WO2014148713A1 - 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법 - Google Patents

단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법 Download PDF

Info

Publication number
WO2014148713A1
WO2014148713A1 PCT/KR2013/009120 KR2013009120W WO2014148713A1 WO 2014148713 A1 WO2014148713 A1 WO 2014148713A1 KR 2013009120 W KR2013009120 W KR 2013009120W WO 2014148713 A1 WO2014148713 A1 WO 2014148713A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polymer
functional group
core
particles
Prior art date
Application number
PCT/KR2013/009120
Other languages
English (en)
French (fr)
Inventor
백현종
송재광
안성수
이채연
정종화
압둘 카디르모하메드
이태헌
Original Assignee
부산대학교 산학협력단
한국화학연구원
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단, 한국화학연구원, 가천대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to US14/778,906 priority Critical patent/US9757342B2/en
Publication of WO2014148713A1 publication Critical patent/WO2014148713A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4816Wall or shell material
    • A61K9/4825Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0204Specific forms not provided for by any of groups A61K8/0208 - A61K8/14
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/75Fibrinogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5428Polymers characterized by specific structures/properties characterized by the charge amphoteric or zwitterionic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Definitions

  • the present invention provides a method for preparing a protein cage, a protein cage prepared by the above method, an in-situ method for preparing polymer-protein particles having a hydrophobic additive, and a core-shell structure prepared by the above method. Polymer-protein particles and their use.
  • Drug Delivery System is a high value-added key technology that has the potential for success while generating economic benefits comparable to new drug development. Its purpose is to improve the quality of patient care by efficiently administering drugs.
  • the solubilization technology of poorly soluble drugs which belongs to the drug absorption promotion technology, which is one of the core technologies of the drug delivery system, is considered to be the most rational way to reduce the development cost of new drug substance and at the same time increase the added value of the drugs on the market.
  • Nanocapsule technology is a technology that releases a desired component at a desired rate in a sponsored place encapsulated in a nano-sized capsule.
  • Capsule technology has been studied for a long time, but technology development is slow due to the limitation of capsule material and the size of capsule.
  • the nanocapsule technology can be applied to various fields such as precision, medicine, cosmetics, and electronics depending on the development process of the capsule material and the types of materials encapsulated therein.
  • nanocapsules have the potential to be used in a variety of applications such as anticancer target therapy, drug delivery, percutaneous absorption of cosmetics, and imaging, but the process of making nanocapsules is complicated and forms capsules. There was a disadvantage that a separate mold was required for.
  • Affinity chromatography is a protein separation method that utilizes affinity between proteins and ligands by immobilizing ligands (chemicals, amines, amino acids, peptides, proteins) having specific interactions with the protein to be separated.
  • ligands chemicals, amines, amino acids, peptides, proteins
  • IMAC immobilized-metal affinity chromatography
  • the metal ions such as Ni 2+ and Co 2+ have been reported to have high affinity specific for histidine-tag, and Ni-NTA is a representative example of such a resin.
  • Nitrilotriacetic acid (NTA) is a metal chelator that forms complexes with metal ions. Ni-NTA forms coordination bonds with histidine imidazoling.
  • the present inventors focused on affinity chromatography used for protein purification while studying nanoencapsulation methods, and prepared polymer nanoparticles directly coated with proteins without a separate template. At this time, it was confirmed that the protein cage can be prepared by removing some or all of the polymer from the protein-coated polymer nanoparticles. In addition, the present invention was completed by confirming that the protein-coated polymer nanoparticles were formed by the one-pot encapsulation method and that the hydrophobic additive could be supported therein.
  • the protein cage according to the present invention is less restrictive of the hydrophobic polymer forming the core, and can form a protein coating shell through the coupling between the first functional group and the second functional group, thereby introducing various coating proteins.
  • an amphiphilic polymer-protein hybrid is formed through the coupling between the first functional group and the second functional group, and the hybrid forms self-assembly in the hydrophilic solvent to form core-shell structured particles.
  • various additives such as pharmacologically active substances, cosmetics, and contrast agents can be loaded into the protein cage formed by removing part or all of the hydrophobic polymer of the core part from the core-shell structured particles. It can be utilized as a protein element in a wide variety of fields such as care.
  • the manufacturing process is very simple and simple, and can easily control the size of the core-shell particles, it can be introduced and manufactured effectively in various fields.
  • the protein cage is prepared according to the present invention, a well-defined structure can be synthesized by a simple process, and there are few restrictions in the selection and introduction of the protein.
  • Figure 1 is a hybrid formation of the polymer and protein through the binding of the functional groups X and Y specifically binding to each other (a), self-assembly of the polymer-protein hybrid (b) and various according to one embodiment of the present invention
  • Figure (c) schematically shows the formation of a polymer-protein hybrid by binding.
  • Figure 2 is a schematic diagram of a protein cage that can be prepared according to one embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an artificial vaccine that can be prepared according to one embodiment of the present invention.
  • Figure 4a shows the synthesis mechanism of the polymer bonded to the Ni-NTA terminal according to Preparation Example 1.
  • Figure 4b is a schematic diagram illustrating the coordination bond between the polymer containing Ni-NTA at the end and the protein tagged with histidine according to one embodiment of the present invention.
  • Figure 4c schematically shows the formation of protein-coated polymer nanoparticles supported on Nile Red according to an embodiment of the present invention.
  • Figure 5 shows the TEM analysis results (A, B) and DLS data (C) of the protein coated polymer nanoparticles prepared in Example 1.
  • Figure 6 shows the results of TEM analysis (top) and DLS data (bottom) of the protein-coated polymer nanoparticles prepared in Example 2.
  • Figure 7 is a diagram showing the size and shape of the polymer-protein particles prepared in Example 3.
  • Example 8 is a diagram showing the size and shape of the polymer-protein (enzyme) particles prepared in Example 4 by DLS data and TEM images.
  • Figure 10 shows the results of fluorescence microscopy observation according to the cell experiment of the protein-coated polymer nanoparticles prepared in Example 5.
  • Figure 11 schematically shows a protein cage synthesis process according to one embodiment of the invention.
  • FIG. 13 shows a TEM photograph and a schematic diagram after adding THF to the crosslinked structure as shown in FIG. 12.
  • FIG. 14 shows a TEM photograph and a schematic diagram after adding an excessive imidazole when the inner polymer is melted as shown in FIG. 13 according to Example 7.
  • FIG. 14 shows a TEM photograph and a schematic diagram after adding an excessive imidazole when the inner polymer is melted as shown in FIG. 13 according to Example 7.
  • FIG. 15 is a diagram showing the size and shape of polymer-protein particles prepared from Ni-NTA-PS and His6-GFP in a water-DMF solution (4% by volume of DMF) according to Example 8.
  • A is the result of DLS and TEM after removing DMF by dialysis (24 hours)
  • B is DLS and TEM after removal of DMF by dialysis (24 hours) and addition of excess imidazole solution (250 mM). The results are shown.
  • FIG. 16 is a view showing high resolution TEM images A to C and a fluorescence optical microscope image D according to Example 8.
  • FIG. (A) and (B) is an image of the outer layer of the polymer-protein particles
  • (C) is an image showing the particles after controlling the inner polymer after the addition of 250 mM imidazole solution.
  • the protein layer outside the particle can be clearly identified.
  • the arrow in (B) indicates the outer polymer layer. Images were taken from other experiments performed under the same experimental conditions.
  • 17 is a view showing the size change of the particles according to the concentration of the polymer used in the polymer-protein particle manufacturing method of the core-shell structure according to the present invention. The experiment was performed at pH 8.0.
  • FIG. 18 is a view showing a change in the size of the particles produced according to the pH change in the method of producing a polymer-protein particles of the core-shell structure according to the present invention.
  • 19 is a diagram showing the overlap of the diameter change of the particle according to the amount of Ni-NTA-PS (Mn ⁇ 4,900) dissolved in 0.1 ml DMF measured by DLS and TEM.
  • FIG. 20 is a diagram showing the size and shape of core-shellpolystyrene-GFP particles formed by covalent bonding of NHS functional groups and histidine tags prepared in Example 10.
  • the left side shows dynamic light scattering (DLS).
  • grains is a figure which shows the shape of the particle
  • FIG. 21 is a diagram showing the size and shape of core-shellpolystyrene-RFP particles formed by covalent bonding of NHS functional groups and histidine tags prepared in Example 10.
  • the left side shows dynamic light scattering (DLS).
  • grains is a figure which shows the shape of the particle
  • FIG. 22 is a diagram showing the size and shape of core-shellpolystyrene-YFP particles formed by covalent bonding of a NHS functional group and a histidine tag prepared in Example 10.
  • the left side shows dynamic light scattering (DLS).
  • grains is a figure which shows the shape of the particle
  • FIG. 23 is a diagram showing the size and shape of core-shellpolystyrene-fibrinogen particles formed by covalent bonding of NHS functional groups and histidine tags prepared in Example 10.
  • the left side shows dynamic light scattering (DLS).
  • grains is a figure which shows the shape of the particle
  • FIG. 24 is a diagram illustrating a method of synthesizing polystyrene (tri-NTA-PS, 8 ′) to which tri-NTA is bound to the terminal by atom transfer radical polymerization (ATRP).
  • tri-NTA-PS, 8 ′ polystyrene
  • ATRP atom transfer radical polymerization
  • Fig. 25 shows the (A) 1 H NMR and (B) 13 C NMR spectra of the p-tri-NTA initiator (6 ').
  • Fig. 26 shows the results of (A) gel permeation chromatography and (B) MALDI-TOF mass spectrometry for the p-tri-NTA initiator (6 ').
  • FIG. 30 shows DLS data and TEM images of spherical particles self-assembled from tri-NTA-PS in water / THF.
  • FIG. 31 shows from Ni complexes tri-NTA-PS (Ni-tri-NTA-PS) and His6-GFP via NTA-Ni / His interaction in water / DMF (DMF 4 vol%) according to Example 13. DLS data and TEM images of self-assembled polymer-protein core-shell hybrid particles.
  • the first aspect of the present invention comprises the steps of preparing an amphiphilic polymer comprising a hydrophobic first polymer and a hydrophilic first functional group; Preparing a hydrophilic protein having a second functional group that binds to the first functional group; Amphiphilic polymer-protein hybrids are formed through the coupling between the first functional group and the second functional group, and particles of the core-shell structure including the protein shell and the amphiphilic polymer core are formed by self-assembly of the amphiphilic polymer in a hydrophilic solvent. Forming a third step; And a fourth step of removing some or all of the hydrophobic polymers in the core portion from the core-shell structured particles.
  • the second aspect of the present invention provides a protein cage prepared by the method of the first aspect.
  • a third aspect of the present invention is a method for producing in-situ of core-shell structured polymer-protein particles carrying a hydrophobic additive, comprising: an amphiphilic polymer and a hydrophobic additive comprising at least one hydrophobic first polymer and a hydrophilic first functional group Preparing a first solution in an organic solvent; Preparing a second solution including a hydrophilic protein having one second functional group which binds to the first functional group while maintaining a tertiary structure in a hydrophilic solvent including water; And a third step of mixing the first solution with the second solution to form an amphiphilic polymer-protein hybrid through the coupling between the first functional group and the second functional group in a hydrophilic solvent,
  • a manufacturing method characterized by forming particles of a core-shell structure comprising a protein shell holding a tertiary structure and a core containing an amphiphilic polymer and a hydrophobic additive.
  • a fourth aspect of the present invention is prepared by the method of the first aspect, wherein the individual proteins forming the shell provide core-shell structured polymer-protein particles carrying hydrophobic additives while maintaining tertiary structure.
  • a fifth aspect of the invention provides a protein cage as described in the second aspect; And a drug encapsulated therein, inserted between proteins, or bound to a surface thereof.
  • a sixth aspect of the invention provides a protein cage as described in the second aspect; And it provides a cosmetic composition comprising a cosmetic contained therein, inserted between the protein or bonded to the surface.
  • a seventh aspect of the invention provides an imaging composition comprising the protein cage described in the second aspect and a contrast agent enclosed therein, inserted between proteins or bound to a surface.
  • An eighth aspect of the present invention provides an artificial vaccine comprising the protein cage according to the second aspect, wherein some or all of the proteins forming the protein cage are antigenic proteins.
  • a ninth aspect of the present invention provides a biosensor comprising the protein cage according to the second aspect, wherein the protein comprises two or more proteins.
  • a “protein cage” refers to a combination of two or more protein molecules to form the outer surface of a specific structure, and can be used interchangeably with a protein shell.
  • protein cage refers to the protein shell in the core-shell structured polymer-protein particles carrying not only the protein cage prepared according to the first aspect of the present invention, but also the hydrophobic additive prepared in the third aspect. It can also be applied.
  • Proteins have unique amino acid sequences and this order is called the primary structure, which determines the structure and function of the protein. Through the interaction of amino acids, the protein chain forms a characteristic secondary structure, and in some cases, a tertiary structure, which is determined by the angle of the peptide bonds connecting the amino acids to each other. It is created by hydrogen bonding between the nitrogen atom of an amino acid and the oxygen atom of another amino acid, which in general forms a helical secondary structure, which is formed by bending and folding protein chains. Although there is a difference, it forms a globular protein ( ⁇ ⁇ ). The tertiary structure is determined by the side chains of amino acids.
  • a disulfide bridge is a covalent bond made up of two cysteines, amino acids containing sulfur (-S-). The disulfide bridge thus formed (-S-S-) stabilizes the ring structure of the protein chain.
  • the present invention relates to a hydrophobic polymer-hydrophilic protein hybrid by self-assembly, in order to artificially manufacture a protein cage, and to prepare one-pot in-situ of core-shell structured polymer-protein particles carrying a hydrophobic additive.
  • Core-shell structure fabrication principle was utilized. It has been found that some or all of the polymer can be removed from the hydrophobic polymer-hydrophilic protein hybrid core-shell structure, wherein the proteins constituting the shell maintain the shape of the shell.
  • the protein-coated polymer nanoparticles were formed by the one-pot encapsulation method and the hydrophobic additive could be supported on the hydrophobic polymer.
  • the present invention can form a protein shell in a core-shell structure through linkage and self-assembly with a hydrophobic polymer while maintaining the tertiary structure in a hydrophilic solvent (eg, an environment suitable for physiological conditions). It has been found that hydrophobic additives can be simultaneously trapped in the core portion. The present invention is based on this.
  • the method for producing in-situ of polymer-protein particles having a core-shell structure carrying a hydrophobic additive includes an amphiphilic polymer comprising at least one hydrophobic first polymer and a hydrophilic first functional group; Preparing a first solution including a hydrophobic additive in an organic solvent; Preparing a second solution including a hydrophilic protein having one second functional group which binds to the first functional group while maintaining a tertiary structure in a hydrophilic solvent including water; And a third step of mixing the first solution with the second solution.
  • the hydrophobic first polymer has a hydrophilic first functional group to form an amphiphilic polymer
  • the hydrophilic protein has a second functional group which binds to the first functional group, and binds the first functional group and the second functional group.
  • the hydrophobic first polymer is linked to the hydrophilic protein to form an amphiphilic polymer-protein hybrid (FIG. 1A).
  • the first functional group must be hydrophilic to induce the hydrophobic first polymer to an interface of a hydrophilic solvent having a hydrophilic protein. It is possible to easily bind to the second functional group of the hydrophilic protein in the hydrophilic solvent.
  • the present invention forms an amphiphilic polymer-protein hybrid through the bond between the first functional group and the second functional group in a hydrophilic solvent, and at the same time, the amphiphilic polymer having a hydrophobic first polymer portion to be aggregated in a hydrophilic solvent
  • the self-assembly is characterized by forming core-shell structured particles comprising a protein shell and a core containing a hydrophobic first polymer (FIG. 1B). At this time, the protein can maintain its own tertiary structure and still exhibit the activity of the protein itself.
  • an amphiphilic polymer including a hydrophobic first polymer and a hydrophilic first functional group may include one or more hydrophilic first functional groups, but a hydrophilic protein may include one second functional group. desirable. This is because only one second functional group is linked to a specific portion of the protein to control the orientation of the hydrophilic protein in the protein cage or protein shell as desired.
  • the second functional group is disposed at a portion which is not a protein active portion, and is preferably three-dimensionally spaced apart from the active portion so as not to be spatially disturbed. It is good to be connected.
  • the second functional group may be connected to the N terminal or the C terminal.
  • the protein constituting the protein cage or protein shell may be one kind, but two or more kinds of proteins may be used together according to the purpose.
  • the present invention can provide various biomedical fields such as drug, therapeutic or diagnostic drug delivery, as well as nanocatalysts for catalysts.
  • the shape or size of the particles of the core-shell structure is determined by the type / composition ratio, molecular weight or concentration of the hydrophobic polymer, the type / composition ratio of the protein, the molecular weight or concentration, the mixing ratio of the hydrophobic polymer and the protein or the mixing rate of the hydrophobic polymer and the protein.
  • Table 1 By adjusting (Table 1). For example, as the ratio of the polymer and the protein is changed, the rate of formation of the particles by the self-assembly and the rate of bond formation between the polymer and the protein is changed to determine the size of the polymer-protein particles of the core-shell structure.
  • each protein is provided with a second functional group that binds to the first functional group for each molecule to bind to each other competitively. Therefore, the composition ratio of the proteins constituting the protein shell can be adjusted by adjusting the mixing ratio of two or more kinds of proteins.
  • Core-shell structured polymer-protein particles formed according to the production method of the present invention may have a size of 20 nm to 5 ⁇ m average diameter.
  • the particles may be prepared in spherical shape, elliptical shape or rod shape, but the shape thereof is not limited thereto.
  • the protein cage is manufactured according to the present invention, a well-defined structure can be synthesized by a simple process, and the use of the protein cage is small due to the small restrictions in the selection and introduction of the protein.
  • the protein cage according to the present invention can be carried out at the same time to form a protein-coated particles and a hydrophobic additive support in one-pot, so that the process is very simple and simple to effectively apply it in various fields such as carriers such as drugs or cosmetics Can be introduced.
  • a substance to be supported in the protein cage and the type of the polymer used there is little restriction so that a substance can be selected and used in a wide range.
  • the first functional group, the second functional group, or both may be linked directly or via a linker to each of the polymer and protein.
  • Non-limiting examples of the bond between the first functional group and the second functional group include coordinate bonds, covalent bonds, metallic bonds, hydrogen bonds, and ionic bonds. , Antigen-antibody binding and ligand-receptor binding, and the like (FIG. 1C). Specific binding is preferable for the bond between the first functional group and the second functional group.
  • a polymer in which an immobilized-metal affinity ligand (IMAL) is bound to an end thereof is an example of a hydrophilic protein having a second functional group that binds to the first functional group.
  • IMAL is a ligand containing a transition metal such as Ni 2+, Co 2+, Zn 2+ , preferably comprises Ni 2+.
  • Preferred examples include nitrilotriacetic acid (Ni-NTA), iminodiacetic acid (Ni-IDA), tris (carboxymethyl) ethylene diamine (Ni-TED), and the like.
  • the IMAL-affinity tag may be a histidine tag having imidazoling that is affinity with metal ions in the side chain. Coordination bonds between histidine tags and Ni-NTA may form polymer-protein hybrids (FIG. 4B).
  • a histidine bound polymer and an IMAL bound protein can be used as an IMAL-affinity tag.
  • first functional group and the second functional group capable of binding to each other include covalent bonding with NHS (N-hydroxysuccinimidyl 2-bromo-2-methylpropionate) and ligand receptor binding between biotin and avidin.
  • the NHS functional group may form a covalent bond with the primary amine. Therefore, the polymer including NHS can form covalent bonds through amino acid residues such as arginine, lysine, asparagine, or glutamine, including primary amine groups in the side chain.
  • a protein modified to have an NHS functional group may form a covalent bond with a polymer including a primary amine group.
  • Ligand receptor binding between biotin and avidin may be formed between a protein modified with biotin and a protein including avidin or vice versa.
  • the avidin since the avidin has a plurality of biotin binding sites, the biotinylated polymer and the protein may bind to avidin.
  • the avidin includes, without limitation, avidin, streptavidin, deglycosylated avidin (NeutrAvidin).
  • the first polymer In order to form core-shell structured particles such as micelles by self-assembly in a hydrophilic solvent, the first polymer needs to be hydrophobic enough to aggregate in the hydrophilic solvent, and the protein is uniformly dispersed or dissolved in the hydrophilic solvent. As long as the hydrophilicity is sufficient, the type of the first polymer and the protein is not limited in the present invention as long as the first polymer and the protein have a first functional group and a second functional group, respectively.
  • the first polymer is a biocompatible and / or biodegradable polymer
  • the polymer is polyglycolide (PGA), polylactide (PLA), polymethylmethacrylate (PMMA), polystyrene (polystyrene), poly (meth) acrylate (poly (metha) acrylate (PMA)), polycaprolactone (polycapropactone (PCL)) and derivatives thereof may be selected.
  • PGA polyglycolide
  • PMMA polymethylmethacrylate
  • polystyrene polystyrene
  • poly (meth) acrylate poly (metha) acrylate (PMA)
  • PCL polycaprolactone
  • PCL polycapropactone
  • the monomer forming the polymer is styrene (styrene), acrylate (acrylate), lactide (lactide), hydroxybutyric acid (hydroxybutyric acid).
  • the protein includes not only a simple protein consisting of amino acids, but also a complex protein including a non-amino acid complement molecule group. Carbohydrates, lipids, nucleic acids, metals, pigments, and some nonprotein molecules and ions belong to the prosthetic molecule group.
  • the protein is a structural protein (eg, collagen, keratin, etc.), a biologically active protein (enzyme, hormone, substance transport protein, immunoglobulin, etc.), a portion of the protein (eg, enzyme active site, binding site, functional site, etc.) Various motifs).
  • proteins, peptides, motifs, fusion proteins, peptido derivatives, proteins modified with PEG, synthetic proteins, natural proteins and the like also belong to the protein category of the present invention. Even if they have hydrophobic residues in the protein, they belong to the hydrophilic protein category of the present invention as long as the protein surface is hydrophilic and can be uniformly dispersed in a hydrophilic solvent.
  • the hydrophilic protein is preferably hydrophilic while maintaining tertiary structure or three-dimensional conformation in a hydrophilic solvent.
  • Non-limiting examples of the protein include human growth hormone, granulocyte colonystimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoietin, vaccine, antibody, insulin, glucagon, calcitonin, Adrenocorticotropic hormone (ACTH), somatostatin, somatotropin, somatomedin, parathyroid hormone, thyroid hormone, hypothalamic secretion, prolactin, endorphin, vascular endothelial growth factor, enkephalin, vasopressin, nerve growth factor, non-naturally occuring opioid, interferon, asparaginase, alginase alginase, superoxide dismutase, trypsin, chymotrypsin, pepsin, and the like.
  • G-CSF granulocyte colonystimulating factor
  • GM-CSF granulocyte-macrophage colony-sti
  • Hydrophilic solvents are not limited as long as the amphiphilic polymer-protein hybrid can form core-shell structures through self-assembly.
  • Non-limiting examples of hydrophilic solvents include water or mixed solvents thereof.
  • the protein forming the shell is a solvent capable of maintaining the tertiary structure of the protein, such as protein activity, so as to form the protein shell in a state capable of exerting inherent functions of the protein. Solvents in the pH range and / or temperature range corresponding to conditions are more preferred, and pH buffers (eg, phosphate buffers) are even more preferred.
  • the organic solvent is not limited as long as it can dissolve or disperse an amphiphilic polymer including a hydrophobic first polymer and a first functional group.
  • Non-limiting examples of the organic solvent include C1 ⁇ C6 alcohol, acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF).
  • the organic solvent may be collected in the core together with the hydrophobic polymer when forming the core-shell particles.
  • the hydrophobic additive dissolved or dispersed in the organic solvent, it may be collected in the core together with the organic solvent.
  • a first solution comprising an amphiphilic polymer comprising a hydrophobic first polymer and a hydrophilic first functional group in an organic solvent in a method of producing core-shell structured polymer-protein particles. It is characterized by further containing a hydrophobic additive to be supported on the core portion.
  • the manufacturing method according to the third aspect of the present invention can be produced in one-pot in-situ of the polymer-protein hybrid nanostructure by self-assembly in a hydrophilic solution, the type, molecular weight or concentration, protein of the hydrophobic polymer
  • the mixing ratio of the hydrophobic polymer and protein or the mixing rate of the hydrophobic polymer and protein can be adjusted the shape and / or size of the particles formed. Therefore, it is another feature that the polymer-protein particles of the core-shell structure carrying the hydrophobic additive prepared by the in-situ preparation method according to the present invention can also be adjusted in form and / or size.
  • hydrophobic additive Even if it is hydrophilic by itself, if the surface is modified to be hydrophobic, it can be used as the hydrophobic additive.
  • the hydrophobic additive may be a drug, and the particles carrying the drug as a hydrophobic additive may be used as a drug carrier.
  • Conventional hydrophobic drugs have been difficult to administer because of poor solubility.
  • the present invention can solve this problem by supporting the hydrophobic drug in particles having a surface coated with a hydrophilic protein.
  • the preparation method of the present invention is prepared by dissolving a hydrophobic drug in an organic solvent together with a polymer and performing a single step of mixing the solution with a solution in which a protein is dissolved in a hydrophilic solvent. It is possible to provide a drug carrier in the form of polymer-protein particles of.
