WO2023090935A1 - 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법 - Google Patents

뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법 Download PDF

Info

Publication number
WO2023090935A1
WO2023090935A1 PCT/KR2022/018307 KR2022018307W WO2023090935A1 WO 2023090935 A1 WO2023090935 A1 WO 2023090935A1 KR 2022018307 W KR2022018307 W KR 2022018307W WO 2023090935 A1 WO2023090935 A1 WO 2023090935A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lys
resin
dmf
leu
Prior art date
Application number
PCT/KR2022/018307
Other languages
English (en)
French (fr)
Inventor
김재일
황국상
이주영
김동민
원선우
조은진
Original Assignee
애니젠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애니젠 주식회사 filed Critical 애니젠 주식회사
Priority claimed from KR1020220155305A external-priority patent/KR20230074004A/ko
Publication of WO2023090935A1 publication Critical patent/WO2023090935A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for preparing an AGM peptide that specifically binds to nucleolin.
  • cancer-specific ligands as pharmaceutical carriers enables tissue- or cell-specific delivery of chemotherapeutic agents relative to that achieved by conventional drugs, thereby reducing systemic toxicity (Allen TM. Nat Rev Cancer 2002;2: 750-63).
  • nanoparticles and antibodies have been widely studied in clinical cancer diagnosis and treatment (Yao VJ, et al. J Control Release. 2016; 240: 267-86).
  • Theragnostic nanoparticles and antibodies have great promise in the field of personalized medicine, as they can detect and monitor cancer in individual patients at an early stage and deliver anti-cancer drugs over a long period of time to increase the effectiveness of treatment. (Palmieri D, et al. Proc Natl Acad Sci USA.
  • nanoparticles are promising drug carrier systems, their practical application is limited due to circulatory instability, inadequate tissue distribution and cytotoxicity (Sukhanova A, et al. NanoscaleRes Lett. 2018; 13: 44).
  • therapeutic antibodies have limitations in that delivery and diffusion to tumor tissues are slow due to their large size (Epenetos AA, et al. Cancer Res. 1986; 46: 3183-91).
  • cancer-specific peptides can be used to increase treatment efficiency and reduce side effects associated with nanoparticle and antibody cancer therapies (Mori T. Curr Pharm Des. 2004; 10: 2335- 43).
  • Peptide ligands have many advantages, including facile large-scale synthesis, low immunogenicity, generation of non-toxic metabolites, and high in vivo biocompatibility (McGregor DP. Curr Opin Pharmacol. 2008; 8: 616-9).
  • AGM peptides that specifically bind to cancer cells and inhibit cancer growth when conjugated with anticancer drugs
  • the peptide is an AGM peptide or AGM peptide-PEG conjugate that specifically binds to cancer cells, an AGM peptide-PEG-drug conjugate that specifically binds to cancer cells and exhibits anticancer activity, and a cell-penetrating peptide that specifically binds to cancer cells. and a conjoined AGM-peptide-PEG-CPP fusion peptide.
  • An object of the present invention is to provide a method for preparing an AGM peptide that specifically binds to nucleolin.
  • a method for producing an AGM peptide that specifically binds to nucleolin comprising the following steps:
  • step (b) removing a resin and a protecting group from the peptide obtained in step (a) to obtain a peptide represented by Formula 22:
  • R 1 is a guanidine protecting group
  • R 2 is an imidazole protecting group or a thio protecting group
  • R 3 is hydrogen or a hydroxy protecting group
  • R 4 is hydrogen or an amine protecting group
  • the dK and dC mean D-Lys and D-Cys, respectively.
  • n and n are 1 and 0 or 2 and 1, respectively;
  • k is any one integer from 4 to 20).
  • R 1 is tert-butyloxycarbonyl group (t-Butyloxycarbonyl), benzyloxycarbonyl group (Benzyloxycarbonyl), nitro group (Nitro), Pmc group (2,2,5,7,8-pentamethylchroman-6-sulfonyl), Mtr group (4-methoxy-2,3,6-trimethylbenzene sulfonyl), Mts group (2,3,6-trimethyl Benzenesulfonyl), Mtb group (trimethoxybenzenesulfonyl), Mds group (4-methoxy-2,6-dimethylbenzenesulfonyl), MIS group (1,2-Dimethylindole-3-sulfonyl), EDOT-2-sulfonyl group (3,4-ethylenedioxythiophene-2-sulfonyl), Pbf group (2,2,4,6,7-pentamethyldihydrobenzofuran-5-
  • R 2 is a methyl group (Methyl), tert-butyloxycarbonyl group, (tert-Butyloxycarbonyl) triphenylmethyl group (Triphenylmethyl), Mmt group (4-Monomethoxytrityl), BOM group (Benzyloxymethylacetal), MBom group (3-methoxybebzyloxymethyl), or It may be an Mtt group (methyltrityl), and according to a preferred embodiment, it may be a triphenylmethyl group, but is not limited thereto.
  • R 3 is hydrogen, tert-butyl group (t-Butyl), triphenylmethyl group (triphenylmethyl), 2-chlorotriphenylmethyl group (2-chlorotriphenylmethyl) benzyl group (Benzyl), phenyl group (phenyl), allyl group (allyl) , methyl group (methyl), benzyl phospho group (benzyl phospho), SO3nP group (2,2-dimethylpropylsulfo), phospho group (phosphor), Clt group (2-chlorotrityl), DMAE group (dimethylaminoethyl), propargyl group (propargyl) Alternatively, it may be a PO(NMe 2 ) 2 ) group (bis-dimethylamino-phosphono), and according to a preferred embodiment, it may be a tert-butyl group (t-Butyl), but is not limited thereto.
  • R 4 is hydrogen, tert-butyloxycarbonyl group, triphenylmethyl group, Dde group ((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl), Ddiv group ((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbuty), Alloc group (Allyloxycarbonyl), methyl group (methyl), methyl, tert-Butyloxycarbonyl group (methyl, tert-Butyloxycarbonyl) , Dnp group (2,4-dinitrophenyl), hexadecanoyl group (hexadecanoyl), Mmt group (4-Monomethoxytrityl), Mtt group (methyltrityl), Mca group (7-methoxycoumarin-4-acetyl), 9-fluorenyl Methylcarbonyl group (9-Fluorenylmethylcarbonyl
  • the resin may be 2-Chlorotrityl, Trityl, 4-Methyltrityl or 4-Methoxytrityl, According to a preferred embodiment, it may be 2-chlorotrityl resin, but is not limited thereto.
  • the resin is dichloromethane, tetrahydrofurane, ethylacetate, acetone, and dimethylformamide. It may be mixed with one or more solvents selected from the group consisting of acetonitrile and dimethylsulfoxide, and according to a preferred embodiment, it may be mixed with dichloromethane (DCM), but is limited thereto no.
  • DCM dichloromethane
  • the step (a) may be a solid-phase synthesis method in which amino acids are sequentially linked.
  • the step (a) may include loading the first amino acid into the resin, and in order to achieve high purity and high yield of the final peptide, selection of a specific first amino acid, equivalent weight relative to a specific resin, and specific loading It can have a specific reaction rate, specific reaction solution, specific addition step, etc.
  • the step (a) comprises the step of loading the first amino acid into the resin by reacting a first amino acid with one selected from the group consisting of the following base reagents in a resin mixed with DCM (Dichloromethane). , but is not limited to the base reagents listed below:
  • the step (a) further comprises loading the first amino acid on the resin, followed by capping by reacting with a solution containing any one selected from the group consisting of DCM, MeOH (Methanol), and the following base reagents. It may be a method of doing, but is not limited to the base reagents listed below:
  • DCM, MeOH, and any one selected from the group consisting of the following base reagents (10 to 20): (1 to 5): volume ratio (v / v) of (1), (11 to 20) : (1 to 5): (1) volume ratio (v / v), (12 to 20): (1 to 5): (1) volume ratio (v / v), (13 to 20): (1 to 5): (1) volume ratio (v / v), (14 to 20): (1 to 5): (1) volume ratio (v / v), (15 to 20): (1 to 5): ( 1) volume ratio (v / v), (15 to 20): (1 to 4): (1) volume ratio (v / v) or (15 to 20): (1 to 3): (1) volume ratio It may be a method of reacting with a solution containing (v / v), but is not limited to the base reagents listed below and the above volume ratio:
  • Step (a) is dichloromethane, tetrahydrofurane, ethyl acetate, acetone, dimethylformamide.
  • Acetonitrile (Acetonitrile) and dimethyl sulfoxide (Dimethylsulfoxide) can be carried out under the conditions of one or more solvents selected from the group consisting of, according to a preferred embodiment it can be carried out under dichloromethane solvent conditions, but is not limited thereto.
  • Step (a) is pyridine, imidazole, pyrrolidine, cyclohexylamine, morpholine, piperidine, 4-methoxypyridine ( 4-Methoxypyridine), 2-Chloropyridine, 4-Dimethylaminopyridine, Aniline, 4-Methoxyaniline, 4-phenylenediamine Phenylenediamine), Ethylamine, Diethylamine, Triethylamine, DIPEA (N,N-Diisopropylethylamine) and DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) It may be performed under one or more base reagent conditions selected from the group consisting of, and according to a preferred embodiment, it may be performed under piperidine or DIPEA (or DIEA) base reagent conditions, but is not limited thereto.
  • 4-methoxypyridine 4-Methoxypyridine
  • 2-Chloropyridine 4-Dimethylaminopyridine
  • Aniline 4-
  • step (a) DCC (N, N′-Dicyclohexylcarbodiimide), DIC (N, N′-Diisopropylcarbodiimide), BOP (Benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate), PyBOP (Benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate), HBTU(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate), TBTU(2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate ), HATU(1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate),
  • the step (a) may include selecting D-Cys (R 2 ) as the first amino acid and loading it into the resin, but depending on which reaction solution or other conditions are selected, may vary, but is not limited thereto.
  • the step (a) may include loading the resin with the first amino acid in an amount of 0.1 to 0.5, 0.1 to 0.45, 0.1 to 0.4, 0.1 to 0.35, or 0.1 to 0.3 equivalents based on the number of moles of the resin. It is not limited.
  • step (a) may include loading the first amino acid into the resin at a loading rate of 0.1 to 0.5, 0.1 to 0.45, 0.1 to 0.4, 0.1 to 0.35, or 0.1 to 0.3 mmol/g, It is not limited thereto.
  • the step (b) may be performed in the presence of an acidic solution.
  • the step (b) is trifluoroacetic acid (TFA), triisopropylsilene (TIS), ethylenedioxydiesate acid thiol (DODT), dimethyl sulfide (DMS) and ammonium iodide (NH 4 I) It may be performed in the presence of a mixed solution containing a combination of those selected from the group consisting of, and may include all of them according to a preferred embodiment, and may further include purified water according to the practice conditions of those skilled in the art, It is not limited thereto.
