'는 각각 독립적으로 약물의 특정 기관, 조직 또는 세포내에 선택적으로 타겟팅하는 즉, 수용체에 결합하는 특성을 갖는 리간드 또는 단백질이며;
a1, a2, a3, a4, a5, a6, a8, b1, p1, p2, p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
a7, y, s1, s2 및 s4는 각각 독립적으로 0 내지 10의 정수이고;
R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 하이드록시 보호기는 유기 합성에서 사용될 수 있는 통상의 보호기로 제한되지는 않지만, 보다 바람직하게는 methyl ether, methoxymethyl ether(MOM), methylthiomethyl ether(MTM), 2-methoxyethoxymethyl ether(MEM), bis(2-chloroethyoxy)methyl ether, tetrahydrophyranyl ether(THP), tetrahydrothiopyranyl ether, 4-methyoxytetrahydropyranyl ether, 4-methoxytetrahydrothiopyranyl ether, tetrahydrofuranyl ether, 1-ethyoxyethyl ether, 1-methyl-1-methoxyethyl ether, 2-(phenylselenyl)ethyl ether, t-butyl ether, allyl ether, benzyl ether, o-nitrobenzyl ether, triphenylmethyl ether, α-naphtyldiphenylmethyl ether, p-methoxyphenyldiphenylmethyl ether, 9-(9-phenyl-10-oxo)anthryl ether, trimethylsilyl ether(TMS), isopropyldimethylsilyl ether, t-butyldimethylsilyl ether(TBDMS), t-butyldiphenyl silyl ether, tribenzylsilyl ether, triisopropylsilyl ether, formate ester, acetate, ester, trichloroacetate ester, phenoxyacetate ester, isobutyrate ester, pivaloate ester, adamantoate ester, benzoate ester, 2,4,6-trimethylbenzoate(Mesitoate) ester, methyl carbonate, 2,2,2-tricloroethyl carbonate, allyl carbonate, p-nitrophenyl carbonate, benzyl carbonate, p-nitrobenzyl carbonate, S-benzyl thiocarbonate, N-phenylcarbamate, nitrate ester, 2,4-dinitrophenylsulfenate ester 등이 있으며, 이에 한정되지 않는다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 L은 Wa2와 Z을 연결하는 링커로, 아미노산 또는 펩타이드 단위이거나 아마이드 결합일 수 있으며, 상기 아미노산 또는 펩타이드 단위는 하나 이상 반복될 수 있으며, 아미노산의 잔기인 아민기, 카르복실산기, 티올기 등에 하나 또는 두 개 이상의 기능기를 포함할 수 있다.
클릭 화학 반응은 온화한 조건에서 수행하여, 단백질을 용이하게 취급하는 것을 가능하게 한다. 클릭 화학 반응은 매우 높은 반응 특이성을 나타낸다. 따라서, 단백질이 다른 관능 그룹을 갖는 경우에도(예: 측쇄 잔기 또는 C-말단 또는 N-말단에서), 당해 관능 그룹은 클릭 화학 반응에 의하여 영향받지 않는다. 예를 들면, 단백질의 아지드 그룹과 아세틸렌 그룹 사이의 클릭 화학 반응은, 단백질의 다른 관능 그룹이 클릭 화학 반응에 의하여 영향받지 않는 동안, 발생할 수 있다. 또한, 클릭 화학 반응은 수반된 리간드 종류에 의하여 영향받지 않고 특이적으로 발생할 수 있다. 일부 경우, 리간드는 전체 반응 효율성을 개선시키도록 선택될 수 있다. 예를 들면, 아지드-아세틸렌 클릭 화학은 트리아졸을 고 수율로 생성할 수 있다.
아지드 및 아세틸렌 그룹은 천연 단백질의 아미노산 서열에 존재하지 않는 관능 그룹이다. 당해 관능 그룹을 사용하여 접합 반응이 발생하는 경우, 측쇄 잔기 중 어느 것도 그리고 N-말단 또는 C-말단 관능 그룹 중 어느 것도 클릭 화학 반응에 의하여 영향받지 않는다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 L은 하기 화학식 A 또는 화학식 B로 표시되는 단위를 하나 이상 포함할 수 있다.
[화학식 A]
[화학식 B]
상기 화학식 A 및 B에서,
R11은 수소, C1-C8알킬, -(CH2)s3COOR13, -(CH2)s3COR13, -(CH2)s3CONR14R15 또는 -(CH2)s4NR14R15이고;
R13, R14 및 R15는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
s3 및 s4는 각각 독립적으로 0 내지 10의 정수이고;
X3는 -O-, -S-, -NH- 또는 -CH2-이고;
p3 및 p4은 각각 독립적으로 1 내지 10의 정수이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 R11은 -(CH2)s3COOH 또는 -(CH2)s4NH2일 수 있으며, s3 및 s4는 각각 독립적으로 0 내지 10의 정수일 수 있다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 X는 -C(=O)-이고, Wa1는 -NH-인 것이 바람직하다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 Z는 단일결합이거나, 하기의 구조에서 선택된다.
상기 구조에서,
R'는 C1-C8알킬 또는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;
R''는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;
X''는 -NHC(=O)-(CH2)a8-NH- 또는 -C(=O)NH-(CH2)a8-NH-이고;
a2, a3, a4, a5, a6, a8 및 b1는 각각 독립적으로 1 내지 10의 정수이고;
X1 는 -O-, -S-, -NH- 또는 -CH2-이고;
B는 상기 화학식 1에서의 정의와 동일하다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 Z는 단일결합이거나, 하기 구조에서 선택될 수 있다.
R'는 C1-C8알킬 또는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;
R''는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;
a4, a5, a6, a8 및 b1은 각각 독립적으로 1 내지 10의 정수이고;
X1 는 -O-, -S-, -NH- 또는 -CH2-이고;
B는 상기 화학식 1에서의 정의와 동일하다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 바람직하게 상기 Q2은 하기 화학식 C 내지 화학식 I로부터 선택될 수 있다.
[화학식 C]
[화학식 D]
[화학식 E]
[화학식 F]
[화학식 G]
[화학식 H]
[화학식 I]
상기 화학식 C 내지 I에서,
X11 및 X12는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;
R12 내지 R14은 각각 독립적으로 수소, C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 또는 -(CH2)s2NR4R5이고;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
X2는 -O-, -S-, -NH- 또는 -CH2-이고;
Ra는 수소 또는 니트로이고;
c1, c2, c3, c4 및 d1은 각각 독립적으로 1 내지 10의 정수이고;
q1 및 q2는 각각 독립적으로 0 내지 5의 정수이고;
s1 및 s2는 각각 독립적으로 0 내지 5의 정수이고;
p1 및 p2은 각각 독립적으로 1 내지 10의 정수이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 자가-희생기에 결합된 β-갈락토사이드는 β-갈락토시데이즈 효소에 의해 일차적으로 가수분해 된 후 1,6-제거 반응을 통해 활성제가 방출되는 메커니즘을 갖는다(반응식 1).
[반응식 1]
본 발명에 따른 β-갈락토사이드가 결합된 자가-희생기를 포함하는 화합물은 기존에 알려진 유사 형태의 자가-희생기 유도체 보다 합성이 용이하고, 세포 투과성(cell-penetration)과 혈장내 안정성 및 암세포에 대한 in vitro 효과가 우수한 결과를 확인할 수 있었다.
US 8,568,728과 KR 10-2015-037015는 β-글루쿠로나이드를 포함한 자가-희생기를 도입한 항체-약물 복합체의 제조 예를 설명하고 있다. KR 10-2015-037015에서 서술된 β-글루쿠로나이드를 포함한 자가-희생기는 US8,568,728에 기재된 유사한 구조의 자가-희생기 유도체보다 마우스 혈장 내에서의 안정성은 개선되었으나 제조상 여러 문제점을 내포하고 있다.
도 1에 도시한 바와 같이, β-글루쿠로나이드는 본 발명에서 개발하고자 하는 β-갈락토사이드를 포함하는 자가-희생기 유도체보다 제조 공정이 길고, 중간체로 사용되는 글루쿠로닐 브로마이드(glucuronyl bromide; methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate bromide, catalog number A8292, 334,000원/1g, www.sigmaaldrich.com)의 제조 수율도 낮다(50%) (Carbohydrate Research 2000, 328, 445-448에 기술된 내용은 더 낮은 38% 수율로 제조).
제조 공정상 β-글루쿠로나이드의 경우, 알코올기와 카르복시산기를 보호하기 위해 사용되는 아세틸기와 메틸기 제거를 위해 염기 조건하에서 반응을 수행하게 된다. 그러나 이러한 조건 하에서 서로 다른 두 개의 보호기에 대한 반응 속도차이가 있어 제거 반응이 일어나게 되는데, 이때 생성된 부생성물은 분리 정제 과정에서 쉽게 제거되지 않아 최종 산물의 수율 및 순도가 낮아지는 단점이 있다.
Papot group은 β-갈락토시데이즈에 의해 가수분해 될 수 있는 β-갈락토사이드 유도체에 대한 연구 결과를 발표하였다. 자가-희생기의 구조는 1,6-제거 반응(1,6-elimination)을 통해 약물이 방출될 수 있도록 벤질 알코올기가 도입된 구조적 특징을 갖는다(US 9,000,135; Arch Pharm Res Vol 30, No 6, 723-732, 2007; Journal of Medicinal Chemistry, 2009, 52, 537-543; Drug Development and Industrial Pharmacy, 34:789-795, 2008). 그러나 이 물질의 경우 2차 알코올에 약물을 결합하는 과정에서 1차 알코올보다 반응 속도가 느려 수율이 낮은 단점이 있고, 2차 알코올기는 키랄 카본을 갖는 입체 이성실체 (stereoisomer) 형태로 합성되어 단일물질로의 복합체 제조가 어려운 문제점이 있다. 또한 제조과정에서 NO2기는 환원반응 등의 조건에서 불안정하기 때문에 물질 제조 과정에 많은 제약이 있으며, 체내에서 아민 등으로 대사되었을 때 약물 해리 가능성이 높아져 독성을 초래할 수 있다.
본 발명에서 개발하고자 하는 β-갈락토사이드를 포함한 자가-희생기는 갈락토실 브로마이드 유도체(2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide catalog number A1750, 872,000원/100g, www.sigmaaldrich.com)의 합성이 정량적으로 수행되고, β-갈락토사이드의 4개 알코올기에 동일한 보호기(예, 아세틸기)를 사용하기 때문에, 서로 다른 보호기를 사용하는 β-글루쿠로나이드 유도체 제조시에 일어나는 부반응이 전혀 일어나지 않아 수율이 높은 장점이 있다. 특히 하나의 보호기를 사용함으로써 β-글루쿠로나이드 도입이 어려웠던 약물(maytansinoids, Cryptophycin 계열 등)에도 적용 가능하여 β-글루쿠로나이드 보다 범용성면에서 우수한 링커로 개발 가능한 장점이 있다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 활성제는 약물, 독소, 친화성 리간드, 검출용 탐침 또는 이들의 조합일 수 있다.
상기 약물은 어로티니브(erlotinib, TARCEVA; Genentech/OSI Pharm.); 보어테조미브(bortezomib, VELCADE; MilleniumPharm.); 풀베스트란트(fulvestrant, FASLODEX; AstraZeneca); 수텐트(sutent, SU11248; Pfizer); 레트로졸(letrozole, FEMARA; Novartis); 이마티니브 메실레이트(imatinib mesylate, GLEEVEC; Novartis); PTK787/ZK 222584(Novartis); 옥살리플라틴(oxaliplatin, Eloxatin; Sanofi); 5-플루오로우라실(5-fluorouracil, 5-FU); 류코보린(leucovorin); 라파마이신(rapamycin, Sirolimus, RAPAMUNE; Wyeth); 라파티니브(lapatinib, TYKERB, GSK572016; GlaxoSmithKline); 로나파니브(lonafarnib, SCH 66336); 소라페니브(sorafenib, BAY43-9006; Bayer Labs.); 게피티니브(gefitinib, IRESSA; Astrazeneca); AG1478, AG1571 (SU 5271; Sugen); 알킬화제(alkylating agent) (예: 티오테파(thiotepa) 또는 CYTOXAN® 사이클로포스파미드(cyclophosphamide)); 알킬 설포네이트(alkyl sulfonate) (예:부설판(busulfan), 임프로설판(improsulfan)또는 피포설판(piposulfan)); 아지리딘(aziridine) (예:벤조도파(benzodopa), 카보쿠온(carboquone), 메투레도파(meturedopa) 또는 우레도파(uredopa)); 에틸렌이민(ethylenimine), 메틸멜라민(methylmelamine), 알트레타민(altretamine), 트리에틸렌멜라민(triethylenemelamine), 트리에틸렌포스포라미드(triethylenephosphoramide), 트리에틸렌티오포스포라미드(triethylenethiophosphoramide), 트리메틸올멜라민(trimethylolmelamine); 아세토게닌스(acetogenins) (예: 불라탁신(bullatacin) 또는 불라탁시논(bullatacinone)); 합성 유사체 토포테칸(synthetic analogue topotecan)을포함하는 캄프토테신(camptothecin); 브리오스타틴(bryostatin); 칼리스타틴(callystatin); CC-1065 (이의 아도젤레신(adozelesin), 카젤레신(carzelesin) 또는 비젤레신(bizelesin) 합성 유사체(synthetic analogues)를 포함); 크립토파이신(cryptophycins) (예: 크립토파이신 1(cryptophycin 1) 또는 크립토파이신 8(cryptophycin 8)); 돌라스타틴(dolastatin); 두오카마이신(duocarmycin) (합성 유사체, KW-2189 및 CB1-TM1를 포함); 엘레우테로빈(eleutherobin); 판크라티스타틴(pancratistatin); 사코딕틴(sarcodictyin); 스폰기스타틴(spongistatin); 질소 머스타드(nitrogen mustard) (예: 클로람부실(chlorambucil), 클로르나파진(chlornaphazine), 클로로포스파미드(cholophosphamide), 에스트라무스틴(estramustine), 이포스파미드(ifosfamide), 메클로레타민(mechlorethamine), 메클로레타민 옥사이드 하이드로클로라이드(mechlorethamine oxide hydrochloride), 멜팔란(melphalan), 노벰비킨(novembichin), 페네스터린(phenesterine), 프레드니무스틴(prednimustine), 트로포스파미드(trofosfamide) 또는 우라실 머스타드(uracil mustard)); 아질산우레아(nitrousurea) (예: 카무스틴(carmustine), 클로로조톡신(chlorozotocin), 포테무스틴(fotemustine), 로무스틴(lomustine), 니무스틴(nimustine) 또는 라님누스틴(ranimnustine)); 항생 물질(antibiotics) (예: 에네디인 항생 물질(enediyne antibiotics)로, 칼리케아마이신 감마 1 I(calicheamycin gamma1 I) 및 칼리케아마이신 오메가 I 1(calicheamycin omegaI1)로부터 선택되는 칼리케아마이신(calicheamycin) 또는 다이네미신 A(dynemicin A)를 포함하는다이네미신(dynemicin)); 비스포스포네이트(bisphosphonate) (예: 클로드로네이트(clodronate)); 에스페라미신(esperamicin), 니오카지노스타틴 발색단(neocarzinostatin chromophore) 또는 관련 크로모단백질 에넨디인 항생 발색단(related chromoprotein enediyne antibiotic chromophores), 아클라시노마이신(aclacinomysins), 악티노마이신(actinomycin), 안트라마이신(antrmycin), 아자세린(azaserine), 블레오마이신(bleomycins), 칵티노마이신(cactinomycin), 카라비신(carabicin), 카니노마이신(carninomycin), 카지노필린(carzinophilin), 크로모마이신(chromomycins), 닥티노마이신(dactinomycin), 다우노루비신(daunorubicin), 데토루부신(detorubucin), 6-디아조-5-옥소-L-노르류신(6-diazo-5-oxo-L-norleucine), ADRLIMYCIN® 독소루비신(ADRLIMYCIN® doxorubicin) (예: 모르폴리노-독소루비신(morpholino-doxorubicin), 시아노모르폴리노-독소루비신(cyanomorpholino-doxorubicin), 2-피롤리노-독소루비신(2-pyrrolino-doxorubucin), 리포솜 독소루비신(liposomal doxorubicin) 또는 데옥시독소루비신(deoxydoxorubicin)), 에피루비신(epirubicin), 에소루비신(esorubicin), 마셀로마이신(marcellomycin), 미토마이신(mitomycins) (예: 미토마이신 C(mitomycin C), 마이코페놀산(mycophenolic acid), 노갈라마이신(nogalamycin), 올리보마이신(olivomycins), 페플로마이신(peplomycin), 포트피로마이신(potfiromycin), 푸로마이신(puromycin), 쿠엘라마이신(quelamycin), 로두루비신(rodorubicin), 스트렙토미그린(streptomigrin), 스트렙토조신(streptozocin), 투베르시딘(tubercidin), 우베니멕스(ubenimex), 지노스타틴(zinostatin) 또는 조루비신(zorubicin)); 항-대사산물(anti-metabolites) (예: 5-플루오로우라실(5-fluorouracil, 5-FU)); 폴산 유사체(folic acid analogues) (예: 데노프테린(denopterin), 메토트렉세이트(methotrexate), 프테로프테린(pteropterin) 또는트리메트렉세이트(trimetrexate)); 푸린 유사체(purine analogs) (예: 플루다라빈(fludarabine), 6-머캅토푸린(6-mercaptopurine), 티아미프린(thiamiprine) 또는 티구아닌(thiguanine)); 피리미딘 유사체(pyrimidine analogs) (예: 아시타빈(ancitabine), 아자시티딘(azacitidine), 6-아자우리딘(6-azauridine), 카모푸르(carmofur), 사이타라빈(cytarabine), 디데옥시우리딘(dideoxyuridine), 독시플루리딘(doxifluridine), 에노시타빈(enocitabine) 또는 플록수리딘(floxuridine)); 안드로겐(androgens)(예: 칼루스테론(calusterone), 드로모스타놀론 프로피오네이트(dromostanolone propionate), 에피티오스타놀(epitiostanol), 메피티오스탄(mepitiostane) 또는 테스토락톤(testolactone)); 항-아드레날(anti-adrenals) (예: 아미노글루테티미드(aminoglutethimide), 미토탄(mitotane) 또는 트리로스탄(trilostane)); 폴산 보충제(folic acid replenisher) (예: 폴린산(folinic acid)); 아세글라톤(aceglatone); 알도포스파미드 글리코사이드(aldophosphamide glycoside); 아미노레불린산(aminolevulinic acid); 에닐우라실(eniluracil); 암사크린(amsacrine); 베스트라부실(bestrabucil); 비산트렌(bisantrene); 에다트락세이트(edatraxate); 데포파민(defofamine); 데메콜신(demecolcine); 디아지쿠온(diaziquone); 엘포르니틴(elfornithine); 엘립티늄 아세테이트(elliptinium acetate); 에포틸론(epothilone); 에토글루시드(etoglucid); 갈륨 니트레이트(gallium nitrate); 하이드록시우레아(hydroxyurea); 렌티난(lentinan); 로니다이닌(lonidainine); 마이탄시노이드(maytansinoids) (예: 마이탄신(maytansine)또는 안사미톡신(ansamitocins); 트리코테센은 T-2 독소(T-2 toxin), 베라쿠린 A(verracurin A), 로리딘 A(roridin A) 또는 안구이딘(anguidine)); 미토구아존(mitoguazone); 미톡산트론(mitoxantrone); 모피단몰(mopidanmol); 니트라에린(nitraerine); 펜토스타틴(pentostatin); 페나메트(phenamet); 피라루비신(pirarubicin); 로속사트론(losoxantrone); 2-에틸하이드라지드(2-ethylhydrazide); 프로카바진(procarbazine); PSK® 다당류 착체(polysaccharide); 라족산(razoxane); 리족신(rhizoxin); 시조피란(sizofiran); 스피로게르마늄(spirogermanium); 테누아존산(tenuazonic acid); 트리아지쿠온(triaziquone); 2,2',2"-트리클로로트리에틸아민(2,2',2”-trichlorotriethylamine); 트리코테센(trichothecenes)(특히 T-2 독소, 베라쿠린 A, 로리딘 A 및 안구이딘); 우레탄(urethane); 빈데신(vindesine); 다카바진(dacarbazine); 만노무스틴(mannomustine); 미토브로니톨(mitobronitol); 미토락톨(mitolactol); 피포브로만(pipobroman); 가시토신(gacytosine); 아라비노시드(arabinoside, 'Ara-C'); 사이클로포스파미드(cyclophosphamide); 티오테파(thiotepa); 탁소이드(taxoids) (예: TAXOL® 파클리탁셀(TAXOL®paclitaxel) (Bristol-Myers Squibb Oncology, Princeton, N. J.), ABRAXANETM크레모포 부재(ABRAXANETM cremophor-free), 파클리탁셀의 알부민 가공 나노입자 제형(albumin-engineered nanoparticle formulation of paclitaxel, American Pharmaceutical Partners, Schaumber, I11.) 또는 TAXOTERE®독세탁셀(TAXOTERE® doxetaxel)((Rhone-Poulenc Rorer, Antony, France))); 클로란부실(chloranbucil); 겜시타빈(gemcitabine); 6-티오구아닌(6-thioguanine); 머캅토푸린(mercaptopurine); 백금 유사체(platinum analog)(예: 시스플라틴(cisplatin) 또는 카보플라틴(carboplatin)); 빈블라스틴(vinblastine); 백금(platinum); 에토포시드(etoposide), 이포스파미드(ifosfamide); 미톡산트론(mitoxantrone); 빈크리스틴(vincristine); NAVELBINE®비노렐빈(NAVELBINE® vinorelbine); 노반트론(novantrone); 테니포시드(teniposide); 에다트렉세이트(edatrexate); 다우노마이신(daunomycin); 아미노프테린(aminopterin); 젤로다(xeloda); 이반드로네이트(ibandronate); CPT-11; 토포이소머라제 억제제(topoisomerase inhibitor) RFS 2000; 디플루오로메틸로르니틴(difluorometlhylornithine, DFMO); 레티노이드(retinoid) (예: 레틴산(retinoic acid)); 카페시타빈(capecitabine); 및 약제학적으로 허용되는 이의 염, 용매화물, 산 또는 이들의 유도체로 이루어진 군으로부터 선택되나, 반드시 이들로 제한되는 것은 아니다.
추가의 약물은 이들로 제한되지는 않지만, (i) 예를 들면, 타목시펜(NOLVADEX® 타목시펜 포함), 라록시펜, 드로록시펜, 4-하이드록시타목시펜, 트리옥시펜, 케옥시펜, LY117018, 오나프리스톤 및 FAREATON® 토레미펜을 포함하는, 항-에스트로겐 및 선택적 에스트로겐 수용체 조절제(SERM)와 같은 종양에 대한 호르몬 작용을 조절하거나 억제하는 작용을 하는 항-호르몬제; (ii) 부신내 에스트로겐 생성을 조절하는, 아로마타제 효소를 억제하는 아로마타제 억제제, 예를 들면, 4(5)-이미다졸, 아미노글루테티미드, MEGASE® 메게스트롤 아세테이트, AROMASIN® 엑세메스탄, FEMARA® 레트로졸 및 ARIMIDEX® 아나스트로졸; (iii) 항-안드로겐, 예를 들면, 플루타미드, 닐루타미드, 비칼루타미드, 레우프롤리드 및 고세렐린; 뿐만 아니라 트록사시타빈(1,3-디옥솔란 뉴클레오시드 시토신 유사체); (iv) 아로마타제 억제제; (v) 단백질 키나제 억제제; (vi) 지질 키나제 억제제; (vii) 안티센스 올리고뉴클레오티드, 특히 부착 세포에 연관된 시그널링 통로 내 유전자 발현을 억제하는 것, 예를 들면, PKC-알파, Raf, H-Ras; (viii) 리보자임, 예를 들면, VEGF 억제제, 예를 들면, ANGIOZYME 리보자임 및 HER2 발현 억제제; (ix) 백신, 예를 들면, 유전자 치료 백신; ALLOVECTIN® 백신, LEUVECTIN 백신 및 VAXID 백신; PROLEUKIN®rlL-2; LURTOTECAN® 토포이소머라제 1 억제제; ABARELIX® rmRH; (x) 항-맥관발생제, 예를 들면, 베박시주마브(AVASTIN, Genentech); 및 (xi) 약제학적으로 허용되는 이의 염, 용매화물, 산 또는 유도체를 포함한다.
또한, 상기 약물은 시토카인(cytokine), 면역조절 화합물, 항암제, 항바이러스제, 항박테리아제, 항진균제, 구충제 또는 이들의 조합일 수 있다.
상기 시토카인(cytokine)은 다수의 세포에 의하여 분비되는 소세포-시그널링 단백질 분자이고, 세포 내 정보교환에 광범위하게 사용되는 시그널링 분자의 범주이다. 이는 모노카인(monokine), 림포카인(lympokine), 전통적인 폴리펩티드 호르몬(traditional polypeptidehormone) 등을 포함한다. 시토카인의 예는, 이들로 제한되지는 않지만, 성장 호르몬(growth hormone) (예: 사람 성장 호르몬(human growth hormone), N-메티오닐 사람 성장 호르몬(N-methionyl humangrowth hormone) 또는 보바인 성장 호르몬(bovinegrowth hormone)); 부갑상선 호르몬(parathyroid hormone); 티록신(thyroxine); 인슐린(insulin); 프로인슐린(proinsulin); 레락신(relaxin); 프로레락신(prorelaxin); 당단백질 호르몬(glycoprotein hormone) (예: 소포 자극 호르몬(folliclestimulating hormone, FSH), 갑상선 자극 호르몬(thyroid stimulatinghormone, TSH) 또는 황체형성 호르몬(luteinizinghormone, LH)); 간 성장 인자(hepatic growth factor); 섬유아세포 성장 인자(fibroblast growth factor); 프로락틴(prolactin); 태반 락토겐(placental lactogen); 종양 괴사 인자-α(tumornecrosis factor-α), 종양 괴사 인자-β(tumornecrosis factor-β); 뮬러-억제 물질(mullerian-inhibitingsubstance); 마우스 고나도트로핀 결합 펩티드(mousegonadotropin-associated peptide); 인히빈(inhibin); 악티빈(activin); 혈관 내피 성장 인자(vascularendothelialgrowth factor); 인테그린(integrin), 트롬보포이에틴(thrombopoietin, TPO); 신경 성장 인자(nervegrowth factor) (예: NGF-β); 혈소판-성장 인자(platelet-growth factor); 변환 성장 인자(transforming growth factor, TGF) (예: TGF-α 또는TGF-β); 인슐린 유사 성장 인자-I(insulin-likegrowth factor-I), 인슐린 유사 성장 인자-II(insulin-like growth factor-II);에리트로포이에틴(erythropoietin, EPO); 골유도 인자(osteoinductive factor); 인터페론(interferon) (예: 인터페론-α(interferon-α), 인터페론-β(interferon-β) 또는 인터페론-γ(interferon-γ)); 집락 자극 인자(colony stimulating factor, CSF) (예: 대식 세포-CSF(macrophage-CSF, M-CSF), 과립구-대식 세포-CSF(granulocyte-macrophage-CSF, GM-CSF) 또는 과립구-CSF(granulocyte-CSF, G-CSF)); 인터류킨(interleukin, IL) (예: IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11 또는 IL-12); 종양 괴사 인자(tumor necrosis factor) (예: TNF-α 또는 TNF-β); 및 폴리펩티드 인자(polypeptide factor) (예: LIF 또는키트 리간드(kit ligand, KL))를 포함한다. 또한 용어 시토카인은 천연 공급원으로부터 또는 기본 서열 시토카인의 재조합 세포 배양물 및 생물학적 활성 동등물(biologically active equivalents of a cytokine)을 포함한다.
