WO2020167010A1 - 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법 - Google Patents

생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법 Download PDF

Info

Publication number
WO2020167010A1
WO2020167010A1 PCT/KR2020/002084 KR2020002084W WO2020167010A1 WO 2020167010 A1 WO2020167010 A1 WO 2020167010A1 KR 2020002084 W KR2020002084 W KR 2020002084W WO 2020167010 A1 WO2020167010 A1 WO 2020167010A1
Authority
WO
WIPO (PCT)
Prior art keywords
trt
tbu
resin
boc
lys
Prior art date
Application number
PCT/KR2020/002084
Other languages
English (en)
French (fr)
Inventor
최원경
김나리
박종환
박성준
김남두
조영범
Original Assignee
한미정밀화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미정밀화학주식회사 filed Critical 한미정밀화학주식회사
Priority to EP20756094.7A priority Critical patent/EP3939990A4/en
Priority to KR1020217025828A priority patent/KR20210118857A/ko
Priority to US17/430,864 priority patent/US20220242913A1/en
Publication of WO2020167010A1 publication Critical patent/WO2020167010A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/10General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using coupling agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links

Definitions

  • the present invention relates to a novel intermediate used in a physiologically active polypeptide and a method for preparing the same. More specifically, the present invention relates to a method for preparing a physiologically active polypeptide more safely and efficiently, a novel polypeptide intermediate used therein, and a method for preparing the same.
  • Diabetes-related diseases including obesity and type 2 diabetes, are recognized as an important threat to health worldwide as one of the representative metabolic diseases occurring in modern society, and economic costs are also increasing rapidly.
  • Glucagon is produced by the pancreas when blood sugar starts to drop due to drug treatment, disease, or hormone or enzyme deficiency. Glucagon signals the release of glucose by breaking down glycogen in the liver, and is responsible for raising blood sugar levels to normal levels.
  • glucagon exhibits an anti-obesity effect by promoting lipolysis by suppressing appetite and activating hormone-sensitive lipase of adipocytes in addition to the effect of raising blood sugar, and various studies are underway.
  • Korean Patent Application Publication No. 10-2017-0080521 discloses a triple activator having activity on both glucagon, GLP-1, and GIP receptors, and uses thereof.
  • These peptides may be made from substitution, addition, deletion, modification, and combinations thereof, to at least one amino acid in the native glucagon sequence, and more specifically, by general formula 1 below.
  • An isolated peptide comprising the indicated amino acid sequence is disclosed.
  • the peptide can be prepared by a method known in the art, for example, synthesis by an automatic peptide synthesizer, genetic engineering technology, or any other method.
  • synthesis by an automatic peptide synthesizer for example, synthesis by an automatic peptide synthesizer, genetic engineering technology, or any other method.
  • high purity quality, a yield suitable for commercialization, and a manufacturing process suitable for mass production are required.
  • Another object of the present invention is to provide an efficient method for preparing the novel polypeptide intermediate and resin complex compound.
  • Another object of the present invention is to provide an efficient method for producing a physiologically active polypeptide using the novel polypeptide intermediate.
  • an embodiment of the present invention provides a novel polypeptide intermediate of the following formula (1).
  • R is H, straight or branched C 1-12 alkyl, straight or branched C 1-12 alkyloxycarbonyl, straight or branched C 2-12 alkenyl, C 3-10 Cycloalkyl, heterocycloalkyl, C 6-12 aryl, C 6-12 aryloxycarbonyl, C 1-6 alkylC 6-12 aryl, C 1-6 alkylC 6-12 aryloxycarbonyl and heteroaryl Is selected from the group consisting of;
  • X is H, straight or branched C 1-12 alkyl, straight or branched C 1-12 alkyloxycarbonyl, straight or branched C 2-12 alkenyl, C 3-10 cycloalkyl , Heterocycloalkyl, C 6-12 aryl, C 6-12 aryloxycarbonyl, C 1-6 alkylC 6-12 aryl, C 1-6 alkyl C 6-12 aryloxycarbonyl and heteroaryl Is selected from;
  • substituents are additionally H, halogen, cyano, straight or branched C 1-6 alkyl, straight or branched C 2-10 alkenyl, C 3-10 cycloalkyl, haloC 1- 5 alkyl, hydroxyC 1-6 alkyl, amino, mono or diC 1-6 alkylamino, oxo, hydroxy, C 1-6 alkoxy, C 6-12 arylsulfonyl and C 1-6 alkylsulfonyl It may be substituted with one or more identical or different substituents selected from the group consisting of.
  • an embodiment of the present invention provides a novel resin composite compound of Formula 3:
  • a to D are protecting groups
  • a to D are each independently triphenylmethyl (Trt), tertiary butyl (tBu), t-butyloxycarbonyl (Boc) and 2,2,4,6,7-pentamethyldihydrobenzofuran-5- It is selected from the group consisting of sulfonyl (Pbf),
  • R is H, straight or branched C 1-12 alkyl, straight or branched C 1-12 alkyloxycarbonyl, straight or branched C 2-12 alkenyl, C 3-10 cycloalkyl , Heterocycloalkyl, C 6-12 aryl, C 6-12 aryloxycarbonyl, C 1-6 alkylC 6-12 aryl, C 1-6 alkyl C 6-12 aryloxycarbonyl and heteroaryl Is selected from;
  • substituents are additionally H, halogen, cyano, straight or branched C 1-6 alkyl, straight or branched C 2-10 alkenyl, C 3-10 cycloalkyl, haloC 1- 5 alkyl, hydroxyC 1-6 alkyl, amino, mono or diC 1-6 alkylamino, oxo, hydroxy, C 1-6 alkoxy, C 6-12 arylsulfonyl and C 1-6 alkylsulfonyl It may be substituted with one or more identical or different substituents selected from the group consisting of.
  • a to D are protecting groups
  • a to D are each independently triphenylmethyl (Trt), tertiary butyl (tBu), t-butyloxycarbonyl (Boc) and 2,2,4,6,7-pentamethyldihydrobenzofuran-5- It is selected from the group consisting of sulfonyl (Pbf),
  • R is H, straight or branched C 1-12 alkyl, straight or branched C 1-12 alkyloxycarbonyl, straight or branched C 2-12 alkenyl, C 3-10 cycloalkyl , Heterocycloalkyl, C 6-12 aryl, C 6-12 aryloxycarbonyl, C 1-6 alkylC 6-12 aryl, C 1-6 alkyl C 6-12 aryloxycarbonyl and heteroaryl Is selected from;
  • substituents are additionally H, halogen, cyano, straight or branched C 1-6 alkyl, straight or branched C 2-10 alkenyl, C 3-10 cycloalkyl, haloC 1- 5 alkyl, hydroxyC 1-6 alkyl, amino, mono or diC 1-6 alkylamino, oxo, hydroxy, C 1-6 alkoxy, C 6-12 arylsulfonyl and C 1-6 alkylsulfonyl It may be substituted with one or more identical or different substituents selected from the group consisting of.
  • a method of preparing a physiologically active polypeptide of Formula 2 and a pharmaceutically acceptable salt is provided.
  • novel polypeptide intermediate and its manufacturing process according to the present invention can provide a novel polypeptide intermediate that can be used in bioactive polypeptide pharmaceuticals, and are suitable for mass production, efficient, and capable of reproducing high-quality products. There is an advantage.
  • the protecting group of the amino acid used in the present invention has stability under the conditions of the peptide condensation reaction, can be easily removed, does not affect the peptide chain and substituents during the removal reaction, and does not cause racemization of any chiral center present in the peptide. Anything can be used if it does not.
  • suitable protecting groups include 9-fluorenylmethyloxycarbonyl (Fmoc), 2-(4-nitrophenyl-sulfonyl)ethoxycarbonyl (NSC), t-butoxycarbonyl (Boc), benzyloxycarbonyl.
  • a method of synthesizing a solid peptide using 9-fluorenylmethoxycarbonyl (Fmoc) as an amino acid protecting group may be used.
  • the resin used in the reaction in all steps of the present invention is a polymer support treated with an appropriate linker, and a polystyrene (PS)-based resin or a polystyrene-polyethylene glycol copolymer (PS-PEG copolymer)-based resin is preferable. It is not limited, and other suitable resins known in the art for this purpose can also be used within the scope of the present invention.
  • Resins usable in the present invention include, for example, in the case of polystyrene, aminomethyl resin, aminoethyl resin, aminobutyl resin, link amide aminomethyl resin, link amide aminoethyl resin, link amide aminobutyl resin, link amide MBHA resin, link amide Resin, 2-chlorotrityl-N-Fmoc-hydroxylamine resin, HMPA-AM resin, HMPB resin, 2-chlorotrityl resin, 4-carboxytrityl resin, Wang resin, PAL resin, 4-(hydroxyl) Methyl) phenoxyacetic acid resin, Sieber amide resin, and in the case of polystyrene-polyethylene glycol copolymer series, TentaGel S resin, TentaGel R resin, TentaGel XV resin, TentaGel MB resin, TentaGel HL resin, TentaGel B resin, TentaGel M
  • Polar aprotic solvents used in the reaction of all steps of the present invention include, for example, dimethylformamide, dimethylacetamide, etc., but are not limited thereto, and other suitable polar aprotic solvents known in the art for this purpose It can also be used within the scope of the present invention.
  • the polar aprotic solvent used in the reaction of all steps of the present invention may be preferably selected from the group consisting of dimethylformamide, dimethylacetamide, and mixtures thereof.
  • a method for preparing a resin composite compound of Formula 3 is provided.
  • step (3) repeating step (2) until a peptide is formed
  • the resin is swelled in a polar aprotic solvent.
  • a deprotected resin may be prepared by deprotecting the protecting group using a piperidine solution in a polar aprotic solvent.
  • the deprotected resin may be washed using a polar solvent.
  • the polar solvent used herein may be selected from the group consisting of dimethylformamide, dimethylacetamide, methanol, ethanol, and mixtures thereof.
  • the deprotected resin can then be activated.
  • the protected amino acid, 1-hydroxy-1H-benzotriazole, and 1,3-diisopropylcarbodiimide are added to a polar aprotic solvent to activate the protected amino acid.
  • a coupling reaction is performed by adding an activated protected amino acid solution to the deprotected resin in the reactor.
  • the coupled resin may be washed using a polar solvent.
  • the polar solvent used herein can be selected from the group consisting of dimethylformamide, dimethylacetamide, methanol, ethanol, and mixtures thereof.
  • steps (1)-(2) are repeated until a peptide is formed.
  • the reaction of step (3) can be performed by repeating 2 to 100 times until a peptide of the desired length is formed, preferably 10 to 50 times, most preferably 14 to 30 times. I can.
  • the synthesized peptide is reacted with tetrakispalladium, N-methylaniline and phenylsilane in a solvent to prepare a partially deprotected resin.
  • the solvent used in the reaction of step (4) may be selected from the group consisting of dichloromethane, chloroform, and mixtures thereof.
  • step (5) a cyclization reaction is performed by adding the synthesized peptide and a coupling reagent in a polar aprotic solvent to prepare a polypeptide intermediate.
  • the coupling reagent used in the reaction of step (5) is 1-hydroxy-1H-benzotriazole/1,3-diisopropylcarbodiimide or HATU (1-[bis(dimethylamino)methylene]-1H -1,2,3-triazolo[4,5-b]-pyridinium 3-oxidehexafluorophosphate)/N,N-diisopropylethylamine, but is not limited thereto
  • Other suitable coupling reagents known in the art for this purpose can also be used within the scope of the present invention.
  • Another aspect of the present invention provides a method for preparing a physiologically active polypeptide of Formula 2 and a pharmaceutically acceptable salt from the above-described method.
  • step (1) the amino acid linking reaction is repeatedly performed until a peptide having a desired amino acid sequence is formed by reacting the resin complex compound of Formula 3 obtained by the above method or another method with an amino acid.
  • the reaction of step (1) may be repeated 1 to 50 times until a peptide having a desired length is formed, and preferably 1 to 30 times may be repeated.
  • the physiologically active polypeptide of Formula 2 is a salt of trifluoroacetic acid or a salt of acetic acid.
  • the reaction step of (1) described above may include the step of deprotecting the peptide-resin complex in a polar aprotic solvent.
  • the polar aprotic solvent may be selected from the group consisting of dimethylformamide, dimethylacetamide, and mixtures thereof.
  • X′ may be a link amide resin.
  • the protected resin is deprotected using a cleavage cocktail, and the desired peptide is cleaved from the resin.
  • the cleavage cocktail of step (2) may contain a solution of trifluoroacetic acid (TFA), at least one scavenger, and dichloromethane.
  • TFA trifluoroacetic acid
  • scavenger at least one scavenger
  • dichloromethane dichloromethane
  • the scavenger of step (2) is triisopropylsilane (TIPS), triethylsilane (TES), phenol, anisole, thioanisole, water, ethanedithiol (EDT), 1-dodecane Thiol, dithiothreitol (DTT) and may be selected from the group consisting of indole, but are not limited thereto, and other suitable scavengers known in the art for this purpose can also be used within the scope of the present invention.
  • TIPS triisopropylsilane
  • TES triethylsilane
  • phenol anisole
  • thioanisole water
  • EDT ethanedithiol
  • DTT 1-dodecane Thiol
  • DTT dithiothreitol
  • the manufacturing method of the present invention may further include filtering the cut mixture from the resin after step (2).
  • the manufacturing method of the present invention provides a compound of Formula 1 and a resin complex compound of Formula 3, which are novel cyclized polypeptide intermediates that become high-purity pharmaceutical intermediates.
  • a cyclization intermediate of the present invention is used, it is possible to simultaneously achieve a yield improvement and suppression of impurity generation in the production of a bioactive polypeptide.
  • the produced related substances are also changed to a type that is easy to separate from the product, so that the final purification is much easier, so that high-quality pharmaceuticals can be obtained.
  • novel polypeptide intermediate according to the present invention and the physiologically active polypeptide prepared through the preparation method thereof undergo a step of preparing a linear polypeptide of up to 15mer, performing a cyclization reaction, and further synthesizing the remaining amino acids, Compared to the existing manufacturing method, it has the advantage of being able to synthesize high-purity products.
  • the production method of the present invention improves the occurrence of related substances, not only the final purification process after completion of synthesis is easy, but also the management of heavy metal components is easy. This is an advantageous effect that exceeds the expected level by simply changing the position of the lactam cyclization process, assuming that other factors are the same.
  • the manufacturing method of the present invention has the advantage of being an efficient process suitable for commercial production because the overall yield and purity are greatly improved.
  • Methionine-Met M; Phenylalanine-Phe, F; Proline-Pro, P;
  • Solid-phase peptide synthesis method (method of deprotection of amino acid, method of cleaving peptide from resin, and SPPS method, including purification thereof), as well as method of detection and characterization of the resulting peptide (LCMS, MALDI, and UPLC Method).
  • the protected amino acid derivatives used are standard Fmoc-amino acids.
  • the N-terminal amino acid has an alpha amino group protected with Boc (eg Boc-His(Boc)-OH, or Boc-His(Trt)-OH for a peptide with His at the N-terminus).
  • link amide MBHA resin 80.0 g (0.31 mmol/g) of link amide MBHA resin and 480 ml of dimethylformamide were added to the container, stirred for 15 minutes, and filtered to remove dimethylformamide. This process was conducted a total of two times. Through the above process, link amide MBHA resin was prepared.
  • Cys(Trt)-Fmoc activated in step (2) was added to the Fmoc deprotected link amide MBHA resin prepared in step (1), stirred at room temperature for at least 3 hours, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. Through the above process, the target compound, Resin-Cys(Trt)-Fmoc was obtained.
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • Step (3) Preparation of resin-Cys(Trt)-Thr(tBu)-Fmoc (poly 2mer synthesis)
  • step (2) The Thr(tBu)-Fmoc activated in step (2) was added to the Fmoc deprotected resin-Cys(Trt) prepared in step (1), stirred at room temperature for 3 hours or more, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. Through the above process, the target compound, Resin-Cys(Trt)-Thr(tBu)-Fmoc(C), was obtained.
  • Step (2) Activation of Asn(Trt)-Fmoc(N)
  • Step (3) Preparation of resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc (poly 3mer synthesis)
  • Step (3) Preparation of resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc (poly 4mer synthesis)
  • step (2) Met-Fmoc activated in step (2) was added and stirred at room temperature for 3 hours or more. Filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. Through the above process, the target compound, Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc, was obtained.
  • Step (3) Preparation of resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc (poly 5mer synthesis)
  • Trp(Boc)-Fmoc 39.2 g of Trp(Boc)-Fmoc, 1H-benzotriazole, 1-hydroxy, 16.7 g of hydrate, and 480 ml of dimethylformamide were added to the container, followed by stirring to completely dissolve. 1,3-diisopropylcarbodiimide 15.5ml was added to the dissolved reaction solution, followed by stirring at room temperature for 30 minutes. Through the above process, the target compound, Trp(Boc)-Fmoc, was activated.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc (poly 6mer synthesis)
  • Trp(Boc)-Fmoc activated in step (2) was added to room temperature. After stirring for 3 hours or more, it was filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. Through the above process, the target compound, Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc, was obtained.