  • Non-limiting examples of such drugs include paclitaxel, methotrexate, doxorubicin, 5-fluorouracil, mitomycin-C, styrene maleic acid neocarcinostatin, cisplatin, carboplatin, chamustine, dacarbazine, etoposide, or Anticancer agents such as daunomycin; Antiviral agents; Steroidal anti-inflammatory agents; Antibiotic; Antifungal agents; vitamin; Prostacyclin; Antimetabolic agents; Motive agent; Adrenaline antagonists; Anticonvulsants; Anti-anxiety agents; Thermostatic agent; Antidepressants; anesthetic; painkiller; Anabolic steroids; Immunosuppressants or immune promoters.
  • Anticancer agents such as daunomycin; Antiviral agents; Steroidal anti-inflammatory agents; Antibiotic; Antifungal agents; vitamin; Prostacyclin; Antimetabolic agents; Motive agent; Adrenaline antagonists; Anticonvuls
  • the hydrophobic additive may be a cosmetic.
  • Cosmetic is defined as a substance used in the human body to clean and beautify the human body to add charm and brighten the appearance, or to maintain or promote the health of the skin and hair.
  • Non-limiting examples of cosmetics include emollients, preservatives, perfumes, anti acne, antifungals, antioxidants, deodorants, antiperspirants, antidandruffs, depigmentants, anti seborrheic agents, dyes, suntan lotions, UV light absorbers, enzymes, Aromatic substances; and the like.
  • the hydrophobic additive may be a contrast agent.
  • the "contrast agent” is a substance that provides a clear image for early diagnosis and treatment of diseases occurring in areas that cannot be identified during simple imaging, a contrast agent for magnetic resonance imaging (MRI), and computed tomography (CT). Contrast agent, positron emission tomography (PET) contrast agent, ultrasound contrast agent, fluorescent contrast agent and the like can be used.
  • Non-limiting examples of contrast agents include transition metal ions, including gadolinium (Gd), manganese (Mn), copper (Cu) and chromium (Cr), gadopentate dimeglumine (Gd-DTPA), gadoterate meglu Hydrophobic complexes of the transition metal ions including min (Gd-DOTA), perfluorocarbons, fluorine-containing compounds including perfluoropropane, iron oxides, manganeses, coppers and chromiums Contrast agent for magnetic resonance imaging (MRI), which is a paramagnetic or superparamagnetic material such as nanoparticles and a compound in which the surface of the nanoparticles is modified with a hydrophobic material; Contrast agents for computed tomography (CT) such as nanoparticles composed of iodide hydrophobic substances derived from iodide poppy seed oil and metal elements including bismuth (Bi), gold (Au) and silver (Ag); 99m Tc, 123 I,
  • FIG. 4A shows a schematic diagram illustrating a synthesis mechanism of a polymer in which Ni-NTA is bonded to a terminal (manufacturing).
  • Example 1 shows a schematic diagram illustrating a synthesis mechanism of a polymer in which Ni-NTA is bonded to a terminal (manufacturing).
  • Example 1 shows a schematic diagram illustrating a synthesis mechanism of a polymer in which Ni-NTA is bonded to a terminal (manufacturing).
  • FIG. 4C an amphiphilic polymer-protein hybrid is formed through the coupling between the first functional group and the second functional group, and the hybridization in the hydrophilic solvent forms particles of the core-shell structure in which the hybrid is supported by a hydrophobic additive. An example of the process is shown.
  • Ni-NTA-polymer is synthesized through ATRP living polymerization, which is dissolved in a PBS buffer containing a histidine-tagged protein.
  • Ni-NTA-polymer and hydrophobic material nile red
  • DMF dimethyl methacrylate
  • hydrophobic material nile red
  • nile red staining agent
  • the polymer when preparing the polymer-protein particles having a core-shell structure, may further include a second hydrophobic polymer that does not include a first functional group.
  • the first solution used to prepare the polymer-protein particles of the core-shell structure according to the present invention may further include a second polymer that does not include the first functional group.
  • the second hydrophobic polymer may be located in the core portion of the core-shell structured particle together with the first hydrophobic polymer, and the size of the particles may be adjusted, while the second hydrophobic polymer is an amphiphilic polymer-protein. It is not or less bound to the hybrid and can later be easily removed from the core-shell structured particles.
  • the second hydrophobic polymer may be the same or different from the first hydrophobic polymer.
  • the second hydrophobic polymer may further include a second polymer that does not include a first functional group that binds to the protein and includes only a hydrophobic portion of the first polymer.
  • the manufacturing method according to the present invention may further comprise the step of forming a bond between the proteins forming the shell by adding a crosslinking agent to the particles of the core-shell structure formed in the third step.
  • cross-linking agent When the cross-linking agent is further included, cross-linking between the proteins may occur, and thus the core-shell particles may be more stable, thereby facilitating encapsulation by the protein shell.
  • a crosslinking agent glutaraldehyde, NHS ester, EDC, maleimide, pyridyl disulfide, hydrazide, alkoxy amines and the like can be used.
  • a fourth aspect of the invention is characterized in that it further comprises a fourth step of removing some or all of the hydrophobic polymer of the core portion from the core-shell structured particles to produce a protein cage.
  • Removal of some or all of the hydrophobic polymer in the core portion from the particles of the core-shell structure may include (i) introducing a competitor compound of the bond between the first functional group and the second functional group, or (ii) a polymer in an amphiphilic polymer-protein hybrid. By introducing a compound that hydrolyzes the site.
  • FIG. 11 is a diagram illustrating the preparation of a protein cage according to one embodiment of the present invention.
  • a polymer having a Ni-NTA bound at the end thereof is dissolved in DMF.
  • the inner polymer is melted out of the particles by crosslinking the protein on the surface of the formed particles and then dissolving it in an organic solvent. At this time, a difference between the case of dissociating the bond between the Ni-NTA and the histidine tag and the case of not dissociating will appear.
  • the excess added imidazole binds to IMAL competitively with the IMAL-affinity tagged protein to replace the binding of the polymer and protein in the core-shell particles. Only polymers can be eluted.
  • the bond can be easily dissociated by adding an excessive amount of a material that can competitively replace the bond. Therefore, preferably, the protein cage can be finally synthesized by crosslinking the protein shell and then separating and removing the inner polymer using the competition reagent.
  • the polymer and protein are covalently linked in the amphiphilic polymer-protein hybrid, it is possible to dissolve the polymer occupying the core of the particle by using a reagent, a solvent or a solution containing the same to decompose the polymer.
  • Protein cages that can be prepared in accordance with the present invention may preferably have a diameter of 20 nm to 5 ⁇ m, but are not limited thereto.
  • the protein cage according to the present invention may be spherical, oval or rod-shaped.
  • the protein cage / protein shell prepared by the method of the first or third aspect of the present invention may serve as a nanostructure of a functional protein such as specific binding capacity, catalytic capacity, and the like.
  • a functional protein such as specific binding capacity, catalytic capacity, and the like.
  • protein nanostructures having various functions can be provided according to the selection of cage constituting proteins (FIG. 2), and further, carriers, sensors, catalysts of active ingredients (physiologically active drugs, etc.) depending on the function of the supported material. It can provide a protein nanostructure that can be utilized for a variety of uses, such as (Fig. 3).
  • the protein cage according to the present invention may carry a hydrophobic additive such as a poorly soluble drug.
  • the hydrophobic additive may be added to the third step to be included in the core part during self-assembly, or injected into the protein cage formed in the fourth step. It is possible in a way.
  • injecting the additive into the protein cage prepared according to the first aspect not only hydrophobicity, but also hydrophilic additives are possible.
  • Cage building proteins may be single or multiple proteins, thus providing a cage of single or multiple functional proteins.
  • Non-limiting examples of cage building proteins include Sensor / Reporter protein (eg, sensory protein; Green fluorescent protein), enzymes (eg, Lipase, Esterase, Horse radish peroxidase), bio-targeting proteins, vaccine proteins (Eg, antigens, Hemagglutinin), skin functional / permeable peptides and derivatives thereof.
  • Sensor / Reporter protein eg, sensory protein; Green fluorescent protein
  • enzymes eg, Lipase, Esterase, Horse radish peroxidase
  • bio-targeting proteins eg, antigens, Hemagglutinin
  • vaccine proteins Eg, antigens, Hemagglutinin
  • the protein cage according to the present invention by appropriately selecting the cage constituent protein, vaccine (fast response, side effects reduction), biological target cell-directed contrast agent, functional substances (drugs, skin functional substances) beyond Virus-Like Particle (VLP) , Protein carriers for healthcare compounds), and target-oriented protein carriers (for multiprotein cages) of functional proteins.
  • vaccine fast response, side effects reduction
  • biological target cell-directed contrast agent biological target cell-directed contrast agent
  • functional substances drug, skin functional substances
  • VLP Virus-Like Particle
  • Protein carriers for healthcare compounds Protein carriers for healthcare compounds
  • target-oriented protein carriers for multiprotein cages
  • the protein cage prepared by the method of the first or third aspect comprises a drug carrier comprising a drug enclosed therein, inserted between proteins or bound to a surface;
  • a cosmetic composition comprising a cosmetic contained therein, inserted between proteins or bound to a surface;
  • an imaging composition comprising a contrast agent enclosed therein, inserted between proteins, or bound to a surface.
  • the protein constituting the protein cage / protein shell may itself be a targetable protein or a combination of other targetable antigens, antibodies, ligands or receptors, in which case the drug contained therein may be targeted to the desired site. Can be.
  • the proteins constituting the protein cage / protein shell may be proteins that are themselves targetable, or may be targeted to other antigens, antibodies, ligands, or the like to specifically migrate to the tissue to be imaged. It is preferred that the receptor is bound.
  • the protein constituting the protein cage / protein shell in order to effectively deliver the cosmetic into the skin may be a protein itself having a skin permeability, or may be a skin permeable peptide or a compound combined.
  • the protein cage prepared by the method of the first or third aspect can be used as an artificial vaccine when some or all of the protein is an antigenic protein. Since the protein cage according to the invention is much larger in size than the individual proteins, it has a good immunity as a vaccine. In addition, the vaccine production period can be shortened, rapid preventive vaccine development is possible, particle size can be adjusted, and the possibility of inducing immune side effects can be lowered.
  • FIG. 3 An example of an artificial vaccine that can be prepared according to the invention is shown schematically in FIG. 3.
  • the preparation of the self-assembled protein cage according to the present invention using HA / NA antigen protein as the influenza surface protein can provide a high efficiency influenza vaccine.
  • the protein cage prepared by the method of the first or third aspect may be an enzyme, an antigen, an antibody, a ligand that acts on a substance to be detected to cause a physicochemical change or a physicochemical change is caused by a substance to be detected.
  • it may be prepared to include a protein such as a receptor can be used as a biosensor. 2 or more types of proteins may be used as the said protein as needed.
  • the protein cage according to the present invention may provide a sensor in which a protein for detection such as enzyme is immobilized on a spherical support.
  • the internal signal augmentation effect can be exhibited by carrying a relatively high concentration in the cage by carrying a coenzyme or a substance additionally required for the reaction inside the cage.
  • a glucose enzyme sensor is based on the phenomenon in which glucose oxidase consumes oxygen and generates hydrogen peroxide when converting glucose into glutamic acid. Therefore, it operates in such a way as to measure an increase in the amount of charge, a change in pH or a decrease in the amount of oxygen caused by the hydrogen peroxide secondary oxidation.
  • the reaction that consumes oxygen and generates hydrogen peroxide as a by-product is typical of various oxidases such as galactose in addition to glucose (eg, galactose oxidase, lactate oxidase, cholesterol oxidase, etc.).
  • the protein cage prepared as described above can immobilize dozens or thousands or more of enzyme particles to one particle, and thus can exhibit local signal amplification effect, so that even a small amount of sample can be effectively detected. .
  • a protein cage containing a heterologous protein As an example of utilizing a protein cage containing a heterologous protein as a sensor, it can be prepared and used to further include a peroxidase enzyme using hydrogen peroxide generated therein in addition to the oxidase. Since peroxidase converts the substrate compound into a colored product, the activity of the oxidase can be measured by measuring this color change. At this time, the substrate compound of the peroxidase can be enclosed inside the protein cage for efficient detection.
  • the biosensor may further comprise a detector.
  • the detector can be used without limitation, electrochemical signal detector, optical detector, pH detector, gas detector and the like known in the art.
  • the product 5 (0.1 mg, 1.5 ⁇ 10 ⁇ 5 mmol) prepared in Preparation Example 1 was dissolved in 0.2 ml of DMF at room temperature using a syringe pump (syringe pump) at a rate of 0.02 ml / h at His6-GFP ( 0.41 mg, 1.4 ⁇ 10 ⁇ 5 mmol) was added dropwise to 5 ml of phosphate buffer (10 mM, pH 7.5). After 10 hours of infusion, the reaction mixture was stirred for 1 day.
  • a TEM sample was prepared by dipping a carbon-coated copper grid in a solution containing the protein coated polymer nanoparticles prepared in Example 1. The excess solution was stamped out with filter paper and the grid was dried at room temperature for 6 hours. The sample was not stained.
  • the protein-coated polymer nanoparticles prepared in Example 1 were subjected to DLS experiments using a laser operating at 660 nm and an optimized direct fabricated setup. DLS samples were prepared by diluting each sample 10 or 20 times with water-DMF (DMF 4 vol.%, PH 7.4). The sample was mounted in a spherical glass cuvette prior to measurement. All measurements were performed at 25 ° C. and 90 °. Each measurement was combined in 5 replicates and the single measurement time was 1 minute. The size of the obtained hybrid particles is represented by number distribution.
  • Figure 5 shows the TEM analysis results (A, B) and DLS data (C) to confirm the formation of the protein-coated polymer nanoparticles according to Example 1.
  • A Uniform nanoparticles were formed as shown in the TEM image.
  • B Magnified and uniform particles were formed inside and outside of the particle, and the contrast between the inside and outside of the particle was I could see something else.
  • DLS data (C) showed that particles of uniform size exist with a narrow distribution.
  • the stability of polymer-protein hybrid aggregates is an important factor for potential applications in the biological field.
  • the solution containing the polymer-protein hybrid colloid was continuously stirred and measured DLS at uniform time intervals up to one month. Was performed. DLS and TEM studies showed that the aggregates were stable up to 15 days after which the aggregates degraded without phase separation (sedimentation).
  • Example 1 the size of the aggregates produced by changing according to the amount of the polymer dissolved in the organic solvent was confirmed.
  • Ni-NTA-PS Mn ⁇ 21,800, 1.2 ⁇ 10 ⁇ 5 mmol
  • the polymer solution contained His6-GFP (27 kDa, 261 mg, 9.8 ⁇ 10 ⁇ 6 mmol)
  • Aggregate was prepared by slowly adding to 5 mL deionized water at a rate of 0.02 mL / h. The shape and size of the prepared aggregates were measured and shown in FIG. 7. Under the reaction conditions, spherical aggregates having a size of 80 to 140 nm were formed, and DLS data and representative TEM images are shown in FIGS. 7A and B, respectively.
  • FIG. 7C shows a colloidal solution of polymer-protein particles prepared by adding His6-GFP aqueous solution (pH 7.4) (1) and Ni-NTA-PS dissolved in DMF before adding Ni-NTA-PS dissolved in DMF (2). This is a digital picture. The polymer-protein hybrid colloidal solution became less transparent compared to His6-GFP solution due to the formation of aggregates (FIG. 7C).
  • Ni-NTA-PS itself forms large, ill-defined, amorphous aggregates, while using a DMF using a syringe pump.
  • Ni-NTA-PS nickel complexed NTA dissolved in the solution was slowly added to a terminally modified polystyrene (Ni-NTA-PS) solution in an aqueous solution containing His6-GFP (pH 7.4), the specific interaction between the protein and the polymer caused It was confirmed that aggregates were formed.
  • Enzyme-coated polymer nanoparticles were prepared in a similar manner as described in Example 1.
  • polystyrene (Ni-NTA-PS, Mn-21,800, 0.0625 mg, 3.0 ⁇ 10 ⁇ 6 mmol) in which NTAs complexed with nickel by continuous dilution in 0.05 mL DMF was modified at the end was prepared.
  • the polymer solution was 1.25 ml dealized with His-tagged enzyme (His6-Lip21H, 37 kDa, 77.5 mg, 2.1 ⁇ 10 -6 mmol) with stirring at a glass vial at room temperature using a syringe pump. To the ionized water was added slowly at a rate of 0.02 mL / h.
  • FIG. 8 DLS and TEM analysis of the prepared polymer coated nanoparticles are shown in FIG. 8.
  • FIG. 8 are results for particles prepared using His6-Lip21H (37 kDa) and His6-Lip83H (27 kDa) as histidine-tagged enzymes, respectively.
  • His6-Lip21H FIG. 2A; 37 kDa
  • His6-Lip83H FIG. 2B
  • Figure 9 shows the result of measuring the emission spectrum (emission spectrum), in the case of Nile red was confirmed because it has a characteristic that the wavelength band is moved to a short wavelength when it is supported (Fig. 9b).
  • the removal of unsupported nile red through the filter showed that the peaks of the long wavelength band disappeared, and the GFP was shown to maintain its fluorescence during the process (FIG. 9a), indicating that the nile red was present even after the filter. It could be confirmed by a microscope.
  • Example 5 In order to confirm whether the particles prepared in Example 5 can enter the inside of the cells were observed under a fluorescence microscope. As shown in FIG. 10, it was confirmed that both GFP indicating intracellular green fluorescence and Nile red indicating red fluorescence existed.
  • 0.1 ml of 2.5% aqueous glutaraldehyde solution was injected into the solution prepared according to Example 1 using a syringe pump at room temperature for 30 minutes. After 30 minutes, the reaction was stopped using sodiumborohydride.
  • FIG. 12 shows the results of TEM analysis (top) and DLS data (bottom right) after addition of a crosslinking agent (glutaraldehyde) to a solution in which polymer-protein particles having a core-shell structure are formed.
  • a crosslinking agent (glutaraldehyde)
  • the crosslinking of the proteins occurs, and the particles become more stable.
  • the reactants and the buffer ions are purified through a centrifugal filter to obtain a clean solution in which only particles are present in the water.
  • FIG. 13 shows a TEM photograph and a schematic diagram after adding THF to the crosslinked structure as shown in FIG. 12 (9), so that the polystyrene aggregated inside the crosslinked structure melts out of the particles by the addition of THF. At this time, the polymer bound to the protein still remains inside the structure.
  • Figure 14 shows the TEM photograph and schematic diagram after adding the excess imidazole when melting the inner polymer as shown in Figure 13 (10), when the excess imidazole is added between the polymer and the protein The dissociation of the bonds resulted in all remaining polymers dissolved in the protein-coated shells.
  • DMF a suitable solvent for Ni-NTA-PS
  • the organic solvent DMF may be present in the core of the spherical aggregates and may also be present outside of the aggregates in the system.
  • the presence of DMF in the core can cause the polystyrene to swell.
  • a dynamically trapped aggregate polystyrene core is lower than its glass transition temperature
  • the spherical aggregate is formed and then the system is dialyzed by dialysis. DMF was removed from the.
  • the protein-coated polymer particles were prepared, but the size of the particles was produced while changing the ratio of the polymer amount to the amount of the used protein.
  • Example 2 To prepare a protein-coated polymer particles similar to the method described in Example 1 was prepared while changing the pH of the solution within the range of 6.5 to 8.5, and confirmed the size of the resulting particles.
  • Example 1 Performed by the same experimental method described in Example 1 but using the Ni-NTA-PS having a molecular weight of 4 900 Ni-NTA-PS instead of Ni-NTA-PS having a molecular weight of 21 800 to prepare aggregates with His6-GFP, and the form and DEM and TEM images The size was analyzed and shown in FIG. 19 and Table 1.
  • FIG. 19 and Table 1 discloses the size of the particles prepared while reducing the amount of the polymer and protein used.
  • the size of the formed particles is formed when the molecular weight of the used polymer is reduced to 4,900, considering that the size of the particles prepared using the same polymer having a high molecular weight is about 100 nm.
  • the particle size was found to increase noticeably to 280 to 350 nm.
  • a prepared by stepwise dilution from a higher concentration.
  • b mean diameter obtained from number distribution DLS measurements.
  • Oxygen was removed from the reaction solution containing styrene (6.51 mL, 56.8 mmol) and anisole (3.5 mL) by three freeze-pump-thaw cycles. Then in the reaction vessel CuBr (54.3 mg, 0.379 mmol), bpy (118 mg, 0.757 mmol) and N-hydroxysuccinimidyl 2-bromo-2-methylpropionate (N-hydroxysuccinimidyl 2-bromo-2 -methylpropionate (100 mg, 0.379 mmol) was added and the pump-N 2 substitution was repeated three times. The reaction solution was reacted at 110 ° C. for 10 hours.
  • the reaction solution was diluted with THF and the Cu catalyst was removed using a neutral alumina column.
  • the solution without the Cu catalyst was added dropwise to excess methanol to precipitate and purify polystyrene with NHS functional groups (Mn: 12,000, PDI: 1.12).
  • Example 10.1 By removing the polymer core from the GFP-coated polymer nanoparticles by the covalent bond prepared in Example 10.1.
  • a solution of polystyrene (0.26 mg, 2.2 ⁇ 10 -5 mmol) with NHS functionality in 0.4 ml of DMF was fibrinogen (2.0 mg, 1.5 ⁇ 10) at a rate of 0.04 ml / h using a syringe pump at room temperature. -5 mmol) was added dropwise to the dissolved PBS buffer (10 mL, 50 mM, pH 8.0) to prepare a construct. The shape and size of the prepared structure were measured by DLS and TEM, and are shown in FIG. 23.
  • Biotin (0.5 g, 2.0 mmol) and carbonyldiimidazole (carbon4diimidazole; 0.64 g, 4.0 mmol) were dissolved in DMF (20 mL) and reacted at room temperature for 6 hours.
  • 2- (2-aminoethoxy) ethanol (0.63 mL, 6.0 mmol) was further added to the reaction solution, followed by stirring for 18 hours.
  • the construct was prepared by dropwise addition of PBS buffer (10 mL, 50 mM, pH 8.0) in which a dean (0.79 mg, 1.5 ⁇ 10 ⁇ 5 mmol) was dissolved.
  • Ni-NTA-PS (0.1 mg, 1.5 ⁇ 10 ⁇ 5 mmol) according to Preparation Example 1 was dissolved in 0.2 ml of DMF at room temperature using a syringe pump at a rate of 0.02 ml / h using His6-GFP ( 0.2 mg, 0.7 ⁇ 10 ⁇ 5 mmol) and His6-lipase (0.3 mg, 0.7 ⁇ 10 ⁇ 5 mmol) were added dropwise into PBS buffer (5 mL, 50 mM, pH 7.4). After 10 hours of infusion, the reaction mixture was stirred for 1 day.
  • PBS buffer 5 mL, 50 mM, pH 7.4
  • a polystyrene polymer having three nickel complexed NTAs bonded to its ends was prepared.
  • the manufacturing method of the polymer is shown in FIG.
  • p-tri atom transfer radical polymerization
  • p-tri atom transfer radical polymerization
  • p-tri atom transfer radical polymerization
  • -NTA initiator, 6 ' was prepared.
  • H-Lys (Z) -OtBu.HCl was converted to 1 'by introducing two or more tert-butyl acetate groups on the ⁇ -nitrogen atom.
  • Selective removal of the protecting group from 1 ' provided a first generation NTA dendron comprising one amino group (2') or three carboxyl groups (3 ').
  • Compound 4 ' fully protected by the coupling of 2' and 3 ', was obtained, from which dendrimer 5' was modified with tert-butyl by modification of the amine group by catalytic hydrogenation.
  • an ATRP initiator 6' comprising tert-butyl protected NTA moiety and activated alkyl bromide at the end.
  • Tert-butyl protected NTA-based amidated initiators were designed to enhance solubility and block side reactions (eg, proton addition reactions of ATRP ligands). It confirmed the structure of the synthetic initiator (6 ') by 1 H NMR and 13 C NMR (FIG. 25). The peak at ⁇ 1.4 ppm in 1 H NMR and the peak at ⁇ 28 ppm in 13 C NMR may be designated as tert-butyl protons.
  • the molecular weight of 6 ′ was determined by gel permeation chromatography (GPC) and matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (FIG. 26).
  • the molecular weight of 6 'by GPC was 1650 g / mol, and the mass-to-charge ratio of the sodium added p-tri-NTA initiator by MALDI-TOF analysis was 1,672.772.
  • Styrene (1.0 mL) and anisole (1.0 mL) were placed in a shrink flask filled with nitrogen, repeated three freeze-pump-thaw cycles, and then CuCl (17.5 mg) and dNbpy (71.27 mg) were added to the flask. Put and freeze-pump-thaw two more times.
  • the flask was placed in an oil bath at 115 ° C. and then p-tri-NTA initiator 6 ′ (140 mg, 85.2 ⁇ 0 ⁇ 3 mmol) was added and stirred for 10 hours. At intervals of time, 0.1 ml aliquots of the reaction mixture were taken and diluted with THF for GPC analysis. Precipitation with methanol separated the protected tri-NTA bound polymer.
  • the obtained protected-tri-NTA-polystyrene (p-tri-NTA-PS) 7 ′ (100 mg, 15.63 ⁇ 10 ⁇ 3 mmol) was dissolved in 6.0 ml of CH 2 Cl 2 in a flask. Trifluoro acetic acid (TFA, 0.96 mL, 14.06 mmol) was added to the flask. After completion of the TFA addition, the reaction mixture was stirred for 24 hours at room temperature. Finally precipitated with methanol to obtain deprotected tri-NTA-polystyrene (tri-NTA-PS, 8 ').
  • TFA Trifluoro acetic acid
  • NTA moieties in the synthesized tri-NTA-bound polystyrene (7 ′) was confirmed by 1 H NMR (FIG. 28A) and 13 C NMR (FIG. 29A).
  • peaks at 1.45 (a, (CH 3 ) 3 ⁇ ) and 1.46 ppm (b, (CH 3 ) 3 ⁇ ) were designated tert-butyl protons, 2.8 (h, —CH 2 ⁇ ), 3.2 Peaks at (d, -CH-), 3.45 (c, -CH 2- ) and 4.43 (m, -CH-Cl) ppm were designated as NTA moieties. This confirms that 6 'was successfully used as an ATRP initiator.
  • Tri-NTA-PS, 8 ' Polystyrene (tri-NTA-PS, 8 ') in which tri-NTA was bound at the end was prepared by removing the tert-butyl group of 7' with TFA in CH 2 Cl 2 . 8, the structure was also confirmed by 1 H NMR (FIG. 28B) and 13 C NMR (FIG. 29B) of the.
  • NTA moieties were introduced at the ⁇ -chain end of the polystyrene to obtain an amphiphilic linear-dentritic block copolymer (8 ′). Therefore, the inventors have studied the self-assembly behavior of tri-NTA-PS (8 ') in aqueous solution. Self-assembled particles formed when water was slowly added to a tri-NTA-PS (8 ') solution dissolved in THF in a glass vial with vigorous stirring at room temperature. TEM and DLS measurements confirmed that the particles were spherical, uniform and had a diameter of ⁇ 40 to 60 nm (FIG. 30). These particles can provide hydrophilic NTA moieties to the surface, and therefore can be applied to a variety of applications.
  • tri-NTA-PS 8, 2 mg, Mn (GPC)-5,400
  • 1 ml of dry THF 1 ml
  • 2 ml of water was added slowly with vigorous stirring at room temperature.
  • the form was confirmed by TEM and DLS measurements while continuing to stir the reaction solution.
  • Nickel complexed tri-NTA-terminated polystyrene (Ni-tri-NTA-PS, Mn ⁇ 24,500, 0.25 mg, 1.02 ⁇ 10 ⁇ 5 mmol) was dissolved in 0.2 ml DMF. 0.02 ml / h in 5 ml deionized water containing His6-GFP (27 kDa, 207 g, 7.7 ⁇ 10 ⁇ 6 mmol) while stirring the polymer solution at room temperature (18 ° C.) in a glass vial using a syringe pump. Add slowly at rate.
  • tert-butyl protected NTA-based amidated initiators were prepared and characterized by 1 H NMR, 13 C NMR, GPC and MALDI-TOF mass spectrometry. The tert-butyl group was removed from the ⁇ -chain end of polystyrene to prepare polystyrene (tri-NTA-PS) in which deprotected tri-NTA was bonded to the end.
  • tri-NTA-PS itself self-assembles due to its amphipathy to form spherical particles with diameters of ⁇ 40 to 60 nm in water / THF, while nickel complexed tri-NTA-PS is His6-GFP and NTA- Ni / His interactions formed spherical core-shell hybrid particles of ⁇ 90 to 115 nm diameter in water / DMF.
  • tri-NTA-PS contains three NTA moieties and is therefore dendritic and more amphiphilic. This is because the polymer-protein hybrid particles or protein cage according to the present invention can be usefully used for similar applications, in particular, the production of various self-assembled forms of the polymer itself, encapsulation of hydrophobic additives such as nanoparticles, dyes, and targeted drug delivery. And can be utilized for protein purification.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명에 따른 단백질 케이지의 제조방법은 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자를 준비하는 제1단계; 상기 제1작용기에 결합하는 제2작용기를 구비한 친수성 단백질을 준비하는 제2단계; 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 양친성 고분자의 자가조립에 의해 단백질 쉘과양친성 고분자 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 제3단계; 및 상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하는 제4단계를 포함한다.