상기 면역조절 화합물은 아미노카프론산(aminocaproic acid), 아자티오프린(azathioprine), 브로모크립틴(bromocriptine), 클로로퀸(chloroquine), 클로로람부실(chlorambucil), 사이클로스포린(cyclosporine), 사이클로스포린A(cyclosporine A), 다나졸(danazol), DHEA(dehydroepiandrosterone), 덱사메타손(dexamethasone), 에타너셉트(etanercept), 하이드록시클로로퀸(hydroxychloroquine), 하이드로코르티손(hydrocortisone), 인플릭시맙(infliximab), 멜록시캄(meloxicam), 메토트렉세이트(methotrexate), 사이클로포스파미드(cyclophosphamide), 미코페놀산모페틸(mycophenylate mofetil), 프리드니손(prednisone), 시롤리무스(sirolimus) 및 타크로리무스(tacrolimus)로 이루어진 군으로부터 선택가능하다. 상기 항암제는 메토트렉세이트(methotrexate), 탁솔(taxol), L-아스파라기나제(L-asparaginase), 머캡토퓨린(mercaptopurine), 티오구아닌(thioguanine), 하이드록시우레아(hydroxyurea), 시타라빈(cytarabine), 사이클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 니트로소우레아(nitrosourea), 시스플라틴(cisplatin), 카보플라틴(carboplatin), 미토마이신(mitomycin), 다카바진(dacarbazine), 프로카바진(procarbazine), 토포테칸(topotecan), 질소 머스터드(nitrogen mustard), 사이톡산(cytoxan), 에토포시드(etoposide), 5-플루오로우라실(5-fluorouracil), BCNU(bis-chloroethylnitrosourea), 이리노테칸(irinotecan), 캄포토테신(camptothecin), 블레오마이신(bleomycin), 독소루비신(doxorubicin), 이다루비신(idarubicin), 다우노루비신(daunorubicin), 닥티노마이신(dactinomycin), 플리카마이신(plicamycin), 미톡산트론(mitoxantrone), 아스파라기나제(asparaginase), 빈블라스틴(vinblastine), 빈크리스틴(vincristine), 비노렐빈(vinorelbine), 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 클로로람부실(chlorambucil), 멜파란(melphalan), 카르무스틴(carmustine), 로무스틴(lomustine), 부설판(busulfan), 트레오설판(treosulfan), 데카바진(decarbazine), 에토포시드(etoposide), 테니포시드(teniposide), 토포테칸(topotecan), 9-아미노캠프토테신(9-aminocamptothecin), 크리스나톨(crisnatol), 미토마이신 C(mitomycin C), 트리메트렉세이트(trimetrexate), 마이코페놀산(mycophenolic acid), 티아조퓨린(tiazofurin), 리바비린(ribavirin), EICAR(5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide), 하이드록시우레아(hydroxyurea), 데프록사민(deferoxamine), 플룩수리딘(floxuridine), 독시플루리딘(doxifluridine), 랄티트렉세드(raltitrexed), 시타라빈(cytarabine(ara C)), 시토신 아라비노시드(cytosine arabinoside), 플루다라빈(fludarabine), 타목시펜(tamoxifen), 라록시펜(raloxifene), 메게스트롤(megestrol), 고세렐린(goserelin), 류프롤리드 아세테이트(leuprolide acetate), 플루타미드(flutamide), 바이칼루타마이드(bicalutamide), EB1089, CB1093, KH1060, 베르테포르핀(verteporfin), 프탈로시아닌(phthalocyanine), 광감작제 Pe4(photosensitizer Pe4), 데메톡시-하이포크레린 A(demethoxy-hypocrellin A), 인터페론-α(Interferon-α), 인터페론-γ(Interferon-γ), 종양 괴사 인자(tumor necrosis factor), 겜사이타빈(Gemcitabine), 벨케이드(velcade), 레발미드(revamid), 탈라미드(thalamid), 로바스타틴(lovastatin), 1-메틸-4-페닐피리디늄 이온(1-methyl-4-phenylpyridinium ion), 스타우로스포린(staurosporine), 악티노마이신 D(actinomycin D), 닥티노마이신(dactinomycin), 블레오마이신 A2(bleomycin A2), 블레오마이신 B2(bleomycin B2), 페플로마이신(peplomycin), 에피루비신(epirubicin), 피라루비신(pirarubicin), 조루비신(zorubicin), 마이토산트론(mitoxantrone), 베라파밀(verapamil) 및 탑시가르긴(thapsigargin)으로 이루어진 군으로부터 선택가능하다. 상기 바이러스제는 펜시시클로버(pencicyclovir), 발라시클로버(valacyclovir), 간시시클로버(gancicyclovir), 포스카르네트(foscarnet), 리바비린(rivavirin), 이독수리딘(idoxuridine), 비다라빈(vidarabine), 트리플루리딘(trifluridine), 아시클로버(acyclovir), 팜시시클로버(famcicyclovir), 아만타딘(amantadine), 리만타딘(rimantadine), 시도포비어(cidofovir), 안티센스 올리고뉴클레오티드(antisense oligonucleotide), 면역글로불린(immunoglobulin) 및 인터페론(interferon)으로 이루어진 군으로부터 선택가능하다. 상기 항박테리아제는클로람페니콜(chloramphenicol), 반코마이신(vancomycin), 메트로니아졸(metronidazole), 트리메소프린(trimethoprin), 설파메타졸(sulfamethazole), 퀴누프리스틴(quinupristin), 달도프리스틴(dalfopristin), 리팜핀(rifampin), 스펙티노마이신(spectinomycin) 및니트로퓨란토인(nitrofurantoin)으로 이루어진 군으로부터 선택가능하다. 상기 항진균제는 암포테리신 B(amphotericin B), 캔디사이딘(Candicidin), 필리핀(filipin), 하마이신(hamycin), 나타마이신(natamycin), 니스타틴(nystatin), 리모시딘(rimocidin), 비포나졸(Bifonazole), 부토코나졸(Butoconazole), 클로트리마졸(Clotrimazole), 에코나졸(Econazole), 펜티코나졸(Fenticonazole), 이소코나졸(Isoconazole), 케토코나졸(Ketoconazole), 룰리코나졸(Luliconazole), 미코나졸(Miconazole), 오모코나졸(Omoconazole), 옥시코나졸(Oxiconazole), 세르타코나졸(Sertaconazole), 설코나졸(Sulconazole), 티오코나졸(Tioconazole), 알바코나졸(Albaconazole), 플루코나졸(Fluconazole), 이사부코나졸(Isavuconazole), 이트라코나졸(Itraconazole), 포사코나졸(Posaconazole), 라부코나졸(Ravuconazole), 테르코나졸(Terconazole), 보리코나졸(Voriconazole), 아바펀진(Abafungin), 아모롤핀(Amorolfin), 부테나핀(Butenafine), 나프티핀(Naftifine), 터비나핀(Terbinafine), 아니둘라펀진(Anidulafungin), 카스포펀진(Caspofungin), 미카펀진(Micafungin), 벤조산(benzoic acid), 시클로피록스(ciclopirox), 플루사이토신(flucytosine), 그리세오풀빈(griseofulvin), 할로프로긴(haloprogin), 톨나프테이트(tolnaftate), 운데실렌산(undecylenic acid), 크리스탈 바이올렛(crystal violet), 페루 발삼(balsam of peru), 서클로피록솔라민(Ciclopirox olamine), 피록톤올아민(Piroctone olamine), 징크 피리치온(Zinc pyrithione) 및 셀레늄 설파이드(Selenium sulfide)로 이루어진 군으로부터 선택가능하다. 상기 구충제는 메벤다졸(mebendazole), 피란텔 파모에이트(pyrantel pamoate), 티아벤다졸(thiabendazole), 디에틸카바마진(diethylcarbamazine), 이버멕틴(ivermectin), 니클로사마이드(niclosamide), 프라지콴텔(praziquantel), 알벤다졸(albendazole), 리팜핀(rifampin), 암포테리신 B(amphotericin B), 멜라소프롤(melarsoprol), 에플로니틴(eflornithine), 메트로니다졸(metronidazole), 티니다졸(tinidazole) 및 밀테포신(miltefosine)으로 이루어진 군으로부터 선택가능하다.
상기 독소는 살아 있는 세포 또는 유기체 내에서 생성되는 독성 물질로, 생물학적 거대분자, 예를 들면, 효소 또는 세포 수용체와 상호 작용하는 체조직과 접촉 또는 이에 의하여 흡수 시 질환을 유발할 수 있는 소분자, 펩티드 또는 단백질일 수 있다. 또한, 독소는 식물 독소 및 동물 독소를 포함한다. 동물 독소의 예는, 이들로 제한되지는 않지만, 디프테리아 항독소(diphtheria toxin), 보툴리움 독소(botulium toxin), 파상풍 항독소(tetanus toxin), 이질 독소(dysentery toxin), 콜레라 독소(cholera toxin), 테트로도톡신(tetrodotoxin), 브레베톡신(brevetoxin), 시구아톡신(ciguatoxin)을 포함한다. 식물 독소의 예는, 이들로 제한되지는 않지만, 리신(ricin) 및 AM-독소(AM-toxin)를 포함한다.
소분자 독소의 예는, 이들로 제한되지는 않지만, 아우리스타틴(auristatin), 툴부리신(tubulysin), 겔다나마이신(geldanamycin)(Kerr et al., 1997, Bioconjugate Chem. 8(6):781-784), 마이탄시노이드(maytansinoid)(EP 1391213, ACR 2008, 41, 98-107), 칼리케아마이신(calicheamycin)(US 2009105461, Cancer Res. 1993, 53, 3336-3342), 다우노마이신(daunomycin), 독소루비신(doxorubicin), 메토트렉세이트(methotrexate), 빈데신(vindesine), SG2285(Cancer Res. 2010, 70(17), 6849-6858), 돌라스타틴(dolastatin), 돌라스타틴 유사체의 아우리스타틴(dolastatin analog's auristatin)(US563548603), 크립토파이신(cryptophycin), 캄프토테신(camptothecin), 리족신 유도체(rhizoxin derivative), CC-1065 유사체 또는 유도체(CC-1065 analogue or derivative), 두오카마이신(duocarmycin), 엔디인 항생 물질(enediyne antibiotic), 에스페라미신(esperamicin), 에포틸론(epothilone), PBD(pyrrolobenzodiazepine) 유도체, α-아마니틴(α-amanitin) 및 톡소이드(toxoid)를 포함한다. 독소는 튜불린 결합, DNA 결합, 토포이소머라제 억제 등에 의하여 세포독성 및 세포 성장 억제 활성을 나타낼 수 있다.
상기 친화성 리간드는 표적 생체분자와 착체를 형성할 수 있는 분자로, 표적 단백질의 소정 위치에 결합하여 신호를 전송하는 분자이다. 이는 기질, 억제제, 자극제, 신경전달 물질 또는 방사성 동위원소일 수 있다.
"검출 가능한 잔기(detection moiety)" 또는 "표지"는 분광, 광화학, 생화학, 면역화학, 방사성 또는 화학적 수단에 의하여 검출 가능한 조성물을 말한다. 예를 들면, 유용한 표지는 32P, 35S, 형광성 염료(fluorescent dyes), 전자-밀집 시약(electron-dense reagents), 효소(enzymes)(예: ELISA에 통상적으로 사용되는 것), 비오틴-스트렙타비딘(biotin-streptavidin), 디옥시게닌(dioxigenin), 합텐(haptens), 및 항혈청 또는 단일클론 항체가 사용 가능한 단백질(proteins for which antisera or monoclonal antibodies are available), 또는 표적에 상보적인 서열을 갖는 핵산 분자(nucleic acid molecules with a sequence complementary to a target)를 포함한다. 검출 가능한 잔기는 종종 샘플내 결합된 검출 가능한 잔기의 양을 정량하는 데 사용될 수 있는, 측정 가능한 신호, 예를 들면, 방사성, 발색성 또는 형광 신호를 발생시킨다. 신호의 정량은 예를 들면, 신틸레이션 카운팅, 밀도계, 유동 세포분석, ELISA 또는 원형 또는 후속적으로 다이제스트된 펩티드의 질량 분광법에 의한 직접 분석(하나 이상의 펩티드가 검정될 수 있다)에 의하여 달성된다. 당업자는 관심 있는 표지 화합물에 대한 기술 및 검출 수단에 친숙하다. 이러한 기술 및 방법은 통상적이고 당해 기술분야에 익히 공지되어 있다.
상기 검출용 탐침은 (i) 검출 가능한 신호를 제공하거나, (ii) 제1 탐침 또는 제2 탐침을 상호 반응시켜 형광 공명 에너지 전달(FRET)과 같은, 제1 또는 제2 탐침에 의하여 제공된 검출 가능한 신호를 변경시키거나, (iii) 항원 또는 리간드와의 상호 작용을 안정화시키거나 결합 친화도를 증가시키거나, (iv) 전하, 소수성 등과 같은 물리적 파라미터에 의하여 전기 이동도 또는 세포-침입 작용에 영향을 미치거나, (v) 리간드 친화도, 항원-항체 결합 또는 이온 착체 형성을 조절할 수 있는 물질을 말한다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 B의 리간드는 수용체에 결합하는 항체, 호르몬, 약제 등의 분자를 말한다. 리간드는 약물을 특정 기관 (organ), 조직 tissue) 또는 세포내에 선택적으로 타겟팅하는 물질이다. 리간드는 정상세포에 비해 암세포에 과다발현되는 수용체와 특이적으로 결합하며, 단일클론 항체 (monoclonal antibodies, mAbs) 혹은 항체단편(antibody fragment), 저분자의 비항체 (non-antibody) 리간드로 구분할 수 있다. 라이브러리 스크린 (library screen)에서 확인된 펩티드, 종양세포 특이적 펩티드 (tumor cell-specific peptides), 종양세포 특이적 앱타머 (tumor cell-specific aptamers), 종양세포 특이적 탄수화물 (tumor cell-specific carbohydrates), 종양세포 특이적 단일클론 항체 또는 다종클론 항체 (tumor cell-specific monoclonal or polyclonal antibodies), 항체 단편으로 이루어진 군으로부터 선택되는 것이 바람직하다.
리간드의 예는, 이들로 제한되지는 않지만, 카르니틴 (carnitine), 이노시톨 (inositol), 리포산 (lipoic acid), 피리독살 (pyridoxal), 아스코르브산 (ascorbic acid), 니아신 (niacin), 판토텐산 (pantothenic acid), 엽산 (folic acid), 리보플라빈 (riboflavin), 티아민 (thiamine), 비오틴 (biotin), 비타민 B12 (vitamin B12), 기타 수용성 비타민류인 비타민 B, 지용성 비타민류(비타민 A,D,E,K), RGD(Arg-Gly-Asp), NGR(Asn-Gly-Arg), transferein, VIP(vasoactive intestinal peptide) receptor, APRPG(Ala-Pro-Arg-Pro-Gly) peptide, TRX-20(thioredoxin-20), 인테그린 (integrin), 누클레오린 (nucleolin), 아미노펩티데이즈 N (Aminopeptidase N, CD13), 엔도글린 (endoglin), 혈관표피성장인자 수용체 (vascular epithelial growth factor receptor), 저밀도지단백수용체 (low density lipoprotein receptor, 트랜스페린 수용체 (transferrin receptor), 소마토스타틴 수용체 (somatostatin receptor), 봄베신 (bombesin), 신경펩티드 (Neuropeptide Y), 황체화호르몬 유리호르몬 수용체 (lutenizing hormone releasing hormone receptor), 엽산 수용체 (folic acid receptor), 표피생장인자 수용체 (epidermal growth factor receptor), 형질전환생장인자 수용체 (transforming growth factor), 섬유아세포증식인자 수용체 (fibroblast growth factor receptor), 아시알로당단백질 수용체 (asialoglycoprotein receptor), 갈렉틴-3 수용체 (galectin-3 receptor), E-셀렉틴 수용체 (E-selectin receptor), 히알루론산 수용체(hyaluronic acid receptor), 전립선 특이적 막항원 (Prostate-specific membrane antigen, PSMA), 콜레시스토키닌A 수용체 (Cholecystokinin A receptor), 콜레시스토키닌B 수용체 (Cholecystokinin B receptor), 디스코이딘 영역 수용체 (Discoidin domain receptor), 뮤신 수용체 (mucin receptor), 오피오이드 수용체 (Opioid receptor), 플라스미노겐 수용체 (Plasminogen receptor), 브래디키닌 수용체 (Bradykinin receptor), 인슐린 수용체 (insulin receptor), 인슐린 유사 성장 인자 수용체 (insulin-like growth factor receptor), 안지오텐신 AT1 수용체 (angiotensin AT1 receptor), 안지오텐신 AT2 수용체 (angiotensin AT1 receptor), 과립구 대식세포 콜로니 자극인자 수용체 (GM-CSF receptor), 갈락토사민 수용체 (Galactosamine receptor), 시그마-2 수용체 (Sigma-2 receptor), Delta-like 3(DLL-3), 아미노펩티데이즈 P (Aminopeptidase P), 멜라노트랜스훼린(melanotransferrin), 렙틴(leptin), 파상풍독소 Tet1 (tetanus toxin Tet1), 파상풍독소 G23 (tetanus toxin G23), RVG(Rabies Virus Glycoprotein ) peptide, HER2(human epidermal growth factor receptor 2), GPNMB (glycoprotein non-metastatic b), Ley, CA6, CanAng, SLC44A4(Solute carrier family 44 member 4), CEACAM5(Carcinoembryonic antigen-related cell adhesion molecule 5), Nectin-4, Carbonic Anhydrase 9, TNNB2, 5T4, CD30, CD37, CD74, CD70, PMEL17, EphA2(EphrinA2 receptor), Trop-2, SC-16, Tissue factor, ENPP-3(AGS-16), SLITRK6(SLIT and NTRK like family member 6), CD27, Lewis Y antigen, LIV1, GPR161(G Protein-Coupled Receptor 161), PBR (peripheral-type benzodiazeoine receptor), MERTK(Mer receptor tyrosine kinase) receptor, CD71, LLT1(Lectin-like transcript 1 or CLED2D), interleukin-22 receptor, sigma 1 receptor, peroxisome proliferator-activated receptor, DLL3, C4.4a, cKIT, EphrinA, CTLA4(Cytotoxic T-Lymphocyte Associated Protein 4), FGFR2b(fibroblast growth factor receptor 2b), N-acetylcholine receptor, 성선자극호르몬 유리 호르몬 (gonadotropin releasing hormone receptor), gastrin-releasing peptide receptor, 뼈형성단백질 수용체-1B형(Bone morphogenetic protein receptor-type 1B, BMPR1B), E16 (LAT1, SLC7A5), STEAP1 (six transmembrane epithelial antigen of prostate), 0772P (CA125, MUC16), MPF (MSLN, mesothelin), Napi3b (SLC34A2), Sema5b (semaphorin 5b), ETBR(Endothelin type B receptor), MSG783(RNF124), STEAP2 (six transmembrane epithelial antigen of prostate 2), TrpM4 (transient receptor potential cation 5 channel, subfamily M, member 4), CRIPTO (teratocarcinoma-derived growth factor), CD21, CD79b, FcRH2 (IFGP4), HER2 (ErbB2), NCA (CEACM6), MDP (DPEP1), IL20R-alpha (IN20Ra), Brevican (BCAN), EphB2R, ASLG659 (B7h), PSCA (prostate stem cell antigen precursor), GEDA, BAFF-R (BR3), CD22 (BL-CAM), CD79a, CXCR5, HLA-DOB, P2X5, CD72, LY64, FcRH1, IRTA2, TENB2, SSTR2, SSTR5, SSTR1, SSTR3, SSTR4, ITGAV (Integrin, alpha 5), ITGB6 (Integrin, beta 6), MET, MUC1, EGFRvIII, CD33, CD19, IL2RA (interleukin 2 receptor, alpha), AXL, BCMA, CTA (cancer tetis antigens), CD174, CLEC14A, GPR78, CD25, CD32, LGR5 (GPR49), CD133 (Prominin), ASG5, ENPP3((Ectonucleotide Pyrophosphatase/Phosphodiesterase 3), PRR4(Proline-rich protein 4), GCC (guanylate cyclase 2C), Liv-1 (SLC39A6), CD56, CanAg, TIM-1, RG-1, B7-H4, PTK7, CD138, Claudins, Her3 (ErbB3), RON (MST1R), CD20, TNC (Tenascin C), FAP, DKK-1, CD52, CS1 (SLAMF7), Annexin A1, V-CAM, gp100, MART-1, MAGE-1(Melanoma antigen-encoding gene-1), MAGE-3(Melanoma-associated antigen 3), BAGE, GAGE-1, MUM-1(multiple myeloma oncogene 1), CDK4, TRP-1(gp75), TAG-72(Tumor-Associated Glycoprotein-72), ganglioside GD2, GD3, GM2, GM3, VEP8, VEP9, My1, VIM-D5, D156-22, OX40, RNAK, PD-L1, TNFR1, TNFR2 등을 포함한다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 B의 단백질은 올리고펩티드, 폴리펩티드, 항체, 항원성 폴리펩티드의 단편 및 인공항체(Repebody)를 포함한다.
상기 단백질은 공유 결합(예: 펩티드 결합)에 의하여 접합된 2개 이상의 독립적으로 선택된 천연 또는 비-천연 아미노산이며, 펩티드는 펩티드 결합에 의해 접합된 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20개 또는 그 이상의 천연 또는 비-천연 아미노산을 포함할 수 있다. 폴리펩티드는 전장 단백질(예: 전 가공된 단백질)뿐만 아니라 보다 짧은 아미노산 서열(예: 천연 단백질의 단편 또는 합성 폴리펩티드 단편)을 포함한다.
상기 항체는 면역글로불린 분자의 가변부 내의 하나 이상의 항원 인식 부위를 통하여 표적, 예를 들면, 단백질, 폴리펩티드, 펩티드, 탄수화물, 폴리뉴클레오티드, 지질 또는 이들의 조합을 인식하고 이에 특이적으로 결합하는 면역글로불린 분자를 의미한다. 상기 항체는, 항체가 목적하는 생물학적 활성을 나타내는 한, 원형 다클론 항체(intact polyclonal antibody), 원형 단일클론 항체(intact monoclonal antibody), 항체 단편(antibody fragment) (예: Fab, Fab', F(ab')2, Fd 및 Fv 단편), 단쇄 Fv (scFv) 돌연변이(single chain Fv(scFv) mutant), 다중특이 항체(multispecific antibody), 예를 들면, 2개 이상의 원형 항체로부터 발생된 이중특이 항체(bispecific antibody), 키메라 항체(chimeric antibody), 인간화 항체(humanized antibody), 인간 항체(human antibody), 항체의 항원 결정 부분을 포함하는 융합 단백질(fusion protein comprising an antigenic determinant portion of an antibody), 및 항원 인식 부위를 포함하는 기타 변형된 면역글로불린 분자(modified immunoglobulin molecule comprising an antigen recognition site)를 포함한다. 항체는 면역글로불린의 어떠한 5가지 주요 분류라도 가질 수 있다: 각각 알파, 델타, 엡실론, 감마 및 뮤라고 나타내는 이의 중쇄 지속적 도메인의 동일성을 기준으로 하여, IgA, IgD, IgE, IgG 및 IgM, 또는 이들의 하위분류(동종형)(예: IgGl, IgG2, IgG3, IgG4, IgAl and IgA2). 상이한 분류의 면역글로불린은 상이하고 익히 공지된 아단위(subunit) 구조 및 3차원 형태를 갖는다.
용어 "항체 단편"은 원형 항체의 부분을 나타내고, 원형 항체의 항원 결정 가변부를 나타낸다. 항체 단편의 예는, 이들로 제한되지는 않지만, Fab, Fab', F(ab')2, Fd 및 Fv 단편, 선형 항체, 단쇄 항체 및 항체 단편으로부터 형성된 다중특이성 항체를 포함한다.
"단일클론 항체"는 단일 항원 결정자 또는 에피토프의 매우 특이적 인식 및 결합에 수반되는 동종 항체 개체수를 말한다. 이는 통상적으로 상이한 항원 결정자를 향한 상이한 항체를 포함하는 다클론 항체와 대조적이다. 용어 "단일클론 항체"는 원형 및 전장 단일클론 항체 둘 다뿐만 아니라, 항체 단편(예: Fab, Fab', F(ab')2, Fd, Fv), 단쇄(scFv) 돌연변이, 항체 부분을 포함하는 융합 단백질 및 항체 인식 부위를 포함하는 어떠한 기타 변형된 면역글로불린 분자라도 포함한다. 추가로, "단일클론 항체"는 이들로 제한되지는 않지만, 하이브리도마, 파지 선택, 재조합 발현 및 형질전환 동물을 포함하는 어떠한 수의 방식으로도 제조된 이러한 항체를 말한다.
용어 "인간화 항체"는 특이성 면역글로불린 쇄, 키메라 면역글로불린 또는 최소의 비-인간(예: 뮤라인) 서열을 함유하는 이의 단편인 비-인간(예: 뮤라인) 항체의 형태를 말한다. 통상적으로, 인간화 항체는 상보적 결정부(CDR)로부터의 잔기가 목적하는 특이성, 친화도 및 가능성을 갖는 비-인간 종(예: 마우스, 랫드, 래빗, 햄스터)의 CDR로부터의 잔기에 의하여 대체된 인간 면역글로불린이다(참조: Jones et al., 1986, Nature, 321:522-525; Riechmann et al., 1988, Nature, 332:323-327; Verhoeyen et al., 1988, Science, 239:1534-1536). 일부 예에서, 인간 면역글로불린의 Fv 프레임워크 부위(FR) 잔기는 목적하는 특이성, 친화도 및 가능성을 갖는 비-인간 종으로부터의 항체내 상응하는 잔기로 대체된다. 인간화 항체는 Fv 프레임워크 부위에서의 및/또는 대체된 비-인간 잔기 내의 추가의 잔기의 치환에 의하여 추가로 변형되어 항체 특이성, 친화도 및/또는 가능성을 개량하고 최적화시킬 수 있다. 일반적으로, 인간화 항체는 실질적으로 비-인간 면역글로불린에 상응하는 CDR 부위 전체 또는 실질적으로 전체를 함유하는 하나 이상, 통상적으로 2 또는 3개의 가변성 도메인 전체를 포함하는 반면, FR 부위 전체 또는 실질적으로 전체는 인간 면역글로불린 일치 서열을 갖는 것이다. 인간화 항체는 면역글로불린 일정 부위 또는 도메인(Fc), 통상적으로 인간 면역글로불린의 적어도 일부를 포함할 수도 있다. 인간화 항체를 발생시키는 데 사용되는 방법의 예는 미국 특허 제5,225,539호에 기재되어 있다.
용어 "인간 항체"는 사람에 의하여 생성된 항체 또는 당해 기술분야에 공지된 어떠한 기술이라도 사용하여 제조된 사람에 의하여 생성된 항체에 상응하는 아미노산 서열을 갖는 항체를 의미한다. 인간 항체의 이러한 정의는 원형 또는 전장 항체, 이의 단편 및/또는 예를 들면, 뮤라인 경쇄 및 인간 중쇄 폴리펩티드를 포함하는 항체와 같은, 하나 이상의 인간 중쇄 및/또는 경쇄 폴리펩티드를 포함하는 항체를 포함한다.
용어 "키메라 항체"는 면역글로불린 분자의 아미노산 서열이 2개 이상의 종으로부터 유도된 항체를 말한다. 통상적으로, 경쇄 및 중쇄 둘 다의 가변부는 목적하는 특이성, 친화도 및 가능성을 갖는 포유동물의 한 종(예: 마우스, 랫드, 래빗 등)으로부터 유도된 항체의 가변부에 상응하는 한편, 일정 부위는 서로(통상적으로 사람)로부터 유도된 상체내 서열에 상동성이어서 상기 종의 면역 반응을 유도하는 것을 피한다.
용어 "에피토프" 또는 "항원 결정자"는 본원에서 상호 교환적으로 사용되고, 특정 항체에 의하여 인식되고 특이적으로 결합될 수 있는 항원의 부분을 말한다. 항원이 폴리펩티드인 경우, 에피토프는 단백질의 3차 폴딩에 의하여 병렬된 비인접 아미노산과 인접 아미노산 둘 다로부터 형성될 수 있다. 인접 아미노산으로부터 형성된 에피토프는 통상적으로 단백질 변성 시 보유되는 반면, 3차 폴딩에 의하여 형성된 에피토프는 통상적으로 단백질 변성 시 손실된다. 에피토프는 통상적으로 독특한 공간 형태에 3개 이상, 5개 이상, 또는 8 내지 10개 이상의 아미노산을 포함한다.
항체가 에피토프 또는 항원 분자에 "특이 결합함"은 항체가 비관련 단백질을 포함한, 대체 물질보다 에피토프 또는 항원 분자에 보다 빈번하게, 보다 신속하게, 보다 장기간 동안, 보다 큰 친화도로, 또는 위의 일부 조합으로 반응하거나 결합됨을 의미한다. 특정 양태에서, "특이 결합함"은, 예를 들면, 항체가 약 1.0mM 이하, 보다 통상적으로는 약 1μM 미만의 KD를 갖는 단백질에 결합함을 의미한다. 특정 양태에서, "특이 결합함"은 항체가 때로는 적어도 약 0.1μM 이하, 다른 경우 적어도 약 0.01μM 이하의 KD를 갖는 단백질에 결합함을 의미한다. 상이한 화학종의 동종 단백질 사이의 서열 동일성 때문에, 특이 결합은 한 종 초과의 특정 단백질을 인식하는 항체를 포함할 수 있다. 제1 표적에 특이 결합하는 항체 또는 결합 잔기는 제2 표적에 특이적으로 결합하거나 결합하지 않을 수 있음을 이해한다. 이와 같이, "특이 결합"은 반드시 독점적인 결합, 즉, 단일 표적으로의 결합을 (포함할 수는 있지만) 필요로 하지 않는다. 일반적으로, 반드시 그렇지는 않지만, 결합에 대한 언급은 특이 결합을 의미한다.