  • TSA trifluoroacetic acid
  • TIS triisopropylsilene
  • DODT ethylenedioxydiesate acid thiol
  • DMS dimethyl sulfide
  • NH 4 I ammonium iodide
  • the step (b) includes trifluoroacetic acid (TFA), triisopropylsilene (TIS), ethylenedioxydiesatethiol (DODT), dimethylsulfide (DMS) and purified water (30 to 40): (1): (1): (1 to 5): (1 to 5) volume ratio (v/v), or (30 to 40): (1): (1): (1 to 3): (1 to 4) volume ratio (v / v), or (30 to 40): (1): (1): (1 to 3): (1 to 3) volume ratio (v / v) It may be performed in the presence, but is not limited thereto.
  • TFA trifluoroacetic acid
  • TIS triisopropylsilene
  • DODT ethylenedioxydiesatethiol
  • DMS dimethylsulfide
  • purified water (30 to 40): (1): (1): (1 to 5): (1 to 5) volume ratio (v/v), or (30 to 40): (1): (1): (1 to 3): (1 to 4) volume ratio (
  • the peptide represented by Chemical Formula 22 may be specifically a peptide represented by Chemical Formula 24 or 25:
  • the preparation method may further include a step (c) of reacting the peptide obtained in step (b) with a 3-maleimidopropionicacid-Paclitaxel (MPA-PTX) complex represented by Formula 3 below:
  • MPA-PTX 3-maleimidopropionicacid-Paclitaxel
  • the preparation method may further include a step (d) of reacting the peptide obtained in step (b) with the MPA-AGM-130 (3-maleimidopropionicacid-AGM-130) complex represented by Formula 6 below. there is:
  • the preparation method may further include a step (e) of reacting the peptide obtained in step (b) with a cell penetrating peptide (CPP) represented by Formula 9 below:
  • CPP cell penetrating peptide
  • it may be preferably carried out under pH 6.5 to 8.0 conditions, but is not limited thereto.
  • dichloromethane tetrahydrofurane, ethyl acetate, acetone, dimethylformamide. It may be performed under the condition of one or more solvents selected from the group consisting of acetonitrile and dimethylsulfoxide, and according to a preferred embodiment, it may be performed under the condition of acetonitrile, dichloromethane, or a combination thereof. , but is not limited thereto.
  • AGM-330d including a protecting group on the side chain is prepared by performing amide coupling sequentially according to the amino acid sequence including the protecting group on the side chain. Thereafter, the resin and the protecting group are removed using an acidic solution, and AGM-330d (Formula 1) is obtained by purification and lyophilization.
  • AGM-330t including a protecting group on the side chain is prepared by performing amide coupling sequentially according to the amino acid sequence including the protecting group on the side chain. Thereafter, the resin and the protecting group are removed using an acidic solution, and AGM-330t (Formula 2) is obtained by purification and freeze-drying.
  • MPA-PTX (Formula 3) is synthesized through an esterification reaction between 3-maleimido-propionic acid (MPA; Formula 12) and Paclitaxel (PTX; Formula 13).
  • PMB-AGM-130 (Formula 15) is synthesized by introducing a PMB (p-Methoxybenzyl) protecting group into -OH of the oxime of AGM-130 (Formula 14).
  • MPA-PMB-AGM-130 (Formula 16) is synthesized through esterification of PMB-AGM-130 (Formula 15) and 3-Maleimido-propionic acid (Formula 12), and then PMB is deprotected in the last step. The reaction is carried out to synthesize MPA-AGM-130 (Formula 6).
  • the first amino acid is loaded into the 2-chlorotrityl chloride resin.
  • amino acids containing a protecting group in the side chain are sequentially subjected to amide coupling according to the sequence to prepare CPP including a protecting group in the side chain. Thereafter, the resin and the protecting group are removed using an acidic solution, and CPP (Formula 9) is obtained by purification and lyophilization.
  • AGM-330d and AGM-330t, respectively, and MPA-PTX were subjected to 1,4-Michael addition reaction in PBS buffer to obtain AGM-331d and AGM-330t, respectively.
  • AGM-330d and AGM-330t, respectively, and MPA-AGM-130 were subjected to 1,4-Michael addition reaction in PBS buffer to obtain AGM-332d and AGM-332t.
  • AGM-330d and AGM-330t respectively and CPP were mixed with 20% ACN aq.
  • AGM peptides that specifically bind to nucleolin can be obtained in high purity and yield, which can be usefully used for diagnosis and targeted drug delivery in cancer therapy.
  • a method for mass synthesis of peptides can be presented.
  • FIG. 1 schematically shows an AGM-330d manufacturing process.
  • Figure 2 schematically shows the AGM-330t manufacturing process.
  • Figure 3 schematically shows the manufacturing process of MPA-PTX.
  • FIG. 4 schematically shows the manufacturing process of AGM-331d.
  • FIG. 5 schematically shows the manufacturing process of AGM-331t.
  • Figure 6 schematically shows the manufacturing process of MPA-AGM-130.
  • FIG. 7 schematically shows the manufacturing process of AGM-332d.
  • FIG. 10 schematically shows the manufacturing process of AGM-380d.
  • FIG. 11 schematically shows the manufacturing process of AGM-380t.
  • 16 is a MALDI-TOF mass analysis result for AGM-332t.
  • 17 is a MALDI-TOF mass analysis result for AGM-380d.
  • Figure 19 shows the crude purity (%) of AGM-330t according to the first amino acid loading rate.
  • AGM-330d After dissolving 215 g of AGM-330d Crude, it is filtered through a GF/C filter and a 0.45 ⁇ m HVHP membrane filter. The crude liquid was purified and lyophilized to obtain 144.2 g of AGM-330d represented by Formula 1 (or Formula 24) (Formula 24: Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6- D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6 )-D-Cys-OH).
  • Formula 1 or Formula 24
  • FIG. 1 A schematic diagram of the AGM-330d manufacturing process is shown in FIG. 1, and the MALDI-TOF mass analysis result thereof is shown in FIG. 12.
  • AGM-330t After dissolving 206.6 g of AGM-330t Crude, it is filtered through a GF/C filter and a 0.45 ⁇ m HVHP membrane filter. The crude liquid was purified and lyophilized to obtain 73.1 g of AGM-330t represented by Formula 2 (or Formula 25) (Formula 25: Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6 -D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6 )-D-Lys ⁇ Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6- D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG 6 ) ⁇ -D-Cys-OH).
  • FIG. 2 A schematic diagram of the AGM-330t manufacturing process is shown in FIG. 2, and the MALDI-TOF mass analysis result thereof is shown in FIG. 13.
  • FIG. 1 A schematic diagram of the manufacturing process of MPA-PTX is shown in FIG.
  • FIG. 4 A schematic diagram of the manufacturing process of AGM-331d is shown in FIG. 4, and the MALDI-TOF mass analysis result thereof is shown in FIG. 14.
  • AGM-330t (1.0 mmol, 6.0 g, 1.0 eq.) in a mixed solution (pH: ⁇ 7.4) of 640 mL of PBS buffer and 450 mL of PW (Purified water)
  • MPA-PTX (1.0 mmol, 1.0 eq.) was added to 180 mL of ACN.
  • g, 1.0 eq. was completely dissolved and stirred at room temperature for 4 hours.
  • 2.7 g of AGM-331t represented by Chemical Formula 5 was obtained by purification and lyophilization.
  • FIG. 5 A schematic diagram of the manufacturing process of AGM-331t is shown in FIG. 5, and the MALDI-TOF mass analysis result thereof is shown in FIG. 15.
  • AGM-130 (29.6 mmol, 10.0 g, 1.0 eq.) in 250 mL DMF in a 500 mL reactor, add K 2 CO 3 (59.1 mmol, 7.8 g, 2.0 eq.) and stir at 20-30 °C for 15 minutes. .
  • K 2 CO 3 59.1 mmol, 7.8 g, 2.0 eq.
  • PMB-Cl p-methoxybenzyl chloride
  • FIG. 1 A schematic diagram of the manufacturing process of MPA-AGM-130 is shown in FIG.
  • FIG. 1 A schematic diagram of the manufacturing process of AGM-332d is shown in FIG.
  • reaction solution is put into a column and only the main peak is separated to remove DMF. After separating the main peak, concentration is performed under reduced pressure to remove acetonitrile (ACN). After concentration, purification and salt-exchange processes were performed, and after lyophilization, 5.0 g of AGM-332t product represented by Formula 8 was obtained.
  • ACN acetonitrile
  • FIG. 8 A schematic diagram of the manufacturing process of AGM-332t is shown in FIG. 8, and the MALDI-TOF mass analysis result thereof is shown in FIG. 16.
  • FIG. 1 A schematic diagram of the manufacturing process of CPP is shown in FIG. 1
  • AGM-330d (6.2g, 2.04 mmol) in 20% acetonitrile aqueous solution (ACN aq; 620 mL, pH: ⁇ 7.0 adjust NH 4 OH)
  • CPP 5.5 g, 3.07 mmol
  • the reaction solution was filtered through a GF/C filter and a 0.45 ⁇ m HVHP membrane filter, followed by purification and salt replacement, and lyophilization to obtain 6.57 g of AGM-330d-mCPP (AGM-380d) compound.
  • FIG. 10 A schematic diagram of the manufacturing process of AGM-380d is shown in FIG. 10, and the MALDI-TOF mass analysis result thereof is shown in FIG. 17.
  • AGM-330t (22.4 mmol, 136 g, 1.0 eq.) and CPP (33.7 mmol, 60.7 g, 1.5 eq.) are put into a reactor.
  • the reaction solution is put into a rotary concentrator and concentrated under reduced pressure to remove acetonitrile, and then purification is performed. After purification, lyophilization was performed to obtain 101.4 g of AGM-380t represented by the final formula (11).
  • FIG. 11 A schematic diagram of the manufacturing process of AGM-380t is shown in FIG. 11, and the MALDI-TOF mass analysis result thereof is shown in FIG. 18.
  • the loading ratio was set to 0.1 to 0.3 mmol/g, and the equivalent weight of amino acid relative to the number of moles of resin was set to 0.1 to 0.3 eq.
  • the amino acid equivalent is 0.1 eq, the crude purity is the highest at 37.0%, but considering the productivity of the product, mass synthesis of AGM-330d and AGM-330t was performed using 0.2 eq.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명의 제조하는 방법에 따를 때, 뉴클레오린에 특이적으로 결합하는 AGM 펩타이드를 높은 순도와 높은 수율로 수득할 수 있어, 암 치료요법에서 진단 및 표적 약물 전달에 유용하게 이용될 수 있는 AGM 펩타이드의 대량합성이 가능한 방법을 제시할 수 있다.

Description

뉴클레오린에 특이적으로 결합하는 AGM 펩타이드를 제조하는 방법
본 발명은 뉴클레오린에 특이적으로 결합하는 AGM 펩타이드를 제조하는 방법에 관련된 것이다.