Description

단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 IN-SITU 제조방법
본 발명은 단백질 케이지의 제조방법, 상기 방법으로 제조된 단백질 케이지,소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법, 상기 제조방법에 의해 제조한 코어-쉘 구조의 고분자-단백질 입자 및 이의 용도에 관한 것이다.
약물전달시스템(Drug Delivery System; DDS)은 신약개발과 맞먹는 경제적 이익을 창출할 수 있으면서 성공 가능성이 높은 고부가가치 핵심기술로서, 약물투여를 효율적으로 하여 환자 치료의 질을 높이는 데 그 목적이 있다.약물전달시스템의 핵심기술 중 하나인 약물 흡수 촉진 기술에 속하는 난용성 약물의 가용화 기술은 신약 물질의 개발비용을 줄일 수 있는 동시에 현재 출시되어 있는 의약품의 부가가치를 높일 수 있는 가장 합리적인 방법으로 여겨지고 있다.
한편, 나노캡슐 기술은 목적하는 성분을 나노 크기의 캡슐에 봉입시킨 후원하는 장소에서 원하는 속도로 방출시키는 기술이다. 캡슐 기술은 오랫동안 연구됐지만 캡슐 소재의 한계 및 캡슐 크기의 제한 때문에 기술 개발이 더디다가 최근나노 기술과 접목된 나노 캡슐 개발을 통해 새롭게 각광받고 있다. 이러한 나노캡슐 기술은 캡슐 소재의 개발 공정과 내부에 봉입되는 물질의 종류에 따라 정밀, 의약, 화장품, 전자분야 등 다양한 분야로의 응용이 가능하다. 특히 의약, 화장품 등의 분야에서 나노 캡슐은 항암 표적치료, 약물 전달, 화장품의 경피 흡수, 화상 진찰 등에 이르게까지 다양하게 활용할 수 있는 잠재력을 가지고 있으나, 나노 캡슐을 만드는 과정이 복잡하고 캡슐을 형성하기 위한 별도의 주형이 필요하다는 단점이 있었다.
친화성 크로마토그래피는 분리하고자 하는 단백질과 특이적 상호작용을 가지는 리간드(ligands: chemicals, amine, amino acids, peptides, proteins)를 담체에 고정화시킴으로써 단백질과 리간드간의 친화성을 이용하는 단백질 분리방법이다. 생물시스템 내의 다양한 단백질로부터 목적 단백질의 특이성을 이용하는 선택적인 분리방법으로서 융합단백질 및 항체의 분리정제에 널리 이용되고 있다. 특히 IMAC(Immobilized-metal affinity chromatography, 고정상-금속 친화성 크로마토그래피)는 리간드와 Ni2+, Co2+, Zn2+ 등의 전이금속이 배위결합을 형성하고 있는 레진을 담체로 하여, 상기 금속에 친화성이 있는 단백질을 정제하는 방법으로, 상기 Ni2+, Co2+ 등의 금속 이온은 히스티딘-태그에 특이한 높은 친화성을 가지는 것으로 보고되어 있고, 이러한 레진의 대표적인 예로 Ni-NTA를 들 수 있다. 니트릴로트리아세트산(NTA)는 금속이온과 착화합물을 형성하는 메탈킬레이터로서, Ni-NTA는 히스티딘의 이미다졸링과 배위결합을 형성하게 된다.
본 발명자는 나노 캡슐화 방법을 연구하던 중, 단백질 정제에 이용되는 친화성 크로마토그래피에 착안하여, 별도의 주형 없이 직접적으로 단백질이 코팅되는 고분자 나노입자를 제조하였다. 이때, 상기 단백질 코팅 고분자 나노입자로부터 고분자를 일부 또는 전부 제거하여 단백질 케이지를 제조할 수 있음을 확인하였다. 또한, one-pot의 캡슐화 방법에 의하여 단백질이 코팅되는 고분자 나노입자 형성과 동시에 내부에 소수성 첨가제를 담지할 수 있음을 확인함으로써 본 발명을 완성하기에 이르렀다.
본 발명의 목적은 신규한 단백질 케이지; 이의 제조방법; 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법; 상기 방법으로 제조된 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자; 및 이를 이용한 약물전달체, 화장료 조성물, 영상화 조성물, 인공 백신 및 바이오센서를 제공하는 것이다.
본 발명에 따른 단백질 케이지는, 코어를 형성하는 소수성 고분자의 제약이 적고, 제1작용기와 제2작용기 간의 결합을 통해 단백질 코팅 쉘을 형성할 수 있어 다양한 코팅 단백질을 도입할 수 있다.
또한, 별도의 주형없이도 one-pot으로, 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 상기 하이브리드가 자가조립에 의해 코어-쉘 구조의 입자를 형성할 수 있으면서도, 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하여 형성된 단백질 케이지 내부에 약리활성물질, 화장료, 조영제 등 다양한 첨가제를 담지시킬 수 있으므로, 화장품, 의약품, 식품, 헬스케어 등 매우 다양한 분야에 단백질 소자로서 활용될 수 있다.
게다가, 제조공정이 매우 단순하고 간소하며, 쉽게 코어-쉘 입자의 크기를 제어할 수 있어, 다양한 분야에서 이를 효과적으로 도입하여 제조할 수 있다.
나아가, 본 발명에 따라 단백질 케이지를 제조할 경우, 단순한 공정으로 잘 규정된 구조를 합성할 수 있고,단백질의 선택 및 도입에 있어서 그 제약이 적어 다양하게 이용가능하다.
도 1은 본 발명의 일 구체예에 따라, 서로 특이적으로 결합하는 작용기인 X 및 Y의 결합을 통한 고분자 및 단백질의 하이브리드 형성 (a), 상기 고분자-단백질 하이브리드의 자가조립 (b) 및 다양한 결합에 의한 고분자-단백질 하이브리드의 형성 (c)을 개략적으로 나타낸 도이다.
도 2는 본 발명의 일구체예에 따라 제조될 수 있는 단백질 케이지의 모식도이다.
도 3은 본 발명의 일구체예에 따라 제조될 수 있는 인공 백신을 도시한 도이다.
도 4a는 제조예 1에 따라 Ni-NTA가 말단에 결합된 고분자의 합성 메커니즘을 나타낸 것이다.
도 4b는 본 발명의 일 구체예에 따라 말단에 Ni-NTA를 포함하는 고분자와 히스티딘으로 태그된 단백질 간의 배위결합을 개략적으로 나타낸 도이다.
도 4c는 본 발명의 일 구체예에 따라 나일 레드가 담지 된 단백질 코팅 고분자나노입자 형성을 도식으로 나타낸 것이다.
도5는 실시예 1에서 제조된 단백질 코팅 고분자나노입자의 TEM 분석결과(A, B)와 DLS 데이터(C)를 나타낸 것이다.
도6은 실시예 2에서 제조된 단백질 코팅 고분자 나노입자의 TEM 분석결과(위)와, DLS 데이터(아래)를 나타낸 것이다.
도 7은 실시예 3에서 제조된 고분자-단백질 입자의 크기 및 형태를 나타낸 도이다.
도 8은 실시예 4에서 제조된 고분자-단백질(효소) 입자의 크기 및 형태를 DLS 데이터 및 TEM 이미지로 나타낸 도이다.
도 9는 실시예 5에서 제조된 단백질 코팅 고분자나노입자의 발광 스펙트럼 측정 결과를 나타낸 것이다.
도 10은 실시예 5에서 제조된 단백질 코팅 고분자 나노입자의 세포실험에 따른 형광현미경 관찰 결과를 나타낸 것이다.
도 11은 본 발명의 일구체예에 따른 단백질 케이지 합성 공정을 도식적으로 나타낸 것이다.
도 12는 실시예 6에서 제조된 고분자 입자가 형성된 용액에 가교제(glutaraldehyde)를 첨가한 후의 TEM 분석결과(위)와, DLS 데이터(오른쪽 아래)를 나타낸 것이다.
도 13은 상기 도 12에서 확인한, 가교된 구조에 THF를 첨가한 후의 TEM 사진 및 모식도를 나타낸 것이다.
도 14는 실시예 7에 따라 상기 도 13에서와 같이 안 쪽의 고분자를 녹여낼 때, 과량의 이미다졸을 첨가한 후의 TEM사진 및 모식도를 나타낸 것이다.
도 15는 실시예 8에 따라 물-DMF 용액(DMF 4 부피%)에서 Ni-NTA-PS와 His6-GFP로부터 제조한 고분자-단백질 입자의 크기 및 형태를 나타낸 도이다. (A)는 투석(24시간)에 의해 DMF를 제거한 후의 DLS 및 TEM 결과이고, (B)는 투석(24시간)에 의해 DMF를 제거와 과량의 이미다졸 용액(250 mM) 첨가 후 DLS 및 TEM 결과를 나타낸 도이다.
도 16은 실시예 8에 따라 고해상도 TEM 이미지(A 내지 C)와 형광 광학현미경 이미지(D)를 나타낸 도이다. (A) 및 (B)는 고분자-단백질 입자의 외부층을, (C)는 250 mM이미다졸 용액 첨가 후 내부 고분자를 조절한 후 입자를 나타낸 이미지이다. (A)에서 입자 외부의 단백질 층을 명확히 확인할 수 있다. (B)에서 화살표는 외부 고분자 층을 나타낸다. 이미지는 같은 실험 조건하에서 수행한 다른 실험들로부터 채택하였다.
도 17은 본 발명에 따른 코어-쉘 구조의 고분자-단백질 입자 제조방법에 있어서 사용한 고분자 농도에 따른 입자의 크기변화를 나타낸 도이다. 상기 실험은 pH 8.0에서 수행하였다.
도 18은 본 발명에 따른 코어-쉘 구조의 고분자-단백질 입자 제조방법에 있어서 pH 변화에 따라 생성되는 입자의 크기 변화를 나타낸 도이다.
도 19는 DLS 및 TEM으로 측정한 0.1 ml DMF에 녹인 Ni-NTA-PS(Mn~4,900)의 사용량에 따른 입자의 직경 변화를 중첩시켜 나타낸 도이다.
도 20은 실시예 10에서 제조된, NHS 작용기와 히스티딘 태그의 공유결합에 의해 형성된 코어-쉘폴리스티렌-GFP입자의 크기 및 형태를 나타낸 도이다.좌측은 동적 광 산란(dynamic light scattering; DLS)으로 측정한 입자의 크기분포를, 우측은 TEM으로 관찰한 입자의 형태를 나타낸 도이다.
도 21은 실시예 10에서 제조된, NHS 작용기와 히스티딘 태그의 공유결합에 의해 형성된 코어-쉘폴리스티렌-RFP입자의 크기 및 형태를 나타낸 도이다.좌측은 동적 광 산란(dynamic light scattering; DLS)으로 측정한 입자의 크기분포를, 우측은 TEM으로 관찰한 입자의 형태를 나타낸 도이다.
도 22는 실시예 10에서 제조된, NHS 작용기와 히스티딘 태그의 공유결합에 의해 형성된 코어-쉘폴리스티렌-YFP입자의 크기 및 형태를 나타낸 도이다.좌측은 동적 광 산란(dynamic light scattering; DLS)으로 측정한 입자의 크기분포를, 우측은 TEM으로 관찰한 입자의 형태를 나타낸 도이다.
도 23은 실시예 10에서 제조된, NHS 작용기와 히스티딘 태그의 공유결합에 의해 형성된 코어-쉘폴리스티렌-피브리노겐입자의 크기 및 형태를 나타낸 도이다.좌측은 동적 광 산란(dynamic light scattering; DLS)으로 측정한 입자의 크기분포를, 우측은 TEM으로 관찰한 입자의 형태를 나타낸 도이다.
도 24는 ATRP(atom transfer radical polymerization)에 의한 tri-NTA가 말단에 결합된 폴리스티렌(tri-NTA-PS, 8')의 합성방법을 나타낸 도이다.
도 25는 p-tri-NTA 개시제(6')의 (A) 1H NMR 및 (B) 13C NMR 스펙트럼을 나타낸 도이다.
도 26은 p-tri-NTA 개시제(6')에 대한 (A) 겔 투과 크로마토그래피 및 (B) MALDI-TOF 질량분광 분석결과를 나타낸 도이다.
도 27은 p-tri-NTA 개시제(6')를 사용한 스티렌의 ATRP 결과를 나타낸 도이다. 시간에 따른 분자량(Mn)과 분산도(D; dispersity)를 tri-NTA-PS(7')에 대한 겔 투과 크로마토그래피와 함께 나타내었다. 초기 반응물의 농도비는 [스티렌]0:[개시제]0:[CuCl]0:[dNbpy]0=100:1:10:20이며, 용매로는 50 부피%의 아니솔을 사용하여 115℃에서 수행하였다.
도 28은 (A) p-tri-NTA-PS(Mn,GPC = 6,400 g/mol, D =1.15; 7') 및 (B) tri-NTA-PS(Mn, GPC = 5,400 g/mol, D = 1.17; 8')의 1H NMR(300 MHz) 스펙트럼을 나타낸 도이다.
도 29는 (A) p-tri-NTA-PS(Mn,GPC = 6,400 g/mol, D =1.15; 7') 및 (B) tri-NTA-PS(Mn, GPC = 5,400 g/mol, D = 1.17; 8')의 13C NMR(300 MHz) 스펙트럼을 나타낸 도이다.
도 30은 물/THF에서 tri-NTA-PS로부터 자가조립된 구형 입자의 DLS 데이터 및 TEM 이미지를 나타낸 도이다.
도 31은 실시예 13에 따라 물/DMF(DMF 4 vol%)에서 NTA-Ni/His 상호작용을 통해 니켈 착제화된 tri-NTA-PS(Ni-tri-NTA-PS)와 His6-GFP로부터 자가조립된 고분자-단백질 코어-쉘하이브리드 입자의 DLS 데이터 및 TEM 이미지를 나타낸 도이다.
본 발명의 제1양태는 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자를 준비하는 제1단계; 상기 제1작용기에 결합하는 제2작용기를 구비한 친수성 단백질을 준비하는 제2단계; 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 양친성 고분자의 자가조립에 의해 단백질 쉘과 양친성 고분자 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 제3단계; 및 상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하는 제4단계를 포함하는 단백질 케이지의 제조방법을 제공한다.
본 발명의 제2양태는 제1양태의 방법에 의해 제조된 단백질 케이지를 제공한다.
본 발명의 제3양태는 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법으로서, 소수성 제1고분자와 친수성 제1작용기를 하나 이상 포함하는 양친성 고분자 및 소수성 첨가제를 유기용매에 포함하는 제1용액을 준비하는 제1단계; 물을 포함하는 친수성 용매에 3차 구조를 유지하면서 상기 제1작용기에 결합하는 제2작용기를 하나 구비한 친수성 단백질을 포함하는 제2용액을 준비하는 제2단계; 및 상기 제2용액에 제1용액을 혼합하는 제3단계를 포함하여, 친수성 용매 내에서 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드를 형성하는 동시에 양친성 고분자의 자가조립에 의해, 3차 구조를 유지하는 단백질 쉘과 양친성 고분자 및 소수성 첨가제를 함유하는 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 것이 특징인 제조방법을 제공한다.
본 발명의 제4양태는 제1양태의 방법에 의해 제조되고, 쉘을 형성하는 개별 단백질은 3차 구조를 유지하면서, 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자를 제공한다.
본 발명의 제5양태는 제2양태에 기재된 단백질 케이지; 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 약물을 포함하는 약물전달체를 제공한다.
본 발명의 제6양태는 제2양태에 기재된 단백질 케이지; 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 화장료를 포함하는 화장료 조성물을 제공한다.
본 발명의 제7양태는 제2양태에 기재된 단백질 케이지 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 조영제를 포함하는 영상화 조성물을 제공한다.
본 발명의 제8양태는 제2양태에 기재된 단백질 케이지를 포함하는 인공 백신으로서, 상기 단백질 케이지를 형성하는 단백질 일부 또는 전부가 항원 단백질인 것인 인공 백신을 제공한다.
본 발명의 제9양태는 제2양태에 기재된 단백질 케이지를 포함하는 바이오센서로서, 상기 단백질은 2종 이상의 단백질을 포함하는 것인 바이오센서를 제공한다.
이하, 본 발명을 자세히 설명한다.
본 명세서에서 "단백질 케이지"는 2개 이상의 단백질 분자들이 모여 특정 구조물의 외부 표면을 형성하는 것으로, 단백질 쉘과 혼용되어 사용될 수 있다.
또한, "단백질 케이지"에 대한 설명은, 본 발명의 제1양태에 따라 제조된 단백질 케이지 뿐만 아니라, 제3양태에서 제조된 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자 중 단백질 쉘에 대해서도 적용될 수 있다.
단백질은 독특한 아미노산 서열을 가지며 이런 순서를 1차 구조라 하고 이것이 단백질의 구조와 기능을 결정한다. 아미노산의 상호작용을 통해 단백질 사슬은 특징적인 2차 구조를 이루며 어떤 경우는 3차 구조를 만들기도 한다.2차 구조는 아미노산을 서로 연결하는 펩티드 결합의 각도에 의해 결정되며, 이런 결합각도는 한 아미노산의 질소원자와 다른 아미노산의 산소원자 사이에서 수소결합에 의해 만들어지는데 일반적으로 이런 수소결합은 나선형의 2차 구조를 형성한다.3차 구조는 단백질 사슬이 구부러지고 접혀짐으로써 형성되며, 정도의 차이는 있지만 구형단백질(球形蛋白質)을 형성한다. 3차 구조는 아미노산의 곁사슬에 의해 결정된다. 곁사슬 중에는 너무 커서 단백질 사슬의 정상적인 2차 나선구조를 파괴하는 것이 있는데 이때는 꼬임이나 구부러짐이 생긴다. 또한 곁사슬이 서로 다른 전하(電荷)를 띠고 있으면 서로를 끌어당겨 이온결합을 형성하며 같은 전하를 띠고 있으면 서로 밀어낸다. 물에 녹지 않는 소수성(疏水性) 곁사슬은 단백질의 안쪽에 집합하고 물에 노출되는 바깥쪽 부분을 피하려 한다. 친수성(親水性) 곁사슬은 물분자와 쉽게 수소결합을 이루어 바깥쪽에 위치한다. 이황화물 다리는 공유결합의 일종으로 황(-S-)을 함유하는 아미노산인 2개의 시스테인 사이에 이루어진다. 이렇게 형성된 이황화물 다리(-S-S-)는 단백질 사슬의 고리모양구조를 안정화시킨다.
본 발명은 인공적으로 단백질 케이지를 제작하기 위해, 그리고, 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자를 one-pot in-situ 로 제조하기 위해, 자가조립에 의한 소수성 고분자-친수성 단백질 하이브리드 코어-쉘 구조체 제작 원리를 활용하였다. 소수성 고분자-친수성 단백질 하이브리드 코어-쉘 구조체로부터 고분자를 일부 또는 전부 제거할 수 있으며 이때 쉘을 구성하는 단백질이 쉘의 형태를 유지하는 것을 발견하였다. 또한 one-pot의 캡슐화방법에 의하여 단백질이 코팅되는 고분자 나노입자 형성과 동시에 소수성 고분자에 소수성 첨가제를 담지할 수 있음을 확인하였다. 나아가, 본 발명은 친수성 용매(예, 생리적 조건에 적절한 환경) 내에서 단백질이 3차 구조를 유지한 채 소수성 고분자와의 연결 및 자가조립을 통해 코어-쉘 구조 중 단백질 쉘을 형성할 수 있으면서, 소수성 첨가제를 동시에 코어 부분에 포집할 수 있다는 것을 발견하였다.본 발명은 이에 기초한 것이다.
본 발명의 제1양태에 따른 단백질 케이지의 제조방법은, 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자를 준비하는 제1단계; 상기 제1작용기에 결합하는 제2작용기를 구비한 친수성 단백질을 준비하는 제2단계; 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 양친성 고분자의 자가조립에 의해 단백질 쉘과 양친성 고분자 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 제3단계; 및 상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하는 제4단계를 포함한다.
또한, 본 발명의 제3양태에 따른 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법은, 소수성 제1고분자와 친수성 제1작용기를 하나 이상 포함하는 양친성 고분자 및 소수성 첨가제를 유기용매에 포함하는 제1용액을 준비하는 제1단계; 물을 포함하는 친수성 용매에 3차 구조를 유지하면서 상기 제1작용기에 결합하는 제2작용기를 하나 구비한 친수성 단백질을 포함하는 제2용액을 준비하는 제2단계; 및 상기 제2용액에 제1용액을 혼합하는 제3단계를 포함한다.
본 발명에서 소수성 제1고분자는 친수성 제1작용기를 구비하여 양친성 고분자를 형성하고, 친수성 단백질은 상기 제1작용기에 결합하는 제2작용기를 구비하며, 상기 제1작용기와 제2작용기의 결합을 통해 소수성 제1고분자가 친수성 단백질과 연결되어 양친성 고분자-단백질 하이브리드를 형성하는 것이 특징이다(도 1a).제1작용기는 친수성이어야, 소수성 제1고분자를 친수성 단백질이 있는 친수성 용매의 계면으로 유도할 수 있고, 친수성 용매내 친수성 단백질의 제2작용기와 용이하게 결합할 수 있게 한다.
또한, 본 발명은 친수성 용매 내에서 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드를 형성하는 동시에, 친수성 용매내에서 응집하고자 하는 소수성 제1고분자 부분을 보유한 양친성 고분자의 자가조립에 의해, 단백질 쉘과 소수성 제1고분자를 함유하는 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 것이 특징이다(도 1b). 이때, 상기 단백질은 고유의 3차 구조를 유지할 수 있으므로 여전히 단백질 자체의 활성을 나타낼 수 있다.
잘 규정된 코어쉘 구조를 합성하기 위해서는, 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자는 친수성 제1작용기를 하나 이상 포함할 수 있으나, 친수성 단백질은 제2작용기를 하나 구비하는 것이 바람직하다. 하나의 제2작용기가 단백질의 특정 부분에 한정되어 연결되어야 단백질 케이지 또는 단백질 쉘에서 친수성 단백질의 배향을 원하는 대로 조절할 수 있기 때문이다.
특히, 단백질 케이지 또는 단백질 쉘이 이를 구성하는 단백질의 고유 활성을 유지하기 위해서는 단백질 활성부위가 아닌 부분에, 바람직하게는 공간적으로 방해되지 않도록 상기 활성부위와 3차원적으로 이격된 부분에 제2작용기가 연결되는 것이 좋다. 예컨대, 활성부위가 말단에 없는 경우 N말단 또는 C말단에 제2작용기를 연결할 수 있다.
본 발명에 따른 제조방법을 이용하면, 동일 단백질뿐만 아니라, 상이한 단백질들도 코어-쉘 구조 중 단백질 쉘 부분 또는 단백질 케이지와 같은 하나의 구조체의 일정한 공간 내에 공존 및/또는 밀집시킬 수 있다. 따라서, 단백질 케이지 또는 단백질 쉘을 구성하는 단백질은 1종일 수 있으나, 목적에 따라 2종 이상의 단백질을 함께 사용할 수 있다.
본 발명에 따라 자가조립에 의한 고분자-단백질 하이브리드 나노구조체(self-assembled polymer-protein hybrid nanostructures)를 구축하면, 나노구조체에 생물기능성(biofunctionalities)을 내장(built-in)시킬 수 있고, 다양한 형태의 구조물(morphological architectures)을 형성할 수 있다. 특히, 고분자-단백질 하이브리드 나노구조체의 형성시 크기와 형태를 조절할 수 있기 때문에, 약물, 치료제 또는 진단제 전달과 같은 다양한 생물의학적 분야 뿐만아니라 촉매용 나노반응기로서 적용 방안을 제공할 수 있다.
잠재적인 생물의학적 응용을 위하여 고분자-단백질 하이브리드 응집체의 크기를 조절하고 고분자-단백질 하이브리드 응집체의 in situ 제조방법에 대한 메커니즘을 이해하기 위하여 다양한 변수를 변화시키면서 일련의 실험을 수행하였다. 예컨대, 단백질로 His6-GFP 대신에 His-태그된 리파아제를 사용하거나, 분자량이 다른 Ni-NTA-PS를 사용하거나, 고분자 및/또는 단백질 용액의 농도를 변화시키거나, 고분자 용액의 첨가 속도를 조절하거나, 다양한 용매를 사용하거나, 투석에 의해 유기 용매를 제거하면서 유사한 실험을 수행하였다.
