WO2010128649A1 - ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法 - Google Patents

ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法 Download PDF

Info

Publication number
WO2010128649A1
WO2010128649A1 PCT/JP2010/057681 JP2010057681W WO2010128649A1 WO 2010128649 A1 WO2010128649 A1 WO 2010128649A1 JP 2010057681 W JP2010057681 W JP 2010057681W WO 2010128649 A1 WO2010128649 A1 WO 2010128649A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mixture
diaryl iodonium
diaryliodonium
salt
Prior art date
Application number
PCT/JP2010/057681
Other languages
English (en)
French (fr)
Inventor
智章 田中
育代 勝見
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009113937A external-priority patent/JP5485583B2/ja
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201080019541.9A priority Critical patent/CN102414148B/zh
Priority to EP10772168.0A priority patent/EP2428501B1/en
Priority to US13/138,975 priority patent/US8975203B2/en
Publication of WO2010128649A1 publication Critical patent/WO2010128649A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton

Definitions

  • the present invention relates to a diaryl iodonium salt mixture, a method for producing a diaryl iodonium salt mixture, and a method for producing a diaryl iodonium compound.
  • a salt of a diaryliodonium compound is used as a polymerization initiator.
  • Patent Documents 1 to 5 disclose BF 4 , PF 6 , SbF 6 and AsF 6 salts of diaryliodonium compounds having various side chains as polymerization initiators. Among them, a salt of bis (dodecylphenyl) iodonium is also included.
  • a salt of a diaryliodonium compound When a salt of a diaryliodonium compound is used as a polymerization initiator or the like, the phenyl moiety may be liberated by decomposition. As a result, for example, benzene, toluene and the like are produced, but these compounds have toxicity such as carcinogenicity, and their use is limited.
  • bis (dodecylphenyl) iodonium salts substituted with a long-chain alkyl group dodecyl group can be said to be relatively low in toxicity of dodecylbenzene produced by decomposition, so that it can be applied to polymerization initiators and the like. I can expect.
  • BF 4 salts of diaryl iodonium compounds are used as polymerization initiators, but BF 4 salts of bis (dodecylphenyl) iodonium have a problem of low compatibility with monomers. Such a problem is not important when a polymer is produced on a small scale at a laboratory level, but is problematic in industrial mass production because it leads to a decrease in production efficiency.
  • the BF 4 salt of a diaryl iodonium compound is usually synthesized from a salt of a diaryl iodonium compound and a halide ion.
  • a halide salt include chloride salts of bis (dodecylphenyl) iodonium disclosed in Patent Documents 4 to 5.
  • the chloride salt is a solid formed by reacting a mixture of sulfuric acid and acetic acid dropwise in a mixed solvent of acetic acid and acetic anhydride to a mixture of dodecylbenzene and potassium iodate, then adding a sodium chloride solution and cooling. Is produced by recrystallization.
  • Non-Patent Document 1 bis (dodecylphenyl) iodonium bromide and iodide salts are produced in the same manner as in Patent Documents 4 to 5 except that a sodium bromide solution or potassium iodide solution is finally used. An example is described.
  • the methods for producing bis (dodecylphenyl) iodonium salts disclosed in Patent Documents 4 to 5 and Non-Patent Document 1 react potassium iodate (KIO 3 ) with dodecylbenzene in the presence of acetic anhydride and concentrated sulfuric acid. It is something to be made. However, the yield of the method is as low as 37-52%. This cannot be applied to industrial mass production of diaryliodonium compounds. Further, according to the knowledge of the present inventor, the method produces a large amount of para-iodododecylbenzene, which is a by-product. This paraiodododecylbenzene is difficult to separate from the target product, bis (dodecylphenyl) iodonium salt, and is a cause of giving up product quality.
  • Non-Patent Documents 2 to 3 which include sodium periodate (NaIO 4 ) and an aryl compound in the presence of concentrated sulfuric acid. Examples of reactions are described.
  • Patent Documents 6 to 9 describe production examples of di (4-isobutylphenyl) iodonium salts.
  • a diaryl iodonium compound which is unsubstituted or substituted with an alkyl group having a small number of carbon atoms can also be produced by a method using, for example, iodobenzene and toluene as raw materials and ammonium persulfate.
  • a diaryl iodonium compound substituted with a long-chain alkyl group called a dodecyl group does not proceed at all under the same conditions when paraiodododecylbenzene and dodecylbenzene are used as raw materials.
  • diaryl iodonium compound in the production of a diaryl iodonium compound, it can be said that there is a great difference in reactivity between a compound substituted with benzene or an alkyl group having a small number of carbon atoms and a compound having a long chain alkyl group. Therefore, it cannot be said that the production example of a diaryl iodonium compound substituted with an unsubstituted or alkyl group having a small number of carbon atoms can be applied to the production of a diaryl iodonium compound substituted with a long chain alkyl group.
  • Patent Documents 6 to 9 KIO 3 is used in the chemical reaction formula, but in the text, potassium periodate is described instead of potassium iodate.
  • Patent Documents 10 to 11 cited in Patent Documents 6 to 9 as prior art documents relating to a method for producing a di (4-isobutylphenyl) iodonium salt clearly indicate potassium iodate (or potassium iodate). Therefore, potassium periodate described in Patent Documents 6 to 9 is considered to be a mistaken description of potassium iodate. Moreover, it is thought that it is a cause of a low yield that what is actually used is potassium iodate instead of potassium periodate.
  • Japanese Patent Laid-Open No. 2005-120311 Japanese Unexamined Patent Publication No. 7-3028 JP 2001-11185 A JP-A-6-184170 JP-A-6-41433 Japanese Patent Publication No. 7-55915 Japanese Examined Patent Publication No. 7-57738 Japanese Examined Patent Publication No. 7-64764 Japanese Patent Publication No.7-116067 JP-A-53-101331 Japanese Patent Publication No.57-53767
  • a BF 4 salt of a diaryliodonium compound or the like has been used as a polymerization initiator.
  • a BF 4 salt of safer diaryliodonium compound was prepared BF 4 salt of bis (dodecyl phenyl) iodonium.
  • the BF 4 salt and the like have poor solubility in monomers and are unsuitable for industrial mass production of polymers. Therefore, in order to increase the solubility of the BF 4 salt in a monomer, an attempt was made to produce a BF 4 salt or the like of a mixture of diaryl iodonium compounds substituted with a long-chain alkyl group.
  • BF 4 salts of diaryliodonium compounds and the like are required to be soluble in monomers when used as polymerization initiators, but are obtained as crystals at the precursor stage in order to increase production efficiency. There is a need for mutually conflicting characteristics that need to be achieved. Further, in order to use the BF 4 salt or the like in mass production of a polymer or the like, it is necessary that the BF 4 salt or the like itself can be efficiently produced.
  • the present invention is a precursor of a diaryl iodonium compound such as a BF 4 salt, which is obtained as a crystal at normal temperature, is easily purified and can be efficiently produced, and is derived into a BF 4 salt or the like.
  • a diaryliodonium salt mixture having excellent solubility in monomers and the like, and a method for producing the mixture.
  • the second invention of the present invention has an object to provide a production method that can be applied to industrial mass production of diaryliodonium compounds because the yield is good and the amount of by-products produced is small.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, if a bromide salt or iodide salt, which is usually easy to color or has a low yield, can be avoided, it can be obtained as a crystal even if the diaryliodonium moiety substituted with a long-chain alkyl group is a mixture. Thus, the present invention has been completed.
  • the diaryl iodonium salt mixture according to the first invention is characterized by containing two or more diaryl iodonium salts represented by the formula (I).
  • R 1 and R 2 each independently represent a C 8-20 alkyl group
  • the method for producing a diaryliodonium salt mixture according to the first invention is a method for producing a mixture containing two or more of the above diaryliodonium salts; Synthesizing a diaryl iodonium mixture containing two or more diaryl iodonium compounds represented by formula (III) from an alkyl aryl mixture containing two or more alkyl aryl compounds represented by formula (II);
  • R 3 represents a C 8-20 alkyl group; R 1 and R 2 have the same meaning as described above]
  • the method for producing the diaryliodonium compound according to the second invention is as follows: In the presence of acetic anhydride and concentrated sulfuric acid, one or more aryl compounds represented by formula (IV)
  • R represents a C 8-20 alkyl group
  • the diaryl iodonium compound as the target compound is a compound represented by the following formula (V).
  • R 4 and R 5 each independently represent the same group as R in the aryl compound (IV)]
  • the “C 8-20 alkyl group” refers to a linear or branched aliphatic hydrocarbon group having 8 to 20 carbon atoms. If the number of carbon atoms is 8 or more, highly toxic lower alkylbenzene will not be produced by decomposition. On the other hand, when the number of carbon atoms exceeds 20, the mixture of diaryl iodonium salts becomes difficult to crystallize and purification becomes difficult, and therefore the number of carbon atoms is preferably 20 or less.
  • Examples of the group include n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-icosyl, methylnonyl, methyldecyl.
  • Methylundecyl methyldodecyl, dimethyloctyl, dimethylnonyl, dimethyldecyl, dimethylundecyl, ethylnonyl, ethyldecyl, ethylundecyl, ethyldodecyl, and the like.
  • a C 9-18 alkyl group is preferable, and a C 10-16 alkyl group is more preferable.
  • 2 is a 1 H-NMR chart of a mixture of alkylaryl compounds used as raw materials in the method of the first invention.
  • 1 is a 1 H-NMR chart of dodecylbenzene.
  • 1 is a 1 H-NMR chart of a diaryl iodonium bromide salt mixture according to the first invention.
  • 1 is a 1 H-NMR chart of a diaryl iodonium iodide salt mixture according to the first invention.
  • the diaryl iodonium salt mixture according to the first invention includes two or more of the following diaryl iodonium salts (I).
  • R 1 and R 2 each independently represent a C 8-20 alkyl group
  • the mixture is crystalline at room temperature and can be purified by a simple method such as washing, but it does not become a solid when induced to a BF 4 salt or the like, and therefore has excellent solubility in monomers and the like.
  • the ratio of the diaryl iodonium salt (I) having the highest content is 50% by mass or less, the solubility in a monomer or the like when derived into a BF 4 salt or the like is improved.
  • the said ratio 30 mass% or less is more preferable, and 25 mass% or less is further more preferable.
  • the number of diaryl iodonium salts contained in the mixture of the first invention is preferably 3 or more, more preferably 15 or more, further preferably 50 or more, further preferably 100 or more, and preferably 1000 or less, preferably 800 or less. More preferably, 500 or less is more preferable, and 300 or less is further preferable.
  • the mixture of the diaryl iodonium salt (I) according to the first aspect of the present invention is crystalline at room temperature, but when it is derived into a BF 4 salt, it does not become solid but dissolves in the monomer. Because of its excellent properties, the polymerization initiator can be used as a raw material compound for industrially synthesizing a large amount.
  • a diaryl iodonium mixture containing two or more diaryl iodonium compounds (III) is synthesized from an alkyl aryl mixture containing two or more alkyl aryl compounds (II).
  • the alkylaryl compound (II) which is a raw material compound of the first invention method, has a relatively simple structure, it may be purchased and used as long as it is commercially available. You may synthesize
  • a mixture of alkylaryl compounds (II) is used as a raw material compound. This is because the target compound, diaryl iodonium salt, is obtained as a mixture.
  • the number of alkylaryl compounds (II) contained in the alkylaryl mixture as a raw material is not particularly limited, but is naturally 2 or more. In order to increase the solubility in monomers and the like more reliably when the target compound diaryl iodonium salt mixture is derived into BF 4 salt, the number of alkylaryl compounds (II) is preferably 5 or more, more preferably Is 10 or more.
  • the diaryl iodonium salt mixture as the target compound may not be crystallized even if it is purified. 50 or less, more preferably 40 or less, further preferably 30 or less, and further preferably 25 or less.
  • each alkylaryl compound (II) contained in the alkylaryl mixture as a raw material may be adjusted as appropriate, but if the content of a specific compound is prominent, even if the resulting diaryliodonium salt is a mixture, When induced to BF 4 salt or the like, it may be crystallized. Therefore, the ratio of the alkylaryl compound (II) having the largest content is preferably 50% by mass or less.
  • a diaryliodonium salt mixture can be obtained as a crystal more reliably.
  • the diaryliodonium salt mixture is derived into a BF 4 salt or the like, it becomes solid at room temperature. In other words, it exhibits excellent solubility in monomers.
  • As the said ratio 30 mass% or less is more preferable, and 25 mass% or less is further more preferable.
  • Examples of the iodate used in this reaction include potassium iodate (KIO 3 ) and sodium iodate (NaIO 3 ). Further, a periodate represented by M 1 IO 4 [wherein M 1 represents an alkali metal] or M 2 (IO 4 ) 2 [wherein M 2 represents an alkaline earth metal] is used. be able to.
  • Examples of the alkali metal include lithium, sodium, and potassium.
  • Examples of the alkaline earth metal include magnesium and calcium.
  • lithium periodate (LiIO 4 ), potassium periodate (KIO 4 ), or sodium periodate (NaIO 4 ) is used.
  • the amount of iodate or periodate used may theoretically be 0.5 mol times the alkylaryl mixture, but is preferably 0.3 mol times or more, more preferably 0.4 mol times or more.
  • the molar ratio is preferably 1 mol times or less, more preferably 0.8 mol times or less.
  • the amount of the mixed solution of acetic anhydride and acetic acid may be appropriately adjusted.
  • the amount of the alkylaryl mixture and the amount of iodate or periodate used is about 1.2 times by mass or more and about 3 times by mass or less. can do. If the amount of the mixed solution of acetic anhydride and acetic acid is too small, it may be difficult to stir the reaction solution, whereas if the amount is too large, purification may be difficult.
  • an alkylaryl mixture and iodate or periodate are added to a mixture of acetic anhydride and acetic acid and mixed.
  • the mixed solution may be subjected to the reaction as it is, but since the temperature rises by adding sulfuric acid, it may be ice-cooled.
  • the sulfuric acid used here is not dilute sulfuric acid but is called concentrated sulfuric acid.
  • the usage-amount of a sulfuric acid should just be 0.5 mol times or more and 10.0 mol times or less with respect to an aryl compound. If the said ratio is 0.5 mol times or more, reaction can fully be advanced. On the other hand, if the ratio exceeds 10.0 mole times, post-treatment and purification of the reaction solution may take time and labor.
  • the ratio is more preferably 0.8 mole times or more. If it is 0.8 mol times or more, the diaryliodonium compound (V), which is the target compound, can be more reliably obtained in a high yield.
  • the sulfuric acid to be dripped may be diluted with a solvent such as acetic acid.
  • the solvent used for dilution can be about 0.2 volume times or more and 5.0 volume times or less with respect to sulfuric acid.
  • the reaction rate may be adjusted by adjusting the dropping rate, cooling the reaction solution with water, or cooling with ice. It is preferable to adjust the temperature of the liquid to be about 30 ° C. or higher and 60 ° C. or lower.
  • reaction time is not particularly limited, but can be about 1 hour or more and 10 hours or less.
  • the specific reaction time may be determined, for example, by confirming consumption of the alkylaryl compound (II) by 1 H-NMR or by preliminary experiments.
  • a conventional method can be used. For example, water may be added to remove by-products and impurities, and the resulting mixture of diaryliodonium compounds (III) may be extracted with an organic solvent.
  • the reaction solution When adding water to the reaction solution, heat is generated. Therefore, the reaction solution may be cooled or water may be dropped. Moreover, it is preferable that the usage-amount of water shall be about 50 volume% or more and 500 volume% or less with respect to the reaction liquid. If the amount of water is too small, there is a risk that by-products and the like cannot be removed sufficiently, and conversely, if the amount of water is too large, the productivity may decrease.
  • the extraction solvent for the diaryliodonium mixture is not particularly limited as long as it is excellent in solubility of the mixture and is immiscible with water.
  • cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, pentane, hexane, Chain hydrocarbon solvents such as heptane, octane, isooctane and isododecane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; ethers such as diisopropyl ether, t-butyl methyl ether and dibutyl ether can be used.
  • the obtained extract may be washed with a saturated aqueous sodium hydrogen carbonate solution or an aqueous sodium sulfate solution.
  • R 1 and R 2 which are substituents of the diaryl iodonium compound (III) contained in the reaction solution are the same as R 3 which is a substituent of any alkyl aryl compound (II) contained in the raw material mixture.
  • the diaryl iodonium compound (III) is dissolved in the reaction solution or the extract and exists in the state of iodonium ions. If the diaryliodonium compound (III) is isolated at this stage, it can be obtained in the form of a salt with the anion present in the reaction solution or extract. Examples of the salt include sulfate, hydrogen sulfate, and acetate.
  • an alkali metal or alkaline earth metal bromide salt or iodide salt is added to a solution of the mixture of diaryl iodonium compound (III), and the mixture of compound (I) which is a bromide salt or iodide salt of diaryl iodonium is added. obtain.
  • the ratio of what has the largest content among diaryl iodonium compounds (III) contained in a diaryl iodonium mixture may be 50 mass% or less.
  • the diaryliodonium salt mixture can be obtained as a crystal more reliably, whereas when the diaryliodonium salt mixture is derived into a BF 4 salt or the like, However, it does not become solid and exhibits excellent solubility in monomers.
  • the said ratio 30 mass% or less is more preferable, and 25 mass% or less is further more preferable.
  • the alkali metal of the bromide salt or iodide salt used in this reaction can include lithium, sodium and potassium, and the alkaline earth metal can include magnesium and calcium.
  • the diaryliodonium salt mixture according to the first invention can be obtained in a better yield in the iodide salt mixture than in the bromide salt mixture.
  • Alkali metal or alkaline earth metal bromide salt or iodide salt may be added as an aqueous solution.
  • concentration of the aqueous solution to be used is not particularly limited, but may be about 5% by mass or more and 80% by mass or less.
  • usage-amount of the said bromide salt etc. is not restrict
  • the mixture After adding an aqueous solution such as an alkali metal bromide salt, the mixture may be stirred for about 10 minutes to 60 minutes and then separated. The operation of separating the liquid after adding the aqueous solution and stirring may be repeated a plurality of times.