  • Step (2) Activation of Gln(Trt)-Fmoc(Q)
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc (poly 7mer synthesis)
  • Step (2) Activation of Val-Fmoc(V)
  • Val-Fmoc 25.3 g of Val-Fmoc, 1H-benzotriazole, 1-hydroxy, 16.7 g of hydrate, and 480 ml of dimethylformamide were added to the container, followed by stirring to completely dissolve. 1,3-diisopropylcarbodiimide 15.5ml was added to the dissolved reaction solution, followed by stirring at room temperature for 30 minutes. Through the above process, the target compound, Val-Fmoc, was activated.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc (poly 8mer synthesis)
  • step (1) The Fmoc deprotected Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt) prepared in step (1) was activated in step (2).
  • Val-Fmoc was added, stirred at room temperature for 3 hours or more, and then filtered.
  • 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered.
  • 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times.
  • 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered.
  • the target compound Fmoc deprotected Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val, was obtained.
  • Step (2) Activation of Phe-Fmoc(F)
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Fmoc (poly 9mer synthesis)
  • step (2) Activated Phe-Fmoc was added, stirred at room temperature for 3 hours or more, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Fmoc (poly 10mer synthesis)
  • Step (2) Activated Glu(OtBu)-Fmoc was added, stirred at room temperature for 3 hours or more, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times.
  • Step (2) Activation of Lys(Alloc)-Fmoc(K)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Fmoc (poly 11mer synthesis)
  • step (2) Fmoc deprotected Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) prepared in step (1) ), the activated Lys(Alloc)-Fmoc in step (2) was added, stirred at room temperature for 3 hours or more, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times.
  • Step (2) Activation of Ala-Fmoc(A)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Fmoc (poly 12mer synthesis)
  • Step (2) Activation of Arg(Pbf)-Fmoc(R)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Fmoc (poly 13mer synthesis)
  • Step (2) Activation of Lys(Boc)-Fmoc(K)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Fmoc (poly 14mer synthesis)
  • Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) -Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc) was obtained.
  • Step (2) Activation of Glu(OAll)-Fmoc(E)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc (poly 15mer synthesis)
  • Step (1) partial deprotection manufacturing (Alloc/OAll)
  • the cyclization step may be performed by selecting the process of (2)-1 or (2)-2 below.
  • Step (2)-1 Preparation of cyclized polypeptide (synthesis of cyclized poly 15mer)
  • Step (2)-2 Preparation of cyclized polypeptide (synthesis of cyclized poly 15mer)
  • reaction vessel 480 mL of dimethylformamide and 56.6 g of HATU(1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]-pyridinium 3-oxide Hexafluorophosphate) was added and stirred to completely dissolve. 51.8 ml of N,N-diisopropylethylamine was added to the dissolved reaction solution, followed by stirring at room temperature for 5 minutes. The reaction solution prepared in the polypeptide (partial deprotection 15mer) prepared in step (1) was added, stirred at room temperature for 3 hours, and then filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Fmoc (Synthesis of Cyclic Poly 16mer)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Fmoc was obtained.
  • 480 ml of 20% piperidine was added to the cyclized polypeptide (synthesis of cyclized poly 16mer) prepared in Synthesis 1), stirred for 20 minutes, and then filtered to remove 20% piperidine. This process was conducted a total of two times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Fmoc (Synthesis of Cyclic Poly 17mer)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Fmoc was obtained.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc (Synthesis of Cyclic Poly 18mer)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc was obtained.
  • Step (2) Activation of Lys(Boc)-Fmoc(K)
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc (Synthesis of Cyclic Poly 19mer)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc was obtained.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc was obtained.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc was obtained.
  • Step (2) Activation of Asp(OtBu)-Fmoc(D)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc Got it.
  • Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) prepared in step (1) )-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp Ser(tBu)-Fmoc activated in step (2) was added to (OtBu), stirred at room temperature for at least 3 hours, and then filtered.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Fmoc was obtained.
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) prepared in step (1) )-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp Thr(tBu)-Fmoc activated in step (2) was added to (OtBu)-Ser(tBu), stirred at room temperature for at least 3 hours, and then filtered.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Fmoc was obtained.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Fmoc was obtained.
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc was obtained.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc was obtained.
  • Step (2) Activation of Gln(Trt)-Fmoc(Q)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Fmoc was obtained.
  • Step (2) Activation of Aib-Fmoc
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-Fmoc was obtained.
  • Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) prepared in step (1) )-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp (OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib was added with His(Trt)-Boc activated in step (2) for 3 hours at room temperature.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[ Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser (tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc was obtained.
  • Example 5 NH 2 CO-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo-[Lys-Ala-Arg-Lys-Glu]-Asp-Leu-Tyr-Lys- Preparation of Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib- His-NH 2 ⁇ TFA (protecting group and resin cutting)
  • the temperature of the reaction solution in the container 1 was cooled to 5° C., 2.0 L of methyl tertiary butyl ether of the cooled reactant in the container 3 was added and stirred for 10 minutes.
  • the reaction solution was filtered and washed twice with 400 ml of cooled methyl tertiary butyl ether.
  • the crystals of the filter were dried for 10 minutes under a nitrogen atmosphere. Dried crystals were added to the container 1, and 400 ml of distilled water was added, followed by stirring at room temperature for 10 minutes.
  • the reaction product was filtered and washed with 600 ml of distilled water, and the target compound, NH 2 CO-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo-[Lys-Ala-Arg-Lys-Glu] -Asp-Leu-Tyr-Lys-Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib- His-NH 2 ⁇ TFA was obtained.
  • Rink amide MBHA resin 80.0 g (0.31 mmol/g) and 480 ml of dimethylformamide were added to the container, stirred for 15 minutes, and filtered to remove dimethylformamide. This process was conducted a total of two times. Rink amide MBHA resin was prepared through the above process.
  • Cys(Trt)-Fmoc activated in step (2) was added to the Fmoc deprotected Rink amide MBHA resin prepared in step (1), stirred at room temperature for 3 hours or more, and filtered. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. 480 ml of methanol was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. 480 ml of dimethylformamide was added to the filtered resin, stirred for 2 minutes, and then filtered. This process was conducted a total of 3 times. Through the above process, the target compound, Resin-Cys(Trt)-Fmoc, was obtained.
  • the polypeptide (poly 1mer synthesis) prepared in Synthesis 1) was used in the same manner as in Step (1) of Synthesis 1) to obtain the target compound, Fmoc deprotected Resin-Cys (Trt).
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • the target compound, Thr(tBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 19.7 g of Thr(tBu)-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Fmoc (poly 2mer synthesis)
  • the polypeptide (poly 2mer synthesis) prepared in Synthesis 2) was used in the same manner as in Step (1) of Synthesis 1) to obtain the target compound, Fmoc deprotected Resin-Cys(Trt)-Thr(tBu).
  • Step (2) Activation of Asn(Trt)-Fmoc (N)
  • the target compound, Asn(Trt)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 29.6 g of Asn(Trt)-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc (poly 3mer synthesis)
  • the target compound, Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc was obtained by proceeding in the same manner as in step (3) of Synthesis 1).
  • the target compound, Met-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 18.4 g of Met-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc (poly 4mer synthesis)
  • step (3) of synthesis 1 the target compound, Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc, was obtained.
  • Leu-Fmoc 17.5g was used in the same manner as in step (2) of synthesis 1) to activate the target compound, Leu-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc (poly 5mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc, was obtained by proceeding in the same manner as in Synthesis 1) step (3).
  • Trp(Boc)-Fmoc The target compound, Trp(Boc)-Fmoc, was activated in the same manner as in step (2) of synthesis 1) with 26.1 g of Trp(Boc)-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc (poly 6mer synthesis)
  • step (3) of synthesis 1 the target compound, Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc, was obtained.
  • the target compound, Gln(Trt)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 30.3 g of Gln(Trt)-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc (poly 7mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc, was prepared in the same manner as in Synthesis 1) step (3). Got it.
  • Step (2) Activation of Val-Fmoc(V)
  • the target compound, Val-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 16.8 g of Val-Fmoc in a container.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc (poly 8mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Fmoc was obtained.
  • Step (2) Activation of Phe-Fmoc(F)
  • the target compound, Phe-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 19.2 g of Phe-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Fmoc (poly 9mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Phe-Fmoc was obtained.
  • Step (2) Activation of Glu(OtBu)-Fmoc(E)
  • the target compound, Glu(OtBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 21.1 g of Glu(OtBu)-Fmoc.
  • Step (3) Preparation of Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Fmoc (poly 10mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Phe-Glu(OtBu)-Fmoc was obtained.
  • the target compound, Fmoc deprotected Resin-Cys(Trt)-Thr(tBu)-Asn() was performed in the same manner as in step (1) of synthesis 1) using the polypeptide prepared in synthesis 10) (poly 10mer synthesis). Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) was obtained.
  • Step (2) Activation of Lys(Alloc)-Fmoc(K)
  • the target compound, Lys(Alloc)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 22.4 g of Lys(Alloc)-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Fmoc (poly 11mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val- Phe-Glu(OtBu)-Lys(Alloc)-Fmoc was obtained.
  • the target compound, Ala-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 15.4 g of Ala-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Fmoc (poly 12mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Phe-Glu(OtBu)-Lys(Alloc)-Ala-Fmoc was obtained.
  • Step (2) Activation of Arg(Pbf)-Fmoc (R)
  • the target compound, Arg(Pbf)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 32.2 g of Arg(Pbf)-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Fmoc (poly 13mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Fmoc was obtained.
  • Step (2) Activation of Lys(Boc)-Fmoc(K)
  • the target compound, Lys(Boc)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 23.2 g of Lys(Boc)-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Fmoc (poly 14mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3). Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Fmoc was obtained.
  • Step (2) Activation of Glu(OAll)-Fmoc(E)
  • the target compound, Glu(OAll)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 20.3 g of Glu(OAll)-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc (poly 15mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc was obtained.
  • Step (2) Activation of Asp(OtBu)-Fmoc(D)
  • the target compound, Asp(OtBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 20.4 g of Asp(OtBu)-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Fmoc (poly 16mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Fmoc was obtained.
  • Fmoc deprotected Resin-Cys(Trt)-Thr(tBu)-Asn(the target compound) was performed in the same manner as in step (1) of synthesis 1) using the polypeptide prepared in Synthesis 16) (poly 16mer synthesis). Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp( OtBu) was obtained.
  • Leu-Fmoc 17.5g was used in the same manner as in step (2) of synthesis 1) to activate the target compound, Leu-Fmoc.
  • Step (3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Preparation of Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Fmoc (poly 17mer synthesis)
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Fmoc was obtained.
  • the target compound, Tyr(tBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 22.8 g of Tyr(tBu)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc was obtained.
  • Step (2) Activation of Lys(Boc)-Fmoc(K)
  • the target compound, Lys(Boc)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 23.2 g of Lys(Boc)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc was obtained.
  • Ser(tBu)-Fmoc 19.0g was used to activate the target compound Ser(tBu)-Fmoc in the same manner as in step (2) of synthesis 1).
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu) -Fmoc was obtained.
  • the target compound, Tyr(tBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 22.8 g of Tyr(tBu)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu) -Tyr(tBu)-Fmoc was obtained.
  • Step (2) Activation of Asp(OtBu)-Fmoc(D)
  • the target compound, Asp(OtBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 20.4 g of Asp(OtBu)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Ser(tBu)-Fmoc 19.0g was used to activate the target compound Ser(tBu)-Fmoc in the same manner as in step (2) of synthesis 1).
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • the target compound, Thr(tBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 19.7 g of Thr(tBu)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Step (2) Activation of Phe-Fmoc(F)
  • the target compound, Phe-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 19.2 g of Phe-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Step (2) Activation of Thr(tBu)-Fmoc(T)
  • the target compound, Thr(tBu)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 19.7 g of Thr(tBu)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Trt Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp( OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu) was obtained.
  • the target compound, Gly-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 14.7 g of Gly-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Step (2) Activation of Gln(Trt)-Fmoc(Q)
  • the target compound, Gln(Trt)-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 30.3 g of Gln(Trt)-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • Trt Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp( OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln (Trt) was obtained.
  • Step (2) Activation of Aib-Fmoc
  • the target compound, Aib-Fmoc was activated in the same manner as in step (2) of synthesis 1) with 16.1g of Aib-Fmoc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was carried out in the same manner as in Synthesis 1) step (3).
  • the target compound, His(Trt)-Boc was activated in the same manner as step (2) of synthesis 1) with 30.7 g of His(Trt)-Boc.
  • the target compound Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-, was conducted in the same manner as in step (3) of Synthesis 1).
  • Step (1) partial deprotection manufacturing (Alloc/OAll)
  • Step (2) Preparation of cyclized polypeptide (synthesis of cyclized poly 30mer)
  • the target compound the cyclized polypeptide Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu) -cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp( OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc was obtained.
  • the box mark indicates the peak of the main product
  • the arrow indicates the peak position of the maximum single analog
  • the blue circle indicates the chromatogram area where the peak corresponding to the largest single analog of the comparative example appears.
  • RRT relative retention time
  • the Example according to the present invention showed a much improved yield (approximately 7.5 times improvement) compared to the Comparative Example of the prior art performing cyclization after linear synthesis. .
  • the proportion of related substances in the process was reduced by half when compared based on the maximum single related substance (refer to the maximum single related substance ratio and unrefined purity in Table 1), and the maximum single related substance type was also the largest single substance in the comparative example.
  • the related material had an RRT of 1.12, and the related material of the example was changed to a material that was more easily separated from the main product peak (boxed in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법에 관한 것으로서, 상기 신규 중간체는 생리활성 폴리펩타이드 의약품의 제조에 사용되는 중간체로 유용하게 사용할 수 있고, 고수율, 고순도의 폴리펩타이드 중간체를 제공함으로써 고품질의 의약품 제조에 효율적으로 사용할 수 있다.

