WO2010126161A1 - 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2010126161A1
WO2010126161A1 PCT/JP2010/057845 JP2010057845W WO2010126161A1 WO 2010126161 A1 WO2010126161 A1 WO 2010126161A1 JP 2010057845 W JP2010057845 W JP 2010057845W WO 2010126161 A1 WO2010126161 A1 WO 2010126161A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
less
mass
temperature
Prior art date
Application number
PCT/JP2010/057845
Other languages
English (en)
French (fr)
Inventor
▲高▼木 周作
長谷川 浩平
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP10769853.2A priority Critical patent/EP2426230B1/en
Priority to CA2759913A priority patent/CA2759913C/en
Priority to KR1020137018047A priority patent/KR20130087616A/ko
Priority to US13/264,006 priority patent/US8828557B2/en
Priority to CN201080018564.8A priority patent/CN102414335B/zh
Publication of WO2010126161A1 publication Critical patent/WO2010126161A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention is a high-strength hot-dip galvanized steel sheet having a tensile strength (TS) of 980 MPa or more and excellent in workability, weldability and fatigue properties, which is suitable for use in automobile parts and the like that are required to be pressed into a strict shape. And a manufacturing method thereof.
  • the hot dip galvanized steel sheet in the present invention includes a so-called galvannealed steel sheet that has been subjected to alloying heat treatment after galvanization.
  • High-strength hot-dip galvanized steel sheets used for automobile parts and the like are required to have excellent workability in addition to high strength due to the characteristics of their applications.
  • high-strength steel sheets have been demanded for automobile bodies from the viewpoint of improving fuel efficiency and ensuring collision safety by reducing the weight of the vehicle body, and its application is expanding. Conventionally, it was mainly light processing, but application to complex shapes is also being studied.
  • Patent Documents 1 to 8 disclose a method of obtaining hot workable and high strength hot dip galvanized steel sheet by limiting steel components and structure, optimizing hot rolling conditions and annealing conditions, and the like. Proposed.
  • Patent Document 1 discloses a TS 980 MPa class steel material having a high C and Si content, but no consideration is given to stretch flangeability and bendability.
  • Patent Documents 2 to 4 disclose steel materials using Cr, but no consideration is given to stretch flangeability and bendability.
  • Patent Documents 5 to 7 describe the hole expansion ratio ⁇ , which is one of the indexes for evaluating stretch flangeability, but the tensile strength (TS) does not reach 980 MPa. Moreover, it does not describe bendability and fatigue characteristics.
  • Patent Document 8 describes improvement of bendability by addition of Ti and improvement of notch fatigue characteristics by refinement of ferrite grain size, but does not describe hole expansion characteristics, weldability, and plane bending fatigue characteristics.
  • Notched fatigue characteristics are an evaluation index of fatigue failure generated from punched holes for bolting and mounting of parts, whereas plane bending fatigue characteristics intended by the present invention are the base materials that occupy most parts It is an evaluation index of fatigue characteristics.
  • the state of cracks introduced at the time of punching greatly contributes to the fatigue characteristics, whereas smooth portion fatigue is a completely different characteristic in that the structure and components of the base material greatly influence.
  • the present invention has been developed in view of the above-mentioned present situation, and has a high tensile strength of TS ⁇ 980 MPa, and has a high strength hot-dip galvanized steel sheet that is excellent in workability, weldability and fatigue characteristics. It aims to be proposed together.
  • the present invention employs the following means in order to solve the above problems.
  • C 0.05% or more and less than 0.12%, Si: 0.35% or more and less than 0.80%, Mn: 2.0 to 3.5%, P: 0.001 to 0.040%, S: 0.0001 to 0.0050%, Al: 0.005 to 0.1%, N: 0.0001 to 0.0060%, Cr: 0.01% to 0.5%, Ti: 0.010 to 0.080%, Nb: 0.010 to 0.080% and B: 0.0001 to 0.0030%, the balance is composed of Fe and inevitable impurities, and the volume fraction Has a structure containing a ferrite phase of 20 to 70% and an average crystal grain size of 5 ⁇ m or less, a tensile strength of 980 MPa or more, and an adhesion amount (per one side) of the steel sheet: 20 to 150 g / m 2 High strength with excellent workability, weldability and fatigue characteristics, characterized by having a hot-dip galvan
  • the tensile strength is 980 MPa or more, and further the adhesion amount (piece piece Per): 20 workability characterized by having a galvanized layer of ⁇ 150g / m 2, the high-strength galvanized steel sheet having excellent weldability and fatigue properties.
  • the steel has a mass% and contains Mo: 0.01 to 0.15%, and is excellent in workability, weldability and fatigue properties according to [1] or [2] Strength hot dip galvanized steel sheet.
  • a steel slab having the composition described in any one of [1] to [5] is hot-rolled, wound on a coil, pickled, then cold-rolled, and then molten zinc
  • the hot slab heating temperature is set to 1150 to 1300 ° C and the hot finish rolling temperature is set to 850 to 950 ° C. (Hot finish rolling temperature ⁇ 100 ° C.)
  • After cooling at an average cooling rate of 5 to 200 ° C./second winding on a coil at a temperature of 400 to 650 ° C., pickling, and then cold rolling
  • the primary average rate of temperature increase from 200 ° C.
  • a high-strength hot-dip galvanized steel sheet having high strength and excellent workability, weldability, and fatigue characteristics can be produced.
  • the high-strength hot-dip galvanized steel sheet obtained by the present invention satisfies both strength and workability required for automobile parts, and is suitable as an automobile part that is press-formed into a strict shape.
  • excellent workability means that TS ⁇ EI ⁇ 13000 MPa ⁇ %, TS ⁇ ⁇ ⁇ 20000 MPa ⁇ %, and a limit bending radius in 90 ° V-bending ⁇ 1.5 t (t: thickness)
  • excellent weldability means that the base metal breaks when the nugget diameter is 4 ⁇ t (mm) (t: the plate thickness of the steel plate) or more, and that excellent fatigue properties are obtained by plane bending.
  • Fatigue limit durability ratio (fatigue limit stress / TS) ⁇ 0.42 is satisfied, and “high strength” means that the tensile strength (TS) is 980 MPa or more.
  • the C content is 0.12% or more, the spot weldability is remarkably deteriorated, hardened by increasing the amount of martensite phase, and further, a retained austenite phase harder than the martensite phase is generated, so that bendability, Workability also tends to be significantly reduced. Therefore, the C content is limited to a range of 0.05% or more and less than 0.12%. More preferably, it is less than 0.105%. On the other hand, from the viewpoint of stably securing a TS of 980 MPa or more, the preferable amount of C is 0.08% or more.
  • Si 0.35% or more and less than 0.80% Si is an element that contributes to strength improvement by solid solution strengthening and improves plane bending fatigue characteristics, elongation, and weldability, but the effect is 0.35% Expressed above.
  • the content is 0.80% or more, a hard-peeling scale is generated at the time of hot rolling, the surface properties of the steel sheet are deteriorated, and workability and fatigue characteristics are lowered. Furthermore, it concentrates as an oxide on the surface of the steel sheet, and causes non-plating. Therefore, the Si content is limited to 0.35% or more and less than 0.80%.
  • it is 0.35% or more and 0.60% or less, More preferably, it is 0.50% or less.
  • Mn 2.0 to 3.5% Mn contributes effectively to strength improvement, and this effect is recognized by containing 2.0% or more.
  • the content exceeds 3.5% excessively, the transformation point is partially different due to segregation of Mn and the like, and as a result, the heterogeneous structure in which the ferrite phase and the martensite phase exist in a band shape. As a result, workability is reduced. Moreover, it concentrates as an oxide on the steel plate surface and causes non-plating. Therefore, the amount of Mn is limited to 2.0% or more and 3.5% or less. Preferably they are 2.2% or more and 2.8% or less.
  • P 0.001 to 0.040%
  • P is an element that contributes to strength improvement, but it is also an element that deteriorates weldability.
  • the amount of P exceeds 0.040%, its influence appears remarkably.
  • Cr is added in excess of 0.5%
  • P needs to be reduced to 0.02%.
  • Cr is added at 0.5% or less
  • P is allowed to be 0.040%.
  • excessive P reduction is accompanied by an increase in manufacturing cost in the steelmaking process. Therefore, the P content is limited to the range of 0.001% to 0.040%.
  • they are 0.001% or more and 0.025% or less, More preferably, they are 0.001% or more and 0.015% or less.
  • the S content is limited to a range of 0.0001% to 0.0050%. Preferably it is 0.0001% or more and 0.003% or less.
  • Al 0.005 to 0.1%
  • Al is an effective element as a deoxidizer in the steelmaking process, and is also a useful element in separating non-metallic inclusions that reduce local ductility into slag. Furthermore, Al has the effect of suppressing the formation of Mn and Si-based oxides on the surface layer that impairs plating properties during annealing, and improving the appearance of the plating surface. To obtain such an effect, 0.005% or more must be added. On the other hand, if added over 0.1%, not only the steel component cost increases, but also the weldability decreases. Therefore, the Al content is limited to the range of 0.005 to 0.1%. Preferably they are 0.01% or more and 0.06% or less.
  • N 0.0001 to 0.0060%
  • the influence of N on the material properties in the structure strengthened steel is not so great, but if it is 0.0060% or less, the effect of the present invention is not impaired.
  • the amount of N is small from the viewpoint of improving the ductility by ferrite cleaning, but the lower limit is set to 0.0001% because the cost for steelmaking also increases. That is, the N amount is set to 0.0001% or more and 0.0060% or less.
  • Cr 0.01 to 0.5% Cr is an element effective for strengthening the quenching of steel. To obtain this effect, addition of 0.01% or more is required. Further, Cr improves the hardenability of austenite and contributes effectively to the improvement of elongation and bending properties. However, since the solid solution strengthening ability is small, fatigue characteristics and weldability are deteriorated when added in a large amount. When the Cr content exceeds 0.5%, the fatigue characteristics deteriorate and the weldability also decreases. Therefore, the Cr content is limited to the range of 0.01 to 0.5%. More preferably, it is 0.3% or less.