  • an aqueous solution such as an alkali metal bromide salt
  • the organic phase is separated and concentrated under reduced pressure, or a crystal is precipitated after adding a poor solvent, and then separated.
  • the organic phase may be dried with anhydrous magnesium sulfate or the like.
  • the residue obtained by concentration under reduced pressure of the organic phase mainly contains a plurality of diaryliodonium salts (I) according to the first invention and is crystalline despite being a mixture.
  • the mixture of the diaryliodonium salts (I) according to the first invention can be obtained as crystals even when a poor solvent is added to the organic phase. These crystals can be further purified by a very simple method such as washing with a poor solvent such as methanol, ethanol, isopropanol or recrystallization.
  • diaryliodonium salt mixture those having the highest content of diaryliodonium salt (I) are preferably 50% by mass or less. Since the diaryliodonium salt mixture is obtained as a crystal, it is excellent in productivity. On the other hand, when it is derived into a BF 4 salt, it does not become a solid at room temperature, and has excellent solubility in monomers and the like. It has the advantage of showing. As the said ratio, as said ratio, 30 mass% or less is more preferable, and 25 mass% or less is further more preferable.
  • the mixture of diaryliodonium salts according to the first invention is crystalline at room temperature, it can be purified by a simple method suitable for industrial production such as washing with a poor solvent and recrystallization.
  • it when it is derived into a BF 4 salt or the like, it does not become a solid at room temperature, so it has a high solubility in monomers and is excellent as a catalyst that can be used in industrial mass production processes.
  • a mixture of diaryliodonium salts that are crystals at room temperature and are highly soluble in monomers when derived into BF 4 salts and the like can be efficiently produced. . Therefore, this 1st invention is very useful industrially as a technique regarding the diaryliodonium salt mixture useful as a raw material compound of a polymerization initiator.
  • periodate is allowed to act on one or more aryl compounds (II) in the presence of acetic anhydride and concentrated sulfuric acid.
  • the aryl compound (IV) used in the second invention has a relatively simple structure, if it is commercially available, it may be purchased and used, or synthesized from a commercially available compound by a method known to those skilled in the art. Also good. For example, after synthesizing benzene having a long-chain acyl group as a substituent from the corresponding acyl chloride and benzene by Friedel-Crafts reaction, the carbonyl group is reduced to easily synthesize the alkylaryl compound (IV). Can do.
  • the aryl compound (IV) is a benzene substituted with a long chain alkyl group having 8 or more and 20 or less carbon atoms. Compared to those substituted with a lower alkyl group such as toluene or unsubstituted benzene, Less toxic to the environment. Therefore, even if the diaryl iodonium compound (V), which is the target compound of the second invention, decomposes to produce an aryl compound (IV) or an aryl compound (IV) in which the p-position is iodo substituted, it can be said that there is little adverse effect. .
  • the aryl compound (IV) may be used alone, but two or more aryl compounds (IV) may be used as a raw material.
  • the diaryl iodonium compound (V) is also obtained as a mixture containing a plurality of compounds.
  • the diaryl iodonium compound (V) as the target compound becomes a mixture as described above, and the crystallinity is lowered depending on the type of the counter anion.
  • the diaryl iodonium compound (V) obtained as a hydrogen sulfate is crystallized by exchanging its anion with a specific one.
  • a BF 4 salt or the like was separately used as a polymerization initiator, it did not become a crystal.
  • Such a mixture of diaryliodonium compounds (V) is very useful industrially because of its extremely high solubility in monomers and the like compared to crystals.
  • the acid salt is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the alkaline earth metal include magnesium and calcium.
  • lithium periodate (LiIO 4 ), potassium periodate (KIO 4 ), or sodium periodate (NaIO 4 ) is used.
  • the amount of periodate used may theoretically be 0.5 mol times the diaryliodonium compound (V), but is usually 0.3 mol times or more, preferably 0.4 mol times or more, and 1 0.0 mol times or less, preferably 0.8 mol times or less is used.
  • Periodate may be used alone or in combination of two or more.
  • periodate of M 1 IO 4 and M 2 (IO 4 ) 2 can also be mixed and used.
  • the reaction proceeds in the presence of acetic anhydride and concentrated sulfuric acid.
  • acetic anhydride and concentrated sulfuric acid are involved in the formation of the reaction intermediate.
  • acetic anhydride may help to remove moisture.
  • Concentrated sulfuric acid here means what does not contain water substantially, for example, means 95% or more and 98% or less sulfuric acid.
  • the amount of acetic anhydride to be used is not particularly limited and may be appropriately determined by a preliminary experiment or the like, but is usually 0.5 mol times or more and 10.0 mol times or less with respect to the aryl compound (IV). . If the said ratio is 0.5 mol times or more, reaction can fully be advanced. On the other hand, if the ratio exceeds 10.0 mole times, post-treatment and purification of the reaction solution may take time and labor. The ratio is more preferably 0.8 mole times or more. If it is 0.8 mol times or more, the diaryliodonium compound (V), which is the target compound, can be more reliably obtained in a high yield.
  • the amount of concentrated sulfuric acid to be used is not particularly limited, but is usually about 0.4 mol times or more and 10.0 mol times or less with respect to the aryl compound (IV). If the said ratio is 0.4 mol times or more, reaction can fully be advanced. On the other hand, if the ratio exceeds 10.0 mole times, post-treatment and purification of the reaction solution may take time and labor.
  • the ratio is more preferably 0.8 mole times or more. If it is 0.8 mol times or more, the diaryliodonium compound (V), which is the target compound, can be more reliably obtained in a high yield.
  • a solvent may be used.
  • the type of the solvent is not particularly limited and may be appropriately selected.
  • carboxylic acids such as acetic acid, formic acid, propionic acid, butyric acid, valeric acid, and caproic acid can be used.
  • concentrated sulfuric acid may be added to a mixture of aryl compound (IV), periodate and acetic anhydride, or aryl compound (IV) and concentrated sulfuric acid to a mixture of periodic acid and acetic anhydride. May be added dropwise. Furthermore, periodic acid may be added in several portions. The mixture may be diluted to about 1.2 volume times or more and 10.0 volume times or less by adding a solvent. The same applies to concentrated sulfuric acid, and the solvent may be added to dilute to about 1.5 to 10.0 volume times. Of course, only one of them may be diluted.
  • the addition of concentrated sulfuric acid is carried out by dropping, for example, by adjusting the rate of addition, or by adding while cooling, etc., and adjusting the reaction liquid temperature during addition to about 10 ° C. or more and 70 ° C. or less. Is preferred.
  • the reaction temperature at this time is preferably about 10 ° C. or higher and about 100 ° C. or lower. If it is 10 degreeC or more, reaction can be advanced favorable. More preferably, the reaction is performed at about 50 ° C. or higher and 60 ° C. or lower. If reaction temperature is 50 degreeC or more, reaction will advance very favorable and the diaryliodonium compound (V) which is a target compound will be obtained with a high yield.
  • reaction time after the addition of concentrated sulfuric acid may be adjusted as appropriate, but can usually be about 1 hour or more and 10 hours or less.
  • inert gas such as nitrogen and argon.
  • the target compound, diaryl iodonium compound (V) exists as a hydrogen sulfate salt in the reaction solution, but has high fat solubility and can be extracted with a fat soluble organic solvent.
  • the target compound, diaryl iodonium compound (V) exists as a hydrogen sulfate salt in the reaction solution, but has high fat solubility and can be extracted with a fat soluble organic solvent.
  • the fat-soluble organic solvent can be used without particular limitation as long as it can extract the diaryliodonium compound (V) and is immiscible with water.
  • cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • Chain hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane and isododecane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; ethers such as diisopropyl ether, t-butyl methyl ether and dibutyl ether are used. be able to.
  • the obtained organic phase may be washed with water, a sodium hydrogen carbonate aqueous solution, a sodium hydrogen sulfate aqueous solution, a sodium carbonate aqueous solution, a sodium sulfate aqueous solution, or the like. Furthermore, you may dry with anhydrous sodium sulfate, anhydrous magnesium sulfate, etc.
  • the diaryliodonium compound (V) as the target compound may be purified from the organic phase by crystallization or the like.
  • crystallization if a large amount of p-iodoalkylbenzene, which is a by-product, is present, it is very difficult to completely remove it.
  • the resulting diaryliodonium compound has good crystallinity, and a highly pure diaryliodonium compound (V) can be obtained.
  • it takes time for solid-liquid separation after crystallization but according to the method of the second invention, such solid-liquid separation can also be performed quickly.
  • a safer diaryl iodonium compound that can be used as a precursor such as a polymerization initiator can be easily produced in a high yield and while suppressing the formation of by-products. it can. Therefore, this 2nd invention is very useful industrially as what contributes to industrial mass production of a diaryliodonium compound.
  • Example 1 Preparation of a diaryliodonium bromide salt mixture Alkene L (manufactured by Nippon Oil Co., Ltd., average molecular weight: 241), a mixture of benzene substituted with a long-chain alkyl having 10 to 13 carbon atoms, was analyzed by GC-MS. The molecular weight of each peak was determined. Further, the content of each component was calculated from the area ratio of each peak. The results are shown in Table 1.
  • the alkene L contains 18 kinds of long-chain alkylbenzenes, and its content was 13.0% at the maximum.
  • FIG. 1 A 1 H-NMR chart of Alkene L is shown in FIG.
  • FIG. 1 in the vicinity of 2.3 to 2.7 ppm, there are three broad peaks derived from protons of a methylene group (—CH 2 — group) or a methine group (—CH ⁇ group) directly connected to the benzene ring. A peak is seen. In the vicinity of 0.7 to 1.8 ppm, there is a complex peak derived from protons other than those described above in the alkyl group.
  • FIG. 2 shows a 1 H-NMR chart of dodecylbenzene alone. As shown in FIG.
  • alkene L is a mixture of benzene substituted with various alkyl groups.
  • Example 2 Preparation of iodide salt mixture of diaryliodonium Alkene L (manufactured by Nippon Oil Corporation, 150.06 g), potassium iodate in a four-necked flask equipped with a reflux tube, a dropping funnel, a nitrogen introduction tube and a thermometer (66.56 g), acetic anhydride (158.90 g) and acetic acid (150.26 g) were added, and the atmosphere in the reactor was replaced with nitrogen. A mixture of concentrated sulfuric acid (91.66 g) and acetic acid (60.16 g) was placed in the dropping funnel, and the mixture was added dropwise over 1 hour so that the reaction solution temperature did not exceed 40 ° C. while flowing nitrogen gas.
  • reaction solution was stirred at 40 ° C. for 2 hours. Then, water (300.82g) was dripped at the reaction liquid, cooling. Furthermore, cyclohexane (150.42g) was added to the reaction liquid, and it stirred for 30 minutes. An organic phase (436.66 g) was obtained from the reaction solution separated into two layers. Separately, sodium iodide (156.00 g) was dissolved in water (56.48 g), and the obtained sodium iodide aqueous solution was added to the organic phase and stirred for 30 minutes. The reaction solution was separated to obtain an organic phase (460.00 g).
  • Example 3 Preparation of iodide salt mixture of diaryliodonium Dodecylbenzene soft type (manufactured by Tokyo Chemical Industry Co., Ltd., average molecular weight: 246.43), which is a mixture of benzene substituted with long-chain alkyl having 10 to 13 carbon atoms, was -Analyzed by MS to determine the molecular weight of each peak. Further, the content of each component was calculated from the area ratio of each peak. The results are shown in Table 2.
  • the dodecylbenzene soft type contained 18 kinds of long-chain alkylbenzenes, and its content was 15.2% at the maximum.
  • reaction solution was stirred at 40 ° C. for 2 hours. Then, water (201.46g) was dripped at the reaction liquid, cooling. Furthermore, ethylcyclohexane (100.00 g) was added to the reaction solution and stirred for 30 minutes. The reaction solution separated into two layers was separated to obtain an organic phase (294.02 g). Separately, sodium iodide (166.35 g) was dissolved in water (109.28 g), and the obtained sodium iodide aqueous solution was added to the organic phase and stirred for 30 minutes. The reaction solution was separated to obtain an organic phase.
  • reaction solution was stirred at 40 ° C. for 2.5 hours. Then, water (50.10g) was dripped at the reaction liquid, cooling. Furthermore, cyclohexane (50.06 g) was added to the reaction solution and stirred for 30 minutes. The reaction solution separated into two layers was separated to obtain an organic phase (294.02 g). Separately, sodium chloride (2.91 g) was dissolved in water (9.03 g), and the resulting aqueous sodium chloride solution was added to the organic phase and stirred for 30 minutes. The reaction solution was separated to obtain an organic phase. Separately, sodium chloride (2.81 g) was dissolved in water (8.69 g), the organic phase was washed with the obtained aqueous sodium chloride solution, and then the solvent was distilled off from the organic phase under reduced pressure.
  • cyclohexane (10.08 g) was added to the reaction solution, and the temperature of the mixture was cooled to 10 ° C. Further, water (9.98 g) was added, and then the temperature of the mixture was increased to 40 ° C., stirred for 0.5 hour, and separated to obtain a cyclohexane solution (19.80 g).
  • the yield of the diaryliodonium compound was 81% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 3%
  • the conversion of dodecylbenzene was 99. It was 6%.
  • cyclohexane (5.00 g) was added to the reaction solution, and the temperature of the mixture was cooled to 10 ° C. Further, water (5.02 g) was added, and then the temperature of the mixture was increased to 40 ° C., stirred for 0.5 hour, and separated to obtain a cyclohexane solution (15.14 g).
  • the yield of the diaryliodonium compound was 87% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 0.6%
  • the conversion of dodecylbenzene was It was 99.6%.
  • ethylcyclohexane (7.02 g) was added to the reaction solution, and the mixture temperature was cooled to 10 ° C. Further, after adding water (5.50 g), the temperature of the mixture was raised to 40 ° C., stirred for 0.5 hour, and then separated to obtain an ethylcyclohexane solution (15.04 g).
  • the yield of the diaryl iodonium compound was 77% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 0.7%
  • the conversion of dodecylbenzene was It was 98.3%.
  • cyclohexane (5.00 g) was added to the reaction solution, and the temperature of the mixture was cooled to 10 ° C. Further, after adding water (5.00 g), the temperature of the mixture was increased to 40 ° C., stirred for 0.5 hour, and then separated to obtain a cyclohexane solution (15.00 g).
  • the yield of the diaryliodonium compound was 62% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 9%
  • the conversion of dodecylbenzene was 88. It was 6%.
  • ethylcyclohexane (7.04 g) was added to the reaction solution, and the mixture temperature was cooled to 10 ° C. Further, water (5.08 g) was added, the temperature of the mixture was raised to 40 ° C., stirred for 0.5 hour, and then separated to obtain an ethylcyclohexane solution (16.28 g).
  • the yield of the diaryliodonium compound was 61% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 12%
  • the conversion of dodecylbenzene was 86. It was 6%.
  • cyclohexane (7.00 g) was added to the reaction solution, and the temperature of the mixed solution was cooled to 10 ° C. Further, after adding water (5.14 g), the temperature of the mixture was increased to 40 ° C., stirred for 0.5 hour, and then liquid-separated to obtain a cyclohexane solution (15.00 g).
  • the yield of the diaryliodonium compound was 37% based on dodecylbenzene
  • the yield of by-product p-iodododecylbenzene was 0.8%
  • the conversion of dodecylbenzene was It was 55.6%.
  • conversion rate refers to the reaction rate of dodecylbenzene, which is a raw material compound, and is a value obtained by subtracting the proportion (%) of dodecylbenzene in the reaction solution from 100%.
  • Example 7 Production of diaryliodonium compound using sodium periodate Alkene L (manufactured by Nippon Oil Corporation, C 10-13 alkyl) was added to a four-necked flask equipped with a reflux tube, a dropping funnel, a nitrogen introduction tube and a thermometer. After adding a mixture of substituted benzene compounds, molecular weight: 241, 4.93 g), sodium periodate (NaIO 4 , 2.14 g), acetic anhydride (4.09 g) and acetic acid (4.01 g) The atmosphere in the reactor was replaced with nitrogen.
  • sodium periodate Alkene L manufactured by Nippon Oil Corporation, C 10-13 alkyl
  • a mixture of concentrated sulfuric acid (2.94 g) and acetic acid (2.00 g) was placed in the dropping funnel and added dropwise over 1 hour so that the reaction solution temperature did not exceed 40 ° C. After completion of dropping, the mixture was stirred at 50 ° C. for 5 hours. Then, water (5.01g) was dripped at the reaction liquid, cooling. Further, cyclohexane (5.00 g) was added to the reaction solution and stirred for 30 minutes. An organic phase (15.76 g) was obtained from the reaction solution separated into two layers. Separately, sodium iodide (1.50 g) was dissolved in water (2.98 g), and the obtained aqueous sodium iodide solution was added to the organic phase and stirred for 30 minutes.
  • the reaction solution was separated, and methanol (50.34 g) was added to the obtained organic phase, resulting in crystallization.
  • the obtained crystal was separated from the solution by pressure filtration with a pressure of 0.14 MPaG loaded using a pressure filter with an inner diameter of 47 mm.
  • the filtration time at that time was 9.5 seconds, the amount of the obtained filtrate was 55.4 g, and the filtration rate was 12166 kg / h ⁇ m 2 .
  • the obtained crystal was washed with methanol (10.34 g) and dried under reduced pressure at 60 ° C. to obtain a diaryliodonium compound crystal (yield: 4.50 g, yield: 60.4%).
  • the obtained crystal was separated from the solution by pressure filtration with a pressure of 0.14 MPaG loaded using a pressure filter with an inner diameter of 47 mm.
  • the filtration time at that time was 22 seconds, the amount of the obtained filtrate was 54.4 g, and the filtration rate was 5135 kg / h ⁇ m 2 .
  • the obtained crystals were washed with a mixed solution of methanol (3.84 g) and ethanol (3.12 g) and dried under reduced pressure at 60 ° C. to obtain diaryl iodonium compound crystals (yield: 3.24 g, yield). (Rate: 42.9%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、ジアリールヨードニウム化合物のBF4塩等の前駆体であり、常温で結晶として得られ簡便な精製が容易であり効率的に製造できるものでありながら、BF4塩等へ誘導した場合にはモノマーなどへの溶解性に優れるジアリールヨードニウム塩混合物と、その製造方法を提供することを目的とする。また、本発明は、収率が良好であり且つ副生物の生成量も少ないことから、ジアリールヨードニウム化合物の工業的な大量生産への適用も可能な製造方法を提供することを目的とする。本発明に係るジアリールヨードニウム塩の混合物は、特定のジアリールヨードニウム塩を2種以上含むことを特徴とする。また、本発明は、長鎖アルキル基を有するジアリールヨードニウム化合物を製造するための方法に関するものであって、無水酢酸および濃硫酸の存在下、特定のアリール化合物に過ヨウ素酸塩を作用させる工程を含むことを特徴とする。