이의 단편/유도체 및 단일클론 항체를 포함하는 항체는 당해 기술분야에 공지된 방법을 사용하여 수득할 수 있다(참조: McCafferty et al., Nature 348:552-554 (1990); Clackson et al., Nature 352:624-628; Marks et al., J. Mol. Biol. 222:581-597 (1991); Marks et al., Bio/Technology 10:779-783 (1992); Waterhouse et al., Nucleic. Acids Res. 21:2265-2266 (1993); Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); Brennan et al., Science 229:81(1985); Carter et al., Bio/Technology 10:163-167 (1992); Kohler et al., Nature 256:495 (1975); U.S. Pat. No. 4,816,567); Kilpatrick et al., Hybridoma 16(4):381-389 (1997); Wring et al., J. Pharm. Biomed. Anal. 19(5):695-707 (1999); Bynum et al., Hybridoma 18(5):407-411 (1999), Jakobovits et al., Proc. Natl. Acad. Sci. USA,90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno. 7:33 (1993); Barbas et al., Proc. Nat. Acad. Sci. USA 91:3809-3813 (1994); Schier et al., Gene 169:147-155 (1995); Yelton et al., J. Immunol. 155:1994-2004 (1995); Jackson et. al., J. Immunol. 154(7):3310-9 (1995); Hawkins et al., J. Mol. Biol. 226:889-896 (1992), U.S. Pat. Nos. 5514548, 5545806, 5569825, 5591669, 5545807; WO 97/17852, 이들 모두는 본원에서 전체적으로 참조로 인용된다).
상기 항체는 제한되지는 않지만, 뮤로모나브-CD3 아브식시마브(Muromonab-CD3 Abciximab), 리툭시마브(Rituximab), 다클리주마브(Daclizumab), 팔리비주마브(Palivizumab), 인플릭시마브(Infliximab), 트라스투주마브(Trastuzumab, '허셉틴'이라고도 함), 에타너셉트(Etanercept), 바실릭시마브(Basiliximab), 겜투주마브 오조가마이신(Gemtuzumab ozogamicin), 알렘투주마브(Alemtuzumab), 이브리투모마브 티욱세탄(Ibritumomab tiuxetan), 아달리무마브(Adalimumab), 알레파셉트(Alefacept), 오말리주마브(Omalizumab), 에팔리주마브(Efalizumab), 토시투모모브-I131(Tositumomob-I131), 세툭시마브(Cetuximab), 베박시주마브(Bevacizumab), 나탈리주마브(Natalizumab), 라니비주마브(Ranibizumab), 파니투무마브(Panitumumab), 에콜리주마브(Eculizumab), 리로나셉트(Rilonacept), 서톨리주마브 페골(Certolizumab pegol), 로미플로스팀(Romiplostim), AMG-531, CNTO-148, CNTO-1275, ABT-874, LEA-29Y, 벨리무마브(Belimumab), TACI-Ig, 2세대 항-CD20(Second generation anti-CD20), ACZ-885, 토실리주마브(Tocilizumab), 아틀리주마브(Atlizumab), 메폴리주마브(Mepolizumab), 퍼투주마브(Pertuzumab), 휴막스 CD20(Humax CD20), 트레멜리무마브(Tremelimumab,CP-675 206), 티실리무마브(Ticilimumab), MDX-010, IDEC-114, 이노투주마브 오조가마이신(Inotuzumab ozogamycin), 휴막스 EGFR(HuMax EGFR), 알리버셉트(Aflibercept), VEGF Trap-Eye, 휴막스-CD4(HuMax-CD4), Ala-Ala, ChAglyCD3, TRX4, 카투막소마브(Catumaxomab), IGN101, MT-201, 프레고보마브(Pregovomab), CH-14.18, WX-G250, AMG-162, AAB-001, 모타비주마브(Motavizumab), MEDI-524, 에푸마구마브(efumgumab), 아우로그라브®(Aurograb®), 락시바쿠마브(Raxibacumab), 3세대 항-CD20(Third generation anti-CD20), LY2469298, 및 벨투주마브(Veltuzumab)로 이루어진 군으로부터 선택되는 것이 바람직하다.
상기 인공항체(Repebody)는 LRR 단백질 구조를 갖는 인터날린의 N-말단과 상기 VLR의 구조의 유사성을 바탕으로 융합하여 컨센서스 디자인으로 최적화시킨 폴리펩타이드로, 반복 모듈을 갖는 LRR 패밀리에 속하는 모든 단백질을 상기 방법으로 수용성 발현 및 단백질의 생물리학적 성질을 향상시킨 모든 융합 LRR 패밀리 단백질을 모두 포함할 수 있다.
상기 단백질이 단일클론 항체인 경우, 단일클론 항체의 하나 이상의 경쇄, 단일클론 항체의 하나 이상의 중쇄 또는 둘 다는 이소프레노이드 트랜스퍼라제에 의하여 인식될 수 있는 아미노산 모티프를 갖는 아미노산 부위를 포함할 수 있다.
당업자는 관심 있는 표적을 선택적으로 결합시키는 단백질(예: 피검체의 표적 세포)을 즉시 선택할 수 있다. 상기 예시된 단백질로 제한되지는 않지만, 관심 있는 표적에 특이적으로 결합하는 항체 또는 항원의 단편을 포함한다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 단백질은 항체 또는 인공항체(Repebody)인 것이 보다 바람직하다.
본 발명에 따른 자가-희생 기를 포함하는 화합물은 보다 바람직하게 하기 구조에서 선택될 수 있다.
상기 구조에서,
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1는 0 또는 1의 정수이고;
W1는 하기 구조에서 선택되고;
W2은 하기 구조에서 선택되고;
X1, X11 및 X12는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;
R11은 수소, C1-C8알킬, -(CH2)s3COOR13, -(CH2)s3COR13, -(CH2)s3CONR14R15 또는 -(CH2)s4NR14R15이고;
R13, R14 및 R15는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
X3는 -O-, -S-, -NH- 또는 -CH2-이고;
R12 내지 R14은 각각 독립적으로 수소, C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 또는 -(CH2)s2NR4R5이고;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
X2는 -O-, -S-, -NH- 또는 -CH2-이고;
Ra는 수소 또는 니트로이고;
R'는 C1-C8알킬 또는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;
X''는 -NHC(=O)-(CH2)a8-NH- 또는 -C(=O)NH-(CH2)a8-NH-이고;
a1, a2, a3, a4, a5, a6, a8, b1, c1, c2, c3, c4, d1, p1, p2, p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
q1 및 q2는 각각 독립적으로 0 내지 5의 정수이고;
s1, s2, s3 및 s4는 각각 독립적으로 0 내지 5의 정수이고;
B'는 항체이고;
B는 하기 구조로부터 선택되는 리간드이고;
T는 하기 구조로부터 선택되는 약물이고;
w는 1 내지 10의 정수이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 W1는 하기 구조에서 선택될 수 있다.
상기 구조에서 X1는 -O-, -S-, -NH- 또는 -CH2-, 보다 바람직하게는 -O-이고; a1, a6 및 b1은 각각 독립적으로 1 내지 10의 정수이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 W2는 하기 구조에서 선택될 수 있다.
상기 구조에서, R12 내지 R14은 각각 독립적으로 C6-C20아릴C1-C8알킬, -(CH2)s1COOH, -(CH2)s2NH2 또는 -(CH2)s1COR3이고; R3는 C1-C8알콕시이고; Ra는 수소 또는 니트로이고; c1, c2, c3, c4 및 d1은 각각 독립적으로 1 내지 10의 정수이고; s1 및 s2는 각각 독립적으로 0 내지 5의 정수이고; q1 및 q2는 각각 독립적으로 1 내지 5의 정수이다.
본 발명에 따른 화학식 1의 자가-희생 기를 포함하는 화합물에서 B가 단백질이고 T가 활성제인 경우 당업자에게 공지된 조성물의 제조법을 이용하여 활성제를 피검체(예: 활성제를 필요로 하는 피검체)의 표적 세포에 전달하여 피검체를 치료하는데 사용할 수 있다.
조성물은 액체 용액으로서 또는 현탁액으로서 주사 가능한 형태로 제조한다. 주사에 적합한 고체 형태는 또한 에멀젼으로서 또는 리포솜에 캡슐화된 폴리펩티드와 제조할 수도 있다. 상기 자가-희생 기를 포함하는 화합물은 담체를 수용하는 피검체에 해로운 항체의 생성을 유도하지 않는 어떠한 담체라도 포함하는, 약제학적으로 허용되는 담체와 배합할 수 있다. 적합한 담체는 통상적으로 서서히 대사되는 큰 거대분자, 예를 들면, 단백질, 다당류, 폴리락트산, 폴리글리콜산, 중합체성 아미노산, 아미노산 공중합체, 지질 응집물 등을 포함한다. 이러한 담체는 당업자에게 익히 공지되어 있다.
상기의 조성물은 또한 희석제, 예를 들면, 물, 염수, 글리세롤, 에탄올을 함유할 수 있다. 보조 물질, 예를 들면, 습윤제 또는 유화제, pH 완충 물질 등이 또한 존재할 수 있다. 단백질은 중성 또는 염 형태로서 백신으로 제형화시킬 수 있다. 조성물은 주사에 의하여 비경구 투여할 수 있으며; 이러한 주사는 피하 또는 근육 내일 수 있다. 추가의 제형은 예를 들면, 좌제에 의하여 또는 경구와 같은, 기타 투여 형태에 적합하다. 경구용 조성물은 용제, 현탁제, 정제, 환제, 캡슐 또는 서방성 제형으로서 투여할 수 있다.
상기의 조성물은 용량 제형과 혼화성인 방식으로 투여한다. 조성물은 치료학적 유효량의 자가-희생 기를 포함하는 화합물을 포함한다. 치료학적 유효량이란, 질환 또는 장애의 치료 또는 예방에 유효한, 단일 용량, 또는 다중 용량 스케쥴로 투여되는 조성물을 의미한다. 투여 용량은 치료되는 피검체, 피검체의 건강 및 신체 상태, 목적하는 보호도 및 기타 관련 인자에 따라 변화한다. 활성 성분의 정확한 필요량은 의사의 판단에 따른다.
예를 들면, 치료학적 유효량의 자가-희생 기를 포함하는 화합물 또는 이를 포함하는 조성물은 암 또는 종양으로 고통받는 환자에게 투여하여 암 또는 종양을 치료할 수 있다.
치료학적 유효량의 자가-희생 기를 포함하는 화합물 또는 이를 포함하는 조성물은 환자에게 투여하여 병원체(예: 바이러스, 박테리아, 진균, 기생충 등)에 의한 감염을 치료 또는 예방할 수 있다. 이러한 방법은 질환 또는 장애가 예방되거나 치료되도록 하는 조건하에, 포유동물에게 질환 또는 장애 또는 이의 증상을 치료하기에 충분한 치료학적 또는 예방적 양의 자가-희생 기를 포함하는 화합물을 투여하는 단계를 포함한다.
본 발명에 따른 자가-희생 기를 포함하는 화합물 또는 이를 포함하는 조성물은 약제학적으로 허용되는 이의 염 또는 용매화물의 형태로 투여할 수 있다. 일부 양태에서, 이는 약제학적으로 허용되는 담체, 약제학적으로 허용되는 부형제 및/또는 약제학적으로 허용되는 첨가제와 투여할 수 있다. 약제학적 유효량 및 약제학적으로 허용되는 염 또는 용매화물, 부형제 및 첨가제의 유형은 표준 방법(참조: Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 18th edition, 1990)을 사용하여 측정할 수 있다.
암 또는 종양에 관한 용어 "치료학적 유효량"은 암 세포 수를 감소시키거나; 암 세포 크기를 감소시키거나; 암 세포가 주변 계통으로 침입하는 것을 억제하거나 침입을 감소시키거나; 암 세포가 다른 계통으로 확산되는 것을 억제하거나 확산을 감소시키거나; 암 세포가 성장하는 것을 억제하거나; 암과 관련된 하나 이상의 증상을 개선시킬 수 있는 양을 의미한다. 암의 치료에서, 약물의 유효성은 종양 대 종양 진행(TTP) 및/또는 응답(반응) 속도(RR)에 의하여 검정할 수 있다.
병원체에 의한 감염에 관한 용어 "치료학적 유효량"은 감염과 관련된 증상을 예방, 치료 또는 감소시킬 수 있는 양을 의미한다.
본원에서 사용된 용어 "약제학적으로 허용되는 염"은 유기 염 및 무기 염을 포함한다. 이의 예는, 이들로 제한되지는 않지만, 하이드로클로라이드, 하이드로브로마이드, 하이드로요오다이드, 설페이트, 시트레이트, 아세테이트, 옥살레이트, 클로라이드, 브로마이드, 요오다이드, 니트레이트, 비설페이트, 포스페이트, 산 포스페이트, 이소니코티네이트, 락테이트, 살리실레이트, 산 시트레이트, 타르트레이트, 올레에이트, 탄네이트, 판토네이트, 비타르트레이트, 아스코르베이트, 석시네이트, 말레에이트, 겐티시네이트, 푸마레이트, 글루코네이트, 글루코로네이트, 사카레이트, 포르메이트, 벤조에이트, 글루타메이트, 메탄 설포네이트, 에탄 설포네이트, 벤젠 설포네이트, p-톨루엔 설포네이트 및 파모에이트(즉, 1,1'-메틸렌비스-(2-하이드록시-3-나프토에이트))를 포함한다. 약제학적으로 허용되는 염은 또 다른 분자(예: 아세테이트 이온, 석시네이트 이온 및 기타 대이온 등)를 포함할 수 있다. 이는 또한 하나 이상의 하전된 원자를 포함할 수도 있다. 이는 또한 하나 이상의 대이온(counter ion)을 포함할 수도 있다.
본 발명에 따른 자가-희생 기를 포함하는 화합물의 약제학적으로 허용되는 용매화물에 사용될 수 있는 예시적인 용매화물은 이들로 제한되지는 않지만, 물, 이소프로판올, 에탄올, 메탄올, DMSO, 에틸아세테이트, 아세트산 및 에탄올 아민을 포함한다.
또한, 본 발명은 상기 화학식 1의 화합물을 제조하기 위한 중간체로, 하기 화학식 2로 표시되는 화합물을 제공한다:
[화학식 2]
상기 화학식 2에서,
R은 수소 또는 하이드록시 보호기이고;
X는 -C(=O)-, -NH-, -O-, -CH2- 또는 -S-이고;
Wa1는 -NH-, -CH2- 또는 -C(=O)-이고;
T는 활성제이고;
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
Wa2는 -NH-, -C(=O)- 또는 -CH2- 이고;
Wa3
및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;
R21은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 이고;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
s1 및 s2 는 각각 독립적으로 0 내지 10의 정수이고;
a1 은 각각 독립적으로 1 내지 10의 정수이고;
s4는 0 내지 10의 정수이고;
p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
FG는 -NH2, -C≡CH, C4-C10사이클로알키닐, -N3, -COOH, -SO3H, -OH, -NHOH, -NHNH2, -SH, 할로아세트아미드(-NHC(O)CH2-hal, hal은 할로겐), 말레이미드(), 할로겐, 토실레이트(TsO-), 알데히드(-COH), 케톤(-COR, R은 C1-C10알킬, C6-C20아릴, C2-C20 헤테로아릴), 다이엔, , 또는 -OP(=O)(OH)2이고;
X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2- 이고;
a6 및 b1는 각각 독립적으로 1 내지 10의 정수이고;
a7는 0 내지 10의 정수이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1는 0 또는 1의 정수이고;
R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
본 발명의 일 실시예에 있어서, 상기 화학식 2의 화합물은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
상기 화학식 3에서,
Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;
z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;
z1은 0 또는 1의 정수이고;
R21은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 이고;
R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;
s1 및 s2 는 각각 독립적으로 0 내지 10의 정수이고;
a1 은 각각 독립적으로 1 내지 10의 정수이고;
s4는 0 내지 10의 정수이고;
p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;
FG는 -NH2, -C≡CH, C4-C10사이클로알키닐, -N3, -COOH, -SO3H, -OH, -NHOH, -NHNH2, -SH, 할로아세트아미드(-NHC(O)CH2-hal, hal은 할로겐), 말레이미드(), 할로겐, 토실레이트(TsO-), 알데히드(-COH), 케톤(-COR, R은 C1-C10알킬, C6-C20아릴, C2-C20 헤테로아릴), 다이엔, , 또는 -OP(=O)(OH)2이고;
X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;
a6 및 b1는 각각 독립적으로 1 내지 10의 정수이고;
T는 하기 구조로부터 선택되는 약물이고;
w는 1 내지 10의 정수이다.
본 발명에 따른 자가-희생 기를 포함하는 화합물에 있어서, 상기 FG는 헤테로-디엘스 반응, 친핵치환 반응, 1,3-양극성고리 첨가반응, 논-알돌형 카보닐 반응, 탄소-탄소 다중 결합에 대한 첨가 반응, 산화반응 또는 클릭반응을 수행할 수 있는 기능기를 더 포함할 수 있다. 또한 상기 화학식 2의 FG는 B와 직접적인 연결이 가능한 기능기(thiol, haloacetamide, maleimide, halide, tosylate, aldehyde, sulfonate, phsphonic acid, ketone, 카르복시산, 아세틸렌, 아자이드, 아민, 하이드록시, 하이드록시 아민, 하이드라진 등)을 포함할 수 있다.
본 발명의 일 실시예에 따른 화학식 3의 화합물에 있어서, 보다 바람직하게 상기 FG는 -C≡CH 또는 -N3 일 수 있다.
상기 화학식 2 의 FG와 클릭반응 할 수 있는 작용기를 말단에 가진 리간드 또는 단백질과 상기 화학식 2의 화합물을 클릭반응시켜 상기 화학식 1의 화합물을 제조할 수 있다.
이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한되는 것은 아니다.
[제조예 1] 링커 L-1의 제조
화합물 L-1a의 제조
질소 대기 하 상온에서 2-(2-(2-chloroethoxy)ethoxy)ethanol (5 g, 29.65 mmol)을 DMF (N,N-Dimethylformamide) (10 mL)에 용해시킨 후 NaN3 (2.89 g, 44.47 mmol)을 첨가하고 100℃에서 16시간 동안 교반시켰다. 반응 완료 후 DCM (Dichloromethane) (25 mL X 3)과 brine (25 mL)을 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켜 화합물 L-1a를 수득하였다(4.96 g, 95.5 %).
1H NMR (400 MHz, CDCl3) δ 3.75-3.73 (m, 2H), 3.70-3.67 (m, 6H), 3.63-3.61 (t, J = 4.8 Hz, 2H), 3.41-3.39 (t, J = 4.8 Hz, 2H).
화합물 L-1b의 제조
질소 대기 하 상온에서 화합물 L-1a (3 g, 17.12 mmol)를 DMF (28 mL)에 용해시킨 후 0℃로 냉각하고 60% NaH (822 mg, 20.55 mmol)을 첨가하였다. 상기 혼합물에 프로파질 브로마이드 (2.6 mL, 34.25 mmol)를 20분간 적가하여 첨가한 후 상온으로 승온하여 2시간 동안 교반시켰다. 반응 완료 후 0℃로 냉각하고 증류수로 quenching 하였다. 증류수 (20 mL), EA (Ethyl acetate) (30 mL X 3)를 가하여 추출한 후 유기층을 모아 brine (20 mL)로 3회 세척하고 모은 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-1b 를 수득하였다(3.41 g, 93%).
1H NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.4 Hz, 2H), 3.72-3.67 (m, 10H), 3.41-3.38 (t, J = 5.2 Hz, 2H), 2.44-2.43 (t, J = 2.4 Hz, 1H).
화합물 L-1의 제조
질소 대기 하 상온에서 화합물 L-1b (3.41 g, 15.99 mmol)을 THF (Terahydrofuran) (30 mL), 증류수 (3 mL)에 용해시킨 후 트리페닐포스핀 (4.40 g, 16.79 mmol)을 첨가하고 상기 혼합물을 상온에서 16시간 교반하였다. 반응 완료 후 상기 혼합물의 용매를 감압 농축하여 제거하고 증류수 (30 mL), EA (30 mL)를 첨가한 후 교반하며 1N HCl용액으로 pH 2로 맞추고 추출하였다. 물층을 EA (30 mL)로 2회 더 세척한 후 2N NaOH용액으로 pH 10으로 맞추고 DCM (30 mL)로 10회 추출하였다. 유기층을 모아 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피시켜 목적화합물 L-1을 수득하였다(2.75 g, 92%).
1H NMR (400 MHz, CDCl3) δ 4.21 (d, J = 2.4 Hz, 2H), 3.72-3.53 (m, 8H), 3.53-3.51 (t, J = 4.8 Hz, 2H), 2.88-2.86 (t, J = 5.2 Hz, 2H), 2.44-2.43 (t, J = 2.4 Hz, 1H); EI-MS m/z: 188(M+).
[제조예 2] 링커 L-2의 합성
질소 대기 하 상온에서 화합물L-2a (50 g, 337.4 mmol)를 DCM (300 mL)에 용해시킨 후, DCM (200 mL)에 용해시킨 (Boc)2O (14.7 g, 67.47 mmol)을 적가 첨가하고 상온에서 13시간 교반하였다. 반응 완료 후 증류수 (500 mL)을 가하여 추출한 후 유기층을 모아 brine (150 mL)로 3회 세척하였다. 유기층을 무수황산 나트륨으로 건조시키고 여과한 후 감압 농축하여 화합물 L-2 를 수득하였다(14.4 g, 86%).
1H NMR (400 MHz, CDCl3) δ 5.14 (s, 1H), 3.64 - 3.50 (m, 8H), 3.35 - 3.31 (m, 2H), 2.89 - 2.87 (t, J = 5.6 Hz, 2H), 1.44 (s, 9H); EI-MS m/z: 249(M+).
[제조예 3] 링커 L-3의 합성
화합물 L-3a의 제조
질소 대기 하 상온에서 (5-chloro-1-pentynyl)trimethylsilane (5.0 g, 28.61 mmol)을 DMF (30 mL)에 용해시킨 후 NaN3 (2.05 g, 31.47 mmol)을 첨가하였다. 상기 혼합물을 50℃에서 5시간 동안 교반시킨 후, EA (500 mL)와 증류수 (200 mL)를 가하여 추출하여 수득한 유기층을 무수 Na2SO4으로 건조시켰다. 여과 후 감압 농축시켜 화합물 L-3a 를 수득하였다(5.18 g, 99 %).
1H NMR (400 MHz, CDCl3) δ 3.41 (t, J = 6.4 Hz, 2H), 2.35 (t, J = 6.4 Hz, 2H), 1.82 - 1.74 (m, 2H) 1.15 (s, 9H).
화합물 L-3의 제조
질소 대기 하 상온에서 화합물 L-3a (5.18 g, 28.61 mmol)를 THF (200 mL)과 증류수 (200 mL)에 용해시킨 후, 트리페닐포스핀 (9.38 g, 35.77 mmol)를 첨가하고, 50℃ 하에서 13시간 동안 교반시켰다. 반응 완료 후 다이에틸에테르 (500 mL)와 증류수 (100 mL)를 가하였다. 이렇게 수득한 유기층을 무수 Na2SO4으로 건조시키고, 여과 후 감압 농축시켜 화합물 L-3을 수득하였다(3.12 g, 71 %).
1H NMR (400 MHz, CDCl3) δ 2.80 (t, J = 6.8 Hz, 2H), 2.30 (t, J = 6.8 Hz, 2H), 1.69 - 1.61 (m, 2H) 1.35 (br, 2H), 1.15 (s, 9H).
[제조예 4] 링커 L-4의 합성
화합물 L-4a의 제조
질소 대기 하 0℃에서 트리에틸렌글리콜 (15.14 g, 100.87 mmol)을 THF (500 mL)에 용해시킨 후, NaH (60 %wt, 672 mg, 16.81 mmol)를 첨가한 후 5분 동안 교반시켰다. 상기 혼합물에 프로파질 브로마이드 (80% w/w in toluene, 2.5 g, 16.81 mmol)를 첨가 후 상온에서 5시간 동안 교반시켰다. 반응 완료 후 EA (150 mL), 증류수 (300 mL), 그리고 brine (100 mL)을 가하여 추출한 후, 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-4a를 수득하였다(1.63 g, 52 %).
1H NMR (400 MHz, CDCl3) δ 4.2 - 4.20 (m, 2H), 3.77 - 3.65 (m, 10H), 3.62 (t, J = 4.8 Hz, 2H), 2.50 (s, 1H), 2.44 (s, 1H).
화합물 L-4의 제조
질소 대기 하 0℃에서 화합물 L-4a (1.0 g, 5.31 mmol)을 아세톤 (20 mL)에 용해시킨 후, 존스시약(Jones reagent) (8 mL)를 첨가하고 3시간 동안 교반시켰다. 반응 완료 후 EA (150 mL)와 증류수 (50 mL)를 가하여 추출한 후 수득한 유기층을 무수 Na2SO4으로 건조시키고, 여과 후 감압 농축시켜 화합물 L-4를 수득하였다(903 mg, 84 %).
1H NMR (400 MHz, CDCl3) δ 4.25 - 4.17 (m, 4H), 3.82 - 3.68 (m, 8H), 2.45 (s, 1H).
[제조예 5] 링커 L-5의 합성
화합물 L-5a의 제조
질소 대기 하 상온 에서 z-Glu(OtBu)-OH (Z-L-glutamic acid 5-tert-butyl ester) (5g, 14.82mmol)과 4-디메틸아미노피리딘 (362 mg, 1.48 mmol)을 DCM (50 mL)에 용해시키고 메탄올 (2mL, 44.13mmol)을 넣고 상온에서 30분 동안 교반시켰다. 상기 혼합물을 0℃ 하에서 DCC (N,N'-dicyclohexylcarbodiimide) (3.05 g, 14.82 mmol)을 첨가 후 상온에서 15시간 동안 교반시켰다. 반응 완료 후 생성된 고체화합물을 셀라이트 필터를 이용하여 제거하고, 여액을 감압 농축시킨 후 잔사를 컬럼 크로마토그래피시켜 화합물 L-5a를 수득하였다(4.66 g, 90 %).
1H NMR (400 MHz, CDCl3) δ 7.40-7.28 (m, 5H), 5.46-5.36 (d, J = 7.2 Hz 2H), 5.10 (s, 2H), 4.40 (q, J = 8.0, 5.2 Hz, 1H), 3.75 (s, 3H), 2.42 - 2.24 (m, 2H), 2.20 - 2.08 (m, 1H), 2.02 - 1.88 (m, 1H); EI-MS m/z: 352(M+).
화합물 L-5b의 제조
질소 대기 하 0℃에서 화합물 L-5a (4.6 g, 13.10 mmol)을 DCM (50 mL)에 용해시킨 후 TFA (Trifluoroacetic acid) (5 mL)를 첨가한 후, 상온에서 2시간 30분 동안 교반시켰다. 반응 완료 후, 반응물을 감압 농축시키고 톨루엔 (20 mL)를 넣고 다시 감압 농축시켰다. 이러한 감압 농축 과정을 4번 정도 수행하여 과량으로 들어 있는 TFA을 제거하여 화합물 L-5b를 수득하였다(4.0 g, 99 %).
1H NMR (400 MHz, CDCl3) δ 7.40 - 7.30 (m, 5H), 5.47 (d, J = 7.2 Hz, 2H), 5.10 (s, 2H), 4.42 (q, J = 7.6 Hz, J = 5.6 Hz, 1H), 3.76 (s, 3H), 2.54 - 2.38 (m, 2H), 2.30 - 2.14 (m, 1H), 2.04 - 1.92 (m, 1H); EI-MS m/z: 296(M+).
화합물 L-5c의 제조
질소 대기 하 상온에서 화합물 L-5b (3.87 g, 13.1 mmol)를 THF (40 mL)에 용해시킨 후 화합물 L-2 (3.6 g, 14.41 mmol), HBTU (2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (6 g, 15.72 mmol), DIPEA (N,N-Diisopropylethylamine) (3.4 mL, 19.65 mmol)를 첨가한 후, 상온에서 밤새도록 교반시켰다. 반응 완료 후 THF을 감압 농축시켜 제거하고, EA (100 mL)와 증류수 (100 mL)를 가한 후 추출하여 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-5c를 수득하였다(3.8 g, 56 %).
1H NMR (400 MHz, CDCl3) δ 7.40 - 7.30 (m, 5H), 6.30 (br, 1H), 5.85 (br, 1H), 5.10 (s, 2H), 4.38 (q, J = 8.0, 3.2 Hz, 1H), 3.74 (s, 3H), 3.55 (s, 3H), 3.54 (t, J = 8.0 Hz, 4H), 3.58 - 3.36 (m, 2H), 3.34 - 3.22 (m, 2H), 3.0 (br, 1H), 2.36 - 2.26 (m, 2H), 2.26 - 2.16 (m, 1H), 2.06 - 1.96 (m, 1H); EI-MS m/z: 526(M+).
화합물 L-5의 제조
화합물 L-5c (3.8 g, 7.23 mmol)를 메탄올 (20 mL)에 용해시킨 후 5% Pd/C (2.3 g, 1.09 mmol)를 첨가하고 수소 가스를 주입시켜 상온에서 3시간 교반시켰다. 반응 완료 후 셀라이트 필터를 이용하여 Pd/C을 제거하고 여과액은 감압 농축시켜 화합물 L-5를 수득하였다(2.8g, quant.). EI-MS m/z: 392(M+).
