WO2010125666A1 - ベルト式無段変速機の制御装置と制御方法 - Google Patents

ベルト式無段変速機の制御装置と制御方法 Download PDF

Info

Publication number
WO2010125666A1
WO2010125666A1 PCT/JP2009/058458 JP2009058458W WO2010125666A1 WO 2010125666 A1 WO2010125666 A1 WO 2010125666A1 JP 2009058458 W JP2009058458 W JP 2009058458W WO 2010125666 A1 WO2010125666 A1 WO 2010125666A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
hydraulic pressure
control
gear ratio
amplitude
Prior art date
Application number
PCT/JP2009/058458
Other languages
English (en)
French (fr)
Inventor
土井原 克己
兒玉 仁寿
泰彰 吉川
真宏 西
恵介 小山
中村 健太
聖天 澤野
英真 川口
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to EP09844010.0A priority Critical patent/EP2426378B1/en
Priority to US13/266,804 priority patent/US8892318B2/en
Priority to MX2011011416A priority patent/MX2011011416A/es
Priority to JP2009522266A priority patent/JP4435860B1/ja
Priority to KR1020117027452A priority patent/KR101330865B1/ko
Priority to RU2011148590/11A priority patent/RU2485372C1/ru
Priority to BRPI0925073-5A priority patent/BRPI0925073A2/pt
Priority to PCT/JP2009/058458 priority patent/WO2010125666A1/ja
Priority to CN200980159036.1A priority patent/CN102414484B/zh
Publication of WO2010125666A1 publication Critical patent/WO2010125666A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio

Definitions

  • the present invention relates to a control device and a control method for a belt-type continuously variable transmission that performs belt slip control for slipping a belt stretched around a pulley at a predetermined slip rate.
  • an actual secondary hydraulic pressure is decreased from that during normal control, and belt slip control is performed to slip a belt stretched around a pulley at a predetermined slip ratio.
  • the actual secondary oil pressure is controlled based on a multiplier between the vibration component included in the secondary oil pressure and the vibration component included in the actual gear ratio.
  • the conventional belt type continuously variable transmission control device does not mention the method of setting the excitation amplitude to the secondary hydraulic pressure during belt slip control, and therefore the following problems occur.
  • the vibration amplitude when applying the vibration amplitude to the secondary hydraulic pressure with a constant value during belt slip control, if the vibration amplitude is set to a large value, it is possible to ensure the belt slip state detectability by extracting the vibration component from the actual gear ratio. However, it is not possible to expect a sufficient improvement in energy saving effect, and vehicle vibration is generated by belt slip control, resulting in deterioration of drivability.
  • the excitation amplitude is set to a small value, the energy saving effect can be improved, and the vehicle slip due to the belt slip control does not occur, but the belt slip state detectability by extracting the vibration component from the actual gear ratio is improved. It cannot be secured. That is, there is a trade-off relationship between the improvement of the energy saving effect, the occurrence of vehicle vibration by belt slip control, and the securing of belt slip state detectability.
  • the present invention has been made paying attention to the above problems, and by setting the excitation amplitude corresponding to the gear ratio at which the belt slip control is performed, the energy saving effect is improved and the occurrence of vehicle vibration by the belt slip control is suppressed. It is another object of the present invention to provide a control device and a control method for a belt-type continuously variable transmission that can achieve both ensuring of belt slip state detection.
  • a primary pulley input from a drive source, a secondary pulley output to a drive wheel, and the primary pulley and the secondary pulley are stretched over. And controlling a primary hydraulic pressure to the primary pulley and a secondary hydraulic pressure to the secondary pulley, thereby controlling a gear ratio based on a ratio of a pulley winding diameter of the belt.
  • the belt slip state is detected by exciting the secondary hydraulic pressure and monitoring the phase difference between the vibration component included in the actual secondary hydraulic pressure and the vibration component included in the actual transmission ratio.
  • Belt slip control means for performing control to reduce the actual secondary hydraulic pressure so as to maintain a predetermined belt slip state based on the estimation, and when exciting the secondary hydraulic pressure in the belt slip control, Excitation amplitude setting means for setting the excitation amplitude to be smaller when the gear ratio is high than when the gear ratio is low.
  • the vibration amplitude of the secondary hydraulic pressure is set to a high gear ratio in the vibration amplitude setting means. In this case, it is set smaller than in the case of the low gear ratio. That is, when paying attention to the change in the gear ratio, the higher the gear ratio is, the higher the sensitivity of the primary thrust with respect to the excitation amplitude to the same secondary hydraulic pressure, in other words, the higher the gear ratio fluctuation sensitivity. As a result, it has been found that gear ratio vibration is likely to occur.
  • the energy saving effect of the maximum range can be achieved.
  • the energy saving effect is improved, the occurrence of vehicle vibration due to the belt slip control, and the belt slip state detectability are ensured. It can also be achieved.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of a vehicle equipped with a belt type continuously variable transmission to which a control device and a control method of Example 1 are applied. It is a perspective view which shows the belt-type continuously variable transmission mechanism to which the control apparatus and control method of Example 1 were applied. It is a perspective view which shows a part of belt of the belt-type continuously variable transmission mechanism to which the control apparatus and control method of Example 1 are applied.
  • FIG. 3 is a control block diagram illustrating line pressure control and secondary hydraulic control (normal control / belt slip control) executed by the CVT control unit 8 according to the first embodiment.
  • 3 is an overall flowchart illustrating a belt slip control process executed by the CVT control unit 8 according to the first embodiment. It is a flowchart which shows a torque limit process among the belt slip control processes performed in the CVT control unit 8 of Example 1.
  • FIG. It is a flowchart which shows the vibration and correction process of secondary hydraulic pressure among the belt slip control processes performed in the CVT control unit 8 of Example 1.
  • FIG. 3 is an overall flowchart illustrating a return process from belt slip control to normal control executed by the CVT control unit 8 according to the first embodiment.
  • FIG. 7 is a flowchart showing a speed ratio limiting process for a gear ratio for limiting a target primary rotational speed in a return process to a normal control executed by the CVT control unit 8 according to the first embodiment.
  • BSC operation flag, SEC pressure F / B prohibition flag, accelerator opening, vehicle speed, engine torque, Ratio, SEC oil pressure, SEC_SOL current correction amount in the driving scene where normal control passes belt slip control / return control and returns to normal control -It is a time chart which shows each characteristic of the phase difference of SEC pressure vibration and Ratio vibration.
  • FIG. 4 is a time chart showing characteristics of driver required torque, torque limit amount, torque capacity, and actual torque for explaining torque limit operation by torque delay adopted in the return control from belt slip control to normal control according to the first embodiment.
  • 6 is a time chart showing characteristics of engine torque, target primary rotational speed, inertia torque, and drive shaft torque by a torque delay and a primary rotational speed increase rate limiter employed in the return control of the first embodiment.
  • 6 is a time chart showing a contrast characteristic of secondary hydraulic pressure when the excitation amplitude is increased and the excitation amplitude is decreased in the belt slip control of the first embodiment.
  • FIG. 6 is a characteristic diagram showing a change in primary thrust with respect to a gear ratio of a primary pulley responsible for gear shift and a change in secondary thrust with respect to a gear ratio of a secondary pulley responsible for torque capacity in the belt type continuously variable transmission of the first embodiment.
  • FIG. 6 is a characteristic diagram showing changes in front and rear G when the gear ratio is different with respect to the magnitude of the excitation amplitude in the belt-type continuously variable transmission according to the first embodiment.
  • FIG. 3 is an excitation amplitude characteristic diagram illustrating a concept of determining an excitation amplitude based on a gear ratio, a reducible minimum pressure, and vehicle vibration in the belt slip control of the first embodiment. It is a flowchart which shows the vibration and correction process of secondary hydraulic pressure among the belt slip control processes performed in the CVT control unit 8 of Example 2.
  • FIG. It is a figure which shows an example of the vibration amplitude map referred when setting a vibration amplitude by the vibration process of the secondary hydraulic pressure in Example 2.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of a vehicle equipped with a belt-type continuously variable transmission to which the control device and the control method of Embodiment 1 are applied.
  • FIG. 2 is a perspective view showing a belt type continuously variable transmission mechanism to which the control device and the control method of the first embodiment are applied.
  • FIG. 3 is a perspective view illustrating a part of the belt of the belt-type continuously variable transmission mechanism to which the control device and the control method of the first embodiment are applied.
  • the system configuration will be described below with reference to FIGS.
  • the drive system of the vehicle equipped with a belt type continuously variable transmission includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a belt type continuously variable transmission mechanism 4, and a final reduction mechanism 5.
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver.
  • the engine 1 includes an output torque control actuator 10 that performs output torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like.
  • the torque converter 2 is a starting element having a torque increasing function.
  • the torque converter 2 includes a turbine runner 23 connected to the engine output shaft 11 via a converter housing 22, a pump impeller 24 connected to the torque converter output shaft 21, and a stator 26 provided via a one-way clutch 25. And are the components.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the belt type continuously variable transmission mechanism 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31, and a reverse brake 32.
  • the double pinion planetary gear 30 has a sun gear connected to the torque converter output shaft 21 and a carrier connected to the transmission input shaft 40.
  • the forward clutch 31 is fastened during forward travel, and directly connects the sun gear of the double pinion planetary gear 30 and the carrier.
  • the reverse brake 32 is fastened during reverse travel, and fixes the ring gear of the double pinion planetary gear 30 to the case.
  • the belt-type continuously variable transmission mechanism 4 is a continuously variable transmission that continuously changes a gear ratio, which is a ratio of the input rotational speed of the transmission input shaft 40 and the output rotational speed of the transmission output shaft 41, by changing the belt contact diameter. It has a function.
  • the belt type continuously variable transmission mechanism 4 includes a primary pulley 42, a secondary pulley 43, and a belt 44.
  • the primary pulley 42 is composed of a fixed pulley 42 a and a slide pulley 42 b, and the slide pulley 42 b is slid by the primary hydraulic pressure guided to the primary hydraulic chamber 45.
  • the secondary pulley 43 is composed of a fixed pulley 43 a and a slide pulley 43 b, and the slide pulley 43 b is slid by the primary hydraulic pressure guided to the secondary hydraulic chamber 46.
  • the belt 44 is stretched over sheave surfaces 42 c and 42 d forming a V shape of the primary pulley 42 and sheave surfaces 43 c and 43 d forming a V shape of the secondary pulley 43.
  • the belt 44 is formed by two sets of stacked rings 44a and 44a in which a large number of annular rings are stacked from the inside to the outside and a punched plate material, and is sandwiched between the two sets of stacked rings 44a and 44a.
  • the element 44b has sheave surfaces 42c and 42d of the primary pulley 42 and flank surfaces 44c and 44c that contact the sheave surfaces 43c and 43d of the secondary pulley 43 at both side positions.
  • the final reduction mechanism 5 is a mechanism that decelerates transmission output rotation from the transmission output shaft 41 of the belt-type continuously variable transmission mechanism 4 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final reduction mechanism 5 is interposed in the transmission output shaft 41, the idler shaft 50, and the left and right drive shafts 51, 51, and has a first gear 52, a second gear 53, a third gear 54 having a reduction function. And a fourth gear 55 and a gear differential gear 56 having a differential function.
  • the control system of the vehicle equipped with a belt type continuously variable transmission includes a transmission hydraulic pressure control unit 7 and a CVT control unit 8.
  • the transmission hydraulic pressure control unit 7 is a hydraulic pressure control unit that generates a primary hydraulic pressure led to the primary hydraulic chamber 45 and a secondary hydraulic pressure led to the secondary hydraulic chamber 46.
  • the shift hydraulic pressure control unit 7 includes an oil pump 70, a regulator valve 71, a line pressure solenoid 72, a shift control valve 73, a pressure reducing valve 74, a secondary hydraulic solenoid 75, a servo link 76, a shift command valve 77, Step motor 78 is provided.
  • the regulator valve 71 is a valve that regulates the line pressure PL using the discharge pressure from the oil pump 70 as a source pressure.
  • the regulator valve 71 has a line pressure solenoid 72 and adjusts the pressure of the oil pumped from the oil pump 70 to a predetermined line pressure PL in response to a command from the CVT control unit 8.
  • the shift control valve 73 is a valve that regulates the primary hydraulic pressure guided to the primary hydraulic chamber 45 using the line pressure PL generated by the regulator valve 71 as a source pressure.
  • a spool 73a is connected to a servo link 76 constituting a mechanical feedback mechanism, and a shift command valve 77 connected to one end of the servo link 76 is driven by a step motor 78. Feedback of the slide position (actual pulley ratio) is received from the slide pulley 42b of the primary pulley 42 connected to the other end.
  • the step motor 78 when the step motor 78 is driven in response to a command from the CVT control unit 8 at the time of shifting, the step motor 78 supplies / discharges the line pressure PL to / from the primary hydraulic chamber 45 by the displacement of the spool 73a of the shift control valve 73.
  • the primary hydraulic pressure is adjusted so that the target gear ratio commanded at the drive position is obtained.
  • the spool 73a is held in the closed position in response to the displacement from the servo link 76.
  • the pressure reducing valve 74 is a valve that adjusts the secondary hydraulic pressure guided to the secondary hydraulic chamber 46 by the pressure reduction control using the line pressure PL generated by the regulator valve 71 as a source pressure.
  • the pressure reducing valve 74 includes a secondary hydraulic solenoid 75 and reduces the line pressure PL in accordance with a command from the CVT control unit 8 to control it to the command secondary hydraulic pressure.
  • the CVT control unit 8 outputs a control command for obtaining a target speed ratio corresponding to the vehicle speed, throttle opening, etc. to the step motor 78, and a control command for obtaining a target line pressure corresponding to the throttle opening, etc.
  • Line pressure control to be output to the pressure solenoid 72
  • secondary hydraulic control to output a control command for obtaining the target secondary pulley thrust according to the transmission input torque, etc. to the secondary hydraulic solenoid 75, engagement / release of the forward clutch 31 and the reverse brake 32
  • forward / reverse switching control for controlling, lockup control for controlling engagement / release of the lockup clutch 20, and the like are performed.
  • the CVT control unit 8 includes a primary rotation sensor 80, a secondary rotation sensor 81, a secondary oil pressure sensor 82, an oil temperature sensor 83, an inhibitor switch 84, a brake switch 85, an accelerator opening sensor 86, other sensors and switches 87, and the like. Sensor information and switch information are input. Further, torque information is input from the engine control unit 88 and a torque request is output to the engine control unit 88.
  • FIG. 4 is a control block diagram showing line pressure control and secondary hydraulic control (normal control / belt slip control) executed by the CVT control unit 8 of the first embodiment.
  • the hydraulic control system of the CVT control unit 8 includes a basic hydraulic pressure calculation unit 90, a line pressure control unit 91, a secondary hydraulic pressure control unit 92, and a sine wave excitation control unit 93 ( (Vibration amplitude setting means) and a secondary hydraulic pressure correction unit 94.
  • the basic hydraulic pressure calculation unit 90 includes an input torque calculation unit 90a that calculates transmission input torque based on torque information (engine speed, fuel injection time, etc.) from the engine control unit 88 (see FIG. 1), and an input.
  • a basic secondary thrust calculation unit 90b that calculates a basic secondary thrust (belt clamping force required for the secondary pulley 43) from the transmission input torque obtained by the torque calculation unit 90a, and a differential thrust (primary pulley 42 and secondary pulley required for shifting) 43) (difference in belt clamping force of 43), a required difference thrust calculating unit 90c for shifting, a correcting unit 90d for correcting the calculated basic secondary thrust based on the required differential thrust during shifting, and the corrected secondary thrust as the target secondary hydraulic pressure
  • a secondary hydraulic pressure conversion unit 90e for converting to Furthermore, a basic primary thrust calculation unit 90f that calculates a basic primary thrust (a belt clamping force necessary for the primary pulley 42) from the transmission input torque obtained by the input torque calculation unit 90a, and the calculated basic primary thrust
  • the line pressure control unit 91 compares the target primary hydraulic pressure output from the primary hydraulic pressure conversion unit 90h with the indicated secondary hydraulic pressure obtained from the secondary hydraulic pressure control unit 92, and when the target primary hydraulic pressure ⁇ the indicated secondary hydraulic pressure, A target line pressure determining unit 91a that sets the target line pressure to the same value as the commanded secondary hydraulic pressure when the line pressure is set to the same value as the target primary hydraulic pressure and the target primary hydraulic pressure is less than the commanded secondary hydraulic pressure; A hydraulic-current converter 91b that converts the target line pressure determined in 91a into a current value to be applied to the solenoid and outputs the converted command current value to the line pressure solenoid 72 of the regulator valve 71.
  • the secondary hydraulic pressure control unit 92 obtains an instruction secondary hydraulic pressure by feedback control (PI control) using the actual secondary hydraulic pressure detected by the secondary hydraulic pressure sensor 82 during normal control, and uses the actual secondary hydraulic pressure during belt slip control.
  • the commanded secondary hydraulic pressure is obtained by open control without any.
  • the multiplier 92f that multiplies the integral gain from the integral gain determination unit 92e and the deviation from the deviation switching unit 92d, the integrator 92g that integrates the FB integral control amount from the multiplier 92f, and the secondary hydraulic pressure conversion unit 90e.
  • a limiter 92i to be obtained.
  • a vibration adder 92j that applies a sinusoidal vibration command to the basic secondary hydraulic pressure
  • a hydraulic pressure corrector 92k that corrects the excited basic secondary hydraulic pressure with a secondary hydraulic pressure correction amount to obtain an instruction secondary hydraulic pressure
  • a hydraulic-current conversion unit 92m that converts the command secondary hydraulic pressure into a current value to be applied to the solenoid, and outputs the converted command current value to the secondary hydraulic solenoid 75 of the pressure reducing valve 74.
  • the excitation amplitude is set to an optimum value that can achieve both improvement of fuel efficiency and ensuring of belt slip ratio detection in the gear ratio range where belt slip control is performed based on the concept described later. Is done.
  • the secondary hydraulic pressure correction unit 94 includes an actual transmission ratio calculation unit 94a that calculates an actual transmission ratio Ratio based on a ratio between the primary rotational speed Npri from the primary rotational sensor 80 and the secondary rotational speed Nsec from the secondary rotational sensor 81, and a secondary hydraulic sensor.
  • the first bandpass filter 94b that extracts the vibration component from the signal that represents the actual secondary hydraulic pressure Psec acquired by 82
  • the second bandpass filter 94c that extracts the vibration component from the calculation data acquired by the actual gear ratio calculation unit 94a. And having.
  • a secondary hydraulic pressure correction amount determination unit 94f that determines a secondary hydraulic pressure correction amount, a zero correction amount setting unit 94g that sets a secondary hydraulic pressure zero correction amount, and a correction that selects and switches between the secondary hydraulic pressure correction amount and the zero correction amount
  • step S1 normal control of the belt-type continuously variable transmission mechanism 4 is performed following start by key-on, determination of BSC disapproval in step S2, or normal control return processing in step S5, and the process proceeds to step S2. .
  • the BSC operation flag 0 is set and the secondary pressure F / B prohibition flag is set to zero.
  • step S2 following the normal control in step S1, it is determined whether or not all of the following BSC permission conditions are satisfied. If YES (all BSC permission conditions are satisfied), the process proceeds to step S3 and belt slip control ( BSC). If NO (there is a condition that does not satisfy even one of the BSC permission conditions), the process returns to step S1 to continue normal control.
  • BSC permission condition is shown below.
  • (1) The transmission torque capacity of the belt type continuously variable transmission mechanism 4 is stable (the rate of change of the transmission torque capacity is small).
  • This condition (1) is, for example, a.
  • the estimation accuracy of the input torque to the primary pulley 42 is within a reliable range.
  • the condition (2) is determined based on, for example, torque information (estimated engine torque) from the engine control unit 88, the lock-up state of the torque converter 2, the operation state of the brake pedal, the range position, and the like.
  • (3) Continue the permission states (1) and (2) above for a predetermined time. In step S2, it is determined whether or not all of the above conditions (1), (2), and (3) are satisfied.
  • step S3 following the BSC permission determination in step S2 or the BSC continuation determination in step S4, the input to the belt 44 of the belt type continuously variable transmission mechanism 4 is reduced, and the belt 44 is not slipped.
  • Belt slip control (FIGS. 6 to 8) for maintaining a smooth slip state is performed, and the process proceeds to step S4.
  • step S4 following the belt slip control in step S3, it is determined whether or not all the following BSC continuation conditions are satisfied. If YES (all the BSC continuation conditions are satisfied), the process returns to step S3, and the belt slip control Continue (BSC). If NO (there is a condition that does not satisfy even one of the BSC continuation conditions), the process proceeds to step S5, and normal control return processing is performed.
  • BSC continuation condition is shown below.
  • (1) The transmission torque capacity of the belt type continuously variable transmission mechanism 4 is stable (the rate of change of the transmission torque capacity is small).
  • This condition (1) is, for example, a.
  • the estimation accuracy of the input torque to the primary pulley 42 is within a reliable range.
  • the condition (2) is determined based on, for example, torque information (estimated engine torque) from the engine control unit 88, the lock-up state of the torque converter 2, the operation state of the brake pedal, the range position, and the like. It is determined whether or not both of the above conditions (1) and (2) are satisfied. That is, the difference between the BSC permission condition and the BSC continuation condition is that the BSC continuation condition does not have the continuation condition (3) among the BSC permission conditions.
  • step S5 following the determination that one of the BSC continuation conditions in step S4 does not satisfy one of the conditions, a normal control return process for preventing the belt 44 from slipping when returning from belt slip control to normal control ( 9 to 11) are performed, and after the process is completed, the process returns to step S1 and shifts to the normal control.