암-특이적 리간드를 약학적 담체로서 이용하는 것은 종래의 약물에 의해 달성되는 것보다 상대적으로 화학요법제제의 조직 또는 세포 특이적 전달을 가능하게 하여, 전신 독성을 감소시킨다(Allen TM. Nat Rev Cancer. 2002;2: 750-63). 암-특이적 리간드 중에서, 나노입자 및 항체는 임상 암 진단 및 치료에서 널리 연구되어왔다(Yao VJ, et al. J Control Release. 2016; 240: 267-86). 초기 단계에서 개별 환자의 암을 감지 및 모니터링하고 치료 효과를 높이기 위해 장기간에 걸쳐 항암제를 전달할 수 있기 때문에, 동시에 진단 및 치료를 할 수 있는(theragnostic) 나노입자와 항체는 개인 맞춤형 의약품 분야에서 큰 가능성을 보이고 있다(Palmieri D, et al. Proc Natl Acad Sci U S A. 2015; 112: 9418-23). 나노입자는 유망한 약물 운반체 시스템이지만, 순환 불안정성, 부적절한 조직 분포 및 세포 독성 때문에 실제 적용에 한계를 나타낸다(Sukhanova A, et al. NanoscaleRes Lett. 2018; 13: 44). 또한, 치료용 항체는 크기가 커서 종양 조직으로의 전달 및 확산이 느리다는 한계가 있다(Epenetos AA, et al. Cancer Res. 1986; 46: 3183-91).
고전적인 진단 및 치료 방법에 대한 대안으로, 치료 효율을 높이고 나노입자 및 항체 암 치료법과 관련된 부작용을 줄이기 위해서, 암-특이 펩타이드가 사용될 수 있다(Mori T. Curr Pharm Des. 2004; 10: 2335-43). 펩타이드 리간드는 쉬운 대량 합성, 낮은 면역원성, 무독성 대사산물의 생성 및 높은 in vivo 생체적합성을 포함하여 많은 장점을 가지고 있다(McGregor DP. Curr Opin Pharmacol. 2008; 8: 616-9).
본 연구자들은 선행연구로서 암세포에 특이적으로 결합하며, 항암제와의 접합체가 암 성장을 억제하는 AGM 펩타이드라 명명된 펩타이드 리간드 시리즈들을 발명하였다(Jae Il Kim, et al. Theranostics 2020. Vol. Issue 20).
상기 펩타이드는 암 세포에 특이적으로 결합하는 AGM 펩타이드 또는 AGM 펩타이드-PEG 접합체, 암세포에 특이적으로 결합하고 항암활성을 나타내는 AGM 펩타이드-PEG-약물 접합체, 암세포에 특이적으로 결합하며 세포투과성 펩타이드가 결합된 AGM-펩타이드-PEG-CPP 융합 펩타이드를 포함한다.
본 연구자들은 선행연구로서 발명한 상기 AGM 펩타이드 만의 특이적이고 최적화된 제조방법을 개발하고자 하였고, 이하 이를 제시하고자 한다.
본 발명은 뉴클레오린에 특이적으로 결합하는 AGM 펩타이드를 제조하는 방법을 제공함에 그 목적이 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업계 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 명세서에서 특별한 표시가 없는 한, 아미노산 및 보호기의 지정에 사용되는 약어는 IUPAC-IUB의 생화학 용어 위원회 (Commission of Biochemical Nomenclature)에서 권장하는 용어에 기초한다 (Biochemistry, 11:1726-1732(1972); Pure & Appl. Chem., Vol. 56, No. 5, pp. 595-624, 1984).
본 발명의 일 양태로서, 다음의 단계를 포함하는, 뉴클레오린(Nucleolin)에 특이적으로 결합하는 AGM 펩타이드를 제조하는 방법을 제공한다:
(a) 고체상(solid-phase) 합성 방법으로 레진이 부착된 하기 화학식 20으로 표시되는 펩타이드를 수득하는 단계; 및
(b) 상기 단계 (a)에서 수득한 펩타이드에서 레진과 보호기를 제거하여, 하기 화학식 22로 표시되는 펩타이드를 수득하는 단계:
[화학식 20]
Am-dKn-dC-O-Resin
[화학식 21]
Arg(R1)-His(R2)-Gly-Ala-Met-Val-Tyr(R3)-Leu-Lys(R4)-PEGk-D-Lys{Arg(R1)-His(R2)-Gly-Ala-Met-Val-Tyr(R3)-Leu-Lys(R4)-PEGk}
[화학식 22]
Bm-dKn-dC-OH
[화학식 23]
Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEGk-D-Lys{Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEGk}
(상기 화학식 20 내지 23에 있어서, 상기 A는 하기 화학식 21로 표시되고, 상기 B는 하기 화학식 23으로 표시되며,
상기 R1은 구아니딘 보호기, 상기 R2는 이미다졸 보호기 또는 티오 보호기, 상기 R3는 수소 또는 히드록시 보호기, R4는 수소 또는 아민 보호기이고,
상기 dK와 dC는 각각 D-Lys과 D-Cys를 의미하며,
상기 m과 n은 각각 1과 0 또는 2와 1이고,
상기 k는 4 내지 20 중 어느 하나의 정수임).
상기 R1은 터트-부틸옥시카보닐기(t-Butyloxycarbonyl), 벤질옥시카보닐기(Benzyloxycarbonyl), 니트로기(Nitro), Pmc기(2,2,5,7,8-pentamethylchroman-6-sulfonyl), Mtr기(4-methoxy-2,3,6-trimethylbenzene sulfonyl), Mts기(2,3,6-trimethyl Benzenesulfonyl), Mtb기 (trimethoxybenzenesulfonyl), Mds기(4-methoxy-2,6-dimethylbenzenesulfonyl), MIS기(1,2-Dimethylindole-3-sulfonyl), EDOT-2-sulfonyl기(3,4-ethylenedioxythiophene-2-sulfonyl), Pbf기(2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl) 또는 Tos기(4-Toluenesulphonyl)일 수 있고, 바람직한 일 실시예에 따를 때 Pbf기일 수 있으나, 이에 제한되는 것은 아니다.
상기 R2는 메틸기(Methyl), 터트-부틸옥시카보닐기,(tert-Buthyloxycarbonyl) 트리페닐메틸기(Triphenylmethyl), Mmt기(4-Monomethoxytrityl), BOM기(Benzyloxymethylacetal), MBom기(3-methoxybebzyloxymethyl) 또는 Mtt기(methyltrityl)일 수 있고, 바람직한 일 실시예에 따를 때 트리페닐메틸기일 수 있으나, 이에 제한되는 것은 아니다.
상기 R3는 수소, 터트-부틸기(t-Butyl), 트리페닐메틸기(triphenylmethyl), 2-클로로트리페닐메틸기(2-chlorotriphenylmethyl) 벤질기(Benzyl), 페닐기(phenyl), 알릴기(allyl), 메틸기(methyl), 벤질포스포기(benzyl phospho), SO3nP기(2,2-dimethylpropylsulfo), 포스포기(phosphor), Clt기(2-chlorotrityl), DMAE기(dimethylaminoethyl), 프로파질기(propargyl) 또는 PO(NMe2)2)기(bis-dimethylamino-phosphono)일 수 있고, 바람직한 일 실시예에 따를 때 터트-부틸기(t-Butyl)일 수 있으나, 이에 제한되는 것은 아니다.
상기 R4는 수소, 터트-부틸옥시카보닐기(tert-Buthyloxycarbonyl), 트리페닐메틸기(triphenylmethyl), Dde기((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl), Ddiv기((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbuty), Alloc기(Allyloxycarbonyl), 메틸기(methyl), 메틸, 터트-부틸옥시카보닐기(methyl, tert-Buthyloxycarbonyl), Dnp기(2,4-dinitrophenyl), 헥사데카노일기(hexadecanoyl), Mmt기(4-Monomethoxytrityl), Mtt기(methyltrityl), Mca기(7-methoxycoumarin-4-acetyl), 9-플루오레닐메틸카보닐기(9-Fluorenylmethylcarbonyl), 벤질옥시카보닐기, pNZ기(p-Nitrobenzyloxycarbonyl), 아지도기(Azido), 아세틸기(Acetyl), Pryoc기(Propargyloxycarbonyl) 또는 트리플루오로아세틸기(Trifluoroacetyl)일 수 있고, 바람직한 일 실시예에 따를 때 터트-부틸옥시카보닐기(tert-Buthyloxycarbonyl)일 수 있으나, 이에 제한되는 것은 아니다.
상기 작용기에 대한 보호기는 Protecting Groups in Organic Synthesis (Greene and Wuts, John Wiley & Sons, 1991)에 상세히 기재되어 있다.
상기 레진은 2-클로로트리틸 레진(2-Chlorotrityl), 트리틸 레진(Trityl), 4-메틸트리틸 레진(4-Methyltrityl) 또는 4-메톡시트리틸 레진(4-Methoxytrityl)일 수 있고, 바람직한 일 실시예에 따를 때 2-클로로트리틸 레진일 수 있으나, 이에 제한되는 것은 아니다.
상기 레진은 디클로로메탄(Dichloromethane), 테트라히드로퓨란(Tetrahydrofurane), 에틸아세테이트(Ethylacetate), 아세톤(Acetone), 디메틸포름아마이드(Dimethylformamide). 아세토니트릴(Acetonitrile) 및 디메틸설폭사이드(Dimethylsulfoxide)로 이루어진 군으로부터 선택된 하나 이상의 용매와 혼합될 수 있고, 바람직한 일 실시예에 따를 때 디클로로메탄(Dichloromethane; DCM)과 혼합될 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 (a)는 고체상 합성 방법으로서 아미노산을 순차적으로 연결시켜 나가는 형태의 합성 방법일 수 있다. 이러한 경우, 상기 단계 (a)는 첫번째 아미노산을 레진에 로딩하는 단계를 포함할 수 있고, 최종 수득 펩타이드에 대한 높은 순도와 높은 수율을 달성하기 위해 특정 첫번째 아미노산의 선택, 특정 레진 대비 당량, 특정 로딩율, 특정 반응용액, 특정 부가단계 등을 가질 수 있다.