  • Ti 0.010 to 0.080% Ti effectively acts to impart refinement and precipitation strengthening of the hot-rolled sheet structure and the steel sheet structure after annealing by forming fine carbides and fine nitrides with C or N in the steel. In order to obtain this effect, 0.010% or more of Ti is necessary. However, when the Ti amount exceeds 0.080%, not only this effect is saturated, but also precipitates are generated excessively in the ferrite, which lowers the ductility of the ferrite. Therefore, the Ti content is limited to the range of 0.010 to 0.080%. More preferably, it is in the range of 0.020 to 0.060%.
  • Nb 0.010 to 0.080%
  • Nb is an element that contributes to improvement in strength by solid solution strengthening or precipitation strengthening. It also contributes to the improvement of stretch flangeability through the effect of reducing the hardness difference from the martensite phase by strengthening ferrite. Furthermore, it contributes to the refinement of ferrite grains, bainite, and martensite grains and improves bendability. Such an effect is obtained when the Nb content is 0.010% or more. However, if it exceeds 0.080% and is contained excessively, the hot-rolled sheet becomes hard and causes an increase in rolling load during hot rolling and cold rolling. In addition, the ductility of the ferrite is lowered and workability is deteriorated. Therefore, the Nb content is limited to a range of 0.010% or more and 0.080% or less. From the viewpoint of strength and workability, the Nb content is preferably 0.030 to 0.070%.
  • B 0.0001 to 0.0030% B improves hardenability, suppresses the formation of ferrite that occurs during the annealing cooling process, and contributes to obtaining a desired amount of martensite.
  • B amount 0.0001% or more but if it exceeds 0.0030%, the above effect is saturated. Therefore, the amount of B is limited to the range of 0.0001 to 0.0030%. Preferably it is 0.0005 to 0.0020% of range.
  • the steel sheet of the present invention has the above component composition essential to obtain desired workability, weldability and fatigue properties, and the balance is composed of Fe and unavoidable impurities. It can be contained as appropriate.
  • Mo 0.01 to 0.15%
  • Mo is an element effective for strengthening the quenching of steel. To obtain this effect, addition of 0.01% or more is required. However, if the amount of Mo exceeds 0.15%, it is necessary to reduce P in order to secure weldability, and this causes an increase in cost. Furthermore, the fatigue characteristics are also deteriorated. Therefore, the Mo amount is limited to a range of 0.01% to 0.15%. More preferably, it is in the range of 0.01 to 0.05%.
  • Ca 0.0001 to 0.0050%
  • REM 0.0001 to 0.1%
  • Ca and REM have the effect of improving ductility and hole expandability by controlling the shape of sulfides such as MnS, but the effect tends to be saturated even if contained in a large amount. Therefore, when Ca is contained, 0.0001% or more and 0.0050% or less, preferably 0.0001% or more and 0.0020% or less, and when REM is contained, 0.0001% or more and 0.1% or less, Preferably it is 0.0005% or more and 0.01% or less.
  • Sb 0.0001 to 0.1%
  • Sb has the effect of controlling the form of the sulfide inclusions without greatly changing the plating property, and thereby has the effect of improving the formability by making the crystals of the steel sheet surface layer sized.
  • Sb contains Sb, it is 0.0001% or more and 0.1% or less, preferably 0.0005% or more and 0.01% or less.
  • V has the effect of strengthening the ferrite phase due to the formation of carbides, but conversely reduces the ductility of the ferrite phase. Therefore, it is preferable to contain V at less than 0.05%, more preferably less than 0.005%.
  • Zr, Mg, and the like that form precipitates are preferably as low as possible, and do not need to be positively added, and are in a range of less than 0.0200%, more preferably less than 0.0002%.
  • Cu is an element that adversely affects the weldability and Ni is an element that adversely affects the surface appearance after plating. Therefore, Cu and Ni are each in a range of less than 0.4%, more preferably less than 0.04%.
  • Average crystal grain size of ferrite phase 5 ⁇ m or less
  • the bendability is improved by limiting the average crystal grain size of the ferrite phase in the composite structure to 5 ⁇ m or less.
  • the processing becomes non-uniform and the formability deteriorates.
  • the ferrite phase and the martensite phase are present uniformly and finely, the deformation of the steel sheet becomes uniform during processing, and therefore it is desirable that the average crystal grain size of the ferrite phase is small.
  • a preferable range for suppressing deterioration of workability is 1 to 3.5 ⁇ m.
  • volume fraction of ferrite phase 20-70% Since the ferrite phase is a soft phase and contributes to the ductility of the steel sheet, the steel sheet of the present invention needs to contain the ferrite phase in a volume fraction of 20% or more. On the other hand, if the ferrite phase exceeds 70%, it becomes excessively soft and it is difficult to ensure the strength. Therefore, the ferrite phase has a volume fraction of 20% to 70%, preferably 30% to 60%.
  • the low-temperature transformation phase from austenite and the tempered martensite phase and / or bainite phase have an average crystal grain size of 5 mm or less.
  • the volume fraction ranges from 30% to 80%.
  • the martensite phase and / or bainite phase is a hard phase and has an action of increasing the strength of the steel sheet by strengthening the transformation structure. Moreover, the propagation of fatigue cracks is suppressed by the dispersion of the hard phase.
  • the crystal grain size of the martensite phase and / or bainite phase exceeds 5 mm, these effects are not sufficient.
  • the crystal grain size is used in accordance with conventional practice, but in actuality, the region corresponding to the prior austenite grains before transformation is regarded as one crystal grain and measured.
  • a slab is manufactured from the molten steel adjusted to the above component composition by a continuous casting method or an ingot-bundling method. Subsequently, the obtained slab is cooled and then reheated, or hot rolling is performed as it is without undergoing a heat treatment after casting.
  • the slab heating temperature is set to 1150 to 1300 ° C
  • the hot rolled sheet is uniformly structured
  • the finish rolling temperature is set to 850 to 950 ° C in order to improve workability such as stretch flangeability, and consists of two phases of ferrite phase and pearlite phase.
  • the coiling temperature is set to 400 to 650 ° C. in order to improve the surface properties and the cold rolling property, the hot rolling is finished, and after pickling, the desired thickness is obtained by cold rolling.
  • the cold rolling reduction ratio is desirably 30% or more in order to improve ductility by promoting recrystallization of the ferrite phase.
  • descaling is preferably performed with high-pressure water in order to remove scale during hot rolling.
  • the primary average temperature increase from 200 ° C. to the intermediate temperature is performed in order to control the microstructure during annealing before the start of cooling and optimize the finally obtained ferrite fraction and particle size.
  • the speed is 5 to 50 ° C./second
  • the intermediate temperature is 500 to 800 ° C.
  • the secondary average temperature rise rate from the intermediate temperature to the annealing temperature is 0.1 to 10 ° C./second
  • the annealing temperature is 730 to 900 ° C.
  • After maintaining in this temperature range for 10 to 500 seconds it is cooled to a cooling stop temperature of 450 to 550 ° C. at an average cooling rate of 1 to 30 ° C./second.
  • the steel sheet After cooling, the steel sheet is subsequently immersed in a molten zinc bath, and the amount of galvanized coating is controlled by gas wiping or the like, or further heated and alloyed, and then cooled to room temperature.
  • the intended high-strength hot-dip galvanized steel sheet can be obtained in the present invention, but skin-pass rolling may be applied to the steel sheet after plating.
  • Slab heating temperature 1150 ⁇ 1300 °C
  • Precipitates present in the heating stage of the steel slab exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength, so the Ti and Nb-based precipitates precipitated during casting are re-dissolved.
  • contribution to strength is recognized by heating at 1150 ° C. or higher.
  • the slab heating temperature was limited to a range of 1150 ° C. or higher and 1300 ° C. or lower.
  • Finish rolling temperature 850-950 ° C
  • the workability ductility, stretch flangeability
  • the finish rolling temperature is less than 850 ° C.
  • Mn which is an austenite stabilizing element
  • the Ar3 transformation point in that region is lowered, and the austenite region becomes a low temperature.
  • the non-recrystallized austenite exists during hot rolling as a result of the transformation temperature being lowered, so that the non-recrystallized temperature range and the rolling end temperature become the same temperature range.
  • the finish rolling temperature exceeds 950 ° C.
  • the amount of oxide (scale) generated increases rapidly, the base metal-oxide interface becomes rough, and the surface quality after pickling and cold rolling tends to deteriorate.
  • the resistance spot weldability and fatigue characteristics are adversely affected.
  • the crystal grain size becomes excessively coarse, and the surface of the pressed product may be roughened during processing. Therefore, the finish rolling temperature is 850 to 950 ° C., preferably 900 ° C. to 950 ° C.
  • the average cooling rate at the finish rolling temperature to (the finish rolling temperature ⁇ 100 ° C.) is set to 5 ° C./second or more.
  • the average cooling rate in the temperature range exceeds 200 ° C./second, the effect tends to saturate.
  • Winding temperature 400 ⁇ 650 °C
  • the hot-rolled scale thickness increases, the surface after pickling and cold rolling becomes rough, irregularities are formed on the surface, and the ferrite grain size becomes coarse, so that the workability is increased.
  • the resistance spot weldability is adversely affected.
  • the coiling temperature is less than 400 ° C., the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity tends to decrease. Therefore, the coiling temperature is in the range of 400 ° C. or higher and 650 ° C. or lower.
  • Primary average rate of temperature increase (from 200 ° C. to intermediate temperature): 5 to 50 ° C./second, intermediate temperature: 500 to 800 ° C.
  • Secondary average rate of temperature increase (from intermediate temperature to annealing temperature): 0.1 to 10 ° C / sec If the primary average temperature rise rate is slower than 5 ° C / sec, the crystal grains become coarse and stretch flangeability and bendability deteriorate.
  • the primary average temperature rising rate may be high, but tends to be saturated when it exceeds 50 ° C./second. Therefore, the primary average heating rate was set in the range of 5 to 50 ° C./second. Preferably, it is 10 to 50 ° C./second.
  • the intermediate temperature exceeds 800 ° C.
  • the crystal grain size becomes coarse, and stretch flangeability and bendability are deteriorated.
  • the intermediate temperature may be low, but if it is less than 500 ° C., the effect is saturated and the difference in the finally obtained structure is reduced. Therefore, the intermediate temperature was set to 500 to 800 ° C.
  • the secondary average temperature rising rate is faster than 10 ° C./second, the austenite formation is slow, the finally obtained ferrite phase fraction increases, and it becomes difficult to ensure the strength.