  • FIG. 6 is an overall flowchart showing a belt slip control process executed by the CVT control unit 8 of the first embodiment.
  • FIG. 7 is a flowchart showing the torque limit process in the belt slip control process executed by the CVT control unit 8 of the first embodiment.
  • FIG. 8 is a flowchart showing the secondary oil pressure excitation / correction process in the belt slip control process executed by the CVT control unit 8 according to the first embodiment.
  • step S31 the feedback control prohibition process for obtaining the command secondary hydraulic pressure using the actual secondary hydraulic pressure
  • step S32 A torque limit process in preparation for returning to the control
  • step S33 a secondary oil pressure excitation / correction process for belt slip control
  • step S31 during the belt slip control in which the BSC continuation determination is maintained from the BSC permission determination, feedback control for obtaining the command secondary hydraulic pressure using the actual secondary hydraulic pressure detected by the secondary hydraulic pressure sensor 82 is prohibited. That is, when obtaining the command secondary oil pressure, the feedback control during the normal control is prohibited and the control is switched to the open control using the zero deviation during the belt slip control. When the belt slip control is shifted to the normal control, the control returns to the feedback control again.
  • step S32 the torque limit process of FIG. 7 is performed during the belt slip control in which the BSC continuation determination is maintained from the BSC permission determination. That is, in the flowchart of FIG. 7, in step S321, “torque limit request from belt slip control” is set as the driver request torque.
  • step S33 during the belt slip control in which the BSC continuation determination is maintained from the BSC permission determination, the secondary hydraulic pressure is oscillated and corrected in FIG.
  • step S33 each step of the flowchart of FIG. 8 will be described.
  • step S331 the command secondary hydraulic pressure is vibrated. That is, a sine wave hydraulic pressure with a predetermined amplitude and a predetermined frequency is superimposed on the command secondary hydraulic pressure, and the process proceeds to step S332.
  • step S332 following the excitation of the command secondary hydraulic pressure in step S331, the actual secondary hydraulic pressure is detected from the secondary hydraulic sensor 82, and the actual gear ratio is determined based on the rotational speed information from the primary rotation sensor 80 and the secondary rotation sensor 81. It detects by calculation and progresses to step S333.
  • step S333 following the detection of the actual secondary hydraulic pressure and the actual gear ratio in step S332, bandpass filter processing is performed on each of the actual secondary hydraulic pressure and the actual gear ratio, and vibration components (sine Wave) is multiplied and multiplied, and the multiplication value is subjected to low-pass filter processing to obtain a value represented by the amplitude and the phase difference ⁇ (cosine wave) from the actual secondary hydraulic vibration to the actual gear ratio vibration. Convert to step S334.
  • step S334 following the calculation of the phase difference ⁇ from the actual secondary hydraulic vibration to the actual gear ratio vibration in step S333, the phase difference ⁇ from the actual secondary hydraulic vibration to the actual gear ratio vibration is 0 ⁇ phase difference ⁇ ⁇ predetermined. It is determined whether or not the value is 1 (micro slip region). If YES (0 ⁇ phase difference ⁇ ⁇ predetermined value 1), the process proceeds to step S335. If NO (predetermined value 1 ⁇ phase difference ⁇ ), the process proceeds to step S335. Proceed to S336.
  • step S335 following the determination in step S334 that 0 ⁇ phase difference ⁇ ⁇ predetermined value 1 (micro slip region), the secondary hydraulic pressure correction amount is set to “ ⁇ Psec”, and the process proceeds to step S339.
  • step S336 following the determination that the predetermined value 1 ⁇ phase difference ⁇ in step S334, the phase difference ⁇ from the actual secondary hydraulic vibration to the actual gear ratio vibration is a predetermined value 1 ⁇ phase difference ⁇ ⁇ predetermined value 2 It is determined whether or not (target slip region). If YES (predetermined value 1 ⁇ phase difference ⁇ ⁇ predetermined value 2), the process proceeds to step S337. If NO (predetermined value 2 ⁇ phase difference ⁇ ), the process proceeds to step S337. Proceed to S338.
  • step S337 following the determination that predetermined value 1 ⁇ phase difference ⁇ ⁇ predetermined value 2 (target slip region) in step S336, the secondary hydraulic pressure correction amount is set to “0”, and the process proceeds to step S339.
  • step S338 following the determination in step S336 that the predetermined value 2 ⁇ phase difference ⁇ (micro / macro slip transition region), the secondary hydraulic pressure correction amount is set to “+ ⁇ Psec”, and the process proceeds to step S339.
  • step S339 following the setting of the secondary hydraulic pressure correction amount in step S335, step S337, and step S338, the basic secondary hydraulic pressure + secondary hydraulic pressure correction amount is set as the command secondary hydraulic pressure, and the process proceeds to the end.
  • FIG. 9 is an overall flowchart showing a return process from the belt slip control to the normal control executed by the CVT control unit 8 according to the first embodiment.
  • FIG. 10 is a flowchart showing the torque limit process in the return process to the normal control executed by the CVT control unit 8 according to the first embodiment.
  • FIG. 11 is a flowchart showing a speed ratio limiting process of a gear ratio for limiting the target primary rotational speed in the return process to the normal control executed by the CVT control unit 8 according to the first embodiment.
  • Step S51 the feedback control return processing for obtaining the indicated secondary hydraulic pressure using the actual secondary hydraulic pressure
  • Step S52 torque limit processing for returning to normal control
  • Step S53 secondary oil pressure excitation / correction reset processing for belt slip control
  • step S54 shift regulation for regulating the shift speed
  • step S51 during the return from the belt slip control to the normal control until the normal control is started after the BSC continuation is stopped, the control returns to the feedback control for obtaining the command secondary hydraulic pressure using the actual secondary hydraulic pressure detected by the secondary hydraulic pressure sensor 82. To do.
  • step S52 during the return from the belt slip control to the normal control from the BSC continuation stop to the start of the normal control, the torque limit process toward the return to the normal control in FIG. 10 is performed.
  • step S53 during the return from the belt slip control to the normal control from the BSC continuation stop until the normal control is started, the secondary oil pressure excitation / correction in FIG. 8 is reset to prepare for the normal control.
  • step S54 a shift restriction process for restricting the shift speed in FIG. 11 is performed during the return from the belt slip control to the normal control from the BSC continuation stop to the start of the normal control.
  • the point of this torque limit process is that the control is switched based on the magnitude relationship of three values of “driver required torque”, “torque limit request from BSC”, and “torque capacity (calculated torque capacity)”.
  • the “driver required torque” is the engine torque requested by the driver.
  • the “torque limit request from BSC” is the torque limit amount in the phases (2) and (3) in FIG.
  • “Torque capacity” is usually a design allowable torque capacity (phase (1) in FIG. 13), and safety that takes into account the mechanical variation of the belt-type continuously variable transmission mechanism 4 to prevent belt slippage. This value is set higher than the driver required torque by the margin.
  • the actual torque capacity is controlled by secondary hydraulic control.
  • the “calculated torque capacity” is the torque capacity during BSC (phase (2) in FIG. 13) and during the return process (phase (3) in FIG. 13).
  • This calculated torque capacity is a value based on the actual secondary oil pressure and the actual gear ratio, and specifically, a value calculated based on the actual secondary oil pressure and the actual gear ratio (the engine torque of the two pulleys 42 and 43). On the side from which the gear enters, that is, the torque capacity at the primary pulley 42).
  • step S521 it is determined whether or not the “driver required torque” is larger than “torque limit request from BSC”. If YES, the process proceeds to step S522, and if NO, the process proceeds to step S525.
  • step S522 following the determination that “driver required torque”> “torque limit request from BSC” in step S521, it is determined whether “calculated torque capacity” is greater than “torque limit request from BSC”. If YES, the process proceeds to step S523, and if NO, the process proceeds to step S524.
  • step S523 following the determination that “calculated torque capacity”> “torque limit request from BSC” in step S522, “torque limit request from BSC” is changed to “torque limit request from BSC (previous value). ) + ⁇ T ”and“ calculated allowable torque capacity ”, set to the smaller value and proceed to return.
  • step S524 following the determination in step S522 that “calculated torque capacity” ⁇ “torque limit request from BSC”, “torque limit request from BSC” is changed to “torque limit request from BSC (previous value). ) ”And“ Driver Required Torque ”, set to the smaller value and proceed to return.
  • step S525 following the determination that “driver required torque” ⁇ “torque limit request from BSC” in step S521, it is determined whether or not “calculated torque capacity” is greater than “torque limit request from BSC”. If YES, the process proceeds to step S527. If NO, the process proceeds to step S526.
  • step S526 following the determination that “calculated torque capacity” ⁇ “torque limit request from BSC” in step S525, “torque limit request from BSC” is changed to “torque limit request from BSC (previous value). ) ”And“ Driver Required Torque ”, set to the smaller value and proceed to return.
  • step S527 following the determination that “calculated torque capacity”> “torque limit request from BSC” in step S525, “torque limit from BSC” is canceled, and the process proceeds to the end.
  • step S541 the target inertia torque is calculated from the engine torque, and the process proceeds to step S542.
  • step S542 following the calculation of the target inertia torque in step S541, the target primary rotation change rate is calculated by the target inertia torque, and the process proceeds to step S543.
  • step S543 following the calculation of the target primary rotation change rate in step S542, a limited target primary rotation speed that does not exceed the target primary rotation change rate is calculated, and the process proceeds to step S544.
  • step S544 following the calculation of the limited target primary rotational speed in step S543, the shift control is performed based on the limited target primary rotational speed, and the process proceeds to step S545.
  • step S545 following the shift control in step S544, it is determined whether or not the shift control based on the limited target primary rotational speed has been completed, that is, whether or not the actual primary rotational speed has reached the limited target primary rotational speed. . If YES (end of shift control), the process proceeds to the end. If NO (during shift control), the process returns to step S541.
  • BSC permission determination operation and BSC continuation determination operation The operation of the control device and the control method of the belt type continuously variable transmission mechanism 4 according to the first embodiment is referred to as “BSC permission determination operation and BSC continuation determination operation”, “belt slip control operation (BSC operation)”, and “from BSC to normal control”.
  • BSC operation belt slip control operation
  • step S1 the process proceeds from step S1 to step S2, and unless all the BSC permission determination conditions in step S2 are satisfied, the flow from step S1 to step S2 is repeated. Control is maintained. That is, satisfying all of the BSC permission determination conditions in step S2 is a BSC control start condition.
  • the transmission torque capacity of the belt type continuously variable transmission mechanism 4 is stable (the rate of change of the transmission torque capacity is small).
  • This condition (1) is, for example, a.
  • the estimation accuracy of the input torque to the primary pulley 42 is within a reliable range.
  • the condition (2) is determined based on, for example, torque information (estimated engine torque) from the engine control unit 88, the lock-up state of the torque converter 2, the operation state of the brake pedal, the range position, and the like.
  • the belt slip control can be started in a preferable adaptive region in which high control accuracy is guaranteed.
  • step S2 When the BSC permission determination is made in step S2, the process proceeds to step S3, where the belt type continuously variable transmission mechanism 4 is reduced in input to the belt 44, and the belt that keeps an appropriate slip state without slipping the belt 44. Slip control is performed. Then, following the belt slip control in step S3, in the next step S4, it is determined whether or not all the BSC continuation conditions are satisfied. As long as all the BSC continuation conditions are satisfied, the flow proceeds from step S3 to step S4. Repeatedly, the belt slip control (BSC) is continued.
  • BSC belt slip control
  • the conditions (1) and (2) among the BSC permission conditions are used. That is, among the BSC permission conditions, the predetermined time continuation condition (3) is not included in the BSC continuation conditions. For this reason, during belt slip control, if one of the conditions (1) and (2) is not satisfied, the belt slip control is stopped immediately and the normal control is resumed, so the control accuracy is not guaranteed. Thus, it is possible to prevent the belt slip control from being continued.
  • step S331 ⁇ step S332 ⁇ step S333 ⁇ step S334 ⁇ step S336 ⁇ step S337 ⁇ step The flow proceeds to S339, and the command secondary hydraulic pressure is maintained. Then, when the phase difference ⁇ becomes equal to or larger than the predetermined value 2, in the flowchart of FIG. Ascends after correction of + ⁇ Psec. That is, in the belt slip control, control is performed to maintain a slip ratio that is in a range where the phase difference ⁇ is not less than the predetermined value 1 and less than the predetermined value 2.
  • the belt slip control will be described with reference to the time chart shown in FIG. First, the BSC permission conditions (1) and (2) are satisfied at time t1, and the BSC permission conditions (1) and (2) continue (BSC permission conditions (3)).
  • the BSC operation flag and the SEC pressure F / B prohibition flag (secondary pressure feedback) from time t2 to time t3 when at least one of the BSC continuation conditions (1) and (2) is not satisfied. Prohibition flag) is set, and belt slip control is performed. If at least one of the BSC continuation conditions is not satisfied due to the accelerator depressing operation slightly before time t3, the return control to the normal control is performed from time t3 to time t4, and after time t4. Normal control will be performed.
  • the belt slip control is performed with the solenoid current correction amount characteristic to the secondary hydraulic solenoid 75 during the steady running determination indicated by the arrow C in FIG.
  • the phase difference ⁇ between the vibration component of the secondary hydraulic pressure and the vibration component of the gear ratio that appears as a result of exciting the secondary hydraulic pressure is monitored, and the current value is increased or decreased.
  • the secondary hydraulic solenoid 75 is normally open (normally open), and when the current value is increased, the secondary hydraulic pressure is decreased.
  • the actual gear ratio is maintained almost constant although it vibrates with a small amplitude as shown in the actual gear ratio characteristic (Ratio) of FIG.
  • the phase difference ⁇ gradually increases as the slip ratio gradually increases from time t2 when the slip ratio is close to zero.
  • the characteristic which converges to (target slip ratio) is shown.
  • the secondary hydraulic pressure decreases as indicated by an arrow G as time elapses from time t2 having a safety factor, and finally reaches the minimum design pressure.
  • the hydraulic pressure amplitude is added, and the characteristic converges to a sufficient hydraulic pressure level with respect to the actual minimum pressure.
  • the actual secondary hydraulic pressure in the design minimum pressure + hydraulic amplitude range is maintained so as to maintain the target value of the phase difference ⁇ (the target value of the slip ratio).
  • the belt friction acting on the belt 44 is reduced, and the drive load for driving the belt-type continuously variable transmission mechanism 4 can be kept low by the reduction in belt friction. .
  • the fuel efficiency of the engine 1 can be improved without affecting the running performance during the belt slip control by the BSC permission determination.
  • step S32 in FIG. 6 during the belt slip control in which the BSC continuation determination is maintained from the BSC permission determination, in step S321 in FIG. 7, “torque limit request from belt slip control” is set as the driver request torque. Torque limit processing is performed. Hereinafter, the torque limit operation when returning to the normal control will be described with reference to FIGS. 10 and 13.
  • the engine control unit 88 has a torque limit amount as an engine torque upper limit for control. As a result, the actual torque of the engine 1 is limited so as not to exceed the torque limit.
  • This torque limit amount is determined by various requirements. For example, as a request from the belt-type continuously variable transmission mechanism 4, the upper limit of the input torque of the belt-type continuously variable transmission mechanism 4 during normal control (phase (1) in FIG. 13) is set as “torque limit request during normal control”.
  • the CVT control unit 8 transmits this “torque limit request during normal control” to the engine control unit 88. In this way, the engine control unit 88 selects the minimum one of the plurality of “torque limit requests” required from various controllers as the torque limit amount.
  • step S521 the torque limit request from BSC and the calculated torque capacity ⁇ the torque limit request from BSC. Therefore, in the flowchart of FIG. 10, the flow of going from step S521 ⁇ step S522 ⁇ step S524 ⁇ return is repeated, and in step S524, the torque limit request (previous value) from the BSC is maintained.
  • step S521 the driver request torque> the torque limit request from the BSC, but from the time t7 when the calculated torque capacity> the torque limit request from the BSC, in the flowchart of FIG. 10, go to step S521 ⁇ step S522 ⁇ step S523 ⁇ return.
  • step S523 the torque limit request from the BSC is set to (previous value + ⁇ T), and the torque limit request from the BSC gradually increases. The actual torque also follows this increasing gradient. Rise gradually.
  • step S521 the torque limit request from BSC
  • step S525 the torque limit request from driver required torque ⁇ BSC
  • step S526 is not passed, but step S526 is passed when the accelerator operation such as stepping on the accelerator or returning the accelerator (stepping off) is performed in a short time. That is, step S526 is passed when the belt slip control is canceled by depressing the accelerator and the accelerator foot release operation is performed as soon as the return control is entered.
  • the belt clamping force is lower than that in the normal control.
  • the input that changes in the increasing direction is maintained such that the actual torque at the end of the belt slip control is maintained from time t6 to time t7 in FIG.
  • the input torque to the belt type continuously variable transmission mechanism 4 is reduced while the belt clamping force at the end of the belt slip control is restored to the level during normal control. It is suppressed that the belt clamping force becomes excessive.
  • torque limit control is performed to limit the change speed of the input torque to the belt-type continuously variable transmission mechanism 4, so that the input torque to the belt-type continuously variable transmission mechanism 4 Excessive with respect to the clamping force can be suppressed, and slippage of the belt 44 can be prevented.
  • the torque limit control for holding the input torque to the belt type continuously variable transmission mechanism 4 at the end of the belt slip control is performed. Therefore, it is possible to reliably prevent the input torque from becoming excessive with respect to the belt clamping force.
  • step S541 the target inertia torque is calculated from the engine torque.
  • step S542 the target primary rotation change rate is calculated by the target inertia torque.
  • step S543 the target primary rotation speed that does not exceed the rate of change (gradient) of the target primary rotation speed without limitation is calculated in step S543. .
  • step S544 shift control is performed based on the limited target primary rotation speed.
  • the target speed ratio characteristic with control is compared with the target speed ratio characteristic without restriction when the target speed ratio to be finally generated is compared.
  • the change gradient of the target gear ratio is gentle.
  • the engine torque characteristics in the region from the end of the BSC to the normal return indicate that the driver request torque shows a stepwise increase characteristic, and the engine torque characteristics based on the actual torque response at the normal time when the torque limit control is not performed Shows the characteristics of rising.
  • the engine torque characteristic in the first embodiment maintains the torque for a while from the end of the BSC, and then the torque rises with a delay. Show.
  • the target primary rotational speed characteristic in the region from the end of BSC to the normal return is the target primary rotational speed characteristic at the normal time when the ultimate target characteristic is given by the step characteristic at the end of BSC and the limit control of the primary rotational speed increase is not performed.
  • the target primary rotational speed rises with a large gradient immediately after the end of BSC.
  • the target primary rotational speed characteristic according to the first embodiment shows a characteristic that the target primary rotational speed gradually rises with a gentler slope than that in the normal state.
  • the inertia torque characteristic at the normal time sharply decreases from the BSC end time, whereas the inertia torque characteristic of the first embodiment gradually decreases from the BSC end time to the normal return time.
  • the drive shaft torque characteristic when the primary rotation increase rate limit control is not performed is the inertia torque characteristic that is not different from the normal time as shown in the D characteristic of FIG.
  • the torque has a characteristic that has a drop d that the torque is significantly reduced after the start of the shift and before the start of the shift, and then the torque is increased.
  • the driver feels a shock and leads to deterioration in drivability and comfort.
  • the drive shaft torque characteristic of the first embodiment that performs both the torque delay and the primary rotation increase rate limit control is the primary rotation even if the engine torque input is delayed by the torque delay, as shown in the F characteristic of FIG. Since the peak of the inertia torque can be reduced by the increase rate limit control, the torque decreases slightly after the start of the shift and before the start of the shift, and then the torque increases. That is, it can be seen that the shock can be suppressed by simultaneously performing the torque delay and the primary rotation increase rate limit control.
  • the vibration amplitude of the secondary hydraulic pressure during the belt slip control in the first embodiment is a narrow region in which the speed ratio range in which the belt slip control is permitted is limited.
  • An optimal value that can be achieved in combination with suppression of vehicle vibration by belt slip control and ensuring of belt slip ratio detection is set in advance and given to the system as a fixed value.