상기 단계 (a)는 DCM(Dichloromethane)과 혼합된 레진에, 첫번째 아미노산과 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를 함께 반응시켜, 상기 레진에 첫번째 아미노산을 로딩하는 단계를 포함하는 것인 방법일 수 있으나, 하기 나열된 염기 시약들로 제한되는 것은 아니다:
피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
상기 단계 (a)는 상기 레진에 첫번째 아미노산을 로딩한 후, DCM, MeOH(Methanol) 및 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를 포함하는 용액과 반응시켜 캡핑(capping)하는 단계를 더 포함하는 것인 방법일 수 있으나, 하기 나열된 염기 시약들로 제한되는 것은 아니다:
피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
상기 캡핑하는 단계는 DCM, MeOH 및 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를, (10 내지 20): (1 내지 5): (1)의 부피비(v/v), (11 내지 20): (1 내지 5): (1)의 부피비(v/v), (12 내지 20): (1 내지 5): (1)의 부피비(v/v), (13 내지 20): (1 내지 5): (1)의 부피비(v/v), (14 내지 20): (1 내지 5): (1)의 부피비(v/v), (15 내지 20): (1 내지 5): (1)의 부피비(v/v), (15 내지 20): (1 내지 4): (1)의 부피비(v/v) 또는 (15 내지 20): (1 내지 3): (1)의 부피비(v/v)로 포함하는 용액과 반응시키는 것인 방법일 수 있으나, 하기 나열된 염기 시약들과 상기 부피비로 제한되는 것은 아니다:
피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
상기 단계 (a)는 디클로로메탄(Dichloromethane), 테트라히드로퓨란(Tetrahydrofurane), 에틸아세테이트(Ethylacetate), 아세톤(Acetone), 디메틸포름아마이드(Dimethylformamide). 아세토니트릴(Acetonitrile) 및 디메틸설폭사이드(Dimethylsulfoxide)로 이루어진 군으로부터 선택된 하나 이상의 용매 조건 하에서 수행될 수 있고, 바람직한 일 실시예에 따를 때 디클로로메탄 용매 조건 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 (a)는 피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene)로 이루어진 군에서 선택된 하나 이상의 염기 시약 조건 하에서 수행될 수 있고, 바람직한 일 실시예에 따를 때 피페리딘 또는 DIPEA(또는 DIEA) 염기 시약 조건 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 (a)는 DCC(N,N′-Dicyclohexylcarbodiimide), DIC(N,N'-Diisopropylcarbodiimide), BOP(Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate), PyBOP(Benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate), HBTU(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate), TBTU(2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate), HATU(1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate), TATU(1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-Oxide Tetrafluoroborate), CDI(1,1'-Carbonyldiimidazole), HOBt(Hydroxybenzotriazole) 및 EDC·HCl(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide)로 이루어진 군에서 선택된 하나 이상의 결합 시약 조건 하에서 수행될 수 있고, 바람직한 일 실시예에 따를 때 HBTU 또는 HOBt 결합 시약 조건 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
구체적인 일 실시예에 따를 때, 상기 단계 (a)는 첫번째 아미노산으로 D-Cys(R2)를 선택하여 상기 레진에 로딩하는 단계를 포함할 수 있으나, 어떠한 반응용액 등의 조건을 선택하는지에 따라 달라질 수 있을 것이며, 이에 제한되는 것은 아니다.
구체적으로, 상기 단계 (a)는 레진의 몰수 대비 0.1 내지 0.5, 0.1 내지 0.45, 0.1 내지 0.4, 0.1 내지 0.35 또는 0.1 내지 0.3 당량의 첫번째 아미노산을 상기 레진에 로딩하는 단계를 포함할 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 상기 단계 (a)는 0.1 내지 0.5, 0.1 내지 0.45, 0.1 내지 0.4, 0.1 내지 0.35 또는 0.1 내지 0.3 mmol/g의 로딩율로 첫번째 아미노산을 상기 레진에 로딩하는 단계를 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 단계 (b)는 산성 용액의 존재 하에서 수행되는 것일 수 있다.
구체적으로, 상기 단계 (b)는 삼불화초산(TFA), 트리이소프로필실렌(TIS), 에틸렌디옥시디에산싸이올(DODT), 디메틸설파이드(DMS) 및 아이오딘화암모늄(NH4I)으로 이루어진 군에서 선택된 것들의 조합을 포함하는 혼합용액의 존재 하에서 수행될 수 있고, 바람직한 일 실시예에 따를 때 이들 모두를 포함할 수 있으며, 당업자의 실시 조건에 따라 정제수를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적인 일 실시예로서, 상기 단계 (b)는 삼불화초산(TFA), 트리이소프로필실렌(TIS), 에틸렌디옥시디에산싸이올(DODT), 디메틸설파이드(DMS) 및 정제수를 (30 내지 40): (1): (1): (1 내지 5): (1 내지 5) 부피비(v/v), 또는 (30 내지 40): (1): (1): (1 내지 3): (1 내지 4) 부피비(v/v), 또는 (30 내지 40): (1): (1): (1 내지 3): (1 내지 3) 부피비(v/v)로 포함하는 혼합용액의 존재 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 22로 표시되는 펩타이드는 구체적으로 하기 화학식 24 또는 25로 표시되는 펩타이드일 수 있다:
[화학식 24]
Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Cys-OH
[화학식 25]
Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Lys{Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)}-D-Cys-OH.
상기 제조하는 방법은, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 3으로 표시되는 MPA-PTX(3-maleimidopropionicacid-Paclitaxel) 복합체를 함께 반응시키는 단계 (c)를 더 포함할 수 있다:
[화학식 3]
Figure PCTKR2022018307-appb-img-000001
.
상기 제조하는 방법은, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 6으로 표시되는 MPA-AGM-130(3-maleimidopropionicacid-AGM-130) 복합체를 함께 반응시키는 단계 (d)를 더 포함할 수 있다:
[화학식 6]
Figure PCTKR2022018307-appb-img-000002
.
상기 제조하는 방법은, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 9로 표시되는 세포 투과성 펩타이드(CPP)를 함께 반응시키는 단계 (e)를 더 포함할 수 있다:
[화학식 9]
Figure PCTKR2022018307-appb-img-000003
.
상기 반응시키는 단계에 있어서, pH 7.0 내지 10.0, 7.0 내지 9.9, 7.0 내지 9.8, 7.0 내지 9.7, 7.0 내지 9.6, 7.0 내지 9.5, 7.0 내지 9.4, 7.0 내지 9.3, 7.0 내지 9.2, 7.0 내지 9.1, 7.0 내지 9.0, 7.0 내지 8.9, 7.0 내지 8.8, 7.0 내지 8.7, 7.0 내지 8.6, 7.0 내지 8.5, 7.0 내지 8.4, 7.0 내지 8.3, 7.0 내지 8.2, 7.0 내지 8.1, 7.0 내지 8.0, 6.5 내지 9.0, 6.5 내지 8.9, 6.5 내지 8.8, 6.5 내지 8.7, 6.5 내지 8.6, 6.5 내지 8.5, 6.5 내지 8.4, 6.5 내지 8.3, 6.5 내지 8.2, 6.5 내지 8.1 또는 6.5 내지 8.0 조건 하에서 수행될 수 있고, 최종 수득 펩타이드의 높은 수율과 높은 순도를 확보하는 측면에서 바람직하게는 pH 6.5 내지 8.0 조건 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 반응시키는 단계에 있어서, 디클로로메탄(Dichloromethane), 테트라히드로퓨란(Tetrahydrofurane), 에틸아세테이트(Ethylacetate), 아세톤(Acetone), 디메틸포름아마이드(Dimethylformamide). 아세토니트릴(Acetonitrile) 및 디메틸설폭사이드(Dimethylsulfoxide)로 이루어진 군으로부터 선택된 하나 이상의 용매 조건 하에서 수행될 수 있고, 바람직한 일 실시예에 따를 때 아세토니트릴, 디클로로메탄 또는 이의 조합인 용매 조건 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
이하, 일 실시예로서 제공되는 반응 공정들에 대해 개략적으로 설명하고자 한다. 이는 앞으로 기술될 실시예들에 대한 이해도를 돕기 위한 목적으로서 예시적인 것인 바, 본 발명의 범위가 이에 제한되는 것은 아니다.
1. AGM-330d의 제조
Figure PCTKR2022018307-appb-img-000004
Figure PCTKR2022018307-appb-img-000005
2-클로로트리틸 클로라이드 레진에 첫번째 아미노산을 로딩한다. 두번째로 곁사슬에 보호기를 포함한 아미노산을 시퀀스에 따라 순차적으로 아마이드 커플링을 하여 곁사슬에 보호기를 포함한 AGM-330d를 제조한다. 그 후 산성용액을 이용하여 레진과 보호기를 제거하고 정제 및 동결건조로 AGM-330d(화학식 1)을 얻는다.
2. AGM-330t의 제조
Figure PCTKR2022018307-appb-img-000006
Figure PCTKR2022018307-appb-img-000007
2-클로로트리틸 클로라이드 레진에 첫번째 아미노산을 로딩한다. 두번째로 곁사슬에 보호기를 포함한 아미노산을 시퀀스에 따라 순차적으로 아마이드 커플링을 하여 곁사슬에 보호기를 포함한 AGM-330t를 제조한다. 그 후 산성용액을 이용하여 레진과 보호기를 제거하고 정제 및 동결건조로 AGM-330t(화학식 2)을 얻는다.
3. MPA-PTX의 제조
Figure PCTKR2022018307-appb-img-000008
3-Maleimido-propionic acid (MPA; 화학식 12)와 Paclitaxel(PTX; 화학식 13)의 에스테르화 반응을 통하여 MPA-PTX(화학식 3)를 합성한다.
4. MPA-AGM-130의 제조
Figure PCTKR2022018307-appb-img-000009
첫번째 단계로 AGM-130(화학식 14)의 옥심의 -OH에 PMB(p-Methoxybenzyl) 보호기를 도입하여 PMB-AGM-130(화학식 15)을 합성한다. 두번째 단계에서 PMB-AGM-130(화학식 15)과 3-Maleimido-propionic acid(화학식 12)의 에스테르화 반응을 통하여 MPA-PMB-AGM-130(화학식 16)을 합성한 뒤 마지막 단계로 PMB 탈 보호화 반응을 동해 MPA-AGM-130(화학식 6)을 합성한다.
5. CPP의 제조
Figure PCTKR2022018307-appb-img-000010
Figure PCTKR2022018307-appb-img-000011
먼저, 2-클로로트리틸 클로라이드 레진에 첫번째 아미노산을 로딩한다. 두번째로 곁사슬에 보호기를 포함한 아미노산을 시퀀스에 따라 순차적으로 아마이드 커플링을 하여 곁사슬에 보호기를 포함한 CPP를 제조한다. 그 후 산성용액을 이용하여 레진과 보호기를 제거하고 정제 및 동결건조로 CPP(화학식 9)을 얻는다.
6. AGM-331d와 AGM-331t의 제조
Figure PCTKR2022018307-appb-img-000012
Figure PCTKR2022018307-appb-img-000013
AGM-330d 및 AGM-330t 각각과 MPA-PTX를 PBS buffer하에서 1,4-Michael addition 반응을 통하여 AGM-331d와 AGM-330t 각각을 얻는다.
7. AGM-332d와 AGM-332t의 제조
Figure PCTKR2022018307-appb-img-000014
Figure PCTKR2022018307-appb-img-000015
AGM-330d 및 AGM-330t 각각과 MPA-AGM-130를 PBS buffer하에서 1,4-Michael addition 반응을 통하여 AGM-332d와 AGM-332t를 얻는다.
8. AGM-380d와 AGM-380t의 제조
Figure PCTKR2022018307-appb-img-000016
Figure PCTKR2022018307-appb-img-000017
AGM-330d 및 AGM-330t 각각과 CPP를 20% ACN aq. (pH 7.0)하에서 1,4-Michael addition 반응을 통하여 AGM-380d 및 AGM-380t 각각을 얻는다(mCPP=monomeric CPP).
본 발명의 제조하는 방법에 따를 때, 뉴클레오린에 특이적으로 결합하는 AGM 펩타이드를 높은 순도와 높은 수율로 수득할 수 있어, 암 치료요법에서 진단 및 표적 약물 전달에 유용하게 이용될 수 있는 AGM 펩타이드의 대량합성이 가능한 방법을 제시할 수 있다.