Description

ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法
 本発明は、ジアリールヨードニウム塩混合物とジアリールヨードニウム塩混合物の製造方法、並びにジアリールヨードニウム化合物の製造方法に関するものである。
 ジアリールヨードニウム化合物の塩は、重合開始剤として利用されている。例えば特許文献1~5には、重合開始剤として、様々な側鎖を有するジアリールヨードニウム化合物のBF4、PF6、SbF6およびAsF6塩などが開示されている。その中には、ビス(ドデシルフェニル)ヨードニウムの塩も含まれている。
 ジアリールヨードニウム化合物の塩は、重合開始剤などとして使用すると、分解によりフェニル部分が遊離することがある。その結果、例えばベンゼンやトルエンなどが生成するが、これら化合物は発がん性といった毒性を有し、使用が制限されている。それに対して、長鎖アルキル基であるドデシル基に置換されているビス(ドデシルフェニル)ヨードニウム塩は、分解により生成するドデシルベンゼンの毒性は比較的低いといえるので、重合開始剤などへの適用が期待できる。
 ところが、上記のとおりジアリールヨードニウム化合物のBF4塩等は重合開始剤として使用されるが、ビス(ドデシルフェニル)ヨードニウムのBF4塩等はモノマーへの相溶性が低いという問題があった。かかる問題は、ポリマーを実験室レベルで小規模に製造する場合は重要ではないが、工業的な大量生産においては、製造効率の低下などにつながるので問題である。
 なお、ジアリールヨードニウム化合物のBF4塩等は、通常、ジアリールヨードニウム化合物とハロゲン化物イオンとの塩から合成される。かかるハロゲン化物塩としては、例えば特許文献4~5に開示されているビス(ドデシルフェニル)ヨードニウムの塩化物塩がある。当該塩化物塩は、酢酸と無水酢酸の混合溶媒中、ドデシルベンゼンとヨウ素酸カリウムへ、硫酸と酢酸の混合物を滴下して反応させた後、塩化ナトリウム溶液を加えてから冷却して生じた固体を再結晶することにより製造されている。
 また、非特許文献1には、最後に臭化ナトリウム溶液またはヨウ化カリウム溶液を用いる以外は特許文献4~5と同様の方法で、ビス(ドデシルフェニル)ヨードニウムの臭化物塩とヨウ化物塩を製造した例が記載されている。
 また、従来におけるジアリールヨードニウム化合物の製造方法は十分に満足できるものではなく、特に長鎖アルキル基に置換されているジアリールヨードニウム化合物の効率的な製法は知られていなかった。
 例えば、特許文献4~5および非特許文献1に開示されているビス(ドデシルフェニル)ヨードニウム塩の製造方法は、無水酢酸と濃硫酸の存在下、ヨウ素酸カリウム(KIO3)とドデシルベンゼンを反応させるものである。しかし、当該方法の収率は37~52%と低い。これでは、ジアリールヨードニウム化合物の工業的な大量生産に適用することができない。また、本発明者の知見によれば、当該方法では副生物であるパラヨードドデシルベンゼンの生成量が多い。このパラヨードドデシルベンゼンは、目的物であるビス(ドデシルフェニル)ヨードニウム塩との分離が難しく、製品品質を貶める原因となる。
 その他、メチル基などの小置換基に置換されたジアリールヨードニウム化合物の製造例ではあるが、非特許文献2~3には、濃硫酸の存在下、過ヨウ素酸ナトリウム(NaIO4)とアリール化合物を反応させた例が記載されている。また、特許文献6~9には、ジ(4-イソブチルフェニル)ヨードニウム塩の製造例が記載されている。
 しかし本発明者らの知見によれば、無水酢酸を用いることなくジアリールヨードニウム化合物を合成する場合の収率は低い。即ち、非特許文献2~3に記載されている収率も押し並べて低いものであるところ、かかる先行技術は、長鎖アルキル基に置換されているジアリールヨードニウム化合物の製造に適するものではないと考えられる。また、特許文献6~9に記載されているジ(4-イソブチルフェニル)ヨードニウム塩の収率も低い。
 また、本発明者らの知見によれば、無置換または炭素数の少ないアルキル基で置換されたジアリールヨードニウム化合物は、例えばヨードベンゼンとトルエンを原料とし、過硫酸アンモニウムを用いる方法でも製造可能である。その一方で、ドデシル基という長鎖アルキル基で置換されたジアリールヨードニウム化合物は、例えばパラヨードドデシルベンゼンとドデシルベンゼンを原料とした場合、同様の条件では全く進行しない。このように、ジアリールヨードニウム化合物の製造においては、ベンゼンや炭素数の少ないアルキル基で置換された化合物と長鎖アルキル基を有する化合物とでは、反応性に大きな違いがあるといえる。よって、無置換または炭素数の少ないアルキル基で置換されたジアリールヨードニウム化合物の製造例が、長鎖アルキル基に置換されたジアリールヨードニウム化合物の製造に適用できるとは必ずしもいえない。
 なお、特許文献6~9には、化学反応式中ではKIO3が使われている一方で、文章中にはヨウ素酸カリウムではなく過ヨウ素酸カリウムと記載されている。しかし、ジ(4-イソブチルフェニル)ヨードニウム塩の製造方法に関する先行技術文献として特許文献6~9で引用されている特許文献10~11には、ヨウ素酸カリウム(または沃素酸カリウム)と明示されていることから、特許文献6~9に記載されている過ヨウ素酸カリウムはヨウ素酸カリウムの誤記であると考えられる。また、実際に使われているのが過ヨウ素酸カリウムではなくヨウ素酸カリウムであることが、低収率の原因であると考えられる。
特開2005-120311号公報 特開平7-3028号公報 特開2001-11185号公報 特開平6-184170号公報 特開平6-41433号公報 特公平7-55915号公報 特公平7-57738号公報 特公平7-64764号公報 特公平7-116067号公報 特開昭53-101331号公報 特公昭57-53767号公報
F.Marshall Beringer,他6名,Journal of American Chemical Society(ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ),vol.81,pp.342-351(1959年) Lukasz Kraszkiewicz,他1名,Synthesis(シンセシス),No.15,pp.2373-2380(2008年) Lukasz Kraszkiewicz,他1名,Proceedings of ECSOC-9,International Electronic Conference on Synthetic Organic Chemistry,9th.(プロシーディングス・オブ・ECSOC-9,インターナショナル・エレクトロニック・コンフェレンス・オン・シンセティック・オーガニック・ケミストリー,第9回),A022/1-A022/12(2005年)
 上述したように、従来、ジアリールヨードニウム化合物のBF4塩等は重合開始剤として使用されていた。
 本発明者らは、より安全性の高いジアリールヨードニウム化合物のBF4塩等として、ビス(ドデシルフェニル)ヨードニウムのBF4塩等を製造した。ところが、当該BF4塩等はモノマーへの溶解性が悪く、ポリマーの工業的な大量生産には不適であった。そこで、当該BF4塩等のモノマーへの溶解性を高めるために、長鎖アルキル基に置換されたジアリールヨードニウム化合物の混合物のBF4塩等を製造しようとした。
 しかし、長鎖アルキル基に置換されたジアリールヨードニウム化合物の混合物のBF4塩等を製造しようとすると、その前駆体である塩化物塩は結晶化しなかったために、貧溶媒による洗浄や再結晶などの簡便な方法で精製することができなかった。それでは、工業的に大量生産することは難しい。
 以上のとおり、ジアリールヨードニウム化合物のBF4塩等には、重合開始剤として用いる場合にはモノマーに対する溶解性が要求される一方で、その前駆体の段階では、製造効率を高めるために結晶として得られる必要があるという、互いに相反する特性が求められる。また、当該BF4塩等をポリマーの大量生産などで用いるためには、当該BF4塩等自体が効率的に製造できるものである必要がある。
 そこで本第一発明は、ジアリールヨードニウム化合物のBF4塩等の前駆体であり、常温で結晶として得られ簡便な精製が容易であり効率的に製造できるものでありながら、BF4塩等へ誘導した場合にはモノマーなどへの溶解性に優れるジアリールヨードニウム塩混合物と、その製造方法を提供することを目的とする。
 また、上述したように、長鎖アルキル基で置換されたジアリールヨードニウム化合物を製造するための先行技術はあるものの、その数は少なく、また、収率は低いものであった。かかる収率の低さは、ジアリールヨードニウム化合物の工業的な大量生産への適用の妨げとなる。さらに、上記先行技術では、副生物であるパラヨードベンゼン化合物の生成量が多いという問題がある。このパラヨードベンゼン化合物は、目的化合物であるジアリールヨードニウム化合物との分離が難しく、製品品質を貶める原因となる。
 そこで本第二発明は、収率が良好であり且つ副生物の生成量も少ないことから、ジアリールヨードニウム化合物の工業的な大量生産への適用も可能な製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を進めた。その結果、通常は着色し易かったり収率が低いといった理由から使用が避けられる臭化物塩またはヨウ化物塩とすれば、長鎖アルキル基に置換されたジアリールヨードニウム部分が混合物であっても結晶として得られ、効率的に製造できることを見出して、本第一発明を完成した。
 本第一発明に係るジアリールヨードニウム塩混合物は、式(I)で表されるジアリールヨードニウム塩を2種以上含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000006
[式中、R1とR2は、それぞれ独立して、C8-20アルキル基を示す]
 本第一発明に係るジアリールヨードニウム塩混合物の製造方法は、上記ジアリールヨードニウム塩を2種以上含む混合物を製造するものであり;
 式(II)で表されるアルキルアリール化合物を2種以上含むアルキルアリール混合物から、式(III)で表されるジアリールヨードニウム化合物を2種以上含むジアリールヨードニウム混合物を合成する工程と;
Figure JPOXMLDOC01-appb-C000007
[式中、R3はC8-20アルキル基を示し;R1とR2は、前述したものと同義を示す]
 ジアリールヨードニウム化合物(III)の混合物と、アルカリ金属またはアルカリ土類金属の臭化物塩またはヨウ化物塩を混合する工程を含むことを特徴とする。
 また、本発明者らは、上記課題を解決するために鋭意研究を進めた。その結果、無水酢酸および濃硫酸の存在下でアリール化合物に過ヨウ素酸塩を作用させれば、副生物の生成を抑制しつつジアリールヨードニウム化合物を高収率で製造できることを見出して、本第二発明を完成した。
 本第二発明に係るジアリールヨードニウム化合物を製造するための方法は、
 無水酢酸および濃硫酸の存在下、式(IV)で表される1または2種以上のアリール化合物に、
Figure JPOXMLDOC01-appb-C000008
[式中、RはC8-20アルキル基を示す]
 M1IO4[式中、M1はアルカリ金属を示す]またはM2(IO42[式中、M2はアルカリ土類金属を示す]で表される過ヨウ素酸塩を作用させる工程を含み、
 目的化合物である上記ジアリールヨードニウム化合物が、下記式(V)で表される化合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
[式中、R4とR5は、それぞれ独立して、上記アリール化合物(IV)におけるRと同一の基を示す]
 本発明において、「C8-20アルキル基」とは、炭素数8~20の直鎖状または分枝鎖状の脂肪族炭化水素基をいう。炭素数が8以上であれば、毒性の強い低級アルキルベンゼンが分解により生成しない。一方、炭素数が20を超えると、ジアリールヨードニウム塩の混合物が結晶化し難くなり、精製が困難になるので、炭素数としては20以下が好ましい。当該基としては、例えば、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ヘキサデシル、n-オクタデシル、n-イコシル、メチルノニル、メチルデシル、メチルウンデシル、メチルドデシル、ジメチルオクチル、ジメチルノニル、ジメチルデシル、ジメチルウンデシル、エチルノニル、エチルデシル、エチルウンデシル、エチルドデシル等を挙げることができる。これらのうち、C9-18アルキル基が好ましく、C10-16アルキル基がより好ましい。
本第一発明方法で原料として用いたアルキルアリール化合物の混合物の1H-NMRチャートである。 ドデシルベンゼンの1H-NMRチャートである。 本第一発明に係るジアリールヨードニウム臭化物塩混合物の1H-NMRチャートである。 本第一発明に係るジアリールヨードニウムヨウ化物塩混合物の1H-NMRチャートである。
 本第一発明に係るジアリールヨードニウム塩混合物は、下記ジアリールヨードニウム塩(I)を2種以上含む。
Figure JPOXMLDOC01-appb-C000010
[式中、R1とR2は、それぞれ独立して、C8-20アルキル基を示す]
 当該混合物は、常温で結晶であり、洗浄などの簡便な方法で精製できるものでありながら、BF4塩等へ誘導した場合には固体状にならないのでモノマーなどへの溶解性に優れる。
 特に、最も含有量の多いジアリールヨードニウム塩(I)の割合が50質量%以下であれば、BF4塩等へ誘導した場合におけるモノマーなどへの溶解性が向上する。当該割合としては、30質量%以下がより好ましく、25質量%以下がさらに好ましい。
 本第一発明の混合物に含まれるジアリールヨードニウム塩の数としては、3以上が好ましく、15以上がより好ましく、50以上がさらに好ましく、100以上がさらに好ましく、また、1000以下が好ましく、800以下がより好ましく、500以下がさらに好ましく、300以下がさらに好ましい。