  • the concept of setting the value of the vibration amplitude of the secondary hydraulic pressure will be described.
  • K ⁇ (Pout + ⁇ ⁇ V 2 ) Sout + W ⁇ / ⁇ Tcos ⁇ / (D ⁇ ⁇ ) ⁇ (1) here, Pout: secondary hydraulic pressure ⁇ : centrifugal hydraulic pressure coefficient of secondary hydraulic chamber 46 V: vehicle speed Sout: pressure receiving area of secondary hydraulic chamber 46 W: spring load of secondary hydraulic chamber 46: transmission torque ⁇ : sheave between primary pulley 42 and secondary pulley 43 Angle D: Winding diameter ⁇ of the belt 44 on the primary pulley 42 side: Calculated by a well-known formula called a coefficient of friction between the secondary pulley 43 and the belt 44.
  • the safety factor K is less than 1.0, slip occurs between the secondary pulley 43 and the belt 44.
  • the minimum pressure that can be reduced is set based on the specifications of the hydraulic control system provided in each vehicle.
  • the command secondary hydraulic pressure during normal control is generally calculated assuming that the safety factor K is 1.3 under the condition that it exceeds the minimum pressure that can be reduced, and the safety factor K is 1.3. This is the hydraulic pressure required to
  • the belt slip control reduces the secondary hydraulic pressure, which is a hydraulic pressure that obtains a clamping force without belt slip by estimating the safety factor K, and lowers the belt friction corresponding to the secondary hydraulic pressure reduction.
  • the secondary hydraulic pressure which is a hydraulic pressure that obtains a clamping force without belt slip by estimating the safety factor K
  • the belt friction corresponding to the secondary hydraulic pressure reduction is reduced.
  • the excitation amplitude superimposed on the secondary hydraulic pressure is increased, the average value of the pulley hydraulic pressure is increased, the hydraulic pressure cannot be sufficiently reduced, and the fuel efficiency effect is reduced.
  • the excitation amplitude superimposed on the secondary oil pressure is made small, the average value of the pulley oil pressure becomes low, the oil pressure can be lowered sufficiently, and the fuel efficiency effect margin increases.
  • the characteristics shown in FIG. 15 indicate that the fuel consumption effect due to the belt slip control is larger when the excitation amplitude superimposed on the secondary hydraulic pressure is set to the smallest possible
  • the secondary hydraulic pressure is vibrated, and the belt slip control is performed based on the belt slip state estimated by monitoring the phase difference between the actual secondary hydraulic pressure and the vibration component included in the actual gear ratio.
  • the excitation amplitude is a small value
  • the actual secondary hydraulic pressure includes a vibration component, but if the belt pulley contact diameter of the belt does not change, the actual gear ratio obtained by calculating the rotation speed ratio The vibration component cannot be extracted from. If the belt slip state detection property cannot be ensured, the belt slip control itself is not established.
  • the excitation amplitude is set to a value large enough to extract the vibration component from the actual gear ratio. Therefore, if the excitation amplitude is set to a value large enough to extract the vibration component from the actual gear ratio in the entire gear ratio range, the secondary oil pressure reduction margin is restricted (see FIG. 15), and belt slip control is aimed. You can't expect a good fuel economy.
  • the excitation amplitude of the secondary hydraulic pressure is set to a smaller value as the gear ratio is higher. Therefore, the variable setting of the excitation amplitude corresponding to the speed ratio at which the belt slip control is performed improves the fuel consumption effect, suppresses the occurrence of vehicle vibration by the belt slip control, and ensures the belt slip ratio detectability. Can be achieved. The reason will be described below.
  • the present inventors paid attention to the change in the gear ratio.
  • the higher the gear ratio is, the higher the sensitivity of the primary thrust with respect to the excitation amplitude to the same secondary hydraulic pressure.
  • the sensitivity of the gear ratio fluctuation is high and the gear ratio vibration is likely to occur. I found out.
  • FIG. 16 is a characteristic diagram showing a change in primary thrust with respect to the gear ratio and a change in secondary thrust with respect to the gear ratio.
  • the belt contact diameter is the primary thrust characteristic with respect to the gear ratio.
  • the primary thrust is small on the small low gear ratio side, and the primary thrust is large on the high gear ratio side where the belt contact diameter is large.
  • the secondary thrust characteristic with respect to the gear ratio since the secondary pulley 43 takes charge of the torque capacity, the secondary thrust is large on the low gear ratio side where the belt contact diameter is large and the high gear ratio side where the belt contact diameter is small. Primary thrust is reduced.
  • the balance thrust ratio is obtained when the speed ratio is the highest Hi.
  • the balance thrust ratio decreases as the gear ratio changes to the low side, and the balance thrust ratio is the lowest when the gear ratio is the lowest.
  • the balance thrust ratio becomes the highest when the gear ratio is the highest Hi.
  • the change in the primary thrust increases as the gear ratio becomes higher with respect to the excitation amplitude to the same secondary hydraulic pressure. This means that the sensitivity of the gear ratio fluctuation is high, that is, gear ratio vibration is likely to occur.
  • the excitation amplitude in the belt slip control is determined based on the gear ratio, the minimum pressure that can be reduced, and the vehicle vibration.
  • the excitation amplitude is set to a value large enough to extract the vibration component from the actual gear ratio in the entire gear ratio range from the lowest to the highest Hi, the vibration of the gear ratio appears.
  • the limit value of the excitation amplitude that does not affect the vehicle occupant caused by the transmission ratio vibration based on the excitation of the secondary hydraulic pressure as the NG threshold value of the front and rear G.
  • the amplitude value cannot be set. Therefore, the smaller value of the excitation amplitude value determined by the vehicle vibration and the excitation amplitude value determined by the minimum reducible pressure is set to the upper limit amplitude value MAX as shown in FIG. Limit the amplitude to a value below the upper limit amplitude value MAX.
  • the lowest range is not included in the gear ratio to which the belt slip control is applied by the upper limit amplitude value MAX. , Will have a limit gear ratio.
  • the upper limit amplitude value MAX which is the maximum value of the excitation amplitude
  • the lower limit amplitude value MIN that is the minimum value of the excitation amplitude is set to a small value that can extract the vibration component from the actual speed ratio when the speed ratio is the highest Hi.
  • a set of excitation amplitude limit values that are amplitude limit values and become smaller as the gear ratio becomes higher is the lower limit amplitude value characteristic L as shown in the dotted pattern region of FIG. Accordingly, the region surrounded by the line with the lower limit amplitude value characteristic L, the upper limit amplitude value MAX, and the line with the highest Hi gear ratio is the excitation amplitude OK region of the secondary hydraulic pressure.
  • this excitation amplitude OK region includes a portion where the excitation amplitude is larger than necessary particularly on the high gear ratio side. Therefore, the characteristic obtained by adding the amplitude margin to the lower limit amplitude value characteristic L is set as the upper limit amplitude value characteristic H, and the allowable range of the excitation amplitude of the secondary hydraulic pressure is set as the lower limit amplitude value as shown in the dotted pattern + hatching area in FIG. A region surrounded by a line by the characteristic L, the upper limit amplitude value characteristic H, the maximum Hi gear ratio, and the line by the upper limit amplitude value MAX is set.
  • the value corresponding to the gear ratio range to which the belt slip control is applied among the values within the allowable range of the excitation amplitude of the secondary hydraulic pressure shown in FIG. Will be set to.
  • the value of the excitation amplitude can be set.
  • a primary pulley 42 that is input from a driving source (engine 1), a secondary pulley 43 that is output to driving wheels 6 and 6, and a belt 44 that spans the primary pulley 42 and the secondary pulley 43.
  • the control device of the belt-type continuously variable transmission mechanism 4 that controls the gear ratio by the ratio of the pulley winding diameter of the belt 44 by controlling the primary hydraulic pressure to the primary pulley 42 and the secondary hydraulic pressure to the secondary pulley 43.
  • the belt slip state is estimated by oscillating the secondary hydraulic pressure and monitoring the phase difference ⁇ between the vibration component included in the actual secondary hydraulic pressure and the vibration component included in the actual gear ratio. Based on this estimation, a predetermined belt Belt slip control means (FIG.
  • the vibration amplitude of the secondary hydraulic pressure is set to be small when compared with the low gear ratio when the gear ratio is high (sinusoidal wave). And a vibration exciter 93a). For this reason, by setting the excitation amplitude corresponding to the gear ratio at which the belt slip control is performed, the energy saving effect (practical fuel efficiency effect) is improved, the occurrence of vehicle vibration due to the belt slip control, and the belt slip state detectability are improved. Therefore, it is possible to provide a control device for the belt-type continuously variable transmission mechanism 4 that achieves ensuring of the above.
  • the vibration amplitude setting means (sine wave exciter 93a) is configured to change the vibration amplitude of the secondary hydraulic pressure from a low gear ratio to a high gear ratio when the secondary hydraulic pressure is vibrated by belt slip control. Set to a smaller value toward the ratio. For this reason, it is possible to set an appropriate excitation amplitude corresponding to the change in the gear ratio at which belt slip control is performed.
  • the vibration amplitude setting means (the sine wave exciter 93a) has a vibration component based on vibration of the secondary hydraulic pressure as a limit value of the vibration amplitude included in the actual gear ratio, and the gear ratio is high.
  • the excitation amplitude of the secondary hydraulic pressure is set to a value equal to or greater than the lower limit amplitude value characteristic L.
  • the excitation amplitude setting means (the sine wave exciter 93a) sets the limit value of the excitation amplitude that does not affect the vehicle vibration caused by the transmission ratio vibration based on the excitation of the secondary hydraulic pressure to the occupant as the upper limit amplitude value.
  • MAX the excitation amplitude of the secondary hydraulic pressure was set to a value not more than the upper limit amplitude value MAX. For this reason, during the belt slip control, it is possible to prevent vehicle vibrations that give a sense of incongruity and to ensure the comfort of the passenger.
  • the excitation amplitude setting means (the sine wave exciter 93a) sets a characteristic obtained by adding an amplitude margin to the lower limit amplitude value characteristic L as an upper limit amplitude value characteristic H, and sets the excitation amplitude of the secondary hydraulic pressure as Of the values within the region surrounded by the line defined by the lower limit amplitude value characteristic L, the upper limit amplitude value characteristic H, the maximum transmission ratio (maximum Hi transmission ratio) and the upper limit amplitude value MAX, the value according to the transmission ratio. Set to value.
  • the vehicle vibration that improves the energy saving effect ensures the belt slip state detectability, and maintains the passenger comfort Prevention can be achieved in combination.
  • the belt slip control is performed by using the hydraulic pressure.
  • the hydraulic pressure is controlled based on an integrated value of a vibration component included in the actual hydraulic pressure and a vibration component included in the actual gear ratio, and the belt slip control is performed when the hydraulic pressure is applied.
  • the excitation amplitude is set smaller when the gear ratio is high than when the gear ratio is low.
  • the belt slip control estimates a belt slip state by monitoring a phase difference calculated based on the integrated value, and controls the hydraulic pressure so as to maintain a predetermined belt slip state based on the estimation. For this reason, since the change in the belt slip state can be accurately grasped by monitoring the phase difference correlated with the belt slip state, the predetermined belt slip state can be stably maintained during the belt slip control. As a result, the target energy saving effect (practical fuel efficiency effect) can be realized by belt slip control in which the belt friction reduction state is stably maintained.
  • Example 2 is an example in which an excitation amplitude map corresponding to the gear ratio is created, and the excitation amplitude is set following the change of the gear ratio during belt slip control.
  • FIG. 20 is a flowchart showing the secondary oil pressure excitation / correction process in the belt slip control process executed by the CVT control unit 8 according to the second embodiment.
  • FIG. 21 is a diagram illustrating an example of an excitation amplitude map that is referred to when the excitation amplitude is set in the excitation process of the secondary hydraulic pressure in the second embodiment.
  • each step of FIG. 20 will be described. Note that the steps S431 to S439 correspond to the steps S331 to S339 in FIG.
  • step S440 a command speed ratio calculated by the speed change control unit and used for speed change control is read, and the process proceeds to step S441.
  • step S441 following the reading of the command gear ratio in step S440, the excitation amplitude is set following the change in the gear ratio based on the gear ratio information and the excitation amplitude map (see FIG. 21), and the process proceeds to step S431.
  • the excitation amplitude map has a solid line characteristic (corresponding to the upper limit amplitude value characteristic H shown in FIG. 19) having a relationship of smaller excitation amplitude as the gear ratio is higher.
  • Two characteristics of a one-dot chain line characteristic (corresponding to the lower limit amplitude value characteristic L shown in FIG. 19) having a relationship of smaller excitation amplitude as the gear ratio is higher are set.
  • the solid line characteristic is selected.
  • step S442 following the calculation of the command secondary hydraulic pressure in step S439, it is determined whether or not the minimum pressure of the excited actual secondary hydraulic pressure is less than the minimum reducible pressure by the correction of the secondary hydraulic pressure by the belt slip control. If YES (actual secondary oil pressure ⁇ reducible minimum pressure), the process proceeds to step S443. If NO (actual secondary oil pressure ⁇ reducible minimum pressure), the process proceeds to the end.
  • step S443 following the determination that the actual secondary hydraulic pressure is less than the minimum pressure that can be reduced in step S442, it is determined whether the characteristic currently selected in the excitation amplitude map is a solid line characteristic, and YES ( In the case of solid line characteristic selection), the process proceeds to step S444.
  • step S444 following the determination that the solid line characteristic is selected in step S443, the selection characteristic in the excitation amplitude map is changed from the solid line characteristic to the one-dot chain line characteristic, and the process proceeds to the end. 1 to 11 other than FIG. 8 are the same as those in the first embodiment, and thus illustration and description thereof are omitted.
  • an excitation amplitude map (FIG. 21) corresponding to the gear ratio is created, and the excitation amplitude is set while referring to the excitation amplitude map during belt slip control.
  • the excitation amplitude setting operation during belt slip control will be described with reference to FIGS.
  • step S440 ⁇ step S441 ⁇ step S431 ⁇ step S432 ⁇ step S433 ⁇ step in the flowchart of FIG.
  • the excitation amplitude is set based on the command speed ratio at the start of belt slip control, or the command speed ratio that changes after the start and the solid line characteristic of the vibration amplitude map in FIG. However, it decreases after the correction of - ⁇ Psec.
  • step S439 in FIG. 20 the process proceeds from step S442 ⁇ step S443 ⁇ step S444 ⁇ end, and the excitation amplitude is increased.
  • the characteristic to be set is changed from the previous solid line characteristic to the one-dot chain line characteristic, and from the time of the next start of control until the end of the belt slip control, the commanded gear ratio at that time and the excitation amplitude map of FIG.
  • the excitation amplitude is set by the one-dot chain line characteristic.
  • step S440 ⁇ step S441 ⁇ step S431 ⁇ step S432 ⁇ step S433 ⁇ step S434 ⁇ step
  • the flow proceeds from S436 ⁇ step S437 ⁇ step S439 ⁇ step S442 ⁇ end, and the command secondary hydraulic pressure is maintained. Then, when the phase difference ⁇ becomes equal to or larger than the predetermined value 2, in the flowchart of FIG.
  • step S440 ⁇ step S441 ⁇ step S431 ⁇ step S432 ⁇ step S433 ⁇ step S434 ⁇ step S436 ⁇ step S438 ⁇ step S439 ⁇ step S442 ⁇ end
  • the command secondary hydraulic pressure rises after correction of + ⁇ Psec. That is, in the belt slip control, control is performed to maintain a slip ratio that is in a range where the phase difference ⁇ is not less than the predetermined value 1 and less than the predetermined value 2.
  • the excitation amplitude in the belt slip control is set so as to follow the change in the command gear ratio, regardless of which of the two characteristics of the excitation amplitude map is selected. .
  • the excitation amplitude is set so as to follow the change in the command gear ratio within the permission region, so that the value of the excitation amplitude becomes the command gear ratio.
  • the fuel consumption effect can be expected to be further improved as compared with the first embodiment in which the vibration amplitude becomes a corresponding appropriate value and is given by a predetermined constant value.
  • the vibration amplitude is set in the belt slip control from the start of control until the actual secondary hydraulic pressure falls below the minimum pressure that can be reduced.
  • the solid line characteristic of the vibration amplitude map (corresponding to the upper limit amplitude value characteristic H shown in FIG. 19). Is selected.
  • the one-dot chain line characteristic (corresponding to the lower limit amplitude value characteristic L shown in FIG. 19) of the vibration amplitude map is selected. That is, at the same gear ratio i, as shown in FIG. 21, when the upper limit amplitude value characteristic H is selected, the excitation amplitude is Wh, but when the lower limit amplitude value characteristic L is selected, the excitation amplitude is Wl. The value is reduced by the amplitude difference ⁇ W.
  • the excitation amplitude is set to a slightly larger value than the minimum excitation amplitude for extracting the vibration component from the actual gear ratio, and the control start area Can meet the demand for reliable belt slip condition detection.
  • the excitation amplitude is set at the minimum level that extracts the vibration component from the actual gear ratio, and particularly when the belt slip control is continued for a long time. It can meet the demand for improvement. Since other operations are the same as those of the first embodiment, description thereof is omitted.
  • the excitation amplitude setting means sets an excitation amplitude map (FIG. 21) having a relationship of smaller excitation amplitude as the gear ratio is higher, and the belt slip control means.
  • FIG. 20 sets the excitation amplitude following the change in the transmission ratio based on the transmission ratio information and the excitation amplitude map during the belt slip control. For this reason, the value of the excitation amplitude becomes an appropriate value corresponding to the command gear ratio, and the energy saving effect (fuel efficiency effect) can be improved as compared with the first embodiment.
  • the excitation amplitude setting means sets the excitation amplitude map (FIG. 21) to an upper limit amplitude value characteristic H obtained by adding an amplitude margin to the lower limit amplitude value characteristic L, and the belt
  • the slip control means performs control to reduce the actual secondary hydraulic pressure during the belt slip control, so that the actual secondary hydraulic pressure that vibrates with the set excitation amplitude reduces the minimum pressure that can be reduced by the hydraulic control system.
  • the set excitation amplitude is changed to a small value with the lower limit amplitude value in the gear ratio at that time as a limit. Therefore, during belt slip control, a reliable belt slip state detectability request can be satisfied in the control start region, and an energy saving effect improvement request (fuel efficiency improvement request) can be satisfied in the control continuation region.
  • the excitation amplitude is gradually set smaller as the gear ratio goes toward the higher gear ratio.
  • the excitation amplitude may be set small.
  • the shift hydraulic pressure control unit 7 has an example of having a hydraulic circuit by step motor control by a single pressure regulation method.
  • the present invention can also be applied to other single pressure regulation type or both pressure regulation type transmission hydraulic pressure control units.
  • Example 1 shows an example in which only the secondary hydraulic pressure is vibrated.
  • the secondary hydraulic pressure and the primary hydraulic pressure may be simultaneously excited in the same phase.
  • Example 1 shows an example in which the input torque at the end of the belt slip control is held for a predetermined time as the torque limit control in the return control. However, for example, a slight torque increase may be allowed as torque limit control.
  • the rate of change of the target primary rotational speed is limited as limiting control of the speed change rate in the return control.
  • the speed ratio change rate limiting control may be an example in which a speed time constant is limited, an example in which the speed ratio at the end of belt slip control is held for a predetermined time, or an example in which these methods are combined.
  • the actual secondary hydraulic pressure that vibrates with the set excitation amplitude is reduced by the hydraulic control system by performing control to reduce the actual secondary hydraulic pressure during the belt slip control as the belt slip control means.
  • An example has been shown in which, when the pressure falls below the pressure, the set excitation amplitude is changed to a small value with the lower limit amplitude value in the gear ratio at that time as a limit.
  • the transmission torque capacity by the belt is used, and when the transmission torque capacity is less than the reduction torque capacity, the set excitation amplitude is changed to the speed ratio at that time.
  • the lower limit amplitude value is changed to a small value as a limit may be used.
  • Example 2 when changing to a small value, the example which changes in two steps was shown, but as an example which changes in multiple steps of three steps or more, or changes steplessly good.
  • the present invention is applied to a hybrid vehicle equipped with a belt-type continuously variable transmission or an electric vehicle equipped with a belt-type continuously variable transmission. It can also be applied to. In short, it can be applied to any vehicle equipped with a belt-type continuously variable transmission that performs hydraulic shift control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保と、を併せて達成することができるベルト式無段変速機の制御装置と制御方法を提供する。プライマリプーリ(42)と、セカンダリプーリ(43)と、ベルト(44)を有し、プライマリ油圧とセカンダリ油圧を制御することにより、ベルト(44)のプーリ巻き付け径の比による変速比を制御する。このベルト式無段変速機構(4)において、セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差θを監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段(図8)と、ベルトスリップ制御にてセカンダリ油圧を加振するに際し、セカンダリ油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定する加振振幅設定手段(正弦波加振器93a)と、を備えた。