다만, 상기한 효과로 한정되는 것은 아니며, 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 AGM-330d 제조공정을 개략적으로 나타낸 것이다.
도 2는 AGM-330t 제조공정을 개략적으로 나타낸 것이다.
도 3은 MPA-PTX의 제조공정을 개략적으로 나타낸 것이다.
도 4는 AGM-331d의 제조공정을 개략적으로 나타낸 것이다.
도 5는 AGM-331t의 제조공정을 개략적으로 나타낸 것이다.
도 6은 MPA-AGM-130의 제조공정을 개략적으로 나타낸 것이다.
도 7은 AGM-332d의 제조공정을 개략적으로 나타낸 것이다.
도 8은 AGM-332t의 제조공정을 개략적으로 나타낸 것이다.
도 9는 CPP의 제조공정을 개략적으로 나타낸 것이다.
도 10은 AGM-380d의 제조공정을 개략적으로 나타낸 것이다.
도 11은 AGM-380t의 제조공정을 개략적으로 나타낸 것이다.
도 12는 AGM-330d에 대한 MALDI-TOF Mass 분석결과이다.
도 13은 AGM-330t에 대한 MALDI-TOF Mass 분석결과이다.
도 14는 AGM-331d에 대한 MALDI-TOF Mass 분석결과이다.
도 15는 AGM-331t에 대한 MALDI-TOF Mass 분석결과이다.
도 16은 AGM-332t에 대한 MALDI-TOF Mass 분석결과이다.
도 17은 AGM-380d에 대한 MALDI-TOF Mass 분석결과이다.
도 18은 AGM-380t에 대한 MALDI-TOF Mass 분석결과이다.
도 19는 첫번째 아미노산 로딩율에 따른 AGM-330t의 Crude 순도(%)를 나타낸 것이다.
이하, 보다 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 하기 실시예는 예시적인 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.
실시예 1. AGM-330d의 제조
1. Fmoc-D-Cys(Trt)-O-Resin의 제조
(1) 불림 (Swelling)
반응기에 248.2g의 2-클로로트리틸 클로라이드 레진(2-Chlorotrityl chloride resin; 350 mmol; Loading capacity: 1.41 mmol/g)을 넣는다. 여기에 디클로로메탄(Dichloromethane; DCM; 3.5L (10 L/mol)을 넣고, 25℃에서 30분 동안 교반한 다음 용매를 제거한다.
(2) Fmoc-D-Cys(Trt)-O-Resin의 제조
Fmoc-D-Cys(Trt)-OH(40.9 g, 0.2 eq.)과 DIEA(N-N-Diisopropylethylamine; 24.4 mL, 0.4 eq.)를 DCM(3.5 L)에 완전히 용해한다. 이 용액을 반응기에 첨가한 후 25℃에서 1시간 동안 교반한다. 반응액을 제거하고 DCM(3.5 L)으로 2분 동안 2회 세척한다. 반응기에 캡핑(capping) 용액(DCM: MeOH: DIEA = 85: 10: 5, v/v, 3.5L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DCM(3.5 L), DMF(Dimethylformamide; 3.5L) 순으로 2분 동안 각 3회씩 세척한다. 세척 후 레진을 샘플링하여 측정한 로딩율은 0.19 mmol/g이다.
2. Fmoc-D-Lys(Fmoc)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. DMF에 용해된 Fmoc-D-Lys(Fmoc)-OH(124.0 g, 3.0 eq.) 1.75 L, DMF에 용해된 HBTU(2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; 79.6 g, 3.0eq) 1.75L를 차례대로 넣고 DIEA(36.6 mL, 3.0 eq.)을 첨가한 후 25℃에서 반응을 시작한다. 1시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
3. Fmoc-PEG6-D-Lys(Fmoc-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. DMF에 용해된 Fmoc-NH-PEG6-COOH(161.2 g, 4.0 eq.) 1.75 L, DMF에 용해된 HBTU(106.2 g, 4.0 eq) 1.75L를 차례대로 넣고 DIEA(48.8 mL, 4.0 eq.)을 첨가한 후 25℃에서 반응을 시작한다. 1시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
4. Fmoc-Lys(Boc)-PEG6-D-Lys(Fmoc-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Lys(Boc)-OH (164.0 g, 5.0 eq.) 및 HOBt(Hydroxybenzotriazole; 93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(Diisopropylcarbodiimide; 55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
5. Fmoc-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Leu-OH(123.7 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
6. Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Tyr(tBu)-OH(160.9 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF (3.5 L)로 2분 동안 2회 세척한다.
7. Fmoc-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Val-OH(118.8 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
8. Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Met-OH(130.1 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
9. Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Ala-OH(109.0 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
10. Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Gly-OH(104.1 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
11. Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-His(Trt)-OH(217.0 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
12. Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys(Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6)-D-Cys(Trt)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(3.5 L)로 2분 동안 6회 세척한다. Fmoc-Arg(Pbf)-OH(227.1 g, 5.0 eq.) 및 HOBt(93.0 g, 5.0 eq.)를 DMF(3.5 L)에 용해하여 반응기에 넣는다. DIC(55.0 mL, 5.0 eq.)를 반응기에 첨가한 후 25℃에서 반응을 시작한다. 3시간 후 반응액을 제거하고 DMF(3.5 L)로 2분 동안 2회 세척한다.
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 3.5 L)을 넣고 25℃에서 15 분 동안 2 회 교반 한다. 반응액을 제거하고 레진을 DMF (3.5 L)로 2 분 동안 6회, DCM (3.5 L)로 2분 동안 3회 세척 후 질소건조 한다.
13. 화학식 1로 표시되는 AGM-330d Crude의 제조를 위한 Global cleavage
건조된 레진에 냉각된 Cleavage cocktail (10.5 L, TFA: TIS: DODT: PW: DMS = 85: 2.5: 2.5: 5.0: 5.0, v:v)를 가하고 상온에서 2시간 교반한 후, PW (Purified water) 에 용해된 NH4I(52.6 mmol, 7.6 g) 10.0 mL을 넣어 30분 더 교반한 뒤 IPC (In-process control) 를 하고 반응이 종결됨을 확인한 후 반응을 끝낸다. Cleavage 액을 Drain 하고, 차가운 에테르 42.0L에 서서히 첨가하고 30분간 교반한다. 석출된 고체를 감압 여과하고 에테르 8.0 L로 2회 세척 후 12시간 이상 질소 건조하여 215.0 g, 순도 68.9%의 AGM-330d Crude 화합물을 수득하였다.
14. 화학식 1로 표시되는 AGM-330d 제조를 위한 정제 공정
AGM-330d Crude 215 g을 용해 후 GF/C 필터 및 0.45 μm HVHP 멤브레인 필터로 여과한다. Crude 액을 정제 후 동결건조 하여 하기 화학식 1(또는 화학식 24)로 표시되는 AGM-330d 144.2 g을 수득하였다(화학식 24: Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Cys-OH).
AGM-330d 제조공정 개략도는 도 1과 같고, 이의 MALDI-TOF Mass 분석 결과는 도 12와 같다.
[화학식 1]
Figure PCTKR2022018307-appb-img-000018
실시예 2. AGM-330t의 제조
1. Fmoc-D-Cys(Trt)-O-Resin의 제조
(1) 불림 (Swelling)
반응기에 135.1g의 2-클로로트리틸 클로라이드 레진(200 mmol, Loading capacity: 1.48 mmol/g)을 넣는다. 여기에 DCM 2.0L를 넣고, 20-30℃에서 30분 동안 교반 후 용매를 제거한다.
(2) Fmoc-D-Cys(Trt)-O-Resin의 제조
Fmoc-D-Cys(Trt)-OH(23.4 g, 0.2 eq.)과 DIEA(13.9 mL, 0.4 eq.)를 DCM 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 1시간 교반한다. 반응액을 제거하고 DCM 2.0L로 2분씩 2회 세척한다. 반응기에 캡핑(capping) 용액 (DCM : MeOH : DIEA = 85 : 10 : 5, v/v) 2.0L을 넣고 20-30℃에서 15분 동안 교반한다(2회 반복). 반응액을 제거하고 레진을 DCM 2.0L, DMF 2.0L 순으로 20-30℃에서 2분씩 각 3회 세척한다. 세척 후 레진을 샘플링하여 측정한 로딩율은 0.14 mmol/g이다.
2. Fmoc-D-Lys(Fmoc)-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 2.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-D-Lys(Fmoc)-OH (43.1 g, 3.0 eq.)를 DMF 1.0 L에 용해한다. HBTU (27.7 g, 3.0 eq.), DIEA (12.7 mL, 3.0 eq.)를 DMF 1.0 L에 용해한다. 두 용액을 반응기에 넣고 20-30℃에서 1시간 교반한다. 반응액을 제거하고 DMF 2.0 L로 2분씩 2회 세척한다.
3. Fmoc-D-Lys(Fmoc)-D-Lys[Fmoc-D-Lys(Fmoc)]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 2.0 L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-D-Lys(Fmoc)-OH (71.8 g, 5.0 eq.)를 DMF 1.0 L에 용해한다. HBTU (46.1 g, 5.0 eq.), DIEA (21.2 mL, 5.0 eq.)를 DMF 1.0 L에 용해한다. 두 용액을 반응기에 넣고 20-30℃에서 2시간 교반한다. 반응액을 제거하고 DMF 2.0 L로 2분씩 2회 세척한다.
4. Fmoc-PEG6-D-Lys{Fmoc-PEG6}-D-Lys[Fmoc-PEG6-D-Lys{Fmoc-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 2.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-NH-PEG6-COOH (112.0 g, 8.0 eq.)를 DMF 1.0L에 용해한다. HBTU (73.8 g, 8.0 eq.), DIEA (33.9 mL, 8.0 eq.)를 DMF 1.0 L에 용해한다. 두 용액을 반응기에 넣고 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 2.0L로 2분씩 2회 세척한다.
5. Fmoc-Lys(Boc)-PEG6-D-Lys{Fmoc-Lys(Boc)-PEG6}-D-Lys[Fmoc-Lys(Boc)-PEG6-D-Lys{Fmoc-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Lys(Boc)-OH (114.0 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC(37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0 mL로 2분씩 2회 세척한다.
6. Fmoc-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Leu-OH (86.0 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
7. Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Tyr(tBu)-OH (111.8 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0 L로 2분 동안 2회 세척한다.
8. Fmoc-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Val-Tyr(tBu)-Leu(Boc)-Lys-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Val-OH (82.6 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0 L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
9. Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Met-OH (90.4 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
10. Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Ala-OH (75.7 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
11. Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Gly-OH (72.3 g, 10 eq.), HOBt (16.4 g, 5 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
12. Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-His(Trt)-OH (150.7 g, 10 eq.), HOBt (16.4 g, 5.0 eq.)을 DMF 1.0L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분 동안 2회 세척한다.
13. Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}-D-Lys[Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6-D-Lys{Fmoc-Arg(Pbf)-His(Trt)-Gly-Ala-Met-Val-Tyr(tBu)-Leu-Lys(Boc)-PEG6}]-D-Cys(Trt)-O-Resin의 제조
(1) DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)을 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Fmoc-Arg(Pbf)-OH (157.8 g, 10 eq.), HOBt (16.4 g, 5.0 eq.)을 DMF 1.0 L에 용해한다. 이 용액을 반응기에 넣고 DIC (37.7 mL, 10 eq.)를 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DMF 1.0L로 2분씩 2회 세척한다.
(2) DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 1.0L)를 넣고 20-30℃에서 15분씩 2회 교반하여 Fmoc을 제거한다. 반응액을 제거하고 DMF 1.0L로 20-30℃에서 2분씩 6회 세척한다. Vacuum 하에서 레진을 건조한다.
14. 화학식 2로 표시되는 AGM-330t Crude 제조를 위한 cleavage 반응
건조된 레진에 냉각된 cleavage cocktail 3.0 L (TFA : TIS : DODT : H2O : DMS = 85 : 2.5 : 2.5 : 5 : 5, v/v, 10 mM NH4I)를 서서히 가하고 15-30℃에서 3시간 동안 교반한다. 2시간 후, NH4I (4.4 g, 10 mM)을 50.0 mL H2O에 녹여서 넣는다. 반응 종결을 HPLC로 확인 후 cleavage 용액을 드레인(drain)하여 회수한다. 디에틸 에터(Diethyl ether) 9.0L에 cleavage액을 서서히 첨가하고 30분 동안 교반한다. 석출된 고체를 감압 여과하고 디에틸 에터 3.0L로 세척 후 질소 건조 및 진공 건조하여 206.0 g, 순도 47.4%의 crude를 수득하였다.
15. 화학식 2로 표시되는 AGM-330t 제조를 위한 정제 공정
AGM-330t Crude 206.6 g을 용해 후 GF/C 필터 및 0.45 μm HVHP 멤브레인 필터로 여과한다. Crude 액을 정제 후 동결건조 하여 화학식 2(또는 화학식 25)로 표시되는 AGM-330t 73.1 g을 수득하였다(화학식 25: Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Lys{Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)}-D-Cys-OH).
AGM-330t 제조공정 개략도는 도 2와 같고, 이의 MALDI-TOF Mass 분석 결과는 도 13과 같다.
[화학식 2]
Figure PCTKR2022018307-appb-img-000019
실시예 3. AGM-331d의 제조
1. 화학식 3으로 표시되는 MPA-PTX의 제조
파클리탁셀(Paclitaxel; 5.86 mmol, 5.0 g, 1.0 eq.)을 무수 DCM 84 mL에 완전히 녹인 후 DMAP(4-Dimethylaminopyridine; 0.0293 mmol, 3.6 mg, 0.005 eq.)을 넣어 녹인다. 온도를 0℃로 냉각 후 MPA(3-Maleimidopropionic acid; 7.33 mmol, 1.24 g, 1.25 eq)와 DIC (6.45 mmol, 997.5 μl, 1.1 eq.)를 차례로 투입하고 25℃에서 8시간 교반한다. 반응이 완료된 반응 혼합물에 DCM 90 mL을 더하고 NH4Cl 과포화 용액 200 mL, NaHCO3 과포화 용액 200 mL, PW (Purified water) 200 mL을 이용하여 각각 1회씩 차례로 추출한다. DCM층을 Na2SO4를 처리하고 여과하여 농축한다. 농축 완료된 반응 혼합물에 DCM 100mL을 넣고 완전히 녹인 후 이 액을 헥산 500 mL에 천천히 적가하여 결정화 한다. 결정화된 고체를 여과 후 건조하여 5.9g의 MPA-PTX 화합물을 수득하였다.
MPA-PTX의 제조공정 개략도는 도 3과 같다.
[화학식 3]
Figure PCTKR2022018307-appb-img-000020
2. 화학식 4로 표시되는 AGM-331d의 제조
PBS 버퍼 272 mL, PW (Purified water) 266 mL 혼합용액(pH: ~7.4)에 AGM-330d (0.60 mmol, 1.81 g, 1.15 eq.)을 완전히 녹인후 ACN 90 mL에 MPA-PTX (0.52 mmol, 520 mg, 1.0 eq.)를 완전히 녹인 용액을 첨가하여 상온에서 6시간 교반한다. 반응이 완료되면 정제 및 동결건조를 수행하여 AGM-331d 2.1 g을 수득하였다.
AGM-331d의 제조공정 개략도는 도 4와 같고, 이의 MALDI-TOF Mass 분석 결과는 도 14와 같다.
[화학식 4]
Figure PCTKR2022018307-appb-img-000021
실시예 4. AGM-331t의 제조
PBS 버퍼 640 mL, PW (Purified water) 450 mL 혼합용액(pH: ~7.4)에 AGM-330t (1.0 mmol, 6.0 g, 1.0 eq.) 완전히 녹인 후 ACN 180 mL에 MPA-PTX (1.0 mmol, 1.0 g, 1.0 eq.)를 완전히 녹인용액을 첨가하여 상온에서 4시간 교반한다. 반응이 완료되면 정제 및 동결건조하여 화학식 5로 표시되는 AGM-331t 2.7 g을 수득하였다.
AGM-331t의 제조공정 개략도는 도 5와 같고, 이의 MALDI-TOF Mass 분석 결과는 도 15와 같다.
[화학식 5]
Figure PCTKR2022018307-appb-img-000022
실시예 5. AGM-332d의 제조
1. MPA-AGM-130의 제조
(1) PMB-AGM-130의 제조
500 mL 반응기에 AGM-130 (29.6 mmol, 10.0 g, 1.0 eq.)을 250 mL DMF에 녹이고 K2CO3 (59.1 mmol, 7.8 g, 2.0 eq.)를 넣고 20-30℃에서 15분간 교반한다. Ice-bath에서 반응 온도를 낮춰서 PMB-Cl(p-methoxybenzyl chloride) (44.3 mmol, 6.0 mL, 1.5 eq.)를 천천히 10분 동안 넣는다. PMB-Cl 첨가 후, ice-bath 제거하고 다시 반응온도를 상온으로 올려 2시간 30분간 교반한다. 반응 종결 후, H2O 500 mL를 천천히 넣고 30분간 교반한다. 형성된 고체를 필터하고 H2O 250 mL로 2번 세척하고 디에틸 에터 250 mL로 세척한다. 그 후, 16시간 동안 진공건조 한다. 진공건조 후, PMB-AGM-130 11.5 g을 수득하였다.
(2) PMB-MPA-AGM-130의 제조
MPA(3-Maleimidopropionic acid; 19.6 mmol, 3.3 g, 1.5 eq.)와 HBTU (19.6 mmol, 7.5 g, 1.5 eq.)를 DMF 130 mL에 녹이고, 트리에틸 아민(triethyl amine; 19.6 mmol, 2.7 mL, 1.5 eq.)를 넣고 20-30℃에서 16시간 동안 교반한다. 디에틸 에터를 150mL 넣고 고체화한다. 고체를 거르고 에터(ether) 100 mL로 세척하여 8.4g을 얻었다. 이 고체에는 두가지 다른 큰 불순물이 있어서, 아세토나이트릴을 3~4배정도 사용하여 두 번 용매 결정화를 통해 원심 분리하고 DCM으로 같은 과정을 반복해서 1회 원심 분리한다. 진공 건조 후, PMB-AGM-130 2.9g을 수득하였다.
(3) 화학식 6으로 표시되는 MPA-AGM-130의 제조
MPA-PMB-AGM-130 (4.1 mmol, 2.5 g, 1.0 eq.)에 DCM:TFA (2:1) 비율로 만든 용액 25 mL를 넣고 20-30℃에서 2시간 동안 교반 한다. 반응액을 감압 농축하고, 아세톤(acetone) 10 mL를 넣어서 다시 재 감압 농축을 진행한다. 농축 후, 에터 20 mL로 고체화하고, 에터 20 mL로 2번 세척한다. 진공 건조 후, MPA-AGM-130 1.68g을 수득하였다.
MPA-AGM-130의 제조공정 개략도는 도 6과 같다.
[화학식 6]
Figure PCTKR2022018307-appb-img-000023
2. 화학식 7로 표시되는 AGM-332d의 제조
AGM-332d의 제조공정 개략도는 도 7과 같다.
[화학식 7]
Figure PCTKR2022018307-appb-img-000024
실시예 6. AGM-332t의 제조
(1) MPA-AGM-130 (5.1 mmol, 2.5 g, 3.0 eq.)을 860 mL DMF에 녹여 ice-bath에서 15분간 교반한다. AGM-330t (1.7 mmol, 10.4 g, 1.0 eq)를 860 mL PBS (pH: ~7.4) 용액에 녹이고 이 용액을 MPA-AGM-130 용액에 넣는다. Ice-bath를 치우고, 20-30℃에서 21시간 동안 교반한다. 반응액을 0.45 μm 필터 종이로 필터한다.
(2) 반응액 속 DMF 제거를 위해 반응액을 컬럼에 넣고 메인 피크(Main peak)만 분리하여 DMF를 제거한다. 메인 피크 분리 후, 아세토나이트릴(ACN)을 제거하기 위해 감압 농축을 진행한다. 농축 후, 정제와 염-치환 공정을 진행하고 동결건조 후, 화학식 8로 표시되는 AGM-332t 제품 5.0g을 수득하였다.
AGM-332t의 제조공정 개략도는 도 8과 같고, 이의 MALDI-TOF Mass 분석 결과는 도 16과 같다.
[화학식 8]
Figure PCTKR2022018307-appb-img-000025
실시예 7. AGM-380d의 제조
1. 화학식 9로 표시되는 세포투과성 펩타이드(Cell Penetrating Peptide; CPP)의 제조
(1) Fmoc-Arg(Pbf)-O-Resin의 제조
1) 불림 (Swelling)
반응기에 142.0 g의 2-클로로트리틸 클로라이드 레진(2-Chlorotrityl chloride resin; 200 mmol, Loading capacity: 1.48 mmol/g)을 넣는다. 여기에 DCM (2.0 L)을 넣고 20-30℃에서 30분 동안 교반한 후 용매를 제거한다
2) Fmoc-Arg(Pbf)-O-Resin의 제조
Fmoc-Arg(Pbf)-OH (389.2 g, 3.0 eq.)과 DIC (209.2 mL, 6.0 eq.)를 DCM 500 mL에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 교반한다. 반응액을 제거하고 DCM(2.0L)로 2분 동안 2회 세척한다. 반응기에 캡핑(capping) 용액 (DCM : MeOH : DIC = 85 : 10 : 5, v/v) 2.0L을 넣고 20-30℃에서 15분 동안 교반한다(2회 반복). 반응액을 제거하고 레진을 DCM(2.0L), DMF(2.0L) 순으로 20-30℃에서 2분 동안 각 2회씩 세척한다. 공정 중 시험(치환율 측정)을 진행한다.