그 결과, 코어-쉘 구조의 입자의 형태 또는 크기는 소수성 고분자의 종류/조성비, 분자량 또는 농도, 단백질의 종류/조성비, 분자량 또는 농도, 소수성 고분자와 단백질의 혼합비 또는 소수성 고분자와 단백질의 혼합속도를 조절함으로써 달성될 수 있다(표 1). 예컨대, 고분자와 단백질의 비율이 변화함에 따라 고분자와 단백질 간의 결합 형성 속도 및 자가조립에 의해 입자를 형성하는 속도가 변화하여 최종 생성되는 코어-쉘 구조의 고분자-단백질 입자의 크기가 결정된다. 이때 각각의 단백질은 각 분자마다 제1작용기와 결합하는 제2작용기를 하나씩 구비하여 서로 경쟁적으로 결합한다. 따라서, 2종 이상의 단백질 사용시 이의 혼합 비율을 조절함으로써 단백질 쉘을 구성하는 단백질의 조성비를 조절할 수 있다.
본 발명의 제조방법에 따라 형성되는 코어-쉘 구조의 고분자-단백질 입자는 평균직경 20 nm 내지 5 ㎛의 크기를 가질 수 있다. 또한 상기 입자는 구형, 타원형 또는 막대형으로 제조될 수 있으나, 그 형태는 이에 제한되지 않는다.
본 발명에 따라 단백질 케이지를 제조할 경우, 단순한 공정으로 잘 규정된 구조를 합성할 수 있게 되고, 단백질의 선택 및 도입에 있어서 그 제약이 적어 그 이용범위가 넓다.
또한, 본 발명에 따른 단백질 케이지 제조시 one-pot으로 단백질이 코팅된 입자 형성과 소수성 첨가제 담지를 동시에 수행될 수 있으므로, 공정이 매우 단순하고 간소하여 약물 또는 화장료 등의 전달체 등 다양한 분야에서 이를 효과적으로 도입할 수 있다. 또한, 단백질 케이지에 담지하고자 하는 물질과 사용되는 고분자의 종류를 선택함에 있어 그 제약이 적어 넓은 범위에서 물질을 선택하여 이용할 수 있다.
제1작용기, 제2작용기 또는 둘다는 고분자 및 단백질 각각에 직접 또는 링커를 통해 연결될 수 있다.
제1작용기와 제2작용기 간의 결합의 비제한적인 예로는, 배위결합(coordinate bond), 공유결합(covalent bond), 금속결합(metallic bond), 수소결합(hydrogen bond), 이온 결합(ionic bond), 항원-항체 결합(antigen-antibody binding) 및 리간드-수용체 결합(ligand-receptor binding) 등이 있다(도 1c). 제1작용기와 제2작용기 간의 결합은 특이적인 결합이 바람직하다.
제1작용기를 구비한 제1소수성 고분자의 일례로, IMAL(Immobilized-metal affinity ligand)이 말단에 결합된 고분자가, 상기 제1작용기에 결합하는 제2작용기를 구비한 친수성 단백질의 일례로, 상기 IMAL-친화성 태그가 부착되는단백질이 있다. 이때, IMAL은 Ni2+, Co2+, Zn2+등의 전이금속을 포함하는 리간드로서, 바람직하게는 Ni2+을 포함한다. 바람직한 예로는, Ni-NTA(nitrilotriacetic acid), Ni-IDA(iminodiacetic acid), Ni-TED(tris(carboxymethyl)ethylene diamine) 등이 있다. 또한, 바람직하게는 상기 IMAL-친화성 태그는 사이드 체인에 금속이온과 친화성이 있는 이미다졸링을 가지고 있는 히스티딘 태그일 수 있다. 히스티딘 태그와 Ni-NTA 사이의 배위결합을 통해 고분자-단백질 하이브리드가 형성될 수 있다 (도 4b).
또는 역으로, IMAL-친화성 태그로서 히스티딘이 결합된 고분자와 IMAL이 결합된 단백질을 이용할 수 있다.
서로 결합가능한 제1작용기와 제2작용기의 다른 구체적인 예로는 NHS(N-하이드록시숙신이미딜 2-브로모-2-메틸프로피오네이트)와의 공유결합 및 바이오틴과 아비딘 간의 리간드 수용체 결합 등이 있다. 상기 NHS 작용기는 일차아민과 공유결합을 형성할 수 있다. 따라서, NHS를 포함하는 고분자는 측쇄에 일차아민기를 포함하는 아르기닌, 라이신, 아스파리긴 또는 글루타민 등의 아미노산 잔기를 통해 공유결합을 형성할 수 있다. 또는 NHS 작용기를 갖도록 수식된 단백질은 일차아민기를 포함하는 고분자와 공유결합을 형성할 수 있다. 한편, 바이오틴과 아비딘 간의 리간드 수용체 결합은 바이오틴으로 수식된 고분자와 아비딘을 포함하는 단백질 또는 이의 역으로 수식된 고분자와 단백질 간에 형성될 수 있다. 또는, 상기 아비딘은 복수의 바이오틴 결합자리를 가지므로 바이오틴화된 고분자와 단백질이 아비딘을 매개로 결합하는 형태일 수 있다. 상기 아비딘은 아비딘, 스트렙타비딘, 탈당화 아비딘(deglycosylated avidin; NeutrAvidin)을 제한없이 포함한다.
친수성 용매 내에서 자가조립에 의해 마이셀과 같은 코어-쉘 구조의 입자를 형성하기 위해, 제1고분자는 친수성 용매내에서 응집할 수 있을 정도로 소수성이면 되고, 단백질은 친수성 용매내에서 균일하게 분산 또는 용해될 수 있을 정도로 친수성이면 되고, 상기 제1고분자 및 단백질이 각각 서로 결합가능한 제1작용기와 제2작용기를 구비하는 한 본 발명에서 상기 제1고분자 및 단백질의 종류에는 제한이 없다.
제1고분자는 생체적합성 및/또는 생분해성 고분자인 것이 바람직하고, 상기 고분자는 폴리글리콜라이드(polyglycolide; PGA), 폴리락타이드(polylactide; PLA), 폴리메틸메타크릴레이트(polymethylmethacrylate; PMMA), 폴리스티렌(polystyrene), 폴리(메타)아크릴레이트(poly(metha)acrylate; PMA), 폴리카프로락톤(polycapropactone; PCL) 및 이들의 유도체 중에서 선택될 수 있다. 한편, 고분자를 형성하는 단량체의 비제한적인 예로는 스티렌(styrene), 아크릴레이트(acrylate), 락타이드(lactide), 히드록시부티르산(hydroxybutyric acid) 등이 있다.
본 발명에서 단백질은 아미노산만으로 이루어진 단순 단백질 뿐만아니라, 비(非)아미노산 보결분자단을 포함하는 복합단백질도 포함한다. 보결분자단에는 탄수화물, 지질(脂質), 핵산, 금속, 색소 등과 몇몇 비단백질 분자와 이온 등이 속한다. 또한, 본 발명에서 단백질은 구조 단백질(예, 콜라겐, 케라틴 등), 생물학적 활성 단백질(효소, 호르몬, 물질수송단백질, 면역글로불린 등), 단백질 일부(예, 효소 활성부위, 결합부위, 기능부위 등 다양한 모티프)도 포함한다.
또한, 단백질, 펩티드, 모티프, 융합단백질, 펩티도 유도체, PEG 등으로 개질된 단백질, 합성 단백질, 천연 단백질 등도 본 발명의 단백질 범주에 속한다. 단백질 내 소수성 잔기를 갖고 있더라도, 단백질 표면이 친수성을 띠고 친수성 용매에서 균일하게 분산될 수 있는 한 본 발명의 친수성 단백질 범주에 속한다. 특히, 친수성 단백질은 친수성 용매 내에서 3차 구조 또는 3차원 형태(conformation)를 유지하면서 친수성을 띠는 것이 바람직하다.
상기 단백질의 비제한적인 예로는 인간성장호르몬, G-CSF(granulocyte colonystimulatingfactor), GM-CSF(granulocyte-macrophage colony-stimulatingfactor), 에리스로포이에틴(erythropoietin), 백신, 항체, 인슐린, 글루카곤, 칼시토닌(calcitonin), ACTH(adrenocorticotropic hormone), 소마토스태틴(somatostatin), 소마토트로핀(somatotropin), 소마토메딘(somatomedin), 부갑상선 호르몬, 갑상선 호르몬, 시상하부 분비물질, 프로락틴(prolactin), 엔돌핀, VEGF(vascular endothelial growth factor), 엔케팔린(enkephalin), 바소프레신(vasopressin), 신경성장촉진인자(nerve growth factor), 비자연발생적 아편양 물질(non-naturally occuring opioid), 인터페론, 아스파라기나아제(asparaginase),알기나제(alginase), 수퍼옥사이드 디스뮤타제(superoxide dismutase), 트립신(trypsin), 키모트립신(chymotrypsin), 펩신 등이 있다.
친수성 용매는 양친성 고분자-단백질 하이브리드가 자가조립을 통해 코어-쉘 구조를 형성할 수 있는 한 제한되지 않는다. 친수성 용매의 비제한적인 예로는, 물 또는 이의 혼합용매가 있다. 다만, 쉘을 형성하는 단백질이 단백질 고유의 제기능을 발휘할 수 있는 상태에서 단백질 쉘을 형성할 수 있도록, 단백질의 3차 구조, 예컨대 단백질 활성을 유지할 수 있는 용매인 것이 바람직하고, 생리적 조건(physiological conditions)에 해당하는 pH 범위 및/또는 온도 범위의 용매가 더바람직하고, pH 완충액(예, 포스페이트 완충용액)이 더더욱 바람직하다.
유기용매는 소수성 제1고분자와 제1작용기를 포함하는 양친성 고분자를 용해 또는 분산시킬 수 있는 한 제한이 없다. 유기용매의 비제한적인 예로는 C1~C6 알코올, 아세톤, DMF(dimethylformamide), DMSO(dimethyl sulfoxide), THF(tetrahydrofuran) 등이 있다.
상기 유기 용매는 코어-쉘 입자 형성시 소수성 고분자와 함께 코어에 포집될 수 있다. 따라서, 소수성 첨가제가 유기용매에 용해 또는 분산되어 있으면 유기용매와 함께 코어에 포집될 수 있다.
제1용액과 제2용액을 혼합하는 단일 단계의 반응으로 one-pot의 캡슐화방법에 의하여 단백질이 코팅되는 (소수성) 고분자 나노입자 형성과 동시에 소수성 고분자에 소수성 첨가제를 담지할 수 있음을 확인한 것에 기초하여, 본 발명의 제3양태는 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법에서, 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자를 유기용매에 포함하는 제1용액에, 코어 부분에 담지하고자 하는 소수성 첨가제를 추가 함유하는 것이 특징이다.
또한, 본 발명의 제3양태에 따른 제조방법은 친수성 용액 내에서 자가조립에 의한 고분자-단백질 하이브리드 나노구조체를 one-pot in-situ로 제작할 수 있으므로, 상기 소수성 고분자의 종류, 분자량 또는 농도, 단백질의 종류, 분자량 또는 농도, 소수성 고분자와 단백질의 혼합비 또는 소수성 고분자와 단백질의 혼합속도를 조절함으로써 형성되는 입자의 형태 및/또는 크기를 조절할 수 있다. 따라서, 상기 본 발명에 따른 in-situ 제조방법에 의해 제조되는 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자도 형태 및/또는 크기를 조절 가능하다는 것이 또다른 특징이다.
그 자체가 친수성이더라도 그 표면을 소수성으로 개질하면, 상기 소수성 첨가제로 사용할 수 있다.
상기 소수성 첨가제는 약물일 수 있으며, 소수성 첨가제로서 약물을 담지한 입자는 약물전달체로 사용될 수 있다. 종래 소수성 약물은 난용성으로 투여가 어려웠다. 본 발명은 소수성 약물을 친수성 단백질로 코팅된 표면을 갖는 입자에 담지시킴으로써, 이러한 문제점을 해결할 수 있다. 특히, 본 발명의 제조방법은 소수성 약물을 고분자와 함께 유기용매에 용해시켜 준비하고 친수성 용매에 단백질을 녹인 용액과 혼합하는 단일 단계의 반응에 의해 수행되므로 빠르고 간편하게 소수성 약물을 담지한 코어-쉘 구조의 고분자-단백질 입자 형태의 약물전달체를 제공할 수 있다.
상기 약물의 비제한적인 예로는 파클리탁셀, 메토트렉세이트, 독소루비신, 5-플루오로우라실, 마이토마이신-C, 스티렌 말레산 네오카르지노스타틴, 시스플라틴, 카보플라틴, 카뮤스틴, 다카바진, 에토포사이드, 또는 다우노마이신 등의 항암제; 항바이러스제; 스테로이드계 소염제; 항생제; 항진균제; 비타민; 프로스타사이클린; 항대사제; 축동제; 아드레날린 길항제; 항경련제; 항불안제; 정온제; 항우울제; 마취제; 진통제; 동화성 스테로이드제; 면역 억제제 또는 면역 촉진제 등이 있다.
상기 소수성 첨가제는 화장료일 수 있다. 상기 "화장료"는 인체를 청결, 미화하여 매력을 더하고 용모를 밝게 변화시키거나 피부, 모발의 건강을 유지 또는 증진하기 위하여 인체에 사용되는 물질로서 인체에 대한 작용이 경미한 물질로 정의된다. 화장료의 비제한적인 예로는 피부연화제, 방부제, 향수 물질, 항여드름제, 항진균제, 산화방지제, 방취제, 지한제, 항비듬제, 탈색소제, 항지루성제, 염료, 선탠로션, UV 빛 흡수제, 효소, 방향 물질등을 들 수 있다.
마찬가지로, 소수성 첨가제는 조영제일 수 있다. 상기 "조영제"는 단순 영상 촬영시 확인이 불가능한 부위에 발생한 질병을 조기에 진단하여 치료할 수 있도록 선명한 영상을 제공하는 기능을 하는 물질로서, 자기공명영상(MRI)용 조영제, 컴퓨터단층촬영(CT)용 조영제, 양전자단층촬영(PET)용 조영제, 초음파 조영제, 형광 조영제 등이 사용될 수 있다. 조영제의 비제한적인 예로는 가돌리늄(Gd), 망간(Mn), 구리(Cu) 및 크롬(Cr)을 포함하는 전이금속 이온, 가도펜테테이트 디메글루민(Gd-DTPA), 가도테레이트 메글루민(Gd-DOTA)을 포함하는 상기 전이금속 이온의 소수성 착화합물, 퍼플루오로카본(perfluorocarbon), 퍼플루오로프로판(perfluoropropan)을 포함하는 불소함유 화합물, 산화철계, 망간계, 구리계 및 크롬계 나노입자 및 상기 나노입자의 표면을 소수성 물질로 수식한 화합물 등의 상자성 또는 초상자성 물질인 자기공명영상(MRI)용 조영제; 요오드화 양귀비씨 기름 유래의 요오드화 소수성 물질 및 비스무스(Bi), 금(Au) 및 은(Ag)을 포함하는 금속원소로 구성된 나노입자 등의 컴퓨터단층촬영(CT)용 조영제; 99mTc, 123I, 166Ho, 111In, 90Y, 153Sm, 186Re, 188Re, 68Ga 및 177Lu을 포함하는 방사선 동위원소 및 디에틸렌트리아민펜타아세테이트(DTPA)를 이용하여 제조한 상기 방사선 동위원소의 소수성 착화합물 등인 양전자단층촬영(PET)용 조영제; 퍼플루오로프로판(perfluoropropan), 퍼플루오로헥산(perfluorohexane), 설퍼 헥사플루오라이드(sulfur hexfluoride), 퍼플루오로펜탄(perfluoropentane) 및 데카플루오로부탄(decafluorobutane) 등의 소수성 화합물인 초음파 조영제; 및 플루오로신(fluorescein), 로다민(rhodamine), 나일 레드(nile red), Cy-3 및 Cy-5 등의 형광 조영제가 있다.
제1작용기를 구비한 제1소수성 고분자에서 제1작용기의 일례로 Ni-NTA가 있으며, 도 4a에, Ni-NTA가 말단에 결합된 고분자의 합성 메카니즘을 개략적으로 도시한 반응도를 나타내었다(제조예 1). 한편, 도 4c에는 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 상기 하이브리드가 자가조립에 의해 소수성 첨가제를 담지한 코어-쉘 구조의 입자를 형성하는 공정의 일례를 도시하였다.
도 4a 및 도 4c를 참고하면, NTA를 가진 R-X 형태의 개시제를 합성한 후, ATRP 리빙중합을 통해 Ni-NTA-고분자를 합성하고, 이를 히스티딘 태그가 부착된 단백질이 녹아있는 PBS 완충용액에 상기 Ni-NTA-고분자와 소수성 물질(nile red)을 DMF에 녹여 떨어뜨리게 되면, 단백질이 코팅된 고분자 입자가 형성됨과 동시에 코어에 소수성의 물질을 담지하게 된다. 이러한 작용은 고분자의 물에서의 응집과 동시에 Ni-NTA와 히스티딘 태그의 상호작용에 의해 발생한다.
본 발명의 일실시예에서는 소수성 첨가제로서 염색제인 나일 레드(nile red)를 사용하여 단백질 케이지 내부에 봉입여부 및 세포내로의 전달가능성도 확인하였다(도 9 및 도 10).
본 발명에 따라 코어-쉘 구조의 고분자-단백질 입자 제조시 제1작용기를 포함하지 않는 제2소수성 고분자를 추가로 포함할 수 있다. 이를 위해 본 발명에 따른 코어-쉘 구조의 고분자-단백질 입자의 제조에 사용되는 제1용액은 제1작용기를 포함하지 않는 제2고분자를 추가로 포함할 수 있다.
상기 제2소수성 고분자는 제1소수성 고분자와 함께 코어-쉘 구조의 입자 중 코어부분에 위치할 수 있고 상기 입자의 크기를 조절할 수 있으면서, 제2소수성 고분자는 제1소수성 고분자 보다 양친성 고분자-단백질 하이브리드에 결속되어 있지 아니하거나 덜 결속되어 있어, 추후 용이하게 코어-쉘 구조의 입자로부터 제거될 수 있다. 상기 제2소수성 고분자의 종류는 제1소수성 고분자와 동일 또는 상이할 수 있다.예컨대, 단백질과 결합하는 제1작용기를 포함하지 않으며 상기 제1고분자의 소수성 부분만을 포함하는 제2고분자를 추가로 포함하여 코어-쉘 구조의 고분자-단백질 입자를 제조함으로써 입자의 크기 및/또는 단일 입자 당 결합하는 단백질의 개수를 조절할 수 있다.
또한, 본 발명에 따른 제조방법은, 제3단계에서 형성된 코어-쉘 구조의 입자에 가교제를 첨가하여 쉘을 형성하는 단백질 간의 결합을 형성하는 단계를 추가로 포함할 수 있다.
가교제를 더 포함할 경우 단백질간의 가교가 일어나게 되어 상기 코어-쉘 입자가 더 안정해질 수 있어 단백질 쉘에 의한 캡슐화가 더 용이하게 될 수 있다. 이러한 가교제로는 글루타르알데히드, NHS 에스터, EDC, 말레이미드, 피리딜 디설파이드, 하이드라지드, 및 알콕시 아민류 등을 사용할 수 있다.
본 발명의 제4양태는 단백질 케이지를 제조하기 위해, 상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하는 제4단계를 더 포함하는 것이 특징이다.
상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자 일부 또는 전부 제거는 (i) 상기 제1작용기와 제2작용기 간의 결합의 경쟁자 화합물을 도입시키거나, (ii) 양친성 고분자-단백질 하이브리드에서 고분자 부위를 가수분해시키는 화합물을 도입시키는 것에 의해 수행될 수 있다.
도 11은 본 발명의 일구체예에 따른 단백질 케이지의 제조를 도식화하여 나타낸 것으로, 히스티딘 태그가 부착된 단백질이 녹아있는 PBS 완충용액에, Ni-NTA가 말단에 결합된 고분자를 DMF에 녹여 떨어뜨리게 되면, 단백질이 코팅된 고분자 입자가 형성되고, 형성된 입자 표면의 단백질을 가교시킨 뒤에 이를 유기 용매에 녹임으로써 안쪽의 고분자를 입자 바깥으로 녹여내게 된다. 이때, Ni-NTA와 히스티딘 태그의 결합을 해리시키는 경우와 해리시키지 않는 경우의 차이가 나타나게 된다. 용액에 과량의 이미다졸을 첨가하여 반응시킴으로서, 상기 과량으로 첨가된 이미다졸이 IMAL-친화성 태그가 부착된단백질과 경쟁적으로 IMAL에 결합하여 고분자와 단백질의 결합을 대체함으로써 상기 코어-쉘 입자 중의 고분자만을 용출시킬 수 있다.
상기한 바와 같이, 양친성 고분자-단백질 하이브리드에서 고분자와 단백질이 비공유결합으로 연결되어 있는 경우 경쟁적으로 상기 결합을 대체할 수 있는 물질을 과량 첨가함으로써 손쉽게 그 결합을 해리시킬 수 있다. 따라서, 바람직하게는 단백질 쉘을 가교시킨 뒤, 상기 경쟁시약을 이용하여 안쪽의 고분자를 분리시켜 제거함으로써 최종적으로 단백질 케이지를 합성할 수 있다.
한편, 양친성 고분자-단백질 하이브리드에서 고분자와 단백질이 공유결합으로 연결되어 있는 경우에는 고분자를 분해시킬 수 있는 시약, 용매 또는 이를 포함하는 용액을 이용하여 입자의 코어를 차지한 고분자를 녹여낼 수 있다.
본 발명에 따라 제조될 수 있는 단백질 케이지는 바람직하게는 20 nm 내지 5 ㎛의 직경을 갖는 것일 수 있으나, 이에 제한되지 않는다. 또한, 본 발명에 따른 단백질 케이지는 구형, 타원형 또는 막대형일 수 있다.
본 발명의 제1양태 또는 제3양태의 방법에 의해 제조된 단백질 케이지/단백질 쉘은 특이적 결합능, 촉매능 등 기능성 단백질의 나노구조체로서 역할을 수행할 수 있다. 예컨대, 케이지 구성 단백질의 선택에 따라 다양한 기능을 갖는 단백질 나노구조체를 제공할 수 있고(도 2), 더 나아가 담지되는 물질의 기능에 따라 유효 성분(생리활성, 약물 등)의 전달체, 센서, 촉매제 등 다양한 용도로 활용할 수 있는 단백질 나노구조체를 제공할 수 있다(도 3).
본 발명에 따른 단백질 케이지는 난용성 약물과 같은 소수성 첨가제를 담지할 수 있는데, 상기 소수성 첨가제를 제3단계에 첨가하여 자기조립시 코어부분에 포함시키거나, 제4단계에서 형성된 단백질 케이지에 주입시키는 방법으로 가능하다. 제1양태에 따라 제조된 단백질 케이지에 첨가제를 주입할 때는 소수성에 한정하지 아니하고, 친수성 첨가제도 가능하다.
케이지 구성 단백질은 단일 또는 다중 단백질일 수 있으므로, 단일 또는 다중 기능 단백질의 케이지를 제공할 수 있다.
케이지 구성 단백질의 비제한적인 예로는, Sensor/Reporter protein (센서 단백질; 예, Green fluorescent protein), 효소(예, Lipase, Esterase, Horse radish peroxidase), 생체표적지향단백질(Recognition protein), 백신용 단백질(예, 항원, Hemagglutinin), 피부 작용성/투과성 펩티드 및 그 유도체일 수 있다.
따라서, 본 발명에 따른 단백질 케이지는 케이지 구성 단백질을 적절히 선택함으로서, Virus-Like Particle (VLP)를 넘어서는 백신(신속 대응성, 부작용 저감), 생체 표적 세포 지향성 조영제, 기능성 물질(약물, 피부 기능 물질, 헬스케어 화합물)의 단백질 전달체, 기능성 단백질의 표적 지향적 단백질 전달체 (다중 단백질 케이지의 경우)을 제공할 수 있다.
제1양태 또는 제3양태의 방법에 의해 제조된 단백질 케이지는, 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 약물을 포함하는 약물전달체; 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 화장료를 포함하는 화장료 조성물; 또는 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 조영제를 포함하는 영상화 조성물에 사용될 수 있다.
통상 약물은 특정한 질환에 대해 특이적인 예방 또는 치료 효과를 나타내는 물질로, 경우에 따라서는 표적 조직이 아닌 다른 정상세포에 대해서는 독성을 나타내는 경우도 있다. 따라서 이들 약물을 이를 필요로 하는 부위에 특이적으로 전달하는 것은 약물의 부작용을 최소화하고 예방 또는 치료 효과를 극대화하기 위한 중요한 요소이다. 따라서, 단백질 케이지/단백질 쉘을 구성하는 단백질은 자체가 타켓팅 가능한 단백질이거나, 타켓팅 가능한 다른 항원, 항체, 리간드 또는 수용체가 결합된 것일 수 있고, 이 경우 그 내부에 포함된 약물을 원하는 부위에 타겟팅할 수 있다. 또한, 영상화 조성물로 사용시, 단백질 케이지/단백질 쉘을 구성하는 단백질도, 약물전달체와 마찬가지로 영상화하고자 하는 조직으로 특이적으로 이동할 수 있도록, 자체가 타겟팅 가능한 단백질이거나, 타겟팅 가능한 다른 항원, 항체, 리간드 또는 수용체가 결합된 것이 바람직하다.
한편, 화장료가 피부에 도포되었을 때 효과를 나타내기 위해서는 표피층을 투과하여 피부 내부로 전달될 수 있는 것이 바람직하다. 따라서, 화장료를 피부 내부로 효과적으로 전달하기 위하여 단백질 케이지/단백질 쉘을 구성하는 단백질은 자체가 피부투과성을 갖는 단백질이거나, 피부투과성 펩티드 또는 화합물이 결합된 것일 수 있다.
피부투과촉진에 사용될 수 있는 피부투과성 펩타이드의 예가 미국등록특허 제7,659,252호(본 발명의 명세서에 통합됨)에 기재되어 있다. 이러한 펩타이드는 우수한 피부투과도를 나타낼 뿐만 아니라 다른 약물의 경피전달용 담체로서도 사용될 수 있다.