Description

생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
본 발명은 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 생리활성 폴리펩타이드를 보다 안전하고 효율적으로 제조하는 방법 및 이에 사용되는 신규한 폴리펩타이드 중간체 및 이의 제조방법에 관한 것이다.
비만과 2형 당뇨를 포함하는 당뇨관련 질병은 현대사회에서 발생하는 대표적인 대사질환 중 하나로서 전세계적으로 건강에 대한 중요한 위협요소로 인식되고 있으며, 이에 따른 경제적 비용도 급증하는 추세다.
이러한 비만과 당뇨의 치료에 사용할 수 있는 의약품의 개발 연구가 진행되어 왔으나, 이들은 치명적인 부작용을 나타내거나 비만치료효과가 미비하다는 단점을 가지고 있다. 따라서, 종래 치료제의 문제점을 해소할 수 있는 연구가 활발히 진행되고 있으며, 최근에는 글루카곤 유도체에 관심이 집중되고 있다. 글루카곤은 약물 치료 또는 질병, 호르몬이나 효소 결핍 등의 원인으로 혈당이 떨어지기 시작하면 췌장에서 생산된다. 글루카곤은 간에서 글리코겐을 분해하여 글루코스를 방출하도록 신호하고, 혈당 수준을 정상 수준까지 높이는 역할을 한다. 뿐만 아니라, 글루카곤은 혈당상승효과 이외에 식욕억제 및 지방세포의 호르몬 민감성 리파제(hormone-sensitive lipase)를 활성화시켜 지방분해를 촉진하여 항비만 효과를 나타냄이 보고되었고, 이와 관련한 다양한 연구가 진행 중이다.
일례로, 대한민국 공개특허 제10-2017-0080521호에서는 글루카곤, GLP-1 및 GIP 수용체 모두에 활성을 갖는 삼중 활성체 및 이의 용도에 대하여 개시하고 있다. 이러한 펩타이드는 천연형 글루카곤 서열에서 적어도 하나 이상의 아미노산에 치환(substitution), 추가(addition), 제거(deletion), 수식 (modification) 및 이들의 조합으로부터 이루어질 수 있고, 보다 구체적으로, 하기 일반식 1로 표시된 아미노산 서열을 포함하는, 분리된 펩타이드를 개시하고 있다. Xaa1-Xaa2-Xaa3-Gly-Thr-Phe-Xaa7-Ser-Asp-Xaa10-Ser-Xaa12-Xaa13-Xaa14-Xaa15-Xaa16-Xaa17-Xaa18-Xaa19-Xaa20-Xaa21-Phe-Xaa23-Xaa24-Trp-Leu-Xaa27-Xaa28-Xaa29-Xaa30-R1 (일반식 1, 서열번호 103)
상기의 펩타이드는 그 길이에 따라 이 분야에서 알려진 방법, 예를 들어 자동 펩타이드 합성기에 의한 합성, 유전자 조작기술, 임의의 다른 방법에 의하여 제조할 수 있다. 이러한 다양한 제조방법으로 제조한 펩타이드를 의약품으로 사용하기 위해서는 고순도의 품질과, 상업화에 적합한 수율 및 대량생산에 적합한 제조공정이 필요하다.
따라서, 이러한 생리활성 폴리펩타이드의 효율적인 제조를 가능하게 하는 신규한 폴리펩타이드 중간체 및 이를 제공할 수 있는 효율적인 제조방법이 요구된다. 이에 본 발명자들은 생리활성 폴리펩타이드를 보다 안전하고 효율적으로 제조하는 방법에 대해 연구한 결과, 신규한 폴리펩타이드 중간체 및 이의 제조방법을 개발하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제10-2017-0080521호 (2017.07.10), 글루카곤, GLP-1 및 GIP 수용체 모두에 활성을 갖는 삼중 활성체
본 발명의 목적은 생리활성 폴리펩타이드에 사용되는 신규한 폴리펩타이드 중간체 및 레진 복합체 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 신규한 폴리펩타이드 중간체 및 레진 복합체 화합물의 효율적인 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 신규한 폴리펩타이드 중간체를 사용하는 생리활성 폴리펩타이드의 효율적인 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 구체예에서는 하기 화학식 1의 신규한 폴리펩타이드 중간체를 제공한다.
[화학식 1]
Figure PCTKR2020002084-appb-img-000001
: R-Cyclo(-Glu-Lys-Arg-Ala-Lys)-Glu-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Cys-X.
여기서, R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
X는 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되며;
상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
또한, 본 발명의 일 구체예에서는 화학식 3의 신규한 레진 복합체 화합물을 제공한다:
[화학식 3]
Figure PCTKR2020002084-appb-img-000002
여기서, A 내지 D는 보호기이며;
A 내지 D는 각각 독립적으로 트리페닐메틸(Trt), 터셔리부틸(tBu), t-부틸옥시카보닐(Boc) 및 2,2,4,6,7-펜타메틸디하이드로벤조퓨란-5-설포닐(Pbf)로 이루어진 군으로부터 선택되고,
R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
X'은 레진이며;
상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
또한, 본 발명 제조 방법의 일 구체예에서는 (1) 극성 비양성자성 용매 중에서 레진을 팽윤시키는 단계; (2) 극성 비양성자성 용매 중에서 피페리딘 용액을 사용하여 보호기를 탈보호화시켜 탈보호화된 레진을 제조하는 단계; (3) 극성 비양성자성 용매 중에 보호화된 아미노산, 1-히드록시-1H-벤조트리아졸 및 1,3-디이소프로필카보디이미드를 가하여 보호화된 아미노산을 활성화시키는 단계; (4) 반응기 내 탈보호화된 레진에 활성화된 보호화된 아미노산 용액을 가하여 커플링하는 단계; (5) 펩타이드가 형성될 때까지 단계 (2)-(4)를 반복하는 단계; (6) 합성된 펩타이드를 용매 하에서 테트라키스팔라듐, N-메틸아닐린 및 페닐실란과 반응시켜 부분 탈보호화된 레진을 제조하는 단계; 및 (7) 극성 비양성자성 용매 중에 합성된 펩타이드와 커플링 시약을 가하여 고리화하는 단계를 포함하여 하기 화학식 3의 레진 복합체 화합물을 제조하는 방법을 제공한다.
[화학식 3]
Figure PCTKR2020002084-appb-img-000003
여기서, A 내지 D는 보호기이며;
A 내지 D는 각각 독립적으로 트리페닐메틸(Trt), 터셔리부틸(tBu), t-부틸옥시카보닐(Boc) 및 2,2,4,6,7-펜타메틸디하이드로벤조퓨란-5-설포닐(Pbf)로 이루어진 군으로부터 선택되고,
R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
X'은 레진이며;
상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
또한, 본 발명의 일 구체예에서는 (1) 상기의 방법으로 제조한 고리화된 펩타이드 화합물을 극성 비양성자성 용매 중에서 피페리딘 용액을 사용하여 보호기를 탈보호화시켜 탈보호화된 레진을 제조하는 단계; (2) 극성 비양성자성 용매 중에 보호화된 아미노산, 1-히드록시-1H-벤조트리아졸 및 1,3-디이소프로필카보디이미드를 가하여 보호화된 아미노산을 활성화시키는 단계; (3) 반응기 내 탈보호화된 레진에 활성화된 보호화된 아미노산 용액을 가하여 커플링하는 단계; (4) 펩타이드가 형성될 때까지 단계 (1)-(3)을 반복하는 단계; (5) 절단 칵테일을 사용하여 보호화된 레진을 탈보호화시키는 동시에 레진으로부터 원하는 펩타이드를 절단하는 단계; 및 (6) 레진으로부터 절단 혼합물을 여과하는 단계를 포함하는, 생리활성 폴리펩타이드 및 약학적으로 허용가능한 염을 제조하는 방법을 제공한다.
상술한 방법으로부터 본 발명의 일 구체예에서는 하기 화학식 2의 생리활성 폴리펩타이드 및 약학적으로 허용가능한 염을 제조하는 방법이 제공된다.
[화학식 2]
Figure PCTKR2020002084-appb-img-000004
: H-His-Aib-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Ser-Lys-Tyr-Leu-Asp- Cyclo(-Glu-Lys-Arg-Ala-Lys)-Glu-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Cys-NH 2
화학식 2의 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법은
(1) 화학식 3의 레진복합체 화합물과 아미노산을 반응시켜 펩타이드-레진 복합체를 얻는 반응 단계; 및
(2) 펩타이드-레진 복합체로부터 화학식 2의 생리활성 폴리펩타이드를 절단하여 얻는 절단 단계를 포함한다.
본 발명에 따른 신규한 폴리펩타이드 중간체 및 이의 제조공정은 생리활성 폴리펩타이드 의약품에 활용할 수 있는 신규한 폴리펩타이드 중간체를 제공할 수 있고, 대량 생산에 적합하고 효율적이며 고품질의 제품을 재현성있게 생산할 수 있는 장점이 있다.
도 1은 실시예 및 비교예에서 보호기 및 레진 절단 후 생성된 각각의 목적 화합물의 분포를 비교한 크로마토그램이다.
본 발명의 신규한 폴리펩타이드 중간체의 제조방법을 단계별로 보다 구체적으로 설명하면 다음과 같다.
본 발명에 사용되는 아미노산의 보호기는 펩타이드 축합반응 조건에서 안정성을 가지며, 용이하게 제거 가능하고 제거 반응시 펩타이드 사슬 및 치환체에 영향을 주지 않을 뿐 아니라 펩타이드에 존재하는 임의의 키랄 센터의 라세미화를 일으키지 않는 것이라면 어느 것이라도 사용 가능하다. 예컨대, 적합한 보호기들로는 9-플루오레닐메틸옥시카보닐(Fmoc), 2-(4-니트로페닐-술포닐)에톡시카르보닐(NSC), t-부톡시카보닐(Boc), 벤질옥시카보닐(Cbz), 비페닐이소프로필-옥시카보닐, t-아밀옥시카보닐, 이소보르닐옥시카보닐, (α,α)-디메틸-3,5-디메톡시벤질옥시카보닐, O-니트로페닐설페닐, 2-시아노-t-부틸옥시카보닐 등일 수 있으나, 이들로 제한되는 것은 아니며 이러한 목적으로 당업계에 알려진 적합한 다른 보호기들 또한 본 발명의 범위 내에서 사용 가능하다. 바람직하게는 플루오레닐메틸옥시카보닐(Fmoc) 또는 tert-부틸옥시카보닐(Boc) 기를 사용할 수 있다.
또한, 본 발명의 일 구체예에서는 아미노산의 보호기 중 9-플루오레닐메톡시카보닐(Fmoc)을 아미노산 보호기로 사용하는 고체상 펩타이드 합성법을 이용할 수 있다.
본 발명의 모든 단계의 반응에 사용되는 레진은 적절한 링커로 처리되어 있는 고분자 지지체로서, 폴리스티렌 (PS) 계열 레진 또는 폴리스티렌-폴리에틸렌 글리콜 공중합체(PS-PEG copolymer) 계열의 레진이 바람직하지만, 이들로 제한되는 것은 아니며, 이러한 목적으로 당업계에 알려진 적합한 다른 레진들 또한, 본 발명의 범위 내에서 사용 가능하다.
본 발명에 사용 가능한 레진은 예컨대, 폴리스티렌 계열의 경우 아미노메틸 레진, 아미노에틸 레진, 아미노부틸 레진, 링크 아미드 아미노메틸 레진, 링크 아미드 아미노에틸 레진, 링크 아미드 아미노부틸 레진, 링크 아미드 MBHA 레진, 링크 아미드 레진, 2-클로로트리틸-N-Fmoc-하드록실아민 레진, HMPA-AM 레진, HMPB 레진, 2-클로로트리틸 레진, 4-카복시트리틸 레진, Wang 레진, PAL 레진, 4-(하이드록시메틸)페녹시아세트산 레진, Sieber 아미드 레진 이고, 폴리스티렌-폴리에틸렌 글리콜 공중합체 계열의 경우, TentaGel S 레진, TentaGel R 레진, TentaGel XV 레진, TentaGel MB 레진, TentaGel HL 레진, TentaGel B 레진, TentaGel M 레진 , TentaGel N 레진, TentaGel PAP 레진, 링크 아미드 TentaGel S 레진 (TentaGel S RAM), 링크 아미드 TentaGel R 레진 (TentaGel R RAM), 링크 아미드 TentaGel XV 레진 (TentaGel XV - RAM), 링크 아미드 TentaGel MB 레진 (TentaGel MB - RAM), 링크 아미드 TentaGel HL 레진 (TentaGel HL RAM), 링크 아미드 TentaGel B 레진 (TentaGel B RAM), 링크 아미드 TentaGel M 레진 (TentaGel M RAM), 링크 아미드 TentaGel N 레진 (TentaGel N RAM), 링크 아미드 TentaGel PAP 레진(TentaGel PAP RAM) 및 다양하게 치환된 HypoGel 200과 400 레진이다.
본 발명의 모든 단계의 반응에 사용되는 극성 비양성자성 용매는 예컨대, 디메틸포름아미드, 디메틸아세트아미드 등이 있으나, 이들로 제한되는 것은 아니며 이러한 목적으로 당업계에 알려진 적합한 다른 극성 비양성자성 용매들 또한 본 발명의 범위 내에서 사용 가능하다.
본 발명의 일 구체예에 따르면, 본 발명의 모든 단계의 반응에 사용되는 극성 비양성자성 용매는 바람직하게는 디메틸포름아미드, 디메틸아세트아미드 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
본 발명의 다른 태양에서는 화학식 3의 레진 복합체 화합물의 제조 방법을 제공한다. 본 발명의 레진 복합체 화합물 제조 방법은
(1) 극성 비양성자성 용매 중에서 레진을 팽윤시키는 단계,
(2) 반응기 내 탈보호화된 레진에 활성화된 보호화된 아미노산을 가하여 커플링하는 단계,
(3) 펩타이드가 형성될 때까지 단계 (2)를 반복하는 단계,
(4) 합성된 펩타이드를 용매 하에서 테트라키스팔라듐, N-메틸아닐린 및 페닐실란과 반응시켜 부분 탈보호화된 레진을 제조하는 단계와
(5) 극성 비양성자성 용매 중에 합성된 펩타이드와 커플링 시약을 가하여 고리화하는 단계를 포함한다.
본 발명의 실시 형태에서 상기 화학식 1의 펩타이드 중간체 화합물과 화합물 3의 레진을 제조하는 방법을 단계별로 보다 구체적으로 설명하면 다음과 같다.
상기 단계 (1)에서는, 극성 비양성자성 용매 중에서 레진을 팽윤시킨다.
상기 단계 (2)의 탈보호화 레진을 얻기 위해서는, 예를 들어 극성 비양성자성 용매 중에서 피페리딘 용액을 사용하여 보호기를 탈보호화시켜 탈보호화된 레진을 제조할 수 있다.
더욱 구체적으로, 탈보호화된 레진 제조를 위한 이러한 탈보호화 반응 후, 극성 용매를 사용하여 탈보호화된 레진을 세척할 수 있다. 여기에 사용하는 극성 용매는 디메틸포름아미드, 디메틸아세트아미드, 메탄올, 에탄올 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 이어서 탈보호화 레진을 활성화시킬 수 있다. 더욱 구체적인 한 실시 형태에서는 극성 비양성자성 용매 중에 보호화된 아미노산, 1-히드록시-1H-벤조트리아졸 및 1,3-디이소프로필카보디이미드를 가하여 보호화된 아미노산을 활성화시킨다.
상기 단계 (2)에서는, 반응기 내 탈보호화된 레진에 활성화된 보호화된 아미노산 용액을 가하여 커플링 반응을 수행한다.
더욱 구체적인 실시 형태에서는 상기 단계 (4)의 커플링 반응 후, 극성 용매를 사용하여 커플링한 레진을 세척할 수 있다. 여기에 사용하는 극성 용매는 디메틸포름아미드, 디메틸아세트아미드, 메탄올, 에탄올 및 이들의 혼합물로 이루어진 군으로부터 선택할 수 있다.
상기 단계 (3)에서는, 펩타이드가 형성될 때까지 전술한 단계 (1)-(2)를 반복하여 수행한다.
상기 단계 (3)의 반응은, 원하는 길이의 펩타이드가 형성될 때까지 2 내지 100번 반복하여 수행할 수 있고, 바람직하게는 10 내지 50번, 가장 바람직하게는 14 내지 30번을 반복하여 수행할 수 있다.
상기 단계 (4)에서는, 합성된 펩타이드를 용매 하에서 테트라키스팔라듐, N-메틸아닐린 및 페닐실란과 반응시켜 부분 탈보호된 레진을 제조한다.
상기 단계 (4)의 반응에 사용되는 용매는 디클로로메탄, 클로로포름 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 단계 (5)에서는, 극성 비양성자성 용매 중에 합성된 펩타이드와 커플링 시약을 가하여 고리화 반응을 수행하여 폴리펩타이드 중간체를 제조한다.
상기 단계 (5)의 반응에 사용되는 커플링 시약은 1-히드록시-1H-벤조트리아졸/1,3-디이소프로필카보디이미드 또는 HATU (1-[비스(디메틸아미노)메틸렌]-1H-1,2,3-트리아졸로[4,5-b]-피리디늄 3-옥시드헥사플루오로포스페이트)/N,N-디이소프로필에틸아민으로부터 선택될 수 있으나, 이들로 제한되는 것은 아니며 이러한 목적으로 당업계에 알려진 적합한 다른 커플링 시약들 또한 본 발명의 범위 내에서 사용 가능하다.
본 발명의 다른 태양에서는 상술한 방법으로부터 하기 화학식 2의 생리활성 폴리펩타이드 및 약학적으로 허용가능한 염을 제조하는 방법을 제공한다. 본 발명에 따른 하기 화학식 2의 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법은
(1) 화학식 3의 레진복합체 화합물과 아미노산을 반응시켜 펩타이드-레진 복합체를 얻는 반응 단계; 및
(2) 펩타이드-레진 복합체로부터 화학식 2의 생리활성 폴리펩타이드를 절단하여 얻는 절단 단계를 포함한다.
[화학식 2]
Figure PCTKR2020002084-appb-img-000005
: H-His-Aib-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Ser-Lys-Tyr-Leu-Asp- Cyclo(-Glu-Lys-Arg-Ala-Lys)-Glu-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Cys-NH 2
본 발명의 신규한 폴리펩타이드 중간체를 사용한 생리활성 폴리펩타이드의 제조방법을 단계별로 보다 구체적으로 설명하면 다음과 같다. 상기 단계 (1)에서는 전술한 방법으로, 혹은 다른 방법으로 얻은 화학식 3의 레진 복합체 화합물과 아미노산을 반응시켜 목적하는 아미노산 서열의 펩타이드가 형성될 때까지 아미노산 연결 반응을 반복하여 수행한다. 상기 단계 (1)의 반응은 원하는 길이의 펩타이드가 형성될 때까지 1 내지 50번 반복하여 수행할 수 있고, 바람직하게는 1 내지 30번을 반복하여 수행할 수 있다.
본 발명의 한 실시 형태에서 화학식 2의 생리활성 폴리펩타이드는 트리플루오로아세트산의 염 또는 아세트산의 염 형태이다.
본 발명의 생리활성 폴리펩타이드 제조 방법의 한 실시 형태에서 전술한 (1)의 반응 단계는 펩타이드-레진 복합체를 극성 비양성자성 용매 중에서 탈보호하는 단계를 포함할 수 있다. 더 구체적인 실시 형태에서 상기 극성 비양성자성 용매는 디메틸포름아미드, 디메틸아세트아미드 및 이들의 혼합물로 이루어진 군으로부터 선택할 수 있다.
본 발명의 생리활성 폴리펩타이드 제조 방법의 한 실시 형태에서 전술한 (1)의 반응 단계에 사용하는 화학식 3의 레진 복합체 화합물로는 X'가 링크 아미드 레진인 것을 사용할 수 있다.
상기 단계 (2)에서는, 절단 칵테일을 사용하여 보호화된 레진을 탈보호화시키는 동시에 레진으로부터 원하는 펩타이드를 절단한다.
상기 단계 (2)의 절단 칵테일은 트리플루오로아세트산 (TFA), 1종 이상의 스캐빈저 및 디클로로메탄의 용액을 포함할 수 있다.
상기 단계 (2)의 스캐빈저는 상기 스캐빈저는 트리이소프로필실란(TIPS), 트리에틸실란(TES), 페놀, 아니솔, 티오아니솔, 물, 에탄디티올(EDT), 1-도데칸티올, 디티오트레이톨(DTT) 및 인돌로 이루어진 군으로부터 선택될 수 있으나, 이들로 제한되는 것은 아니며 이러한 목적으로 당업계에 알려진 적합한 다른 스캐빈저들 또한 본 발명의 범위 내에서 사용 가능하다.
본 발명의 제조 방법은 추가적으로 상기 단계 (2) 이후에 레진으로부터 절단 혼합물을 여과하는 단계를 더 포함할 수 있다.
본 발명의 제조 방법에서는 고순도의 의약품 중간체가 되는 신규한 고리화 폴리펩타이드 중간체인 화학식 1의 화합물과 화학식의 3의 레진 복합체 화합물을 제공한다. 이러한 본 발명의 고리화 중간체를 이용하면 생리활성 폴리펩타이드의 제조에서 수율 향상과 불순물 발생 억제를 동시에 달성할 수 있다. 또한 종래 기술에 비하여 생성되는 유연물질도 생성물로부터 분리하기 용이한 종류로 바뀌므로 최종 정제가 한층 더 용이하여 고품질의 의약품을 얻을 수 있다.
락탐 고리를 지닌 폴리펩타이드를 제조하는 데에 있어서, 본 발명의 제조 방법과 기존의 보편적인 방법인 선형 합성 후 고리화 반응의 공정을 좀 더 구체적으로 비교하여 살펴 본다. 종래 기술의 방법에서는 16개의 아미노산 내지 30개의 아미노산을 순차적으로 선형 합성하고, 각각의 선형 합성된 폴리펩타이드(16mer ~ 30mer)의 고리화 반응을 수행하였다. 그러나, 이러한 종래 기술에서는 선형 합성된 폴리펩타이드의 길이가 증가함에 따라 순도가 급격하게 감소하는 경향을 보인다. 또한, 마지막에 고리화 반응을 진행하게 되면서 불순물이 과량 생성되어 순도가 더 감소하게 되고 고리화 합성 시 사용된 중금속의 제거 등도 관리해야 해서 최종 정제 공정이 매우 까다로와지고 그에 따라 수율 면에서도 손실이 컸다.
본 발명에 따른 신규한 폴리펩타이드 중간체 및 이의 제조방법을 통하여 제조한 생리활성 폴리펩타이드는 15mer까지의 선형 폴리펩타이드를 제조한 후 고리화 반응을 수행하고 나머지 아미노산을 추가로 합성하는 단계를 거치는데, 기존의 제조 방법과 비교하여 고순도의 제품을 합성할 수 있는 장점을 가지고 있다. 또한, 본 발명의 제조 방법은 유연물질의 발생 양상도 개선되므로 합성 완료 이후의 최종 정제 공정이 용이할 뿐만 아니라, 중금속 성분의 관리도 손쉬워진다. 이는 다른 요소가 동일하다고 가정할 때 단순히 락탐 고리화 공정의 위치를 달리함으로써 예상되는 수준을 넘는 유리한 효과이다. 본 발명의 제조 방법은 전체 수율과 순도가 매우 향상되어 상업화 생산에 적합한 효율적인 공정이라는 장점이 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하여 설명한다. 다만 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어 자명하다.
본 명세서 전반을 통하여, 천연적으로 존재하는 아미노산에 대하여 통상적으로 1문자 또는 3문자 코드가 사용되고, Aib(α-아미노이소부티르산)과 같은 다른 아미노산에 대하여 일반적으로 허용되는 3문자 코드가 사용된다. 또한, 본 명세서에서 약어로 언급된 아미노산은 IUPAC-IUB 명명법에 따라 기재되었다.
알라닌 - Ala, A; 아르기닌 - Arg, R; 아스파라긴 - Asn, N;
아스파트산 - Asp, D; 시스테인 - Cys, C; 글루탐산 - Glu, E;
글루타민 - Gln, Q; 글리신 - Gly, G; 히스티딘 - His, H;
이소루이신 - Ile, I; 루이신 - Leu, L; 라이신 - Lys, K;
메티오닌 - Met, M; 페닐알라닌 - Phe, F; 프롤린 - Pro, P;
세린 - Ser, S; 트레오닌 - Thr, T; 트립토판 - Trp, W;
타이로신 - Tyr, Y; 발린 - Val, V
고체상 펩타이드 합성 방법(아미노산의 탈보호화 방법, 펩타이드를 수지로부터 절단하는 방법, 및 그것의 정제를 포함하는, SPPS 방법), 그뿐만 아니라 결과되는 펩타이드의 검출 및 특징화 방법(LCMS, MALDI, 및 UPLC 방법)과 관련된다.
사용되는 보호된 아미노산 유도체는 표준 Fmoc-아미노산이다. N-말단 아미노산은 알파 아미노기가 Boc으로 보호되었다(예를 들어 N-말단에서 His를 갖는 펩타이드를 위한 Boc-His(Boc)-OH, 또는 Boc-His(Trt)-OH).