 以上のとおり、本第一発明に係るジアリールヨードニウム塩(I)の混合物は、常温で結晶であるにもかかわらず、BF4塩等へ誘導した場合には固体状にならずモノマーなどへの溶解性に優れることから、重合開始剤を工業的に大量合成するための原料化合物として利用することができる。
 本第一発明に係るジアリールヨードニウム塩混合物の製造方法を、実施の順番に従って説明する。
 本第一発明方法では、まず、アルキルアリール化合物(II)を2種以上含むアルキルアリール混合物から、ジアリールヨードニウム化合物(III)を2種以上含むジアリールヨードニウム混合物を合成する。
 より具体的には、例えば、無水酢酸と酢酸中、アルキルアリール化合物(II)の混合物とヨウ素酸塩または過ヨウ素酸塩を混合し、さらに濃硫酸と酢酸の混合物を滴下することにより、ジアリールヨードニウムの硫酸塩の混合物を得る。
Figure JPOXMLDOC01-appb-C000011
 本第一発明方法の原料化合物であるアルキルアリール化合物(II)は、比較的シンプルな構造を有することから、市販のものがあれば購入して使用してもよいし、当業者公知の方法により市販化合物から合成してもよい。例えば、対応するアシルクロライドとベンゼンとを用いてフリーデルクラフツ反応により、置換基として長鎖アシル基を有するベンゼンを合成した後、カルボニル基を還元することにより、容易にアルキルアリール化合物(II)を合成することができる。
 本第一発明方法では、原料化合物として、アルキルアリール化合物(II)の混合物を用いる。目的化合物であるジアリールヨードニウム塩を混合物として得るためである。原料であるアルキルアリール混合物に含まれるアルキルアリール化合物(II)の数は、特に制限されないが、当然2以上である。目的化合物であるジアリールヨードニウム塩混合物をBF4塩等へ誘導した場合におけるモノマー等への溶解性をより確実に高めるためには、アルキルアリール化合物(II)の数を好適には5以上、より好適には10以上とする。一方、アルキルアリール化合物(II)の数が過剰に多いと、目的化合物であるジアリールヨードニウム塩混合物が精製しても結晶状にならないおそれがあるので、アルキルアリール化合物(II)の数を好適には50以下、より好適には40以下、さらに好適には30以下、さらに好適には25以下とする。
 原料であるアルキルアリール混合物に含まれる各アルキルアリール化合物(II)の割合は適宜調整すればよいが、特定の化合物の含有量が突出していると、得られるジアリールヨードニウム塩が混合物であっても、BF4塩等へ誘導した場合に結晶化してしまうおそれがあり得る。そこで、最も含有量の多いアルキルアリール化合物(II)の割合を50質量%以下にすることが好ましい。かかるアルキルアリール混合物を原料として用いれば、より確実にジアリールヨードニウム塩混合物を結晶として得ることができるのに対して、当該ジアリールヨードニウム塩混合物をBF4塩等へ誘導した場合には常温で固体とならず、モノマーに対して優れた溶解性を示すようになる。当該割合としては、30質量%以下がより好ましく、25質量%以下がさらに好ましい。
 本反応で使用するヨウ素酸塩としては、ヨウ素酸カリウム(KIO3)やヨウ素酸ナトリウム(NaIO3)を挙げることができる。また、M1IO4[式中、M1はアルカリ金属を示す]またはM2(IO42[式中、M2はアルカリ土類金属を示す]で表される過ヨウ素酸塩を用いることができる。アルカリ金属としては、リチウム、ナトリウム、カリウムを挙げることができる。アルカリ土類金属としては、マグネシウムやカルシウムを挙げることができる。好適には過ヨウ素酸リチウム(LiIO4)、過ヨウ素酸カリウム(KIO4)、過ヨウ素酸ナトリウム(NaIO4)を用いる。
 ヨウ素酸塩または過ヨウ素酸塩の使用量は、理論上はアルキルアリール混合物の0.5モル倍でよいが、好適には0.3モル倍以上、より好適には0.4モル倍以上で、好適には1モル倍以下、より好適には0.8モル倍以下を用いる。
 アルキルアリール混合物とヨウ素酸塩または過ヨウ素酸塩を加える無水酢酸と酢酸の混合液における無水酢酸と酢酸の割合は適宜調整すればよいが、一般的には、質量比で無水酢酸/酢酸=2/1~1/2の範囲とすればよい。
 無水酢酸と酢酸の混合液の量も適宜調整すればよいが、例えば、アルキルアリール混合物とヨウ素酸塩または過ヨウ素酸塩の使用量に対して1.2質量倍以上、3質量倍以下程度とすることができる。無水酢酸と酢酸の混合液の量が少な過ぎると反応液を攪拌し難くなるおそれがあり得る一方で、当該量が多過ぎると精製が困難になり得る。
 本工程では、まず、無水酢酸および酢酸の混合物にアルキルアリール混合物とヨウ素酸塩または過ヨウ素酸塩を加え、混合する。当該混合液は、そのまま反応に付してもよいが、硫酸を添加することにより温度が上がるため、氷冷しておいてもよい。
 次に、上記混合液へ硫酸を滴下する。ここで用いる硫酸は、希硫酸ではなく、濃硫酸と呼ばれるものである。硫酸の使用量は、アリール化合物に対して0.5モル倍以上、10.0モル倍以下とすればよい。当該割合が0.5モル倍以上であれば、反応を十分に進行せしめることができる。一方、当該割合が10.0モル倍を超えると反応液の後処理や精製に時間や手間がかかる場合があり得るので、10.0モル倍以下とすることが好ましい。当該割合としては、0.8モル倍以上がより好ましい。0.8モル倍以上であれば、目的化合物であるジアリールヨードニウム化合物(V)をより確実に高収率で得ることが可能になる。より好適には1モル倍以上、3モル倍以下である。滴下すべき硫酸は、酢酸などの溶媒で希釈してもよい。この際、希釈に用いる溶媒は、硫酸に対して0.2容量倍以上、5.0容量倍以下程度とすることができる。
 硫酸を滴下すると、反応液の温度が上昇して反応が過剰に進み、反応液が着色するおそれがあるので、滴下速度を調整したり或いは反応液を水冷したり氷冷するなどして、反応液の温度を30℃以上、60℃以下程度となるように調節することが好ましい。
 硫酸の滴下後は、反応を完了させるために、10℃以上、100℃以下程度で反応を継続することが好ましい。反応時間は特に制限されないが、1時間以上、10時間以下程度とすることができる。具体的な反応時間は、例えば、1H-NMRなどでアルキルアリール化合物(II)の消費を確認したり、或いは予備実験などで決定すればよい。
 反応終了後の処理としては、常法を用いることができる。例えば、副生物や不純物などを除去するために水を加え、生成したジアリールヨードニウム化合物(III)の混合物を有機溶媒で抽出すればよい。
 反応液に水を加える際には、熱が生じるため、反応液を冷却したり、水を滴下するようにするとよい。また、水の使用量は、反応液に対して50容量%以上、500容量%以下程度とすることが好ましい。水の量が少な過ぎると副生物等を十分に除けないおそれがあり、逆に水の量が多過ぎると生産性が低下するおそれがある。
 ジアリールヨードニウム混合物の抽出溶媒としては、当該混合物の溶解性に優れ且つ水と混和しないものであれば特に制限されないが、例えば、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンなどの環状炭化水素溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカンなどの鎖状炭化水素溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒;ジイソプロピルエーテル、t-ブチルメチルエーテル、ジブチルエーテルなどのエーテル類などを用いることができる。得られた抽出液は、飽和炭酸水素ナトリウム水溶液や硫酸ナトリウム水溶液などで洗浄してもよい。
 反応液中に含まれるジアリールヨードニウム化合物(III)の置換基であるR1とR2は、原料混合物に含まれる何れかのアルキルアリール化合物(II)の置換基であるR3と同一である。
 反応終了後、ジアリールヨードニウム化合物(III)は上記反応液や抽出液中に溶解しており、ヨードニウムイオンの状態で存在する。また、ジアリールヨードニウム化合物(III)をこの段階で単離するとすれば、上記反応液や抽出液に存在するアニオンとの塩の形で得られる。当該塩としては、硫酸塩、硫酸水素塩、酢酸塩が考えられる。
 次に、ジアリールヨードニウム化合物(III)の混合物の溶液へ、アルカリ金属またはアルカリ土類金属の臭化物塩またはヨウ化物塩を加え、ジアリールヨードニウムの臭化物塩またはヨウ化物塩である化合物(I)の混合物を得る。
 当該工程においては、ジアリールヨードニウム混合物に含まれるジアリールヨードニウム化合物(III)のうち最も含有量の多いものの割合が50質量%以下となるように調整することが好ましい。原料化合物の場合と同様に、かかる態様によれば、より確実にジアリールヨードニウム塩混合物を結晶として得ることができるのに対して、当該ジアリールヨードニウム塩混合物をBF4塩等へ誘導した場合には常温で固体とならず、モノマーに対して優れた溶解性を示すようになる。当該割合としては、30質量%以下がより好ましく、25質量%以下がさらに好ましい。
 本反応で用いる臭化物塩またはヨウ化物塩のアルカリ金属としては、リチウム、ナトリウム、カリウムを挙げることができ、アルカリ土類金属としては、マグネシウムとカルシウムを挙げることができる。
 これら臭化物塩およびヨウ化物塩の中では、ヨウ化物塩を使用することが好ましい。本第一発明に係るジアリールヨードニウム塩混合物は、臭化物塩混合物よりもヨウ化物塩混合物の方が良好な収率で得られる。
 アルカリ金属またはアルカリ土類金属の臭化物塩またはヨウ化物塩は、水溶液として添加すればよい。使用する水溶液の濃度は特に制限されないが、5質量%以上、80質量%以下程度とすればよい。また、当該臭化物塩等の使用量も特に制限されず、ジアリールヨードニウム化合物(III)の混合物に対して過剰となるようにすればよい。
 アルカリ金属の臭化物塩等の水溶液を添加した後は、10分間以上、60分間以下程度攪拌した後、分液すればよい。上記水溶液を添加してから攪拌後、分液するという操作は、複数回繰り返してもよい。
 次いで、有機相を分取し、減圧濃縮したり、また、貧溶媒を添加して結晶を析出させた上で分離するなどすればよい。その前に、無水硫酸マグネシウムなどにより有機相を乾燥してもよい。
 有機相の減圧濃縮により得られる残渣は、主に本第一発明に係るジアリールヨードニウム塩(I)が複数含まれており、混合物であるにもかかわらず結晶状である。また、上述したように、本第一発明に係るジアリールヨードニウム塩(I)の混合物は、上記有機相に貧溶媒を添加しても結晶として得られる。これら結晶は、メタノール、エタノール、イソプロパノールなどの貧溶媒での洗浄や再結晶という極めて簡便な方法で、さらに精製することができる。
 本第一発明に係るジアリールヨードニウム塩混合物としては、最も含有量の多いジアリールヨードニウム塩(I)の割合が50質量%以下であるものが好ましい。当該ジアリールヨードニウム塩混合物は、結晶として得られるものであることから生産性に優れる一方で、BF4塩等へ誘導した場合には常温で固体とならず、モノマーなどに対して優れた溶解性を示すという利点を有するものである。当該割合としては、当該割合としては、30質量%以下がより好ましく、25質量%以下がさらに好ましい。
 本第一発明に係るジアリールヨードニウム塩の混合物は、常温で結晶であることから、貧溶媒による洗浄や再結晶など工業的製造に適する簡便な方法で精製することができる。その上、BF4塩等へ誘導した場合には常温で固体にならないことからモノマーなどへの溶解性が高く、工業的な大量生産工程で用い得る触媒などとして大変優れている。また、本第一発明方法によれば、常温で結晶であり、また、BF4塩等へ誘導した場合におけるモノマーなどへの溶解性の高いジアリールヨードニウム塩の混合物を効率的に製造することができる。よって本第一発明は、重合開始剤の原料化合物などとして有用なジアリールヨードニウム塩混合物に関する技術として、産業上極めて有用である。
 本第二発明方法では、無水酢酸と濃硫酸の存在下、1または2種以上のアリール化合物(II)に過ヨウ素酸塩を作用させる。
 本第二発明で用いるアリール化合物(IV)は、比較的シンプルな構造を有するので、市販のものがあれば購入して使用してもよいし、当業者公知の方法により市販化合物から合成してもよい。例えば、対応するアシルクロライドとベンゼンからフリーデルクラフツ反応により、置換基として長鎖アシル基を有するベンゼンを合成した後、カルボニル基を還元することにより、容易にアルキルアリール化合物(IV)を合成することができる。
 アリール化合物(IV)は、炭素数が8以上20以下の長鎖アルキル基で置換されたベンゼンであり、トルエンなど低級アルキル基に置換されたものや、無置換のベンゼンなどに比べて、人体や環境に対する毒性は低い。よって、本第二発明の目的化合物であるジアリールヨードニウム化合物(V)が分解してアリール化合物(IV)やp位がヨード置換されたアリール化合物(IV)が生成しても、悪影響は少ないといえる。
 本第二発明方法では、アリール化合物(IV)を単独で用いてもよいが、2種以上のアリール化合物(IV)を原料として用いてもよい。2種以上のアリール化合物(V)を用いる場合、ジアリールヨードニウム化合物(V)も複数のものが含まれる混合物として得られることになる。
 2種以上のアリール化合物(IV)を用いる場合には、上記のとおり目的化合物であるジアリールヨードニウム化合物(V)は混合物になり、そのカウンターアニオンの種類にもよるが、その結晶性は低下する。例えば、後述する実施例で原料化合物としてアリール化合物(IV)の混合物を用いた場合、硫酸水素塩として得られたジアリールヨードニウム化合物(V)は、そのアニオンを特定のものに交換することにより結晶で得られた一方で、別途、重合開始剤とすべくBF4塩等としたところ、結晶とはならなかった。このようなジアリールヨードニウム化合物(V)の混合物は、結晶に比べてモノマー等への溶解性が極めて高いため、工業上非常に有用である。