제1양태 또는 제3양태의 방법에 의해 제조된 단백질 케이지는,단백질 일부 또는 전부가 항원 단백질인 경우 인공 백신으로 사용될 수 있다. 개별 단백질 보다 본 발명에 따른 단백질 케이지는 크기가 훨씬 크므로, 백신으로서 면역력이 우수하다. 또한, 백신제작 기간을 단축시킬 수 있으며, 신속한 예방백신개발이 가능하고, 입자 크기 조절도 가능하며, 면역 부작용 유발 가능성을 낮출 수 있다.
본 발명에 따라 제조될 수 있는 인공 백신의 일례는 도 3에 개략적으로 도시되어 있다. 예컨대, 인플루엔자 표면 단백질로서 HA/NA 항원 단백질을 이용하여 본 발명에 따른 자기조립형 단백질 케이지를 제조하면 고효율 인플루엔자 예방백신을 제공할 수 있다.
또한, 제1양태 또는 제3양태의 방법에 의해 제조된 단백질 케이지는, 검출하고자 하는 물질에 작용하여 물리화학적 변화를 일으키거나 검출하고자 하는 물질에 의해 물리화학적 변화가 일어나는 효소, 항원, 항체, 리간드 또는 수용체 등의 단백질을 포함하도록 제조하여 바이오센서로 사용할 수 있다. 상기 단백질은 필요에 따라 2종 이상의 단백질을 사용할 수도 있다. 예컨대, 본 발명에 따른 단백질 케이지는 구형 지지체 상에 효소 등의 검출용 단백질이 고정된 형태의 센서를 제공할 수 있다. 나아가, 케이지의 내부에는 조효소나 반응에 추가적으로 요구되는 물질을 담지하여 케이지에서 상대적으로 높은 농도를 나타내도록 함으로써 국부적인 신호증강 효과를 나타낼 수 있다.
바이오센서의 예로서, 글루코스 효소 센서는 글루코스 산화효소가 글루코스를 글루탐산으로 전환할 때 산소를 소모하고 과산화수소를 발생시키는 현상에 기초한다. 따라서, 과산화수소가 2차적으로 산화됨으로써 발생하는 전하량의 증가, pH 변화 또는 산소양의 감소 등을 측정하는 방식으로 작동한다. 이와 같이 산소를 소모하고 부산물로 과산화수소를 발생시키는 반응은 글루코스 이외에도 갈락토즈 등 다양한 산화효소들에 의한 전형적인 반응이다(예컨대, 갈락토즈 산화효소, 락테이트 산화효소, 콜레스테롤 산화효소 등). 따라서, 기존의 바이오센서로서 활용되는 제품의 구성요소로서 효소를 용액 상에 부유시키거나 막 또는 지지체에 담지/고정시켜 사용하는 것과 같이, 본 발명에 따른 단백질 케이지로 제조하여 센서로서 활용할 수 있다. 전술한 바와 같이, 이와 같이 제조한 단백질 케이지는 하나의 입자에 수십 내지 수천개 또는 그 이상의 효소입자를 고정시킬 수 있으므로 국부적인 신호증강 효과를 나타낼 수 있으므로, 적은 양의 시료도 효과적으로 검출할 수 있다.
이종 단백질을 포함하는 단백질 케이지를 센서로서 활용하는 예로는, 상기 산화효소 이외에 이로부터 발생하는 과산화수소를 이용하는 퍼옥시다제 효소를 추가로 포함하도록 제조하여 이용할 수 있다. 퍼옥시다제는 기질 화합물을 색깔이 있는 생성물로 변환시키므로, 이러한 색 변화를 측정함으로써 산화효소의 활성을 측정할 수 있다. 이때, 퍼옥시다제의 기질 화합물은 효율적인 검출을 위해 단백질 케이지 내부에 봉입시킬 수 있다.
바람직하게, 상기 바이오센서는 추가로 검출기를 구비할 수 있다. 상기 검출기는 당업계에 공지된 전기화학적 신호 검출기, 광학적 검출기, pH 검출기, 기체 검출기 등을 제한없이 사용할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시에에 한정되는 것은 아니다.
<제조예1> Ni-NTA가 말단에 결합된 고분자의 제조
도4(A)에 도시된 바와 같이 Ni-NTA가 말단에 결합된 고분자를 합성하였다.
Figure PCTKR2013009120-appb-I000001
1.1.NTA 개시제의 합성 (2)
2-브로모이소부티릴 브로마이드(2-Bromoisobutyryl bromide, 0.09 ㎖, 0.85 mmol)를 0℃에서 화합물 1(N-(5-Amino-1-carboxypentyl)iminodiacetic acid tTri-t-butyl ester, 342 mg, 0.77 mmol), 트리에틸아민(0.32 ㎖, 2.3 mmol) 및 THF(50 ㎖)가 들어있는 플라스크에 1시간 동안 천천히 주입하였다. 브롬산(acid bromide)의 주입이 완료된 후, 반응 혼합물을 상온에서 12시간 동안 반응시킨 다음, THF를 제거한 후, 반응 혼합물을 100 ㎖의 메틸렌 클로라이드(methylene chloride)에 녹이고 증류수(5 × 100 ㎖)를 사용하여 세척하였다. 컬럼 크로마토그래피법을 통하여 생성물을 정제하였다(헥산 : 에틸아세테이트 = 4 : 1). 생성물의 구조를 1H NMR을 통해 분석하였다.
1H NMR (300MHz, CDCl3): δ 1.38(s, 18H), 1.40 (s, 9H), 1.49 (m, 2H), 1.60 (m, 2H), 1.65 (m, 2H), 1.88 (s, 6H) 3.20 (t, 2H), 3.25 (t, 1H), 3.42 (dd, 4H).
1.2. NTA로 관능화된 폴리스티렌의 제조 (3)
스티렌(1.00 ㎖, 8.82 mmol, 104 g/mol)과 아니솔(anisole, 1.00 ㎖)을 질소로 충진된 쉬링크 플라스크에 넣고, 세 번의 얼림-펌프-해동 과정을 반복한 후, CuCl(36.4 mg, 0.368 mmol)과 dNbpy(300.8 mg, 0.736 mmol)을 플라스크에 넣고 얼림-펌프-해동 과정을 2회 더 실시하였다. 플라스크를 110℃의 오일 배쓰에 설치한 다음 NTA 개시제 2(106.5 mg, 0.184 mmol)를 반응 혼합물에 주입하였다. 중합이 끝난 후 화합물 3을 메탄올에 침전하여 수득하였다(Mn = 6500 g/mol).
1.3. (3)의 보호그룹 제거 (4)
화합물 3(300 mg, 0.06 mmol)과 트리플루오로아세트산(trifluoroacetic acid, 0.14 ㎖, 1.86 mmol)을 20 ㎖의 메틸렌 클로라이드에 녹이고 상온에서 12시간 동안 반응시켰다. 용매를 제거한 후 화합물 4를 메탄올에 침전하여 수득하였다.
1.4. 니켈의 착체화 (5)
화합물 4(100 mg, 0.02 mmol)를 50 ㎖의 DMF에 녹이고, 니켈 클로라이드(54.4 mg, 0.42 mmol)를 투입하고, 상온에서 12시간 동안 니켈의 착체화 반응을 수행하였다. 반응 혼합물을 메탄올에 침전하여 생성물 5를 수득하였다.
<실시예1>배위결합에 의한 단백질 코팅 고분자 나노입자(6)의 제조 및 단백질 코팅 고분자 나노입자의 크기 결정
제조예 1에서 준비된 생성물 5(0.1 mg, 1.5×10-5 mmol)를 0.2 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프(syringe pump)를 사용하여 0.02 ㎖/h의 속도로 His6-GFP(0.41 mg, 1.4×10-5 mmol)가 녹아있는 5 ㎖의 포스페이트 완충용액(10 mM, pH 7.5)에 적하하였다. 10시간의 투입 이후, 반응 혼합물을 1일 동안 교반시켰다.
TEM 시료의 준비
탄소-코팅된 구리 그리드를 상기 실시예 1에서 제조한 단백질 코팅 고분자 나노입자를 포함하는 용액에 담궈 TEM 시료를 준비하였다. 여분의 용액은 여과지로 찍어내고 그리드를 6시간 동안 실온에서 건조시켰다. 시료는 염색하지 않았다.
DLS 시료의 준비 및 측정
상기 실시예 1에서 제조한 단백질 코팅 고분자 나노입자에 대하여 660 nm에서 작동하는 레이저와 최적화된 직접 제작한 셋업을 이용하여 DLS 실험을 수행하였다. DLS 시료는 물-DMF(DMF 4 vol.%, pH 7.4)로 각 시료를 10 또는 20배 희석하여 준비하였다. 측정 전에 상기 시료를 구형 유리 큐벳에 장착하였다. 모든 측정은 25℃에서 90°에서 수행하였다. 각 측정은 5회 반복하여 합하였고 단회 측정 시간은 1분이었다. 획득한 하이브리드 입자의 크기를 수분포(number distribution)로 나타내었다.
도 5는 실시예 1에 따른 단백질 코팅 고분자 나노입자의 형성여부를 확인하기 위한 TEM 분석결과(A, B)와 DLS 데이터(C)를 나타낸 것이다. (A) TEM 사진에 나타난 바와 같이 균일한 형태의 나노입자가 형성되었고, (B) 확대해서 보았을 때 입자의 안쪽과 바깥쪽의 균일한 형태의 입자가 형성되었고 입자 안 쪽과 바깥 쪽의 contrast가 다른 것을 확인할 수 있었다. 또한 DLS 데이터(C)를 통해 균일한 크기의 입자들이 좁은 분포를 가지며 존재하는 것으로 나타났다.
한편, 고분자-단백질 하이브리드 응집체의 안정성은 생물분야에서 잠재적 활용을 위해 중요한 요소이다. Ni-NTA-PS(Mn ~ 21,800) 및 His6-GFP로부터 획득한 하이브리드 응집체의 안정성을 연구하기 위하여, 상기 고분자-단백질 하이브리드 콜로이드를 포함하는 용액을 지속적으로 교반하였고 한달까지 균일한 시간 간격으로 DLS 측정을 수행하였다. DLS 및 TEM 연구는 응집체들이 15일까지 안정함을 나타내었으며, 15일 이후 응집체는 상분리(침전)없이 분해되었다.
<실시예 2>
도 6은 말단에 Ni-NTA가 결합된 폴리스티렌(0.1 mg, 1.5×10-5 mmol)과 나일 레드(nile red, 0.02 mg, 6.3×10-5 mmol)를 0.2 ㎖의 DMF에 녹인 후 히스티딘 태그를 가지고 있는 단백질인 His6-GFP(0.41 mg, 1.4×10-5 mmol)가 녹아 있는 PBS 완충용액 5 ㎖에 천천히 떨어뜨려 Ni-NTA가 결합된 폴리스티렌 입자가 균일하게 형성됨을 확인한 TEM 분석결과(위)와, DLS 데이터(아래)를 나타낸 것이다. TEM 사진에 나타난 바와 같이 폴리스티렌 입자가 균일한 크기로 형성되었고, 이 입자에 단백질이 결합되면서 안정화가 이루어짐을 확인할 수 있다. 또한 DLS 데이터를 통해 균일한 크기의 입자들이 존재하는 것으로 나타났다.
<실시예3>
실시예 1과 달리 유기용매에 녹인 고분자의 양에 따라 변화하여 생성되는 응집체의 크기를 확인하였다 .
0.25 mg의 Ni-NTA-PS(Mn ~21,800, 1.2×10-5 mmol)를 0.2 ㎖ DMF에 용해시키고 상기 고분자 용액을 His6-GFP(27 kDa, 261 mg, 9.8×10-6 mmol)을 포함하는 5 ㎖ 탈이온수에 0.02 ㎖/h 속도로 천천히 첨가하여 응집체를 제조하였다. 제조한 응집체의 형태 및 크기를 측정하여 도 7에 나타내었다. 상기 반응조건에서는 80 내지 140 nm 크기의 구형 응집체가 형성되었으며, DLS 데이터와 대표적인 TEM 이미지를 각각 도 7A 및 B에 나타내었다.
도 7C는 DMF에 녹인 Ni-NTA-PS를 첨가하기 전 His6-GFP 수용액(pH 7.4) (1)과 DMF에 녹인 Ni-NTA-PS를 첨가하여 제조된 고분자-단백질 입자의 콜로이드 용액 (2)을 나타낸 디지털 사진이다. 고분자-단백질 하이브리드 콜로이드 용액은 응집체를 형성함으로 인해 His6-GFP 용액과 비교하여 덜 투명하게 되었다(도 7C).
His6-GFP 없이 실험을 수행하는 경우 동일한 실험 조건 하에서 반응을 수행하더라도 Ni-NTA-PS 자체는 불분명한(ill-defined) 무정형의(amorphous) 커다란 응집체를 형성하는 한편,실린지 펌프를 이용하여 DMF에 녹인 니켈 착화된 NTA가 말단에 수식된 폴리스티렌(Ni-NTA-PS) 용액을 His6-GFP를 포함하는 수용액(pH 7.4)에 서서히 첨가하였을 때에는, 단백질과 고분자 간의 특이적인 상호작용으로 인해 구형의 응집체가 생성되는 것을 확인하였다.
<실시예 4> 효소로 코팅된 고분자 나노입자의 제조
실시예 1에 기재된 것과 유사한 방법으로 효소가 코팅된 고분자 나노입자를 제조하였다.
구체적으로, 0.05 ㎖ DMF에 연속희석에 의해 니켈 착제화된 NTA가 말단에 수식된 폴리스티렌(Ni-NTA-PS, Mn ~ 21,800, 0.0625 mg, 3.0×10-6 mmol)을 준비하였다. 상기 고분자 용액을 실린지 펌프를 사용하여 유리 바이알에서 실온(22℃)에서 교반하면서 His-태그된 효소(His6-Lip21H, 37 kDa, 77.5 mg, 2.1×10-6 mmol)을 포함하는 1.25 ㎖ 탈이온수에 0.02 ㎖/h 속도로 천천히 첨가하였다. 수 방울의 인산완충염용액(phosphate buffer saline; PBS, 50 mM, pH ~7.4)을 첨가하여 수용성 효소 용액에 고분자 용액을 첨가하기 전에 pH를 7.4로 유지하였다. 고분자 용액 첨가를 완료한 후, 생성된 고분자-효소 하이브리드 용액을 계속 교반하면서 자가조립된 형태를 DLS와 TEM으로 분석하였다. 이어, His6-Lip83H(27 kDa)와의 콘쥬게이션을 위해 유사한 과정을 수행하였다.
상기 제조한 효소가 코팅된 고분자 나노입자에 대한 DLS 및 TEM 분석 결과를 도 8에 나타내었다. (A)와 (B)는 각각 히스티딘태그된 효소로서 His6-Lip21H(37 kDa)와 His6-Lip83H(27 kDa)를 이용하여 제조한 입자에 대한 결과이다. 도 8에 나타난 바와 같이, His6-Lip21H(도 2A;37 kDa)가 코팅된 입자는 90 내지 150 nm 범위의 크기 분포를, His6-Lip83H(도 2B;27 kDa)가 코팅된 입자는 이보다 다소 낮은,70 내지 120 nm 범위의 크기 분포를 나타내었다.
<실시예 5> 소수성 염색제가 담지된 단백질 코팅 고분자 나노입자 (6)
제조예 1에서 준비된 생성물 5(0.1 mg, 1.5×10-5 mmol)와 나일 레드(nile red, 0.02 mg, 6.3×10-5 mmol)를 0.2 ㎖의 DMF에 녹이고, 이 용액을 상온에서 실린지 펌프를 사용하여 0.02 ㎖/h의 속도로 His6-GFP(0.41 mg, 1.4×10-5 mmol)을 함유한 5 ㎖의 포스페이트 완충용액에 투입하였다. 10시간 투입 후, 반응 혼합물을 1일 동안 교반시키고, 피포화되지 않은 나일 레드를 200 nm 막 실린지 필터를 사용하여 제거하였다.
도 9 는 발광 스펙트럼(emission spectrum)을 측정한 결과를 나타낸 것으로, 나일 레드의 경우 담지가 되게 되면 그 파장영역대가 단파장대로 이동하는 특징이 있으므로 이를 확인하였다(도 9b). 필터를 통해 담지되지 않은 나일 레드를 제거하면 장파장 대 영역의 피크가 사라지는 것으로 나타났고, GFP는 상기 과정 중에 그 형광이 유지되는 것으로 나타났으며(도 9a), 필터 후에도 나일 레드가 존재한다는 것을 형광 현미경으로 확인할 수 있었다.
실시예 5에서 제조된 입자가 세포의 안쪽에 들어갈 수 있는지를 확인하기 위해 형광현미경으로 관찰하였다. 도 10에 도시된 바와 같이, 세포내 녹색 형광을 나타내는 GFP와 적색 형광을 나타내는 나일 레드 둘 다 존재함을 확인하였다.
<실시예 6> 단백질 코팅 고분자 나노입자의 단백질 코팅 쉘 가교 (8)
2.5%의 글루타르알데하이드(glutaraldehyde) 수용액 0.1 ㎖를 상온에서 실린지 펌프를 사용하여 실시예 1에 따라 제조된 용액에 30분 동안 주입하였다. 30분 이후, 소디엄보로하이드라이드(sodiumborohydride)를 사용하여 반응을 정지시켰다.
도 12는 코어-쉘 구조의 고분자-단백질 입자가 형성된 용액에 가교제(glutaraldehyde)를 첨가한 후의 TEM 분석결과(위)와, DLS 데이터(오른쪽 아래)를 나타낸 것이다. TEM 사진에 나타난 바와 같이 단백질들의 가교가 일어나게 되고 이를 통해 입자가 더욱 안정해 지게 되고, 이후 반응물과 완충용액 이온 등은 원심분리 필터를 통해 정제하여 입자만 물상에 존재하는 깨끗한 용액을 얻어내게 된다.
<실시예 7> 단백질 나노케이지의 제조 (9)(10)
도 13은 상기 도 12에서 확인한, 가교된 구조에 THF를 첨가한 후의 TEM 사진 및 모식도를 나타낸 것으로(9), THF의 첨가에 의하여 상기 가교된 구조 안쪽에 응집되어있던 폴리스티렌이 입자 바깥쪽으로 녹아 나오게 되고, 이 때 단백질과 결합되어 있는 고분자는 여전히 구조 안 쪽에 남아 있게 되는 것이다.
과량의 이미다졸을 실시예 6에 따라 제조된 용액에 넣어 Ni-NTA와 히스티딘 태그사이의 상호작용을 해리시켰다. THF를 같은 부피로 넣어주고 1주일 동안 교반하여 중심이 비어있는 단백질 나노케이지를 안정화시켰다(10).
도 14는 상기 도 13에서와 같이 안 쪽의 고분자를 녹여낼 때, 과량의 이미다졸을 첨가한 후의 TEM사진 및 모식도를 나타낸 것으로(10), 상기 과량의 이미다졸을 첨가하게 되면 고분자와 단백질 간의 결합을 해리시키게 되고, 이로 인해 단백질 코팅된 쉘에 결합되어 남아있던 잔여 고분자들이 모두 구조 밖으로 녹아 나오게 됨을 확인할 수 있었다.
<실시예 8> 단백질 코팅된 고분자 입자 및 단백질 케이지의 안정성에 대한 용매의 효과
고분자-단백질 하이브리드 응집체의 자가조립에 대한 용매(DMF 및 THF)의 효과를 확인하였다. 각 용매에 녹인 Ni-NTA-PS(Mn = 21,800)을 His6-GFP를 포함하는 탈이온수(pH 7.4)에 첨가하였을 때, 물-DMF 시스템은 명확한 구형 응집체를 형성하는 한편, 물-THF는 불분명한 커다란 응집체를 형성하였다. 이는 THF에 대한 His6-GFP의 낮은 용해도에 기인하는 것으로 유추되었다.
고분자-단백질 하이브리드 응집체를 제조하기 위하여, 단백질을 포함하는 수용액(pH 7.4)에 고분자를 첨가하는 동안 Ni-NTA-PS에 적합한 용매인 4 vol.% DMF를 첨가하였다. 유기용매인 DMF는 구형 응집체의 코어에 존재할 수 있으며, 또한 상기 시스템에서 응집체의 외부에도 존재할 수 있다. 상기 코어 내의 DMF의 존재는 폴리스티렌을 팽창하게(swell) 할 수 있다. 따라서, 응집체에 대한 DMF의 효과를 관찰하기 위하여, 동력학적으로 포획된 응집체(폴리스티렌 코어는 이의 유리 전이 온도(glass transition temperature)보다 낮음)를 형성하고, 구형 응집체를 형성한 후 투석에 의해 상기 시스템으로부터 DMF를 제거하였다. TEM 측정 및 DLS 연구로부터 초기 응집체가 투석 후(24시간)에도 유지됨을 확인하였다(도 15A). 그러나, 시간이 지남에 따라 상분리에 의한 응집체의 침전이 발생하였다. 이는 DMF(4 vol.%)의 존재가 고분자-단백질 하이브리드 응집체의 수용액 상에서의 보존에 필수적임을 나타낸다. 또한, 고분자-단백질 응집체의 형태 변화를 확인하기 위하여, 과량의 이미다졸 수용액(250 mM)을 고분자-단백질 응집체의 투석 용액에 첨가하였다. TEM 측정 및 DLS 연구로부터 고분자-단백질 응집체의 크기가 감소함을 확인하였다(24시간; 도 15B). 이는 경쟁체인 리간드 이미다졸에 의한 히스-태그된 GFP의 치환에 기인하는 것으로 유추되었다. 이미다졸 첨가 후, 응집체는 불안정하고 시간이 지남에 따라 서로 모여 불명확하고 보다 큰 무정형의 응집체를 형성하였다.
본 실험의 결과로부터 유추되는 고분자-단백질 하이브리드 응집체의 in situ 형성에 대한 가능한 메커니즘은 내부의 Ni-NTA-PS의 소수성 상호작용과 히스-태그된 GFP를 통한 하이브리드에 의해 증가된 안정성에 기인함을 확인하였다. DMF에 녹인 Ni-NTA-PS를 수용액에 첨가하였을 때, 폴리스티렌의 소수성으로 인해 응집하기 시작하였으며, 이와 같이 생성된 응집체는 표면에 친수성의 니켈 착제화된 NTA 부분을 포함하므로, 폴리스티렌 기재(matrix)는 코어에서 역마이셀을 구성할 수 있으며, 이는 수용액상에서 NTA-Ni-히스티딘 상호작용을 통해 친수성 히스-태그된 단백질에 의해 안정화될 수 있다.
<실시예 9> 단백질 코팅된 고분자입자의 크기 조절
단백질 코팅된 고분자 입자의 크기를 조절하는 다양한 인자들의 효과를 확인하기 위하여, 단백질의 양에 대한 고분자 양의 비율, 반응 용액의 pH, 고분자의 분자량 및 고분자와 단백질의 사용량 등을 변화시키면서 생성되는 응집체의 크기를 확인하여 이들 변수가 응집체 크기 변화에 미치는 영향을 확인하였다.
1. 고분자 농도의 효과
상기 실시예 1에 기재된 방법과 유사하게 단백질 코팅된 고분자 입자를 제조하되 사용한 단백질의 양에 대한 고분자 양의 비를 변화시키면서 생성되는 입자의 크기를 확인하였다.
그 결과, 도 17에 나타난 바와 같이, 단백질에 대한 고분자의 사용량이 증가할수록 생성되는 응집체의 크기가 증가하는 것을 확인하였다.
2. pH의 효과
상기 실시예 1에 기재된 방법과 유사하게 단백질 코팅된 고분자 입자를 제조하되 용액의 pH를 6.5 내지 8.5 범위 내에서 변화시키면서 제조하고, 생성되는 입자의 크기를 확인하였다.
그 결과, 도 18에 나타난 바와 같이, 응집체 제조시 반응 용액의 pH가 증가할수록 생성되는 입자의 크기가 감소하는 것을 확인하였다.
3. 고분자 분자량 및 고분자와 단백질 사용량의 효과
상기 실시예 1에 기재된 동일한 실험 방법으로 수행하되 분자량 21 800의 Ni-NTA-PS 대신 분자량 4 900의 Ni-NTA-PS을 이용하여 His6-GFP와 함께 응집체를 제조하고 DLS와 TEM 이미지로 형태 및 크기를 분석하여 도 19 및 표 1에 나타내었다. 또한, 표 1에는 사용한 고분자와 단백질의 양을 감소시키면서 제조한 입자의 크기를 함께 개시하였다.
도 19 및 표 1에 나타난 바와 같이, 형성된 입자의 크기는 분자량이 큰 고분자를 동일한 농도로 사용하여 제조한 입자의 크기가 약 100 nm 내외 임을 감안할 때, 사용한 고분자의 분자량이 4,900으로 감소하였을 때형성된 입자의 크기는 280 내지 350 nm로 눈에 띠게 증가한 것을 확인할 수 있었다.
또한 표 1에 나타난 바와 같이, 사용한 고분자와 단백질의 농도를 동일한 비율로 감소시키면서 응집체를 형성하였을 때, 사용한 고분자 및 단백질의 양이 감소함에 따라 형성된 입자의 크기가 감소하는 것을 확인할 수 있었다.
표 1
Entry aAmount of polymer in 0.1 ㎖ DMF[mg] Amount of His6-GFP in 2.5 ㎖ H2O[㎍] Rate of addition of polymeric solution[㎖/h] bMean diameter of micellar aggregates (DLS)[nm] cAverage size of micellar aggregates (TEM)[nm]
1 0.125 540 0.01 365±25.48 ~350
2 0.0625 270 0.01 342±23.94 ~330
3 0.03125 135 0.01 103±7.21 ~100
4 0.003125 13.5 0.01 66±4.62 ~50
5 0.001562 6.75 0.01 42±2.94 ~50
a: prepared by stepwise dilution from a higher concentration.
b: mean diameter obtained from number distribution DLS measurements.
<제조예 2> NHS 작용기를 포함하는 고분자의 제조
스티렌(6.51 ㎖, 56.8 mmol)과 아니솔(3.5 ㎖)이 들어있는 반응용액을 얼림-펌프-해동 과정을 3회 반복 실시함으로 산소를 제거하였다. 그 후 반응용기에 CuBr(54.3 mg, 0.379 mmol), bpy(118 mg, 0.757 mmol) 및 N-하이드록시숙신이미딜 2-브로모-2-메틸프로피오네이트(N-hydroxysuccinimidyl 2-bromo-2-methylpropionate; 100 mg, 0.379 mmol)를 넣고 펌프-N2 치환을 3회 반복하였다. 반응 용액을 110℃에서 10시간 동안 반응시켰다. THF로 반응 용액을 희석시키고 중성 알루미나 컬럼(neutral alumina column)을 사용하여 Cu 촉매를 제거하였다. Cu 촉매가 제거된 용액을 과량의 메탄올에 적하하여 NHS 작용기를 가진 폴리스티렌을 침전시켜 정제하였다(Mn: 12,000, PDI: 1.12).