[제조예 6] 링커 L-6 및 L-7의 합성
화합물 L-6a의 제조
질소 대기 하 상온에서 Fmoc-Lys(Boc)-OH (Fmoc=9-Fluorenylmethoxycarbonyl, 4 g, 8.54 mmol)를 DCM (40 mL)에 용해시킨 후, 0℃ 하에서 HOBT (1-Hydroxybenzotriazole) (1.27 g, 9.39 mmol), DIC (N,N'-diisopropylcarbodiimide) (1.45 mL, 9.39 mmol)를 첨가한 후 30분 동안 교반시켰다. 상기 혼합물에 메탄올 (0.35 mL, 8.54 mmol)을 넣고 상온에서 15시간 동안 교반시켰다. 반응 완료 후 DCM과 증류수를 가하여 추출한 후 유기층을 무수 Na2SO4으로 건조시키고 여과하여 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-6a를 수득하였다(3.55 g, 86 %).
1H NMR (400 MHz, CDCl3) δ 7.88 - 7.64 (m, 4H), 7.42-7.26 (m, 4H), 6.80 - 6.76 (m, 1H), 4.30 - 4.15 (m, 3H), 4.00 - 3.84 (m, 1H), 3.58 (s, 3H), 2.95 - 2.82 (m, 2H), 1.67 - 1.47 (m, 2H), 1.38 - 1.15 (m, 13H); EI-MS m/z: 483(M+).
화합물 L-6b의 제조
질소 대기 하 상온에서 화합물 L-6a (3.45 g, 7.15 mmol)를 DCM (25 mL)에 용해시킨 후 diethylamine (20 mL)를 넣고 상온에서 교반 후 감압 농축시켰다. 0℃ 하에서 상기 반응용액에 4M HCl in Dioxane (17.8 mL)를 첨가한 후 EA를 이용하여 고체화시켜 화합물 L-6b 를 수득하였다(2 g, 95 %).
1H NMR (400 MHz, DMSO-d6) δ 8.49 (br, 3H), 6.80-6.76 (m, 1H), 3.95 (t, J = 6.4 Hz, 1H), 3.71 (s, 3H), 2.88 - 2.83 (m, 2H), 1.77 - 1.71 (m, 2H), 1.40-1.19 (m, 13H); EI-MS m/z: 261(M+).
화합물 L-6c의 제조
질소 대기 하 상온에서 3-bromopropionic acid (10 g, 65.37 mmol)를 아세토니트릴 (100 mL)에 용해시킨 후 NaN3 (4.7 g, 71.91 mmol)를 첨가하고 50℃에서 12시간 동안 교반하였다. 반응 완료 후, 상기 혼합물에 에틸아세테이트 (500 mL), 증류수 (300 mL), 그리고 2N HCl수용액 (50 mL)를 가하여 추출하였다. 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켜 화합물 L-6c를 수득하였다(5.1 g, 68 %).
1H NMR (400 MHz, CDCl3) δ 3.60 (t, J = 6.4 Hz, 2H), 2.65 (t, J = 6.4 Hz, 2H).
화합물 L-6d의 제조
질소 대기 하 상온에서 화합물 L-6b (1.8 g, 6.13 mmol)와 화합물 L-6c (1.06 g, 9.19 mmol)를 DMF (10 mL)에 용해시켰다. 0℃ 하에서 상기 혼합물에 PyBOP(benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate) (4.78 g, 9.19 mmol), DIPEA (1.6 mL, 9.19 mmol)를 첨가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후 혼합물은 EA 와 증류수를 가하여 추출하였다. 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 시켜 화합물 L-6d를 수득하였다(1.57 g, 72 %).
1H NMR (400 MHz, CDCl3) δ 6.36-6.33 (m, 1H), 4.68 - 4.56 (m, 2H), 3.76 (s, 3H), 3.70 - 3.56 (m, 2H), 3.14-3.04 (m, 2H), 2.45 (t, J = 6.4 Hz, 2H), 1.92 - 1.82 (m, 1H), 1.76 - 1.66 (m, 1H), 1.58 - 1.26 (m, 13H); EI-MS m/z: 358(M+).
화합물 L-6e의 제조
질소 대기 하 상온에서 화합물 L-6d (2.9 g, 8.11 mmol)을 1,4-다이옥산 (30 mL), 증류수 (30 mL)에 용해시킨 후 0℃ 하에서 LiOH (340.5 mg, 8.11 mmol)를 첨가하고 상온에서 90분 동안 교반시켰다. 반응 완료 후 상기 혼합물에 2N HCl 수용액을 첨가하여 pH를 2~3으로 맞춘 후 DCM과 증류수를 가하여 추출하였다. 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켜 화합물 L-6e를 수득하였다(2.7 g, 99 %).
1H NMR (400 MHz, CDCl3) δ 6.82 - 6.78 (m, 1H), 4.78 - 4.58 (m, 2H), 3.71 - 3.56 (m, 2H), 3.14 - 3.08 (m, 2H), 2.58 - 2.44 (m, 2H), 1.96 - 1.74 (m, 2H), 1.58 - 1.36(m, 13H); EI-MS m/z: 344(M+).
화합물 L-6의 제조
질소 대기 하 상온에서 화합물 L-6e (56 mg, 0.16 mmol)을 DMF (2 mL)에 용해시킨 후 EDCI (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) (37.5 mg, 0.20 mmol), NHS (N-hydroxysuccinimide) (22.5 mg, 0.20 mmol)을 첨가한 후 상온에서 2시간 30분동안 교반시켰다. 반응 완료 후 화합물 L-6 는 정제 없이 바로 다음 반응에 사용하였다. EI-MS m/z: 441(M+).
화합물 L-7의 제조
질소 대기 하 0℃에서 화합물 L-6e (1.44 g, 4.20 mmol)와 제조예 3에서 제조한 L-3 (782 mg, 5.04 mmol)을 DMF (20 mL)에 용해시킨 후 DIPEA (1.10 mL, 6.29 mmol)과 PyBOP (3.27 g, 6.29 mmol)을 첨가하였다. 상기 혼합물을 상온에서 3시간 동안 교반시켰다. 반응 완료 후 EA (200 mL)와 증류수 (100 mL)를 가하여 추출하고 여과하여 수득한 유기층을 무수 Na2SO4으로 건조 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-7을 수득하였다(1.60 g, 80 %). EI-MS m/z: 481(M+).
[제조예 7] MMAF의 합성
MMAF는 US61/483,698, ChemPharmBull, 1995. 43(10). 1706-1718, US7423116, US7498298, 그리고 WO2002/088172에서 서술한 바와 유사한 방법으로 제조하였다.
[제조예 8] 리간드-링커 (L-8) 및 (L-9)의 제조
화합물 L-8a의 제조
US 20070276018에 기재된 유사한 방법으로 화합물 L-8a를 수득하였다(7.1 g, 88 %). EI-MS m/z: 505(M+).
화합물 L-8b의 제조
질소 대기 하 상온에서 화합물 L-8a (3.6 g, 7.1 mmol), 제조예 5에서 제조된 L-5 (2.8 g, 7.15 mmol)을 DMF (10 mL)에 용해시킨 후, HBTU (3.3 g, 8.58 mmol), DIPEA (1.87 mL, 10.73 mmol)를 첨가 한 후 상온에서 15시간 동안 교반시켰다. 반응 완료 후 EA와 물을 가하여 추출하고, 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-8b를 수득하였다(4.7 g, 75 %). EI-MS m/z: 878 (M+).
화합물 L-8c의 제조
질소 대기 하 0℃에서 화합물 L-8b (1.76 g, 1.94 mmol)를 DCM (50 mL)에 용해시킨 후 TFA (5 mL)을 적가하였다. 상기 혼합물을 상온에서 30분 동안 교반시켰다. 반응 완료 후 톨루엔 (20 mL)을 첨가하여 감압 농축시켜 TFA을 제거하였다. 소량의 메탄올과 과량의 다이에틸에테르를 가하여 재결정을 수행한 후 생성된 고체 화합물을 여과하고 다이에틸에테르로 고체 화합물을 씻어 화합물 L-8c 를 수득하였다(1.5 g, 85 %). EI-MS m/z: 682(M+).
화합물 L-8d의 제조
질소 대기 하 상온에서 제조예 6에서 수득한 L-6 (71.8 mg, 0.16 mmol)에 TEA (22 μL, 0.16 mmol)과 화합물 L-8c (92.6 mg, 0.14 mmol)를 첨가하고 2.5시간 동안 교반시켰다. 반응 완료 후 상기 혼합물을 감압 농축시켜 EA와 물을 가하여 추출한 후, 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-8d 을 수득하였다(44.8 mg, 33 %). EI-MS m/z: 1008(M+).
화합물 L-8e의 제조
0℃ 하에서 화합물 L-8d (200 mg, 0.20 mmol)를 1,4-다이옥산 (4 mL), 증류수 (4 mL)에 용해시키고 LiOH (21 mg, 0.50 mmol)를 첨가한 후, 상온에서2.5시간 동안 교반시켰다. 반응 완료 후 반응 용액을 0℃ 로 내리고 2N 염산 수용액을 이용하여 pH를 2~3으로 맞추었다. 상기 혼합액을 감압 농축시켜 물을 최대한 제거한 후 다음 반응을 수행하였다. EI-MS m/z: 897(M+).
화합물 L-8의 제조
0℃ 하에서 화합물 L-8e에 DCM (5 mL)를 넣고 TFA (1 mL)를 적가한 후 상온에서 2시간 동안 교반시켰다. 반응 완료 후 반응 용액은 감압 농축시켜 prep-HPLC를 이용하여 분리 정제 하여 화합물 L-8 를 수득하였다(155.9 mg, 2steps 69%/L-8e to L-8). EI-MS m/z: 797(M+).
화합물 L-9b의 제조
제조예 8의 화합물 L-8b의 제조방법과 유사한 방법으로 화합물 L-9b를 제조하였다(수율 62.4%). EI-MS m/z: 1010(M+).
화합물 L-9c의 제조
제조예 8의 화합물 L-8c의 제조방법과 유사한 방법으로 화합물 L-9c를 제조하였다(정량적인 수율). EI-MS m/z: 814(M+).
화합물 L-9d의 제조
제조예 8의 화합물 L-8d의 제조방법과 유사한 방법으로 화합물 L-9d를 제조하였다(수율 33%). EI-MS m/z: 1130(M+).
화합물 L-9e의 제조
제조예 8의 화합물 L-8e의 제조방법과 유사한 방법으로 화합물 L-9e를 제조하였다. EI-MS m/z: 1030(M+).
화합물 L-9의 제조
제조예 8의 화합물 L-8의 제조방법과 유사한 방법으로 화합물 L-9를 제조하였다(수율 40%). EI-MS m/z: 930 (M+).
[제조예 9] 리간드-링커 (L-10)의 제조
화합물 L-10a의 제조
질소 대기 하 상온에서 제조예 8에서 제조된 화합물 L-8b (260 mg, 0.29 mmol)에 6N 염산 (7 mL)를 첨가한 후, 50℃로 30분 동안 가열하였다. 감압 농축 후 6N NaOH로 pH 10을 맞춘 후 20분 동안 교반시켰다. 반응 완료 후 감압 농축시켜 prep HPLC 로 분리 정제하여 화합물 L-10a 를 수득하였다(84 mg, 50 %). EI-MS m/z: 572(M+).
화합물 L-10b의 제조
질소 대기 하 상온에서 4-pentynoic acid (0.5 g, 5.09 mmol)을 THF (10 mL)에 용해시킨 후 N-hydroxysuccimide (0.59 g, 5.09 mmol)을 첨가하였다. 상기 혼합물을 0℃로 냉각 후 DCC (1.26 g, 6.11 mmol)을 첨가한 후 1시간 동안 상온에서 교반시켰다. 반응 완료 후 침전물을 여과한 후 여액을 감압 농축시켜 수득한 물질 (57 mg, 0.29 mmol)과 화합물 L-10a (84 mg, 0.15 mmol)을 DMSO (3 mL)에 용해시킨 후 TEA (62 μL, 0.44 mmol)을 첨가한 후 상온에서 2시간 동안 교반시켰다. 반응 완료 후 prep HPLC로 분리 정제하여 화합물 L-10b 를 수득하였다(25 mg, 26 %). EI-MS m/z: 652(M+).
화합물 L-10c의 제조
질소 대기 하 상온에서 화합물 L-10b (25 mg, 0.03 mmol)와 제조예 6에서 제조된 화합물L-7 (17.2 mg, 0.04 mmol)을 EtOH (3 mL), 증류수 (0.5 mL)에 용해시킨 후 1M Sodium ascorbate (64 μL, 0.06 mmol), 0.1M CuSO4 (128 μL, 0.01 mmol)를 상온에서 넣어 준 후 17시간 동안 교반시켰다. 반응이 완료된 후 반응 혼합물 에 질소 대기 하 0℃에서 테트라부틸 암모늄플루오라이드 (1M in THF) (60 μL, 0.06 mmol)를 첨가하고 30분 교반시켰다. 반응 완료 후 prep-HPLC를 이용하여 분리 정제하여 화합물 L-10c을 수득하였다(8.0 mg). EI-MS m/z: 1061(M+).
화합물 L-10의 제조
질소 대기 하 0℃에서 화합물 L-10c (8 mg)을 DCM (1.0 mL)에 용해시킨 후 TFA (0.2 mL)를 첨가한 후, 상온에서 1.5시간 동안 교반시켰다. 반응 완료 후 감압 농축시켜 화합물 L-10을 수득하였다(12 mg). EI-MS m/z: 961(M+).
[제조예 11] 링커 L-11-1 및 L-11-2의 제조
화합물 L-11a의 제조
질소 대기 하 상온에서 Hexaethylene glycol (5.0 g, 17.71 mmol)를 무수 DCM (dichloromethane) (178 mL)에 용해시킨 후, KI (249 mg, 1.17 mmol), Ag2O (4.92g, 21.25 mmol), p-TsCl (p-Toluenesulfonyl chloride) (3.71 g, 19.48 mmol)을 적가하고 상온에서 밤새도록 교반하였다. 반응 완료 후 셀라이트 필터를 이용하여 Ag2O를 제거 한 후 여과된 용액을 감압 농축 후 잔사를 컬럼 크로마토그래피시켜 화합물 L-11a를 수득하였다(5.98 g, 73 %).
1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.4Hz, 2H), 7.35 (d, J = 8.0Hz, 2H), 4.16 (t, J = 4.8 Hz, 2H), 3.71 - 3.58 (m, 22H), 2.88 (brs, 1H), 2.45 (s, 3H).
화합물 L-11-1의 제조
질소 대기 하 상온에서 화합물 L-11a (5.98 g, 13.70 mmol)를 DMF (30 mL)에 용해시킨 후, NaN3 (1.34 g, 20.55 mmol)을 적가하고 110℃에서 1시간 교반하였다. 반응 완료 후 고체 화합물을 필터하고 여과된 용액을 감압 농축 후, 잔사를 컬럼 크로마토그래피시켜 화합물 L-11을 수득하였다(4.1 g, 91 %).
1H NMR (400 MHz, CDCl3) δ 3.72 - 3.60 (m, 22H), 3.39 (t, J = 4.8 Hz, 2H) 2.78 (brs, 1H).
화합물 L-11b의 제조
질소 대기 하 0 ℃에서 헥사에틸렌 글리콜 (15.0 g, 77.23 mmol)을 DCM (400 mL)에 용해시킨 후, KOH (35.0 g, 617.8 mmol)과 p-TsCl (29.5 g, 154.5 mmol)를 첨가한 후 밤새도록 상온에서 교반시켰다. 반응 완료 후 DCM (500 mL), 증류수 (200 mL), 그리고 brine (100 mL)을 가하여 추출한 후, 유기층을 무수 Na2SO4로 건조시키고 여과 후 감압 농축시킨 후 다음 반응에 정제 없이 바로 사용하였다.
1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.1 Hz, 4H), 7.30 (d, J = 8.1 Hz, 4H), 4.18 (t, J = 4.8 Hz, 4H) 3.70 (t, J = 4.8 Hz, 4H), 3.64 (s, 8H), 3.55 (s, 8H), 2.42 (s, 6H).
화합물 L-11c의 제조
질소 대기 하 상온에서 혼합된 화합물L-11b (1.4 g)를 DMF (10 mL)에 용해시킨 후 NaN3 (0.2 g)을 첨가하고 100 ℃에서 15시간 동안 교반시켰다. 반응 완료 후 반응용액을 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-11c를 수득하였다(510 mg).
1H NMR (400 MHz, CDCl3) δ 3.69 - 3.67 (m, 20H), 3.39 (t, J = 5.2 Hz, 2H).
화합물 L-11d의 제조
질소 대기 하 상온에서 화합물 L-11c (510 mg, 1.53 mmol)를 THF (4 mL), 증류수 (2 mL)와 다이에틸에테르 (2 mL)에 용해시킨 후, 트리페닐포스핀 (423 mg, 1.61 mmol)를 첨가하고 14시간 동안 교반시켰다. 반응 완료 후 1,4-dioxane (2 mL)와 증류수 (3mL)에 용해시킨 (Boc)2O (670 mg, 3.07 mmol)을 적가 첨가하고 NaHCO3 (387 mg, 4.60 mmol)을 첨가한 후 상온에서 3시간 교반한 후 반응용액을 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-11d를 수득하였다(360 mg, 58 %).
1H NMR (400 MHz, CDCl3) δ 5.11 (brs, 1H), 3.69 - 3.63 (m, 18H), 3.54 (t, J = 4.8 Hz, 2H), 3.39 (t, J = 4.8 Hz, 2H), 3.32 - 3.31 (m, 2H), 1.45 (s, 9H).
화합물 L-11-2의 제조
수소 대기 하 상온에서 화합물 L-11d (360 mg, 0.89 mmol)를 에탄올 (10 mL)에 용해시킨 후, 10% Pd/C (94 mg, 0.89 mmol)를 첨가하고 5시간 동안 교반시켰다. 반응 완료 후 셀라이트 필터 후 여과된 용액을 감압 농축시켜 화합물 L-11-2를 수득하였다(315 mg, 94 %).
1H NMR (400 MHz, CDCl3) δ 5.19 (brs, 1H), 3.67-3.50 (m, 20H), 3.32 - 3.31 (m, 2H), 2.88 - 2.79 (m, 2H), 1.45 (s, 9H).
[제조예 12] 링커 L-12의 제조
화합물 L-12a의 제조
제조예 11의 화합물 L-11a의 제조방법과 유사한 방법으로 화합물 L-12a를 제조하였다.
1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8.8Hz, 2H), 7.34 (d, J = 8.0Hz, 2H), 4.16 (t, J = 4.8 Hz, 2H), 3.70 (t, J = 4.8 Hz, 4H), 3.58 (s, 4H), 3.56 (t, J = 5.0 Hz, 2H), 2.44 (s, 3H), 2.32 (brs, 1H).
화합물 L-12b의 제조
제조예 11의 화합물 L-11-1의 제조방법과 유사한 방법으로 화합물 L-12b를 제조하였다.
1H NMR (400 MHz, CDCl3) δ 3.75 - 3.69 (m, 8H), 3.62 (t, J = 4.8 Hz, 2H), 3.41 (t, J = 4.8 Hz, 2H), 2.41 (brs, 1H).
화합물 L-12c의 제조
제조예 11의 화합물 L-11a의 제조방법과 유사한 방법으로 화합물 L-12c를 제조하였다.
1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.8Hz, 2H), 7.35 (d, J = 8.0Hz, 2H), 4.17 (t, J = 4.8 Hz, 2H), 3.70 (t, J = 4.8 Hz, 2H), 3.64 (t, J = 4.8 Hz, 2H), 3.34 (t, J = 4.8 Hz, 2H), 2.45 (s, 3H).
화합물 L-12d의 제조
제조예 11의 화합물 L-11-1의 제조방법과 유사한 방법으로 화합물 L-12d를 제조하였다.
1H NMR (400 MHz, CDCl3) δ 3.68-3.64 (m, 32H), 3.38 (t, J = 4.8 Hz, 4H). EI-MS m/z: 487(M+Na).
화합물 L-12e의 제조
질소 대기 하 상온에서 화합물 L-12d (1.22 g, 2.63 mmol)을 Ether (5 mL), THF (10 mL), 증류수 (5 mL)에 용해시킨 후 트리페닐포스핀 (758 mg, 2.89 mmol)을 첨가하고 상기 혼합물을 상온에서 밤새도록 교반하였다. 반응 완료 후 상기 혼합물의 용매를 감압 농축하여 THF와 Ether를 제거하고 1,4-dioxane (6 mL)에 녹인 뒤 NaHCO3 (441.2 mg, 5.25 mmol), Boc2O (678 mg, 3.15 mmol)을 적가시킨 후 상온에서 6시간 교반시켰다. 반응 완료 후EA (50 mL), 증류수 (20 mL)를 가하고 추출한 후 유기층을 모아 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피시켜 화합물 L-12e를 수득하였다(1.0 g, 79 %). EI-MS m/z: 538(M+).
화합물 L-12의 제조
화합물 L-12e (1.0 g, 1.86 mmol)를 에탄올 (5 mL)에 용해시킨 후 5% Pd/C (435 mg, 0.204 mmol)를 첨가하고 수소 가스를 주입시켜 상온에서 1시간 교반시켰다. 반응 완료 후 셀라이트 필터를 이용하여 Pd/C을 제거하고 여과액은 감압 농축시켜 화합물 L-12을 수득하였다(909.3 mg, 96 %).
[제조예 13] 링커 L-13-1 및 L-13-2의 제조
화합물 L-13a의 제조
제조예 5의 화합물 L-5c의 제조방법과 유사한 방법으로 화합물 L-13a를 제조하였다(수율 80 %). EI-MS m/z: 790(M+).
화합물 L-13-1의 제조
제조예 5의 화합물 L-5의 제조방법과 유사한 방법으로 화합물 L-13-1를 제조하였다(수율 98 %). EI-MS m/z: 656(M+).
화합물 L-13b의 제조
제조예 5의 화합물 L-5c의 제조방법과 유사한 방법으로 화합물 L-13b를 제조하였다(수율 98 %). EI-MS m/z: 658(M+).
화합물 L-13-2의 제조
제조예 5의 화합물 L-5의 제조방법과 유사한 방법으로 화합물 L-13-2를 제조하였다(수율 99 %). EI-MS m/z: 524(M+).
[제조예 14] 리간드-링커 L-14의 제조
화합물 L-14a의 제조
제조예 8의 화합물 L-8b의 제조방법과 유사한 방법으로 화합물 L-9b를 제조하였다(수율 53 %). EI-MS m/z: 1046(M+).
화합물 L-14의 제조
제조예 8의 화합물 L-8c의 제조방법과 유사한 방법으로 화합물 L-14를 제조하였다(수율 99 %). EI-MS m/z: 946(M+).
[제조예 15] 링커 L-16의 제조
화합물 L-16a의 제조
Nitroethane (7.5 g, 100 mmol)를 DME (1,2-dimethoxyethane) (20 mL)에 용해시킨 후 tetramethylammonium hydroxide pentahydrate (540 mg)을 첨가하고 75℃에서 10분간 후 t-butyl acrylate (30.7 mL, 210 mmol)를 dropwise 한 다음 tetramethylammonium hydroxide pentahydrate (540 mg)을 첨가한 후 30분 교반시켰다. 실온에서 tetramethylammonium hydroxide pentahydrate (540 mg)를 추가한 후, 반응용액을 감압 농축하고 EA (200 mL)와 0.1N HCl solution (50 mL)를 이용 하여 추출 후 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켜 화합물 L-16a를 수득하였다(30.9 g, 93.3 %).
화합물 L-16b의 제조
화합물 L-16a (3.0 g, 9.05 mmol)를 에탄올 (20 mL)에 용해시킨 후 Raney Ni을 첨가하고 수소 가스를 주입시켜 상온에서 3시간 교반시켰다. 반응 완료 후 셀라이트 필터를 이용하여 Raney Ni을 제거하고 여과액은 감압 농축시켜 화합물 L-16b를 수득하였다(2.72g, quant.). EI-MS m/z: 302(M+).
화합물 L-16c의 제조
질소 대기 하 상온에서 화합물 L-16b (1.5 g, 4.98 mmol)를 DMF (10 mL)에 용해시킨 후 6-(Fmoc-amino)hexanoic acid (1.76 g, 4.98 mmol, CAS No. 88574-06-5), PyBOP (3.11 g, 5.97 mmol), DIPEA (1.3 mL, 7.46 mmol)를 첨가한 후, 상온에서 5시간 교반시켰다. 반응 완료 후 EA (20 mL)와 증류수 (20 mL)를 가한 후 추출하여 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-16c를 수득하였다(2.66 g, 84 %).
1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.40 (t, J =7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 5.79 (s, 1H), 5.30 (s. 1H), 4.39 (d, J = 7.2 Hz, 2H), 4.21 (t, J = 7.2 Hz, 1H), 3.20 (q, J = 6.0, 5.2 Hz, 1H), 5.10 (s, 2H), 4.38 (q, J = 8.0, 3.2 Hz, 1H), 2.24 (t, J = 7.6 Hz, 4H), 2.12 - 2.04 (m, 4H), 1.92 - 1.85 (m, 2H), 1.66 - 1.59 (m, 2H), 1.55 - 1.51 (m, 2H), 1.43 (s, 18H), 1.36 - 1.32 (m, 2H), 1.29 (s, 3H); EI-MS m/z: 637(M+).
화합물 L-16d의 제조
질소 대기 하 0℃에서 화합물 L-16c (2.66 g, 4.18 mmol)을 DCM (20 mL)에 용해시킨 후 TFA (5 mL)를 첨가한 후, 상온에서 4시간 30분 동안 교반시켰다. 반응 완료 후, 반응물을 감압 농축시키고 톨루엔 (20 mL)를 넣고 다시 감압 농축시켰다. 이러한 감압 농축 과정을 4번 정도 수행하여 과량으로 들어 있는 TFA을 제거하여 화합물 L-16d를 수득하였다(1.77 g, 81 %).
1H NMR (400 MHz, DMSO-d6) δ 12.02 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H) 7.20 (s, 1H), 4.28 (d, J = 6.8 Hz, 2H), 4.20 (t, J = 7.2 Hz, 1H), 2.95 (q, J = 8.0, 6.4 Hz, 2H), 2.16 - 2.10 (m, 4H), 2.04 - 2.01 (m, 4H), 1.73 - 1.66 (m, 2H), 1.46 - 1.37 (m, 4H), 1.26 - 1.16 (m, 2H), 1.08 (s, 3H); EI-MS m/z: 525(M+).
화합물 L-16의 제조
질소 대기 하 상온에서 화합물 L-16d (500 mg, 0.95 mmol)을 THF (5 mL)에 용해시킨 후 DCC (432.6 mg, 2.10 mmol), NHS(N-hydroxysuccinimide) (241.3 mg, 2.10 mmol)을 첨가한 후 상온에서 밤새도록 교반시켰다. 반응 완료 후 화합물을 EA (1 mL), Ether (10mL)를 넣고 셀라이트 필터를 이용하여 여과 후 여과액을 감압 농축하여 L-16를 수득하였다(526 mg, 77 %). EI-MS m/z: 719(M+).
[제조예 16] 리간드-링커 L-18과 L-19의 제조
화합물 L-18a의 제조
화합물 L-16 및 화합물 L-14를 이용하여 상기 제조예 8의 화합물 L-8d의 제조방법과 유사한 방법으로 화합물 L-18a를 제조하였다(수율 52 %). EI-MS m/z: 2381 (M+).
화합물 L-18b의 제조
질소 대기 하에서 화합물 L-18a (261.3 mg, 0.1 mmol)를 DMF (4 mL)에 용해시킨 후 Piperidine (0.06 mL, 0.6mmol)을 적가하였다. 상기 혼합물을 상온에서 4시간 동안 교반시켰다. 반응 완료 후 메탄올 (5 mL)와 EA (15 mL)을 첨가하여 갈색 고체 화합물을 석출 시켜 여과 하였다. 여과된 갈색 고체 화합물을 EA와 Ether를 이용하여 씻어 주어 화합물 L-18b를 수득하였다(172.5 mg, 80 %). EI-MS m/z: 2484(M+).
화합물 L-18c의 제조
화합물 L-18b 및 화합물 L-6을 이용하여 상기 제조예 8의 화합물 L-8d의 제조방법과 유사한 방법으로 화합물 L-18c를 제조하였다. EI-MS m/z: 2484(M+).
화합물 L-18의 제조
화합물 L-18c를 이용하여 상기 제조예 8의 화합물 L-8의 제조방법과 유사한 방법으로 화합물 L-18을 제조하였다(30 %). EI-MS m/z: 2164 (M+).
화합물 L-19a의 제조
화합물 L-16 및 화합물 L-9c를 이용하여 상기 화합물 L-18a의 제조방법과 유사한 방법으로 화합물 L-19a를 제조하였다(40 %). EI-MS m/z: 2117 (M+).
화합물 L-19b의 제조
화합물 L-19a를 이용하여 상기 화합물 L-18b의 제조방법과 유사한 방법으로 화합물 L-19b를 제조하였다(57%; EI-MS m/z: 1894 (M+).
화합물 L-19c의 제조
화합물 L-19c 및 화합물 L-6을 이용하여 상기 화합물 L-18c의 제조방법과 유사한 방법으로 화합물 L-19c를 제조하였다(63 %). EI-MS m/z: 2219(M+).