Description

ベルト式無段変速機の制御装置と制御方法
 本発明は、プーリに掛け渡されたベルトを所定のスリップ率でスリップさせるベルトスリップ制御を行うベルト式無段変速機の制御装置と制御方法に関する。
 従来、ベルト式無段変速機の制御装置としては、実セカンダリ油圧を通常制御時よりも低下させて、プーリに掛け渡されたベルトを所定のスリップ率でスリップさせるベルトスリップ制御を行うに際して、実セカンダリ油圧に含まれる振動成分と、実変速比に含まれる振動成分との乗数に基づき、実セカンダリ油圧を制御する。これにより、ベルトのスリップ率を直接検出する必要がなくなるため、ベルトスリップ制御を容易に行えるようにしたものが知られている(例えば、特許文献1参照)。
WO 2009/007450 A2(PCT/EP2008/059092)
 しかしながら、従来のベルト式無段変速機の制御装置にあっては、ベルトスリップ制御中のセカンダリ油圧への加振振幅の設定方法については言及していないため、以下のような問題が発生する。
 セカンダリ油圧を加振し、実セカンダリ油圧と実変速比に含まれる振動成分に基づいてベルトスリップ制御を行う場合、実変速比から振動成分を抽出できるだけのセカンダリ油圧の加振振幅に設定する必要がある。一方、ベルトスリップ制御にて燃費向上等の省エネルギ効果を得る場合、実セカンダリ油圧の低減代が効果代となるため、実セカンダリ油圧を限界(スリップ率や最低圧や最低伝達トルク容量等で決まる)まで低減させ得る小さな値による加振振幅に設定する必要がある。また、セカンダリ油圧の加振振幅を大きくすると車両振動が発生し、車両の運転性を悪化させるため、ベルトスリップ制御による車両振動が発生しない加振振幅に設定する必要がある。
 したがって、ベルトスリップ制御中、セカンダリ油圧へ加振振幅を一定値により与えるに際し、大きな値による加振振幅に設定すると、実変速比からの振動成分抽出によるベルトスリップ状態検知性を確保することはできるものの、省エネルギ効果の十分な向上を望むことができない上、ベルトスリップ制御による車両振動が発生し運転性を悪化させる。また、小さな値による加振振幅に設定すると、省エネルギ効果の向上を達成することはでき、ベルトスリップ制御による車両振動が発生しないものの、実変速比からの振動成分抽出によるベルトスリップ状態検知性を確保できない。つまり、省エネルギ効果の向上と、ベルトスリップ制御による車両振動の発生と、ベルトスリップ状態検知性の確保は、トレードオフの関係にある。
 本発明は、上記問題に着目してなされたもので、ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保と、を併せて達成することができるベルト式無段変速機の制御装置と制御方法を提供することを目的とする。
 上記目的を達成するため、本発明のベルト式無段変速機の制御装置では、駆動源から入力するプライマリプーリと、駆動輪へ出力するセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリに掛け渡したベルトと、を有し、前記プライマリプーリへのプライマリ油圧と前記セカンダリプーリへのセカンダリ油圧を制御することにより、前記ベルトのプーリ巻き付け径の比による変速比を制御する。
このベルト式無段変速機の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段と、前記ベルトスリップ制御にてセカンダリ油圧を加振するに際し、前記セカンダリ油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定する加振振幅設定手段と、を備えた。
 よって、本発明のベルト式無段変速機の制御装置にあっては、ベルトスリップ制御にてセカンダリ油圧を加振するに際し、加振振幅設定手段において、セカンダリ油圧の加振振幅が、高変速比のときは低変速比のときに比して小さく設定される。
すなわち、変速比の高低変化に着目した場合、同じセカンダリ油圧への加振振幅に対し、変速比が高変速比側であるほどプライマリ推力の感度が高い、言い換えると、変速比変動の感度が高くて変速比振動が発生し易いことを知見した。このことは、変速比が高変速比側である場合、セカンダリ油圧の加振振幅を小さな値に設定したとしても、実変速比からの振動成分抽出によるベルトスリップ状態検知性を確保できることを意味する。そして、変速比が高変速比のとき、セカンダリ油圧の加振振幅を小さな値に設定することにより、ベルトスリップ制御による車両振動の発生を防止しつつ、省エネルギ効果の向上を達成することができる。そして、変速比が低変速比のときには、高変速比のときに比してセカンダリ油圧の加振振幅が大きな値に設定されることになるが、ベルトスリップ制御時の変速比に対してベルトスリップ状態検知性の限界域を狙うことにより、最大域の省エネルギ効果を達成することができる。
この結果、ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保と、を併せて達成することができる。
実施例1の制御装置と制御方法が適用されたベルト式無段変速機搭載車両の駆動系と制御系を示す全体システム図である。 実施例1の制御装置と制御方法が適用されたベルト式無段変速機構を示す斜視図である。 実施例1の制御装置と制御方法が適用されたベルト式無段変速機構のベルトの一部を示す斜視図である。 実施例1のCVTコントロールユニット8にて実行されるライン圧制御、セカンダリ油圧制御(通常制御/ベルトスリップ制御)を示す制御ブロック図である。 実施例1のCVTコントロールユニット8にて実行されるセカンダリ油圧の通常制御とベルトスリップ制御(=「BSC」)の間での切り替え処理を示す基本フローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理を示す全体フローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちトルクリミット処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御から通常制御への復帰処理を示す全体フローチャートである。 実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうちトルクリミット処理を示すフローチャートである。 実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうち目標プライマリ回転数に制限を設ける変速比の変速速度制限処理を示すフローチャートである。 通常制御からベルトスリップ制御・復帰制御を経過して通常制御へ戻る走行シーンにおけるBSC作動フラグ・SEC圧F/B禁止フラグ・アクセル開度・車速・エンジントルク・Ratio・SEC油圧・SEC_SOL電流補正量・SEC圧振動とRatio振動との位相差の各特性を示すタイムチャートである。 実施例1のベルトスリップ制御から通常制御への復帰制御にて採用したトルクディレイによるトルクリミット動作を説明するドライバ要求トルク・トルク制限量・トルク容量・実トルクの各特性を示すタイムチャートである。 実施例1の復帰制御にて採用したトルクディレイ及びプライマリ回転上昇率リミッタによるエンジントルク・目標プライマリ回転数・イナーシャトルク・ドライブシャフトトルクの各特性を示すタイムチャートである。 実施例1のベルトスリップ制御にて加振振幅を大にしたときと加振振幅を小にしたときのセカンダリ油圧の対比特性を示すタイムチャートである。 実施例1のベルト式無段変速機において変速を受け持つプライマリプーリの変速比に対するプライマリ推力の変化とトルク容量を受け持つセカンダリプーリの変速比に対するセカンダリ推力の変化を示す特性図である。 実施例1のベルト式無段変速機において変速比に対するバランス推力比(=プライマリ推力/セカンダリ推力)の変化を示す特性図である。 実施例1のベルト式無段変速機において加振振幅の大きさに対して変速比が異なるときの前後Gの変化を示す特性図である。 実施例1のベルトスリップ制御にて変速比と低減可能最低圧と車両振動により加振振幅の決める考え方を示す加振振幅特性図である。 実施例2のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。 実施例2でのセカンダリ油圧の加振処理で加振振幅を設定する際に参照される加振振幅マップの一例を示す図である。
 以下、本発明のベルト式無段変速機の制御装置と制御方法を実現する最良の形態を、図面に示す実施例1及び実施例2に基づいて説明する。
 まず、構成を説明する。
図1は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機搭載車両の駆動系と制御系を示す全体システム図である。図2は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機構を示す斜視図である。図3は、実施例1の制御装置と制御方法が適用されたベルト式無段変速機構のベルトの一部を示す斜視図である。以下、図1~図3に基づきシステム構成を説明する。
 ベルト式無段変速機搭載車両の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、ベルト式無段変速機構4と、終減速機構5と、駆動輪6,6と、を備えている。
 前記エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクが制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行う出力トルク制御アクチュエータ10を有する。
 前記トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないときには、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたタービンランナ23と、トルクコンバータ出力軸21に連結されたポンプインペラ24と、ワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。
 前記前後進切替機構3は、ベルト式無段変速機構4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、前進クラッチ31と、後退ブレーキ32と、を有する。前記ダブルピニオン式遊星歯車30は、サンギヤがトルクコンバータ出力軸21に連結され、キャリアが変速機入力軸40に連結される。前進クラッチ31は、前進走行時に締結し、ダブルピニオン式遊星歯車30のサンギヤとキャリアを直結する。前記後退ブレーキ32は、後退走行時に締結し、ダブルピニオン式遊星歯車30のリングギヤをケースに固定する。
 前記ベルト式無段変速機構4は、ベルト接触径の変化により変速機入力軸40の入力回転数と変速機出力軸41の出力回転数の比である変速比を無段階に変化させる無段変速機能を有する。このベルト式無段変速機構4は、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する。前記プライマリプーリ42は、固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ油圧室45に導かれるプライマリ油圧によりスライド動作する。前記セカンダリプーリ43は、固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ油圧室46に導かれるプライマリ油圧によりスライド動作する。前記ベルト44は、図2に示すように、プライマリプーリ42のV字形状をなすシーブ面42c,42dと、セカンダリプーリ43のV字形状をなすシーブ面43c,43dに掛け渡されている。このベルト44は、図3に示すように、環状リングを内から外へ多数重ね合わせた2組の積層リング44a,44aと、打ち抜き板材により形成され、2組の積層リング44a,44aに対する挟み込みにより互いに連接して環状に設けられた多数のエレメント44bにより構成される。そして、エレメント44bには、両側位置にプライマリプーリ42のシーブ面42c,42dと、セカンダリプーリ43のシーブ面43c,43dと接触するフランク面44c,44cを有する。
 前記終減速機構5は、ベルト式無段変速機構4の変速機出力軸41からの変速機出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、変速機出力軸41とアイドラ軸50と左右のドライブ軸51,51に介装され、減速機能を持つ第1ギヤ52と、第2ギヤ53と、第3ギヤ54と、第4ギヤ55と、差動機能を持つギヤディファレンシャルギヤ56を有する。
 ベルト式無段変速機搭載車の制御系は、図1に示すように、変速油圧コントロールユニット7と、CVTコントロールユニット8と、を備えている。
 前記変速油圧コントロールユニット7は、プライマリ油圧室45に導かれるプライマリ油圧と、セカンダリ油圧室46に導かれるセカンダリ油圧を作り出す油圧制御ユニットである。この変速油圧コントロールユニット7は、オイルポンプ70と、レギュレータ弁71と、ライン圧ソレノイド72と、変速制御弁73と、減圧弁74、セカンダリ油圧ソレノイド75と、サーボリンク76と、変速指令弁77と、ステップモータ78と、を備えている。
 前記レギュレータ弁71は、オイルポンプ70から吐出圧を元圧とし、ライン圧PLを調圧する弁である。このレギュレータ弁71は、ライン圧ソレノイド72を有し、オイルポンプ70から圧送された油の圧力を、CVTコントロールユニット8からの指令に応じて所定のライン圧PLに調圧する。
 前記変速制御弁73は、レギュレータ弁71により作り出されたライン圧PLを元圧とし、プライマリ油圧室45に導かれるプライマリ油圧を調圧する弁である。この変速制御弁73は、メカニカルフィードバック機構を構成するサーボリンク76にスプール73aが連結され、サーボリンク76の一端に連結された変速指令弁77がステップモータ78によって駆動されると共に、サーボリンク76の他端に連結されたプライマリプーリ42のスライドプーリ42bからスライド位置(実プーリ比)のフィードバックを受ける。つまり、変速時、CVTコントロールユニット8からの指令によりステップモータ78を駆動すると、変速制御弁73のスプール73aの変位によってプライマリ油圧室45へのライン圧PLの供給/排出を行って、ステップモータ78の駆動位置で指令された目標変速比となるようにプライマリ油圧を調整する。そして、変速が終了するとサーボリンク76からの変位を受けてスプール73aを閉弁位置に保持する。
 前記減圧弁74は、レギュレータ弁71により作り出されたライン圧PLを元圧としてセカンダリ油圧室46に導かれるセカンダリ油圧を減圧制御により調圧する弁である。この減圧弁74は、セカンダリ油圧ソレノイド75を備え、CVTコントロールユニット8からの指令に応じてライン圧PLを減圧して指令セカンダリ油圧に制御する。
 前記CVTコントロールユニット8は、車速やスロットル開度等に応じた目標変速比を得る制御指令をステップモータ78に出力する変速比制御、スロットル開度等に応じた目標ライン圧を得る制御指令をライン圧ソレノイド72に出力するライン圧制御、変速機入力トルク等に応じた目標セカンダリプーリ推力を得る制御指令をセカンダリ油圧ソレノイド75に出力するセカンダリ油圧制御、前進クラッチ31と後退ブレーキ32の締結/解放を制御する前後進切替制御、ロックアップクラッチ20の締結/解放を制御するロックアップ制御、等を行う。このCVTコントロールユニット8には、プライマリ回転センサ80、セカンダリ回転センサ81、セカンダリ油圧センサ82、油温センサ83、インヒビタースイッチ84、ブレーキスイッチ85、アクセル開度センサ86、他のセンサ・スイッチ類87等からのセンサ情報やスイッチ情報が入力される。また、エンジンコントロールユニット88からはトルク情報を入力し、エンジンコントロールユニット88へはトルクリクエストを出力する。
 図4は、実施例1のCVTコントロールユニット8にて実行されるライン圧制御、セカンダリ油圧制御(通常制御/ベルトスリップ制御)を示す制御ブロック図である。
 実施例1のCVTコントロールユニット8の油圧制御系は、図4に示すように、基礎油圧計算部90と、ライン圧制御部91と、セカンダリ油圧制御部92と、正弦波加振制御部93(加振振幅設定手段)と、セカンダリ油圧補正部94と、を備えている。
 前記基礎油圧計算部90は、エンジンコントロールユニット88(図1参照)からのトルク情報(エンジン回転数、燃料噴射時間等)に基づいて、変速機入力トルクを計算する入力トルク計算部90aと、入力トルク計算部90aで求めた変速機入力トルクから基礎セカンダリ推力(セカンダリプーリ43に必要なベルトクランプ力)を計算する基礎セカンダリ推力計算部90bと、変速時に必要な差推力(プライマリプーリ42とセカンダリプーリ43のベルトクランプ力の差)を計算する変速時必要差推力計算部90cと、計算した基礎セカンダリ推力を変速時必要差推力に基づいて補正する補正部90dと、補正したセカンダリ推力を目標セカンダリ油圧に変換するセカンダリ油圧変換部90eと、を有する。さらに、入力トルク計算部90aで求めた変速機入力トルクから基礎プライマリ推力(プライマリプーリ42に必要なベルトクランプ力)を計算する基礎プライマリ推力計算部90fと、計算した基礎プライマリ推力を、変速時必要差推力計算部90cで計算した変速時必要差推力に基づいて補正する補正部90gと、補正したプライマリ推力を目標プライマリ油圧に変換するプライマリ油圧変換部90hと、を有する。
 前記ライン圧制御部91は、プライマリ油圧変換部90hから出力された目標プライマリ油圧を、セカンダリ油圧制御部92から得られる指示セカンダリ油圧と比較して、目標プライマリ油圧≧指示セカンダリ油圧であるとき、目標ライン圧を目標プライマリ油圧と同じ値に設定し、目標プライマリ油圧<指示セカンダリ油圧であるとき、目標ライン圧を指示セカンダリ油圧と同じ値に設定する目標ライン圧決定部91aと、目標ライン圧決定部91aで決定された目標ライン圧を、ソレノイドに印加する電流値に変換し、レギュレータ弁71のライン圧ソレノイド72に変換後の指示電流値を出力する油圧-電流変換部91bと、を有する。
 前記セカンダリ油圧制御部92は、通常制御時、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いたフィードバック制御(PI制御)により指示セカンダリ油圧を求め、ベルトスリップ制御時、実セカンダリ油圧を用いることのないオープン制御により指示セカンダリ油圧を求める。セカンダリ油圧変換部90eからの目標セカンダリ油圧をフィルタ処理するローパスフィルタ92aと、実セカンダリ油圧と目標セカンダリ油圧の偏差を算出する偏差算出部92bと、偏差=0を設定したゼロ偏差設定部92cと、算出偏差とゼロ偏差の何れかを選択して切り替える偏差切替部92dと、油温により積分ゲインを決定する積分ゲイン決定部92eと、を有する。そして、積分ゲイン決定部92eからの積分ゲインと偏差切替部92dからの偏差を乗算する乗算器92fと、乗算器92fからのFB積分制御量を積算する積分器92gと、セカンダリ油圧変換部90eからの目標セカンダリ油圧に積算したFB積分制御量を加算する加算器92hと、加算した値に上下限リミッタを施して指示セカンダリ油圧(なお、ベルトスリップ制御時は、「基本セカンダリ油圧」という。)を求める制限器92iと、を有する。そして、ベルトスリップ制御時、基本セカンダリ油圧に正弦波加振指令を加える振動加算器92jと、加振した基本セカンダリ油圧をセカンダリ油圧補正量により補正して指示セカンダリ油圧とする油圧補正器92kと、指示セカンダリ油圧をソレノイドに印加する電流値に変換し、減圧弁74のセカンダリ油圧ソレノイド75に変換後の指示電流値を出力する油圧-電流変換部92mと、を有する。なお、前記偏差切替部92dでは、BSC作動フラグ=0(通常制御中)のとき算出偏差が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のときゼロ偏差が選択される。
 前記正弦波加振制御部93は、ベルトスリップ制御に適した加振周波数と加振振幅を決定し、決定した周波数と振幅による正弦波油圧振動を加える正弦波加振器93aと、正弦波油圧振動を全く加えないゼロ加振設定器93bと、正弦波油圧振動とゼロ加振の何れかを選択して切り替える加振切替部93cと、を有する。なお、前記加振切替部93cでは、BSC作動フラグ=0(通常制御中)のときゼロ加振が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のとき正弦波油圧振動が選択される。ここで、加振振幅は、後述する考え方に基づき、ベルトスリップ制御が行われる変速比域にて、燃費性能の向上とベルトスリップ率検知性の確保との両立を図ることができる最適値に設定される。
 前記セカンダリ油圧補正部94は、プライマリ回転センサ80からのプライマリ回転数Npriとセカンダリ回転センサ81からのセカンダリ回転数Nsecの比により実変速比Ratioを算出する実変速比算出部94aと、セカンダリ油圧センサ82により取得された実セカンダリ油圧Psecをあらわす信号から振動成分を抽出する第1バンドパスフィルタ94bと、実変速比算出部94aにより取得された算出データから振動成分を抽出する第2バンドパスフィルタ94cと、を有する。そして、両バンドパスフィルタ94b,94cにて抽出された振動成分を掛け合わせる乗算器94dと、乗算した結果から位相差情報を抽出するローパスフィルタ94eと、ローパスフィルタ94eからの位相差情報に基づいてセカンダリ油圧補正量を決定するセカンダリ油圧補正量決定部94fと、セカンダリ油圧のゼロ補正量を設定するゼロ補正量設定器94gと、セカンダリ油圧補正量とゼロ補正量の何れかを選択して切り替える補正量切替部94hと、を有する。なお、前記補正量切替部94hでは、BSC作動フラグ=0(通常制御中)のときゼロ補正量が選択され、BSC作動フラグ=1(ベルトスリップ制御中)のとき決定したセカンダリ油圧補正量が選択される。
 図5は、実施例1のCVTコントロールユニット8にて実行されるセカンダリ油圧の通常制御とベルトスリップ制御(=「BSC」)の間での切り替え処理を示す基本フローチャートである。以下、図5の各ステップについて説明する。
 ステップS1では、キーオンによるスタート、あるいは、ステップS2でのBSC不許可の判定、あるいは、ステップS5での通常制御復帰処理に続き、ベルト式無段変速機構4の通常制御を行い、ステップS2へ進む。なお、通常制御中は、BSC作動フラグ=0にセットすると共に、セカンダリ圧F/B禁止フラグをゼロにセットする。
 ステップS2では、ステップS1での通常制御に続き、下記のBSC許可条件を全て満たすか否かを判定し、YES(全てのBSC許可条件を満たす)の場合、ステップS3へ進み、ベルトスリップ制御(BSC)を行う。NO(BSC許可条件のうち1つでも満たさない条件がある)の場合、ステップS1へ戻り、通常制御を続ける。
ここで、BSC許可条件の一例を下記に示す。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
(3) 所定時間、上記(1),(2)の許可状態を継続すること。
ステップS2では、以上の条件(1),(2),(3)の全ての条件を満たすか否かを判断する。
 ステップS3では、ステップS2でのBSC許可判定、あるいは、ステップS4でのBSC継続判定に続き、ベルト式無段変速機構4のベルト44への入力を低減し、ベルト44を滑らせることなく、適正なスリップ状態を保つベルトスリップ制御(図6~図8)を行い、ステップS4へ進む。なお、ベルトスリップ制御中は、BSC作動フラグ=1にセットすると共に、セカンダリ圧F/B禁止フラグを“1”にセットする。
 ステップS4では、ステップS3でのベルトスリップ制御に続き、下記のBSC継続条件を全て満たすか否かを判定し、YES(全てのBSC継続条件を満たす)の場合、ステップS3へ戻り、ベルトスリップ制御(BSC)をそのまま継続する。NO(BSC継続条件のうち1つでも満たさない条件がある)の場合、ステップS5へ進み、通常制御復帰処理を行う。
ここで、BSC継続条件の一例を下記に示す。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
以上の条件(1),(2)を共に満たすか否かを判断する。
すなわち、BSC許可条件とBSC継続条件の差異は、BSC継続条件にはBSC許可条件のうち(3)の継続条件が無いことである。
 ステップS5では、ステップS4でのBSC継続条件のうち1つでも満たさない条件があるとの判断に続き、ベルトスリップ制御から通常制御へ復帰するときのベルト44の滑りを防止する通常制御復帰処理(図9~図11)を行い、処理終了後、ステップS1へ戻り、通常制御へ移行する。
 図6は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理を示す全体フローチャートである。図7は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちトルクリミット処理を示すフローチャートである。図8は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。
 まず、図6から明らかなように、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御の禁止処理(ステップS31)と、通常制御への復帰に備えたトルクリミット処理(ステップS32)と、ベルトスリップ制御のためのセカンダリ油圧の加振・補正処理(ステップS33)と、が同時進行にて行われる。
 ステップS31では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御を禁止する。
すなわち、指令セカンダリ油圧を求めるに際して、通常制御時のフィードバック制御を禁止して、ベルトスリップ制御中のゼロ偏差を用いたオープン制御に切り替える。そして、ベルトスリップ制御から通常制御へ移行すると、再びフィードバック制御に復帰する。
 ステップS32では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図7のトルクリミット処理を行う。
すなわち、図7のフローチャートにおいて、ステップS321では、“ベルトスリップ制御からのトルクリミット要求”をドライバ要求トルクとする。
 ステップS33では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図8のセカンダリ油圧の加振・補正を行う。以下、図8のフローチャートの各ステップについて説明する。