  • the secondary average temperature rising rate is slower than 0.1 ° C./second, the crystal grain size becomes coarse, and elongation and bendability deteriorate. Therefore, the secondary average temperature rising rate was set in the range of 0.1 to 10 ° C./second.
  • the upper limit of the secondary average temperature rising rate is preferably less than 10 ° C./second.
  • Annealing temperature 730 to 900 ° C., holding time in this temperature range: 10 to 500 seconds
  • the annealing temperature is lower than 730 ° C.
  • austenite is not sufficiently generated during annealing, and thus strength cannot be ensured.
  • the annealing temperature is higher than 900 ° C.
  • austenite coarsens during heating the amount of ferrite phase generated in the subsequent cooling process decreases, elongation decreases, and the finally obtained crystal grain size is It tends to be excessively coarse and the hole expansion rate and bendability tend to decrease. Therefore, the annealing temperature was set to 730 ° C. or higher and 900 ° C. or lower.
  • the holding time in the said annealing temperature range is less than 10 second, the production
  • the crystal grains tend to grow and become coarse due to long-term annealing, and when the holding time in the annealing temperature range exceeds 500 seconds, the grain sizes of the austenite phase and ferrite phase during the heat annealing become coarse, and finally
  • the structure of the steel sheet obtained after the heat treatment is coarsened, and the hole expansion rate tends to decrease.
  • coarsening of austenite grains is undesirable because it causes rough skin after press molding.
  • the holding time is set to 10 seconds or more and 500 seconds or less in order to achieve both a finer structure and a uniform fine structure by reducing the influence of the structure before annealing.
  • a preferable holding time is 20 seconds or more and 200 seconds or less.
  • Average cooling rate to the cooling stop temperature 1 to 30 ° C./s
  • This cooling rate controls the abundance ratio of soft ferrite phase and hard martensite phase and / or bainite phase, and has strength and workability of TS980 MPa class or higher. It plays an important role in securing That is, when the average cooling rate exceeds 30 ° C./second, the formation of ferrite during cooling is suppressed, and the martensite phase is excessively generated. Therefore, it is easy to ensure the TS980 MPa class, but the deterioration of formability and fatigue characteristics It causes deterioration.
  • a preferable range of the average cooling rate is 5 to 20 ° C./second.
  • the cooling in this case is preferably gas cooling, but may be performed in combination using furnace cooling, mist cooling, roll cooling, water cooling, or the like.
  • Cooling stop temperature 450-550 ° C
  • a pearlite transformation or a bainite transformation which is softer than the martensite phase proceeds from austenite, and it becomes difficult to secure the TS980 MPa class. Further, when a hard retained austenite phase is generated, stretch flangeability is deteriorated.
  • the cooling stop temperature is less than 450 ° C., the retained austenite increases due to the progress of the bainite transformation, and it becomes difficult to secure the TS980 MPa class, and the stretch flange characteristics deteriorate.
  • a general hot dip galvanizing process is performed to obtain hot dip galvanizing.
  • an alloying treatment is performed by performing reheating using an induction heating device or the like to obtain an alloyed hot dip galvanized steel sheet.
  • Adhesion amount of hot dip galvanizing 20 to 150 g / m 2 per side
  • the adhesion amount of hot dip galvanization needs to be about 20 to 150 g / m 2 per side. This is because it is difficult to ensure the corrosion resistance if the plating adhesion amount is less than 20 g / m 2 , while if it exceeds 150 g / m 2 , the corrosion resistance effect is saturated and the cost is rather increased.
  • the hot-dip galvanized steel sheet finally obtained may be subjected to temper rolling for the purpose of shape correction or surface roughness adjustment, but excessive skin pass rolling will cause excessive distortion. Since the introduced crystal grains are expanded to form a rolled structure and the ductility is lowered, the reduction rate of the skin pass rolling is preferably about 0.1 to 1.5%.
  • the volume fraction of ferrite phase and pearlite is determined by visually determining ferrite and pearlite using a cross-sectional structure photograph of magnification 1000 times, and within an arbitrarily set 100 ⁇ m ⁇ 100 ⁇ m square area by image analysis The area occupied by the ferrite phase present in was determined, and this was used as the volume fraction of the ferrite phase and pearlite.
  • the amount of retained austenite was determined by using a K ⁇ ray of Mo with an X-ray diffractometer on the surface polished by 0.1 mm by chemical polishing after grinding the steel plate to a 1 ⁇ 4 position of the plate thickness (200), ( 220), (311) plane and the integrated strength of (200), (211), (220) plane of bcc iron were measured, and the fraction of retained austenite was determined from these to obtain the fraction of retained austenite.
  • the total amount of bainite and martensite was other than ferrite, austenite and pearlite.
  • the average grain size of bainite and martensite was regarded as a grain in one continuous region, the grain size was measured according to the method specified in JIS Z 0552, and converted to the average grain size.
  • Limit bending radius Measurement was performed based on the V-block method of JIS Z2248. The outside of the bent portion was visually checked for the presence or absence of cracks, and the minimum bending radius at which no cracks occurred was defined as the limit bending radius. The critical bending radius at 90 ° V-bending ⁇ 1.5 t (t: plate thickness of the steel plate) was considered good.
  • the nugget diameter was implemented as follows based on the description of JIS Z 3139. With respect to the cross-section perpendicular to the plate surface of the symmetrical circular plug after resistance spot welding, the cross-section passing through the approximate center of the welding point was semi-cut by an appropriate method. After the cut surface was polished and corroded, the nugget diameter was measured by cross-sectional structure observation by optical microscope observation. Here, the maximum diameter of the melting region excluding the corona bond was defined as the nugget diameter. When a cross tensile test was performed on a welded material having a nugget diameter of 4 t 1/2 (mm) (t: plate thickness of the steel plate) or more, the weldability was improved when the nugget was broken by the base material.