(2) Fmoc-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF (2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Ala-OH (186.8 g, 3.0 eq.) 및 HOBt (81.1 g, 3.0 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0 L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(3) Fmoc-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Leu-OH (212.0 g, 3.0 eq.) 및 HOBt (81.1 g, 3.0 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
(4) Fmoc-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Lys(Boc)-OH (281.1 g, 3.0 eq.) 및 HOBt (81.1 g, 3.0 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(5) Fmoc-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Leu-OH (212.0 g, 3.0 eq.) 및 HOBt (81.1 g, 3.0 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(6) Fmoc-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Ile-OH (212.0 g, 3.0 eq.) 및 HOBt (81.1 g, 3.0 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF (2.0 L)로 2분 동안 2회 세척한다.
(7) Fmoc-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF (2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Arg(Pbf)-OH (389.2 g, 3.0 eq.) 및 HOBt (89.2 g, 3.3 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0 L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(8) Fmoc-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Leu-OH (353.4 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(9) Fmoc-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
1) Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF (2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Ile-OH (353.4 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 2.0 L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간동안 교반한다. 반응액을 제거하고 DMF (2.0 L)로 2분 동안 2회 세척한다.
2) Fmoc-Ile-OH (212.0 g, 3.0 eq.) 및 HOBT (148.6 g, 5.5 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0 L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반하여 더블 커플링을 진행한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(10) Fmoc-Arg(Pbf)-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
1) Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0 L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Arg(Pbf)-OH (648.8 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
2) Fmoc-Arg(Pbf)-OH (389.1 g, 3.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반하여 더블 커플링을 진행한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
(11) Fmoc-Met-Arg(Pbf)-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Met-OH (371.5 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 500 mL에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
(12) Fmoc-Ile-Met-Arg(Pbf)-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
1) Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Ile-OH (353.4 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 2.0 L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
2) Fmoc-Ile-OH (353.4 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF에 용해된 50% DMSO 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반하여 더블 커플링을 진행한다. 반응액을 제거하고 DMF(2.0 L)로 2분 동안 2회 세척한다.
(13) Fmoc-Arg(Pbf)-Ile-Met-Arg(Pbf)-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
1) Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. Fmoc-Arg(Pbf)-OH (648.8 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 2시간 동안 교반한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
2) Fmoc-Arg(Pbf)-OH (648.8 g, 5.0 eq.) 및 HOBt (148.6 g, 5.5 eq.), DIC (156.6 mL, 5.0 eq.)를 DMF에 용해된 50% DMSO 2.0L에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반하여 더블 커플링을 진행한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회 세척한다.
(14) 3-MPA-Arg(Pbf)-Ile-Met-Arg(Pbf)-Ile-Leu-Arg(Pbf)-Ile-Leu-Lys(Boc)-Leu-Ala-Arg(Pbf)-O-Resin의 제조
Fmoc을 제거하기 위해 반응기에 DMF에 용해된 20%의 피페리딘(20% piperidine in DMF; 2.0L)를 넣고 20-30℃에서 15분 동안 2회 교반한다. 반응액을 제거하고 레진을 DMF(2.0L)로 20-30℃에서 2분 동안 6회 세척한다. MPA(3-Maleimidoproponic acid; 101.5 g, 3.0 eq.) 및 HOBt (89.2 g, 3.3 eq.), DIC (93.9 mL, 3.0 eq.)를 DMF 2.0 L 에 용해한다. 이 용액을 반응기에 첨가한 후 20-30℃에서 3시간 동안 교반한다. 반응액을 제거하고 DMF(2.0L)로 2분 동안 2회, DCM(2.0L)로 2분 동안 2회 세척 후 레진을 건조한다.
(15) CPP (TFA salt) 제조를 위한 Global cleavage 반응
건조된 레진에 냉각된 cleavage cocktail 7.0 L (TFA : TIS : H2O = 95 : 2.5 : 2.5 )를 서서히 가하고 15-30℃에서 3시간 동안 교반한다. 반응 종결을 HPLC로 확인 후 cleavage 용액을 드레인(drain)하여 회수한다. 냉각된 디에틸 에터(diethyl ether; 28.0L)에 cleavage액을 서서히 첨가하고 30분 동안 교반한다. 석출된 고체를 얻기 위해 감압 여과하고 디에틸 에터 10L로 3회 세척 후 질소 건조 및 진공 건조하여 266.3 g의 CPP Crude를 수득하였다.
(16) 화학식 9로 표시되는 CPP 제조를 위한 정제 공정
Crude 화합물 226.3 g을 용해 후 GF/C 필터 및 0.45 μm HVHP 멤브레인 필터로 여과한다. Crude 액을 컬럼에 주입하여 정제 후, 분취액을 모아 동결건조 하여 정제된 CPP 94.7 g을 수득하였다(3-MPA-Arg-Ile-Met-Arg-Ile-Leu-Arg-Ile-Leu-Lys-Leu-Ala-Arg-OH).
CPP의 제조공정 개략도는 도 9와 같다.
[화학식 9]
Figure PCTKR2022018307-appb-img-000026
2. 화학식 10으로 표시되는 AGM-380d의 제조
AGM-330d (6.2g, 2.04 mmol)를 20% 아세트나이트릴 수용액(ACN aq; 620 mL, pH: ~ 7.0 adjust NH4OH)에 완전히 녹인 후 CPP(5.5 g, 3.07 mmol)을 넣고 반응을 진행하여 밤샌(Overnight) 후 반응을 종결한다. 반응액을 GF/C 필터 및 0.45 μm HVHP 멤브레인 필터로 여과 후 정제 및 염 치환 공정을 진행하고 동결건조 하여 6.57 g AGM-330d-mCPP(AGM-380d)의 화합물을 수득하였다.
AGM-380d의 제조공정 개략도는 도 10과 같고, 이의 MALDI-TOF Mass 분석 결과는 도 17과 같다.
[화학식 10]
Figure PCTKR2022018307-appb-img-000027
실시예 8. AGM-380t의 제조
AGM-330t (22.4 mmol, 136 g, 1.0 eq.)과 CPP (33.7 mmol, 60.7 g, 1.5 eq.)를 반응기에 넣는다. 여기에 PBS (25% 아세토나이트릴 포함, pH: ~ 7.0) 6800 mL를 넣고 20-30℃에서 2시간 동안 교반한다. 반응이 완료되면 반응액을 회전농축기에 넣고 감압 농축하여 아세토나이트릴을 제거한 후 정제를 진행한다. 정제 후 동결 건조하여 최종 화학식 11로 표시되는 AGM-380t 101.4g을 수득하였다.
AGM-380t의 제조공정 개략도는 도 11과 같고, 이의 MALDI-TOF Mass 분석 결과는 도 18과 같다.
[화학식 11]
Figure PCTKR2022018307-appb-img-000028
실험예. 첫번째 아미노산의 로딩율과 순도 간 관계
일반적으로 펩타이드 화합물 제조시, 최종 합성 수율을 향상시키기 위하여 첫번째 아미노산을 레진에 로딩할 때 레진의 몰 수 대비 아미노산을 2.0 eq. 이상 과량으로 투입하여 레진에 아미노산을 최대한 많이 로딩한다. 그러나 AGM-330d와 AGM-330t의 경우, 레진에 대한 첫번째 아미노산의 로딩율이 증가하면 할수록 아미노산의 응집(Aggregation)과 입체장애(Steric hindrance) 현상으로 합성 순도가 현저하게 감소되는 것을 확인하였다.
도 19는 자동합성기를 이용하여 AGM-330t Crude의 합성 시 레진에 대한 첫번째 아미노산의 사용량을 조절하여 로딩율에 따른 최종 제품 Crude 순도 경향을 나타낸 결과이다. 실험결과 로딩율이 증가할수록 AGM-330t Crude의 순도는 현저히 저하됨을 확인하였다.
도 19의 실험 결과를 바탕으로 로딩율은 0.1 ~ 0.3 mmol/g, 레진의 몰수 대비 아미노산의 당량은 0.1 ~ 0.3 eq.로 설정하였다. 아미노산 당량이 0.1 eq일 때 Crude 순도가 37.0%로 가장 높지만, 제품의 생산성을 고려하여 상기 모든 실시예에서는 아미노산 당량을 0.2 eq.을 사용하여 AGM-330d와 AGM-330t의 대량 합성을 실시하였다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 다음의 단계를 포함하는, 뉴클레오린(Nucleolin)에 특이적으로 결합하는 AGM 펩타이드를 제조하는 방법:
    (a) 고체상(solid-phase) 합성 방법으로 레진이 부착된 하기 화학식 20으로 표시되는 펩타이드를 수득하는 단계; 및
    (b) 상기 단계 (a)에서 수득한 펩타이드에서 레진과 보호기를 제거하여, 하기 화학식 22로 표시되는 펩타이드를 수득하는 단계:
    [화학식 20]
    Am-dKn-dC-O-Resin
    [화학식 21]
    Arg(R1)-His(R2)-Gly-Ala-Met-Val-Tyr(R3)-Leu-Lys(R4)-PEGk-D-Lys{Arg(R1)-His(R2)-Gly-Ala-Met-Val-Tyr(R3)-Leu-Lys(R4)-PEGk}
    [화학식 22]
    Bm-dKn-dC-OH
    [화학식 23]
    Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEGk-D-Lys{Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEGk}
    (상기 화학식 20 내지 23에 있어서, 상기 A는 하기 화학식 21로 표시되고, 상기 B는 하기 화학식 23으로 표시되며,
    상기 R1은 구아니딘 보호기, 상기 R2는 이미다졸 보호기 또는 티오 보호기, 상기 R3는 수소 또는 히드록시 보호기, R4는 수소 또는 아민 보호기이고,
    상기 dK와 dC는 각각 D-Lys과 D-Cys를 의미하며,
    상기 m과 n은 각각 1과 0 또는 2와 1이고,
    상기 k는 4 내지 20 중 어느 하나의 정수임).
  2. 청구항 1에 있어서, 상기 R1은 터트-부틸옥시카보닐기(t-Butyloxycarbonyl), 벤질옥시카보닐기(Benzyloxycarbonyl), 니트로기(Nitro), Pmc기(2,2,5,7,8-pentamethylchroman-6-sulfonyl), Mtr기(4-methoxy-2,3,6-trimethylbenzene sulfonyl), Mts기(2,3,6-trimethyl Benzenesulfonyl), Mtb기 (trimethoxybenzenesulfonyl), Mds기(4-methoxy-2,6-dimethylbenzenesulfonyl), MIS기(1,2-Dimethylindole-3-sulfonyl), EDOT-2-sulfonyl기(3,4-ethylenedioxythiophene-2-sulfonyl), Pbf기(2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl) 또는 Tos기(4-Toluenesulphonyl)인 방법.
  3. 청구항 1에 있어서, 상기 R2는 메틸기(Methyl), 터트-부틸옥시카보닐기,(tert-Buthyloxycarbonyl) 트리페닐메틸기(Triphenylmethyl), Mmt기(4-Monomethoxytrityl), BOM기(Benzyloxymethylacetal), MBom기(3-methoxybebzyloxymethyl) 또는 Mtt기(methyltrityl)인 방법.