 本第二発明では、M1IO4[式中、M1はアルカリ金属を示す]またはM2(IO42[式中、M2はアルカリ土類金属を示す]で表される過ヨウ素酸塩を用いる。アルカリ金属としては、リチウム、ナトリウム、カリウムを挙げることができる。アルカリ土類金属としては、マグネシウムやカルシウムを挙げることができる。好適には過ヨウ素酸リチウム(LiIO4)、過ヨウ素酸カリウム(KIO4)、過ヨウ素酸ナトリウム(NaIO4)を用いる。
 過ヨウ素酸塩の使用量は、理論的にはジアリールヨードニウム化合物(V)の0.5モル倍でよいが、通常は0.3モル倍以上、好適には0.4モル倍以上で、1.0モル倍以下、好適には0.8モル倍以下を用いる。
 過ヨウ素酸塩は、一種のみ用いてもよいし、二種以上を混合して用いてもよい。もちろん、M1IO4およびM2(IO42の過ヨウ素酸塩を混合して用いることもできる。
 本第二発明では、無水酢酸と濃硫酸の存在下で反応を進める。
 本第二発明に係る反応機構は明らかではないが、無水酢酸と濃硫酸が反応中間体の生成に関与すると考えられている。また、無水酢酸が水分の除去に役立っている可能性もある。ここで濃硫酸とは、水を実質的に含まないものをいい、例えば、95%以上、98%以下程度の硫酸をいうものとする。
 無水酢酸の使用量は特に制限されず、予備実験などにより適宜決定すればよいが、通常、アリール化合物(IV)に対して0.5モル倍以上、10.0モル倍以下程度とすればよい。当該割合が0.5モル倍以上であれば、反応を十分に進行せしめることができる。一方、当該割合が10.0モル倍を超えると反応液の後処理や精製に時間や手間がかかる場合があり得るので、10.0モル倍以下とすることが好ましい。当該割合としては、0.8モル倍以上がより好ましい。0.8モル倍以上であれば、目的化合物であるジアリールヨードニウム化合物(V)をより確実に高収率で得ることが可能になる。
 濃硫酸の使用量も特に制限されないが、通常、アリール化合物(IV)に対して0.4モル倍以上、10.0モル倍以下程度とすればよい。当該割合が0.4モル倍以上であれば、反応を十分に進行せしめることができる。一方、当該割合が10.0モル倍を超えると反応液の後処理や精製に時間や手間がかかる場合があり得るので、10.0モル倍以下とすることが好ましい。当該割合としては、0.8モル倍以上がより好ましい。0.8モル倍以上であれば、目的化合物であるジアリールヨードニウム化合物(V)をより確実に高収率で得ることが可能になる。
 本第二発明方法においては、溶媒を用いてもよい。溶媒の種類は特に制限されず、適宜選択すればよいが、例えば、酢酸、ギ酸、プロピオン酸、酪酸、吉草酸、カプロン酸等のカルボン酸を用いることができる。
 本第二発明方法では、アリール化合物(IV)、過ヨウ素酸塩、無水酢酸の混合物へ濃硫酸を添加してもよいし、過ヨウ素酸と無水酢酸の混合物へアリール化合物(IV)と濃硫酸を滴下してもよい。さらに、過ヨウ素酸を数回に分けて添加してもよい。当該混合物は、溶媒を加えて1.2容量倍以上、10.0容量倍以下程度に希釈してもよい。また、濃硫酸についても同様であり、溶媒を加えて1.5容量倍以上、10.0容量倍以下程度に希釈してもよい。もちろん、いずれか一方を希釈するのみであってもよい。
 上記混合物へ濃硫酸を添加すると、発熱する。よって、濃硫酸の添加は滴下により行うなどその添加速度を調整したり、また、冷却しつつ添加を行うなどして、添加中の反応液温度を10℃以上、70℃以下程度に調節することが好ましい。
 濃硫酸の添加後においては、さらに反応を進める。この際の反応温度としては、10℃以上、100℃以下程度が好ましい。10℃以上であれば、良好に反応を進行せしめることができる。より好ましくは、50℃以上、60℃以下程度で反応を行う。反応温度が50℃以上であれば、極めて良好に反応が進行し、目的化合物であるジアリールヨードニウム化合物(V)が高収率で得られる。
 また、濃硫酸添加後における反応時間は、適宜調整すればよいが、通常、1時間以上、10時間以下程度とすることができる。なお、上記混合液の調製、濃硫酸の添加、およびその後の反応は、窒素やアルゴンなどの不活性ガスの気流下で実施することが好ましい。
 反応終了後の後処理としては、常法を用いることができる。例えば、目的化合物であるジアリールヨードニウム化合物(V)は反応液において硫酸水素塩として存在するが、脂溶性が高いので、脂溶性の有機溶媒で抽出することができる。一方、硫酸などを除去する必要がある。そこで、脂溶性有機溶媒と水を加えて分液し、ジアリールヨードニウム化合物(V)を抽出することが好ましい。
 脂溶性有機溶媒としては、ジアリールヨードニウム化合物(V)を抽出することができ且つ水と混和しないものであれば特に制限無く使用できるが、例えば、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンなどの環状炭化水素溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカンなどの鎖状炭化水素溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素溶媒;ジイソプロピルエーテル、t-ブチルメチルエーテル、ジブチルエーテルなどのエーテル類を用いることができる。
 反応混合液に水を加える際には、発熱するので、反応混合液を冷却することが好ましい。
 得られた有機相は、水、炭酸水素ナトリウム水溶液、硫酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、硫酸ナトリウム水溶液などで洗浄してもよい。さらに、無水硫酸ナトリウムや無水硫酸マグネシウムなどで乾燥してもよい。
 次いで、有機相から目的化合物であるジアリールヨードニウム化合物(V)を晶析などにより精製すればよい。晶析の際には、副生物であるp-ヨードアルキルベンゼンが多量に存在していると、完全に除去することは非常に困難である。しかし、本第二発明方法では副生物の生成が抑制されているので、得られるジアリールヨードニウム化合物の結晶性は良好であり、高純度のジアリールヨードニウム化合物(V)が得られる。また、副生物が多いと晶析後における固液分離に時間がかかるが、本第二発明方法によればかかる固液分離も速やかに行うことができる。
 本第二発明によれば、重合開始剤などの前駆体として利用することができ且つより安全なジアリールヨードニウム化合物を、高収率で且つ副生物の生成を抑制しつつ、簡便に製造することができる。よって本第二発明は、ジアリールヨードニウム化合物の工業的な大量生産に資するものとして、産業上非常に有用である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 以下、本第一発明に係る実施例と比較例を記載する。
 実施例1 ジアリールヨードニウムの臭化物塩混合物の製造
 炭素数10~13の長鎖アルキルで置換されたベンゼンの混合物であるアルケンL(新日本石油社製,平均分子量:241)を、GC-MSにより分析し、各ピークの分子量を決定した。また、各ピークの面積比から、各成分の含有量を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012
 上記結果のとおり、アルケンLには18種の長鎖アルキルベンゼンが含まれており、その含有量は最大でも13.0%であった。
 また、アルケンLの1H-NMRチャートを図1に示す。図1のとおり、2.3~2.7ppm付近には、ベンゼン環に直結しているメチレン基(-CH2-基)またはメチン基(-CH<基)のプロトンに由来する3つのブロードなピークが見られる。また、0.7~1.8ppm付近には、アルキル基中の上記以外のプロトンに由来する複雑なピークがある。比較のために、ドデシルベンゼン単独の1H-NMRチャートを図2に示す。図2のとおり、2.3~2.7ppm付近には、ベンゼン環に直結しているメチレン基(-CH2-基)に由来するトリプレットがあるのみである。また、0.8~1.6ppm付近のピークは、図1に比べて非常にシンプルなものとなっている。以上のとおり、1H-NMRチャートからも、アルケンLは様々なアルキル基に置換されたベンゼンの混合物であることが分かる。
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、アルケンL(新日本石油社製,50.00g)、ヨウ素酸カリウム(21.44g)、無水酢酸(51.00g)および酢酸(99.04g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(29.46g)と酢酸(20.20g)の混合物を入れ、窒素ガスを流通させながら、反応液温度が40℃を超えないように1.5時間かけて滴下した。滴下終了後、反応液を40℃で2時間攪拌した。その後、冷却しながら反応液へ水(100.44g)を滴下した。さらに、反応液へヘキサン(100.68g)を加え、30分間攪拌した。二層に分離した反応液から有機相を分取し、飽和炭酸水素ナトリウム水溶液(200.80g)で洗浄した。別途、臭化カリウム(12.80g)を水(101.19g)に溶解し、得られた臭化カリウム水溶液を当該有機相(200.08g)へ加え、30分間攪拌し、二層に分離した反応液から有機相を得た。さらに別途、臭化カリウム(5.30g)を水(101.89g)に溶解し、得られた臭化カリウム水溶液により当該有機相を洗浄した後、有機相を減圧濃縮した。得られた残渣は固体状であった。当該残渣にイソプロパノール(252.87g)を加えて攪拌し、固体状物を濾取した。得られた個体状物をイソプロパノールで洗浄し、60℃で減圧乾燥することにより、ジアリールヨードニウムの臭化物塩混合物を得た(収量:15.50g,収率22.5%)。得られた臭化物塩を1H-NMRで分析したところ、図3のとおり、複数の側鎖アルキル基に基づく複雑なピークが見られ、混合物であることが分かる一方で、原料や副生物のピークはほとんど観察されずその純度は十分に高かった。
 実施例2 ジアリールヨードニウムのヨウ化物塩混合物の製造
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、アルケンL(新日本石油社製,150.06g)、ヨウ素酸カリウム(66.56g)、無水酢酸(158.90g)および酢酸(150.26g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(91.66g)と酢酸(60.16g)の混合物を入れ、窒素ガスを流通させながら、反応液温度が40℃を超えないように1時間かけて滴下した。滴下終了後、反応液を40℃で2時間攪拌した。その後、冷却しながら、反応液へ水(300.82g)を滴下した。さらに、反応液へシクロヘキサン(150.42g)を加え、30分間攪拌した。二層に分離した反応液から有機相(436.66g)を得た。別途、ヨウ化ナトリウム(156.00g)を水(56.48g)に溶解し、得られたヨウ化ナトリウム水溶液を有機相に加え、30分間攪拌した。当該反応液を分液し、有機相(460.00g)を得た。当該有機相にメタノール(778.00g)とエタノール(778.76g)を加えたところ、析出物が生じた。得られた析出物を濾取し、エタノール(240.00g)で洗浄した後、60℃で減圧乾燥することにより、ジアリールヨードニウムのヨウ化物塩混合物を得た(収量:114.64g,収率:50.2%)。かかる結果のとおり、本発明に係るジアリールヨードニウム塩混合物としては、ヨウ化物塩混合物の方がより良好な収率で製造できる。得られたヨウ化物塩を1H-NMRで分析したところ、図4のとおり、複数の側鎖アルキル基に基づく複雑なピークが見られ、混合物であることが分かる一方で、原料や副生物のピークはほとんど観察されずその純度は十分に高かった。
 実施例3 ジアリールヨードニウムのヨウ化物塩混合物の製造
 炭素数10~13の長鎖アルキルで置換されたベンゼンの混合物であるドデシルベンゼンソフトタイプ(東京化成社製,平均分子量:246.43)を、GC-MSにより分析し、各ピークの分子量を決定した。また、各ピークの面積比から、各成分の含有量を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
 上記結果のとおり、ドデシルベンゼンソフトタイプには18種の長鎖アルキルベンゼンが含まれており、その含有量は最大でも15.2%であった。
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、ドデシルベンゼンソフトタイプ(東京化成社製,108.94g)、ヨウ素酸カリウム(47.01g)、無水酢酸(113.66g)および酢酸(221.10g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(65.21g)と酢酸(44.14g)の混合物を入れ、窒素ガスを流通させながら、反応液温度が40℃を超えないように1時間かけて滴下した。滴下終了後、反応液を40℃で2時間攪拌した。その後、冷却しながら、反応液へ水(201.46g)を滴下した。さらに、反応液へエチルシクロヘキサン(100.00g)を加え、30分間攪拌した。二層に分離した反応液を分液し、有機相(294.02g)を得た。別途、ヨウ化ナトリウム(166.35g)を水(109.28g)に溶解し、得られたヨウ化ナトリウム水溶液を有機相に加え、30分間攪拌した。当該反応液を分液し、有機相を得た。当該有機相にメタノール(546.84g)とエタノール(547.71g)を加えたところ、析出物が生じた。得られた析出物を濾取し、メタノール(150.91g)で洗浄した後、60℃で減圧乾燥することにより、ジアリールヨードニウムのヨウ化物塩の混合物を得た(収量:70.25g,収率:42.9%)。
 比較例1 ジアリールヨードニウムの塩化物塩混合物の製造