화합물 L-19의 제조
화합물 L-19c를 이용하여 화합물 L-18d의 제조방법과 유사한 방법으로 화합물 L-19을 제조하였다(20 %). EI-MS m/z: 1899 (M+).
[제조예 17] 링커 L-20의 제조
화합물 L-20a의 제조
질소 대기 하 0℃에서 4-fluoro-3-nitrobenzoic acid (500 mg, 2.70 mM)와 N-Boc-ethylenediamine (433 mg, 2.70 mM)을 DCM (10mL)에 용해시킨 후 EDCHCl (1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) (621 mg, 3.24 mM)을 첨가하고 같은 온도에서 2시간 동안 교반시켰다. 반응 완료 후, DCM (100 mL), 증류수 (100 mL), 그리고 brine (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-20a를 수득하였다(814 mg, 97 %).
1H NMR (400 MHz, CD3OD) δ 8.58 (m, 1H), 8.20 (m, 1H), 7.53 (m, 1H), 3.45 (t, J = 6.0 Hz, 2H), 3.27 (t, J = 6.0 Hz, 2H), 1.41 (s, 9H).
화합물 L-20b의 제조
ACN (6mL)에 용해시킨 화합물 L-20a (375 mg, 1.14 mM) 용액을 0℃로 냉각하고 4M-HCl/dioxane (2mL)를 적가하여 1시간 동안 교반시켰다. 반응 완료 후, 감압 농축하고 건조하여 화합물 L-20b를 수득하였다(302 mg, 99 %).
1H NMR (400 MHz, CD3OD) δ 8.64 (dd, J = 6.8, 2.0 Hz, 1H), 8.24 (m, 1H), 7.56 (dd, J = 10.8, 8.8 Hz, 1H), 3.68 (t, J = 6.0 Hz, 2H), 3.18 (t, J = 6.0 Hz, 2H).
화합물 L-20의 제조
질소 대기 하 0℃에서 화합물 L-20b (302 mg, 1.14 mM)과 L-6e (377mg, 1.14 mM)을 DMF (6mL)에 용해시킨 후 TEA (Triethylamine) (320 μl, 2.29 mM), EDCHCl (220 mg, 1.37 mM)을 차례로 첨가하고 같은 온도에서 2시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), 증류수 (100 mL), 그리고 brine (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-20을 수득하였다(417 mg, 69 %). EI-MS m/z: 553(M+).
[제조예 18] 리간드-링커 L-21의 제조
화합물 L-21b의 제조
질소 대기 하 0℃에서 'J. AM. CHEM. SOC. 2010, 132, 12711-12716'에 기재된 유사한 방법으로 합성한 화합물 L-21a (166 mg, 0.172 mM)와 화합물 L-20 (57 mg, 0.103 mM)를 DCM (2 mL)에 용해시킨 후 DIPEA (Diisopropylamine) (60 μL, 0.34 mM)를 첨가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), 증류수 (100 mL), 그리고 brine (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-21b를 수득하였다(87 mg, 56 %). EI-MS m/z: 1498(M+).
화합물 L-21의 제조
DCM (1.5 mL)에 용해시킨 화합물 L-21b (32 mg, 0.021 mM)을 0℃로 냉각 후, TFA (0.5 mL)를 천천히 적가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후, 감압 농축하고 건조하여 화합물 L-21를 수득하였다(26.2 mg, 99 %). EI-MS m/z: 1498 (M+), 615 (M+/2).
[제조예 19] 링커 L-22의 제조
화합물 L-22a의 제조
질소 대기 하 상온에서 2,4-dimethyl-1-nitrobenzene (4.0 g, 26.46 mmol)을 증류수 (100 mL)에 용해시킨 후 KMnO4 (21 g, 132.30 mmol)을 첨가하고 110℃에서 28 시간 동안 교반시켰다. 반응 완료 후 필터하여 여과된 용액에 2N HCl수용액 (300 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 L-22a를 수득하였다(4.42 g, 81 %).
1H NMR (400 MHz, DMDO-d6) δ 8.32 (s, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.07 (d J = 8.4 Hz, 1H).
화합물 L-22b의 제조
질소 대기 하 상온에서 화합물 L-22a (4.4 g, 20.84 mmol)을 메탄올 (50 mL)에 용해시킨 후 H2SO4 (2 mL)을 첨가하고 75℃에서 3시간 동안 교반시켰다. 반응 완료 후 용액을 감압 농축시킨 후 EA (50 0mL)와 NaHCO3 수용액 (300 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 L-22b를 수득하였다(2.0 g, 40 %).
1H NMR (400 MHz, CDCl3) δ 8.45 (s, 1H), 8.29 (d, J = 7.2 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 3.99 (s, 3H), 3.96 (s, 3H).
화합물 L-22c의 제조
질소 대기 하 상온에서 화합물L-22b (2.0 g, 8.36 mmol)을 THF (50 mL)에 용해시킨 후 THF에 용해 된 LiBH4 (17 mL, 33.45 mmol)을 첨가하고 24시간 동안 교반시켰다. 반응 완료 후 메탄올 (0.5 mL)를 첨가하고 EA (500 mL)와 2N HCl수용액 (200 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 L-22c를 수득하였다(751 mg, 51 %).
1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.4 Hz, 1H), 7.74 (s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 5.00 (d, J = 6.0 Hz, 2H), 4.84 (d, J = 4.8 Hz, 2H), 2.53(t, J = 6.4 Hz, 1H), 1.91 (t, J = 5.6 Hz, 1H).
화합물 L-22d의 제조
질소 대기 하 0℃ 에서 화합물 L-22c (750 mg, 4.09 mmol)을 THF (20 mL)에 용해시킨 후 TBDMS-Cl (tert-butyldimethylsilyl chloride) (1.54 g, 10.24 mmol)와 imidazole (697 mg, 10.24 mmol)을 첨가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후 EA (500 mL)와 증류수 (200 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 L-22d를 수득하였다(1.2 g, 75 %).
1H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 8.4 Hz, 1H), 7.88 (s, 1H), 7.36 (d, J = 8.4 Hz, 1H), 5.11 (s, 2H), 4.82 (s, 2H), 0.97 (s, 9H), 0.95 (s, 9H), 0.15 (s, 6H), 0.13 (s, 6H).
화합물 L-22의 제조
수소 대기 하 상온에서 화합물 L-22d (1 g, 2.43 mmol)를 메탄올 (25 mL)에 용해시킨 후, 10% Pd/C (78 mg, 0.73 mmol)를 첨가하고 1시간 동안 교반시켰다. 반응 완료 후 셀라이트 필터 후 여과된 용액을 감압 농축시켜 화합물 L-22를 수득하였다(578 mg, 62 %).
1H NMR (400 MHz, CDCl3) δ 7.05 (d, J = 7.6 Hz, 1H), 6.99 (s, 1H), 6.63 (d, J = 8.0 Hz, 1H), 4.67 (s, 2H), 4.61 (s, 2H), 4.15 (br, 2S), 0.92 (s, 9H), 0.89 (s, 9H), 0.07 (s, 12H).
[제조예 20] 리간드-링커 L-23의 제조
화합물 L-23a의 제조
WO2009/026177와 J.
Med
.
Chem
. 2015, 58, 30943103에 기재된 유사한 방법으로 화합물 L-23a를 수득하였다.
화합물 L-23b의 제조
질소 대기 하 0℃에서 화합물 L-23a (90 mg, 0.097 mM)과 N-Benzylethylenediamine (17.5 mg, 0.116 mM)을 DMF (3 mL)에 용해시킨 후 HBTU (48 mg, 0.126 mM), DIPEA (52 μl, 0.29 mM)을 순차적으로 첨가하고 상온에서 2시간 동안 교반시켰다. 반응 완료 후, Prep-HPLC를 이용하여 분리 정제 후 동결 건조하여 화합물 L-23b를 수득하였다(35 mg, 30 %). EI-MS m/z: 1079 (M+Na), 1057 (M+), 529 (M+/2).
화합물 L-23c의 제조
화합물 L-23b (30 mg, 0.028 mM)을 Ethanol (10 mL)에 용해 시킨 후, 10% Pd/C (20 mg)을 첨가하고 수소 대기 하에서 3시간 동안 교반시켰다. 반응 완료 후, Celite를 이용하여 반응 용액을 여과하고 감압 농축하여 화합물 L-23c를 수득하였다(27 mg, 99%). EI-MS m/z: 989 (M+Na)+, 967 (M+), 484 (M+/2).
화합물 L-23d의 제조
질소 대기 하 0℃에서 화합물 L-23c (25 mg, 0.025 mM)과 화합물 L-6e (17.7 mg, 0.050 mM)을 DMF (2 mL)에 용해시킨 후 HBTU (14.7 mg, 0.037 mM), DIPEA (13.8 μl, 0.075 mM)을 순차적으로 첨가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후, Prep-HPLC를 이용하여 분리 정제 및 동결 건조하여 화합물 L-23d를 수득하였다(18 mg, 54 %). EI-MS m/z: 1292 (M+), 646 (M+/2).
화합물 L-23의 제조
DCM (2 mL)에 용해시킨 화합물 L-23d (8 mg, 0.006 mM) 용액을 0℃로 냉각 후, TFA (1 mL)를 천천히 적가하고 상온에서 2시간 동안 교반시켰다. 반응 완료 후, 감압 농축하고 건조하여 화합물 L-23을 수득하였다(7 mg, 99 %). EI-MS m/z: 1024 (M+).
[제조예 21] 링커 L-24의 제조
화합물 L-24a의 제조
질소 대기 하 0℃에서, 8-bromooctonoic acid (1 g, 4.48 mM)을 무수 Methanol (20 mL)에 용해시킨 후 thionyl chloride (3 mL)를 천천히 첨가하고 상온에서 12시간 동안 교반시켰다. 반응 완료 후, 감압 농축하고 건조하여 화합물 L-24a를 수득하였다(1.06 g, 99 %).
1H NMR (400 MHz, CDCl3) δ 3.66 (s, 3H), 3.40 (t, J = 7.2 Hz, 2H), 2.30 (t, J = 7.2 Hz, 2H), 1.84 (q, J = 7.2 Hz, 2H), 1.61 (m, 2H), 1.43 (m, 2H), 1.36 - 1.31 (m, 4H).
화합물 L-24c의 제조
질소 대기 하 0℃에서, DMF (5 mL)가 첨가 된 NaH (60 % dispersion in mineral oil, 70 mg) 현탁액에 Propargyl alcohol (147 mg, 2.52 mM)을 첨가하고 10분 동안 교반 후, DMF (1 mL)에 용해시킨 화합물L-24a (300 mg, 1.26 mM)을 천천히 적가하고, 반응 용액을 50℃에서 2시간 동안 교반시켰다. 반응 용액을 냉각한 후, EA (50 mL)와 2M-HCl 수용액 (50 mL)을 이용해 유기층을 추출하고 무수 MgSO4로 건조시키고 감압 농축하였다. 수득한 화합물 L-24b를 Methanol (5 mL)에 용해 시키고 6N NaOH 수용액 (2 mL)를 첨가한 후 상온에서 4시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), 2M-HCl 수용액 (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-24c를 수득하였다(150 mg, 60 %).
1H NMR (400 MHz, CDCl3) δ 4.13 (s, 2H), 3.50 (t, J = 6.4 Hz, 2H), 2.41 (s, 1H), 2.35 (t, J = 7.2 Hz, 2H), 1.65 - 1.56 (m, 4H), 1.40 - 1.30 (m, 6H).
화합물 L-24d의 제조
L-phenylalanine (3 g, 18.16 mM)을 H2O (15 mL), 1,4-dioxane (15 mL)에 용해시킨 후, NaHCO3 (2.28 g, 27.24 mM)과 BOC anhydride (4.75 g, 21.79 mmol)를 0℃에서 천천히 적가하고 상온에서 16시간 동안 교반시켰다. 반응 완료 후, 농축하여 반응 용액의 부피를 대략 반으로 줄이고 diethylether (200 mL)와 H2O (100 mL)를 이용해 추출하여 유기층을 제거하고 분리된 물층을 2M-HCl 수용액 (200 mL)로 산성화시키고 EA (200 mL)를 첨가한 후 추출하고 무수 Na2SO4으로 건조, 여과 및 감압 농축하여 BOC-L-phenylalanine (4 g, 83 %)를 수득하였다. 여기서 수득한 BOC-L-Phe-OH (460 mg, 1.73 mM)과 H-Phe-OMe.HCl (411 mg, 1.90 mM)을 DMF (5 mL)에 용해 시킨 후, HBTU (790 mg, 2.07 mM), DIPEA (617 μL, 3.46 mM)를 순차적으로 적가하고 상온에서 3시간 동안 교반시켰다.반응 완료 후, EA (100 mL), 증류수 (100 mL), 그리고 brine (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 BOC-L-Phe-Phe-OMe (680 mg, 92%)를 수득하였다. BOC-L-Phe-Phe-OMe (300 mg, 0.70 mM)을 DCM (8 mL)에 녹인 후 0℃에서 4M-HCl in Dioxane (1.5 mL)를 천천히 적가하고 상온에서 2시간동안 교반시켰다. 반응 완료 후, 감압 농축하고 n-Hexane (100 mL)로 세척하고 건조하여 화합물 L-24d를 수득하였다(255 mg, 99 %).
1H NMR (400 MHz, CD3OD) δ 7.37 - 7.27 (m, 7H), 7.23 - 7.21 (m, 3H), 4.92 (m, 1H), 4.72 (m, 1H), 4.04 (m, 1H), 3.65 (s, 3H), 3.34 - 3.17 (m, 2H), 3.04 - 2.94 (m, 2H); EI-MS m/z: 327(M+), 654 (2M+).
화합물 L-24의 제조
질소 대기 하 0℃에서 화합물 L-24d (140 mg, 0.385 mM)과 L-24c (70 mg, 0.35 mM)을 DMF (3 mL)에 용해시킨 후 HBTU (160 mg, 0.42 mM), DIPEA (188 μL, 1.05 mM)을 순차적으로 첨가하고 상온에서 1시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), brine (100 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-24를 수득하였다(156 mg, 87 %).
1H NMR (400 MHz, CDCl3) δ 7.30 - 7.18 (m, 8H), 7.00 - 6.97 (m, 2H), 6.17 (d, J = 7.6 Hz, 1H), 5.93 (d, J = 8.0 Hz, 1H), 4.73 (m, 1H), 4.61 (m, 1H), 4.15 - 4.09 (m, 2H), 3.68 (s, 3H), 3.49 (t, J = 6.8 Hz, 2H), 3.10 - 2.94 (m, 4H), 2.41 (t, J = 2.4 Hz, 1H), 2.11 (m, 2H), 1.59 - 1.49 (m, 4H), 1.36 - 1.23 (m, 6H); EI-MS m/z: 507(M+).
[제조예 22] 리간드-링커 L-25의 제조
화합물 L-25a의 제조
화합물 L-24 (150 mg, 0.23 mM)과 화합물 L-21a' (152 mg, 0.23 mM)을 Ethanol (5 mL), DMSO (1 mL)에 용해시킨 후, 1M-sodium ascorbate (50 μL), 0.1M-CuSO4 (500 μL)을 순차적으로 적가한 후 상온에서 1시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), brine (100 mL)을 이용하여 추출하고 유기층을 무수 MgSO4로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-25a를 수득하였다(227 mg, 75 %).
1H NMR (400 MHz, CDCl3) δ 7.54 (s, 1H), 7.29 - 7.16 (m, 8H), 7.03 - 6.99(m, 2H), 6.44 (d, J = 7.6 Hz, 1H), 6.23 (d, J = 7.6 Hz, 1H), 5.47 (d, J = 8.2 Hz, 1H), 5.38 (d, J = 8.0 Hz, 1H), 4.79 (m, 1H), 4.67 (m, 1H), 4.61 (s, 2H), 4.37 - 4.22 (m, 4H), 3.67 (s, 3H), 3.49 (t, J = 6.8 Hz, 2H), 3.10 - 2.96 (m, 4H), 2.37 - 2.26 (m, 2H), 2.13 - 2.04 (m, 3H), 1.92 - 1.72 (m, 3H), 1.65 - 1.48 (m, 6H), 1.45 (s, 9H), 1.42 (s, 18H), 1.31 - 1.22 (m, 6H); EI-MS m/z: 1021(M+).
화합물 L-25b의 제조
화합물 L-25a (50 mg, 0.049 mM)를 Methanol (3 mL)에 용해시킨 반응 용액에 NaOH (20 mg)을 H2O (1 mL)에 녹인 수용액을 천천히 0℃에서 적가하고, 상온에서 1시간 동안 교반시켰다. 반응 완료 후, EA (50 mL), 2M-HCl 수용액 (50 mL)을 이용하여 추출하고 유기층을 무수 MgSO4로 건조시키고 여과 및 감압 농축하여 화합물 L-25b를 수득하였다(49 mg, 99 %). EI-MS m/z: 1007 (M+).
화합물 L-
25c 의
제조
상기 화합물 L-25b를 이용하여 화합물 L-8a, L-8b 및 L-8c, 및 화합물 L-18a 및 L-18b의 제조방법과 유사한 방법으로 화합물 L-25c를 제조하였다(19 %). EI-MS m/z: 1270 (M+/2).
화합물 L-25의 제조
상기 화합물 L-25c를 이용하여 화합물 L-18c 및 L-18의 제조방법과 유사한 방법으로 화합물 L-25를 제조하였다. EI-MS m/z: 1215.3 (M+/2).
[제조예 23] 리간드-링커 L-26의 제조
화합물 L-26a-1의 제조
N-Boc-Dap-OH (1 g, 4.89 mM)을 1,4-dioxane (15 mL)에 녹인 후, 0℃에서 H2O (10 mL)에 녹인 Na2CO3 (1.14 g, 10.76 mM) 수용액, Benzyl chloroformate (770 mg, 5.38 mM)를 순차적으로 첨가하고 상온에서 2시간 동안 교반시켰다. 반응 완료 후, EA (100 mL), 2M-HCl (100 mL)을 이용하여 추출하고 유기층을 무수 MgSO4로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-26a를 수득 하였다 (1.25 g, 75%).
1H NMR (400 MHz, CDCl3) δ 7.34 (m, 5H), 5.79 (brs, 1H), 5.41 (brs, 1H), 5.10 (m, 2H), 4.31 (m, 1H), 3.70 - 3.57 (m, 2H), 1.44 (s, 9H).
화합물 L-26a-2의 제조
질소 대기 하 0℃에서 화합물 L-26a (1.1 g, 3.25 mM)을 DMF (15 mL)에 용해 시킨 후, K2CO3 (494 mg, 3.57 mM)를 첨가하고 15분 동안 교반시켰다. Iodomethane (810 μL, 13.0 mM)을 첨가하고 추적적으로 2시간 동안 교반시켰다. 반응 완료 후, 천천히 2M-HCl 수용액 (300 mL)를 첨가하여 반응 용액의 pH를 중성화 시키고 EA (300 mL) 이용하여 추출하고 유기층을 무수 MgSO4로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 4L-26b를 수득 하였다 (1.04 g, 91%).
1H NMR (400 MHz, CDCl3) δ 7.36 - 7.28 (m, 5H), 5.38 (m, 1H), 5.16 - 5.04 (m, 3H), 4.35 (m, 1H), 3.73 (s, 3H), 3.58 (m, 2H), 1.42 (s, 9H).
화합물 L-26a-3의 제조
화합물 L-6b의 제조방법과 유사한 방법으로 화합물 L-26a-3를 수득하였다(86%). EI-MS m/z: 253 (M+).
화합물 L-26a-4의 제조
Fmoc-Asp(OtBu)-OH (705 mg, 1.705 mM)와 화합물 L-26a-3 (450 mg, 1.55 mM)을 이용하여 화합물 L-8b의 제조방법과 유사한 방법으로 화합물 L-26a-4를 수득하였다(99%).
1H NMR (400 MHz, CDCl3) δ 7.76 (m, 2H), 7.59 (m, 2H), 7.40 (m, 2H), 7.36 - 7.26 (m, 7H), 5.86 (d, J = 7.6 Hz, 1H), 5.38 (m, 1H), 5.06 (m, 2H), 4.60 - 4.53 (m, 2H), 4.50 - 4.38 (m, 2H), 4.28 (m, 1H), 3.75 (s, 3H), 3.68 (m, 2H), 3.01 (m, 1H), 2.64 (m, 1H), 1.42 (s, 9H); EI-MS m/z: 646(M+).
화합물 L-26a-5의 제조
화합물 L-26a-4 (1 g, 1.54 mM)을 THF (25 mL)에 용해 시킨 후, 0℃에서 piperidine (3 mL)를 천천히 적가하고 30분 동안 교반시켰다. 반응 완료 후, 감압 농축하고 n-Hexane (100 mL)를 이용하여 3회 세척하고 건조하여 화합물 L-26a-5를 수득하였다(510 mg, 78%).
화합물 L-26a-6의 제조
화합물 L-26a-4의 제조 방법과 유사한 방법으로 화합물 L-26a-6을 수득하였다(40%).
화합물 L-26a의 제조
화합물 L-26a-5의 제조방법과 유사한 방법으로 화합물 L-26a를 수득하였다(99%).
화합물 L-26c의 제조
화합물 L-26a (45 mg, 0.074 mM)과 WO2014078484과 유사한 방법으로 제조된 화합물 L-26b (30 mg, 0.044 mM)을 DMF (3 mL)에 용해 시킨 후, 질소 대기 하 0℃에서 HBTU (18.4 mg, 0.048 mM), DIPEA (23.6 μL, 0.132 mM)를 첨가한 후 상온에서 1시간 동안 교반시켰다. 반응 완료 후, EA (50 mL), brine (100 mL)을 이용하여 추출하고 유기층을 무수 MgSO4로 건조시키고 여과 및 감압 농축 시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-26c를 수득하였다(50 mg, 90 %). EI-MS m/z: 1256 (M+).
화합물 L-26d의 제조
화합물 L-5의 제조방법과 유사한 방법으로 화합물 L-26d를 수득하였다(90 %). EI-MS m/z: 1122(M+).
화합물 L-26e의 제조
화합물L-8d와 유사한 방법으로 화합물 L-26e를 수득하였다(21 %). EI-MS m/z: 1447(M+), 724(M+/2).
화합물 L-26의 제조
화합물 L-26e (11 mg, 0.0076 mM)을 Methanol (1 mL)에 용해시킨 후, NaOH 수용액 (20 mg in 1mL H2O, 0.2 mL)를 0℃에서 첨가하고 1시간 동안 교반시켰다. 반응 완료 후, 천천히 2M-HCl 수용액 (50 mL)를 첨가하여 반응 용액의 pH를 산성화시킨 후, EA (50 mL) 이용하여 추출하고 유기층을 무수 MgSO4로 건조, 이를 여과 및 감압 농축시켰다. 잔사를 DCM (2 mL)에 용해 시키고 TFA (1 mL)를 첨가한 후, 상온에서 1시간 동안 교반시켰다. 반응 용액을 감압 농축하여 화합물 L-26을 수득하였다(8 mg, 99 %). EI-MS m/z: 1052(M+).
[제조예 24] 링커 L-27의 제조
화합물 L-27a의 제조
화합물 L-16c의 제조방법과 유사한 방법으로 화합물 L-27a를 제조하였다(50 %).
1H NMR (400 MHz, CDCl3) δ 6.06 (brs, 1H), 3.58 (t, J = 6.4 Hz, 2H), 2.33 (t, J = 6.4 Hz, 2H), 2.27 (t, J = 7.6 Hz, 4H), 2.05 (m, 2H), 1.89 (m, 2H), 1.44 (s, 18H), 1.31 (s, 3H).
화합물 L-27b의 제조
화합물 L-16d의 제조방법과 유사한 방법으로 화합물 L-27b를 제조하였다(99%).
1H NMR (400 MHz, CD3OD) δ 3.58 (t, J = 6.4 Hz, 2H), 2.41 (m, 2H), 2.35 - 2.21 (m, 6H), 1.85 (m, 2H), 1.21 (s, 3H).
화합물 L-27의 제조
화합물 L-16의 제조방법과 유사한 방법으로 화합물 L-27를 제조하였다(99 %).
1H NMR (400 MHz, CDCl3) δ 5.67 (s, 1H), 3.57 (t, J = 6.4 Hz, 2H), 2.90 - 2.81 (m, 8H), 2.68 - 2.55 (m, 4H), 2.33 (t, J = 6.4 Hz, 2H), 1.99 - 1.88 (m, 4H), 1.30 (s, 1H).
[제조예 25] 리간드-링커 L-28의 제조
화합물 L-28a 및 화합물 L-27을 이용하여 제조예 16과 유사한 방법으로 L-28을 수득하였다(80 %). EI-MS m/z: 1586 (M+).
1H NMR (400MHz, CD3OD) δ 8.83 (s, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 5.23 (s, 4H), 4.57 (m, 2H), 3.58 - 3.46 (m, 20H), 3.43 - 3.33 (m, 4H), 2.44~2.26 (m, 9H), 2.23 - 2.07 (m, 3H), 1.84 (m, 2H).
[제조예 26] 링커 L-29의 제조
화합물 L-29a의 제조
질소 대기 하 상온에서 화합물 L-6e (98 mg, 0.29 mmol)를 DMF (2 mL)에 용해시킨 후 Methylamine (171 μL, 0.34mmol, CAS No. 74-89-5), PyBOP (215.1 mg, 0.43 mmol), DIPEA (147.1 μL, 0.86 mmol)를 첨가한 후, 상온에서 5시간 교반시켰다. 반응 완료 후 EA (20 mL)와 증류수 (20 mL)를 가한 후 추출하여 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-29a를 수득하였다(101.7 mg, 99 %).
1H NMR (400 MHz, CDCl3) δ 6.45 (brs, 1H), 6.23 (brs, 1H), 4.64 (brs, 1H), 4.38 (q, J = 7.6, 5.6 Hz, 1H), 3.63 (t, J = 6.4 Hz, 2H), 3.16-3.04 (m, 2H), 2.82 (d, J = 4.8 Hz, 3H), 2.47 (t, J = 6.4 Hz, 2H), 1.92 - 1.80 (m, 1H), 1.56 - 1.46 (m, 2H), 1.44 (s, 9H), 1.40 - 1.32 (m, 2H); EI-MS m/z: 357(M+).
화합물 L-29의 제조
질소 대기 하 0℃에서 화합물 L-29a (101.7 mg, 0.29 mmol)을 DCM (50 mL)에 용해시킨 후 TFA (1 mL)를 첨가한 후, 상온에서 2시간 동안 교반시켰다. 반응 완료 후, 반응물을 감압 농축시키고 톨루엔 (20 mL)를 넣고 다시 감압 농축시켰다. 이러한 감압 농축 과정을 4번 정도 수행하여 과량으로 들어 있는 TFA을 제거하여 화합물 L-29를 수득하였다(68.3 mg, 64 %). EI-MS m/z: 257(M+).
[제조예 27] 링커 L-30의 제조
화합물 MPS-D1a의 제조
질소 대기 하 상온에서 4-아세틸벤조산 (9 g, 54.82 mmol)을 EtOH (50 mL)에 용해하였다. 피페리딘 염산염 (6.66 g, 54.82 mmol)과 파라포름알데히드 (4.95 g, 164.5 mmol)을 첨가한 후 진한 염산 (0.6 mL)을 첨가한 후 100℃에서 16시간 교반하였다. 반응 완료 후 상온으로 냉각하여 아세톤 (90 mL)를 적가 후 0℃에서 1시간 교반하여 고체를 여과하고 에테르 (30 mL X 2) 세척하여 화합물 MPS-D1a을 수득하였다(6.11 g, 38 %).
1H NMR (400 MHz, DMSO-d6) δ 8.08 (s, 4H), 5.73 (s, 1H), 3.65 (t, J = 7.2 Hz, 2H), 3.35 (t, J = 7.2 Hz, 2H), 3.31 (m, 6H), 1.74 (s, 4H).
화합물 MPS-D1b의 제조
질소 대기 하 상온에서 MPS-D1a (6.11 g, 20.52 mmol)을 EtOH (40 mL), MeOH (26 mL)에 용해 한 후 4-Methoxybenzenethiol (2.55 g, 20.52 mmol)과 piperidine (0.3 mL, 3.08 mmol) 을 첨가한 후 100℃에서 16시간 교반하였다. 반응 완료 후 0℃로 냉각 후 1시간 교반하여 고체를 여과하고 에테르 (30 mL X 2) 세척하여 화합물 MPS-D1b를 수득하였다(5.56 g, 90 %).
1H NMR (400 MHz, CDCl3) δ 8.04-7.99 (m, 4H), 7.27 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 7.6 Hz, 2H), 3.39-3.36 (m, 2H), 3.25-3.21 (m, 2H), 2.27 (s, 3H).
화합물 MPS-D1의 제조
질소 대기 하 상온에서 MPS-D1b (5.56 g, 18.51 mmol)을 MeOH (90 mL), 증류수 (90 mL)에 용해한 후 0℃로 냉각하여 옥손(Oxone) (25.03 g, 40.72 mmol)을 첨가 한 후 상온에서 14시간 교반하였다. 반응 완결 후 증류수 (100 mL)를 첨가하여 용해시킨 후 클로로포름 (150 mL X3)을 추출하여 브린 (200 mL)로 세척하였다. 수득한 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켜 화합물 MPS-D1를 수득하였다(5.29 g, 86 %).