  • Comparative Example No. out of the scope of the present invention. 2, 3, 6, 8, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 26, and 28 to 41 are inferior in any one or more of the above material properties. Of these, No. 2, 3, 6, 8, 10, 12, 13, 15, 16, 18, 19, 21, 23, 25, 26 and 28 are within the scope of the present invention. The condition is not met. For example, no. 2 and 3, the slab heating temperature and finish rolling temperature are out of the scope of the present invention, and the average grain size of the ferrite phase exceeds the scope of the present invention, so TS exceeds 980 MPa. All of the limit bending radius and fatigue characteristics in xEI, TS ⁇ ⁇ , and 90 ° V bending are out of the good range. No. In Nos.
  • the secondary average heating rate and the annealing temperature are out of the range of the present invention, and the volume fraction of the ferrite phase exceeds the upper limit of the present invention, so softening and TS is less than 980 MPa.
  • No. Nos. 29 to 41 have component compositions that are outside the scope of the present invention. For example, no. In 30, 35 and 37, the contents of C, P and Al exceed the range of the present invention, respectively, and the weldability is out of the good range.
  • No. No. 32 has a Si content exceeding the range of the present invention, and the fatigue characteristics (durability ratio) are out of the good range.
  • the high-strength hot-dip galvanized steel sheet of the present invention has not only high tensile strength but also excellent workability, weldability and fatigue characteristics. It can be suitably used for applications that require durability under severe stress load conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

引張強度が980MPa以上であって、加工性、溶接性、疲労特性に優れる高強度溶融亜鉛めっき鋼板とその製造法。鋼板は、質量%でC:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を、あるいはさらにMo:0.01~0.15%、Ca:0.0001~0.0050%、REM:0.0001~0.1%、Sb:0.0001~0.1%のいずれか1種以上を含有し、残部はFeおよび不可避不純物からなり、体積分率20~70%、平均結晶粒径5μm以下のフェライト相を含有する組織を有し、鋼板表面に付着量(片面当たり)20~150g/mの溶融亜鉛めっき層を有する。

Description

加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
 本発明は、厳しい形状にプレス成形されることが要求される自動車部品などに用いて好適な、加工性、溶接性および疲労特性に優れる引張強度(TS)が980MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。
 なお、本発明における溶融亜鉛めっき鋼板は、亜鉛めっき後に合金化熱処理を施したいわゆる合金化溶融亜鉛めっき鋼板を含むものである。
 自動車部品などに用いられる高強度溶融亜鉛めっき鋼板は、その用途の特徴上、高強度に加えて、加工性に優れていることが要求される。
 最近、車体軽量化による燃費向上および衝突安全性確保の観点から高強度の鋼板が自動車車体に求められ、適用が拡大している。また、従来は軽加工主体であったが、複雑形状への適用も検討されはじめている。
 しかしながら、一般に、鋼板の高強度化に伴い加工性は低下する傾向にあるため、高強度鋼板を適用する際の一番の課題として、プレス成形時における割れが挙げられる。従って、部品形状に応じて伸びフランジ性などの加工性を向上することが要求されている。980MPa以上の高強度鋼になると、特に、曲げ成形で加工される部品が増加するため、曲げ成形性も重要になる。
 また、成形後は組み立て工程にて抵抗スポット溶接が施されるため、加工性に加えて、優れた溶接性も要求される。
 さらには、部材の薄肉化に伴い、平面曲げ疲労特性が従来以上に必要となる部位もある。
上記の要請に応えるべく、例えば特許文献1~8には、鋼成分や組織の限定、熱延条件や焼鈍条件の最適化などにより、高加工性で高強度の溶融亜鉛めっき鋼板を得る方法が提案されている。
特開2004−232011号公報 特開2002−256386号公報 特開2002−317245号公報 特開2005−105367号公報 特許第3263143号公報 特許第3596316号公報 特開2001−11538号公報 特開2006−63360号公報
 上掲した特許文献のうち、特許文献1には、C,Si含有量の多いTS 980MPa級の鋼材について開示されているが、伸びフランジ性や曲げ性については何ら考慮が払われていない。
 また、特許文献2~4には、Crを活用した鋼材について開示されているが、やはり伸びフランジ性や曲げ性については何ら考慮が払われていない。
 さらに、特許文献5~7には、伸びフランジ性を評価する指標の一つである穴拡げ率λに関する記載があるが、引張強度(TS)は980MPaに達していない。また、曲げ性や疲労特性については記載されていない。
 特許文献8にはTi添加による曲げ性の改善とフェライト粒径の微細化による切り欠き疲労特性向上について記載されているが、穴広げ特性や溶接性、平面曲げ疲労特性については記載されていない。切欠き疲労特性はボルト止めや部品取り付けのための打ち抜き穴から発生する疲労破壊の評価指標であるのに対し、本発明が目的とする平面曲げ疲労特性は、部品の大部分を占める母材そのものの疲労特性の評価指標である。打ち抜き穴は打ち抜き時に導入された亀裂の状態が疲労特性に大きく寄与するのに対し、平滑部疲労は、母材の組織や成分が大きく影響する点で全く異なる特性である。
 本発明は、上記の現状に鑑み開発されたもので、TS≧980MPaの高い引張強度を有し、しかも加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板を、その有利な製造方法と共に提案することを目的とする。
 さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた。
 その結果、以下(1)~(6)の知見を得た。
(1)加工性および溶接性の観点からは、C,P,S量を低減する必要がある。
(2)良好な表面性状を達成するためにはSi量を低く抑える必要がある。
(3)CやPの低減に伴う強度低下については、Cr、Si、Mnを活用することにより、合金元素が少なくても高強度化が可能である。
(4)体積分率が20~70%で、平均結晶粒径が5μm以下のフェライト相を有する組織とすることにより、加工性および溶接性が向上する。
(5)(4)に加えてベイナイトおよび/もしくはマルテンサイトの平均結晶粒径を5μm以下とすることで、良好な曲げ特性を得ることができる。
(6)(5)の組織制御を行なったときに、Crの多量添加は疲労特性を劣化させ、Si添加は疲労特性を向上させる。
 本発明は上記の知見に立脚するものである。
 すなわち、本発明は、上記の課題を解決するために、以下の手段を採用する。
[1]質量%で、C:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を含有し、残部がFeおよび不可避不純物の組成からなり、体積分率が20~70%で、かつ平均結晶粒径が5μm以下のフェライト相を含有する組織を有し、引張強度が980MPa以上で、さらに鋼板表面に付着量(片面当たり):20~150g/mの溶融亜鉛めっき層を有することを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
[2]質量%で、C:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を含有し、残部がFeおよび不可避不純物の組成からなり、体積分率が20~70%で、かつ平均結晶粒径が5μm以下のフェライト相と、残留オーステナイトとパーライトあわせて5%以下、平均結晶粒径が5μm以下のベイナイトおよび/もしくはマルテンサイトからなる組織を有し、引張強度が980MPa以上で、さらに鋼板表面に付着量(片面当たり):20~150g/mの溶融亜鉛めっき層を有することを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
[3]さらに鋼が質量%で、Mo:0.01~0.15%を含有することを特徴とする、[1]または[2]に記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
[4]さらに鋼が質量%で、Ca:0.0001~0.0050%および/もしくはREM:0.0001~0.1%を含有することを特徴とする、[1]~[3]のいずれか一つに記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
[5]さらに鋼が質量%で、Sb:0.0001~0.1%を含有することを特徴とする[1]~[4]のいずれか一つに記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
[6][1]~[5]のいずれか一つに記載された組成からなる鋼スラブを、熱間圧延後、コイルに巻き取ったのち、酸洗し、ついで冷間圧延後、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造するに際し、熱間圧延では、スラブ加熱温度を1150~1300℃、熱間仕上げ圧延温度を850~950℃として熱間圧延した後、熱間仕上げ圧延温度~(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5~200℃/秒として冷却し、400~650℃の温度でコイルに巻取り、ついで酸洗後、冷間圧延したのち、200℃から中間温度までの1次平均昇温速度を5~50℃/秒として500~800℃の中間温度まで加熱し、さらに該中間温度から焼鈍温度までの2次平均昇温速度を0.1~10℃/秒として730~900℃の焼鈍温度まで加熱し、この焼鈍温度域に10~500秒保持したのち、450~550℃まで1~30℃/秒の平均冷却速度で冷却し、ついで溶融亜鉛めっき処理、あるいはさらに合金化処理を施すことを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
 本発明によれば、高強度を有し、しかも加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板を製造することができる。そして、本発明により得られる高強度溶融亜鉛めっき鋼板は、自動車部品として要求される強度および加工性を共に満足しており、厳しい形状にプレス成形される自動車部品として好適である。
 本発明において、加工性に優れるとは、TS×EI≧13000MPa・%で、かつTS×λ≧20000MPa・%、90°V曲げでの限界曲げ半径≦1.5t(t:板厚)を満足することであり、また溶接性に優れるとは、ナゲット径:4√t(mm)(t:鋼板の板厚)以上で母材破断することであり、疲労特性にすぐれるとは、平面曲げ疲労限の耐久比(疲労限応力/TS)≧0.42を満足することであり、さらに高強度とは、引張強度(TS)が980MPa以上を意味する。
 以下、本発明を具体的に説明する。
 まず、本発明において、鋼板および鋼スラブの成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.05%以上0.12%未満
 マルテンサイト相の強度はC量に比例する傾向にあるので、Cはマルテンサイト相を利用して鋼を強化する上で不可欠の元素である。980MPa以上のTSを得るには0.05%以上のCが必要であり、C量の増加に伴ってTSは増加する。しかしながら、C量が0.12%以上になるとスポット溶接性が著しく劣化し、またマルテンサイト相の増量による硬質化、さらにはマルテンサイト相よりも硬質な残留オーステナイト相の生成により、曲げ性等の加工性も著しく低下する傾向にある。そのため、C量は0.05%以上0.12%未満の範囲に限定した。より好ましくは0.105%未満である。一方、980MPa以上のTSを安定して確保する観点から、好ましいC量は0.08%以上である。
Si:0.35%以上0.80%未満
 Siは、固溶強化により強度向上に寄与する元素であるとともに、平面曲げ疲労特性や伸びおよび溶接性を向上させるが、その効果は0.35%以上で発現する。しかしながら、含有量が0.80%以上含有されることにより、熱延時に難剥離性のスケールを生成して鋼板の表面性状を劣化させ、加工性や疲労特性を低下させる。さらに、鋼板表面に酸化物として濃化し、不めっきの原因ともなる。それ故、Si量は0.35%以上0.80%未満に限定した。好ましくは0.35%以上0.60%以下、より好ましくは、0.50%以下である。