 ステップS331では、指令セカンダリ油圧を加振する。すなわち、指令セカンダリ油圧に所定振幅かつ所定周波数の正弦波油圧を重畳し、ステップS332へ進む。
 ステップS332では、ステップS331での指令セカンダリ油圧の加振に続き、セカンダリ油圧センサ82から実セカンダリ油圧を検出し、プライマリ回転センサ80とセカンダリ回転センサ81からの回転数情報に基づき、実変速比を計算により検出し、ステップS333へ進む。
 ステップS333では、ステップS332での実セカンダリ油圧と実変速比の検出に続き、実セカンダリ油圧と実変速比のそれぞれにバンドパスフィルタ処理を行い、実セカンダリ油圧と実変速比それぞれの振動成分(正弦波)を抽出し、それらを掛け合わせて乗算し、乗算値にローパスフィルタ処理を行い、振幅と実セカンダリ油圧振動から実変速比振動までの位相差θ(余弦波)にて表される値に変換し、ステップS334へ進む。
ここで、実セカンダリ油圧振幅をA、実変速比振幅をBとすると、
実セカンダリ油圧振動:Asinωt  …(1)
実変速比振動:Bsin(ωt+θ)  …(2)
で表される。
(1)と(2)を掛け合わせ、積和の公式である
sinαsinβ=-1/2{cos(α+β)-cos(α-β)}   …(3)
を用いると、
Asinωt×Bsin(ωt+θ)=(1/2)ABcosθ-(1/2)ABcos(2ωt+θ) …(4)
となる。
上記(4)式において、ローパスフィルタを通すと、加振周波数の2倍成分である(1/2)ABcos(2ωt+θ)が低減され、上記(4)式は、
Asinωt×Bsin(ωt+θ)≒(1/2)ABcosθ  …(5)
というように、振幅A,Bと実セカンダリ油圧振動から実変速比振動までの位相差θの式にて表すことができる。
 ステップS334では、ステップS333での実セカンダリ油圧振動から実変速比振動までの位相差θの算出に続き、実セカンダリ油圧振動から実変速比振動までの位相差θが、0≦位相差θ<所定値1(マイクロスリップ領域)であるか否かを判断し、YES(0≦位相差θ<所定値1)の場合はステップS335へ進み、NO(所定値1≦位相差θ)の場合はステップS336へ進む。
 ステップS335では、ステップS334での0≦位相差θ<所定値1(マイクロスリップ領域)であるとの判断に続き、セカンダリ油圧補正量を「-ΔPsec」とし、ステップS339へ進む。
 ステップS336では、ステップS334での所定値1≦位相差θであるとの判断に続き、実セカンダリ油圧振動から実変速比振動までの位相差θが、所定値1≦位相差θ<所定値2(目標スリップ領域)であるか否かを判断し、YES(所定値1≦位相差θ<所定値2)の場合はステップS337へ進み、NO(所定値2≦位相差θ)の場合はステップS338へ進む。
 ステップS337では、ステップS336での所定値1≦位相差θ<所定値2(目標スリップ領域)であるとの判断に続き、セカンダリ油圧補正量を「0」とし、ステップS339へ進む。
 ステップS338では、ステップS336での所定値2≦位相差θ(マイクロ/マクロスリップ遷移領域)であるとの判断に続き、セカンダリ油圧補正量を「+ΔPsec」とし、ステップS339へ進む。
 ステップS339では、ステップS335、ステップS337、ステップS338でのセカンダリ油圧補正量の設定に続き、基本セカンダリ油圧+セカンダリ油圧補正量を、指令セカンダリ油圧とし、エンドへ進む。
 図9は、実施例1のCVTコントロールユニット8にて実行されるベルトスリップ制御から通常制御への復帰処理を示す全体フローチャートである。図10は、実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうちトルクリミット処理を示すフローチャートである。図11は、実施例1のCVTコントロールユニット8にて実行される通常制御への復帰処理のうち目標プライマリ回転数に制限を設ける変速比の変速速度制限処理を示すフローチャートである。
 まず、図9から明らかなように、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御の復帰処理(ステップS51)と、通常制御への復帰に向かうトルクリミット処理(ステップS52)と、ベルトスリップ制御のためのセカンダリ油圧の加振・補正のリセット処理(ステップS53)と、変速速度を規制する変速規制処理(ステップS54)と、が同時進行にて行われる。
 ステップS51では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、セカンダリ油圧センサ82にて検出した実セカンダリ油圧を用いて指示セカンダリ油圧を求めるフィードバック制御に復帰する。
 ステップS52では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図10の通常制御への復帰に向かうトルクリミット処理を行う。
 ステップS53では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図8のセカンダリ油圧の加振・補正をリセットし、通常制御に備える。
 ステップS54では、BSC継続中止から通常制御が開始されるまでのベルトスリップ制御から通常制御への復帰中、図11の変速速度を規制する変速規制処理を行う。
 以下、図10のトルクリミット処理を示すフローチャートの各ステップについて説明する。このトルクリミット処理は、「ドライバ要求トルク」と「BSCからのトルクリミット要求」と「トルク容量(算出トルク容量)」との3つの値の大小関係に基づき制御を切替えるのがポイントである。
ここで、「ドライバ要求トルク」とは、運転者が要求するエンジントルクである。「BSCからのトルクリミット要求」とは、図13のフェーズ(2)、(3)におけるトルク制限量である。「トルク容量」とは、通常(図13のフェーズ(1))は、設計上の許容トルク容量であり、ベルト滑りが生じないよう、ベルト式無段変速機構4のメカニカル的バラツキを考慮した安全マージン分だけドライバ要求トルクより高めに設定される値である。ここで、実際のトルク容量の制御は、セカンダリ油圧制御で行う。
さらに、「算出トルク容量」とは、BSC中(図13のフェーズ(2))と復帰処理時(図13のフェーズ(3))のトルク容量である。この算出トルク容量は、実セカンダリ油圧と実変速比に基づく値であり、具体的には、実セカンダリ油圧と実変速比により算出される値である(二つのプーリ42,43のうち、エンジントルクが入ってくる側のプーリ、すなわち、プライマリプーリ42でのトルク容量)。
 ステップS521では、「ドライバ要求トルク」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS522へ進み、NOの場合はステップS525へ進む。
 ステップS522では、ステップS521での「ドライバ要求トルク」>「BSCからのトルクリミット要求」であるとの判断に続き、「算出トルク容量」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS523へ進み、NOの場合はステップS524へ進む。
 ステップS523では、ステップS522での「算出トルク容量」>「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)+ΔT」と「算出許容トルク容量」のうち小さい方の値に設定し、リターンへ進む。
 ステップS524では、ステップS522での「算出トルク容量」≦「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)」と「ドライバ要求トルク」のうち小さい方の値に設定し、リターンへ進む。
 ステップS525では、ステップS521での「ドライバ要求トルク」≦「BSCからのトルクリミット要求」であるとの判断に続き、「算出トルク容量」が「BSCからのトルクリミット要求」より大きいか否かを判断し、YESの場合はステップS527へ進み、NOの場合はステップS526へ進む。
 ステップS526では、ステップS525での「算出トルク容量」≦「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット要求」を、「BSCからのトルクリミット要求(前回値)」と「ドライバ要求トルク」のうち小さい方の値に設定し、リターンへ進む。
 ステップS527では、ステップS525での「算出トルク容量」>「BSCからのトルクリミット要求」であるとの判断に続き、「BSCからのトルクリミット」を解除し、エンドへ進む。
 以下、図11の目標プライマリ回転数に制限を設ける変速比の変速速度制限処理を示すフローチャートの各ステップについて説明する。
 ステップS541では、エンジントルクにより目標イナーシャトルクを算出し、ステップS542へ進む。
 ステップS542では、ステップS541での目標イナーシャトルクの算出に続き、目標イナーシャトルクにより目標プライマリ回転変化率を算出し、ステップS543へ進む。
 ステップS543では、ステップS542での目標プライマリ回転変化率の算出に続き、目標プライマリ回転変化率を超えない制限目標プライマリ回転数を算出し、ステップS544へ進む。
 ステップS544では、ステップS543での制限目標プライマリ回転数の算出に続き、制限目標プライマリ回転数に基づき、変速制御を行い、ステップS545へ進む。
 ステップS545では、ステップS544での変速制御に続き、制限目標プライマリ回転数に基づく変速制御が終了したか否か、すなわち、実プライマリ回転数が制限目標プライマリ回転数に到達したか否かを判断する。YES(変速制御終了)の場合はエンドへ進み、NO(変速制御途中)の場合はステップS541へ戻る。
 次に、作用を説明する。
実施例1のベルト式無段変速機構4の制御装置と制御方法における作用を、「BSC許可判定作用とBSC継続判定作用」、「ベルトスリップ制御作用(BSC作用)」、「BSCから通常制御への復帰制御におけるトルクリミット作用」、「BSCから通常制御への復帰制御におけるプライマリ回転上昇率リミット作用」、「BSC中のセカンダリ油圧の加振振幅設定作用」に分けて説明する。
 [BSC許可判定作用とBSC継続判定作用]
車両走行を開始すると、図5のフローチャートにおいて、ステップS1→ステップS2へと進み、ステップS2でのBSC許可判定条件の全てを満足しない限り、ステップS1→ステップS2へと進む流れが繰り返され、通常制御が維持される。すなわち、ステップS2でのBSC許可判定条件の全てを満足することが、BSC制御の開始条件とされる。
 ここで、実施例1でのBSC許可条件について下記に述べる。
(1) ベルト式無段変速機構4の伝達トルク容量が安定していること(伝達トルク容量の変化率が小さいこと)。
この条件(1)は、例えば、
a. |指令トルク変化率|<所定値
b. |指令変速比変化率|<所定値
という2つの条件成立に基づき判断する。
(2) プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っていること。
この条件(2)は、例えば、エンジンコントロールユニット88からのトルク情報(推定エンジントルク)、トルクコンバータ2のロックアップ状態、ブレーキペダルの操作状態、レンジ位置等に基づき判断する。
(3) 所定時間、上記(1),(2)の許可状態を継続すること。
ステップS2では、以上の条件(1),(2),(3)の全ての条件を満たすか否かを判断する。
 したがって、通常制御中、ベルト式無段変速機構4の伝達トルク容量が安定していて、かつ、プライマリプーリ42への入力トルクの推定精度が信頼できる範囲に入っている状態が、所定時間継続すると、ベルトスリップ制御の開始が許可される。
 このように、BSC許可条件の全てを満足することにより、ベルトスリップ制御の開始が許可されるため、高い制御精度が保証される好ましい適応領域でベルトスリップ制御を開始することができる。
 そして、ステップS2でBSC許可判定がなされると、ステップS3へ進み、ベルト式無段変速機構4のベルト44への入力を低減し、ベルト44を滑らせることなく、適正なスリップ状態を保つベルトスリップ制御が行われる。そして、ステップS3でのベルトスリップ制御に続き、次のステップS4では、BSC継続条件を全て満たすか否かが判定され、全てのBSC継続条件を満たす限り、ステップS3→ステップS4へと進む流れが繰り返され、ベルトスリップ制御(BSC)が継続される。
 ここで、実施例1でのBSC継続条件としては、BSC許可条件のうち(1),(2)条件を用いている。つまり、BSC許可条件のうち(3)の所定時間継続条件がBSC継続条件には無い。
このため、ベルトスリップ制御中において、(1),(2)の条件のうち1つの条件でも満足しない状態となったら直ちにベルトスリップ制御を止めて通常制御へ復帰させるため、制御精度が保証されない状態でのベルトスリップ制御の継続を防止することができる。
 [ベルトスリップ制御作用(BSC作用)]
ベルトスリップ制御の開始時は、安全率を見積もってベルト滑りのないクランプ力を得るセカンダリ油圧となっているため、位相差θが所定値1未満という条件が成立し、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS335→ステップS339へと進む流れが繰り返され、この流れを繰り返す毎に指令セカンダリ油圧が、-ΔPsecの補正を受けて低下する。そして、位相差θが所定値1以上になると、位相差θが所定値2になるまでは、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS336→ステップS337→ステップS339へと進む流れとなり、指令セカンダリ油圧が維持される。そして、位相差θが所定値2以上になると、図8のフローチャートにおいて、ステップS331→ステップS332→ステップS333→ステップS334→ステップS336→ステップS338→ステップS339へと進む流れとなり、指令セカンダリ油圧が、+ΔPsecの補正を受けて上昇する。
すなわち、ベルトスリップ制御では、位相差θが所定値1以上で所定値2未満という範囲内となるスリップ率を維持する制御が行われることになる。
 図12に示すタイムチャートにより、ベルトスリップ制御を説明する。
まず、時刻t1にて上記(1),(2)のBSC許可条件が成立し、(1),(2)のBSC許可条件成立が継続し((3)のBSC許可条件)、時刻t2に達すると、上記(1),(2)のBSC継続条件のうち、少なくとも一つの条件が不成立となる時刻t2~時刻t3までの間、BSC作動フラグとSEC圧F/B禁止フラグ(セカンダリ圧フィードバック禁止フラグ)が立てられ、ベルトスリップ制御が行われる。なお、時刻t3の少し前からのアクセル踏み込み操作によりBSC継続条件のうち、少なくとも一つの条件が不成立になると、時刻t3から時刻t4までは、通常制御への復帰制御が行われ、時刻t4以降は、通常制御が行われることになる。
 このように、ベルトスリップ制御は、アクセル開度特性・車速特性・エンジントルク特性から明らかなように、図12の矢印Cに示す定常走行判定中において、セカンダリ油圧ソレノイド75へのソレノイド電流補正量特性に示すように、セカンダリ油圧を加振した結果あらわれるセカンダリ油圧の振動成分と変速比の振動成分との位相差θを監視し、電流値を増減させることで行われる。なお、セカンダリ油圧ソレノイド75は、ノーマルオープン(常開)であり、電流値を上昇させるとセカンダリ油圧は逆に低下する。
 このベルトスリップ制御により、実変速比は、図12の実変速比特性(Ratio)に示すように、小さな振幅にて振動しているがほぼ一定に維持される。そして、位相差θは、図12のSEC圧振動とRatio振動との位相差特性に示すように、スリップ率がゼロに近い時刻t2からの時間経過にしたがって、スリップ率が徐々に高まって目標値(目標スリップ率)に収束する特性を示す。そして、セカンダリ油圧は、図12のSEC油圧特性に示すように、安全率を持った時刻t2からの時間経過にしたがって矢印Gに示すように低下していき、最終的に設計上の最低圧に油圧振幅を加えたものとなり、実最低圧に対しては余裕のある油圧レベルに収束する特性を示す。なお、ベルトスリップ制御が長く継続する場合は、位相差θの目標値(スリップ率の目標値)を保つように、設計上の最低圧+油圧振幅域での実セカンダリ油圧を維持することになる。
 このように、ベルトスリップ制御によりセカンダリ油圧を低減することによって、ベルト44に作用するベルトフリクションが低下し、このベルトフリクションの低下分、ベルト式無段変速機構4を駆動する駆動負荷が低く抑えられる。この結果、BSC許可判定によるベルトスリップ制御中、走行性能に影響を与えることなく、エンジン1の実用燃費の向上を図ることができる。
 [BSCから通常制御への復帰制御におけるトルクリミット作用]
図6のステップS32では、BSC許可判定からBSC継続判定が維持されているベルトスリップ制御中、図7のステップS321において、“ベルトスリップ制御からのトルクリミット要求”をドライバ要求トルクとすることで、トルクリミット処理を行うようにしている。以下、図10及び図13に基づいて通常制御復帰時のトルクリミット作用を説明する。
 まず、エンジンコントロールユニット88は、制御上のエンジントルク上限として、トルク制限量を有している。これにより、エンジン1の実トルクが上記トルク制限量を上回らないように制限される。
このトルク制限量は、様々な要求から決まる。例えば、ベルト式無段変速機構4からの要求として、通常制御中(図13のフェーズ(1))のベルト式無段変速機構4の入力トルク上限を“通常制御中のトルクリミット要求”とし、CVTコントロールユニット8がエンジンコントロールユニット88に対しこの“通常制御中のトルクリミット要求”を送信する。エンジンコントロールユニット88は、このようにして様々なコントローラから要求される複数の“トルクリミット要求”のうち最小のものをトルク制限量として選択することになる。
 すなわち、通常制御のフェーズ(1)から時刻t5にてベルトスリップ制御に入ると、図13のトルク制限量特性に示すように、フェーズ(2)では、“BSCからのトルクリミット要求”がエンジンコントロールユニット88に送信される。
ただし、BSC中(図13のフェーズ(2))の“BSCからのトルクリミット要求”は、図10のトルクリミットのための事前準備であり、BSC中(図13のフェーズ(2))においては、事実上、トルク制限としては機能していない。
 そして、時刻t6にてBSC継続中止となり、通常制御への復帰制御に入ると、時刻t6では、ドライバ要求トルク>BSCからのトルクリミット要求であり、かつ、算出トルク容量≦BSCからのトルクリミット要求であるため、図10のフローチャートにおいて、ステップS521→ステップS522→ステップS524→リターンへと進む流れが繰り返され、ステップS524では、BSCからのトルクリミット要求(前回値)が維持される。
 その後、ドライバ要求トルク>BSCからのトルクリミット要求であるが、算出トルク容量>BSCからのトルクリミット要求となる時刻t7からは、図10のフローチャートにおいて、ステップS521→ステップS522→ステップS523→リターンへと進む流れが繰り返され、ステップS523では、BSCからのトルクリミット要求が、(前回値+ΔT)とされ、徐々にBSCからのトルクリミット要求が上昇する特性となり、実トルクもこの上昇勾配に沿って徐々に上昇する。
 その後、時刻t7から「BSCからのトルクリミット要求」が上昇することにより、ドライバ要求トルク≦BSCからのトルクリミット要求となる時刻t8では、算出トルク容量>BSCからのトルクリミット要求であるため、図10のフローチャートにおいて、ステップS521→ステップS525→ステップS527→エンドへと進み、ステップS527では、BSCからのトルクリミットが解除される。
 なお、この例では、ステップS526は通過しないが、ステップS526を通過するのは、アクセル踏み込みやアクセル戻し(足離し)のアクセル操作が短時間にて実施される場合である。すなわち、アクセル踏み込みによりベルトスリップ制御が解除され、復帰制御に入った途端、アクセル足離し操作が行われるようなとき、ステップS526を通過することになる。
 すなわち、ベルトスリップ制御では、許容滑り範囲内で積極的にベルトを滑らせる制御が行われるため、ベルトクランプ力が通常制御時に比べて低下している状態である。このベルトスリップ制御から通常制御に復帰するとき、ベルト式無段変速機構4への入力トルクが増加方向に変化すると、入力トルクがベルトクランプ力を上回り、過大なベルト滑りが発生するおそれがある。
 これに対し、ベルトスリップ制御から通常制御に復帰する過渡期に、図13の時刻t6から時刻t7までの間、ベルトスリップ制御終了時の実トルクを維持するというように、増加方向に変化する入力トルク変化速度を制限し、入力トルクの上昇を抑えることで、ベルトスリップ制御の終了時点のベルトクランプ力が通常制御時のレベルまで回復する間において、ベルト式無段変速機構4への入力トルクがベルトクランプ力に対して過大になることが抑制される。
 したがって、ベルトスリップ制御から通常制御への復帰時、ベルト式無段変速機構4への入力トルクの変化速度を制限するトルクリミット制御を行うため、ベルト式無段変速機構4への入力トルクがベルトクランプ力に対して過大となることが抑えられ、ベルト44の滑りの発生を防止できる。
 特に、実施例1では、ベルトスリップ制御終了時点のベルト式無段変速機構4への入力トルクを保持するトルクリミット制御を行うため、簡単なトルクリミット制御としながら、ベルト式無段変速機構4への入力トルクがベルトクランプ力に対して過大となることを確実に抑えることができる。
 [BSCから通常制御への復帰制御におけるプライマリ回転上昇率リミット作用]
ベルトスリップ制御から通常制御への復帰制御時に、上記のように、トルクリミット制御を行い、ベルト式無段変速機構4への入力トルクの変化速度を抑制した状態で変速比を通常の変速速度で変化させると、回転イナーシャ変化に基づく入力トルクの低下が顕著にあらわれるため、ドライバに不要な減速感(引きショック)を与えてしまう。このため、ベルト式無段変速機構4への入力トルクの変化速度制限に伴い、変速比の変化速度を制限するようにしている。
 すなわち、BSC継続中止となり、通常制御への復帰制御に入ると、図11に示すフローチャートにおいて、ステップS541→ステップS542→ステップS543→ステップS544→ステップS545へと進む流れが、変速終了まで繰り返される。つまり、ステップS541では、エンジントルクにより目標イナーシャトルクが算出される。次のステップS542では、目標イナーシャトルクにより目標プライマリ回転変化率が算出される。そして、軽減すべきイナーシャトルクを設定し、この制限有りの目標イナーシャトルクに基づき、ステップS543では、制限無しの目標プライマリ回転数の変化率(勾配)を超えない制限目標プライマリ回転数が算出される。そして、ステップS544では、制限目標プライマリ回転数に基づき変速制御が行われる。このように、制限目標プライマリ回転数に基づく変速制御が行われることで、最終的に生成される目標変速比を比較すると、制限無しの目標変速比特性に比べ、制御有りの目標変速比特性は、目標変速比の変化勾配が緩やかになっている。
 実施例1にて採用したトルクディレイ及びプライマリ回転上昇率リミッタによる復帰制御作用を、図14に示すタイムチャートに基づき説明する。
 まず、エンジントルク特性について説明する。BSC終了から通常復帰までの領域におけるエンジントルク特性は、ドライバ要求トルクがステップ的な上昇特性を示し、トルクリミット制御を行わない通常時の実トルク応答によるエンジントルク特性は、BSC終了直後からトルクが立ち上がる特性を示す。これに対し、実施例1でのエンジントルク特性は、BSCによるトルクダウン後の実トルク応答に示すように、BSC終了時点からしばらくの間はトルクを維持し、その後、トルクが遅れて立ち上がる特性を示す。
 次に、目標変速比特性とイナーシャトルク特性について説明する。BSC終了から通常復帰までの領域における目標プライマリ回転数特性は、到達目標特性がBSC終了時点でステップ特性により与えられ、プライマリ回転上昇率のリミット制御を行わない通常時の目標プライマリ回転数特性は、BSC終了直後から大きな勾配にて目標プライマリ回転数が立ち上がる特性を示す。これに対し、実施例1による目標プライマリ回転数特性は、通常時よりも緩やかな勾配にて目標プライマリ回転数が徐々に立ち上がる特性を示す。そして、通常時のイナーシャトルク特性は、BSC終了時点から急激に低下するのに対し、実施例1のイナーシャトルク特性は、BSC終了時点から通常復帰時点までの間でなだらかに低下する。
 最後に、ドライブシャフトトルク特性とイナーシャトルク特性について説明する。トルクディレイとプライマリ回転数上昇率リミット制御を共に行わないとき(通常時)のドライブシャフトトルク特性は、図14のE特性に示すように、イナーシャトルクのピークは大きいが、エンジントルクの応答も速いため、変速開始後、変速開始前より多少トルクは減少し、その後トルクが増大する、という特性となる。このようなドライブシャフトトルク特性となれば、変速によるショックは発生しない。
 トルクディレイは行うもののプライマリ回転上昇率リミット制御を行わないときのドライブシャフトトルク特性は、図14のD特性に示すように、通常時と変わらないイナーシャトルク特性のまま、トルクディレイによるエンジントルク入力遅れが発生することで、変速開始後、変速開始前より著しくトルクが減少し、その後、トルクが増大する、という落差dを持つ特性となる。このようなドライブシャフトトルク変化が生じると、ドライバはショックを感じ、運転性・快適性に悪化に繋がる。
 これに対して、トルクディレイとプライマリ回転上昇率リミット制御を共に行う実施例1のドライブシャフトトルク特性は、図14のF特性に示すように、トルクディレイによりエンジントルク入力が遅れても、プライマリ回転上昇率リミット制御によりイナーシャトルクのピークを低減できるため、変速開始後、変速開始前より多少トルクが減少し、その後、トルクが増大する、という特性となる。すなわち、トルクディレイとプライマリ回転上昇率リミット制御を同時に行うと、ショックを抑制できることがわかる。
 上記のように、ベルトスリップ制御から通常制御への復帰制御時、トルクリミット制御を行うのに伴い、プライマリ回転の変化率に制限を設ける制御を行うようにしたことにより、変速開始時の回転イナーシャ変化を低減して、変速開始前よりもドライブシャフトトルクが低下することを抑制でき、この結果、ドライバに与える不要なショック(減速感)を防止することができる。