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、アルケンL(新日本石油社製,20.02g)、ヨウ素酸カリウム(8.88g)、無水酢酸(12.084g)および酢酸(39.972g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(12.00g)と酢酸(8.138g)の混合物を入れ、窒素ガスを流通させながら、反応液温度が40℃を超えないように1時間かけて滴下した。滴下終了後、反応液を40℃で2.5時間攪拌した。その後、冷却しながら、反応液へ水(50.10g)を滴下した。さらに、反応液へシクロヘキサン(50.06g)を加え、30分間攪拌した。二層に分離した反応液を分液し、有機相(294.02g)を得た。別途、塩化ナトリウム(2.91g)を水(9.03g)に溶解し、得られた塩化ナトリウム水溶液を有機相に加え、30分間攪拌した。当該反応液を分液し、有機相を得た。さらに別途、塩化ナトリウム(2.81g)を水(8.69g)に溶解し、得られた塩化ナトリウム水溶液で有機相を洗浄した後、有機相から溶媒を減圧留去した。
 しかし、得られた残渣は固化しなかったことから、貧溶媒による洗浄など簡便な方法で精製することはできなかった。
 以下、本第二発明に係る実施例と比較例を記載する。
 実施例4 過ヨウ素酸カリウムを用いたジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.96g,20.4mmol)、過ヨウ素酸カリウム(KIO4,2.74g,11.9mmol)、無水酢酸(5.22g)および酢酸(10.10g)を加え、20~30℃で攪拌した。別途、別容器に酢酸(2.33g)を加え、さらに冷却しながら濃硫酸(2.95g)をゆっくりと加えた。上記反応器へ窒素を導入しつつ、反応液温度が50℃を超えないように、反応液を攪拌しながら濃硫酸-酢酸混合液を1時間かけて滴下した。滴下後、反応液温度を50℃まで昇温し、さらに7.2時間攪拌した。
 次いで、反応液へシクロヘキサン(10.08g)を加え、混合液温度を10℃まで冷却した。さらに水(9.98g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりシクロヘキサン溶液(19.80g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で81%であり、副生するp-ヨードドデシルベンゼンの収率は3%であり、ドデシルベンゼンの転化率は99.6%であった。
 実施例5 過ヨウ素酸ナトリウムを用いたジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.92g,20.0mmol)、過ヨウ素酸ナトリウム(NaIO4,2.16g,10.1mmol)、無水酢酸(4.04g)および酢酸(4.04g)を加え、20~30℃で攪拌した。別途、別容器に酢酸(2.00g)を加え、さらに冷却しながら濃硫酸(2.94g)をゆっくりと加えた。上記反応器へ窒素を導入しつつ、反応液温度が50℃を超えないように、反応液を攪拌しながら濃硫酸-酢酸混合液を1時間かけて滴下した。滴下後、反応液温度を50℃まで昇温し、さらに5.0時間攪拌した。
 次いで、反応液へシクロヘキサン(5.00g)を加え、混合液温度を10℃まで冷却した。さらに水(5.02g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりシクロヘキサン溶液(15.14g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で87%であり、副生するp-ヨードドデシルベンゼンの収率は0.6%であり、ドデシルベンゼンの転化率は99.6%であった。
 実施例6 過ヨウ素酸ナトリウムを用いたジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.88g,19.8mmol)、過ヨウ素酸ナトリウム(NaIO4,2.15g,10.1mmol)および無水酢酸(4.09g)を加え、20~30℃で攪拌した。上記反応器へ窒素を導入しつつ、反応液温度が50℃を超えないように、反応液を攪拌しながら濃硫酸(2.92g)を1時間かけて滴下した。滴下後、反応液温度を50℃まで昇温し、さらに5時間攪拌した。
 次いで、反応液へエチルシクロヘキサン(7.02g)を加え、混合液温度を10℃まで冷却した。さらに水(5.50g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりエチルシクロヘキサン溶液(15.04g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で77%であり、副生するp-ヨードドデシルベンゼンの収率は0.7%であり、ドデシルベンゼンの転化率は98.3%であった。
 比較例2 ヨウ素酸カリウムを用いたジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.90g,19.9mmol)、ヨウ素酸カリウム(KIO3,2.16g,10.1mmol)、無水酢酸(5.00g)および酢酸(8.00g)を加え、20~30℃で攪拌した。別途、別容器に酢酸(2.00g)を加え、さらに冷却しながら濃硫酸(2.90g)をゆっくりと加えた。上記反応器へ窒素を導入しつつ、反応液温度が40℃を超えないように、反応液を攪拌しながら濃硫酸-酢酸混合液を1時間かけて滴下した。滴下後、反応液温度を40℃まで昇温し、さらに7.2時間攪拌した。
 次いで、反応液へシクロヘキサン(5.00g)を加え、混合液温度を10℃まで冷却した。さらに水(5.00g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりシクロヘキサン溶液(15.00g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で62%であり、副生するp-ヨードドデシルベンゼンの収率は9%であり、ドデシルベンゼンの転化率は88.6%であった。
 比較例3 ヨウ素酸カリウムを用いたジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.97g,20.2mmol)、ヨウ素酸カリウム(KIO3,2.14g,10.0mmol)、無水酢酸(4.08g)および酢酸(4.00g)を加え、20~30℃で攪拌した。別途、別容器に酢酸(2.02g)を加え、さらに冷却しながら濃硫酸(2.94g)をゆっくりと加えた。上記反応器へ窒素を導入しつつ、反応液温度が50℃を超えないように、反応液を攪拌しながら濃硫酸-酢酸混合液を1時間かけて滴下した。滴下後、反応液温度を50℃まで昇温し、さらに5時間攪拌した。
 次いで、反応液へエチルシクロヘキサン(7.04g)を加え、混合液温度を10℃まで冷却した。さらに水(5.08g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりエチルシクロヘキサン溶液(16.28g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で61%であり、副生するp-ヨードドデシルベンゼンの収率は12%であり、ドデシルベンゼンの転化率は86.6%であった。
 比較例4 無水酢酸を用いないジアリールヨードニウム化合物の製造
 反応器へ、ドデシルベンゼン(4.94g,20.0mmol)、過ヨウ素酸ナトリウム(NaIO4,2.16g,10.1mmol)および酢酸(4.02g)を加え、20~30℃で攪拌した。別途、別容器に酢酸(2.02g)を加え、さらに冷却しながら濃硫酸(2.94g)をゆっくりと加えた。上記反応器へ窒素を導入しつつ、反応液温度が50℃を超えないように、反応液を攪拌しながら濃硫酸-酢酸混合液を1時間かけて滴下した。滴下後、反応液温度を50℃まで昇温し、さらに5時間攪拌した。
 次いで、反応液へシクロヘキサン(7.00g)を加え、混合液温度を10℃まで冷却した。さらに水(5.14g)を加えてから混合液温度を40℃まで高め、0.5時間攪拌した後、分液することによりシクロヘキサン溶液(15.00g)を得た。当該溶液をHPLCで分析した結果、ジアリールヨードニウム化合物の収率はドデシルベンゼン基準で37%であり、副生するp-ヨードドデシルベンゼンの収率は0.8%であり、ドデシルベンゼンの転化率は55.6%であった。
 以上の結果を、表3にまとめる。なお、表3中、「転化率」とは原料化合物であるドデシルベンゼンの反応率をいい、反応溶液中におけるドデシルベンゼンの割合(%)を100%から引いた値である。
 上記結果のとおり、ヨウ素酸カリウム(KIO3)を用いた場合(比較例2~3)では、収率が低い。このことは、転化率が低く原料化合物であるドデシルベンゼンの残留量が多いことから、反応が十分に進行していないことが原因であると考えられる。その上、副生物であるパラヨードドデシルベンゼンの生成量が多い。パラヨードドデシルベンゼンは、目的化合物であるジアリールヨードニウム化合物との分離が難しいので、生成量が多いと以降の工程に重大な悪影響を及ぼす。
 また、過ヨウ素酸ナトリウム(NaIO4)を用いても、無水酢酸を用いない場合(比較例4)では、副生物の生成量は少ないものの、収率が極めて低い。かかる結果から、長鎖アルキル基に置換されたアリール化合物からジアリールヨードニウム化合物を製造するための反応では、無水酢酸が重要な役割を担うことが分かる。
 以上の比較例に対して、無水酢酸と濃硫酸の存在下、過ヨウ素酸のカリウム塩またはナトリウム塩を使う本発明例(実施例4~6)によれば、良好な収率でジアリールヨードニウム化合物を製造できる。また、副生物であるパラヨードドデシルベンゼンの生成量も極めて少ないので、高品質なジアリールヨードニウム化合物が得られる。よって本発明方法は、ジアリールヨードニウム化合物の製造方法として非常に優れたものであることが実証された。
 実施例7 過ヨウ素酸ナトリウムを用いたジアリールヨードニウム化合物の製造
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、アルケンL(新日本石油社製,C10-13アルキル基に置換されたベンゼン化合物の混合物,分子量:241,4.93g)、過ヨウ素酸ナトリウム(NaIO4,2.14g)、無水酢酸(4.09g)および酢酸(4.01g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(2.94g)と酢酸(2.00g)の混合物を入れ、反応液温度が40℃を超えないように、1時間かけて滴下した。滴下終了後、50℃で5時間攪拌した。その後、冷却しながら、反応液へ水(5.01g)を滴下した。さらに、反応液へシクロヘキサン(5.00g)を加え、30分間攪拌した。二層に分離した反応液から有機相(15.76g)を得た。別途、ヨウ化ナトリウム(1.50g)を水(2.98g)に溶解し、得られたヨウ化ナトリウム水溶液を有機相に加え、30分間攪拌した。当該反応液を分液し、得られた有機相にメタノール(50.34g)を加えると、晶析が起こった。得られた結晶を、内径47mmの加圧濾過機を用いて0.14MPaGの圧力を負荷した加圧濾過により溶液から分離した。その際の濾過時間は9.5秒間であり、得られた濾液の量は55.4gであり、濾過速度は12166kg/h・m2であった。得られた結晶をメタノール(10.34g)で洗浄し、60℃で減圧乾燥することにより、ジアリールヨードニウム化合物の結晶を得た(収量:4.50g,収率:60.4%)。
 得られた結晶の一部を1H-NMRで分析したところ、副生物であるパラヨードドデシルベンゼンの存在は認められなかった。
 比較例5 ヨウ素酸カリウムを用いたジアリールヨードニウム化合物の製造
 還流管、滴下ロート、窒素導入管および温度計を備えた4つ口フラスコに、アルケンL(新日本石油社製,5.01g)、ヨウ素酸カリウム(KIO3,2.16g)、無水酢酸(5.23g)および酢酸(10.17g)を加えた後、反応器内雰囲気を窒素置換した。滴下ロートに濃硫酸(3.00g)と酢酸(2.03g)の混合物を入れ、反応液温度が40℃を超えないように、1時間かけて滴下した。滴下終了後、40℃で2時間攪拌した。その後、冷却しながら、反応液へ水(9.17g)を滴下した。さらに、反応液へシクロヘキサン(4.55g)を加え、30分間攪拌した。二層に分離した反応液から有機相(13.56g)を得た。別途、ヨウ化ナトリウム(3.06g)を水(5.04g)に溶解し、得られたヨウ化ナトリウム水溶液を有機相に加え、30分間攪拌した。当該反応液を分液し、得られた有機相にメタノール(25.22g)とエタノール(25.26g)を加えると、晶析が起こった。得られた結晶を、内径47mmの加圧濾過機を用いて0.14MPaGの圧力を負荷した加圧濾過により溶液から分離した。その際の濾過時間は22秒間であり、得られた濾液の量は54.4gであり、濾過速度は5135kg/h・m2であった。得られた結晶をメタノール(3.84g)とエタノール(3.12g)の混合液で洗浄し、60℃で減圧乾燥することにより、ジアリールヨードニウム化合物の結晶を得た(収量:3.24g,収率:42.9%)。
 得られた結晶の一部を1H-NMRで分析したところ、副生物であるパラヨードドデシルベンゼンが1.65wt%混入していることが分かった。
 以上のとおり、ヨウ素酸カリウムを用いたジアリールヨードニウム化合物を製造した場合には、晶析により精製しても副生物であるパラヨードドデシルベンゼンを除去することができない。かかるパラヨードドデシルベンゼンが混入した触媒を重合開始剤に用いると、活性が低いという問題がある。また、晶析により生じた結晶を濾別する際にも、おそらく不純物の混入により目的化合物の結晶性が低下していることによると考えられるが、濾過速度が遅く、時間がかかる。
 それに対して、過ヨウ素酸塩を用いた本発明方法によれば、良好な収率でジアリールヨードニウム化合物を効率的に製造できるのみならず、副生物であるパラヨードドデシルベンゼンの混入を顕著に抑制することができる。また、晶析で精製する際には、不純物が少なく目的化合物の結晶性が高いことによると考えられるが、濾過速度が速く時間を短縮できる。かかる利点は、特にジアリールヨードニウム化合物を工業的に大量生産するに当たり、製造効率の大幅な向上に寄与するものである。
 