Mn:2.0~3.5%
 Mnは、強度向上に有効に寄与し、この効果は2.0%以上含有することで認められる。一方、3.5%を超えて過度に含有すると、Mnの偏析などに起因して部分的に変態点が異なる組織となり、結果としてフェライト相とマルテンサイト相がバンド状で存在する不均一な組織となり、加工性が低下する。また、鋼板表面に酸化物として濃化し、不めっきの原因ともなる。それ故、Mn量は2.0%以上3.5%以下に限定した。好ましくは2.2%以上2.8%以下である。
P:0.001~0.040%
 Pは、強度向上に寄与する元素であるが、その反面溶接性を劣化させる元素でもあり、P量が0.040%を超えるとその影響が顕著に現れる。特にCrを0.5%超で添加する際にはPを0.02%まで低減する必要があるが、0.5%以下のCr添加であればPは0.040%まで許容される。一方、過度のP低減は製鋼工程における製造コストの増加を伴う。それ故、P量は0.001%以上0.040%以下の範囲に限定した。好ましくは0.001%以上0.025%以下、より好ましくは0.001%以上0.015%以下である。
S:0.0001~0.0050%
 S量が増加すると熱間赤熱脆性の原因となり、製造工程上不具合を生じる場合があり、また介在物MnSを形成し、冷間圧延後に板状の介在物として存在することにより、特に材料の極限変形能を低下させ、伸びフランジ性などの成形性を低下させる。S量が0.0050%までは問題ない。一方、過度の低減は製鋼工程における脱硫コストの増加を伴う。それ故、S量は0.0001%以上0.0050%以下の範囲に限定した。好ましくは0.0001%以上0.003%以下である。
Al:0.005~0.1%
 Alは、製鋼工程において脱酸剤として有効であり、また局部延性を低下させる非金属介在物をスラグ中に分離する点でも有用な元素である。さらに、Alは、焼鈍時に、めっき性を阻害する表層でのMn、Si系の酸化物の形成を抑制し、めっき表面外観を向上させる効果がある。このような効果を得るには0.005%以上の添加が必要である。一方、0.1%を超えて添加すると、鋼成分コストの増大を招くだけでなく、溶接性を低下させる。それ故、Al量は0.005~0.1%の範囲に限定した。好ましくは0.01%以上0.06%以下である。
N:0.0001~0.0060%
 組織強化鋼において材料特性に及ぼすNの影響はあまり大きくはないが、0.0060%以下であれば本発明の効果を損なわない。一方、フェライトの清浄化による延性向上の観点からはN量は少ないほうが望ましいが、製鋼上のコストも増大するので、下限は0.0001%とした。すなわち、N量は0.0001%以上0.0060%以下とした。
Cr:0.01~0.5%
 Crは、鋼の焼入れ強化に有効な元素であり、この効果を得るためには、0.01%以上の添加を必要とする。また、Crはオーステナイトの焼き入れ性を向上させて、伸びおよび曲げ特性の向上に有効に寄与する。しかしながら、固溶強化能が小さいため、多量に添加すると疲労特性および溶接性を劣化させる。Cr量が0.5%を超えると疲労特性が劣化し、溶接性も低下する。それ故、Cr量は0.01~0.5%の範囲に限定した。より好ましくは0.3%以下である。
Ti:0.010~0.080%
 Tiは、鋼中でCまたはNと微細炭化物や微細窒化物を形成することにより、熱延板組織および焼鈍後の鋼板組織の細粒化および析出強化の付与に有効に作用する。この効果を得るためには、0.010%以上のTiが必要である。しかしながら、Ti量が、0.080%を超えるとこの効果が飽和するだけでなく、フェライト中に過度に析出物が生成し、フェライトの延性を低下させる。従って、Ti量は0.010~0.080%の範囲に限定した。より好ましくは0.020~0.060%の範囲である。
Nb:0.010~0.080%
 Nbは、固溶強化または析出強化により強度の向上に寄与する元素である。また、フェライトを強化することによりマルテンサイト相との硬度差を低減する効果を通じて、伸びフランジ性の改善にも有効に寄与する。さらには、フェライト粒およびベイナイト、マルテンサイト粒径の微細化に寄与して、曲げ性を改善させる。このような効果はNb量が0.010%以上で得られる。しかしながら、0.080%を超えて過度に含有されると、熱延板が硬質化し、熱間圧延、冷間圧延時の圧延荷重の増大を招く。また、フェライトの延性を低下させ、加工性が劣化する。従って、Nb量は0.010%以上0.080%以下の範囲に限定した。なお、強度および加工性の観点からは、Nb量は0.030~0.070%とするのが好ましい。
B:0.0001~0.0030%
 Bは、焼入れ性を高め、焼鈍冷却過程で起こるフェライトの生成を抑制し、所望のマルテンサイト量を得るのに寄与する。この効果を得るためには、B量は0.0001%以上含有させる必要があるが、0.0030%を超えると上記の効果は飽和する。それ故、B量は0.0001~0.0030%の範囲に限定した。好ましくは0.0005~0.0020%の範囲である。
 本発明の鋼板は、所望の加工性、溶接性および疲労特性を得る上で、上記の成分組成を必須とし、残部はFeおよび不可避的不純物の組成からなるが、必要に応じて以下の元素を適宜含有させることができる。
Mo:0.01~0.15%
 Moは、鋼の焼入れ強化に有効な元素であり、この効果を得るためには、0.01%以上の添加を必要とする。しかしながら、Mo量が0.15%を超えると、溶接性確保のためにP低減が必要となり、また、コストアップの要因となる。さらには疲労特性も劣化させる。それ故、Mo量は0.01%以上0.15%以下の範囲に限定した。より好ましくは0.01~0.05%の範囲である。
Ca:0.0001~0.0050%、REM:0.0001~0.1%
 CaおよびREMは、MnSなど硫化物の形状制御により延性および穴広げ性を向上させる効果があるが、多量に含有させてもその効果は飽和する傾向にある。よって、Caを含有させる場合、0.0001%以上0.0050%以下、好ましくは0.0001%以上0.0020%以下、REMを含有させる場合は、0.0001%以上0.1%以下、好ましくは0.0005%以上0.01%以下である。
Sb:0.0001~0.1%
 Sbはめっき性を大きく変化させることなく、硫化物系介在物の形態を制御する作用を有し、これにより鋼板表層の結晶を整粒にすることにより成形性を改善する作用を有する。Sbを含有させる場合は、0.0001%以上0.1%以下、好ましくは0.0005%以上0.01%以下である。
 Vは、炭化物の形成により、フェライト相を強化させる効果を有するが、逆にフェライト相の延性を低下させる。よって、Vは0.05%未満、より好ましくは0.005%未満で含有させることが好ましい。
 その他、析出物を形成するZr,Mgなどは含有量が極力少ない方が好ましく、積極的に添加する必要はなく、0.0200%未満、より好ましくは0.0002%未満の範囲とする。また、Cuは溶接性、Niはめっき後の表面外観に悪影響を及ぼす元素であり、従ってCu,Niはそれぞれ0.4%未満、より好ましくは0.04%未満の範囲とする。
 次に、本発明にとって重要な要件の一つである鋼組織の限定範囲および限定理由について説明する。
フェライト相の平均結晶粒径:5μm以下
 結晶粒の微細化は、鋼板の伸びフランジ性および曲げ性の向上に寄与する。本発明では、複合組織中のフェライト相の平均結晶粒径を5μm以下に制限することにより、曲げ性の向上を達成した。
 また、軟質な領域と硬質な領域が粗に存在すると、加工が不均一となり成形性が劣化する。この点、フェライト相とマルテンサイト相が均一微細に存在すると、加工時に鋼板の変形が均一となるので、フェライト相の平均結晶粒径は小さい方が望ましい。加工性の劣化を抑制するために好ましい範囲は1~3.5μmである。
フェライト相の体積分率:20~70%
 フェライト相は軟質相であり、鋼板の延性に寄与するため、本発明の鋼板では、フェライト相を体積分率で20%以上含有させる必要がある。一方で、フェライト相が70%を超えて存在すると過度に軟質化し、強度の確保が困難となる。よって、フェライト相は体積分率で20%以上70%以下、好ましくは30%以上60%以下の範囲とした。
平均結晶粒径が5μm以下のベイナイトおよび/もしくはマルテンサイト
 フェライト相以外には、オーステナイトからの低温変態相である焼き戻しされていないマルテンサイト相および/もしくはベイナイト相が5mm以下の平均結晶粒径とすることにより、穴拡げ特性、曲げ性および疲労特性がさらに向上する。体積分率は30%以上80%以下の範囲である。このマルテンサイト相および/もしくはベイナイト相は、硬質相であり、変態組織強化によって鋼板の強度を増加させる作用を有している。また、硬質相の分散により疲労き裂の伝播を抑制する。しかしながら、マルテンサイト相および/もしくはベイナイト相の平均結晶粒径が5mmを超えるとこれらの効果が十分ではない。
 なお、ここでは慣用に従い、結晶粒径としているが、実際には変態前の旧オーステナイト粒に対応する領域を一結晶粒と見なして測定するものとする。
 上記したフェライト相、マルテンサイト相、ベイナイト相以外の残部組織としては、残留オーステナイト相、パーライト相が考えられるが、これらの合計量が体積分率で5%以下であれば、本発明の効果を損ねるものではない。
 次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法について説明する。
 まず、上記の成分組成に調整された溶鋼から、連続鋳造法または造塊−分塊法でスラブを製造する。ついで、得られたスラブを、冷却後、再加熱したのち、あるいは鋳造後加熱処理を経ずにそのまま、熱間圧延を行う。スラブ加熱温度を1150~1300℃として、熱延板を均一組織化し、伸びフランジ性などの加工性を向上させるために仕上げ圧延温度を850~950℃とし、フェライト相とパーライト相の2相からなるバンド状組織の生成を抑制して熱延板を均一組織化し、さらに伸びフランジ性など加工性を向上させるために熱間仕上げ圧延温度~(熱間仕上げ圧延温度−100℃)間の平均冷却速度を5~200℃/秒とし、表面性状および冷間圧延性を向上させるため巻取温度を400~650℃として、熱間圧延を終了し、酸洗後、冷間圧延により所望の板厚とする。冷延圧下率はフェライト相の再結晶促進により延性を向上させるために30%以上とすることが望ましい。また、疲労特性向上のため、熱間圧延時のスケール除去のため、高圧水によりデスケーリングを行うことが好ましい。
 ついで、溶融亜鉛めっき工程では、冷却開始前の焼鈍時の組織を制御し、最終的に得られるフェライト分率と粒径を最適化させるために、200℃から中間温度までの1次平均昇温速度を5~50℃/秒とし、中間温度を500~800℃とし、中間温度から焼鈍温度までの2次平均昇温速度を0.1~10℃/秒とし、焼鈍温度を730~900℃とし、この温度域に10~500秒保持したのち、冷却停止温度:450~550℃まで1~30℃/秒の平均冷却速度で冷却する。
 冷却後、引き続き溶融亜鉛浴に鋼板を浸漬し、ガスワイピング等により亜鉛めっき付着量を制御したのち、あるいはさらに加熱して合金化処理を行った後、室温まで冷却する。
 かくして本発明で目的とする高強度溶融亜鉛めっき鋼板が得られるが、めっき後の鋼板にスキンパス圧延を施しても良い。
 以下、製造条件の限定範囲および限定理由を具体的に説明する。
スラブ加熱温度:1150~1300℃
 鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi,Nb系析出物を再溶解させる必要がある。ここに、1150℃以上の加熱により強度への寄与が認められる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する観点からも1150℃以上に加熱することが有利である。しかしながら、加熱温度が1300℃を超えると、オーステナイト粒の粗大化を引き起こし、最終組織が粗大化し、伸びフランジ性を低下させる。従って、スラブ加熱温度は1150℃以上1300℃以下の範囲に限定した。
仕上げ圧延温度:850~950℃
 熱間仕上げ圧延温度を850℃以上とすることにより加工性(延性、伸びフランジ性)を著しく向上させることができる。仕上げ圧延温度が850℃未満の場合、熱間圧延後に、結晶が展伸された加工組織となる。また、鋳片内にてオーステナイト安定化元素であるMnが偏析していると、その領域のAr3変態点が低下し、低温までオーステナイト域となる。さらに、変態温度が低下することにより未再結晶温度域と圧延終了温度が同じ温度域となり、結果的に熱間圧延中に未再結晶のオーステナイトが存在すると考えられる。このように、不均一な組織となると加工時の材料の均一な変形が阻害され、優れた加工性を得ることが困難となる。
 一方、仕上げ圧延温度が950℃を超えると酸化物(スケール)の生成量が急激に増大し、地鉄−酸化物界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にあり、また酸洗後に熱延スケールの取れ残りなどが一部に存在すると、抵抗スポット溶接性や疲労特性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。従って、仕上げ圧延温度は850~950℃、好ましくは900℃~950℃とした。
仕上げ圧延温度~(仕上げ圧延温度−100℃)間の平均冷却速度:5~200℃/秒
 仕上げ圧延直後の高温域[仕上げ圧延温度~(仕上げ圧延温度−100℃)]における、平均冷却速度が5℃/秒に満たないと、熱延後、再結晶、粒成長し、熱延板組織が粗大化すると共に、フェライトとパーライトが層状に形成されたバンド状組織となる。焼鈍前にバンド状組織になると、成分の濃度ムラが生じた状態で熱処理されるため、めっき工程での熱処理では組織の微細均一化が困難となり、最終的に得られる組織が不均一となり、伸びフランジ性や曲げ性が低下する。このため、仕上げ圧延温度~(仕上げ圧延温度−100℃)における平均冷却速度は5℃/秒以上とする。一方、当該温度域における平均冷却速度が200℃/秒を超えても効果は飽和する傾向にあるので、当該温度域における平均冷却速度は5~200℃/秒の範囲とした。
巻取温度:400~650℃
 巻取温度については、650℃を超えると、熱延スケール厚が増加し、酸洗、冷間圧延後の表面が荒れ、表面に凹凸が形成され、またフェライト粒径が粗大化するため加工性の低下および疲労特性の低下を招き、また酸洗後に熱延スケールが残存すると抵抗スポット溶接性に悪影響を及ぼす。一方、巻取温度が400℃未満では熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する傾向にある。従って、巻取温度は400℃以上650℃以下の範囲とした。
1次平均昇温速度(200℃から中間温度まで):5~50℃/秒、中間温度:500~800℃、2次平均昇温速度(中間温度から焼鈍温度まで):0.1~10℃/秒
 1次平均昇温速度が5℃/秒より遅いと、結晶粒が粗大化し、伸びフランジ性および曲げ性が低下する。この1次平均昇温速度は速くてもかまわないが、50℃/秒を超えると飽和する傾向にある。従って、1次平均昇温速度は5~50℃/秒の範囲とした。好ましくは10~50℃/秒である。