[수지 결합 펩타이드의 합성]
실시예 1: 링크 아미드 MBHA 레진 준비
용기에 링크 아미드 MBHA 레진 80.0g(0.31mmol/g)과 디메틸포름아미드 480㎖을 투입하고 15분 동안 교반한 후 디메틸포름아미드 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 상기 과정을 거쳐 링크 아미드 MBHA 레진을 준비하였다.
실시예 2: 폴리펩타이드의 제조(1~15mer 합성)
합성 1) 레진-Cys(Trt)-Fmoc의 제조(폴리 1mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 실시예 1에서 준비된 수지에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 Fmoc 탈보호화된 링크 아미드 MBHA 레진을 얻었다.
단계 (2): Cys(Trt)-Fmoc(C)의 활성화
용기에 Cys(Trt)-Fmoc 43.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Cys(Trt)-Fmoc을 활성화 시켰다.
단계 (3): 레진-Cys(Trt)-Fmoc의 제조(폴리 1mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 링크 아미드 MBHA 레진에 단계 (2)에서 활성화시킨 Cys(Trt)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 레진-Cys(Trt)-Fmoc을 얻었다.
합성 2) 레진-Cys(Trt)-Thr(tBu)-Fmoc의 제조(폴리 2mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 1)에서 제조한 폴리펩타이드(폴리 2mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 레진-Cys(Trt)을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
용기에 Thr(tBu)-Fmoc 29.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): 레진-Cys(Trt)-Thr(tBu)-Fmoc의 제조(폴리 2mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 레진-Cys(Trt)에 단계 (2)에서 활성화시킨 Thr(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 레진-Cys(Trt)-Thr(tBu)-Fmoc(C)을 얻었다.
합성 3) 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc의 제조(폴리 3mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 2)에서 제조한 폴리펩타이드(폴리 2mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)을 얻었다.
단계 (2): Asn(Trt)-Fmoc(N)의 활성화
용기에 Asn(Trt)-Fmoc 44.4g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Asn(Trt)-Fmoc을 활성화 시켰다.
단계 (3): 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc 의 제조(폴리 3mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)에 단계 (2)에서 활성화시킨 Asn(Trt)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc을 얻었다.
합성 4) 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc의 제조(폴리 4mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 3)에서 제조한 폴리펩타이드(폴리 3mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)을 얻었다.
단계 (2): Met-Fmoc (M)의 활성화
용기에 Met-Fmoc 27.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Met-Fmoc을 활성화 시켰다.
단계 (3): 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc의 제조(폴리 4mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)에 단계 (2)에서 활성화시킨 Met-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc을 얻었다.
합성 5) 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc의 제조(폴리 5mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 4)에서 제조한 폴리펩타이드(폴리 4mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met을 얻었다.
단계 (2): Leu-Fmoc(L)의 활성화
용기에 Leu-Fmoc 26.3g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Leu-Fmoc을 활성화 시켰다.
단계 (3): 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc의 제조(폴리 5mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 레진-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met에 단계 (2)에서 활성화시킨 Leu-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc을 얻었다.
합성 6) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc의 제조(폴리 6mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 5)에서 제조한 폴리펩타이드(폴리 5mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu을 얻었다.
단계 (2): Trp(Boc)-Fmoc(W)의 활성화
용기에 Trp(Boc)-Fmoc 39.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Trp(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc의 제조(폴리 6mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu에 단계 (2)에서 활성화시킨 Trp(Boc)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc을 얻었다.
합성 7) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc의 제조 (폴리 7mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 6)에서 제조한 폴리펩타이드(폴리 6mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)을 얻었다.
단계 (2): Gln(Trt)-Fmoc(Q)의 활성화
용기에 Gln(Trt)-Fmoc 45.4g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Gln(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Fmoc의 제조 (폴리 7mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)에 단계 (2)에서 활성화시킨 Gln(Trt)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc을 얻었다.
합성 8) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc의 제조(폴리 8mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 7)에서 제조한 폴리펩타이드(폴리 7mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)을 얻었다.
단계 (2): Val-Fmoc(V)의 활성화
용기에 Val-Fmoc 25.3g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Val-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Fmoc의 제조(폴리 8mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)에 단계 (2)에서 활성화시킨 Val-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc을 얻었다.
합성 9) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Fmoc의 제조(폴리 9mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 8)에서 제조한 폴리펩타이드(폴리 8mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val을 얻었다.
단계 (2): Phe-Fmoc(F)의 활성화
용기에 Phe-Fmoc 28.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적화합물인 Phe-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Fmoc의 제조(폴리 9mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val에 단계 (2)에서 활성화시킨 Phe-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Fmoc을 얻었다.
합성 10) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Fmoc의 제조(폴리 10mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 9)에서 제조한 폴리펩타이드(폴리 9mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe을 얻었다.
단계 (2): Glu(OtBu)-Fmoc (E)의 활성화
용기에 Glu(OtBu)-Fmoc 31.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Glu(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Fmoc의 제조(폴리 10mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe에 단계 (2)에서 활성화시킨 Glu(OtBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Fmoc을 얻었다.
합성 11) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Fmoc의 제조(폴리 11mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 10)에서 제조한 폴리펩타이드(폴리 10mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)을 얻었다.
단계 (2): Lys(Alloc)-Fmoc(K)의 활성화
용기에 Lys(Alloc)-Fmoc 33.7g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Lys(Alloc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Fmoc 의 제조(폴리 11mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)에 단계 (2)에서 활성화시킨 Lys(Alloc)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Fmoc을 얻었다.
합성 12) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Fmoc의 제조(폴리 12mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 11)에서 제조한 폴리펩타이드(폴리 11mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)을 얻었다.
단계 (2): Ala-Fmoc(A)의 활성화
용기에 Ala-Fmoc 23.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Ala-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Fmoc의 제조(폴리 12mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)에 단계 (2)에서 활성화시킨 Ala-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Fmoc을 얻었다.
합성 13) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Fmoc의 제조(폴리 13mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 12)에서 제조한 폴리펩타이드(폴리 12mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala을 얻었다.
단계 (2): Arg(Pbf)-Fmoc(R)의 활성화
용기에 Arg(Pbf)-Fmoc 48.3g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Arg(Pbf)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Arg(Pbf)-Fmoc의 제조(폴리 13mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala에 단계 (2)에서 활성화시킨 Arg(Pbf)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala- Arg(Pbf)-Fmoc을 얻었다.
합성 14) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Fmoc의 제조(폴리 14mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 13)에서 제조한 폴리펩타이드(폴리 13mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)을 얻었다.
단계 (2): Lys(Boc)-Fmoc(K)의 활성화
용기에 Lys(Boc)-Fmoc 34.9g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Lys(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Arg(Pbf)-Lys(Boc)-Fmoc의 제조(폴리 14mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)에 단계 (2)에서 활성화시킨 Lys(Boc)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala- Arg(Pbf)-Lys(Boc)-Fmoc을 얻었다.
합성 15) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc의 제조(폴리 15mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 14)에서 제조한 폴리펩타이드(폴리 14mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)을 얻었다.
단계 (2): Glu(OAll)-Fmoc(E)의 활성화
용기에 Glu(OAll)-Fmoc 30.5g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적화합물인 Glu(OAll)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc의 제조(폴리 15mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)에 단계 (2)에서 활성화시킨 Glu(OAll)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc을 얻었다.
실시예 3: 고리화 폴리펩타이드의 제조
단계 (1): 부분 탈보호 제조(Alloc/OAll)
용기에 테트라키스팔라듐 11.5g과 디클로로메탄 800㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 N-메틸아닐린 78.6㎖와 페닐실란 38.5㎖을 투입하고 5분 동안 교반시켰다. 상기 합성 15)에서 제조한 폴리펩타이드(폴리 15mer 합성)에 디클로로메탄 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 만들어 놓은 반응액을 여과된 수지에 투입하고 실온에서 5시간 동안 교반한 후 여과하였다. 여과된 수지에 디클로로메탄 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 5회 실시하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 2회 실시하였다.
고리화 단계는 이하 (2)-1 또는 (2)-2의 공정을 택일하여 진행할 수 있다.
단계 (2)-1: 고리화 폴리펩타이드의 제조(고리화 폴리 15mer 합성)
용기에 1H-벤조트라이아졸, 1-히드록시, 수화물 26.8g과 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 27.2㎖을 투입하고 상온에서 5분 동안 교반하였다. 상기 단계 (1)에서 제조한 폴리펩타이드(부분 탈보호 15mer)에 만들어 놓은 반응액을 투입하고 상온에서 5시간 동안 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 고리화 폴리펩타이드 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Fmoc을 얻었다.
단계 (2)-2: 고리화 폴리펩타이드의 제조 (고리화 폴리 15mer 합성)
반응 용기에 480 mL의 디메틸포름아미드와 56.6g의 HATU(1-[비스(디메틸아미노)메틸렌]-1H-1,2,3-트리아졸로[4,5-b]-피리디늄 3-옥시드 헥사플루오로포스페이트)를 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 N,N-디이소프로필에틸아민 51.8㎖을 투입하고 상온에서 5분 동안 교반하였다. 상기 단계 (1)에서 제조한 폴리펩타이드(부분 탈보호 15mer)에 만들어 놓은 반응액을 투입하고 상온에서 3시간 동안 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 고리화 폴리펩타이드 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Fmoc을 얻었다.
실시예 4: 고리화 폴리펩타이드의 제조(16~30mer 합성)
합성 1) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Fmoc의 제조(고리화 폴리 16mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 실시예 3에서 제조한 고리화 폴리펩타이드(고리화 폴리 15mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]을 얻었다.
단계 (2): Asp(OtBu)-Fmoc (D)의 활성화
용기에 Asp(OtBu)-Fmoc 30.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Asp(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Fmoc의 제조(고리화 폴리 16mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala- Arg(Pbf)-Lys(Boc)-Glu]에 단계 (2)에서 활성화시킨 Asp(OtBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Fmoc을 얻었다.
합성 2) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Fmoc의 제조 (고리화 폴리 17mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 1)에서 제조한 고리화 폴리펩타이드(고리화 폴리 16mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)을 얻었다.
단계 (2): Leu-Fmoc(L)의 활성화
용기에 Leu-Fmoc 26.3g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Leu-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Fmoc의 제조(고리화 폴리 17mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)에 단계 (2)에서 활성화시킨 Leu-Fmoc 을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Fmoc을 얻었다.
합성 3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc의 제조(고리화 폴리 18mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 2)에서 제조한 고리화 폴리펩타이드(고리화 폴리 17mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu을 얻었다.
단계 (2): Tyr(tBu)-Fmoc(Y)의 활성화
용기에 Tyr(tBu)-Fmoc 34.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Tyr(tBu)-Fmoc 을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc의 제조(고리화 폴리 18mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu에 단계 (2)에서 활성화시킨 Tyr(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc을 얻었다.
합성 4) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc의 제조(고리화 폴리 19mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 3)에서 제조한 고리화 폴리펩타이드(고리화 폴리 18mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)을 얻었다.
단계 (2): Lys(Boc)-Fmoc(K)의 활성화
용기에 Lys(Boc)-Fmoc 34.9g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Lys(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc의 제조(고리화 폴리 19mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)에 단계 (2)에서 활성화시킨 Lys(Boc)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc을 얻었다.