Claims (9)

  1.  式(I)で表されるジアリールヨードニウム塩を2種以上含むことを特徴とするジアリールヨードニウム塩混合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1とR2は、それぞれ独立して、C8-20アルキル基を示す]
  2.  最も含有量の多いジアリールヨードニウム塩(I)の割合が50質量%以下である請求項1に記載のジアリールヨードニウム塩混合物。
  3.  ジアリールヨードニウム塩混合物を製造するための方法であって;
     当該ジアリールヨードニウム塩混合物が、式(I)で表されるジアリールヨードニウム塩を2種以上含むものであり;
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1とR2は、それぞれ独立して、C8-20アルキル基を示す]
     式(II)で表されるアルキルアリール化合物を2種以上含むアルキルアリール混合物から、式(III)で表されるジアリールヨードニウム化合物を2種以上含むジアリールヨードニウム混合物を合成する工程と;
    Figure JPOXMLDOC01-appb-C000003
    [式中、R3はC8-20アルキル基を示し;R1とR2は、前述したものと同義を示す]
     ジアリールヨードニウム化合物(III)の混合物の溶液へ、アルカリ金属またはアルカリ土類金属の臭化物塩またはヨウ化物塩を加える工程;
     を含むことを特徴とする製造方法。
  4.  原料であるアルキルアリール混合物として、最も含有量の多いアルキルアリール化合物(II)の割合が50質量%以下であるものを用いる請求項3に記載の製造方法。
  5.  ジアリールヨードニウム混合物に含まれるジアリールヨードニウム化合物(III)のうち最も含有量の多いものの割合を50質量%以下とする請求項3または4に記載の製造方法。
  6.  ジアリールヨードニウム化合物を製造するための方法であって、
     無水酢酸および濃硫酸の存在下、式(IV)で表される1または2種以上のアリール化合物に、
    Figure JPOXMLDOC01-appb-C000004
    [式中、RはC8-20アルキル基を示す]
     M1IO4[式中、M1はアルカリ金属を示す]またはM2(IO42[式中、M2はアルカリ土類金属を示す]で表される過ヨウ素酸塩を作用させる工程を含み、
     目的化合物である上記ジアリールヨードニウム化合物が、下記式(V)で表される化合物であることを特徴とする製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、R4とR5は、それぞれ独立して、上記アリール化合物(IV)におけるRと同一の基を示す]
  7.  無水酢酸を、アリール化合物(IV)に対して0.8モル倍以上用いる請求項6に記載の方法。
  8.  濃硫酸を、アリール化合物(IV)に対して0.8モル倍以上用いる請求項6または7に記載の方法。
  9.  さらに晶析工程を含む請求項6~8のいずれかに記載の方法。
PCT/JP2010/057681 2009-05-08 2010-04-30 ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法 WO2010128649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080019541.9A CN102414148B (zh) 2009-05-08 2010-04-30 二芳基碘鎓盐混合物和其制造方法
EP10772168.0A EP2428501B1 (en) 2009-05-08 2010-04-30 Diaryliodonium salt mixture and process for production thereof, and process for production of diaryliodonium compound
US13/138,975 US8975203B2 (en) 2009-05-08 2010-04-30 Diaryliodonium salt mixture and process for production thereof, and process for production of diaryliodonium compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009113938 2009-05-08
JP2009113937A JP5485583B2 (ja) 2009-05-08 2009-05-08 ジアリールヨードニウム化合物の製造方法
JP2009-113938 2009-05-08
JP2009-113937 2009-05-08