 また、中間温度が800℃を超えると結晶粒径が粗大化し、伸びフランジ性や曲げ性が低下する。中間温度は低くてもかまわないが、500℃未満では効果は飽和し、最終的に得られる組織に差が少なくなる。従って、中間温度は500~800℃とした。
 2次平均昇温速度が10℃/秒より速い場合には、オーステナイトの生成が遅く、最終的に得られるフェライト相分率が多くなり、強度確保が困難となる。一方、2次平均昇温速度が0.1℃/秒より遅い場合には、結晶粒径が粗大化し、伸びや曲げ性が低下する。従って、2次平均昇温速度は0.1~10℃/秒の範囲とした。なお、2次平均昇温速度の上限は10℃/秒未満とすることが好ましい。
焼鈍温度:730~900℃、この温度域での保持時間:10~500秒
 焼鈍温度が730℃より低い場合、焼鈍時にオーステナイトが十分に生成しないため、強度確保ができない。一方、焼鈍温度が900℃より高い場合、加熱中にオーステナイトが粗大化し、その後の冷却過程で生成するフェライト相の量が減少し、伸びが低下する、また、最終的に得られる結晶粒径が過度に粗大化し、穴拡げ率や曲げ性が低下する傾向にある。従って、焼鈍温度は730℃以上900℃以下とした。
 また、当該焼鈍温度域における保持時間が10秒未満では焼鈍中のオーステナイト相の生成が不足し、鋼板の強度確保が困難となる。一方、長時間焼鈍により結晶粒は成長し粗大化する傾向にあり、上記の焼鈍温度域における保持時間が500秒を超えると加熱焼鈍中のオーステナイト相およびフェライト相の粒径が粗大化し、最終的に熱処理後に得られる鋼板の組織が粗大化し、穴拡げ率が低下する傾向にある。加えて、オーステナイト粒の粗大化は、プレス成形後の肌荒れの原因ともなり好ましくない。さらに、冷却停止温度までの冷却過程中のフェライト相の生成量も減少するため、伸びも低下する傾向にある。従って、より微細な組織を達成することと、焼鈍前の組織の影響を小さくして均一微細な組織を得ることとを両立するために、保持時間は10秒以上500秒以下とした。好ましい保持時間は20秒以上200秒以下である。
冷却停止温度までの平均冷却速度:1~30℃/秒
 この冷却速度は、軟質なフェライト相と硬質なマルテンサイト相および/もしくはベイナイト相の存在比率を制御し、TS980MPa級以上の強度と加工性を確保するのに重要な役割を担っている。すなわち、平均冷却速度が30℃/秒を超えると、冷却中のフェライト生成が抑制され、マルテンサイト相が過度に生成するためTS980MPa級の確保は容易ではあるが、成形性の劣化や疲労特性の劣化を招く。一方、1℃/秒より遅いと、冷却過程中に生成するフェライト相の量が多くなりパーライトも増加し、TSの確保ができない。当該平均冷却速度の好ましい範囲は5~20℃/秒である。
 なお、この場合の冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて行うことも可能である。
 冷却停止温度:450~550℃
 冷却停止温度が550℃より高い場合、オーステナイトからマルテンサイト相より軟質なパーライト変態あるいはベイナイト変態が進行し、TS980MPa級の確保が困難となる。また、硬質な残留オーステナイト相が生成すると伸びフランジ性が低下する。一方、冷却停止温度が450℃未満の場合、ベイナイト変態の進行により残留オーステナイトが増加し、TS980MPa級の確保が困難となるとともに、伸びフランジ特性が劣化する。
 上記の冷却停止後、一般的な溶融亜鉛めっき処理を施して溶融亜鉛めっきとする。あるいはさらに、上記の溶融亜鉛めっき処理後、誘導加熱装置などを用いて再加熱を施す合金化処理を施して、合金化溶融亜鉛めっき鋼板とする。
溶融亜鉛めっきの付着量:片面当たり20~150g/m
 溶融亜鉛めっきの付着量は、片面当たり20~150g/m程度とする必要がある。というのは、このめっき付着量が20g/m未満では、耐食性の確保が困難であり、一方150g/mを超えると、耐食効果は飽和し、むしろコストアップとなるからである。
 なお、連続焼鈍後、最終的に得られた溶融亜鉛めっき鋼板に、形状矯正や表面粗度調整の目的から調質圧延を行ってもかまわないが、過度にスキンパス圧延を行うと過多に歪が導入され結晶粒が展伸され圧延加工組織となり、延性が低下するため、スキンパス圧延の圧下率は0.1~1.5%程度とすることが好ましい。
 表1に示す成分組成になる鋼を溶製し、スラブとしたのち、表2に示す種々の条件で熱間圧延、酸洗、圧下率:50%の冷間圧延、連続焼鈍およびめっき処理を施し、板厚が1.4mmで片面当たりのめっき付着量が45g/mの溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造した。
 得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板について、以下に示す材料試験を行い、材料特性を調査した。得られた結果を表3に示す。
 なお、材料試験および材料特性の評価法は次のとおりである。
(1)鋼板の組織
 圧延方向断面、板厚:1/4面位置を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することにより調査した。フェライト相の結晶粒径は、JIS Z 0552に規定の方法に準拠して結晶粒度を測定し、平均結晶粒径に換算した。また、フェライト相、パーライトの体積分率は、倍率:1000倍の断面組織写真を用いて、フェライトおよびパーライトを目視判定によって特定し、画像解析により、任意に設定した100μm×100μm四方の正方形領域内に存在するフェライト相の占有面積を求め、これをフェライト相およびパーライトの体積分率とした。
 残留オーステナイト量は鋼板を板厚1/4位置まで研削した後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用いて、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)、(220)面の積分強度を測定し、これらから残留オーステナイトの分率を求め、残留オーステナイトの分率とした。
 ベイナイトとマルテンサイトの合計量はフェライト、オーステナイト、パーライト以外の部分とした。
 ベイナイトとマルテンサイトの平均粒径は、それらの連続したひとつの領域を粒とみなし、JIS Z 0552に規定の方法に準拠して結晶粒度を測定し、平均結晶粒径に換算した。
(2)引張特性
 圧延方向と90°の方向を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行い評価した。なお、引張特性の評価基準はTS×EI値が13000MPa・%以上を良好とした。
(3)穴拡げ率
 日本鉄鋼連盟規格JFST1001に基づき実施した。初期直径d=10mmの穴を打抜き、60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板厚貫通したところでポンチの上昇を止め、亀裂貫通後の打抜き穴径dを測定し、次式
 穴拡げ率(%)=((d−d)/d)×100
により穴拡げ率を算出した。
 この試験は、同一番号の鋼板について3回実施し、穴拡げ率の平均値(λ)を求めた。なお、穴拡げ率の評価基準はTS×λ値が20000MPa・%以上を良好とした。
(4)限界曲げ半径
JIS Z2248のVブロック法に基づき測定を実施した。曲げ部外側について目視で亀裂の有無を判定し、亀裂が発生していない最小の曲げ半径を限界曲げ半径とした。90°V曲げでの限界曲げ半径≦1.5t(t:鋼板の板厚)で良好とした。
(5)抵抗スポット溶接性
 まず、以下の条件にてスポット溶接を行った。電極:DR6mm−40R、加圧力:4802N(490kgf)、初期加圧時間:30cycles/60Hz、通電時間:17cycles/60Hz、保持時間:1cycle/60Hzとした。試験電流は同一番号の鋼板に対し、4.6~10.0kAまで0.2kAピッチで変化させ、また10.0kAから溶着までは0.5kAピッチで変化させた。各試験片は、十字引張り試験、溶接部のナゲット径の測定に供した。抵抗スポット溶接継手の十字引張り試験はJIS Z 3137に基づき実施した。ナゲット径はJIS Z 3139の記載に準拠して以下のように実施した。抵抗スポット溶接後の対称円状のプラグを板表面に垂直な断面について、溶接点のほぼ中心を通る断面を適当な方法で半切断した。切断面を研磨、腐食した後、光学顕微鏡観察による断面組織観察によりナゲット径を測定した。ここで、コロナボンドを除いた溶融領域の最大直径をナゲット径とした。ナゲット径が4t1/2(mm)(t:鋼板の板厚)以上の溶接材において十字引張り試験を行った際、母材で破断した場合に、溶接性を良好とした。
(6)平面曲げ疲労試験
 平面曲げ疲労試験は、JIS Z 2275に準拠し、完全両振り(応力比−1)、周波数20Hzの条件で行った。耐久比≧0.42で疲労特性良好とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 表3に示したとおり、本発明の実施例である発明例No.1、4、5、7、9、11、14、17、20、22、24、27および42~46では、引張強度TSが980MPa以上であって、TS×EI≧13000MPa・%、TS×λ≧20000MPa・%、90°V曲げでの限界曲げ半径≦1.5t(t:板厚、実施例ではt=1.4mm、1.5t=2.1)、良好な抵抗スポット溶接性(母材破断)、かつ良好な疲労特性(耐久比≧0.42)を同時に満足する加工性に優れる高強度溶融亜鉛めっき鋼板が得られていることが分かる。
 これに対して、本発明の範囲を外れる比較例No.2、3、6、8、10、12、13、15、16、18、19、21、23、25、26、28~41は、上記の材料特性のいずれか1つ以上が劣っている。
 このうち、No.2、3、6、8、10、12、13、15、16、18、19、21、23、25、26および28は成分組成は、本発明の範囲内であるが、製造方法が本発明の条件を外れている。例えば、No.2および3は、それぞれスラブの加熱温度や仕上げ圧延の温度が本発明の範囲を外れており、フェライト相の平均粒径が本発明の範囲を超えているため、TSが980MPaを超えるが、TS×EI、TS×λ、90°V曲げでの限界曲げ半径および疲労特性のいずれもが良好な範囲を外れている。No.13および18は、それぞれ2次平均昇温速度、焼鈍温度が本発明の範囲を外れており、フェライト相の体積分率が本発明の上限を超えているため、軟質化してTSが980MPaを下回って、良好な範囲を外れている。
 また、No.29~41は、成分組成が本発明を外れているものである。例えば、No.30、35および37は、それぞれC、P、Alの含有量が本発明の範囲を超えており、溶接性が良好な範囲を外れている。No.32はSiの含有量が本発明の範囲を超えており、疲労特性(耐久比)が良好な範囲から外れている。
 表3に示したとおり、発明例では、TS×EI≧13000MPa・%、TS×λ≧20000MPa・%、90°V曲げでの限界曲げ半径≦1.5t(t:鋼板の板厚)、良好な抵抗スポット溶接性かつ、良好な疲労特性を同時に満足する加工性に優れる高強度溶融亜鉛めっき鋼板が得られていることが分かる。
本発明の高強度溶融亜鉛めっき鋼板は、高い引張強度を有するだけでなく、加工性、溶接性および疲労特性に優れるため、自動車部品をはじめとして、建築および家電分野など厳しい寸法精度、加工性や厳しい応力負荷条件での耐久性が必要とされる用途に好適に使用することができる。

Claims (6)

  1.  質量%で、C:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を含有し、残部がFeおよび不可避不純物の組成からなり、体積分率が20~70%で、かつ平均結晶粒径が5μm以下のフェライト相を含有する組織を有し、引張強度が980MPa以上で、さらに鋼板表面に付着量(片面当たり):20~150g/mの溶融亜鉛めっき層を有することを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
  2.  質量%で、C:0.05%以上0.12%未満、Si:0.35%以上0.80%未満、Mn:2.0~3.5%、P:0.001~0.040%、S:0.0001~0.0050%、Al:0.005~0.1%、N:0.0001~0.0060%、Cr:0.01%~0.5%、Ti:0.010~0.080%、Nb:0.010~0.080%およびB:0.0001~0.0030%を含有し、残部がFeおよび不可避不純物の組成からなり、体積分率が20~70%で、かつ平均結晶粒径が5μm以下のフェライト相と、残留オーステナイトとパーライトあわせて5%以下、平均結晶粒径が5μm以下のベイナイトおよび/もしくはマルテンサイトからなる組織を有し、引張強度が980MPa以上で、さらに鋼板表面に付着量(片面当たり):20~150g/mの溶融亜鉛めっき層を有することを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
  3.  さらに鋼が質量%で、Mo:0.01~0.15%を含有することを特徴とする、請求項1または2に記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
  4.  さらに鋼が質量%で、Ca:0.0001~0.0050%および/もしくはREM:0.0001~0.1%を含有することを特徴とする、請求項1乃至3のいずれか一項に記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
  5.  さらに鋼が質量%で、Sb:0.0001~0.1%を含有することを特徴とする請求項1乃至4のいずれか一項に記載の加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板。
  6.  請求項1乃至5のいずれか一項に記載された組成からなる鋼スラブを、熱間圧延後、コイルに巻き取ったのち、酸洗し、ついで冷間圧延後、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造するに際し、熱間圧延では、スラブ加熱温度を1150~1300℃、熱間仕上げ圧延温度を850~950℃として熱間圧延した後、熱間仕上げ圧延温度~(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5~200℃/秒として冷却し、400~650℃の温度でコイルに巻取り、ついで酸洗後、冷間圧延したのち、200℃から中間温度までの1次平均昇温速度を5~50℃/秒として500~800℃の中間温度まで加熱し、さらに該中間温度から焼鈍温度までの2次平均昇温速度を0.1~10℃/秒として730~900℃の焼鈍温度まで加熱し、この焼鈍温度域に10~500秒保持したのち、450~550℃まで1~30℃/秒の平均冷却速度で冷却し、ついで溶融亜鉛めっき処理、あるいはさらに合金化処理を施すことを特徴とする加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