합성 5) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc의 제조(고리화 폴리 20mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 4)에서 제조한 고리화 폴리펩타이드(고리화 폴리 19mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)을 얻었다.
단계 (2): Ser(tBu)-Fmoc(S)의 활성화
용기에 Ser(tBu)-Fmoc 28.5g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Ser(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc의 제조(고리화 폴리 20mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)에 단계 (2)에서 활성화시킨 Ser(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc을 얻었다.
합성 6) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc의 제조(고리화 폴리 21mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 5)에서 제조한 고리화 폴리펩타이드(고리화 폴리 20mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)을 얻었다.
단계 (2): Tyr(tBu)-Fmoc (Y)의 활성화
용기에 Tyr(tBu)-Fmoc 34.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Tyr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc의 제조(고리화 폴리 21mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)에 단계 (2)에서 활성화시킨 Tyr(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc을 얻었다.
합성 7) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc의 제조(고리화 폴리 22mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 6)에서 제조한 고리화 폴리펩타이드(고리화 폴리 21mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)을 얻었다.
단계 (2): Asp(OtBu)-Fmoc(D)의 활성화
용기에 Asp(OtBu)-Fmoc 30.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Asp(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc의 제조(고리화 폴리 22mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)에 단계 (2)에서 활성화시킨 Asp(OtBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc을 얻었다.
합성 8) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc의 제조(고리화 폴리 23mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 7)에서 제조한 고리화 폴리펩타이드(고리화 폴리 22mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)을 얻었다.
단계 (2): Ser(tBu)-Fmoc(S)의 활성화
용기에 Ser(tBu)-Fmoc 28.5g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Ser(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc의 제조(고리화 폴리 23mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)에 단계 (2)에서 활성화시킨 Ser(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc을 얻었다.
합성 9) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Fmoc의 제조(고리화 폴리 24mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 8)에서 제조한 고리화 폴리펩타이드(고리화 폴리 23mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
용기에 Thr(tBu)-Fmoc 29.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)Fmoc의 제조(고리화 폴리 24mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)에 단계 (2)에서 활성화시킨 Thr(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Fmoc을 얻었다.
합성 10) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc의 제조(고리화 폴리 25mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 9)에서 제조한 고리화 폴리펩타이드(고리화 폴리 24mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)을 얻었다.
단계 (2): Phe-Fmoc (F)의 활성화
용기에 Phe-Fmoc 28.8g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적화합물인 Phe-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc의 제조(고리화 폴리 25mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)에 단계 (2)에서 활성화시킨 Phe-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc을 얻었다.
합성 11) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc의 제조(고리화 폴리 26mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 10)에서 제조한 고리화 폴리펩타이드(고리화 폴리 25mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
용기에 Thr(tBu)-Fmoc 29.6g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc의 제조(고리화 폴리 26mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe에 단계 (2)에서 활성화시킨 Thr(tBu)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc을 얻었다.
합성 12) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc의 제조(고리화 폴리 27mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 11)에서 제조한 고리화 폴리펩타이드(고리화 폴리 26mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)을 얻었다.
단계 (2): Gly-Fmoc (G)의 활성화
용기에 Gly-Fmoc 22.1g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Gly-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc의 제조(고리화 폴리 27mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)에 단계 (2)에서 활성화시킨 Gly-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc을 얻었다.
합성 13) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Fmoc의 제조(고리화 폴리 28mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 12)에서 제조한 고리화 폴리펩타이드(고리화 폴리 27mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly을 얻었다.
단계 (2): Gln(Trt)-Fmoc(Q)의 활성화
용기에 Gln(Trt)-Fmoc 45.4g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Gln(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Fmoc의 제조(고리화 폴리 28mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly에 단계 (2)에서 활성화시킨 Gln(Trt)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Fmoc을 얻었다.
합성 14) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-Fmoc의 제조(고리화 폴리 29mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 13)에서 제조한 고리화 폴리펩타이드(고리화 폴리 28mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)을 얻었다.
단계 (2): Aib-Fmoc의 활성화
용기에 Aib-Fmoc 24.2g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Aib-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Aib-Fmoc의 제조(고리화 폴리 29mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)에 단계 (2)에서 활성화시킨 Aib-Fmoc 을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-Fmoc을 얻었다.
합성 15) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc의 제조(고리화 폴리 30mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 14)에서 제조한 고리화 폴리펩타이드(고리화 폴리 29mer 합성)에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib을 얻었다.
단계 (2): His(Trt)-Boc (H)의 활성화
용기에 His(Trt)-Boc 37.0g과 1H-벤조트라이아졸, 1-히드록시, 수화물 16.7g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 15.5㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 His(Trt)-Boc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Aib-His(Trt)-Boc의 제조(고리화 폴리 30mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib에 단계 (2)에서 활성화시킨 His(Trt)-Boc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc을 얻었다.
실시예 5: NH 2CO-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo- [Lys-Ala-Arg-Lys-Glu]-Asp-Leu-Tyr-Lys-Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib- His-NH 2·TFA 의 제조 (보호기 및 레진 절단)
용기 2에 질소 분위기하에서 트리플루오로아세트산 165㎖와 페놀 10㎖, 증류수 10㎖, 티오아니솔 10㎖, 1,2-에테인디티올 5㎖를 투입하고 10분 동안 교반하였다. 용기 1에 건조된 고리화 폴리펩타이드 30mer 20g을 투입하고 용기 1에 준비된 반응액을 투입한 후 1시간 30분 동안 실온에서 교반하였다. 용기 3에 메틸 삼차 뷰틸 에터 3.0L를 투입하고 질소 분위기하에 0~10℃로 냉각하였다. 용기 1의 반응액 온도를 5℃로 냉각하고 용기 3의 냉각된 반응물 메틸 삼차 뷰틸 에터 2.0L를 취하여 투입한 후 10분 동안 교반하였다. 반응액을 여과하고 냉각된 메틸 삼차 뷰틸 에터 400㎖로 2번 세척한다. 여과기의 결정을 질소 분위기하에서 10분 동안 건조하였다. 용기 1에 건조된 결정을 투입하고 증류수 400㎖를 투입한 후 실온에서 10분 동안 교반하였다. 반응물을 여과하고 증류수 600㎖로 세척하여 목적 화합물인 NH 2CO-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo-[Lys-Ala-Arg-Lys-Glu]-Asp-Leu-Tyr-Lys-Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib- His-NH 2·TFA을 얻었다.
비교예 1: 링크 아미드 레진 준비
용기에 Rink amide MBHA resin 80.0g(0.31mmol/g)과 디메틸포름아미드 480㎖을 투입하고 15분 동안 교반한 후 디메틸포름아미드 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 상기 과정을 거쳐 Rink amide MBHA resin을 준비하였다.
비교예 2: 폴리펩타이드의 제조(1~30mer 합성)
합성 1) Resin-Cys(Trt)-Fmoc의 제조(폴리 1mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 비교예 1에서 준비된 수지에 20% 피페리딘 480㎖을 투입하고 20분 동안 교반한 후 20% 피페리딘 제거를 위해 여과하였다. 이 과정을 총 2회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Fmoc 탈보호화된 Rink amide MBHA resin을 얻었다.
단계 (2): Cys(Trt)-Fmoc (C)의 활성화
용기에 Cys(Trt)-Fmoc 29.1g과 1H-벤조트라이아졸, 1-히드록시, 수화물 13.4g, 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 1,3-디이소프로필카보디이미드 11.6㎖을 투입하고 상온에서 30분 동안 교반하였다. 상기 과정을 거쳐 목적 화합물인 Cys(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Fmoc의 제조(폴리 1mer 합성)
상기 단계 (1)에서 제조된 Fmoc 탈보호화된 Rink amide MBHA resin에 단계 (2)에서 활성화시킨 Cys(Trt)-Fmoc을 투입하여 상온에서 3시간 이상 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적 화합물인 Resin-Cys(Trt)-Fmoc을 얻었다.
합성 2) Resin-Cys(Trt)-Thr(tBu)-Fmoc의 제조(폴리 2mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 1)에서 제조한 폴리펩타이드(폴리 1mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
Thr(tBu)-Fmoc 19.7g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Fmoc 의 제조(폴리 2mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Fmoc(C)을 얻었다.
합성 3) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc의 제조(폴리 3mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 2)에서 제조한 폴리펩타이드(폴리 2mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)을 얻었다.
단계 (2): Asn(Trt)-Fmoc (N)의 활성화
Asn(Trt)-Fmoc 29.6g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Asn(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc 의 제조(폴리 3mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Fmoc을 얻었다.
합성 4) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc의 제조(폴리 4mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 3)에서 제조한 폴리펩타이드(폴리 3mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)을 얻었다.
단계 (2): Met-Fmoc(M)의 활성화
Met-Fmoc 18.4g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Met-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc의 제조(폴리 4mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Fmoc을 얻었다.
합성 5) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc의 제조(폴리 5mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 4)에서 제조한 폴리펩타이드(폴리 4mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met을 얻었다.
단계 (2): Leu-Fmoc(L)의 활성화
Leu-Fmoc 17.5g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Leu-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc 의 제조(폴리 5mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Fmoc을 얻었다.
합성 6) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc의 제조(폴리 6mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 5)에서 제조한 폴리펩타이드(폴리 5mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu을 얻었다.
단계 (2): Trp(Boc)-Fmoc(W)의 활성화
Trp(Boc)-Fmoc 26.1g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Trp(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc의 제조(폴리 6mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Fmoc을 얻었다.
합성 7) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc의 제조(폴리 7mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 6)에서 제조한 폴리펩타이드(폴리 6mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)을 얻었다.
단계 (2): Gln(Trt)-Fmoc (Q)의 활성화
Gln(Trt)-Fmoc 30.3g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Gln(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Fmoc의 제조(폴리 7mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Fmoc을 얻었다.
합성 8) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc의 제조(폴리 8mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 7)에서 제조한 폴리펩타이드(폴리 7mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)을 얻었다.
단계 (2): Val-Fmoc(V)의 활성화
용기에 Val-Fmoc 16.8g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Val-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Fmoc의 제조(폴리 8mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Fmoc을 얻었다.
합성 9) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Fmoc의 제조(폴리 9mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 8)에서 제조한 폴리펩타이드(폴리 8mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val을 얻었다.
단계 (2): Phe-Fmoc(F)의 활성화
Phe-Fmoc 19.2g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Phe-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Fmoc의 제조(폴리 9mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Fmoc을 얻었다.
합성 10) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Fmoc의 제조(폴리 10mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 9)에서 제조한 폴리펩타이드(폴리 9mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe을 얻었다.
단계 (2): Glu(OtBu)-Fmoc(E)의 활성화
Glu(OtBu)-Fmoc 21.1g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Glu(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Fmoc의 제조(폴리 10mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Fmoc을 얻었다.
합성 11) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Fmoc의 제조(폴리 11mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 10)에서 제조한 폴리펩타이드(폴리 10mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)을 얻었다.