Publications (1)

Publication Number Publication Date
WO2010128649A1 true WO2010128649A1 (ja) 2010-11-11

Family

ID=43050150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057681 WO2010128649A1 (ja) 2009-05-08 2010-04-30 ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法

Country Status (4)

Country Link
US (1) US8975203B2 (ja)
EP (1) EP2428501B1 (ja)
CN (1) CN102414148B (ja)
WO (1) WO2010128649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101830A1 (en) 2021-06-10 2022-12-14 FEW Chemicals GmbH Novel diaryliodonium salt mixtures as low molecular weight photoinitiators with minimized crystallization behavior and elevated solubility

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2912075T (pt) 2012-10-02 2017-03-23 Bluestar Silicones France Composição reticulável/polimerizável por via catiónica compreendendo um borato de iodónio e libertando um odor aceitável
CN103922906A (zh) * 2014-05-07 2014-07-16 江南大学 一种制备抗菌材料芳基醌类的新方法
CN105884570B (zh) * 2016-04-20 2019-04-05 华东理工大学 含氟二芳基碘盐及其用途

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101331A (en) 1976-12-09 1978-09-04 Gen Electric Preparation of diaryliodonium salt
JPS5753767A (en) 1980-09-17 1982-03-30 Canon Inc Multicolor electrophotographic copying machine
JPH0641433A (ja) 1992-03-23 1994-02-15 Rhone Poulenc Chim 架橋性官能基を含有するポリオルガノシロキサンを基とする組成物及び抗付着性コーティングの製造のためのその使用
JPH06184170A (ja) 1992-03-23 1994-07-05 Rhone Poulenc Chim カチオン重合開始剤である新規のオニウム硼酸塩又は有機金属錯体の硼酸塩
JPH073028A (ja) 1993-05-18 1995-01-06 Dow Corning Corp ビニルエーテル官能性シロキサンの製法及びビニルエーテル官能性シロキサン含有組成物
JPH0757738A (ja) 1993-08-10 1995-03-03 Fuji Electric Co Ltd 燃料電池用電極の製造方法
JPH0755915A (ja) 1993-08-20 1995-03-03 Nec Corp アクティブフェーズドアレイレーダ
JPH0764764A (ja) 1993-08-27 1995-03-10 Kano Densan Hongkong Yugenkoshi 電子機器及び情報処理方法
JPH07116067A (ja) 1993-10-26 1995-05-09 Sekisui Chem Co Ltd 浴 槽
JP2001011185A (ja) 1999-05-04 2001-01-16 General Electric Co <Ge> 紫外光線硬化性自己増感エポキシシリコーン及びその合成法
JP2005120311A (ja) 2003-10-20 2005-05-12 Toagosei Co Ltd 硬化性剥離剤およびそれを用いたセパレータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981897A (en) 1975-05-02 1976-09-21 General Electric Company Method for making certain halonium salt photoinitiators
JPH0755915B2 (ja) 1987-05-06 1995-06-14 日本石油化学株式会社 1,2−ジ(4−イソブチルフエニル)エタン
JPH0757738B2 (ja) 1987-05-06 1995-06-21 日本石油化学株式会社 4−イソブチルスチレンの製造方法
CA1340886C (en) 1987-05-06 2000-02-01 Yoshihisa Inomata 1, 2-di (4-isobutylphenyl) hydrocarbon and its preparation and uses as intermediate
JPH07116067B2 (ja) 1987-05-06 1995-12-13 日本石油化学株式会社 4−イソブチルスチレンの製造方法
JPH0764764B2 (ja) 1987-05-06 1995-07-12 日本石油化学株式会社 1,2−ジ(4−イソブチルフエニル)エチレン
DD290651A5 (de) 1989-12-27 1991-06-06 Friedrich-Schiller-Universitaet Jena,De Verfahren zur herstellung von diaryliodoniumsalzen
US6147184A (en) 1992-03-23 2000-11-14 Rhone-Poulenc Chimie Onium borates/borates of organometallic complexes and cationic initiation of polymerization therewith
US5594042A (en) 1993-05-18 1997-01-14 Dow Corning Corporation Radiation curable compositions containing vinyl ether functional polyorganosiloxanes
US5824761A (en) 1995-05-18 1998-10-20 Dow Corning Corporation Radiation curable compositions containing vinyl ether functionality and methods for their preparation
US5721290A (en) * 1996-11-26 1998-02-24 General Electric Company Oxo-acid modified epoxy silicone compositions
DE19736471A1 (de) * 1997-08-21 1999-02-25 Espe Dental Ag Lichtinduziert kationisch härtende Zusammensetzungen und deren Verwendung
AU758652B2 (en) * 1998-04-24 2003-03-27 Ciba Specialty Chemicals Holding Inc. Heavy metal-free coating formulations
JP2001235865A (ja) 2000-02-23 2001-08-31 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
US20020015826A1 (en) * 2000-04-11 2002-02-07 Darryl Desmarteau Zwitterionic iodonium compounds and methods of application

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101331A (en) 1976-12-09 1978-09-04 Gen Electric Preparation of diaryliodonium salt
JPS5753767A (en) 1980-09-17 1982-03-30 Canon Inc Multicolor electrophotographic copying machine
JPH0641433A (ja) 1992-03-23 1994-02-15 Rhone Poulenc Chim 架橋性官能基を含有するポリオルガノシロキサンを基とする組成物及び抗付着性コーティングの製造のためのその使用
JPH06184170A (ja) 1992-03-23 1994-07-05 Rhone Poulenc Chim カチオン重合開始剤である新規のオニウム硼酸塩又は有機金属錯体の硼酸塩
JPH073028A (ja) 1993-05-18 1995-01-06 Dow Corning Corp ビニルエーテル官能性シロキサンの製法及びビニルエーテル官能性シロキサン含有組成物
JPH0757738A (ja) 1993-08-10 1995-03-03 Fuji Electric Co Ltd 燃料電池用電極の製造方法
JPH0755915A (ja) 1993-08-20 1995-03-03 Nec Corp アクティブフェーズドアレイレーダ
JPH0764764A (ja) 1993-08-27 1995-03-10 Kano Densan Hongkong Yugenkoshi 電子機器及び情報処理方法
JPH07116067A (ja) 1993-10-26 1995-05-09 Sekisui Chem Co Ltd 浴 槽
JP2001011185A (ja) 1999-05-04 2001-01-16 General Electric Co <Ge> 紫外光線硬化性自己増感エポキシシリコーン及びその合成法
JP2005120311A (ja) 2003-10-20 2005-05-12 Toagosei Co Ltd 硬化性剥離剤およびそれを用いたセパレータ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
F. MARSHALL BERINGER ET AL.: "Diaryliodonium Salts. IX. The Synthesis of Substituted Diphenyliodonium Salts", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 81, 1959, pages 342 - 351 *
F. MARSHALL BERINGER, JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 81, 1959, pages 342 - 351
LUKASZ KRASZKIEWICZ, PROCEEDINGS OF ECSOC-9, INTERNATIONAL ELECTRONIC CONFERENCE ON SYNTHETIC ORGANIC CHEMISTRY, 2005, pages A022,1 - A022,12
LUKASZ KRASZKIEWICZ, SYNTHESIS, 2008, pages 2373 - 2380
See also references of EP2428501A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101830A1 (en) 2021-06-10 2022-12-14 FEW Chemicals GmbH Novel diaryliodonium salt mixtures as low molecular weight photoinitiators with minimized crystallization behavior and elevated solubility
WO2022258259A1 (en) 2021-06-10 2022-12-15 Few Chemicals Gmbh Novel diaryliodonium salt mixtures as low molecular weight photoinitiators with minimized crystallization behavior and elevated solubility

Also Published As

Publication number Publication date
US8975203B2 (en) 2015-03-10
US20120053048A1 (en) 2012-03-01
EP2428501A1 (en) 2012-03-14
EP2428501B1 (en) 2018-12-12
EP2428501A4 (en) 2013-02-13
CN102414148B (zh) 2014-11-05
CN102414148A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5918670B2 (ja) アセチル化スルホニウム化合物の製造方法
WO2010128649A1 (ja) ジアリールヨードニウム塩混合物とその製造方法、並びにジアリールヨードニウム化合物の製造方法
KR20020046948A (ko) 에폭사이드 결정의 제조방법
JP5485583B2 (ja) ジアリールヨードニウム化合物の製造方法
JP5576705B2 (ja) ジアリールヨードニウム塩混合物とその製造方法
EP3658537A1 (en) Process for the preparation of glycopyrrolate tosylate
US3953531A (en) Alkylhydroquinone and process for producing the same
JPS63174954A (ja) テトラアルキル四級無機酸塩の製造方法
JPH082863B2 (ja) 高純度4,4´―ジヒドロキシジフェニルスルホンの製造法
JP6023432B2 (ja) ペルフルオロブタンスルホニルフルオリド、ペルフルオロブタンスルホン酸カリウム塩、およびペルフルオロブタンスルホニルフルオリドの製造方法
WO1991004245A1 (en) Process for preparing 4,4&#39;-dihydroxydiphenyl sulfone
BRPI0618555A2 (pt) processo para produção de bifenilas
CN111072450A (zh) 一种烯丙醇类衍生物的合成方法
JP2014214152A (ja) 非対称ジアルキルアミン化合物の製造方法
JP5869664B2 (ja) 5−オキソ−4−オキサ−5−ホモアダマンタン−2−オールの製造方法
WO2023176687A1 (ja) ビフェナントレン化合物又はそのアルカリ金属塩
JP2011042602A (ja) 2−(3−ニトロベンジリデン)アセト酢酸イソプロピルの製造方法
EP2155653B1 (en) Process for preparing alkyl alkoxybenzoates in one step
KR100553246B1 (ko) 방향족 에테르 유도체의 고체상 합성법
JP2009067710A (ja) N−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンの製造方法
JP3927835B2 (ja) ヨウ化芳香族化合物ジアセテートの製造方法
JP4032825B2 (ja) 3,4−ジヒドロキシベンゾニトリルを製造する方法
KR101622630B1 (ko) 디클로페낙 콜린 염의 합성 방법
JP5717572B2 (ja) アミノアルキルチオ硫酸化合物の製造方法
JP2020026413A (ja) 4−ハロシクロヘキサン−1−カルボン酸の精製方法、および、4−ハロシクロヘキサン−1−カルボン酸を含む生成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019541.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13138975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010772168

Country of ref document: EP