PCT/JP2010/057845 2009-04-28 2010-04-27 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 WO2010126161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10769853.2A EP2426230B1 (en) 2009-04-28 2010-04-27 High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
CA2759913A CA2759913C (en) 2009-04-28 2010-04-27 High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
KR1020137018047A KR20130087616A (ko) 2009-04-28 2010-04-27 가공성, 용접성 및 피로 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
US13/264,006 US8828557B2 (en) 2009-04-28 2010-04-27 High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
CN201080018564.8A CN102414335B (zh) 2009-04-28 2010-04-27 加工性、焊接性和疲劳特性优良的高强度热镀锌钢板及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-109735 2009-04-28
JP2009109735 2009-04-28
JP2010-038216 2010-02-24
JP2010038216A JP4924730B2 (ja) 2009-04-28 2010-02-24 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2010126161A1 true WO2010126161A1 (ja) 2010-11-04

Family

ID=43032297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057845 WO2010126161A1 (ja) 2009-04-28 2010-04-27 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US8828557B2 (ja)
EP (1) EP2426230B1 (ja)
JP (1) JP4924730B2 (ja)
KR (2) KR20130087616A (ja)
CN (1) CN102414335B (ja)
CA (1) CA2759913C (ja)
TW (1) TWI450982B (ja)
WO (1) WO2010126161A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100762A1 (de) * 2011-01-26 2012-08-02 Salzgitter Flachstahl Gmbh Höherfester mehrphasenstahl mit ausgezeichneten umformeigenschaften
WO2016147550A1 (ja) * 2015-03-13 2016-09-22 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
RU2610989C2 (ru) * 2012-01-30 2017-02-17 Зальцгиттер Флахшталь Гмбх Многофазная сталь максимальной прочности с улучшенными свойствами в процессе изготовления и переработки
RU2615957C2 (ru) * 2012-03-20 2017-04-11 Зальцгиттер Флахшталь Гмбх Высокопрочная многофазная сталь и способ изготовления полосы из этой стали
RU2669667C2 (ru) * 2014-07-03 2018-10-12 Арселормиттал Способ изготовления высокопрочного стального листа с покрытием или без покрытия и полученный стальной лист
US10900097B2 (en) 2015-12-15 2021-01-26 Posco High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability
US11035020B2 (en) 2015-12-29 2021-06-15 Arcelormittal Galvannealed steel sheet

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347739B2 (ja) * 2009-06-11 2013-11-20 新日鐵住金株式会社 析出強化型複相冷延鋼板の製造方法
JP5516057B2 (ja) * 2010-05-17 2014-06-11 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5682357B2 (ja) * 2011-02-14 2015-03-11 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5549618B2 (ja) * 2011-02-15 2014-07-16 新日鐵住金株式会社 引張強度980MPa以上のスポット溶接用高強度鋼板
US9689060B2 (en) * 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
JP5370620B1 (ja) * 2011-11-15 2013-12-18 Jfeスチール株式会社 薄鋼板およびその製造方法
JP5267638B2 (ja) * 2011-11-17 2013-08-21 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板または高強度合金化溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
KR20140099544A (ko) * 2011-12-26 2014-08-12 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그의 제조 방법
KR101353787B1 (ko) * 2011-12-26 2014-01-22 주식회사 포스코 용접성 및 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
KR101607044B1 (ko) * 2012-02-23 2016-03-28 제이에프이 스틸 가부시키가이샤 전기 강판의 제조 방법
JP6228741B2 (ja) 2012-03-27 2017-11-08 株式会社神戸製鋼所 板幅方向における中央部と端部の強度差が少なく、曲げ加工性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびこれらの製造方法
JP6052078B2 (ja) * 2012-07-04 2016-12-27 Jfeスチール株式会社 高強度低降伏比冷延鋼板の製造方法
RU2603762C2 (ru) * 2012-08-07 2016-11-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Гальванизированный стальной лист для формовки в горячем состоянии
US9790567B2 (en) * 2012-11-20 2017-10-17 Thyssenkrupp Steel Usa, Llc Process for making coated cold-rolled dual phase steel sheet
JP5821911B2 (ja) 2013-08-09 2015-11-24 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
EP3054025B1 (en) * 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
KR101833655B1 (ko) * 2013-12-27 2018-02-28 신닛테츠스미킨 카부시키카이샤 열간 프레스 강판 부재, 그 제조 방법 및 열간 프레스용 강판
WO2015120205A1 (en) * 2014-02-05 2015-08-13 Arcelormittal S.A. Hot formable, air hardenable, weldable, steel sheet
KR101893512B1 (ko) * 2014-04-22 2018-08-30 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 고강도 합금화 용융 아연 도금 강판의 제조 방법
WO2015185956A1 (en) 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
MX2017001105A (es) 2014-07-25 2017-05-09 Jfe Steel Corp Lamina de acero galvanizada de alta resistencia y metodo de produccion de la misma.
WO2016013144A1 (ja) 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN106574342B (zh) 2014-08-07 2018-10-12 杰富意钢铁株式会社 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法
CN107075627B (zh) * 2014-08-07 2021-08-06 杰富意钢铁株式会社 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法
JP5943157B1 (ja) 2014-08-07 2016-06-29 Jfeスチール株式会社 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5935843B2 (ja) * 2014-08-08 2016-06-15 Jfeスチール株式会社 スポット溶接性に優れた冷延鋼板およびその製造方法
JP5967318B1 (ja) * 2014-08-28 2016-08-10 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN106661698B (zh) * 2014-08-28 2018-09-04 杰富意钢铁株式会社 延伸凸缘性、延伸凸缘性的面内稳定性及弯曲性优异的高强度熔融镀锌钢板以及其制造方法
MX2017005567A (es) * 2014-10-30 2017-06-23 Jfe Steel Corp Lamina de acero de alta resistencia, lamina de acero galvanizada por inmersion en caliente de alta resistencia, lamina de acero recubierta de aluminio por inmersion en caliente de alta resistencia, y lamina de acero electrogalvanizada de alta resistencia, y metodos para fabricacion de las mismas.
DE102014017273A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017274A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
KR101964725B1 (ko) * 2015-01-16 2019-04-02 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
EP3246424B1 (en) * 2015-01-16 2019-11-20 JFE Steel Corporation High-strength steel sheet and production method therefor
KR101999910B1 (ko) * 2015-03-27 2019-07-12 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN107532262A (zh) * 2015-05-12 2018-01-02 Posco公司 弯曲加工性优异的超高强度热轧钢板及其制造方法
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
CN107709598B (zh) * 2015-06-30 2020-03-24 日本制铁株式会社 高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板
DE102015111177A1 (de) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
JP6724320B2 (ja) * 2015-09-10 2020-07-15 日本製鉄株式会社 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
KR101767780B1 (ko) * 2015-12-23 2017-08-24 주식회사 포스코 고항복비형 고강도 냉연강판 및 그 제조방법
MX2018011871A (es) 2016-03-31 2018-12-17 Jfe Steel Corp Lamina de acero, lamina de acero recubierta, metodo para producir lamina de acero laminada en caliente, metodo para producir lamina de acero laminada en frio de dureza completa, metodo para producir lamina tratada termicamente, metodo para producir lamina de acero y metodo para producir lamina de acero recubierta.