단계 (2): Lys(Alloc)-Fmoc(K)의 활성화
Lys(Alloc)-Fmoc 22.4g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Lys(Alloc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Fmoc의 제조(폴리 11mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Fmoc을 얻었다.
합성 12) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Fmoc의 제조(폴리 12mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 11)에서 제조한 폴리펩타이드(폴리 11mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)을 얻었다.
단계 (2): Ala-Fmoc (A)의 활성화
Ala-Fmoc 15.4g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Ala-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Fmoc 의 제조(폴리 12mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Fmoc을 얻었다.
합성 13) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Fmoc의 제조(폴리 13mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 12)에서 제조한 폴리펩타이드(폴리 12mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala을 얻었다.
단계 (2): Arg(Pbf)-Fmoc (R)의 활성화
Arg(Pbf)-Fmoc 32.2g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Arg(Pbf)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Arg(Pbf)-Fmoc의 제조(폴리 13mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala- Arg(Pbf)-Fmoc을 얻었다.
합성 14) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Fmoc의 제조(폴리 14mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 13)에서 제조한 폴리펩타이드(폴리 13mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)을 얻었다.
단계 (2): Lys(Boc)-Fmoc(K)의 활성화
Lys(Boc)-Fmoc 23.2g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Lys(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Arg(Pbf)-Lys(Boc)-Fmoc 의 제조(폴리 14mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala- Arg(Pbf)-Lys(Boc)-Fmoc을 얻었다.
합성 15) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc의 제조(폴리 15mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 14)에서 제조한 폴리펩타이드(폴리 14mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)을 얻었다.
단계 (2): Glu(OAll)-Fmoc(E)의 활성화
Glu(OAll)-Fmoc 20.3g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Glu(OAll)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)- Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc의 제조(폴리 15mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Fmoc을 얻었다.
합성 16) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Fmoc의 제조(폴리 16mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 15)에서 제조한 폴리펩타이드(폴리 15mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)을 얻었다.
단계 (2): Asp(OtBu)-Fmoc(D)의 활성화
Asp(OtBu)-Fmoc 20.4g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적화합물인 Asp(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Fmoc의 제조(폴리 16mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Fmoc을 얻었다.
합성 17) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Fmoc의 제조(폴리 17mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 16)에서 제조한 폴리펩타이드(폴리 16mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)을 얻었다.
단계 (2): Leu-Fmoc (L)의 활성화
Leu-Fmoc 17.5g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Leu-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Fmoc의 제조(폴리 17mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Fmoc을 얻었다.
합성 18) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc의 제조(폴리 18mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 17)에서 제조한 폴리펩타이드(폴리 17mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu을 얻었다.
단계 (2): Tyr(tBu)-Fmoc (Y)의 활성화
Tyr(tBu)-Fmoc 22.8g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Tyr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc의 제조(폴리 18mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Fmoc을 얻었다.
합성 19) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc의 제조(폴리 19mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 18)에서 제조한 폴리펩타이드(폴리 18mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)을 얻었다.
단계 (2): Lys(Boc)-Fmoc(K)의 활성화
Lys(Boc)-Fmoc 23.2g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Lys(Boc)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc의 제조(폴리 19mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Fmoc을 얻었다.
합성 20) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc의 제조(폴리 20mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 19)에서 제조한 폴리펩타이드(폴리 19mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)을 얻었다.
단계 (2): Ser(tBu)-Fmoc(S)의 활성화
Ser(tBu)-Fmoc 19.0g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Ser(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc의 제조(폴리 20mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Fmoc을 얻었다.
합성 21) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc의 제조(폴리 21mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 20)에서 제조한 폴리펩타이드(폴리 20mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)을 얻었다.
단계 (2): Tyr(tBu)-Fmoc(Y)의 활성화
Tyr(tBu)-Fmoc 22.8g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Tyr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc의 제조(폴리 21mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Fmoc을 얻었다.
합성 22) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc의 제조(폴리 22mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 21)에서 제조한 폴리펩타이드(폴리 21mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)을 얻었다.
단계 (2): Asp(OtBu)-Fmoc(D)의 활성화
Asp(OtBu)-Fmoc 20.4g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Asp(OtBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc의 제조(폴리 22mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Fmoc을 얻었다.
합성 23) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc의 제조(폴리 23mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 22)에서 제조한 폴리펩타이드(폴리 22mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)을 얻었다.
단계 (2): Ser(tBu)-Fmoc(S)의 활성화
Ser(tBu)-Fmoc 19.0g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Ser(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc의 제조(폴리 23mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys-(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Fmoc을 얻었다.
합성 24) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Fmoc의 제조(폴리 24mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 23)에서 제조한 폴리펩타이드(폴리 23mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
Thr(tBu)-Fmoc 19.7g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)Fmoc의 제조(폴리 24mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Fmoc을 얻었다.
합성 25) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc의 제조(폴리 25mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 24)에서 제조한 폴리펩타이드(폴리 24mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)을 얻었다.
단계 (2): Phe-Fmoc(F)의 활성화
Phe-Fmoc 19.2g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Phe-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc의 제조(폴리 25mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Fmoc을 얻었다.
합성 26) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc의 제조(폴리 26mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 25)에서 제조한 폴리펩타이드(폴리 25mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe을 얻었다.
단계 (2): Thr(tBu)-Fmoc(T)의 활성화
Thr(tBu)-Fmoc 19.7g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Thr(tBu)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc의 제조(폴리 26mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Fmoc을 얻었다.
합성 27) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc의 제조(폴리 27mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 26)에서 제조한 폴리펩타이드(폴리 26mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)을 얻었다.
단계 (2): Gly-Fmoc(G)의 활성화
Gly-Fmoc 14.7g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Gly-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc의 제조(폴리 27mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Fmoc 을 얻었다.
합성 28) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Fmoc의 제조(고리화 폴리 28mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 27)에서 제조한 폴리펩타이드(폴리 27mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly을 얻었다.
단계 (2): Gln(Trt)-Fmoc(Q)의 활성화
Gln(Trt)-Fmoc 30.3g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Gln(Trt)-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Fmoc의 제조(폴리 28mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Fmoc을 얻었다.
합성 29) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-Fmoc의 제조(폴리 29mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 28)에서 제조한 폴리펩타이드(폴리 28mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)을 얻었다.
단계 (2): Aib-Fmoc 의 활성화
Aib-Fmoc 16.1g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적 화합물인 Aib-Fmoc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Aib-Fmoc의 제조(폴리 29mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적 화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-Fmoc을 얻었다.
합성 30) Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe- Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc의 제조(폴리 30mer 합성)
단계 (1): Fmoc 탈보호 제조
상기 합성 29)에서 제조한 폴리펩타이드(폴리 29mer 합성)로 합성 1)의 단계 (1)과 동일한 방법으로 진행하여 목적 화합물인 Fmoc 탈보호화된 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib을 얻었다.
단계 (2): His(Trt)-Boc(H)의 활성화
His(Trt)-Boc 30.7g으로 합성 1)의 단계 (2)와 동일한 방법으로 진행하여 목적화합물인 His(Trt)-Boc을 활성화 시켰다.
단계 (3): Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)- Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly- Gln(Trt)-Aib-His(Trt)-Boc의 제조(폴리 30mer 합성)
합성 1)의 단계 (3)과 동일한 방법으로 진행하여 목적화합물인 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-Lys(Alloc)-Ala-Arg(Pbf)-Lys(Boc)-Glu(OAll)-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib- His(Trt)-Boc을 얻었다.
비교예 3: 고리화 폴리펩타이드의 제조
단계 (1): 부분 탈보호 제조 (Alloc/OAll)
용기에 테트라키스팔라듐 11.5g과 디클로로메탄 800㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 N-메틸아닐린 78.6㎖와 페닐실란 38.5㎖을 투입하고 5분 동안 교반시켰다. 상기 합성 30)에서 제조한 폴리펩타이드(폴리 30mer 합성)에 디클로로메탄 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 만들어 놓은 반응액을 여과된 수지에 투입하고 실온에서 5시간 동안 교반한 후 여과하였다. 여과된 수지에 디클로로메탄 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 5회 실시하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 2회 실시하였다.
단계 (2): 고리화 폴리펩타이드의 제조 (고리화 폴리 30mer 합성)
용기에 HATU 56.6g과 디메틸포름아미드 480㎖을 투입하고 교반하여 완전히 용해시켰다. 상기 용해시킨 반응액에 N,N-디이소프로필에틸아민 51.8㎖을 투입하고 상온에서 5분 동안 교반하였다. 상기 단계 (1)에서 제조한 폴리펩타이드(부분 탈보호 30mer)에 만들어 놓은 반응액을 투입하고 상온에서 3시간 동안 교반한 후 여과하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 여과된 수지에 메탄올 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 여과된 수지에 디메틸포름아미드 480㎖을 투입하고 2분 동안 교반한 후 여과하였다. 이 과정을 총 3회 실시하였다. 상기 과정을 거쳐 목적화합물인 고리화 폴리펩타이드 Resin-Cys(Trt)-Thr(tBu)-Asn(Trt)-Met-Leu-Trp(Boc)-Gln(Trt)-Val-Phe-Glu(OtBu)-cyclo-[Lys-Ala-Arg(Pbf)-Lys(Boc)-Glu]-Asp(OtBu)-Leu-Tyr(tBu)-Lys(Boc)-Ser(tBu)-Tyr(tBu)-Asp(OtBu)-Ser(tBu)-Thr(tBu)-Phe-Thr(tBu)-Gly-Gln(Trt)-Aib-His(Trt)-Boc을 얻었다.
비교예 4: NH 2-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo- [Lys-Ala-Arg-Lys-Glu]-Asp-Leu-Tyr-Lys-Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib-His-H·TFA 의 제조 (보호기 및 레진 절단)
실시예 4와 동일하게 제조하였으며 목적 화합물인 NH 2-Cys-Thr-Asn-Met-Leu-Trp-Gln-Val-Phe-Glu-cyclo-[Lys-Ala-Arg-Lys-Glu]-Asp-Leu-Tyr-Lys-Ser-Tyr-Asp-Ser-Thr-Phe-Thr-Gly-Gln-Aib-His-H·TFA을 얻었다.
Figure PCTKR2020002084-appb-img-000006
[규칙 제91조에 의한 정정 12.03.2020] 
표 2의 크로마토그램에서 박스 표시는 주생성물의 피크, 화살표는 최대 단일 유연물질의 피크 위치를 나타내며, 파란 원은 비교예의 최대 단일 유연물질에 대응하는 피크가 나타나는 크로마토그램 영역을 가리킨다. 각 피크의 상대 머무름 시간(relative retention time, RRT)은 다음과 같다.
주생성물: 1.03~1.21
실시예의 최대 단일 유연물질: 0.86
비교예의 최대 단일 유연물질: 1.12
Figure PCTKR2020002084-appb-img-000008
[규칙 제91조에 의한 정정 12.03.2020] 
표 1과 표 2에 정리한 결과를 통하여 알 수 있듯이 본 발명에 따른 실시예는 선형 합성 후 고리화를 하는 종래 기술의 비교예와 비교하여 수율(약 7.5배 향상)이 훨씬 향상된 결과를 보여주었다. 또한 최대 단일 유연물질 기준으로 비교할 때 공정의 유연물질의 비중이 절반 수준으로 감소한 것을 확인할 수 있었고(표 1의 최대 단일 유연물질 비과 미정제 순도 참조), 최대 단일 유연물질의 종류도 비교예의 최대 단일 유연물질은 RRT가 1.12였는데, 실시예의 유연물질은 RRT 0.86으로 크로마토그램에서 주생성물 피크(도 1에서 박스 표시)와 더 많이 떨어지고 분리하기 쉬운 물질로 바뀌었다. 분리가 상대적으로 어려운, 비교예의 최대 단일 유연물질 피크가 검출되는 주생성물 주변(RRT 1.03~1.21)의 불순물들의 양도 실시예에서 현저하게 줄어듦으로써(도 1에서 원형 표시) 최종 정제 공정이 간단해지고 최종 정제 공정의 손실률도 약 2.2배로 크게 개선되는 효과를 얻었다(표 1의 미정제 순도와 정제 후 최종 수율 참조).