 [BSC中のセカンダリ油圧の加振振幅設定作用]
実施例1でのベルトスリップ制御中におけるセカンダリ油圧の加振振幅は、ベルトスリップ制御が許可される変速比域が限られた狭い領域であるため、制御許可変速比域にて燃費性能の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ率検知性の確保と、を併せて達成することができる最適な値を予め設定し、システムに対し固定値で与えている。以下、セカンダリ油圧の加振振幅の値を、どのような考え方に基づいて設定したかについて説明する。
 まず、通常制御時にセカンダリ油圧を制御するに際し、安全率Kと低減可能最低圧を考慮して油圧制御が行われる。安全率Kは、ベルト44に加えられるベルトクランプ力のベルト滑り(=ベルトスリップ)に対する指標として用いられていて、例えば、
K={(Pout+β・V2)Sout+W}/{Tcosα/(D・μ)}  …(1)
ここで、
Pout:セカンダリ油圧
β:セカンダリ油圧室46の遠心油圧係数
V:車速
Sout:セカンダリ油圧室46の受圧面積
W:セカンダリ油圧室46のスプリング荷重
T:伝達トルク
α:プライマリプーリ42とセカンダリプーリ43のシーブ角
D:ベルト44のプライマリプーリ42側の巻き付け径
μ:セカンダリプーリ43とベルト44との間の摩擦係数
という公知の式によって算出される。
 この安全率Kが、K=1.0を下回ると、セカンダリプーリ43とベルト44との間に滑りが生じてしまう。一方、安全率Kが、K=1.0より大きくなるほど、ベルト44に作用するクランプ力が過大となり、ベルト44の耐久性が低下するし、ベルトフリクションが増大する。したがって、一般的には、ベルト44の持つ公差によって、その摩擦係数μにバラツキはあるものの、安全率Kとしては、例えば、K=1.2~1.5の範囲に収まるように設定されることになる。また、低減可能最低圧は、各車両が備える油圧制御系の諸元に基づいて設定される。
 通常制御時の指示セカンダリ油圧は、図15に示すように、低減可能最低圧を上回ることが条件で、一般に、安全率Kを1.3と仮定して算出されたものであり、安全率Kを1.3とするために必要とされる油圧である。
 ベルトスリップ制御は、上記のように、安全率Kを見積もってベルト滑りのないクランプ力を得る油圧となっているセカンダリ油圧を低減し、セカンダリ油圧低減分に相当するベルトフリクションを低下し、その結果、燃費の向上を図っている。したがって、図15に示すように、セカンダリ油圧に重畳する加振振幅を大にすると、プーリ油圧の平均値が高くなり、十分に油圧を下げることができなく、燃費効果代が減少する。また、ベルトスリップ制御による車両振動が発生する可能性がある。しかし、セカンダリ油圧に重畳する加振振幅を小にすると、プーリ油圧の平均値が低くなり、十分に油圧を下げることができ、燃費効果代が増大する。つまり、図15に示す特性は、セカンダリ油圧に重畳する加振振幅は、できる限り小さな値に設定する方が、ベルトスリップ制御による燃費効果代が大であることをあらわしている。
 次に、加振振幅を、変速比を考慮することなく一定値により与える場合を考える。
実施例1のように、セカンダリ油圧を加振し、実セカンダリ油圧と実変速比に含まれる振動成分の位相差を監視することで推定されるベルトスリップ状態に基づいてベルトスリップ制御を行うものとする。この場合、加振振幅が小さな値であると、実セカンダリ油圧には振動成分が含まれるものの、ベルトのプーリ接触径を変化させるまでに至らない場合、回転数比の計算により求められる実変速比から振動成分を抽出できない状態になる。そして、ベルトスリップ状態検知性を確保できないと、ベルトスリップ制御自体が成立しないため、実変速比から振動成分を抽出できるだけの大きな値による加振振幅に設定する必要がある。そこで、全変速比域において実変速比から振動成分を抽出できるだけの大きな値に加振振幅を設定すると、セカンダリ油圧の低減代が制約を受けることになり(図15参照)、ベルトスリップ制御が狙っている十分な燃費向上を望めない。
 これに対し、実施例1においては、ベルトスリップ制御にてセカンダリ油圧を加振するに際し、セカンダリ油圧の加振振幅を、変速比が高変速比側であるほど小さな値に設定するようにした。したがって、ベルトスリップ制御が行われる変速比に対応する加振振幅の可変設定により、燃費効果の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ率検知性の確保と、を併せて達成することができる。以下、その理由を説明する。
 まず、本発明者等は、変速比の高低変化に着目した。この場合、同じセカンダリ油圧への加振振幅に対し、変速比が高変速比側であるほどプライマリ推力の感度が高い、言い換えると、変速比変動の感度が高くて変速比振動が発生し易いことを知見した。
 すなわち、図16は、変速比に対するプライマリ推力の変化と変速比に対するセカンダリ推力の変化を示す特性図であり、変速比に対するプライマリ推力特性については、プライマリプーリ42が変速を受け持つため、ベルト接触径が小さいロー変速比側でプライマリ推力が小さく、ベルト接触径が大きいハイ変速比側でプライマリ推力が大きくなる。これに対し、一方、変速比に対するセカンダリ推力特性については、セカンダリプーリ43がトルク容量を受け持つため、ベルト接触径が大きいロー変速比側でセカンダリ推力が大きく、ベルト接触径が小さいハイ変速比側でプライマリ推力が小さくなる。
 そこで、セカンダリ推力に対するプライマリ推力の比であるバランス推力比(=プライマリ推力/セカンダリ推力)により図16の特性をあらわすと、図17に示すように、変速比が最Hiのときにバランス推力比が最も高くなり、変速比がロー側に変速するにしたがってバランス推力比が低下し、変速比が最Lowのときにバランス推力比が最も低くなる特性を示す。このように、変速比が最Hiのときにバランス推力比が最も高くなるということは、同じセカンダリ油圧への加振振幅に対し、変速比が高変速比側であるほどプライマリ推力の変化が大きく、変速比変動の感度が高い、つまり、変速比振動が発生し易いことをあらわす。
 このことは、変速比が高変速比側である場合、セカンダリ油圧の加振振幅を小さな値に設定したとしても、実変速比からの振動成分抽出によるベルトスリップ状態検知性を確保できることを意味する。そして、変速比が高変速比側である場合、セカンダリ油圧の加振振幅を小さな値に設定することにより、実施例1のようにエンジン車に適用した場合は、実用燃費の向上を図ることができる。そして、変速比対応による加振振幅の可変設定によれば、図19の下限振幅値特性Lに示すように、変速比が低変速比側になるほど、セカンダリ油圧の加振振幅が大きな値に設定されることになるが、ベルトスリップ制御時の変速比に対してベルトスリップ状態検知性の限界域を狙うことにより、最大域の省エネルギ効果を達成することができる。
 次に、図19に基づきベルトスリップ制御での加振振幅の決め方を説明する。
実施例1では、変速比と低減可能最低圧と車両振動に基づいてベルトスリップ制御での加振振幅を決めている。
 まず、最Lowから最Hiまでの全変速比域において実変速比から振動成分を抽出できるだけの大きな値に加振振幅を設定すると、変速比の振動となってあらわれる。この変速比の振動に対し、変速機入力回転が変化し、前後加速度(=前後G)により車両の振動となり、乗員の快適性を悪化させる。このため、図18に示すように、セカンダリ油圧の加振に基づく変速比振動により生じる車両振動の影響を乗員に及ぼさない加振振幅の限界値を前後GのNGしきい値とする必要がある。同時に、加振振幅を設定するにあたっては、低減可能最低圧を上回ることが条件となるため、図19の左端に示すように、低減可能最低圧より低圧域となる領域に入るような大きな加振振幅の値には設定はできない。よって、車両振動により決まる加振振幅の値と低減可能最低圧より決まる加振振幅の値のうち、小さい方の値を、図19に示すように、上限振幅値MAXとし、セカンダリ油圧の加振振幅を上限振幅値MAX以下の値に制限する。なお、実施例1では、図19に示すように、低減可能最低圧より決まる加振振幅の値が小さいため、上限振幅値MAXによりベルトスリップ制御を適用する変速比に、最Low域が含まれず、限界変速比を持つことになる。
したがって、加振振幅の最大値である上限振幅値MAXは、低減可能最低圧の条件を満足しつつ、乗員の快適性を保ち得る値に設定される。また、加振振幅の最小値である下限振幅値MINは、図19に示すように、変速比が最Hiのときに実変速比から振動成分を抽出できるだけの小さな値に設定される。
 そして、上限振幅値MAXと限界変速比の交点PMAXと下限振幅値MINと最Hi変速比の交点PMINを結ぶ線であり、セカンダリ油圧の加振に基づく振動成分が実変速比に含まれる加振振幅の限界値であると共に、変速比が高変速比側であるほど小さくなる加振振幅限界値の集合が、図19の点模様領域に示すように、下限振幅値特性Lとされる。したがって、下限振幅値特性Lと、上限振幅値MAXによる線と、最Hi変速比による線に囲まれる領域が、セカンダリ油圧の加振振幅OK領域とされる。
 しかし、この加振振幅OK領域には、特に、高変速比側において、加振振幅が必要以上に大きな値となる部分が含まれてしまう。そこで、下限振幅値特性Lに振幅余裕代を上乗せした特性を上限振幅値特性Hとし、セカンダリ油圧の加振振幅の許容領域を、図19の点模様+ハッチング領域に示すように、下限振幅値特性Lと上限振幅値特性Hと最Hi変速比による線と上限振幅値MAXによる線に囲まれる領域に設定した。
 したがって、ベルトスリップ制御での加振振幅を設定するにあたって、図19に示すセカンダリ油圧の加振振幅の許容領域の範囲内の値のうち、ベルトスリップ制御が適用される変速比域に応じた値に設定されることになる。これによって、限界変速比から最Hi変速比の間の変速域において、燃費効果と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保と、を併せて達成する適切な加振振幅の値に設定することができる。
 次に、効果を説明する。
実施例1のベルト式無段変速機構4の制御装置と制御方法にあっては、下記に列挙する効果を得ることができる。
 (1) 駆動源(エンジン1)から入力するプライマリプーリ42と、駆動輪6,6へ出力するセカンダリプーリ43と、前記プライマリプーリ42と前記セカンダリプーリ43に掛け渡したベルト44と、を有し、前記プライマリプーリ42へのプライマリ油圧と前記セカンダリプーリ43へのセカンダリ油圧を制御することにより、前記ベルト44のプーリ巻き付け径の比による変速比を制御するベルト式無段変速機構4の制御装置において、前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差θを監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段(図8)と、前記ベルトスリップ制御にてセカンダリ油圧を加振するに際し、前記セカンダリ油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定する加振振幅設定手段(正弦波加振器93a)と、を備えた。
このため、ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果(実用燃費効果)の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保とを併せて達成するベルト式無段変速機構4の制御装置を提供することができる。
 (2) 前記加振振幅設定手段(正弦波加振器93a)は、ベルトスリップ制御にてセカンダリ油圧を加振するに際し、前記セカンダリ油圧の加振振幅を、変速比が低変速比から高変速比に向かうほど小さな値に設定する。
このため、ベルトスリップ制御が行われる変速比の変化にきめ細かく対応して適切な加振振幅に設定することができる。
 (3) 前記加振振幅設定手段(正弦波加振器93a)は、セカンダリ油圧の加振に基づく振動成分が実変速比に含まれる加振振幅の限界値であると共に、前記変速比が高変速比側であるほど小さくなる加振振幅限界値の集合を下限振幅値特性Lとしたとき、前記セカンダリ油圧の加振振幅を、前記下限振幅値特性L以上の値に設定する。
このため、ベルトスリップ制御中、ベルトスリップ状態検知性を確実に保証しつつ、省エネルギ効果(実用燃費効果)の向上を達成することができる。
 (4) 前記加振振幅設定手段(正弦波加振器93a)は、セカンダリ油圧の加振に基づく変速比振動により生じる車両振動の影響を乗員に及ぼさない加振振幅の限界値を上限振幅値MAXとしたとき、前記セカンダリ油圧の加振振幅を、前記上限振幅値MAX以下の値に設定した。
このため、ベルトスリップ制御中、違和感を与える車両振動を防止し、乗員の快適性を確保することができる。
 (5) 前記加振振幅設定手段(正弦波加振器93a)は、前記下限振幅値特性Lに振幅余裕代を上乗せした特性を上限振幅値特性Hとし、前記セカンダリ油圧の加振振幅を、前記下限振幅値特性Lと前記上限振幅値特性Hと最高変速比(最Hi変速比)による線と前記上限振幅値MAXによる線に囲まれる領域の範囲内の値のうち、変速比に応じた値に設定した。
このため、ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果(実用燃費効果)の向上と、ベルトスリップ状態検知性の確保と、乗員の快適性を保つ車両振動防止と、を併せて達成することができる。
 (6) プライマリプーリ42およびセカンダリプーリ43とベルト44との間のベルトスリップ状態を油圧で制御するベルトスリップ制御を行うベルト式無段変速機構4の制御方法において、前記ベルトスリップ制御は、前記油圧を加振し、実油圧に含まれる振動成分と実変速比に含まれる振動成分との積算値に基づき前記油圧を制御し、前記ベルトスリップ制御は、前記油圧を加振するに際し、前記油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定する。
このため、ベルトスリップ制御が行われる変速比に対応する加振振幅の設定により、省エネルギ効果(実用燃費効果)の向上と、ベルトスリップ制御による車両振動の発生の抑制と、ベルトスリップ状態検知性の確保とを併せて達成するベルト式無段変速機構4の制御方法を提供することができる。
 (7) 前記ベルトスリップ制御は、前記積算値に基づき算出される位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記油圧を制御する。
このため、ベルトスリップ状態と相関関係にある位相差の監視によりベルトスリップ状態の変化を的確に把握できることで、ベルトスリップ制御中、所定のベルトスリップ状態を安定して保つことができる。この結果、ベルトフリクションの低下状態が安定して保たれるベルトスリップ制御により、狙っている省エネルギ効果(実用燃費効果)を実現することができる。
 実施例2は、変速比に応じた加振振幅マップを作成し、ベルトスリップ制御中、変速比の変化に追従して加振振幅を設定する例である。
 まず、構成を説明する。
図20は、実施例2のCVTコントロールユニット8にて実行されるベルトスリップ制御処理のうちセカンダリ油圧の加振・補正処理を示すフローチャートである。図21は、実施例2でのセカンダリ油圧の加振処理で加振振幅を設定する際に参照される加振振幅マップの一例を示す図である。以下、図20の各ステップについて説明する。なお、ステップS431~ステップS439の各ステップは、図8のステップS331~ステップS339の各ステップに対応するので、説明を省略する。
 ステップS440では、変速制御部で演算され、変速制御に用いられる指令変速比を読み込み、ステップS441へ進む。
 ステップS441では、ステップS440での指令変速比の読み込みに続き、変速比情報と加振振幅マップ(図21参照)に基づき、変速比の変化に追従して加振振幅を設定し、ステップS431へ進む。
ここで、加振振幅マップは、図21に示すように、変速比が高変速比側であるほど小さな加振振幅という関係を持つ実線特性(図19に示す上限振幅値特性Hに相当)と、変速比が高変速比側であるほど小さな加振振幅という関係を持つ1点鎖線特性(図19に示す下限振幅値特性Lに相当)という2つの特性を設定している。そして、ベルトスリップ制御の開始時には、実線特性を選択している。
 ステップS442では、ステップS439での指令セカンダリ油圧の算出に続き、ベルトスリップ制御によるセカンダリ油圧の低減補正により、加振された実セカンダリ油圧の最低圧が低減可能最低圧未満になったか否かを判断し、YES(実セカンダリ油圧<低減可能最低圧)の場合はステップS443へ進み、NO(実セカンダリ油圧≧低減可能最低圧)の場合はエンドへ進む。
 ステップS443では、ステップS442での実セカンダリ油圧<低減可能最低圧であるとの判断に続き、加振振幅マップで現在選択されている特性が、実線特性であるか否かを判断し、YES(実線特性選択)の場合はステップS444へ進み、NO(1点鎖線特性選択)の場合はエンドへ進む。
 ステップS444では、ステップS443での実線特性選択であるとの判断に続き、加振振幅マップでの選択特性を、実線特性から1点鎖線特性に変更し、エンドへ進む。
なお、図1~図11のうち、図8を除く他の構成は、実施例1と同様であるので、図示並びに説明を省略する。
 次に、作用を説明する。
実施例2では、変速比に応じた加振振幅マップ(図21)を作成し、ベルトスリップ制御中において加振振幅マップを参照しながら加振振幅を設定するようにしている。以下、図20及び図21に基づき、ベルトスリップ制御中の加振振幅設定作用を説明する。
 [ベルトスリップ制御中の加振振幅設定作用]
ベルトスリップ制御の開始時であって、位相差θが所定値1未満という条件が成立しているときは、図20のフローチャートにおいて、ステップS440→ステップS441→ステップS431→ステップS432→ステップS433→ステップS434→ステップS435→ステップS439→ステップS442→エンドへと進む流れが繰り返される。つまり、ベルトスリップ制御が開始時の指令変速比、あるいは、開始後に変化する指令変速比と図21の加振振幅マップの実線特性により加振振幅が設定され、この流れを繰り返す毎に指令セカンダリ油圧が、-ΔPsecの補正を受けて低下する。
 そして、指令セカンダリ油圧の減少補正を繰り返すことで、実セカンダリ油圧が低減可能最低圧未満になると、図20のステップS439から、ステップS442→ステップS443→ステップS444→エンドへと進み、加振振幅を設定する特性が、それまでの実線特性から1点鎖線特性へと変更され、次の制御起動時からベルトスリップ制御が終了するまでは、そのときの指令変速比と図21の加振振幅マップの1点鎖線特性により加振振幅が設定されることになる。
 そして、位相差θが所定値1以上になると、位相差θが所定値2になるまでは、図20のフローチャートにおいて、ステップS440→ステップS441→ステップS431→ステップS432→ステップS433→ステップS434→ステップS436→ステップS437→ステップS439→ステップS442→エンドへと進む流れとなり、指令セカンダリ油圧が維持される。そして、位相差θが所定値2以上になると、図20のフローチャートにおいて、ステップS440→ステップS441→ステップS431→ステップS432→ステップS433→ステップS434→ステップS436→ステップS438→ステップS439→ステップS442→エンドへと進む流れとなり、指令セカンダリ油圧が、+ΔPsecの補正を受けて上昇する。すなわち、ベルトスリップ制御では、位相差θが所定値1以上で所定値2未満という範囲内となるスリップ率を維持する制御が行われることになる。
 また、ベルトスリップ制御での加振振幅は、加振振幅マップの2つの特性のうち、何れの特性が選択されているときでも、指令変速比の変化に追従して加振振幅が設定される。
 したがって、ベルトスリップ制御を許可する変速比領域が広いとき、許可領域内での指令変速比の変化に追従して加振振幅が設定されることで、加振振幅の値が、指令変速比に対応する適切な値となり、加振振幅を予め決めた一定値により与える実施例1に比べ、燃費効果のより一層の向上を期待することができる。
 また、ベルトスリップ制御での加振振幅の設定は、制御開始から実セカンダリ油圧が低減可能最低圧を下回るまでは、加振振幅マップの実線特性(図19に示す上限振幅値特性Hに相当)が選択される。そして、実セカンダリ油圧が低減可能最低圧を下回ると、加振振幅マップの1点鎖線特性(図19に示す下限振幅値特性Lに相当)が選択される。つまり、同じ変速比iのとき、図21に示すように、上限振幅値特性Hの選択時には、加振振幅がWhとなるが、下限振幅値特性Lの選択時には、加振振幅がWlとなり、振幅差ΔWだけ小さな値となる。
 したがって、制御開始から実セカンダリ油圧が低減可能最低圧を下回るまでは、実変速比から振動成分を抽出する最小限の加振振幅に対し、少し大きな値による加振振幅の設定となり、制御開始領域にて確実なベルトスリップ状態検知性要求に応えることができる。そして、実セカンダリ油圧が低減可能最低圧を下回ると、実変速比から振動成分を抽出する最小限レベルによる加振振幅の設定となり、特に、ベルトスリップ制御が長時間継続されるような場合に燃費向上要求に応えることができる。
なお、他の作用は、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例2のベルト式無段変速機構4の制御装置にあっては、実施例1の(1)~(7)の効果に加え、下記の効果を得ることができる。
 (8) 前記加振振幅設定手段(図20)は、変速比が高変速比側であるほど小さな加振振幅という関係を持つ加振振幅マップ(図21)を設定し、前記ベルトスリップ制御手段(図20)は、ベルトスリップ制御中、変速比情報と前記加振振幅マップに基づき、変速比の変化に追従して加振振幅を設定する。
このため、加振振幅の値が、指令変速比に対応する適切な値となり、省エネルギ効果(燃費効果)を実施例1より向上させることができる。
 (9) 前記加振振幅設定手段(図20)は、前記加振振幅マップ(図21)を、前記下限振幅値特性Lに振幅余裕代を上乗せした上限振幅値特性Hに設定し、前記ベルトスリップ制御手段(図20)は、ベルトスリップ制御中、実セカンダリ油圧を低減させる制御を行うことで、設定された加振振幅により振動する実セカンダリ油圧が、油圧制御系での低減可能最低圧を下回るとき、設定されている加振振幅を、そのときの変速比における下限振幅値を限界として小さな値に変更する。
このため、ベルトスリップ制御中、制御開始領域にて確実なベルトスリップ状態検知性要求に応えることができると共に、制御継続領域にて省エネルギ効果向上要求(燃費向上要求)に応えることができる。
 以上、本発明のベルト式無段変速機の制御装置と制御方法を実施例1及び実施例2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1,2では、変速比が高変速比に向かうほど徐々に加振振幅を小さく設定する例を示したが、ベルトスリップ制御を適用する低変速比から高変速比までの間で、段階的に加振振幅を小さく設定する例としても良い。
 実施例1では、変速油圧コントロールユニット7として、片調圧方式でステップモータ制御による油圧回路を有する例を示した。しかし、他の片調圧方式や両調圧方式の変速油圧コントロールユニットに対しても適用できる。
 実施例1では、セカンダリ油圧のみを加振する例を示した。しかし、例えば、直動制御方式であれば、セカンダリ油圧と共にプライマリ油圧を同位相で同時に加振する例としても良い。また、ライン圧を加振することで、セカンダリ油圧と共にプライマリ油圧を同位相で加振する例としても良い。
 実施例1では、加振する手段として、指示セカンダリ油圧に適切な振動成分を与える例を示したが、ソレノイド電流値に適切な振動成分を与えるような例であっても良い。
 実施例1では、復帰制御でのトルクリミット制御として、ベルトスリップ制御の終了時点における入力トルクを所定時間だけ保持する例を示した。しかし、例えば、トルクリミット制御として、僅かなトルク上昇を許容するような例としても良い。
 実施例1では、復帰制御での変速比の変化速度の制限制御として、目標プライマリ回転数の変化率に制限を設ける例を示した。しかし、変速比の変化速度の制限制御としては、変速時時定数に制限を設ける例、ベルトスリップ制御の終了時点の変速比を所定時間だけ保持する例、これらの手法を組み合わせる例としても良い。
 実施例2では、ベルトスリップ制御手段として、ベルトスリップ制御中、実セカンダリ油圧を低減させる制御を行うことで、設定された加振振幅により振動する実セカンダリ油圧が、油圧制御系での低減可能最低圧を下回るとき、設定されている加振振幅を、そのときの変速比における下限振幅値を限界として小さな値に変更する例を示した。しかし、油圧制御系での低減可能最低圧に代え、ベルトによる伝達トルク容量を用い、伝達トルク容量が低減可能伝達トルク容量を下回るとき、設定されている加振振幅を、そのときの変速比における下限振幅値を限界として小さな値に変更するような例としても良い。また、実施例2では、小さな値に変更する際、2段階にて変更する例を示したが、3段階以上の多段階にて変更したり、無段階に変更したりするような例としても良い。
 実施例1では、ベルト式無段変速機を搭載したエンジン車両への適用例を示したが、ベルト式無段変速機を搭載したハイブリッド車両やベルト式無段変速機を搭載した電気自動車等に対しても適用することができる。要するに、油圧変速制御を行うベルト式無段変速機を搭載した車両であれば適用できる。
1 エンジン
2 トルクコンバータ
3 前後進切替機構
4 ベルト式無段変速機構
40 変速機入力軸
41 変速機出力軸
42 プライマリプーリ
43 セカンダリプーリ
44 ベルト
45 プライマリ油圧室
46 セカンダリ油圧室
5 終減速機構
6,6 駆動輪
7 変速油圧コントロールユニット
70 オイルポンプ
71 レギュレータ弁
72 ライン圧ソレノイド
73 変速制御弁
74 減圧弁
75 セカンダリ油圧ソレノイド
76 サーボリンク
77 変速指令弁
78 ステップモータ
8 CVTコントロールユニット
80 プライマリ回転センサ
81 セカンダリ回転センサ
82 セカンダリ油圧センサ
83 油温センサ
84 インヒビタースイッチ
85 ブレーキスイッチ
86 アクセル開度センサ
87 他のセンサ・スイッチ類
88 エンジンコントロールユニット
90 基礎油圧計算部
91 ライン圧制御部
92 セカンダリ油圧制御部
93 正弦波加振制御部(加振振幅設定手段)
94 セカンダリ油圧補正部