<실시예10> 공유결합에 의한 단백질 코팅 고분자 나노입자 및 단백질 나노케이지의 제조
1. GFP가 코팅된 고분자 나노입자의 제조
NHS 작용기를 가진 폴리스티렌(0.26 mg, 2.2×10-5 mmol)을 0.4 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.04 ㎖/h의 속도로 His6-GFP(0.16 mg, 1.5×10-5 mmol) 이 녹아있는 PBS 완충액(10 ㎖, 50 mM, pH 8.0)에 적하하여 구조체를 제조하였다. 상기 제조한 구조체의 형태 및 크기를 동적 광 산란법(dynamic light scattering; DLS) 및 TEM으로 측정하여 도 20에 나타내었다.
1.1. GFP 코팅된 나노케이지의 제조
상기 실시예 10.1.에 의해 제조한 공유결합에 의해 GFP가 코팅된 고분자 나노입자로부터 고분자 코어를 제거하는 과정을 추가로 실시하여 GFP를 포함하는 단백질 나노케이지를 제조하였다. 구체적으로, 상기 GFP가 코팅된 고분자 나노입자에 2.5% 글루타알데하이드 수용액 1.0 ㎖을 30분 동안 주입하였다. 이후, 소듐보로하이드라이드를 가하여 반응을 정지시켰다. 상기 반응 혼합액에 5 ㎖의 THF를 주입하고 12시간 동안 교반하였다. 이후, THF를 제거하고 단백질과 결합하지 않은 고분자를 막 실린지 필터로 제거하였다.
2. RFP가 코팅된 고분자 나노입자의 제조
NHS 작용기를 가진 폴리스티렌(0.26 mg, 2.2×10-5 mmol)을 0.4 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.04 ㎖/h의 속도로 His6-RFP(0.16 mg, 1.5×10-5 mmol) 이 녹아있는 PBS 완충액(10 ㎖, 50 mM, pH 8.0)에 적하하여 구조체를 제조하였다. 상기 제조한 구조체의 형태 및 크기를 DLS 및 TEM으로 측정하여 도 21에 나타내었다.
3. YFP가 코팅된 고분자 나노입자의 제조
NHS 작용기를 가진 폴리스티렌(0.26 mg, 2.2×10-5 mmol)을 0.4 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.04 ㎖/h의 속도로 His6-YFP(0.17 mg, 1.5×10-5 mmol) 이 녹아있는 PBS 완충액(10 ㎖, 50 mM, pH 8.0)에 적하하여 구조체를 제조하였다. 상기 제조한 구조체의 형태 및 크기를 DLS 및 TEM으로 측정하여 도 22에 나타내었다.
4. 피브리노겐이 코팅된 고분자 나노입자의 제조
NHS 작용기를 가진 폴리스티렌(0.26 mg, 2.2×10-5 mmol)을 0.4 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.04 ㎖/h의 속도로 피브리노겐(fibrinogen; 2.0 mg, 1.5×10-5 mmol) 이 녹아있는 PBS 완충액(10 ㎖, 50 mM, pH 8.0)에 적하하여 구조체를 제조하였다. 상기 제조한 구조체의 형태 및 크기를 DLS 및 TEM으로 측정하여 도 23에 나타내었다.
<제조예 3> 바이오틴 작용기를 포함하는 고분자의 제조
1. 바이오틴화 RAFT 시약의 합성
바이오틴(0.5 g, 2.0 mmol)과 카보닐디이미다졸(carbonyldiimidazole; 0.64 g, 4.0 mmol)을 DMF (20 ㎖)에 녹이고 상온에서 6시간 동안 반응시켰다. 반응 용액에 2-(2-아미노에톡시)에탄올(2-(2-aminoethoxy)ethanol; 0.63 ㎖, 6.0 mmol)을 추가적으로 투여하고 18시간 동안 교반하였다. 용매를 제거한 후, 바이오티닐 알코올(biotinyl alcohol)을 컬럼 크로마토그래피로 정제하였다(고정상: 실리카, 이동상: 1-부탄올/아세트산/물=80/10/10). 정제된 바이오티닐 알콜(0.35 g, 1.0 mmol)을 DMF에 녹이고 S-1-도데실-S'-(α,α'-디메틸-α''-아세트산) 트리티오카보네이트(S-1-dodecyl-S'-(α,α'-dimethyl-α''-acetic acid) trithiocarbonate; 0.37 g, 1.0 mmol), DCC(0.205 g, 1.0 mmol) 및 DMAP(0.015 g, 0.12 mmol)와 상온에서 48시간 동안 반응시켰다. 고체 침전물 여과 및 용매를 제거하고 바이오틴화 RAFT 시약을 컬럼 크로마토그래피로 정제하였다(고정상: 실리카, 이동상: 클로로포름/메탄올=70/30).
2. 바이오틴으로 관능화된 폴리스티렌의 제조
산소가 제거된 아니솔(0.8 ㎖)에 스티렌(2 ㎖, 17.4 mmol), AIBN(1.43 mg, 0.01 mmol) 및 바이오틴화 RAFT 시약(59.1 mg, 0.08 mmol)을 넣고 65℃에서 131시간 동안 반응시켰다. 중합 후, 반응 혼합용액을 과량의 메탄올에 넣고 침전하여 바이오틴작용기를 가지는 플리스티렌을 얻었다(Mn: 9,200, Mw: 11,100, PDI: 1.18).
<실시예 11> 리간드-수용체 결합에 의한 단백질 코팅 고분자 나노입자 및 단백질 나노케이지의 제조
상기 제조예 3에 따라 제조한 바이오틴작용기를 가지는 폴리스티렌(0.2 mg, 2.2×10-5 mmol)을 0.4 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.04 ㎖/h의 속도로 스트렙타비딘(0.79 mg, 1.5×10-5 mmol) 이 녹아있는 PBS 완충액(10 ㎖, 50 mM, pH 8.0)에 적하하여 구조체를 제조하였다.
<실시예 12> 상이한 2종 이상의 단백질을 포함하는 단백질 코팅 고분자 나노입자의 제조
상기 제조예 1에 따른 Ni-NTA-PS(0.1 mg, 1.5×10-5 mmol)를 0.2 ㎖의 DMF에 녹인 용액을 상온에서 실린지 펌프를 사용하여 0.02 ㎖/h의 속도로 His6-GFP(0.2 mg, 0.7×10-5 mmol) 및 His6-리파아제(0.3 mg, 0.7×10-5 mmol)를 녹인 PBS 완충액(5 ㎖, 50 mM, pH 7.4)에 적하하였다. 10시간의 투입 이후, 반응 혼합물을 1일 동안 교반시켰다.
<제조예 4> tri-Ni-NTA가 말단에 결합된 고분자의 제조
고분자 1분자 당 단백질과 결합할 수 있는 작용기를 3개 포함하는 고분자를 합성하기 위한 예로써, 3개의 니켈 착제화된 NTA가 말단에 결합된 폴리스티렌 고분자를 제조하였다. 상기 고분자의 제조방법은 도 24에 나타내었다.
1. 보호된 tri-NTA 개시제의 합성 (6')
화합물 1'의 합성
H-Lysine(Z)-OtBu·HCl(2 g, 5.360 mmol)을 DMF 50 ㎖에 녹인 현탁액에 tert-부틸 브로모아세테이트(7.84 ㎖, 50.361 mmol)와 N,N-디이소프로필에틸아민(DIPEA)(4.6 ㎖, 26.412 mmol)을 질소분위기 하에 첨가하였다. 반응 혼합물을 55℃에서 밤새도록 교반하였다. 휘발성 물질은 65℃에서 진공으로 증발시켰다. 슬러리 잔여물은 사이클로헥산:에틸아세테이트(3:1)로 추출하였다. 추출물은 농축하여 헥산:에틸아세테이트(4:1)를 이동상으로 하여 실리카겔 상에서 크로마토그래피로 분석하였다.
수율: 2.8 g (H-Lysine(Z)-OtBu·HCl에 대해 92.5 %).
TLC: Rf = 0.38 (헥산:에틸아세테이트=4:1).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.42 (s, 18H), 1.45 (s, 9H), 1.53 (m, 4H), 1.62 (m, 2H), 3.20 (m, 2H), 3.31 (t, J = 7.2, 1H), 3.44 (dd, J = 16, 8.4, 4H), 5.08 (s, 2H), 7.34 (m, 5H).
화합물 2'의 합성
질소 분위기 하에 1'의 메탄올 용액(1.7 g/50 ㎖, 3.013 mmol)에 10 % Pd/C(150 mg)을 첨가하였다. 반응 혼합물을 실온의 수소 분위기 하에서 9시간 동안 격렬히 교반하였다. 셀라이트(celite) 상에서 Pd/C를 여과하고, 여과물은 감압하에 증발시켰다.
수율: 1.15 g (1'에 대해 88.7 %).
TLC: Rf = 0.5 (클로로포름:메탄올=6:1).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.44 (s, 18H), 1.45 (s, 9H), 1.63 (m, 6H), 2.87 (t, J = 7.2, 2H), 3.29 (t, J = 7.6, 1H), 3.44 (dd, J = 17.2, 9.2, 4H).
화합물 3'의 합성
1'의 클로로포름 용액(2 g/30 ㎖, 3.542 mmol)에 트리플루오로산(trifluoroacetic acid; TFA), 5.46 ㎖)과 트리이소프로필실란(triisopropylsilane; TIS, 0.3 ㎖)을 첨가하였다. 반응 혼합물을 실온에서 교반하고 TLC로 분석하였다. 3시간 후, 반응 혼합물에 7 ㎖ 메탄올과 4 ㎖ 물을 첨가하였다. 휘발성 물질을 감압하에 증발시켰다. 잔여물을 톨루엔과 함께 비등시켜 건조시키고(dried azeotropically with toluene) 무수 에틸에테르로 침전시켰다. 흰색 침전을 회수하여 고진공하에(under high vacuum) 건조시켰다.
수율: 1.3 g (1’에 대해 92.6 %).
TLC: Rf = 0.06 (클로로포름:메탄올:물=65:25:4).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.48-1.53 (m, 4H), 1.66 (m, 1H), 1.78 (m, 1H), 3.15 (m, 2H), 3.45 (t, J = 12.8, 1H), 3.63 (dd, J = 18, 9.6, 4H), 5.08 (s, 2H), 7.36 (m, 5H).
화합물 4'의 합성
NHS(400 mg, 3.484 mmol), DMAP(58 mg, 0.468 mmol) 및 DCC(985 mg, 4.772 mmol)를 20 ㎖ 무수 DMF에 녹인 3'(400 mg, 0.952 mmol) 용액에 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, 10 ㎖ 클로로포름에 녹인 2(1.49 g, 3.479 mmol)와 N,N-디이소프로필에틸아민(N,N-diisopropylethylamine; DIPEA, 0.63 ㎖, 3.479 mmol) 용액을 첨가하였다. 밤새도록 반응시킨 후, 휘발성 물질을 65℃ 진공에서 증발시켰다. 잔여물을 헥산:에틸아세테이트(1:1)에 용해시키고, 용액을 여과하여 우레아 슬러리(urea slurry)를 제거하였다. 휘발성 물질은 물로 3회 추출하였다. 혼합한 추출물을 농축하여 클로로포름:메탄올(30:1)를 이동상으로 하여 실리카겔 상에서 크로마토그래피로 분석하였다.
수율: 1.23 g (3'에 대해 74.6 %).
TLC: Rf = 0.34 (클로로포름:메탄올=30:1).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.44 (s, 54H), 1.46 (s, 27H), 1.53 (m, 16H), 1.63 (m, 8H), 3.20-3.31 (m, 12H), 3.44 (m, 16H), 5.08 (s, 2H), 7.34 (m, 5H).
화합물 5'의 합성
질소 분위기 하에서 4'의 메탄올 용액(1.0 g/40 ㎖, 0.612 mmol)에 10 % Pd/C(130 mg)을 첨가하였다. 반응 혼합물을 실온의 수소 분위기 하에서 9시간 동안 격렬히 교반하였다. 셀라이트(celite) 상에서 Pd/C를 여과하고, 여과물은 감압하에 증발시켰다.
수율: 0.8 g (4'에 대해 87.1 %).
TLC : Rf = 0.48 (클로로포름:메탄올=9:1).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.44 (s, 54H), 1.46 (s, 27H), 1.53 (m, 16H), 1.63 (m, 8H), 3.20-3.31 (m, 12H), 3.44 (m, 16H).
화합물 6'의 합성
전술한 방법으로 화합물 1', 2', 3', 4' 및 5'를 합성한 후, 0℃ 질소 분위기 하에서 5의 건조 THF 용액(0.8 g/15 ㎖, 0.533 mmol)에 2-브로모 이소부티릴 브로마이드(0.078 ㎖, 0.636 mmol)와 DIPEA(0.28 ㎖, 1.592 mmol)를 서서히 첨가하였다. 반응 혼합물을 실온에서 밤새도록 교반하였다. 휘발성 물질은 50℃ 진공에서 증발시켰다. 잔여물 슬러리를 디클로로메탄에 용해시키고 물로 3회 추출하였다. 혼합한 추출물을 농축하고 클로로포름:메탄올(30:1)를 이동상으로 하여 실리카겔 상에서 플래시 컬럼 크로마토그래피(flash column chromatography)로 정제하였다.
수율: 0.63 g (5'에 대해 71.7 %).
TLC: Rf = 0.26 (클로로포름:메탄올=30:1).
1H NMR (300 MHz, CDCl3), δ (TMS, ppm): 1.44 (s, 54H), 1.46 (s, 27H), 1.53 (m, 16H), 1.63 (m, 8H), 1.88 (s, 6H), 3.20-3.31 (m, 12H), 3.44 (m, 16H).
13C NMR (300 MHz, CDCl3) δ (TMS, ppm): 23.30, 28.35, 28.43, 30.13, 32.63, 34.40, 39.50, 48.77, 53.97, 65.20, 77.23, 170.08, 172.50.
전술한 바와 같이, 원자 전달 라디칼 중합반응(atom transfer radical polymerization; ATRP)에 의해 다결합가(multivalent) NTA가 말단에 수식된 고분자를 합성하기 위하여, 먼저 적절히 보호된-트리-NTA 개시제(p-tri-NTA initiator, 6')를 준비하였다. 먼저, α-질소원자 상에 둘 이상의 tert-부틸 아세테이트기를 도입하여 H-Lys(Z)-OtBu·HCl을 1'으로 전환하였다. 1'으로부터 보호기의 선택적 제거는 하나의 아미노기(2') 또는 3개의 카르복시기(3')를 포함하는 1세대 NTA 덴드론(dendron)을 제공하였다. 2'와 3'의 커플링으로 완전히 보호된 화합물 4'을 얻고 이로부터 촉매 수소화(catalytic hydrogenation)에 의해 아민기가 수식되고 tert-부틸로 보호된 덴드리머 5'을 얻었다.
상기 5'을 2-브로모이소부티릴 브로마이드와 반응시켜 이들 사이에 아미드 결합을 형성함으로써 말단에 tert-부틸 보호된 NTA 모이어티와 활성화된 알킬 브로마이드를 포함하는 ATRP 개시제 6'를 준비하였다. 용해도를 향상시키고 부반응(예컨대, ATRP 리간드의 양성자 부가 반응)을 차단하기 위하여 tert-부틸 보호된 NTA-기반 아미드성 개시제를 고안하였다. 합성된 개시제(6')의 구조를 1H NMR 및 13C NMR로 확인하였다(도 25). 1H NMR에서 ~1.4 ppm에서의 피크와 13C NMR에서 ~28 ppm에서의 피크를 tert-부틸 양성자로 지정할 수 있다. 6'의 분자량을 겔 투과 크로마토그래피(gel permeation chromatography; GPC)와 MALDI-TOF(matrix assisted laser desorption ionization-time of flight) 질량분광법으로 결정하였다(도 26). GPC에 의한 6'의 분자량은 1,650 g/mol, MALDI-TOF 분석에 의한 나트륨 부가된 p-tri-NTA 개시제의 질량 대 전하 비는 1,672.772이었다.
2. tri-NTA로 관능화된 폴리스티렌의 제조 (8')
고분자로의 tri-NTA의 도입 (7')
스티렌(1.0 ㎖)과 아니솔(1.0 ㎖)을 질소로 충진된 쉬링크 플라스크에 넣고, 세 번의 얼림-펌프-해동 과정을 반복한 후, CuCl(17.5 mg)과 dNbpy(71.27 mg)을 플라스크에 넣고 얼림-펌프-해동 과정을 2회 더 실시하였다. 플라스크를 115℃의 오일 배쓰에 설치한 다음 p-트리-NTA 개시제 6'(140 mg, 85.2×0-3 mmol)을 첨가하고 10시간 동안 교반하였다. 시간 간격을 두고, 반응 혼합물 0.1 ㎖ 분액을 취하여 GPC 분석을 위해 THF로 희석하였다. 메탄올로 침전시켜 보호된 tri-NTA가 결합된 고분자를 분리하였다.
7'의 보호그룹 제거 (8')
상기 수득한 보호된-트리-NTA-폴리스티렌(p-tri-NTA-PS) 7'(100 mg, 15.63×10-3 mmol)을 플라스크에서 6.0 ㎖의 CH2Cl2에 용해시켰다. 상기 플라스크에 트리플루오로아세트산(trifluoro acetic acid; TFA, 0.96 ㎖, 14.06 mmol)을 첨가하였다. TFA 첨가를 완료한 후, 반응 혼합물을 실온에서 24시간 동안 교반하였다. 최종적으로 메탄올로 침전시켜 탈보호된 트리-NTA-폴리스티렌(deprotected tri-NTA-polystyrene; tri-NTA-PS, 8')을 획득하였다.
상기 제조예 4.1.에 따라 제조한 p-tri-NTA ATRP 개시제 (6')를 사용하여 115℃에서 용액상에서 스티렌의 중합반응을 수행하였다(도 24). 아미드 기반 개시제는 일반적으로 ATRP에서 개시 거동을 나타내므로, 할로겐 교환기법을 이용하여 중합반응을 수행하였다. 할로겐 교환반응에서, 상기 개시제화 함께 CuCl/dNbpy 촉매를 사용하였다. 이에 따라, 6'과 CuCl/dNbpy 촉매를 사용하여 ATRP에 의해 p-tri-NTA 폴리스티렌(p-tri-NTA-PS, 7')을 합성하였다.
겔 투과 크로마토그래피 결과는 합성된 고분자의 분자량이 시간에 따라 증가함을 나타내었으며, 할로겐 교환기법을 사용함에도 불구하고 여분의 개시제의 존재로 인한 이중 피크가 나타났다(도 27). 그러나, 메탄올 침전에 의한 고분자 정제 후, 좁은 분산성을 갖는 대칭적인 하나의 용출 피크가 관찰되었다(Mn = 6400 및 'D =1.15)(도 27).
상기 합성된 tri-NTA가 결합된 폴리스티렌(7')에서 NTA 모이어티의 존재를 1H NMR(도 28A)과 13C NMR(도 29A)로 확인하였다. 도 28에서 1.45 (a, (CH3)3-) 및 1.46 ppm (b, (CH3)3-)에서의 피크를 tert-부틸 양성자로 지정하였고, 2.8 (h, -CH2-), 3.2 (d, -CH-), 3.45 (c, -CH2-) 및 4.43 (m, -CH-Cl) ppm에서의 피크를 NTA 모이어티로 지정하였다. 이로부터 6'가 ATRP 개시제로서 성공적으로 사용되었음을 확인하였다. CH2Cl2에서 TFA로 7'의 tert-부틸기를 제거함으로써 tri-NTA가 말단에 결합된 폴리스티렌(tri-NTA-PS, 8')을 제조하였다. 8'의 구조 또한 1H NMR(도 28B)과 13C NMR(도 29B)으로 확인하였다.
이와 같이 본 발명에서는 폴리스티렌의 α-체인 말단에서 3개의 NTA 모이어티를 도입하여 양친성의 선형-수지상 블록 공중합체(linear-dentritic block copolymer; 8')를 얻었다. 따라서, 본 발명자들은 수용액상에서 tri-NTA-PS(8')의 자가조립 거동을 연구해왔다. 실온에서 격렬히 교반하면서 유리 바이알 내에 THF에 용해시킨 tri-NTA-PS(8') 용액에 물을 서서히 첨가할 때, 자가조립된 입자가 형성되었다. TEM 및 DLS 측정을 통해 상기 입자는 구형이며, 균일하고 ~40 내지 60 nm의 직경을 갖는 것을 확인하였다(도 30). 이들 입자는 표면에 친수성 NTA 모이어티를 제공할 수 있으므로, 다양한 분야에 응용될 수 있다.
3. tri-NTA-PS의 자가조립에 의한 고분자 입자의 제조
tri-NTA-PS(8, 2 mg, Mn (GPC) ~ 5,400)를 유리 바이알에서 1 ㎖의 건조 THF에 용해시켰다. 이후, 실온에서 격렬히 교반하면서 2 ㎖의 물을 서서히 첨가하였다. 물 첨가를 완료한 후, 반응 용액을 계속 교반하면서 TEM 및 DLS 측정을 통해 형태를 확인하였다.
<실시예 13> 히스-태그된 단백질과 tri-NTA-PS의 결합에 의한 고분자-단백질 하이브리드 나노입자의 제조
니켈 착제화된 tri-NTA가 말단에 수식된 폴리스티렌(Ni-tri-NTA-PS, Mn ~24,500, 0.25 mg, 1.02×10-5 mmol)을 0.2 ㎖ DMF에 용해시켰다. 상기 고분자 용액을 실린지 펌프를 사용하여 유리 바이알에서 실온(18℃)에서 교반하면서 His6-GFP(27 kDa, 207 g, 7.7×10-6 mmol)를 포함하는 5 ㎖ 탈이온수에 0.02 ㎖/h 속도로 천천히 첨가하였다. 수 방울의 PBS(50 mM, pH ~7.4)를 첨가하여 수용성 단백질 용액에 고분자 용액을 첨가하기 전에 pH를 7.4로 유지하였다. 고분자 용액 첨가를 완료한 후(10시간), 생성된 고분자-단백질 하이브리드 용액을 계속 교반하면서 자가조립된 형태를 DLS와 TEM으로 분석하였다.
전술한 단백질 코팅 고분자 나노입자의 제조방법에 따라, 니켈과 착제화한 후 물/DMF (DMF 4 vol%)에서 NTA-Ni/His 상호작용을 통해 His6-GFP와 콘쥬게이트된 tri-NTA-PS(8')의 자기조립된 형태를 연구하였다. 0.25 mg의 니켈 착제화된 tri-NTA-PS(Mn~24,500, 0.25 mg, 1.02×10-5 mmol)를 DMF(0.2 ㎖)에 용해시켜 제조한 고분자 용액에 His6-GFP(27 kDa, 207 μg, 7.7×10-6 mmol)을 포함하는 탈이온수(5 ㎖, pH 7.4)를 첨가하였을 때, 예상되는 바와 같이, ~90 내지 115 nm 크기의 구형 코어-쉘 하이브리드 입자를 수득하였다. 상기 입자의 형태와 크기를 보여주는 DLS 데이터와 대표적인 TEM 이미지를 도 31에 나타내었다. 도 31의 TEM 이미지(우측)로부터 단백질 층으로 여겨지는 입자 외부의 층을 확인할 수 있었다. DLS 데이터 및 TEM 측정을 통해 물/DMF에서 이들 니켈 착제화된 트리-NTA-PS와 His6-GFP의 하이브리드 입자는 15일까지 안정하며 Ni-NTA-PS로부터 제조된 것과 매우 유사성을 나타내는 것을 확인하였다.
결과적으로, 본 발명에서는 ATRP에 의한 tri-NTA-PS의 합성 및 물/DMF에서 His6-GFP와의 자가조립 뿐만 아니라 물/THF에서 고분자 자체의 자가조립을 확인하였다. 먼저, tert-부틸 보호된 NTA-기반 아미드성 개시제를 제조하고 1H NMR, 13C NMR, GPC 및 MALDI-TOF 질량분광법으로 특성을 분석하였다. 폴리스티렌의 α-체인 말단으로부터 tert-부틸기를 제거하여 탈보호된 트리-NTA가 말단에 결합된 폴리스티렌(tri-NTA-PS)을 제조하였다. tri-NTA-PS는 이의 양친성으로 인해 자체로 자가조립하여 물/THF에서 ~40 내지 60 nm 직경의 구형 입자를 형성하는 한편, 니켈 착제화된 tri-NTA-PS는 His6-GFP와 NTA-Ni/His 상호작용을 통해 물/DMF에서 ~90 내지 115 nm 직경의 구형 코어-쉘 하이브리드 입자를 형성하였다.
tri-NTA-PS는 3개의 NTA 모이어티를 포함하므로, 수지상이며 보다 양친성을 띠게 된다. 이는, 본 발명에 따른 고분자-단백질 하이브리드 입자 또는 단백질 케이지가 유사한 응용에 유용하게 사용될 수 있으며, 특히 고분자 자체의 다양한 자가조립된 형태의 생성, 나노입자, 염료 등의 소수성 첨가물의 봉입, 표적약물전달 및 단백질 정제에 활용될 수 있음을 나타내는 바이다.