1H NMR (400 MHz, CDCl3) δ 8.04-7.99 (m, 4H), 7.81 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 3.63 (t, J = 7.2 Hz, 2H), 3.41 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H). EI-MS m/z: 333 (M+).
화합물 L-30a의 제조
질소대기 하에서 화합물 L-11-1 (2 g, 6.51 mmol)를 Acetone (56 mL)에 용해시킨 후 Jone reagent solution (5 mL)를 -5℃에서 천천히 drop wise 하고, 첨가가 완료 후 상온에서 2시간 동안 교반시켰다. 반응 완료 후 Celite filter를 이용하여 salt를 제거 하고 여액을 감압 농축 하여 용매를 제거 하였다. 그 후 DCM(20 mL X 2), 물(5 mL)를 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-30a를 수득하였다(1.85 g, 89 %).
1H NMR (400 MHz, CDCl3) δ 4.15(s, 2H), 3.76-3.67 (m, 18H), 3.40 (t, J = 4.8 Hz, 2H).
화합물 L-30b의 제조
질소대기 하에서 화합물 L-30a (500 mg, 1.56 mmol)를 DCM (10 mL)에 용해시킨 후 t-BuOH (305 μL, 3.11 mmol), DIC(292.5 μL, 1.87 mmol), DMPA(19mg, 0.16 mmol)를 첨가한 후 상온에서 4시간 동안 교반시켰다. 반응 완료 후 DCM (30 mL X 2), 물 (5 mL)를 이용하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-30b를 수득하였다(278.5 mg, 47 %).
1H NMR (400 MHz, CDCl3) δ 4.01 (s, 2H), 3.70-3.66 (m, 18H), 3.38 (t, J = 4.8 Hz, 2H), 1.47 (s, 9H).
화합물 L-30c의 제조
화합물 L-30b (278 mg, 0.74 mmol)를 EtOH (5 mL)에 용해시킨 후 Pd/C (236 mg, 0.11 mmol), 4M-HCl(in 1,4-Dioxane) solution(2 drop)를 첨가하고 수소 가스를 주입시켜 상온에서 1시간 동안 교반시켰다. 반응 완료 후 Celite filter를 이용하여 Pd/C를 제거 후 여액을 농축하여 화합물 L-30c를 수득하였다(255.3 mg, 89.2 %).
1H NMR (400 MHz, DMSO) δ 8.32 (s, 1H), 3.98(s, 2H), 3.55-3.40 (m, 18H), 3.86 (t, J = 5.6 Hz, 2H), 2.70-2.64 (m, 2H), 1.42 (s, 9H).
화합물 L-30d의 제조
화합물 L-8b의 제조방법과 유사한 방법으로 화합물L-30d를 수득하였다(71 %).
1H NMR (400 MHz, CDCl3) δ 7.95 (s, 4H), 7.82 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.33-7.30 (m, 1H), 3.98 (s, 2H), 3.68-3.63 (m, 18H), 3.55-3.53 (m, 2H), 3.49-3.47 (m, 2H), 2.95 (s, 1H), 2.88 (s, 1H), 2.46 (s, 3H) 1.46 (s, 9H). EI-MS m/z: 666(M+).
화합물 L-30의 제조
질소대기 하에서 화합물 L-30d (120 mg, 0.18 mmol)를 DCM (8 mL)에 용해시킨 후 0℃로 냉각하였다. 0℃하에서 TFA (4 mL)를 첨가하고 같은 온도에서 상온으로 서서히 올려주면서 2시간 동안 교반시켰다. 반응 완료 후 TFA 제거를 위해 Toluene을 co-solvent로 사용하여 3회 감압 농축시킨 후, DMF에 다시 녹인 후 NSH (31 mg, 0.27 mmol)과 EDCI (52 mg, 0.27 mmol)를 첨가하고 상온에서 밤새 교반하였다. 완료 후 화합물 L-30은 정제 없이 바로 다음 반응에 사용하였다(127 mg, crude). EI-MS m/z: 707 (M+).
[제조예 28] 링커 L-31의 제조
화합물 L-31a의 제조
Nitroethane (6.1 g, 100 mmol)를 DME (1,2-Dimethoxyethane) (20 mL)에 용해시킨 후 tetramethylammonium hydroxide pentahydrate (540 mg)을 첨가하고 70℃에서 10분간 교반 후 t-butyl acrylate(45.4 mL, 310 mmol)를 dropwise 하였다. 여기에 tetramethylammonium hydroxide pentahydrate (540 mg)을 추가로 넣고 30분동안 교반시킨 다음, 상온으로 온도를 내리고 다시 tTetramethylammonium hydroxide pentahydrate (540 mg)를 넣었다. 반응 완료 후 용매를 감압 농축한 뒤 EA (200 mL)와 0.1N HCl solution (50 mL)를 이용하여 추출 후 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시킨 후 잔사를 EtOH를 이용 재결정하여 화합물 L-31a를 수득하였다(30.3 g, 68 %).
화합물 L-31b의 제조
화합물 L-31a (1.5 g, 3.37 mmol)를 에탄올 (20 mL)에 용해시킨 후 Raney Ni을 첨가하고 수소 가스를 주입시켜 상온에서 5시간 교반 시켰다. 반응 완료 후 셀라이트 필터를 이용하여 Raney Ni을 제거하고 여과액은 감압 농축시켜 화합물 화합물 L-31b를 수득하였다(1.3 g, 93 %).
1H NMR (400 MHz, CDCl3) δ 2.25 (t, J = 8.0Hz, 5H), 2.24-2.18 (m, 1H), 1.61 (t, J = 9.2Hz, 5H), 1.45 (s, 27H).
화합물 L-31c의 제조
질소 대기 하 상온에서 화합물 L-31b (988 mg, 2.38 mmol)를 DMF (10 mL)에 용해시킨 후 6-(Fmoc-amino)hexanoic acid (840 mg, 2.38 mmol), PyBop (1.48 g, 2.85 mmol), DIPEA (0.6 mL, 3.57 mmol)를 첨가한 후, 상온에서 밤새도록 교반시켰다. 반응 완료 후 EA (20 mL)와 증류수 (20 mL)를 가한 후 추출하여 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 L-31c를 수득하였다(951.9 mg, 54 %).
1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.31 (t, J =7.6 Hz, 2H), 5.90 (s, 1H), 5.02-4.92 (m, 1H), 4.39 (d, J = 6.4 Hz, 2H), 4.22 (t, J =6.8 Hz, 1H), 3.20 (q, J = 7.2, 6.8, 1H), 2.22 (t, J = 7.6 Hz, 6H), 2.12 (t, J = 7.6 Hz, 2H), 1.97 (t, J = 8.0 Hz, 6H), 1.64 -1.59 (m, 2H), 1.55 - 1.48 (m, 2H), 1.43 (s, 27H), 1.38 - 1.32 (m, 2H); EI-MS m/z: 751(M+)
화합물 L-31의 제조
질소 대기 하 0 ℃에서 화합물 L-31c (951.9 mg, 1.27 mmol)을 DCM (10 mL)에 용해시킨 후 TFA (4 mL)를 첨가한 후, 상온에서 6시간 교반시켰다. 반응 완료 후, 반응물을 감압 농축시키고 톨루엔 (20 mL)를 넣고 다시 감압 농축시켰다. 이러한 감압 농축 과정을 4번 정도 수행하여 과량으로 들어 있는 TFA을 제거하여 화합물 L-31을 수득하였다(720 mg, crude. quant).
1H NMR (400 MHz, DMSO-d6) δ 7.88 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.2 Hz, 2H), 7.33 (t, J =7.2 Hz, 2H), 7.25 (t, J = 5.2 Hz, 1H), 7.13 (s, 1H), 4.28 (d, J = 6.8 Hz, 2H), 4.20 (t, J = 6.4 Hz, 1H), 2.95 (q, J = 8.8 6.8, 1H), 2.11 (t, J = 6.8 Hz, 6H), 2.04 (t, J = 7.2 Hz, 2H), 1.87-1.77 (m, 6H), 1.50 -1.42 (m, 2H), 1.42 - 1.34 (m, 2H), 1.26 - 1.15 (m, 2H); EI-MS m/z: 583(M+).
[제조예 29] 리간드-링커 L-32의 제조
화합물 L-32a의 제조
질소 대기하 상온에서 화합물 L-31 (300 mg, 0.52 mmol)을, DMF (5 mL)에 용해시킨 후, EDCI (345.5 mg, 1.80 mmol), n-hydroxysuccinimide (207.4 mg, 1.802 mmol)을 넣고 밤새도록 교반하였다. 그 후 화합물 L-8c (1.41 g, 1.55 mmol), DIPEA (879 μL, 5.15 mmol)를 첨가 한 후 상온에서 6시간 동안 교반시켰다. 반응 완료 후 MeOH 가하여 석출 시키고, 석출된 고체 화합물을 필터 하여 MeOH과 Ether를 이용하여 화합물 L-32a를 수득하였다(1.3 g, crude.). EI-MS m/z: : 1288 (M+/2) .
화합물 L-32b 제조
질소 대기 하에서 화합물 L-32a (500 mg, 0.19 mmol)를 DMF (2 mL)에 용해시킨 후 Piperidine (29 μL, 0.29 mmol)을 적가한 후, 상온에서 2시간 동안 교반하였다. 반응 완료 후 메탄올 (5 mL)와 EA (15 ml)을 첨가하여 갈색 고체 화합물을 석출시켜 여과하였다. 여과된 갈색 고체 화합물을 EA와 Ether를 이용하여 화합물 L-32b를 수득하였다(337 mg, 74 %). EI-MS m/z: : 1176 (M+/2) .
화합물 L-32c 제조
질소 대기하 상온에서 화합물 L-32b (150 mg, 0.064 mmol)을 DMF (2 mL)에 용해시킨 후, 화합물 L-6 (31 mg, 0.07 mmol), DIPEA (17 μL, 0.096 mmol)를 첨가한 후 상온에서 3시간 동안 교반시켰다. 반응 완료 후 EA (10 mL)를 첨가하여 갈색 고체 화합물을 석출시켜 여과 후, 갈색 고체 화합물을 EA와 Ether를 이용하여 화합물L-32c를 수득하였다(220.6 mg, crude). EI-MS m/z: 1339 (M+/2).
화합물 L-32 제조
질소 대기하 상온에서 화합물 L-32c (70 mg, 0.0.23mmol)를 DCM (2 mL)에 넣은 후, TFA (0.2 mL)를 첨가하고 상온에서 2시간 동안 교반시켰다. 반응 완료 후 감압 농축 후 잔사를 prepHPLC를 이용 정제하여 화합물 L-32를 수득하였다(17.8 mg, 23 %). EI-MS m/z: 1289 (M+/2).
[제조예 30] 링커 L-33의 제조
화합물 L-33a의 제조
질소 대기 하 상온에서 trimesic acid (5.0 g, 23.73 mmol)을 메탄올 (200 mL)에 용해시킨 후 H2SO4 (1.5 mL)을 첨가하고 60 ℃에서 19시간 동안 교반시켰다. 반응 완료 후 용액을 감압 농축시킨 후 EA (500 mL)와 NaHCO3 수용액 (300 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피하여 화합물 L-33a를 수득하였다(5.88 g, 98 %).
1H NMR (400 MHz, CDCl3) δ 8.80 (s, 3H), 3.96 (s, 9H).
화합물 L-33b의 제조
질소 대기 하 0 ℃ 에서 화합물L-33a (2.0 g, 7.93 mmol)을 THF (40 mL)에 용해시킨 후 LAH (1.2 g, 31.72 mmol)을 첨가하고 60 ℃에서 5시간 동안 교반시켰다. 반응 완료 후 물 (1.6 mL), 15% NaOH수용액 (0.8 mL)를 첨가하고 EA (500 mL)를 가한 후 Celite에 여과시켜 여과액을 감압 농축시켰다. 잔사를 컬럼크로마토그래피하여 화합물 L-33b를 수득하였다(1.1 g, 83 %).
1H NMR (400 MHz, CD3OD) δ 7.26 (s, 3H), 4.61 (s, 6H).
화합물 L-33c의 제조
질소 대기 하 0 ℃ 에서 화합물L-33b (1.1 g, 6.54 mmol)을 DMF (25 mL)에 용해시킨 후 TBDMS-Cl (4.9 g, 32.7 mmol)와 imidazole (2.2 g, 32.7 mmol)을 첨가하고 상온에서 3시간 동안 교반시켰다. 반응 완료 후 EA (500 mL)와 증류수 (200 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피하여 화합물 L-33c를 수득하였다(3.02 g, 90 %).
1H NMR (400 MHz, CDCl3) δ 7.16 (s, 3H), 4.73 (s, 6H), 0.94 (s, 27H), 0.10 (s, 18H).
화합물 L-33d의 제조
질소 대기 하 0 ℃ 에서 화합물L-33c (0.5 g, 0.98 mmol)을 Ac2O (4 mL)에 용해시킨 후 61 % Nitric acid (0.2 mL)을 첨가하고 1시간 동안 교반시켰다. 반응 완료 후 EA (500 mL)와 NaHCO3 수용액 (300 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피하여 화합물 L-33d를 수득하였다(370 mg, 68 %).
1H NMR (400 MHz, CDCl3) δ 7.51 (s, 2H), 4.77 (s, 6H), 0.94 (s, 27H), 0.94 (s, 18H).
화합물 L-33e의 제조
수소 대기 하 상온에서 화합물 L-33d (370 mg, 0.67 mmol)를 메탄올 (5 mL)에 용해시킨 후, 5% Pd/C (43 mg, 0.02 mmol)를 첨가하고 30분 동안 교반시켰다. 반응 완료 후 셀라이트 필터 후 여과된 용액을 감압 농축시켜 화합물 L-33e를 수득하였다(283 mg, 81 %).
1H NMR (400 MHz, CDCl3) δ 6.94 (s, 2), 4.73 (s, 6H), 0.89 (s, 27H), 0.05 (s, 18H).
화합물 L-33의 제조
질소 대기 하 상온에서 화합물L-33e (0.6 g, 1.14 mmol)을 DCM (20 mL)에 용해시킨 후 Triphosgene (406 mg, 1.37 mmol), TEA (0.8 mL, 5.47 mmol)를 첨가하고 1시간 동안 교반시킨 후, 실시예 1에서 수득한 화합물 S-6 (759 mg, 1.14 mmol)과 TEA (0.24 mL, 1.17 mmol)을 첨가하고 15시간 동안 교반시켰다. 반응 완료 후 DCM (100 mL)와 물 (100 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼크로마토그래피하여 화합물 L-33을 수득하였다(914 mg, 66 %).
1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.52-7.46 (m, 2H), 7.38-7.32 (m, 1H), 7.29 (s, 2H), 7.08-7.02 (m, 1H), 5.56-5.46 (m, 2H), 5.22-5.08 (m, 4H), 4.71-4.62 (m, 6H), 4.26-4.08 (m, 5H), 3.82-3.74 (m, 1H), 3.72-3.62 (m, 10H), 3.58-3.48 (m, 1H), 2.44-2.40 (m, 1H), 2.23 (s, 3H), 2.06 (s, 6H), 2.03 (s, 3H), 0.93-0.90 (m, 27H), 0.09-0.06 (s, 18H); EI-MS m/z: 1242(M+ + Na ).
[제조예 31] 링커 L-34의 제조
화합물 L-25b를 이용하여 화합물 L-8b와 유사한 방법으로 화합물 L-34를 수득하였다(27 %). EI-MS m/z: 1193(M+).
[제조예 32] 리간드-링커 L-35의 제조
화합물 L-35a의 제조
질소 대기 하 0 ℃에서 Fmoc-Asp-(OtBu) (1 g, 2.43 mM)을 MeOH (2 mL)와 DCM (10 mL)에 용해시킨 후 DIC (490 μL, 3.16 mM), DMAP (59 mg, 0.48 mM)을 순차적으로 첨가하고 상온에서 12시간 동안 교반 하였다. 반응 완료 후 감압 농축시켜 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-35a를 수득하였다(1.0 g, 97 %).
1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 5.76 (d, J = 8.4 Hz, 1H), 4.54 (m, 1H), 4.40 (m, 2H), 4.25 (m, 1H), 3.71 (s, 3H), 2.97, (m, 2H), 1.45 (s, 9H).
화합물 L-35b의 제조
질소 대기 하 0 ℃에서 화합물 L-35a (590 mg, 1.38 mM)을 DCM (6 mL)에 용해시킨 후 TFA (3 mL)을 첨가하고 상온에서 4.5시간 동안 교반 하였다. 반응 완료 후 감압 농축시켜 화합물 L-35b를 수득하였다(510 mg, 99 %).
1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 5.86 (d, J = 8.4 Hz, 1H), 4.69 (m, 1H), 4.43 (m, 2H), 4.25 (m, 1H), 3.74 (s, 3H), 3.07, (m, 2H).
화합물 L-35c의 제조
질소 대기 하 0 ℃에서 화합물 L-35b (510 mg, 1.38 mM)와 N-Boc-ethylenediamine (265 mg, 1.66 mM)을 DMF (10 mL)에 용해시킨 후 HBTU (789 mg, 2.08 mM)과 DIPEA (483 μL, 2.77 mM)을 순차적으로 첨가하고 상온에서 4시간 동안 교반 하였다. 반응 완료 후 EA (50 mL), brine (50 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-35c를 수득하였다(430 mg, 61 %).
1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 6.87 (m, 1H), 5.87 (d, J = 6.0 Hz, 1H), 4.89 (m, 1H), 4.53 (m, 3H), 4.24 (m, 1H), 3.71 (s, 3H), 3.38 - 3.25 (m, 4H), 3.07 (m, 1H), 2.70 (m, 1H), 1.42 (2, 9H); EI-MS m/z: 512(M+).
화합물 L-35d의 제조
질소 대기 하 0 ℃에서 화합물 L-35c (280 mg, 0.54 mM)을 CH2Cl2 (10 mL)에 용해시킨 후 4N HCl in 1,4-dioxane (2.3 mL)을 첨가하고 상온에서 3시간 동안 교반 하였다. 반응 완료 후 감압 농축하여 화합물 L-35d를 수득하였다(245 mg, 99 %). EI-MS m/z: 448(M+).
화합물 L-35e의 제조
질소 대기 하 0 ℃에서 화합물 L-35d (245 mg, 0.54 mM)과 화합물 L-6e (225 mg, 0.65 mM)을 DMF (5 mL)에 용해시킨 후 HBTU (250 mg, 0.65 mM)과 DIPEA (293 μL, 1.62 mM)을 순차적으로 첨가하고 상온에서 30분 동안 교반 하였다. 반응 완료 후 EA (20 mL), brine (20 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4로 건조시키고 여과 및 감압 농축시켰다. 잔사를 컬럼 크로마토그래피 정제하여 화합물 L-35e를 수득하였다(270 mg, 67%).
1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 7.2 Hz, 2H), 7.61 (m, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 6.92 (m, 1H), 6.85 (m, 1H), 6.50 (m, 1H), 6.15 (m, 1H), 4.74 (m, 1H), 4.53 (m, 3H), 4.32 (m, 1H), 4.24 (m, 1H), 3.72 (s, 3H), 3.54 - 3.40 (m, 5H), 3.25 (m, 1H), 3.09 (m, 3H), 2.78 (m, 1H), 2.40 (m, 2H), 1.42 (2, 9H); EI-MS m/z: 737(M+).
화합물 L-35f의 제조
질소 대기 하 상온에서 화합물 L-35e (50 mg, 0.067 mM)을 THF (4 mL)에 용해시킨 후 Piperidine (0.2 mL)을 첨가하고 상온에서 30분 동안 교반 하였다. 반응 완료 후 EA (20 mL)로 희석시킨 후 감압 농축시켰다. 농축물을 Hexane (20 mL)를 이용하여 2회 세척하고 감압 건조한 후 prep-HPLC를 이용하여 분리 정제 후 동결 건조하여 화합물 L-35f를 수득하였다. Yield 18 mg, 53%; EI-MS m/z: 515(M+)
화합물 L-35의 제조
질소 대기 하 0 ℃에서 화합물 L-35f (6 mg, 0.005 mM)와 화합물 L-34 (3.9 mg, 0.0075 mM)을 DMF (1 mL)에 용해시킨 후 HBTU (2.5 mg, 0.0065 mM)과 DIPEA (2.7 μL, 0.015 mM)을 순차적으로 첨가하고 상온에서 1시간 동안 교반 하였다. 반응 완료 후 EA (20 mL), brine (10 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4로 건조, 여과 및 감압 농축 후, 잔사를 0 ℃에서 THF (1 mL) 와 증류수 (0.3 mL)에 용해시킨 후 2N NaOH 수용액 (1 mL)를 첨가하고 0 ℃에서 20분 동안 교반 하였다. EA (10 mL), 2N HCl 수용액 (5 mL)을 이용하여 추출하고 유기층을 무수 Na2SO4로 건조시킨 다음, 여과 및 감압 농축 하여 바로 DCM (3 mL)에 용해시킨 다음TFA (1 mL)를 첨가하고 0 ℃에서 30분 동안 교반 하였다. 반응 완료 후 화합물을 감압 농축시켜 잔사를 prep-HPLC를 이용하여 분리 정제 후 동결 건조하여 화합물 L-35를 수득하였다 (5 mg, 75 %). EI-MS m/z: 1307 (M+).
[제조예 33] 리간드-링커 L-36의 제조
화합물 L-36a의 제조
화합물 L-25 (제조예 22)을 이용하여 제조예 20의 화합물 L-23b의 제조방법과 유사한 방법으로 화합물 L-36a를 수득하였다(70 %). EI-MS m/z: 1139 (M+).
화합물 L-36b의 제조
화합물 L-36a를 이용하여 제조예 20의 화합물 L-23c의 제조방법과 유사한 방법으로 화합물 L-36b를 수득하였다(75 %). EI-MS m/z: 1049 (M+).
화합물 L-36c의 제조
화합물 L-36b를 이용하여 제조예 20의 화합물 L-23d의 제조방법과 유사한 방법으로 화합물 L-36c를 수득하였다(49 %). EI-MS m/z: 688 (M+/2).
화합물 L-36의 제조
화합물 L-36c를 이용하여 제조예 20의 화합물 L-23의 제조방법과 유사한 방법으로 화합물 L-36을 수득하였다(99 %). EI-MS m/z: 1106 (M+).
[실시예 1] BGal-SIG-Toxin (S-9)의 합성
화합물 S-1의 제조
질소 대기 하 0℃에서 β-D-galactose pentaacetate(Alfa, CAS 4163-60-4, 5.0 g, 12.81 mmol)에 33% HBr in AcOH (20 mL)를 첨가한 후 상온에서 4시간 동안 교반시켰다. 반응 완료 후 감압 증류시켜 반응용매를 제거한 뒤 EA (1000 mL)와 소듐 바이카보네이트 수용액 (1000 mL)를 첨가하였다. 수득한 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-1을 수득하였다(5.2 g, 99 %).
1H NMR (400 MHz, CDCl3) δ 6.70 (d, J = 4.0 Hz, 1H), 5.52 (d, J = 2.4 Hz, 1H), 5.41 (dd, J = 7.6, 2.8 Hz, 1H), 5.05 (dd, J = 6.4, 4.0 Hz, 1H), 4.49 (t, J = 6.4 Hz, 1H), 4.22-4.09 (m, 2H), 2.16 - 2.01 (m, 12H).
화합물 S-2의 제조
질소 대기 하 상온에서 5-formylsalicylic acid (8.3 g, 49.96 mmol)을 THF (100 mL)에 용해시킨 후 DIPA (17.4 mL, 99.92 mmol)과 알릴 브로마이드 (21.62 mL, 249.8 mmol)을 차례로 첨가하고 승온하여 14시간 동안 환류 교반시켰다. 반응 완료 후 증류수 (100 mL)와 EA (100 mL)을 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-2 를 수득하였다(9.4 g, 91.2 %).
1H NMR (400 MHz, CDCl3) δ 11.37 (s, 1H), 9.90 (s, 1H), 8.42 (d, J = 1.2 Hz, 1H), 8.02 (dd, J = 8.4, 1.2 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.11 - 6.01 (m, 1H), 5.49 - 5.36 (m, 2H), 4.90 (d, J = 6.0 Hz, 2H)
화합물 S-3의 제조
둥근 바닥 플라스크에 molecular sieve (5.0 g) 을 넣고 감압 가열 건조시켰다. 질소 대기 하 화합물S-1 (5.0 g, 12.12 mmol)과 화합물S-2 (2.5 g, 12.12 mmol)를 아세토나이트릴 (100 mL)에 용해시켰다. 상기 혼합물에 Ag2O (8.43 g, 36.37 mmol)을 첨가한 후 상온에서 1시간 30분 동안 교반시켰다. 반응 완료 후 증류수 (100 mL)와 EA (100 mL)를 가하여 추출한 뒤, 유기 층을 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-3을 수득하였다(3.77 g, 58 %).
1H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 8.28 (d, J = 1.6 Hz, 1H), 8.00 (dd, J = 6.8, 1.6 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 6.09 - 5.98 (m, 1H), 5.62-5.57 (m, 1H), 5.49 (d, J = 3.2 Hz, 1H), 5.40 (d, J = 17.2 Hz, 1H), 5.32 - 5.28 (m, 1H), 5.18 (d, J = 8.0 Hz, 1H), 5.12 (dd, J = 7.2, 3.2 Hz, 1H), 4.82 (d, J = 6.0 Hz, 2H), 4.28-4.10 (m, 4H), 2.20 (s, 3H), 2.08 (s, 6H), 2.02 (s, 3H)
화합물 S-4의 제조
질소 대기 하 상온에서 화합물 S-3 (3.70 g, 6.90 mmol)을 아이소프로필 알코올 (20 mL)과 클로로폼 (100 mL)에 용해시킨 후, 실리카겔 (29 g)을 첨가시켰다. 상기 혼합물을 0℃ 에서 NaBH4 (653 mg, 17.24 mmol)을 첨가한 후 1시간 30분간 교반시켰다. 반응 완료 후 증류수 (200 mL) 와 DCM (200 mL)를 가하여 추출한 뒤, 유기층을 무수 황산 나트륨으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-4 를 수득하였다(3.51 g, 95 %).
1H NMR (400 MHz, CDCl3) δ 7.75 (s, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.8Hz, 1H), 6.08 - 5.97 (m, 1H), 5.58 - 5.52 (m, 1H), 5.46 (d, J = 3.2Hz, 1H), 5.39 (d, J = 17.2Hz, 1H), 5.28 (d, J = 10.4Hz, 1H), 5.10 (dd, J = 6.8, 3.6Hz, 1H), 5.06 (d, J = 8.0Hz, 1H), 4.78 (d, J = 5.2Hz, 1H), 4.68 (d, J = 6.0Hz, 2H), 4.27-4.04 (m, 3H), 2.19 (S, 3H), 2.08 (S, 3H), 2.07 (S, 3H), 2.02 (S, 3H), 1.72 (t, J = 6.0Hz, 1H).
화합물 S-5의 제조
질소대기 하 화합물 S-4 (3.5 g, 6.50 mmol) 을 DCM (70 mL)에 용해시킨 후 Pd(PPh3)4 (376 mg, 0.33 mmol), 트리페닐포스핀 (426 mg, 1.62 mmol), 피롤리딘 (555 mg, 7.80 mmol) 을 첨가하고 상온에서 30분 교반시켰다. 반응 완료 후 상기 혼합물에 증류수 (100 mL)를 첨가하고 2N-염산 수용액을 적가하여 pH 3으로 맞춘 후, DCM (100 mL)을 가하여 추출하였다. 유기층을 모아 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켜 화합물 S-5 를 수득하였다(3.2 g, crude).
1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H) 5.61 - 5.55 (m, 1H), 5.49 (s, 1H), 5.24 (d, J = 7.6 Hz, 1H), 5.16 (d, J = 10.4 Hz, 1H), 4.72 (s, 2H), 4.26 - 4.10 (m, 3H), 2.21 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H).
화합물 S-6의 제조
질소 대기 하 상온에서 화합물 S-5 (1.1 g, 2.21 mmol)과 화합물L-1(455mg, 2.43mmol)을 DMF (15 mL)에 용해시킨 후 PyBOP (1.5 g, 2.87 mmol)과 DIPEA (0.57 mL, 3.31 mmol)을 첨가하고 상온에서 2시간 교반시켰다. 반응을 완료한 후 증류수 (20 mL)와 EA (20 mL)를 가하여 추출하고, 유기층을 모아 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-6 를 수득하였다(1.24 g, 84 %).
1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 1.6 HZ, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 4.8 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.56 - 5.48 (m, 2H), 5.17 - 5.12 (m, 2H), 4.69 (s, 2H), 4.27 - 4.10 (m, 5H), 3.82 - 3.48 (m, 12H), 2.42 (s, 1H), 2.23 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H); EI-MS m/z: 668(M+).