Claims (17)

  1. 하기 화학식 1의 펩타이드 중간체 화합물:
    [화학식 1]
    Figure PCTKR2020002084-appb-img-000009
    : R-Cyclo(-Glu-Lys-Arg-Ala-Lys)-Glu-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Cys-X.
    여기서, R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
    X는 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되며;
    상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
  2. 제1항에 있어서,
    상기 R은 H, 직쇄형 또는 분지형의 C 1-12알킬옥시, C 6-12아릴옥시, 및 C 1-6알킬C 6-12아릴옥시로 이루어진 군으로부터 선택되는 것인 펩타이드 중간체 화합물.
  3. 제2항에 있어서,
    상기 R은 tert-부틸옥시 또는 9-플루오레닐메틸옥시인 펩타이드 중간체 화합물.
  4. 제1항에 있어서,
    상기 R이 H이고, X가 H인 펩타이드 중간체 화합물.
  5. 하기 화학식 3의 레진 복합체 화합물:
    [화학식 3]
    Figure PCTKR2020002084-appb-img-000010
    여기서, A 내지 D는 보호기이며;
    A 내지 D는 각각 독립적으로 트리페닐메틸(Trt), 터셔리부틸(tBu), t-부틸옥시카보닐(Boc) 및 2,2,4,6,7-펜타메틸디하이드로벤조퓨란-5-설포닐(Pbf)로 이루어진 군으로부터 선택되고,
    R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
    X'은 레진이며;
    상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
  6. 제5항에 있어서,
    상기 레진은 폴리스티렌 (PS) 계열 레진 또는 폴리스티렌-폴리에틸렌 글리콜 공중합체 (PS-PEG copolymer) 계열의 레진인 레진 복합체 화합물.
  7. 제6항에 있어서,
    상기 레진은 링크 아미드 레진인 복합체 화합물.
  8. (1) 극성 비양성자성 용매 중에서 레진을 팽윤시키는 단계;
    (2) 반응기 내 탈보호화된 레진에 활성화된 보호화된 아미노산을 가하여 커플링하는 단계;
    (3) 펩타이드가 형성될 때까지 단계 (2)를 반복하는 단계;
    (4) 합성된 펩타이드를 용매 하에서 테트라키스팔라듐, N-메틸아닐린 및 페닐실란과 반응시켜 부분 탈보호화된 레진을 제조하는 단계; 및
    (5) 극성 비양성자성 용매 중에 합성된 펩타이드와 커플링 시약을 가하여 고리화하는 단계
    를 포함하는, 하기 화학식 3의 레진 복합체 화합물의 제조 방법:
    [화학식 3]
    Figure PCTKR2020002084-appb-img-000011
    여기서, A 내지 D는 보호기이며;
    A 내지 D는 각각 독립적으로 트리페닐메틸(Trt), 터셔리부틸(tBu), t-부틸옥시카보닐(Boc) 및 2,2,4,6,7-펜타메틸디하이드로벤조퓨란-5-설포닐(Pbf)로 이루어진 군으로부터 선택되고,
    R은 H, 직쇄형 또는 분지형의 C 1-12알킬, 직쇄형 또는 분지형의 C 1-12알킬옥시카보닐, 직쇄형 또는 분지형의 C 2-12알켄일, C 3-10사이클로알킬, 헤테로사이클로알킬, C 6-12아릴, C 6-12아릴옥시카보닐, C 1-6알킬C 6-12아릴, C 1-6알킬C 6-12아릴옥시카보닐 및 헤테로아릴로 이루어진 군으로부터 선택되고;
    X'은 레진이며;
    상기 언급된 치환체들은 추가적으로 H, 할로젠, 시아노, 직쇄형 또는 분지형의 C 1-6알킬, 직쇄형 또는 분지형의 C 2-10알켄일, C 3-10사이클로알킬, 할로C 1-5알킬, 하이드록시C 1-6알킬, 아미노, 모노 또는 디C 1-6알킬아미노, 옥소, 하이드록시, C 1-6알콕시, C 6-12아릴설포닐 및 C 1-6알킬설포닐로 이루어진 군에서 선택된 1종 이상의 동일하거나 상이한 치환기로 치환될 수 있다.
  9. 제8항에 있어서,
    상기 극성 비양성자성 용매는 디메틸포름아미드, 디메틸아세트아미드 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 레진 복합체 화합물의 제조방법.
  10. 제8항에 있어서,
    상기 단계 (6)에서 용매는 디클로로메탄, 클로로포름 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 레진 복합체 화합물의 제조방법.
  11. 제8항에 있어서,
    상기 단계 (7)에서 커플링 시약은 1-히드록시-1H-벤조트리아졸/1,3-디이소프로필카보디이미드 또는 HATU/N,N-디이소프로필에틸아민으로부터 선택되는 것을 특징으로 하는 레진 복합체 화합물의 제조방법.
  12. (1) 화학식 3의 레진복합체 화합물과 아미노산을 반응시켜 펩타이드-레진 복합체를 얻는 반응 단계; 및
    (2) 펩타이드-레진 복합체로부터 화학식2의 생리활성 폴리펩타이드를 절단하여 얻는 절단 단계를 포함하는, 하기 화학식 2의 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
    [화학식 2]
    Figure PCTKR2020002084-appb-img-000012
    : H-His-Aib-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Ser-Lys-Tyr-Leu-Asp- Cyclo(-Glu-Lys-Arg-Ala-Lys)-Glu-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Cys-NH 2
  13. 제12항에 있어서, 상기 반응 단계는 펩타이드-레진 복합체를 극성 비양성자성 용매 중에서 탈보호하는 단계를 포함하며,
    상기 극성 비양성자성 용매는 디메틸포름아미드, 디메틸아세트아미드 및 이들의 혼합물로 이루어진 군으로부터 선택하는 것을 특징으로 하는 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
  14. 제12항에 있어서,
    상기 절단 단계는 트리플루오로아세트산, 1종 이상의 스캐빈저 및 디클로로메탄의 용액을 포함하는 매질에서 이루어지는 것을 특징으로 하는 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
  15. 제14항에 있어서, 상기 스캐빈저가 트리이소프로필실란, 트리에틸실란, 페놀, 아니솔, 티오아니솔, 물, 에탄디티올, 1-도데칸티올, 디티오트레이톨 및 인돌로 이루어진 군으로부터 선택되는 것을 특징으로 하는 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
  16. 제12항 내지 제15항 중 어느 한 항에 있어서,
    상기 약학적으로 허용가능한 염은 트리플루오로아세트산염 또는 아세트산염인 것을 특징으로 하는 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
  17. 제12항에 있어서, 상기 화학식 3의 레진 복합체 화합물은 링크 아미드 레진의 복합체 화합물인 것을 특징으로 하는 생리활성 폴리펩타이드 또는 그 약학적으로 허용가능한 염의 제조 방법.
PCT/KR2020/002084 2019-02-15 2020-02-14 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법 WO2020167010A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20756094.7A EP3939990A4 (en) 2019-02-15 2020-02-14 NEW INTERMEDIATE USED FOR A BIOLOGICALLY ACTIVE POLYPEPTIDE AND METHOD FOR PREPARING IT
KR1020217025828A KR20210118857A (ko) 2019-02-15 2020-02-14 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
US17/430,864 US20220242913A1 (en) 2019-02-15 2020-02-14 Novel intermediate used for biologically active polypeptide and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0017766 2019-02-15
KR20190017766 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020167010A1 true WO2020167010A1 (ko) 2020-08-20