Claims (33)

  1. 소수성 제1고분자와 친수성 제1작용기를 포함하는 양친성 고분자를 준비하는 제1단계;
    상기 제1작용기에 결합하는 제2작용기를 구비한 친수성 단백질을 준비하는 제2단계;
    상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드가 형성되고 친수성 용매 내에서 양친성 고분자의 자가조립에 의해 단백질 쉘과 양친성 고분자 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 제3단계; 및
    상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자를 일부 또는 전부 제거하는 제4단계를 포함하는 단백질 케이지의 제조방법.
  2. 제1항에 있어서,
    상기 단백질은 3차 구조를 유지하여 활성을 유지하는 것이 특징인 제조방법.
  3. 제1항에 있어서,
    상기 단백질 케이지는 1종 또는 2종 이상의 단백질을 포함하는 것인 제조방법.
  4. 제1항에 있어서,
    제3단계에서 형성된 코어-쉘 구조의 입자에 가교제를 첨가하여 쉘을 형성하는 단백질 간의 결합을 형성하는 단계를 추가로 포함하는 단백질 케이지의 제조방법.
  5. 제1항에 있어서,
    제3단계에서 제1작용기를 포함하지 않는 제2소수성 고분자를 추가로 포함하는 것인 제조방법.
  6. 제1항에 있어서,
    상기 단백질 케이지에 첨가제가 담지된 것인 단백질 케이지의 제조방법.
  7. 제1항에 있어서,
    상기 첨가제는 제3단계에 첨가되어 자기조립시 코어부분에 포함되거나, 제4단계에서 형성된 단백질 케이지에 주입되는 것인 단백질 케이지의 제조방법.
  8. 제1항에 있어서,
    상기 단백질 케이지의 크기는 20 nm 내지 5 ㎛의 직경을 갖는 것인 단백질 케이지의 제조방법.
  9. 제1항에 있어서,
    상기 제3단계의 코어-쉘 구조의 입자는 구형, 타원형 또는 막대형인 것인 단백질 케이지의 제조방법.
  10. 제1항에 있어서,
    상기 코어-쉘 구조의 입자의 형태 또는 크기는 소수성 고분자의 종류, 분자량 또는 농도, 단백질의 종류, 분자량 또는 농도, 소수성 고분자와 단백질의 혼합비 또는 소수성 고분자와 단백질의 혼합속도를 조절함으로써 달성되는 것인 단백질 케이지의 제조방법.
  11. 제1항에 있어서,
    상기 제1작용기와 제2작용기 간의 결합은 배위결합(coordinate bond), 공유결합(covalent bond), 금속결합(metallic bond), 수소결합(hydrogen bond), 이온 결합(ionic bond), 항원-항체 결합(antigen-antibody binding) 및 리간드-수용체 결합(ligand-receptor binding)으로 구성된 군으로부터 선택되는 것인 단백질 케이지의 제조방법.
  12. 제1항에 있어서,
    제4단계에서 상기 코어-쉘 구조의 입자로부터 코어부분의 소수성 고분자 일부 또는 전부 제거는 (i) 상기 제1작용기와 제2작용기 간의 결합의 경쟁자 화합물을 도입시키거나, (ii) 양친성 고분자-단백질 하이브리드에서 고분자 부위를 가수분해시키는 화합물을 도입시키는 것에 의해 수행되는 것인 단백질 케이지의 제조방법.
  13. 제1항 내지 제12항 중 어느 한 항의 방법에 의해 제조된 단백질 케이지.
  14. 제13항에 기재된 단백질 케이지; 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 약물을 포함하는 약물전달체.
  15. 제14항에 있어서,
    상기 단백질 케이지를 구성하는 단백질은 자체가 타켓팅 가능한 단백질이거나, 타켓팅 가능한 다른 항원, 항체, 리간드 또는 수용체가 결합된 것인 약물전달체.
  16. 제13항에 기재된 단백질 케이지; 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 화장료를 포함하는 화장료 조성물.
  17. 제16항에 있어서,
    상기 단백질 케이지를 구성하는 단백질은 자체가 피부투과성을 갖는 단백질이거나, 피부투과성 펩티드 또는 화합물이 결합된 것인 화장료 조성물.
  18. 제13항에 기재된 단백질 케이지; 및 그 내부에 봉입되거나 단백질 사이에 삽입되거나 표면에 결합된 조영제를 포함하는 영상화 조성물.
  19. 제13항에 기재된 단백질 케이지를 포함하는 인공 백신으로서,
    상기 단백질 케이지를 형성하는 단백질 일부 또는 전부가 항원 단백질인 것인 인공 백신.
  20. 제13항에 기재된 단백질 케이지를 포함하는 바이오센서로서,
    상기 단백질은 검출하고자 하는 물질에 작용하여 물리화학적 변화를 일으키거나 검출하고자 하는 물질에 의해 물리화학적 변화가 일어나는 효소, 항원, 항체, 리간드 및 수용체로 구성된 군으로부터 선택되는 어느 하나 이상의 단백질을 포함하는 것인 바이오센서.
  21. 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법으로서,
    소수성 제1고분자와 친수성 제1작용기를 하나 이상 포함하는양친성 고분자 및 소수성 첨가제를 유기용매에 포함하는 제1용액을 준비하는 제1단계;
    물을 포함하는 친수성 용매에 3차 구조를 유지하면서 상기 제1작용기에 결합하는 제2작용기를 하나 구비한친수성 단백질을 포함하는 제2용액을 준비하는 제2단계; 및
    상기 제2용액에 제1용액을 혼합하는 제3단계를 포함하여,
    친수성 용매 내에서 상기 제1작용기와 제2작용기 간의 결합을 통해 양친성 고분자-단백질 하이브리드를 형성하는 동시에 양친성 고분자의 자가조립에 의해, 3차 구조를 유지하는 단백질 쉘과양친성 고분자 및 소수성 첨가제를 함유하는 코어를 포함하는 코어-쉘 구조의 입자를 형성하는 것이 특징인 제조방법.
  22. 제21항에 있어서,
    제2용액은 적어도 1종의 단백질이 제기능을 할 수 있는 생리적 조건(physiological conditions)에 해당하는 pH 범위 또는 온도 범위를 갖는 것인 제조방법.
  23. 제21항에 있어서,
    상기 입자의 크기는 20 nm 내지 5 ㎛의 평균 직경을 갖는 것인 제조방법.
  24. 제21항에 있어서,
    상기 입자는 구형, 타원형 또는 막대형인 것인 제조방법.
  25. 제21항에 있어서,
    상기 입자의 형태 또는 크기는 고분자의 종류, 분자량 또는 농도, 단백질의 종류, 분자량 또는 농도, 고분자와 단백질의 혼합비, 또는 고분자와 단백질의 혼합속도를 조절함으로써 달성되는 것인 제조방법.
  26. 제21항에 있어서,
    상기 제1작용기와 제2작용기 간의 결합은 배위결합(coordinate bond), 공유결합(covalent bond), 금속결합(metallic bond), 수소결합(hydrogen bond), 이온 결합(ionic bond), 항원-항체 결합(antigen-antibody binding) 및 리간드-수용체 결합(ligand-receptor binding)으로 구성된 군으로부터 선택되는 것인 제조방법.
  27. 제21항에 있어서,
    상기 제1용액은 제1작용기를 포함하지 않는 제2고분자를 추가로 포함하는 것인 제조방법.
  28. 제21항 내지 제27항 중 어느 한 항의 방법에 의해 제조되고, 쉘을 형성하는 개별 단백질은 3차 구조를 유지하면서, 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자.
  29. 제28항에 있어서,
    상기 소수성 첨가제는 약물이고, 상기 입자는 약물전달체인 것이 특징인 고분자-단백질 입자.
  30. 제28항에 있어서,
    상기 단백질은 자체가 목적 부위에 타켓팅 가능한 단백질이거나, 타켓팅 가능한 다른 항원, 항체, 리간드 또는 수용체가 결합된 것인 고분자-단백질 입자.
  31. 제28항에 있어서,
    상기 소수성 첨가제는 화장료인 것이 특징인 고분자-단백질 입자.
  32. 제31항에 있어서,
    상기 단백질은 자체가 피부투과성을 갖는 단백질이거나, 피부투과성 펩티드 또는 화합물이 결합된 것인 고분자-단백질 입자.
  33. 제28항에 있어서,
    상기 소수성 첨가제는 조영제인 것이 특징인 영상화용 고분자-단백질 입자.
PCT/KR2013/009120 2013-03-22 2013-10-11 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법 WO2014148713A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/778,906 US9757342B2 (en) 2013-03-22 2013-10-11 Method for preparing protein cage, and in situ method for preparing hydrophobic additive-supported core-shell structured polymer-protein particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0031128 2013-03-22
KR20130031128 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148713A1 true WO2014148713A1 (ko) 2014-09-25