BGal
-
SIG
링커 화합물 S-7의 제조
질소 대기 하 화합물 S-6 (2.36 g, 3.61 mmol)를 DMF (30 mL)에 용해시킨 후 Bis(4-nitrophenyl)carbonate (1.21 g, 3.97 mmol)과 DIPEA (943 μL, 5.42 mmol)을 차례로 첨가하고 상온에서 3시간 교반시켰다. 반응 완료 후 brine (30 mL)과 EA (30 mL)을 가하여 추출하고 유기층을 모아 무수 Na2SO4으로 건조시키고 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 BGal-SIG 링커 화합물 S-7을 수득하였다(2.57 g, 87 %).
1H NMR (400 MHz, CDCl3) δ 8.29 - 8.26 (d, J = 8.8 Hz, 2H), 8.15 (s, 1H), 7.53 - 7.51 (dd, J = 8.8 Hz, 1H), 7.39 - 7.37 (d, J = 8.8 Hz, 2H), 7.08 - 7.06 (d, J = 8.8 Hz, 1H) 5.41 - 5.27 (m, 6H), 4.23 - 4.19 (m, 3H), 4.21 - 4.18 (m, 3H), 3.77 - 3.52 (m, 15H), 2.43 (s, 1H), 2.06 (s, 9H); EI-MS m/z: 833(M+).
화합물 S-8의 제조
질소 대기 하 상온에서 화합물 S-7 (200 mg, 0.24 mmol)을 DMF (3 mL)에 용해시킨 후, MMAF-OMe (제조예 7, 179 mg, 0.24 mmol), HOBT (7.4 mg, 0.05 mmol), 피리딘 (1.0 mL), 그리고 디아이소프로필 에틸아민 (42 μL, 0.24 mmol)을 순차적으로 첨가하였다. 상기 혼합물을 상온에서 19시간 동안 교반시켰다. 반응 완료 후 EA (100 mL), 증류수 300 mL), brine (100 mL) 및 1N 염산 수용액 (20 mL)을 가하여 추출하였다. 유기층을 무수 Na2SO4으로 건조시키고 감압 농축시켰다. 잔사를 컬럼 크로마토그래피시켜 화합물 S-8을 수득하였다(247 mg, 72 %).
EI-MS m/z: 1440(M+)
BGal
-
SIG
-Toxin 화합물 S-9의 제조
질소 대기 하 -20℃에서 화합물 S-8 (100 mg, 0.07 mmol)을 메탄올 (1.8 mL)에 용해 시킨 후, 물 (1.8 mL)에 용해된 LiOH (22 mg, 0.52 mmol)를 서서히 적가한 다음 -5℃ 하에 4시간 동안 교반시켰다. 반응 완료 후, 2N 염산 수용액 (3 mL)를 첨가한 다음 prep-HPLC를 이용하여 분리 정제하여 BGal-SIG-Toxin 화합물 S-9를 수득하였다(78 mg, 89 %). EI-MS m/z: 1258(M+).
[실시예 2] 리간드-약물 복합체 (1)과 (2)의 제조
리간드-약물 복합체 (1)의 제조
질소 대기 하 상온에서 제조예 8에서 제조된 화합물 L-8 (20 mg, 0.02 mmol)와 실시예 1에서 제조된 화합물 S-9 (22.08 mg, 0.02 mmol)를 에탄올 (2 mL), 증류수 (0.5 mL)에 용해시켜, 반응 용액에 1M 소듐 아스코베이트 (35 μL, 0.04 mmol)와 0.1 M CuSO4 (70 μL, 0.01 mmol)를 첨가한 후 2.5시간 동안 교반시켰다. 반응 완료 후 상기 혼합용액을 prep-HPLC를 이용하여 분리 정제하여 리간드-약물 복합체 (1)을 수득하였다(32.2 mg, 77 %). EI-MS m/z: 2055 (M+).
리간드-약물 복합체 (2)의 제조
화합물 L-9(제조예 8) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 1의 제조방법과 유사한 방법으로 리간드-약물 복합체 (2)를 제조하였다. EI-MS m/z: 2187 (M+).
[실시예 3] 리간드-약물 복합체 (3)의 제조
화합물 L-23(제조예 20) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (3)을 제조하였다(29.7 %). EI-MS m/z: 1141 (M+/2).
[실시예 4] 리간드-약물 복합체 (4)의 제조
화합물 L-21(제조예 18) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (4)를 제조하였다. EI-MS m/z: 2487 (M+), 1244 (M+/2), 830 (M+/3).
[실시예 5] 리간드-약물 복합체 (5)의 제조
화합물 5-1의 제조
질소 대기 하 상온에서 화합물 S-7 (260 mg, 0.31 mmol)과 화합물 L-22 (122 mg, 0.32 mmol)을 DMF (2 mL)에 용해시킨 후 HOBt (24 mg, 0.16 mmol), Pyridine (2 mL)과 DIPEA (108 μL, 0.62 mmol)을 첨가하고 40℃에서 28시간 동안 교반시켰다. 반응 완료 후 EA (250 mL), 증류수 (50 mL)와 2N HCl 수용액 (50 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 5-1을 수득하였다(208 mg, 62 %).
1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 8.10 (s, 1H), 7.95 (s, 1H), 7.52-7.46 (m ,1H), 7.38 - 7.18 (m, 3H), 7.08 - 7.02 (m, 1H), 5.58 - 5.48 (m, 2H), 5.20 - 5.11 (m, 4H), 4.71 (s, 2H), 4.66 (S, 2H), 4.24 - 4.08 (m, 5H), 3.82 - 3.74 (m, 1H), 3.72 - 3.62 (m, 10H), 3.58 - 3.48 (m, 1H), 2.44 - 2.40 (m ,1H), 2.23 (s, 3H), 2.06 (s, 6H), 2.03 (s, 3H), 0.92 (s, 9H), 0.88 (s, 9H), 0.08 (s, 6H), 0.07 (s, 6H); EI-MS m/z: 1076 (M+)
화합물 5-2의 제조
질소 대기 하 상온에서 화합물 5-1 (205 mg, 0.19 mmol)을 DCM (3 mL)에 용해시킨 후 0℃에서 TFA (0.8 mL)을 첨가하고 1.5시간 동안 교반시켰다. 반응 완료 후 DCM (50 mL)와 NaHCO3 수용액 (150 mL)를 가하여 추출하고 유기층에 TEA (20 mL)를 첨가하고 30분 동안 교반시켰다. 반응 용액에 증류수 (100 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켜 컬럼 크로마토그래피하여 화합물 5-2를 수득하였다(122 mg, 75 %).
1H NMR (400 MHz, CDCl3) δ 8.11 (s, 1H), 8.01 (s, 1H), 7.90 (s, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.38 - 7.33 (m, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.20 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.55 - 5.49 (m, 2H), 5.20 - 5.12 (m, 4H), 4.71 (d, J = 4.8 Hz, 2H), 4.64 (d, J = 8.8 Hz, 2H), 4.26 - 4.10 (m, 5H), 3.81 - 3.74 (m, 1H), 3.72 - 3.62 (m, 10H), 3.58 - 3.48 (m, 1H), 2.42 - 2.41 (m ,1H), 2.33 (s, 1H), 2.22 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 1.74 (s, 1H); EI-MS m/z: 847(M+)
화합물 5-3의 제조
질소 대기 하 상온에서 화합물5-2 (70 mg, 0.08 mmol)을 DMF (1 mL)에 용해시킨 후 Bis(PNP) (63 mg, 0.21 mmol)와 DIPEA (36 μL, 0.21 mmol)을 첨가하고 상온에서 2시간 동안 교반시켰다. 반응 완료 후 EA (100 mL)와 증류수 (100 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 5-3을 수득하였다(72 mg, 74 %).
1H NMR (400 MHz, CDCl3) δ 8.29 - 8.25 (m, 4H), 8.17 (s, 1H), 7.96-7.91 (m, 1H), 7.52 - 7.48 (m, 4H), 7.47 - 7.35 (m, 5H), 7.06 (d, J = 8.0 Hz, 1H), 5.54 - 5.49 (m, 2H), 5.31 (s, 2H), 5.27 (s, 2H), 5.20-5.16 (m, 4H), 4.28 - 4.10 (m, 5H), 3.81 - 3.74 (m, 1H), 3.72 - 3.62 (m, 10H), 3.58 - 3.48 (m, 1H), 2.43 - 2.41 (m ,1H), 2.23 (s, 3H), 2.06 (s, 6H), 2.03 (s, 3H); EI-MS m/z: 1178 (M+).
화합물 5-4의 제조
질소 대기 하 상온에서 화합물 5-3 (60 mg, 0.05 mmol)와 MMAF (76 mg, 0.10 mmol)을 DMF (1.5 mL)에 용해시킨 후 HOBtH2O (8 mg, 0.05 mmol), Pyridine (0.5 mL)과 DIPEA (35 μL, 0.20 mmol)을 첨가하고 14시간 동안 교반시켰다. 반응 완료 후 EA (250 mL), 증류수 (50 mL)와 2N HCl 수용액 (50 mL)를 가하여 추출하고 유기층을 무수 Na2SO4으로 건조시켜 여과한 후 감압 농축시켰다. 잔사를 컬럼 크로마토그래피하여 화합물 5-4를 수득하였다(68.7 mg, 56 %). EI-MS m/z: 2391(M+).
화합물 5-5의 제조
-5℃ 하에서 화합물 5-4 (50 mg, 0.02 mmol)를 메탄올 (2 mL), 증류수 (1 mL)에 용해시키고 LiOH·H2O (18 mg, 0.42 mmol)를 첨가한 후, 0℃에서 5시간 동안 교반시켰다. 반응 완료 후 반응 용액을 2N 염산 수용액을 이용하여 pH를 2~3으로 맞춘 후 Per-HPLC로 분리 정제하여 화합물 5-5를 수득하였다(32 mg, 70 %). EI-MS m/z: 2195 (M+)
리간드-약물 복합체 (5)의 제조
화합물 L-8(제조예 8) 및 화합물 5-5를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (5)를 제조하였다. EI-MS m/z: 2992 (M+).
[실시예 6] 리간드-약물 복합체 (6)의 제조
화합물 L-33e(제조예 30)을 이용하여 리간드-약물 복합체 (5)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (6)를 제조하였다.
[실시예 7] 리간드-약물 복합체 (7), (8), (9)의 제조
리간드-약물 복합체 (7)의 제조
화합물 7-1 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (7)를 제조하였다(14 %). EI-MS m/z: 1446 (M+/2)
리간드-약물 복합체 (8)의 제조
화합물 L-19(제조예 16) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (8)를 제조하였다(17.4 %). EI-MS m/z: 1578 (M+)
리간드-약물 복합체 (9)의 제조
화합물 L-18(제조예 16) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (9)를 제조하였다(24 %). EI-MS m/z: 1710(M+).
[실시예 8] 리간드-약물 복합체 (10) 및 (11)의 제조
화합물 (10)의 제조
화합물 7-1을 이용하여 리간드-약물 복합체 (5)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (10)을 제조하였다(26 %). EI-MS m/z: 1277 (M+/3).
화합물 (11)의 제조
화합물 7-1을 이용하여 리간드-약물 복합체 (6)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (11)을 제조하였다(52 %). EI-MS m/z: 1540 (M+/3).
[실시예 9] 리간드-약물 복합체 (12)의 제조
화합물 12-1의 제조
화합물 L-33 (제조예 30)를 이용하여 실시예 5의 화합물 5-2의 제조방법과 유사한 방법으로 화합물 12-1을 제조하였다(82 %).
1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 7.69 (s, 1H), 7.52-7.46 (m, 1H), 7.44-7.36 (m, 1H), 7.31 (s, 2H), 7.06-7.02 (m, 1H), 5.56-5.46 (m, 2H), 5.26-5.10 (m, 4H), 4.67-4.48 (m, 6H), 4.26-4.08 (m, 5H), 3.84-3.50 (m, 12H), 2.48-2.44 (m, 1H), 2.22 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H); EI-MS m/z: 877(M+).
화합물 12-2의 제조
화합물 12-1를 이용하여 실시예 5의 화합물 5-3의 제조방법과 유사한 방법으로 화합물 12-2을 제조하였다(81 %).
1H NMR (400 MHz, CDCl3) δ 8.29-8.24 (m, 6H), 8.17 (s, 1H), 7.66 (s, 2H), 7.48-7.32 (m, 9H), 7.06-7.02 (m, 1H), 5.56-5.46 (m, 2H), 5.36-5.34 (m, 6H), 5.20-5.10 (m, 4H), 4.26-4.08 (m, 5H), 3.82-3.50 (m, 12H), 2.46-2.40 (m ,1H), 2.23 (s, 3H), 2.06 (s, 6H), 2.03 (s, 3H); EI-MS m/z: 1373(M+).
화합물 12-3의 제조
화합물 12-2를 이용하여 실시예 5의 화합물 5-4의 제조방법과 유사한 방법으로 화합물 12-3을 제조하였다(56 %). EI-MS m/z: 1065 (M+/3).
화합물 12-4의 제조
화합물 12-3를 이용하여 실시예 5의 화합물 5-5의 제조방법과 유사한 방법으로 화합물 12-4을 제조하였다(61 %). EI-MS m/z: 995 (M+/3).
화합물 12-5의 제조
질소 대기 하 상온에서 화합물 L-32(제조예 29) (7.0 mg, 0.0023 mmol)와 화합물 12-4 (6.9 mg, 0.0023 mmol)를 에탄올 (2.0 mL), 증류수 (0.5 mL)에 용해시켰다. 상기 혼합물에 1M 소듐 아스코베이트 (23 μL, 0.023 mmol), 0.1M CuSO4 (46 μL, 0.0046 mmol)를 첨가한 후 실온에서 6시간 동안 교반시켰다. 반응 완료 후 prep-HPLC를 이용하여 분리 정제하여 복합체 12-5를 수득하였다(5.6 mg, 40 %). EI-MS m/z: 1854 (M+/3).
리간드-약물 복합체 (12)의 제조
질소 대기하 0 ℃ 에서 화합물 12-5 (5.6 mg, 0.0009 mmol)을 MeOH (1.5 mL), 증류수 (0.5 mL)에 용해 시킨 후, LiOH (2.8 mg, 0.065 mmol)를 첨가한 후 0 ℃ 에서 15시간 동안 교반시켰다. 반응 완료 후 2N 염산 수용액을 이용하여 pH를 2~3으로 맞추었다. 그 후 반응물을 prepHPLC를 이용 정제하여 리간드-약물 복합체 (12) 를 수득하였다(2.0 mg, 41 %). EI-MS m/z: : 1744(M/3+1).
[실시예 10] 리간드-형광물질 (FA-Cy5) 제조
FA-Cy5는 Anal. Biochem.
2013, 432, 59-62 에서 서술한 바와 유사한 방법으로 제조하였으며, Cy5 NHS ester은 ㈜랩서비스코리아에서 구입하여 사용하였다.
[실시예 11] 리간드-약물 복합체 (13)의 제조
화합물 L-25(제조예 22) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (13)을 제조하였다(23 %). EI-MS m/z: 922 (M+/3), 1229 (M+/2).
[실시예 12] 리간드-약물 복합체 (14)의 제조
화합물 L-36_(제조예 33) 및 화합물 S-9(실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (14)를 제조하였다(23 %). EI-MS m/z: 788 (M+/3), 1182 (M+/2).
[실시예 13] 리간드-약물 복합체 (15)의 제조
화합물 L-35 (제조예 32) 및 화합물 S-9 (실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (15)를 제조하였다(23 %). EI-MS m/z: 855 (M+/3), 1282 (M+/2).
[실시예 14] 리간드-약물 복합체 (16)의 제조
화합물 L-35 (제조예 32) 및 화합물 S-9 (실시예 1)를 이용하여 리간드-약물 복합체 (1)의 제조방법과 유사한 방법으로 리간드-약물 복합체 (15)를 제조하였다(23 %). EI-MS m/z: 855 (M+/3), 1282 (M+/2).
[실시예 15] 복합체 제조용 화합물 (17)의 제조
화합물 17-a의 제조
질소 대기 하 상온에서 화합물 L-29(제조예 26) (9.0 mg, 0.024 mmol)와 화합물 S-9(실시예 1) (20 mg, 0.016 mmol)를 에탄올 (2 mL), 증류수 (0.5 mL)에 용해시켜, 반응 용액에 1M 소듐 아스코베이트 (32 μL, 0.032 mmol)와 0.1 M CuSO4 (64 μL, 0.0064 mmol)를 첨가한 후 1시간 동안 교반시켰다. 반응 완료 후 상기 혼합용액을 prep-HPLC를 이용하여 분리 정제하여 화합물 17-a를 수득하였다(14.3 mg, 55 %). EI-MS m/z: 1514 (M+).
화합물 17의 제조
질소대기 하에서 화합물 17-a (13.4 mg, 0.008 mmol)과 화합물 L-30(제조예 27) (5.8 mg, 0.008 mmol)를 DMF (1 mL)에 용해시킨 후 DIPEA (4.3 μL, 0.02 mmol)를 첨가하고 상온에서 1시간 동안 교반시켰다. 반응 완료 후 Prep-HPLC를 통해 화합물 (17)을 수득하였다(7.2 mg, 42 %). EI-MS m/z: 2106 (M+).
[실시예 16] 복합체 제조용 화합물 (18)의 제조
화합물 18-a의 제조
화합물 L-29(제조예 26) 및 화합물 (12-4)(실시예 9)를 이용하여 화합물 17-a의 제조방법과 유사한 방법으로 화합물 18-a를 수득하였다(71 %). EI-MS m/z: 1080 (M+/3).
화합물 18의 제조
화합물 18-a 및 화합물 L-30(제조예 27)를 이용하여 화합물 (17)의 제조방법과 유사한 방법으로 화합물 (18)를 수득하였다(33 %). EI-MS m/z: 1277 (M+/3).
[비교예 1] BG-MMAF (A-6, A-7)의 제조
화합물 A-1, A-2, A-3 제조
한국공개특허 제10-2015-0137015호 실시예 2 내지 3에 기재된 방법과 유사한 방법으로 제조하여 각각의 물질들을 수득하였다.
화합물 A-4 제조
질소 대기 하 0 ℃에서 화합물 A-3 (360 mg, 0.29 mmol)과 제조예 1에서 제조된 L-1 (64 mg, 0.34 mmol)를 DMF (5 mL)에 용해시킨 후 DIPEA (75㎕, 0.43 mmol) 및 PyBOP (224 mg, 0.43 mmol)을 첨가하였다. 상기 혼합물을 상온에서 2시간 동안 교반시켰다. 반응 완료 후 EA (100 mL), 증류수 (50 mL), 및 brine (50 mL)를 가하여 추출하여 수득한 유기층을 무수 Na2SO4으로 건조시키고, 감압 농축 후 화합물 A-4 를 수득하였다 (410 mg, crude). EI-MS m/z: 1426(M+).
화합물 A-5의 제조
화합물 A-4의 제조 방법과 유사한 방법으로, 화합물 A-3 (100 mg, 0.08 mmol)과 2-{2-[2-(2-azidoethoxy)ethoxy]ethoxy}ethanamine (64 mg, 0.34 mmol)을 이용하여 화합물 A-5를 수득하였다 (86 mg, 75%). EI-MS m/z: 1457(M+).
화합물 A-6의 제조
질소 대기 하 -20 ℃에서 화합물 A-4 (410 mg, 0.29 mmol)를 메탄올 (7 mL)에 용해시킨 후, 물 (7 mL)에 용해 된 LiOH (91 mg, 2.16 mmol)를 서서히 적가한 뒤 -5 ℃ 하에서 4시간 동안 교반시켰다. 반응 완료 후 2N 염산 수용액 (7 mL)를 첨가 후, prep-HPLC를 이용하여 분리 정제 하여 화합물 A-6을 수득하였다 (230 mg, 63 %, 2 steps). EI-MS m/z: 1272(M+).
화합물 A-7의 제조
화합물 A-6의 제조 방법과 유사한 방법으로, 화합물 A-5 (1.0 g, 0.69 mmol)에서 화합물 A-7을 수득하였다 (801 mg, 89 %). EI-MS m/z: 1303(M+) .
[비교예 2] 리간드-약물 복합체(베타 글루쿠로나이드 링커) (B)의 제조
질소 대기 하 상온에서 화합물 L-10(제조예 9) (12 mg)과 화합물 A-7(비교예 1) (11 mg, 0.01 mmol)을 에탄올 (2 mL), 증류수 (0.5 mL)에 용해시켰다. 상기 혼합물에 1M 소듐 아스코베이트 (64 μL, 0.06 mmol), 0.1M CuSO4 (128 μL, 0.01 mmol)를 첨가한 후 실온에서 17시간 동안 교반시켰다. 반응 완료 후 Prep-HPLC를 이용하여 분리 정제하여 리간드-약물 복합체 B를 수득하였다(10 mg, 3 steps 42 %). EI-MS m/z: 2263(M+).
[비교예 3] 리간드-약물 복합체(베타 글루쿠로나이드 링커) (C)의 제조
화합물 C-1의 제조
화합물 L-8(제조예 8)과 화합물 A-6(비교예 1)을 이용하여 비교예 2와 유사한 방법으로 화합물 C를 수득하였다. EI-MS m/z: 2069(M+).
화합물 C의 제조
질소 대기 하 상온에서 화합물 L-4(제조예 4) (0.78 mg, 0.004 mmol)를 DMF (1 mL)에 용해 시킨 후 N-hydroxy-succinimide (0.53 mg, 0.005 mmol)와 EDCI·HCl (0.88 mg, 0.005 mmol)를 첨가한 후 4시간 동안 교반시켰다. 반응 완료 후, 화합물 C-2가 생성된 것을 LC/MS를 이용하여 확인한 후 반응 용액에 화합물 C-1 (8.4 mg, 0.003 mmol)과 트리에틸아민 (5 μL, 0.04 mmol)을 첨가하고 3시간 동안 교반시켰다. 상기 혼합용액을 Prep-HPLC를 이용하여 분리 정제하여 리간드-약물 복합체 C를 수득하였다(6.6 mg). EI-MS m/z: 2253 (M+).
[비교예 4] 리간드-약물 복합체(베타 글루쿠로나이드 링커) (D)의 제조
화합물 L-10a(제조예 9), 화합물 L-27(제조예 24), 화합물 L-7(제조예 6) 및 화합물 S-1(실시예 1)를 이용하여 실시예 7과 유사한 방법으로 리간드-약물 복합체 D를 수득하였다. EI-MS m/z: 1487 (M+/2), 991 (M+/3).
[시험예 1] 링커-약물 (화합물 S-9와 A-6)의 enzymatic cleavage assay 평가
실시예 1의 화합물 S-9의 β-갈락토시데이즈(β-galactosidase)에 대한 반응성을 확인하기 위하여, 비교예 1의 화합물 A-6의 β-글루쿠로니데이즈(β-glucuronidase)에 대한 반응성과의 차이를 비교하였다.
실시예 1의 화합물 S-9 및 비교예 1의 화합물 A-6를 각각 10 mM농도로 DMSO에 녹인 후 PBS (phosphate buffered saline) 완충용액과 혼합하여 500 μM용액으로 각각 제조하였다.
PBS 완충용액 2640 μL와 500 μM 화합물 S-9 용액 300 μL을 포함하는 혼합액에 1 mg/mL효소용액 60 μL 를 첨가하여 실시예 1의 화합물 S-9 에 대한 효소 반응용액을 제조한 후 37 ℃ 항온배양기에서 반응을 개시하였다.
PBS 완충용액 2640 μL와 500 μM 화합물 A-6 용액 300 μL을 포함하는 혼합액에 1 mg/mL효소용액 60 μL 를 첨가하여 비교예 1의 화합물 A-6에 대한 효소 반응용액을 제조한 후 37 ℃ 항온배양기에서 반응을 개시하였다.
화합물 S-9를 포함하는 반응 혼합물에는 대장균 베타-갈락토시데이즈 효소 (Sigma G4155)를 사용하였으며, 비교실험을 위한 화합물 A-6를 포함하는 반응 혼합물에는 대장균 베타-글루쿠로니데이즈 효소 (Sigma G7396)를 사용하였다.
상기 효소 반응액은 반응전 0분, 반응 후 15분, 30분, 45분, 90분에 각각 500 μL씩 분취하여 남아있는 화합물 S-9 및 화합물 A-6과 효소 반응으로 유리된 MMAF를 HPLC방법으로 정량 분석하였다. 상기 시험결과를 도 3에 도시하였으며, 화합물 S-9와 비교화합물 A-6의 효소에 의한 가수분해 반감기는 각각 10.7 분(화합물 S-9), 26.0분(화합물 A-6)으로 확인되었다.
또한, 두 화합물 모두 베타-갈락토시데이즈 또는 베타-글루쿠로니데이즈에 의한 효소 작용으로 1,6-제거반응을 거쳐서 MMAF가 빠르게 방출됨을 확인할 수 있었다.
특히, 효소반응에 대한 반응성은 베타-갈락토시데이즈를 이용한 실험결과가 베타-글루쿠로니데이즈보다 2배 이상 빠른 결과를 확인하였다.
이로부터 본 발명의 베타-갈락토사이드(β-galactoside)와 결합된 자가-희생기를 포함하는 화합물은 종래의 글루쿠로나이드(glucuronide)가 결합된 화합물에 비해 우수한 약물 방출 효과가 있음을 알 수 있었다.
[시험예 2] 링커-약물 (화합물 S-9와 A-6)의 사람 및 마우스 혈장 내 안정성 평가
실시예 1의 화합물 S-9와 비교예 1의 화합물 A-6의 사람 및 마우스 혈장 내 안정성을 알아보기 위하여 아래와 같이 실험을 실시하였다.
화합물 S-9(실시예 1) 및 화합물 A-6(비교예 1)를 10 mM농도로 DMSO에 녹인 후 마우스 혈장 (Innovative research, 제품번호 IGMS-N) 및 사람 혈장 (Innovative research, 제품번호 IPLA-N) 각각에 최종농도 100 μM (final 1% DMSO)이 되도록 혼합하였다. 각각의 화합물 S-9(실시예 1)과 화합물 A-6(비교예 1)를 혈장의 혼합액을 37 ℃에서 교반(shaking)하며 반응시켰다. 반응 전 및 반응 후 1, 2, 5, 7, 9일에 상기 시료를 50 μL씩 분취하여 반응 종료 혈장단백질 침전을 위해 내부 표준물질(5 ng/mL disopyramide)을 포함하는 아세토나이트릴 200 μL을 첨가하여 혼합한 후 원심분리(4 ℃, 20 분, 4000 rpm)하였다. 원심분리하여 얻어진 각 상등액을 수집하여 LC-MS/MS로 분석하였다.
LC-MS/MS를 이용하여 시료에 남아있는 화합물 S-9와 화합물 A-6 및 유리된 약물MMAF의 양을 측정한 결과를 도 4 및 도 5에 도시하였다. 이로부터 본 발명의 갈락토사이드 링커가 도입된 화합물 S-9 는 마우스와 사람 혈장 내에서 9일차까지 85% 이상 잔존하여 비교 화합물 A-6만큼이나 매우 안정적임을 알 수 있었다.
[시험예 3] 리간드-약물의 수용체 결합력(binding affinity)
베타-갈락토사이드 링커를 가지는 리간드-약물 복합체 1(실시예 2) 및 베타-글루쿠로나이드 링커를 가지는 리간드-약물 복합체 B(비교예 2)의 엽산 수용체 (folate receptor)에 대한 결합 친화력을 측정하기 위하여 [Analytical Biochemistry (2013), 432, 59-62]에 기재된 방법과 유사한 방법으로 실험하였다.
KB 사람 암세포주 배양액에서 soluble plasma membrane을 Abcam 사의 plasma membrane protein extraction kit (ab65400)을 사용하여 분리하였다. 96-웰 플레이트 (96-well plate) 웰 (well)당 0.5 μg plasma membrane protein을 첨가하고competition을 위한 엽산 (folic acid)과 상기 비교예 2에서 제조된 리간드-약물 복합체 (B)와 상기 실시예 2에서 제조된 리간드-약물 복합체(1)을 0.0305 - 2000 nM (4 배 연속 희석) 농도로 처리하였다. 15분 전반응 (preincubation)후 상기 제조예 10에서 제조된 FA-Cy5 tracer를 1 nM 농도로 처리하여 37 ℃에서 2 시간 동안 반응 시킨 후, BioTek 사의 synergy2 microplate reader 를 이용 (ex/em = 635/688 nm)하여 편광을 측정하였다. 상기 시험결과를 도 6 및 표 1에 도시하였으며, binding affinity (IC50) 개념을 도입하여 비교한 리간드-약물 복합체인 (1)은 (B)보다 2.5 배 우수한 친화력을 보였다. 따라서 갈락토사이드 링커가 도입된 화합물 (1)의 경우 글루쿠로나이드 링커가 도입된 화합물 (B) 대비 엽산 수용체에 대한 결합력이 우수함을 확인할 수 있었다.