Family

ID=72043917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002084 WO2020167010A1 (ko) 2019-02-15 2020-02-14 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20220242913A1 (ko)
EP (1) EP3939990A4 (ko)
KR (1) KR20210118857A (ko)
WO (1) WO2020167010A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928058B2 (en) * 2006-02-22 2011-04-19 Merck Sharp & Dohme Corp. Pharmaceutical composition comprising oxyntomodulin derivatives and a method for reducing body weight using the composition
KR20140018462A (ko) * 2012-07-25 2014-02-13 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 고지혈증 치료용 조성물
KR20140058104A (ko) * 2012-11-06 2014-05-14 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 당뇨병 또는 비만성 당뇨병 치료용 조성물
KR20140058387A (ko) * 2012-11-06 2014-05-14 한미약품 주식회사 옥신토모듈린과 면역글로불린 단편을 포함하는 단백질 결합체의 액상 제제
KR20140113696A (ko) * 2011-12-23 2014-09-24 입센 메뉴팩츄링 아일랜드 리미티드 치료 펩티드의 합성 방법
KR20170080521A (ko) 2015-12-31 2017-07-10 한미약품 주식회사 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928058B2 (en) * 2006-02-22 2011-04-19 Merck Sharp & Dohme Corp. Pharmaceutical composition comprising oxyntomodulin derivatives and a method for reducing body weight using the composition
KR20140113696A (ko) * 2011-12-23 2014-09-24 입센 메뉴팩츄링 아일랜드 리미티드 치료 펩티드의 합성 방법
KR20140018462A (ko) * 2012-07-25 2014-02-13 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 고지혈증 치료용 조성물
KR20140058104A (ko) * 2012-11-06 2014-05-14 한미약품 주식회사 옥신토모듈린 유도체를 포함하는 당뇨병 또는 비만성 당뇨병 치료용 조성물
KR20140058387A (ko) * 2012-11-06 2014-05-14 한미약품 주식회사 옥신토모듈린과 면역글로불린 단편을 포함하는 단백질 결합체의 액상 제제
KR20170080521A (ko) 2015-12-31 2017-07-10 한미약품 주식회사 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3939990A4

Also Published As

Publication number Publication date
KR20210118857A (ko) 2021-10-01
US20220242913A1 (en) 2022-08-04
EP3939990A4 (en) 2023-05-24
EP3939990A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2010123290A2 (ko) 체내 지속성을 유지함으로 체내 반감기가 증가된 단백질 또는 펩티드 융합체, 및 이를 이용하여 체내 반감기를 증가시키는 방법
WO2018147641A1 (ko) 비펩티드성 중합체 링커 화합물, 그 링커 화합물을 포함하는 결합체, 및 이들의 제조방법
WO2020153774A1 (ko) 항체-페이로드 컨쥬게이트 제조용 화합물, 이의 용도
WO2020050667A1 (ko) 고형암을 위한 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
CN101790538A (zh) 胰高血糖素/glp-1受体共激动剂
CN101328210A (zh) Hiv肽,抗原,疫苗组合物,检测hiv所诱导的抗体的免疫测定试剂盒及方法
WO2017155288A1 (ko) 폴리에틸렌 글리콜 유도체 및 이의 용도
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
WO2022211537A1 (ko) 신규한 면역 활성 인터루킨 2 아날로그 결합체 및 이의 제조 방법
WO2022139493A1 (ko) TGF-β 신호전달을 억제할 수 있는 신규한 펩타이드 및 이의 용도
WO2020167010A1 (ko) 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
WO2021187928A1 (ko) 리포폴리사카라이드 제거용 조성물 및 키트
WO2023106845A1 (ko) 신규한 아디포넥틴 아날로그 및 결합체
WO2020017919A1 (ko) 생리활성 폴리펩타이드에 사용되는 신규한 중간체 및 이의 제조방법
WO2019172605A1 (ko) 선택적으로 기능화된 타이로신을 가지는 생체 물질의 제조방법, 선택적으로 기능화된 타이로신을 가지는 생체 물질 및 이를 유효성분으로 함유하는 약학적 조성물
WO2020242268A1 (ko) 비오틴 모이어티와 결합된 생리활성 물질 및 이를 포함하는 경구 투여용 조성물
WO2021194228A1 (ko) 암의 예방 또는 치료용 약학적 조성물
WO2022216129A1 (ko) 글루카곤 유도체를 포함하는 만성 신장 질환 예방 또는 치료용 약학 조성물
WO2023101490A1 (ko) 가니렐릭스의 신규한 제조방법
WO2021133033A1 (ko) 용액공정상 pna 올리고머의 제조방법
WO2021235913A1 (ko) Glp-2의 지속형 결합체의 액상 제제
WO2024136573A1 (ko) 신규한 glp-1, gip, 및 글루카곤 수용체 모두에 활성을 갖는 삼중 활성체 및 이를 포함하는 비만의 예방 또는 치료용 약학적 조성물
WO2023090935A1 (ko) 뉴클레오린에 특이적으로 결합하는 agm 펩타이드를 제조하는 방법
WO2015156645A1 (ko) 호모세린계 화합물의 처리 공정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217025828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020756094

Country of ref document: EP

Effective date: 20210915