  4. 청구항 1에 있어서, 상기 R3는 수소, 터트-부틸기(t-Butyl), 트리페닐메틸기(triphenylmethyl), 2-클로로트리페닐메틸기(2-chlorotriphenylmethyl) 벤질기(Benzyl), 페닐기(phenyl), 알릴기(allyl), 메틸기(methyl), 벤질포스포기(benzyl phospho), SO3nP기(2,2-dimethylpropylsulfo), 포스포기(phosphor), Clt기(2-chlorotrityl), DMAE기(dimethylaminoethyl), 프로파질기(propargyl) 또는 PO(NMe2)2)기(bis-dimethylamino-phosphono)인 방법.
  5. 청구항 1에 있어서, 상기 R4는 수소, 터트-부틸옥시카보닐기(tert-Buthyloxycarbonyl), 트리페닐메틸기(triphenylmethyl), Dde기((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl), Ddiv기((4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbuty), Alloc기(Allyloxycarbonyl), 메틸기(methyl), 메틸, 터트-부틸옥시카보닐기(methyl, tert-Buthyloxycarbonyl), Dnp기(2,4-dinitrophenyl), 헥사데카노일기(hexadecanoyl), Mmt기(4-Monomethoxytrityl), Mtt기(methyltrityl), Mca기(7-methoxycoumarin-4-acetyl), 9-플루오레닐메틸카보닐기(9-Fluorenylmethylcarbonyl), 벤질옥시카보닐기, pNZ기(p-Nitrobenzyloxycarbonyl), 아지도기(Azido), 아세틸기(Acetyl), Pryoc기(Propargyloxycarbonyl) 또는 트리플루오로아세틸기(Trifluoroacetyl)인 방법.
  6. 청구항 1에 있어서, 상기 레진은 2-클로로트리틸 레진(2-Chlorotrityl), 트리틸 레진(Trityl), 4-메틸트리틸 레진(4-Methyltrityl) 또는 4-메톡시트리틸 레진(4-Methoxytrityl)인 방법.
  7. 청구항 1에 있어서, 상기 단계 (a)는 DCM(Dichloromethane)과 혼합된 레진에, 첫번째 아미노산과 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를 함께 반응시켜, 상기 레진에 첫번째 아미노산을 로딩하는 단계를 포함하는 것인 방법:
    피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
  8. 청구항 1에 있어서, 상기 단계 (a)는 상기 레진에 첫번째 아미노산을 로딩한 후, DCM, MeOH(Methanol) 및 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를 포함하는 용액과 반응시켜 캡핑(capping)하는 단계를 더 포함하는 것인 방법:
    피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
  9. 청구항 8에 있어서, 상기 캡핑하는 단계는 DCM, MeOH 및 하기 염기 시약들로 이루어진 군에서 선택된 어느 하나를 (10 내지 20): (1 내지 5): (1)의 부피비(v/v)로 포함하는 용액과 반응시키는 것인 방법:
    피리딘(Pyridine), 이미다졸(Imidazole), 피롤리딘(Pyrrolidine), 사이클로헥실아민(Cyclohexylamine), 몰포린(Morpholine), 피페리딘(Piperidine), 4-메톡시피리딘(4-Methoxypyridine), 2-클로로피리딘(2-Chloropyridine), 4-디메틸아미노피리딘(4-Dimethylaminopyridine), 아닐린(Aniline), 4-메톡시아닐린(4-Methoxyaniline), 4-페닐렌디아민(4-Phenylenediamine), 에틸아민(Ethylamine), 디에틸아민(Diethylamine), 트리에틸아민(Triethylamine), DIPEA(N,N-Diisopropylethylamine) 및 DBU(1,8-Diazabicyclo[5.4.0]undec-7-ene).
  10. 청구항 1에 있어서, 상기 단계 (a)는 상기 레진에 첫번째 아미노산으로서 D-Cys(R2)를 로딩하는 단계를 포함하는 것인 방법.
  11. 상기 단계 (a)는 레진의 몰수 대비 0.1 내지 0.3 당량의 D-Cys(R2)를 상기 레진에 로딩하는 단계를 포함하는 것인 방법.
  12. 청구항 1에 있어서, 상기 단계 (a)는 0.1 내지 0.3 mmol/g의 로딩율로 D-Cys(R2)를 상기 레진에 로딩하는 단계를 포함하는 것인 방법.
  13. 청구항 1에 있어서, 상기 단계 (b)는 산성 용액의 존재 하에서 수행되는 것인 방법.
  14. 청구항 1에 있어서, 상기 단계 (b)는 삼불화초산(TFA), 트리이소프로필실렌(TIS), 에틸렌디옥시디에산싸이올(DODT), 디메틸설파이드(DMS) 및 아이오딘화암모늄(NH4I)로 이루어진 군에서 선택된 것들의 조합을 포함하는 혼합용액의 존재 하에서 수행되는 것인 방법.
  15. 청구항 1에 있어서, 상기 R1은 Pbf기, 상기 R2는 트리페닐메틸기, 상기 R3는 터트-부틸기, R4는 터트-부틸옥시카보닐기인 방법.
  16. 청구항 1에 있어서, 상기 화학식 22로 표시되는 펩타이드는 하기 화학식 24 또는 25로 표시되는 펩타이드인 방법:
    [화학식 24]
    Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Cys-OH
    [화학식 25]
    Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)-D-Lys{Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6-D-Lys(Arg-His-Gly-Ala-Met-Val-Tyr-Leu-Lys-PEG6)}-D-Cys-OH.
  17. 청구항 1에 있어서, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 3으로 표시되는 MPA-PTX(3-maleimidopropionicacid-Paclitaxel) 복합체를 함께 반응시키는 단계 (c)를 더 포함하는 방법:
    [화학식 3]
    Figure PCTKR2022018307-appb-img-000029
    .
  18. 청구항 1에 있어서, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 6으로 표시되는 MPA-AGM-130(3-maleimidopropionicacid-AGM-130) 복합체를 함께 반응시키는 단계 (d)를 더 포함하는 방법:
    [화학식 6]
    Figure PCTKR2022018307-appb-img-000030
    .
  19. 청구항 1에 있어서, 상기 단계 (b)에서 수득한 펩타이드와 하기 화학식 9로 표시되는 세포 투과성 펩타이드(CPP)를 함께 반응시키는 단계 (e)를 더 포함하는 방법:
    [화학식 9]
    Figure PCTKR2022018307-appb-img-000031
    .
  20. 청구항 17 내지 19 중 어느 한 항에 있어서, 상기 반응시키는 단계는 pH 6.5 내지 8.0 조건 하에서 수행되는 것인 방법.
PCT/KR2022/018307 2021-11-18 2022-11-18 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법 WO2023090935A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0159292 2021-11-18
KR20210159292 2021-11-18
KR10-2022-0155305 2022-11-18
KR1020220155305A KR20230074004A (ko) 2021-11-18 2022-11-18 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2023090935A1 true WO2023090935A1 (ko) 2023-05-25

Family

ID=86397523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018307 WO2023090935A1 (ko) 2021-11-18 2022-11-18 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법

Country Status (1)

Country Link
WO (1) WO2023090935A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085527A (ko) * 2009-01-21 2010-07-29 광주과학기술원 신규한 세포막 투과 도메인 및 이를 포함하는 세포내 전달 시스템
KR20160012984A (ko) * 2013-05-28 2016-02-03 루오다 바이오사이언시스, 인코포레이티드 벤조푸라논과 인돌 또는 아자인돌 콘쥬게이트 및 그의 제조방법과 용도
KR20210047850A (ko) * 2021-04-23 2021-04-30 주식회사 펠레메드 급성 골수성 백혈병 또는 전이성 유방암의 예방 또는 치료용 약제학적 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085527A (ko) * 2009-01-21 2010-07-29 광주과학기술원 신규한 세포막 투과 도메인 및 이를 포함하는 세포내 전달 시스템
KR20160012984A (ko) * 2013-05-28 2016-02-03 루오다 바이오사이언시스, 인코포레이티드 벤조푸라논과 인돌 또는 아자인돌 콘쥬게이트 및 그의 제조방법과 용도
KR20210047850A (ko) * 2021-04-23 2021-04-30 주식회사 펠레메드 급성 골수성 백혈병 또는 전이성 유방암의 예방 또는 치료용 약제학적 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIAZ-RODRIGUEZ VERONICA, GANUSOVA ELENA, RAPPE TODD M., BECKER JEFFREY M., DISTEFANO MARK D.: "Synthesis of Peptides Containing C‑Terminal Esters Using Trityl Side-Chain Anchoring: Applications to the Synthesis of C‑Terminal Ester Analogs of the Saccharomyces cerevisiae Mating Pheromone a‑Factor", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 80, no. 22, 13 August 2015 (2015-08-13), pages 11266 - 11274, XP093066947, ISSN: 0022-3263, DOI: 10.1021/acs.joc.5b01376 *
KIM JAE-HYUN, BAE CHANHYUNG, KIM MIN-JUNG, SONG IN-HYE, RYU JAE-HA, CHOI JANG-HYUN, LEE CHOONG-JAE, NAM JEONG-SEOK, KIM JAE IL: "A novel nucleolin-binding peptide for Cancer Theranostics", THERANOSTICS, IVYSPRING INTERNATIONAL PUBLISHER, AU, vol. 10, no. 20, 1 January 2020 (2020-01-01), AU , pages 9153 - 9171, XP055869936, ISSN: 1838-7640, DOI: 10.7150/thno.43502 *

Similar Documents

Publication Publication Date Title
WO2016064082A2 (ko) 신규한 아미노알킬벤조티아제핀 유도체 및 이의 용도
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
CA3162320A1 (en) Methods of preparing n6-((2-azidoethoxy)carbonyl)lysine
WO2019078522A1 (ko) 세레브론 단백질의 분해 유도 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2017155288A1 (ko) 폴리에틸렌 글리콜 유도체 및 이의 용도
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2010002115A2 (en) Fxa inhibitors with cyclic amidoxime or cyclic amidrazone as p4 subunit, processes for their preparations, and pharmaceutical compositions and derivatives thereof
WO2023090935A1 (ko) 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2021194228A1 (ko) 암의 예방 또는 치료용 약학적 조성물
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2019172605A1 (ko) 선택적으로 기능화된 타이로신을 가지는 생체 물질의 제조방법, 선택적으로 기능화된 타이로신을 가지는 생체 물질 및 이를 유효성분으로 함유하는 약학적 조성물
WO2021133033A1 (ko) 용액공정상 pna 올리고머의 제조방법
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2023101490A1 (ko) 가니렐릭스의 신규한 제조방법
WO2015115796A1 (ko) 페길레이션된 7-디하이드로콜레스테롤 유도체
WO2020242268A1 (ko) 비오틴 모이어티와 결합된 생리활성 물질 및 이를 포함하는 경구 투여용 조성물
WO2016200210A1 (ko) 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
WO2020167010A1 (ko) 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
WO2012157900A2 (ko) 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
WO2024096408A1 (ko) 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법
WO2020017919A1 (ko) 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
WO2022203219A1 (ko) 암의 예방 또는 치료용 약학적 조성물
WO2015064786A1 (ko) 생체 분자 표지를 위한 시아닌 염료 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896132

Country of ref document: EP

Kind code of ref document: A1