화합물 | IC50 (nM) | |
KB cell | ||
Folic acid | 6.46 | |
리간드-약물 복합체 | (B) ( 비교예 2) | 43.81 |
(1) ( 실시예 2) | 17.55 |
[시험예 4] 리간드-약물 복합체의 in vitro cytotoxicity 평가
KB 암세포주를 96-웰 플레이트의 웰당 30,000개씩 파종 (seeding)하여 24시간 동안 배양한 뒤에 약물 MMAF-OMe는 0.0097 ~ 10 nM (4배 연속 희석), 상기 비교예 2에서 제조된 리간드-약물 복합체인 (B)와 과 실시예 2에서 제조된 리간드-약물 복합체 (1)은 0.0244 - 100 nM (4배 연속 희석) 농도로 처리하였다. 72시간 뒤에 살아있는 세포수를 발색시약인 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) 염료를 사용한 후, 살아있는 세포내에 있는 산화환원효소 (oxidoreductase)에 의해 환원된 포마젠 (formazan)을 DMSO에 녹여 정량하였다. 상기 시험결과를 도 7과 표 2에 도시하였으며, 리간드-약물 복합체인 (1) 은 (B) 보다 약 2배 우수한 세포 독성 활성을 보였다. 갈락토사이드 링커가 도입된 화합물 (1)의 경우 글루쿠로나이드 링커가 도입된 화합물 (B) 대비 효능이 우수함을 확인할 수 있었다.
화합물 | IC50 (nM) | |
KB cell | ||
약물 | MMAF-OMe | 0.38±0.17 |
리간드-약물 복합체 | (B) ( 비교예 2) | 0.95±0.16 |
(1) ( 실시예 2) | 0.44±0.12 |
[시험예 5] 단백질-약물 복합체(antibody-drug conjugates)의 제조
실시예 15에서 수득한 화합물 17과 실시예 16에서 수득한 화합물 18을 Nature Biotechnology, 2008, 26, 925-932, Bioconjugate Chem., 2013, 24, 1256-1263, Bioconjugate Chem., 2016, 27, 1324-1331, Bioconjugate Chem. 2014, 25, 460-469 에 제시된 방법 등을 참고하여 특정 위치(예, 항체의 heavy chain 121)에 티올기로 치환된 허셉틴(Herceptin)에 특이적 결합반응을 시켜 티오맵 약물 복합체(TDC, thiomab drug conjugate) 로 Ab-17과 Ab-18을 각각 제조하여 그 결과를 도 9에 도시하였다.
본 시험에 사용된 허셉틴 (https://www.drugbank.ca/drugs/DB00072, 구매처:㈜ 와이바이오로직스)은 유전자 재조합 방법을 통하여 항체 heavy chain의 121번에 존재하는 알라닌(Alanine)을 시스테인(Cysteine)으로 치환하여, HEK293 cell에 일시적 주입법 (transient transfection)으로 DNA를 주입하여 배양액으로 분비되는 항체를 정제하여 제조하였다.
Ab-17과 Ab-18을 제조하기 위해서 시스테인이 도입되어 정제된 항체 1당량 당 환원제인 TCEP (Tris(2-Carboxyethyl)Phosphine)를10~50 당량 가하여 37℃에서 한 시간 동안 반응시켜 도입된 시스테인의 티올기를 환원시킨 후, PD-10 desailting column (GE healthcare, 17-0851-01)을 이용하여 남아있는 TCEP을 제거하고 3일 동안 4℃에서 천천히 산화반응을 진행하여 TCEP처리로 인하여 일부 환원된 항체 내 다이설파이 결합을 원상태로 복귀시킨다. 실시예 15에서 수득한 화합물 17과 실시예 16에서 수득한 화합물 18을 2~10당량 추가하여 상온에서 3시간 반응시킨 다음, 해당 화합물의 100당량의 NaBH4를 추가하여 상온에서 한시간 반응시켜 화합물내의 키톤기를 환원시켜 약물 안정성을 높였다. 반응 후 PD-10을 이용하여 남아 있는 화합물 17, 화합물 18, 또는 NaBH4
등을 제거하여 항체 약물 복합체를 제조하였다. 이때 항체에 결합된 약물의 비율 (DAR: drug-antibody ratio)은 HPLC chromatography 분석법을 이용하여 측정하였다.
[시험예 6] 항체-약물 복합체의 in vitro cytotoxicity 평가
SKBR-3 암세포주를 96-웰 플레이트에 웰당 2,000개 ~ 8,000개씩 파종 (seeding)하여 24 시간 동안 배양하였다. 시함예 6에서 수득한 Ab-17과 Ab-18을 50 nM부터 0.0008 nM까지 1/4 로 연속 희석하여 처리하였고, 대조 약물 T-DM1(로슈 CAS 번호; 1018448-65-1) 은 50 nM부터 0.0008 nM까지 1/4로 연속 희석하여 처리하였다. 96 시간 뒤에 살아있는 세포를 정량하기 위해 MTT 염료를 PBS 완충용액에 5 mg/mL이 되도록 녹인 후, 플레이트의 각 웰에 1/10로 첨가하였다. 세포 내의 미토콘드리아 산화환원효소(oxidoreductase)에 의해 MTT 염료가 환원되어 형성된 포마잔(formazan)을 DMSO에 녹여 550 nm에서 흡광도를 측정 후 정량하여 그 결과를 하기 표 3에 나타내었다.
항체-약물 접합체 | DAR | SKBR-3 IC50(nM) |
Ab-17 | 3.5 | 0.005 |
Ab-18 | 1.41 | 0.009 |
TDM-1 | 4.18 | 0.021 |
[시험예 7] 리간드-약물 복합체 (1)과 (B)의 enzymatic cleavage assay 평가
실시예 2의 리간드-약물 복합체 (1)의 β-갈락토시데이즈(β-galactosidase)에 대한 반응성을 확인하기 위하여, 비교물질인 비교예 2의 리간드-약물 복합체 (B)의 β-글루쿠로니데이즈(β-glucuronidase)에 대한 반응성과의 차이를 비교하였다.
실시예 2의 리간드-약물 복합체 (1) 및 비교예 2의 리간드-약물 복합체 (B)를 각각 9 mM농도로 DMSO 에 녹인 후 PBS완충용액과 혼합하여 500 μM용액으로 각각 제조하였다.
PBS 완충용액 440μL와 500 μM 실시예 2의 리간드-약물 복합체 (1) 용액 50 μL을 포함하는 혼합액에 1 mg/mL 효소용액 10 μL 를 첨가하여 실시예 2의 리간드-약물 복합체 (1)에 대한 효소 반응용액을 제조한 후 37 ℃ 항온배양기에서 반응을 개시하였다.
PBS 완충용액 440 μL와 500 μM 비교예 2의 리간드-약물 복합체 (B) 용액 50 μL을 포함하는 혼합액에 1 mg/mL 효소용액 10 μL 를 첨가하여 비교예 2의 리간드-약물 복합체 (B) 에 대한 효소 반응용액을 제조한 후 37 ℃ 항온배양기에서 반응을 개시하였다.
실시예 2의 리간드-약물 복합체 (1)을 포함하는 반응 혼합물에는 대장균 베타-갈락토시데이즈 효소(Sigma G4155)를 사용하였으며, 비교실험을 위한 비교예 2의 리간드-약물 복합체 (B)를 포함하는 반응 혼합물에는 대장균 베타-글루쿠로니데이즈 효소(Sigma G7396)를 사용하였다.
상기 효소 반응액은 반응전 0분, 반응 후 30분, 90분, 270 분에 각각 500 μL씩 분취하여 남아있는 리간드-약물 복합체 (1) 또는 리간드-약물 복합체 (B), 및 효소반응으로 유리된 MMAF를 HPLC방법으로 정량 분석하였다. 상기 시험결과는 도 8에 도시하였으며, 리간드-약물 복합체 (1)과 비교화합물 (B)의 효소에 의한 가수분해 반감기는 각각 34.68 분 (리간드-약물 복합체 (1)), 270 분 이상(리간드-약물 복합체 (B))으로 측정되었다. 즉, 갈락토사이드 링커가 도입된 화합물 (1)의 경우, 글루쿠로나이드 링커가 도입된 비교화합물 (B) 대비 6배 이상 가수 분해 속도가 빠름을 확인할 수 있었다.
또한, 리간드-약물 복합체 (1)의 경우 베타-갈락토시데이즈에 의한 효소 작용으로 1,6-제거반응을 거쳐서 MMAF가 빠르게 방출됨을 확인할 수 있었다.
이로부터 본 발명의 베타-갈락토사이드(β-galactoside)와 결합된 자가-희생기를 포함하는 화합물은 종래의 글루쿠로나이드(glucuronide)가 결합된 화합물에 비해 우수한 약물 방출 효과가 있음을 알 수 있었다.
본 발명에 따른 β-갈락토사이드기가 도입된 자가-희생기는 기존에 알려진 링커보다 제조방법이 간단하고 부반응이 일어나지 않아 분리정제가 쉽다. 또한 물에 대한 친수성이 좋아 이를 이용하여 제조된 복합체의 물성을 개선한다.
또한, 본 발명에 따른 β-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물은 목적하는 표적에 대한 결합 특이성을 갖는 단백질(예: 올리고펩티드, 폴리펩티드, 항체 등) 또는 리간드, 특이적 기능 또는 활성을 갖는 활성제(예: 약물, 독소, 리간드, 검출용 탐침 등) 및 타겟 세포내에서 선택적으로 활성제가 방출될 수 있도록 글라이코사이드 결합(glycosidic bond)을 이루고 있는 자가-희생 기를 포함하여 타겟 세포에 과발현되어 있는 효소, β-갈락토시데이즈를 이용하여 활성제를 선택적으로 방출하도록 설계된 장점이 있다. 특히 β-글루쿠로나이드 적용이 어려운 약물 등에도 사용 가능함으로써 표적 치료 항암제 개발에 널리 활용될 수 있다.
Claims (14)
- 하기 화학식 1로 표시되는 베타-갈락토사이드가 도입된 자가-희생 기(self-immolative linker)를 포함하는 화합물:[화학식 1]상기 화학식 1에서,R은 수소 또는 하이드록시 보호기이고;X는 -C(=O)-, -NH-, -O- 또는 -S-이고;T는 활성제이고;n 은 0 또는 1의 정수이고;Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;z1은 0 또는 1의 정수이고;Wa1 및 Wa2는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2- 이고;Wa3 및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;W b1는 아마이드 결합 또는 트리아졸릴렌이고;L은 Wa2와 Z을 연결하는 링커로, 아미노산, 펩타이드 또는 아마이드 결합이고;Z는 단일결합, -Wa5-(CH2)a2-Wb2-(CH2)a3-Wa6- 또는 -Wa7-(CH2)a4-CR'R''-X''- 이고;R'는 C1-C8알킬 또는 B-Wa8-Q3-Wc1-(CH2)a5-이고;R''는 B-Wa8-Q3-Wc1-(CH2)a5-이고;Q1, 및 Q3는 각각 독립적으로 -(CH2)a6-(X1CH2CH2)b1-(CH2)a7-이고;X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;X''는 -NHC(=O)-(CH2)a8-Wa9- 또는 -C(=O)NH-(CH2)a8-Wa9-이고;Wa5, Wa6, Wa7, Wa8 및 Wa9 는 각각 독립적으로 -NH-, -C(=O)- 또는 -CH2-이고;Wb2는 아마이드 결합 또는 트리아졸릴렌이고;Wc1는 -NHC(=O)- 또는 -C(=O)NH-이고;Q2는 탄소수1 내지 50의 직쇄 또는 분쇄의 포화 또는 불포화 알킬렌으로, 하기 (i) 내지 (iii) 중 적어도 하나를 만족하며;(i) 상기 알킬렌 내 적어도 하나의 -CH2-는 -NH-, -C(=O), -O- 및 -S-로부터 선택되는 하나 이상의 헤테로 원자로 치환되거나,(ii) 상기 알킬렌 내에 적어도 하나의 아릴렌 또는 헤테로아릴렌을 포함하거나,(iii) 상기 알킬렌은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환되며;상기 (ii)의 아릴렌 또는 헤테로아릴렌은 니트로로 더 치환될 수 있으며;R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;X2는 -O-, -S-, -NH- 또는 -CH2-이고;U1은 하기 구조에서 선택되는 연결기로, 별표(*) 위치에 B'가 결합되며;R은 C1-C10 알킬, C6-20 아릴 또는 C2-C20 헤테로아릴이고;B 및 B'는 각각 독립적으로 약물의 특정 기관, 조직 또는 세포내에 선택적으로 타겟팅하는 즉, 수용체에 결합하는 특성을 갖는 리간드 또는 단백질이며;a1, a2, a3, a4, a5, a6, a8, b1, p1, p2, p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;a7, y, s1, s2 및 s4는 각각 독립적으로 0 내지 10의 정수이고;R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
- 제 1항에 있어서,상기 L은 하기 화학식 A 또는 화학식 B로 표시되는 단위를 하나 이상 포함하는 것인 화합물.[화학식 A][화학식 B]상기 화학식 A 및 B에서,R11은 수소, C1-C8알킬, -(CH2)s3COOR13, -(CH2)s3COR13, -(CH2)s3CONR14R15 또는 -(CH2)s4NR14R15이고;R13, R14 및 R15는 각각 독립적으로 수소 또는 C1-C15 알킬이고;s3 및 s4는 각각 독립적으로 0 내지 10의 정수이고;X3는 -O-, -S-, -NH- 또는 -CH2-이고;p3 및 p4은 각각 독립적으로 1 내지 10의 정수이다.
- 제 1항에 있어서,상기 X는 -C(=O)-이고, Wa1는 -NH-인 화합물.
- 제 1항에 있어서,상기 Z는 단일결합이거나, 하기의 구조에서 선택되는 것인 화합물.상기 구조에서,R'는 C1-C8알킬 또는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;R''는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;X''는 -NHC(=O)-(CH2)a8-NH- 또는 -C(=O)NH-(CH2)a8-NH-이고;a2, a3, a4, a5, a6, a8 및 b1는 각각 독립적으로 1 내지 10의 정수이고;X1 는 -O-, -S-, -NH- 또는 -CH2-이고;B는 청구항 제1항에서의 정의와 동일하다.
- 제 1항에 있어서,상기 Q2은 하기 화학식 C 내지 화학식 I로부터 선택되는 것을 특징으로 하는 화합물.[화학식 C][화학식 D][화학식 E][화학식 F][화학식 G][화학식 H][화학식 I]상기 화학식 C 내지 I에서,X11 및 X12는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;R12 내지 R14은 각각 독립적으로 수소, C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 또는 -(CH2)s2NR4R5이고;R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;X2는 -O-, -S-, -NH- 또는 -CH2-이고;Ra는 수소 또는 니트로이고;c1, c2, c3, c4 및 d1은 각각 독립적으로 1 내지 10의 정수이고;q1 및 q2는 각각 독립적으로 0 내지 5의 정수이고;s1 및 s2는 각각 독립적으로 0 내지 5의 정수이고;p1 및 p2은 각각 독립적으로 1 내지 10의 정수이다.
- 제 1항에 있어서,상기 활성제는 약물, 독소, 친화성 리간드, 검출용 탐침 또는 이들의 조합인 화합물.
- 제 6항에 있어서,상기 약물은 시토카인(cytokine), 면역조절 화합물, 항암제, 항바이러스제, 항박테리아제, 항진균제, 구충제 또는 이들의 조합인 화합물.
- 제 1항에 있어서,상기 리간드는 펩티드, 종양세포 특이적 펩티드 (tumor cell-specific peptides), 종양세포 특이적 앱타머 (tumor cell-specific aptamers), 종양세포 특이적 탄수화물 (tumor cell-specific carbohydrates), 종양세포 특이적 단일클론 항체 또는 다종클론 항체 (tumor cell-specific monoclonal or polyclonal antibodies), 항체 단편으로 이루어진 군으로부터 선택되는 것인 화합물.
- 제 1항에 있어서,상기 단백질은 올리고펩티드, 폴리펩티드, 항체, 항원성 폴리펩티드의 단편 또는 인공항체(Repebody)인 화합물.
- 제 9항에 있어서,상기 항체는 원형 다클론 항체(intact polyclonal antibody), 원형 단일클론 항체(intact monoclonal antibody), 항체 단편(antibody fragment), 단쇄 Fv (scFv) 돌연변이(single chain Fv(scFv) mutant), 다중특이 항체(multispecific antibody), 이중특이 항체(bispecific antibody), 키메라 항체(chimeric antibody), 인간화 항체(humanized antibody), 인간 항체(human antibody), 항체의 항원 결정 부분을 포함하는 융합 단백질(fusion protein comprising an antigenic determinant portion of an antibody), 및 항원 인식 부위를 포함하는 기타 변형된 면역글로불린 분자(modified immunoglobulin molecule comprising an antigen recognition site)로 이루어진 군으로부터 선택되는 것인 화합물.
- 제 10항에 있어서,상기 항체는 뮤로모나브-CD3 아브식시마브(Muromonab-CD3 Abciximab), 리툭시마브(Rituximab), 다클리주마브(Daclizumab), 팔리비주마브(Palivizumab), 인플릭시마브(Infliximab), 트라스투주마브(Trastuzumab, herceptin), 에타너셉트(Etanercept), 바실릭시마브(Basiliximab), 겜투주마브 오조가마이신(Gemtuzumab ozogamicin), 알렘투주마브(Alemtuzumab), 이브리투모마브 티욱세탄(Ibritumomab tiuxetan), 아달리무마브(Adalimumab), 알레파셉트(Alefacept), 오말리주마브(Omalizumab), 에팔리주마브(Efalizumab), 토시투모모브-I131(Tositumomob-I131), 세툭시마브(Cetuximab), 베박시주마브(Bevacizumab), 나탈리주마브(Natalizumab), 라니비주마브(Ranibizumab), 파니투무마브(Panitumumab), 에콜리주마브(Eculizumab), 리로나셉트(Rilonacept), 서톨리주마브 페골(Certolizumab pegol), 로미플로스팀(Romiplostim), AMG-531, CNTO-148, CNTO-1275, ABT-874, LEA-29Y, 벨리무마브(Belimumab), TACI-Ig, 2세대 항-CD20(Second generation anti-CD20), ACZ-885, 토실리주마브(Tocilizumab), 아틀리주마브(Atlizumab), 메폴리주마브(Mepolizumab), 퍼투주마브(Pertuzumab), 휴막스 CD20(Humax CD20), 트레멜리무마브(Tremelimumab,CP-675 206), 티실리무마브(Ticilimumab), MDX-010, IDEC-114, 이노투주마브 오조가마이신(Inotuzumab ozogamycin), 휴막스 EGFR(HuMax EGFR), 알리버셉트(Aflibercept), VEGF Trap-Eye, 휴막스-CD4(HuMax-CD4), Ala-Ala, ChAglyCD3, TRX4, 카투막소마브(Catumaxomab), IGN101, MT-201, 프레고보마브(Pregovomab), CH-14.18, WX-G250, AMG-162, AAB-001, 모타비주마브(Motavizumab), MEDI-524, 에푸마구마브(efumgumab), 아우로그라브®(Aurograb®), 락시바쿠마브(Raxibacumab), 3세대 항-CD20(Third generation anti-CD20), LY2469298, 및 벨투주마브(Veltuzumab)로 이루어진 군으로부터 선택되는 것인 화합물.
- 제1항에 있어서,상기 화합물은 하기 구조에서 선택되는 것인 화합물.상기 구조에서,Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;z1는 0 또는 1의 정수이고;W1는 하기 구조에서 선택되고;W2은 하기 구조에서 선택되고;X1, X11 및 X12는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;R11은 수소, C1-C8알킬, -(CH2)s3COOR13, -(CH2)s3COR13, -(CH2)s3CONR14R15 또는 -(CH2)s4NR14R15이고;R13, R14 및 R15는 각각 독립적으로 수소 또는 C1-C15 알킬이고;X3는 -O-, -S-, -NH- 또는 -CH2-이고;R12 내지 R14은 각각 독립적으로 수소, C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 또는 -(CH2)s2NR4R5이고;R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;X2는 -O-, -S-, -NH- 또는 -CH2-이고;Ra는 수소 또는 니트로이고;R'는 C1-C8알킬 또는 B-NH-(CH2)a6-(X1CH2CH2)b1-NH-C(=O)-(CH2)a5- 이고;X''는 -NHC(=O)-(CH2)a8-NH- 또는 -C(=O)NH-(CH2)a8-NH-이고;a1, a2, a3, a4, a5, a6, a8, b1, c1, c2, c3, c4, d1, p1, p2, p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;q1 및 q2는 각각 독립적으로 0 내지 5의 정수이고;s1, s2, s3 및 s4는 각각 독립적으로 0 내지 5의 정수이고;B'는 항체이고;B는 하기 구조로부터 선택되는 리간드이고;T는 하기 구조로부터 선택되는 약물이고;w는 1 내지 10의 정수이다.
- 하기 화학식 2로 표시되는 화합물:[화학식 2]상기 화학식 2에서,R은 수소 또는 하이드록시 보호기이고;X는 -C(=O)-, -NH-, -O-, -CH2- 또는 -S-이고;Wa1는 -NH-, -CH2- 또는 -C(=O)-이고;T는 활성제이고;Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;Wa2는 -NH-, -C(=O)- 또는 -CH2- 이고;Wa3 및 Wa4는 각각 독립적으로 -NH-, -C(=O)-, -CH2-, -C(=O)NH-, -NHC(=O)- 또는 트리아졸릴렌이고;R21은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 이고;R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;s1 및 s2 는 각각 독립적으로 0 내지 10의 정수이고;a1 은 각각 독립적으로 1 내지 10의 정수이고;s4는 0 내지 10의 정수이고;p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;FG는 -NH2, -C≡CH, C4-C10사이클로알키닐, -N3, -COOH, -SO3H, -OH, -NHOH, -NHNH2, -SH, 할로아세트아미드(-NHC(O)CH2-hal, hal은 할로겐), 말레이미드(), 할로겐, 토실레이트(TsO-), 알데히드(-COH), 케톤(-COR, R은 C1-C10알킬, C6-C20아릴, C2-C20 헤테로아릴), 다이엔, , 또는 -OP(=O)(OH)2이고;X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2- 이고;a6 및 b1는 각각 독립적으로 1 내지 10의 정수이고;a7는 0 내지 10의 정수이고;z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;z1는 0 또는 1의 정수이고;R1 및 R2는 각각 독립적으로 수소, C1-C8알킬 또는 C3-C8사이클로알킬이다.
- 제 13항에 있어서,상기 화합물은 하기 화학식 3으로 표시되는 것인 화합물.[화학식 3]상기 화학식 3에서,Y는 수소, 할로C1-C8알킬, 할로겐, 시아노 또는 나이트로이고;z은 1 내지 3의 정수이고, z이 2 이상의 정수인 경우 각각의 Y는 서로 동일하거나 상이할 수 있고;z1은 0 또는 1의 정수이고;R21은 C1-C20알킬, C6-C20아릴C1-C8알킬, -(CH2)s1COOR3, -(CH2)s1COR3, -(CH2)s2CONR4R5 및 -(CH2)s2NR4R5 이고;R3, R4 및 R5는 각각 독립적으로 수소 또는 C1-C15 알킬이고;s1 및 s2 는 각각 독립적으로 0 내지 10의 정수이고;a1 은 각각 독립적으로 1 내지 10의 정수이고;s4는 0 내지 10의 정수이고;p3 및 p4은 각각 독립적으로 1 내지 10의 정수이고;FG는 -NH2, -C≡CH, C4-C10사이클로알키닐, -N3, -COOH, -SO3H, -OH, -NHOH, -NHNH2, -SH, 할로아세트아미드(-NHC(O)CH2-hal, hal은 할로겐), 말레이미드(), 할로겐, 토실레이트(TsO-), 알데히드(-COH), 케톤(-COR, R은 C1-C10알킬, C6-C20아릴, C2-C20 헤테로아릴), 다이엔, , 또는 -OP(=O)(OH)2이고;X1 및 X3는 각각 독립적으로 -O-, -S-, -NH- 또는 -CH2-이고;a6 및 b1는 각각 독립적으로 1 내지 10의 정수이고;T는 하기 구조로부터 선택되는 약물이고;w는 1 내지 10의 정수이다.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019556777A JP7256751B2 (ja) | 2016-12-28 | 2017-12-28 | β-ガラクトシドが導入された自己犠牲リンカーを含む化合物 |
CN201780081520.1A CN110167599B (zh) | 2016-12-28 | 2017-12-28 | 包含引入β-半乳糖苷的自我牺牲型连接基团的化合物 |
US16/472,983 US11065343B2 (en) | 2016-12-28 | 2017-12-28 | Compound bearing beta-galactoside-introduced self-immolative linker |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0180628 | 2016-12-28 | ||
KR20160180628 | 2016-12-28 | ||
KR1020170181411A KR102085798B1 (ko) | 2016-12-28 | 2017-12-27 | 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 |
KR10-2017-0181411 | 2017-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018124758A2 true WO2018124758A2 (ko) | 2018-07-05 |
WO2018124758A3 WO2018124758A3 (ko) | 2018-08-23 |
Family
ID=62709687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015613 WO2018124758A2 (ko) | 2016-12-28 | 2017-12-28 | 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018124758A2 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114306634A (zh) * | 2019-01-03 | 2022-04-12 | 尹图赛利有限公司 | 包含可裂解接头的化合物及其用途 |
CN114306635A (zh) * | 2019-01-03 | 2022-04-12 | 尹图赛利有限公司 | 包含可裂解接头的化合物及其用途 |
JP2022530482A (ja) * | 2019-05-02 | 2022-06-29 | レゴケム バイオサイエンシズ, インク. | トリス構造を有するリンカーを含むリガンド―薬物複合体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111558049B (zh) * | 2013-12-19 | 2024-06-21 | 西雅图基因公司 | 与目标-药物偶联物并用的亚甲基氨基甲酸酯连接物 |
KR101628872B1 (ko) * | 2014-05-28 | 2016-06-09 | 주식회사 레고켐 바이오사이언스 | 자가-희생 기를 포함하는 화합물 |
PT3900742T (pt) * | 2014-09-11 | 2024-08-21 | Seagen Inc | Entrega direcionada de fármacos contendo uma amina terciária |
-
2017
- 2017-12-28 WO PCT/KR2017/015613 patent/WO2018124758A2/ko active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114306634A (zh) * | 2019-01-03 | 2022-04-12 | 尹图赛利有限公司 | 包含可裂解接头的化合物及其用途 |
CN114306635A (zh) * | 2019-01-03 | 2022-04-12 | 尹图赛利有限公司 | 包含可裂解接头的化合物及其用途 |
JP2022530482A (ja) * | 2019-05-02 | 2022-06-29 | レゴケム バイオサイエンシズ, インク. | トリス構造を有するリンカーを含むリガンド―薬物複合体 |
Also Published As
Publication number | Publication date |
---|---|
WO2018124758A3 (ko) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015182984A1 (ko) | 자가-희생 기를 포함하는 화합물 | |
KR102085798B1 (ko) | 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 | |
JP6784790B2 (ja) | 標的化薬物結合体と使用するためのメチレンカルバメートリンカー | |
US6214345B1 (en) | Lysosomal enzyme-cleavable antitumor drug conjugates | |
EP1909846B1 (en) | Triazole-containing releasable linkers, conjugates comprising the same and processes for their preparation | |
US6512101B1 (en) | Branched hydrazone linkers | |
US6759509B1 (en) | Branched peptide linkers | |
JP7103953B2 (ja) | 薬物としてアマトキシンの誘導体を有する抗体薬物コンジュゲート | |
WO2018124758A2 (ko) | 베타-갈락토사이드가 도입된 자가-희생 기를 포함하는 화합물 | |
WO2022211508A1 (ko) | 인간 cldn18.2에 대한 항체를 포함하는 항체 약물 접합체 및 이의 용도 | |
CA3006242A1 (en) | Conjugates comprising self-immolative groups and methods related thereto | |
CA3006249A1 (en) | Antibody-drug conjugates comprising branched linkers and methods related thereto | |
WO2020180121A1 (ko) | 인간 dlk1에 대한 항체를 포함하는 항체 약물 접합체 및 이의 용도 | |
CA2935077A1 (en) | Sulfonamide-containing linkage systems for drug conjugates | |
WO2010126178A1 (ko) | 신규한 클로린 e6-엽산 결합 화합물, 이의 제조방법 및 이를 함유하는 암 치료용 약학적 조성물 | |
WO2020222573A1 (ko) | 트리스 구조를 가지는 링커를 포함하는 리간드-약물 접합체 | |
WO2020184944A1 (ko) | 위치특이적 항체 콘쥬게이션 및 이의 구체예로서의 항체-약물 콘쥬게이트 | |
CA3168882A1 (en) | Camptothecin derivatives and conjugates thereof | |
WO2022245186A1 (ko) | Ror1 및 b7-h3에 결합하는 항체-약물 접합체 및 그 용도 | |
WO2020141923A9 (ko) | 안전성이 향상된 피롤로벤조디아제핀 이량체 화합물 및 이의 용도 | |
WO2024025396A1 (ko) | 신규 오리스타틴 전구약물 | |
WO2010126179A1 (ko) | 클로린 e6-엽산 결합 화합물 및 키토산을 함유하는 암 치료용 약학적 조성물 | |
KR20190004662A (ko) | 절단성 링커를 포함하는 화합물 및 이들의 용도 | |
US12077606B2 (en) | Cyclic peptide analogs and conjugates thereof | |
WO2024005461A1 (ko) | 신규한 링커 화합물 및 이의 리간드-약물 접합체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17885489 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase in: |
Ref document number: 2019556777 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17885489 Country of ref document: EP Kind code of ref document: A2 |