Family

ID=51580349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009120 WO2014148713A1 (ko) 2013-03-22 2013-10-11 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법

Country Status (3)

Country Link
US (1) US9757342B2 (ko)
KR (1) KR101592235B1 (ko)
WO (1) WO2014148713A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805711A (zh) * 2022-05-27 2022-07-29 浙江理工大学 一种空间位点隔离的聚合物基酸碱催化剂的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10188136B2 (en) 2016-02-16 2019-01-29 Indian Institute Of Science Education And Research Hydrophobin mimics: process for preparation thereof
KR101960255B1 (ko) * 2016-05-30 2019-07-15 고려대학교 산학협력단 코어쉘 구조의 바이오분자-나노입자 복합체 및 이의 제조방법
WO2019045529A1 (ko) * 2017-08-31 2019-03-07 주식회사 휴벳바이오 자가 조립형 입자 및 이의 제조방법
KR102032647B1 (ko) 2018-04-03 2019-10-15 한양대학교 에리카산학협력단 미생물 검출용 구조체, 그의 제조 방법, 및 그 미생물 검출용 구조체를 이용한 미생물 검출 방법
KR102184153B1 (ko) * 2019-02-25 2020-11-30 부산대학교 산학협력단 고분자 지지체 기반의 인플루엔자 바이러스 유사 구조체 및 이의 제조방법
IT202000011803A1 (it) * 2020-05-20 2021-11-20 Hudson River Biotechnology B V Particella multistrato incapsulante una molecola biologicamente attiva
KR102239512B1 (ko) * 2020-09-10 2021-04-12 서울대학교산학협력단 다중기능성 마이크로캡슐 조성물 및 그 제조방법
WO2023225503A2 (en) * 2022-05-16 2023-11-23 Dairy Management Inc. Protein particles including an active agent and methods of making and using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187197A1 (en) * 2000-01-13 2002-12-12 Frank Caruso Templating of solid particles by polymer multilayers
KR20070099767A (ko) * 2006-04-05 2007-10-10 한남대학교 산학협력단 나노 캡슐화를 이용하여 제조된 지질 핵 및 고분자 쉘구조를 갖는 단백질 약물 전달용 나노 미립구
KR20080030555A (ko) * 2007-12-04 2008-04-04 에이전시 포 사이언스, 테크놀로지 앤드 리서치 폴리머 코팅 시약을 포함하는 신규 수용성 나노크리스탈 및이의 제조방법
US20120141591A1 (en) * 2005-09-30 2012-06-07 Auburn University Drug Delivery Nanocarriers Targeted by Landscape Phage
US20120219600A1 (en) * 2011-02-25 2012-08-30 Perumal Omathanu P Polymer conjugated protein micelles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9003821D0 (en) * 1990-02-20 1990-04-18 Danbiosyst Uk Diagnostic aid
US6602932B2 (en) * 1999-12-15 2003-08-05 North Carolina State University Nanoparticle composites and nanocapsules for guest encapsulation and methods for synthesizing same
EP2103313A1 (en) * 2008-03-19 2009-09-23 Koninklijke Philips Electronics N.V. Method for the synthesis of hollow spheres

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187197A1 (en) * 2000-01-13 2002-12-12 Frank Caruso Templating of solid particles by polymer multilayers
US20120141591A1 (en) * 2005-09-30 2012-06-07 Auburn University Drug Delivery Nanocarriers Targeted by Landscape Phage
KR20070099767A (ko) * 2006-04-05 2007-10-10 한남대학교 산학협력단 나노 캡슐화를 이용하여 제조된 지질 핵 및 고분자 쉘구조를 갖는 단백질 약물 전달용 나노 미립구
KR20080030555A (ko) * 2007-12-04 2008-04-04 에이전시 포 사이언스, 테크놀로지 앤드 리서치 폴리머 코팅 시약을 포함하는 신규 수용성 나노크리스탈 및이의 제조방법
US20120219600A1 (en) * 2011-02-25 2012-08-30 Perumal Omathanu P Polymer conjugated protein micelles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805711A (zh) * 2022-05-27 2022-07-29 浙江理工大学 一种空间位点隔离的聚合物基酸碱催化剂的制备方法
CN114805711B (zh) * 2022-05-27 2024-01-30 浙江理工大学 一种空间位点隔离的聚合物基酸碱催化剂的制备方法

Also Published As

Publication number Publication date
KR20140117249A (ko) 2014-10-07
US20160120814A1 (en) 2016-05-05
KR101592235B1 (ko) 2016-02-12
US9757342B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2014148713A1 (ko) 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법
JP4308764B2 (ja) 脂肪族生物分解性リンカーに基づく放出可能な高分子コンジュゲート
JP5405746B2 (ja) 脂肪族生物分解性リンカーに基づく放出可能なポリマー複合体
JP4824404B2 (ja) 脂肪族生物分解性リンカーに基づく放出可能なポリマー複合体
JP5825507B2 (ja) 分岐型ヘテロポリエチレングリコール
WO2011021804A2 (ko) 감응성 고분자 캡슐 및 그 제조방법
WO2018186725A1 (ko) 암 치료용 약학 조성물
CN101541347A (zh) 药物载体、其合成及其使用方法
WO2018208137A2 (ko) 빌리루빈 유도체 및 금속을 포함하는 입자
WO2018128360A1 (ko) 암 및 피부질환 치료를 위한 생체 적합성 광열용 조성물
CN109464654B (zh) 鹅膏毒肽类抗体偶联物
EP3915973A1 (en) Compound for preparation of antibody-payload conjugate and use thereof
WO2023287111A1 (ko) 마이셀 복합체 및 이를 포함하는 약물전달체
JP2015157946A (ja) 分岐型ヘテロポリエチレングリコールおよび中間体
WO2010104253A1 (en) Multifunctional contrast agent using biocompatible polymer and preparation method
EP1315739B1 (fr) Procede de couplage, en solution, entre un peptide et un vecteur lipophile et ses applications
JP7356677B2 (ja) 複合体
JP2008308423A (ja) 両親媒性の高分子配位子によって安定化された高分子錯体および検査用組成物および医薬組成物
WO2010126179A1 (ko) 클로린 e6-엽산 결합 화합물 및 키토산을 함유하는 암 치료용 약학적 조성물
WO2021020945A1 (ko) 항암제 및 다공성 실리카 입자의 제조방법
WO2018205286A1 (zh) 含荧光发色团的缀合物、嵌段共聚物及其制备方法和应用
CN109734856B (zh) 含有卟啉端基两亲性聚肽嵌段共聚物及其制备方法和应用
Jung et al. A Bis (phosphine)-Modified Peptide Ligand for Stable and Luminescent Quantum Dots in Aqueous Media
WO2023277575A1 (ko) 신규한 세포 투과성 펩타이드 및 이의 용도
CN116036041B (zh) 多价靶向蛋白降解前药和形成的纳米粒、其制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14778906

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13878835

Country of ref document: EP

Kind code of ref document: A1