MX2018011778A (es) * 2016-03-31 2018-12-17 Jfe Steel Corp Chapa de acero, chapa de acero revestida, metodo para producir chapa de acero laminada en caliente, metodo para producir chapa de acero muy dura laminada en frio, metodo para producir chapa de acero y metodo para producir chapa de acero revestida.
CN109563585B (zh) * 2016-08-10 2021-02-12 杰富意钢铁株式会社 薄钢板及其制造方法
MX2019001521A (es) 2016-08-22 2019-05-15 Jfe Steel Corp Pieza automotriz con soldadura por resistencia.
CN109642281B (zh) * 2016-08-31 2021-02-23 杰富意钢铁株式会社 高强度冷轧薄钢板及其制造方法
EP3521474B1 (en) 2016-09-30 2020-12-30 JFE Steel Corporation High-strength coated steel sheet and method for manufacturing the same
SE1651545A1 (en) * 2016-11-25 2018-03-06 High strength cold rolled steel sheet for automotive use
JP6380781B1 (ja) * 2017-02-13 2018-08-29 Jfeスチール株式会社 冷延鋼板とその製造方法
WO2018193787A1 (ja) * 2017-04-21 2018-10-25 新日鐵住金株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
DE102017123236A1 (de) * 2017-10-06 2019-04-11 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines Stahlbandes aus diesem Mehrphasenstahl
EP3653745A4 (en) * 2017-10-20 2020-07-15 JFE Steel Corporation HIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREOF
MX2020004029A (es) * 2017-10-20 2020-08-13 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la fabricacion de la misma.
KR102020411B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
KR102020412B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법
EP3831971B1 (en) * 2018-07-31 2023-03-15 JFE Steel Corporation High-strength hot-rolled plated steel sheet
SE542893C2 (en) * 2018-11-30 2020-08-18 Voestalpine Stahl Gmbh A resistance spot welded joint comprising a zinc coated ahss steel sheet
EP3889282B1 (en) 2019-01-30 2024-03-20 JFE Steel Corporation High-strength steel sheet and method for producing the same
JP7001202B1 (ja) * 2020-03-31 2022-02-03 Jfeスチール株式会社 鋼板及び部材
CN113215485B (zh) * 2021-04-15 2022-05-17 首钢集团有限公司 一种780MPa级热基镀层双相钢及其制备方法
CN116043109B (zh) * 2022-12-20 2024-05-14 攀钢集团攀枝花钢铁研究院有限公司 一种低成本高扩孔性能980MPa级热镀锌双相钢及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011538A (ja) 1999-06-24 2001-01-16 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板の製造方法
JP3263143B2 (ja) 1992-08-27 2002-03-04 株式会社神戸製鋼所 加工性に優れた焼付硬化型高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2002256386A (ja) 2001-02-27 2002-09-11 Nkk Corp 高強度溶融亜鉛メッキ鋼板およびその製造方法
JP2002317245A (ja) 2001-04-17 2002-10-31 Nippon Steel Corp プレス加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2004211140A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造方法
JP2004232011A (ja) 2003-01-29 2004-08-19 Nisshin Steel Co Ltd 高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2004292881A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 溶融亜鉛めっき鋼板及びその製造方法
JP3596316B2 (ja) 1997-12-17 2004-12-02 住友金属工業株式会社 高張力高延性亜鉛めっき鋼板の製造方法
JP2005105367A (ja) 2003-09-30 2005-04-21 Nippon Steel Corp 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2006063360A (ja) 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
JP2008280608A (ja) * 2007-04-13 2008-11-20 Jfe Steel Kk 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962501A (en) * 1972-12-15 1976-06-08 Nippon Steel Corporation Method for coating of corrosion-resistant molten alloy
DE69607702T2 (de) * 1995-02-03 2000-11-23 Nippon Steel Corp., Tokio/Tokyo Hochfester Leitungsrohrstahl mit niedrigem Streckgrenze-Zugfestigkeit-Verhältnis und ausgezeichneter Tieftemperaturzähigkeit
JP3763573B2 (ja) * 2002-11-21 2006-04-05 三菱製鋼株式会社 焼入れ性と耐孔食性を改善したばね用鋼
ES2391164T3 (es) * 2003-09-30 2012-11-22 Nippon Steel Corporation Chapa delgada de acero laminado en frío, de alta resistencia, con alto límite de elasticidad, y superior ductilidad y soldabilidad, chapa delgada de acero galvanizado por inmersión en caliente, de alta resistencia, con alto límite de elasticidad, chapa delgada de acero galvanizado y recocido por inmersión en caliente, de alta resistencia, con alto límite de eleasticidad, y métodos para la producción de las mismas
JP4380348B2 (ja) * 2004-02-09 2009-12-09 Jfeスチール株式会社 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP4788291B2 (ja) * 2005-10-27 2011-10-05 Jfeスチール株式会社 伸びフランジ成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP4542515B2 (ja) * 2006-03-01 2010-09-15 新日本製鐵株式会社 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5082432B2 (ja) * 2006-12-26 2012-11-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263143B2 (ja) 1992-08-27 2002-03-04 株式会社神戸製鋼所 加工性に優れた焼付硬化型高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP3596316B2 (ja) 1997-12-17 2004-12-02 住友金属工業株式会社 高張力高延性亜鉛めっき鋼板の製造方法
JP2001011538A (ja) 1999-06-24 2001-01-16 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板の製造方法
JP2002256386A (ja) 2001-02-27 2002-09-11 Nkk Corp 高強度溶融亜鉛メッキ鋼板およびその製造方法
JP2002317245A (ja) 2001-04-17 2002-10-31 Nippon Steel Corp プレス加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2004211140A (ja) * 2002-12-27 2004-07-29 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造方法
JP2004232011A (ja) 2003-01-29 2004-08-19 Nisshin Steel Co Ltd 高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2004292881A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 溶融亜鉛めっき鋼板及びその製造方法
JP2005105367A (ja) 2003-09-30 2005-04-21 Nippon Steel Corp 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2006063360A (ja) 2004-08-25 2006-03-09 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
JP2008280608A (ja) * 2007-04-13 2008-11-20 Jfe Steel Kk 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581940C2 (ru) * 2011-01-26 2016-04-20 Зальцгиттер Флахшталь Гмбх Высокопрочная многофазная сталь для холодно-или горячекатаной стальной полосы и способ изготовления холодно- и горячекатаной стальной полосы
WO2012100762A1 (de) * 2011-01-26 2012-08-02 Salzgitter Flachstahl Gmbh Höherfester mehrphasenstahl mit ausgezeichneten umformeigenschaften
RU2610989C2 (ru) * 2012-01-30 2017-02-17 Зальцгиттер Флахшталь Гмбх Многофазная сталь максимальной прочности с улучшенными свойствами в процессе изготовления и переработки
RU2615957C2 (ru) * 2012-03-20 2017-04-11 Зальцгиттер Флахшталь Гмбх Высокопрочная многофазная сталь и способ изготовления полосы из этой стали
US11001904B2 (en) 2014-07-03 2021-05-11 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
US11131003B2 (en) 2014-07-03 2021-09-28 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
RU2669667C2 (ru) * 2014-07-03 2018-10-12 Арселормиттал Способ изготовления высокопрочного стального листа с покрытием или без покрытия и полученный стальной лист
US10378077B2 (en) 2014-07-03 2019-08-13 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
US11124853B2 (en) 2014-07-03 2021-09-21 Arcelormittal Method for producing a ultra high strength coated or not coated steel sheet and obtained sheet
JP6037087B1 (ja) * 2015-03-13 2016-11-30 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
US10655201B2 (en) 2015-03-13 2020-05-19 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
WO2016147550A1 (ja) * 2015-03-13 2016-09-22 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
US10900097B2 (en) 2015-12-15 2021-01-26 Posco High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability
US11035020B2 (en) 2015-12-29 2021-06-15 Arcelormittal Galvannealed steel sheet
US11512362B2 (en) 2015-12-29 2022-11-29 Arcelormittal Method for producing an ultra high strength galvannealed steel sheet and obtained galvannealed steel sheet

Also Published As

Publication number Publication date
EP2426230A4 (en) 2013-05-29
CA2759913A1 (en) 2010-11-04
KR20130087616A (ko) 2013-08-06
JP2010275628A (ja) 2010-12-09
US20120040203A1 (en) 2012-02-16
KR20120008038A (ko) 2012-01-25
CN102414335A (zh) 2012-04-11
CA2759913C (en) 2014-10-28
EP2426230B1 (en) 2014-10-22
EP2426230A1 (en) 2012-03-07
US8828557B2 (en) 2014-09-09
TW201102444A (en) 2011-01-16
CN102414335B (zh) 2014-08-27
TWI450982B (zh) 2014-09-01
JP4924730B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924730B2 (ja) 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5194878B2 (ja) 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
KR102173601B1 (ko) 고강도 박강판 및 그 제조 방법
JP6525114B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
US8840834B2 (en) High-strength steel sheet and method for manufacturing the same
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2019189842A1 (ja) 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
JP6394812B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2013099235A1 (ja) 高強度薄鋼板およびその製造方法
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
WO2017115748A1 (ja) 高強度鋼板、高強度亜鉛めっき鋼板及びこれらの製造方法
WO2011132763A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5167865B2 (ja) 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
KR20070061859A (ko) 신장과 구멍 확장성이 우수한 고강도 박강판 및 그 제조방법
KR102153194B1 (ko) 액상금속취화(lme) 균열 저항성이 우수한 초고강도 고연성 냉연강판, 도금강판 및 이들의 제조방법
JP4500197B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4826694B2 (ja) 薄鋼板の耐疲労特性改善方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018564.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264006

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010769853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2759913

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117025314

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4531/KOLNP/2011

Country of ref document: IN