Claims (9)

  1.  駆動源から入力するプライマリプーリと、駆動輪へ出力するセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリに掛け渡したベルトと、を有し、
     前記プライマリプーリへのプライマリ油圧と前記セカンダリプーリへのセカンダリ油圧を制御することにより、前記ベルトのプーリ巻き付け径の比による変速比を制御するベルト式無段変速機の制御装置において、
     前記セカンダリ油圧を加振し、実セカンダリ油圧に含まれる振動成分と実変速比に含まれる振動成分との位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記実セカンダリ油圧を低減させる制御を行うベルトスリップ制御手段と、
     前記ベルトスリップ制御にてセカンダリ油圧を加振するに際し、前記セカンダリ油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定する加振振幅設定手段と、
     を備えたことを特徴とするベルト式無段変速機の制御装置。
  2.  請求項1に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、ベルトスリップ制御にてセカンダリ油圧を加振するに際し、前記セカンダリ油圧の加振振幅を、変速比が低変速比から高変速比に向かうほど小さな値に設定することを特徴とするベルト式無段変速機の制御装置。
  3.  請求項1または請求項2に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、セカンダリ油圧の加振に基づく振動成分が実変速比に含まれる加振振幅の限界値であると共に、前記変速比が高変速比側であるほど小さくなる加振振幅限界値の集合を下限振幅値特性としたとき、前記セカンダリ油圧の加振振幅を、前記下限振幅値特性以上の値に設定することを特徴とするベルト式無段変速機の制御装置。
  4.  請求項1から請求項3までの何れか1項に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、セカンダリ油圧の加振に基づく変速比振動により生じる車両振動の影響を乗員に及ぼさない加振振幅の限界値を上限振幅値としたとき、前記セカンダリ油圧の加振振幅を、前記上限振幅値以下の値に設定することを特徴とするベルト式無段変速機の制御装置。
  5.  請求項3または請求項4に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、前記下限振幅値特性に振幅余裕代を上乗せした特性を上限振幅値特性とし、前記セカンダリ油圧の加振振幅を、前記下限振幅値特性と前記上限振幅値特性と最高変速比による線と前記上限振幅値による線に囲まれる領域の範囲内の値のうち、変速比に応じた値に設定したことを特徴とするベルト式無段変速機の制御装置。
  6.  請求項1から請求項5までの何れか1項に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、変速比が高変速比側であるほど小さな加振振幅という関係を持つ加振振幅マップを設定し、
     前記ベルトスリップ制御手段は、ベルトスリップ制御中、変速比情報と前記加振振幅マップに基づき、変速比の変化に追従して加振振幅を設定することを特徴とするベルト式無段変速機の制御装置。
  7.  請求項6に記載されたベルト式無段変速機の制御装置において、
     前記加振振幅設定手段は、前記加振振幅マップを、前記下限振幅値特性に振幅余裕代を上乗せした上限振幅値特性に設定し、
     前記ベルトスリップ制御手段は、ベルトスリップ制御中、実セカンダリ油圧を低減させる制御を行うことで、設定された加振振幅により振動する実セカンダリ油圧が、油圧制御系での低減可能最低圧を下回るとき、設定されている加振振幅を、そのときの変速比における下限振幅値を限界として小さな値に変更することを特徴とするベルト式無段変速機の制御装置。
  8.  プライマリプーリおよびセカンダリプーリとベルトとの間のベルトスリップ状態を油圧で制御するベルトスリップ制御を行うベルト式無段変速機の制御方法において、
     前記ベルトスリップ制御は、前記油圧を加振し、実油圧に含まれる振動成分と実変速比に含まれる振動成分との積算値に基づき前記油圧を制御し、
     前記ベルトスリップ制御は、前記油圧を加振するに際し、前記油圧の加振振幅を、高変速比のときは低変速比のときに比して小さく設定することを特徴とするベルト式無段変速機の制御方法。
  9.  請求項8に記載されたベルト式無段変速機の制御方法において、
     前記ベルトスリップ制御は、前記積算値に基づき算出される位相差を監視することでベルトスリップ状態を推定し、この推定に基づき所定のベルトスリップ状態を保つように前記油圧を制御することを特徴とするベルト式無段変速機の制御方法。
PCT/JP2009/058458 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法 WO2010125666A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09844010.0A EP2426378B1 (en) 2009-04-30 2009-04-30 Belt based continuously variable transmission control device and control method
US13/266,804 US8892318B2 (en) 2009-04-30 2009-04-30 Controller and control method of belt type continuously variable transmission
MX2011011416A MX2011011416A (es) 2009-04-30 2009-04-30 Dispositivo de control y metodo de control de transmision continamente variable, basada en banda.
JP2009522266A JP4435860B1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法
KR1020117027452A KR101330865B1 (ko) 2009-04-30 2009-04-30 벨트식 무단 변속기의 제어 장치와 제어 방법
RU2011148590/11A RU2485372C1 (ru) 2009-04-30 2009-04-30 Устройство и способ управления бесступенчатой трансмиссией ременного типа
BRPI0925073-5A BRPI0925073A2 (pt) 2009-04-30 2009-04-30 Controlador e método de controle de transmissão continuamente variável do tipo de correia
PCT/JP2009/058458 WO2010125666A1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法
CN200980159036.1A CN102414484B (zh) 2009-04-30 2009-04-30 带式无级变速器的控制装置和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058458 WO2010125666A1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法

Publications (1)

Publication Number Publication Date
WO2010125666A1 true WO2010125666A1 (ja) 2010-11-04

Family

ID=42193817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058458 WO2010125666A1 (ja) 2009-04-30 2009-04-30 ベルト式無段変速機の制御装置と制御方法

Country Status (9)

Country Link
US (1) US8892318B2 (ja)
EP (1) EP2426378B1 (ja)
JP (1) JP4435860B1 (ja)
KR (1) KR101330865B1 (ja)
CN (1) CN102414484B (ja)
BR (1) BRPI0925073A2 (ja)
MX (1) MX2011011416A (ja)
RU (1) RU2485372C1 (ja)
WO (1) WO2010125666A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158226A1 (en) * 2010-12-21 2012-06-21 GM Global Technology Operations LLC Belt slip detection diagnostic
JP2015190487A (ja) * 2014-03-27 2015-11-02 ジヤトコ株式会社 無段変速機の制御装置
CN106574715A (zh) * 2014-07-29 2017-04-19 加特可株式会社 无级变速器及其控制方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001734B3 (de) * 2010-02-10 2011-07-21 Siemens Aktiengesellschaft, 80333 Maschine mit Auswertung des Schwingungsspektrums eines Riemens der Maschine
US8798877B2 (en) * 2010-08-05 2014-08-05 Toyota Jidosha Kabushiki Kaisha Control device of continuously variable transmission for vehicle
US20140329628A1 (en) * 2011-12-13 2014-11-06 Toyota Jidosha Kabushiki Kaisha Hydraulic control system for automatic transmission
JP2014025545A (ja) * 2012-07-27 2014-02-06 Honda Motor Co Ltd 無段変速機の制御装置
JP5852554B2 (ja) * 2012-12-21 2016-02-03 本田技研工業株式会社 自動変速機の油圧供給装置
US9689440B2 (en) * 2013-02-14 2017-06-27 Aisin Aw Co., Ltd. Power transfer device
JP6027507B2 (ja) * 2013-08-27 2016-11-16 ジヤトコ株式会社 回転センサの信号処理装置
US9151382B2 (en) * 2014-02-24 2015-10-06 GM Global Technology Operations LLC Gross slip-based control of a variator assembly
KR101894196B1 (ko) * 2014-07-29 2018-08-31 쟈트코 가부시키가이샤 무단 변속기 및 그 제어 방법
DE112014007208T5 (de) * 2014-11-26 2017-08-03 GM Global Technology Operations LLC Modusübergangssteuerung in einem CVT mit Festradfunktionalität
CN107250624B (zh) * 2015-02-19 2019-04-26 加特可株式会社 无级变速器的控制装置
EP3348871A4 (en) * 2015-09-09 2018-10-31 Jatco Ltd Device and method for hydraulically controlling continuously variable transmission for vehicle
KR101641588B1 (ko) 2016-03-02 2016-07-21 조문환 미생물을 배양시킨 배양액을 공급하는 장치
US11162581B2 (en) * 2017-09-15 2021-11-02 Jatco Ltd. Device and method for controlling continuously variable transmission
KR102451879B1 (ko) * 2017-11-21 2022-10-06 현대자동차 주식회사 무단변속기의 제어방법
JP7155725B2 (ja) * 2018-08-06 2022-10-19 トヨタ自動車株式会社 車両用駆動装置の制御装置
US11242927B2 (en) * 2019-05-23 2022-02-08 GM Global Technology Operations LLC Robust hydraulic system disturbance detection and mitigation
JP7241124B2 (ja) * 2021-04-21 2023-03-16 本田技研工業株式会社 車両用無段変速機の制御装置及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413575B2 (ja) * 1982-06-07 1992-03-10 Toyota Motor Co Ltd
JP2003065428A (ja) * 2001-03-02 2003-03-05 Toyota Central Res & Dev Lab Inc ベルト式無段変速機のプーリ推力制御装置
JP2004293652A (ja) * 2003-03-26 2004-10-21 Toyota Motor Corp 無段変速機を含む駆動機構の制御装置
WO2009007450A2 (en) 2007-07-11 2009-01-15 Robert Bosch Gmbh Method for controlling a friction-type continuously variable transmission and a transmission equiped with means for carrying out the method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111854B1 (en) 1982-12-17 1989-03-15 Nissan Motor Co., Ltd. Control method for continuously variable transmission or the like
NL8403461A (nl) 1984-11-13 1986-06-02 Doornes Transmissie Bv Traploos variabele overbrenging.
SU1682691A1 (ru) 1989-01-02 1991-10-07 В.М.Бел ев Бесступенчата силова передача дл транспортных средств
US5183225A (en) * 1989-01-09 1993-02-02 Forward Robert L Statite: spacecraft that utilizes sight pressure and method of use
RU2012833C1 (ru) 1991-02-20 1994-05-15 Петр Никитич Королев Механизм бесступенчатого автоматического регулирования передаточного отношения
IN189939B (ja) 1993-12-20 2003-05-17 Torotrak Dev Ltd
EP1236935B8 (en) 2001-03-02 2006-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Pulley thrust device for continuously variable transmission unit
JP2003202075A (ja) 2002-01-08 2003-07-18 Nissan Motor Co Ltd トルクコンバータの制御装置
JP2003214533A (ja) 2002-01-22 2003-07-30 Nissan Motor Co Ltd Vベルト式無段変速機のスリップ防止装置
JP4013575B2 (ja) 2002-02-12 2007-11-28 松下電工株式会社 生ごみ処理装置
NL1022243C2 (nl) * 2002-12-23 2004-06-24 Doornes Transmissie Bv Werkwijze voor het bedienen van een continu variabele transmissie.
DE60315893T2 (de) * 2002-12-23 2008-05-21 Van Doorne's Transmissie B.V. Verfahren zur betätigung eines stufenlosen getriebes
JP4148008B2 (ja) 2003-04-18 2008-09-10 トヨタ自動車株式会社 無段変速機の制御装置
JP3947134B2 (ja) 2003-05-27 2007-07-18 株式会社豊田中央研究所 ベルト挟圧力設定装置
JP4114548B2 (ja) 2003-06-02 2008-07-09 トヨタ自動車株式会社 動力源と無段変速機との協調制御装置および制御方法
JP2005030511A (ja) 2003-07-07 2005-02-03 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP4296957B2 (ja) 2004-02-18 2009-07-15 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP2005291111A (ja) 2004-03-31 2005-10-20 Jatco Ltd 車両用ベルト式無段変速機の入力トルク制御装置
JP4849870B2 (ja) * 2005-10-31 2012-01-11 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4799129B2 (ja) * 2005-10-31 2011-10-26 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4593486B2 (ja) 2006-02-08 2010-12-08 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4857004B2 (ja) 2006-03-29 2012-01-18 富士重工業株式会社 無段変速機の制御装置
JP4762875B2 (ja) 2006-12-15 2011-08-31 ジヤトコ株式会社 ベルト式無段変速機の変速制御装置
JP4803144B2 (ja) 2007-09-06 2011-10-26 株式会社デンソーウェーブ 携帯端末
US8600634B2 (en) 2008-09-26 2013-12-03 Robert Bosch Gmbh Method for controlling a normal force in a frictional contact of a continuously variable transmission
MX2012006190A (es) 2009-12-15 2012-08-03 Nissan Motor Dispositivo y metodo para controlar una transimision tipo banda, continuamente variable, para un vehiculo.
BR112012014707A2 (pt) 2009-12-15 2016-04-12 Nissan Motor dispositivo e método para controlar uma transmissão continuamente variável do tipo correia para um veículo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413575B2 (ja) * 1982-06-07 1992-03-10 Toyota Motor Co Ltd
JP2003065428A (ja) * 2001-03-02 2003-03-05 Toyota Central Res & Dev Lab Inc ベルト式無段変速機のプーリ推力制御装置
JP2004293652A (ja) * 2003-03-26 2004-10-21 Toyota Motor Corp 無段変速機を含む駆動機構の制御装置
WO2009007450A2 (en) 2007-07-11 2009-01-15 Robert Bosch Gmbh Method for controlling a friction-type continuously variable transmission and a transmission equiped with means for carrying out the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120158226A1 (en) * 2010-12-21 2012-06-21 GM Global Technology Operations LLC Belt slip detection diagnostic
US8447449B2 (en) * 2010-12-21 2013-05-21 GM Global Technology Operations LLC Belt slip detection diagnostic
JP2015190487A (ja) * 2014-03-27 2015-11-02 ジヤトコ株式会社 無段変速機の制御装置
CN106574715A (zh) * 2014-07-29 2017-04-19 加特可株式会社 无级变速器及其控制方法
CN106574715B (zh) * 2014-07-29 2018-09-14 加特可株式会社 无级变速器及其控制方法

Also Published As

Publication number Publication date
KR20120024615A (ko) 2012-03-14
RU2485372C1 (ru) 2013-06-20
US20120135829A1 (en) 2012-05-31
CN102414484A (zh) 2012-04-11
EP2426378A1 (en) 2012-03-07
JPWO2010125666A1 (ja) 2012-10-25
BRPI0925073A2 (pt) 2015-07-21
MX2011011416A (es) 2011-11-18
KR101330865B1 (ko) 2013-11-18
US8892318B2 (en) 2014-11-18
EP2426378A4 (en) 2015-06-24
EP2426378B1 (en) 2016-08-03
CN102414484B (zh) 2014-10-22
JP4435860B1 (ja) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4435860B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4527805B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4435857B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4435858B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4633198B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法
JP4435859B1 (ja) ベルト式無段変速機の制御装置と制御方法
JP4633197B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法
JP2005257067A (ja) ベルト式無段変速機の制御装置
JP4652475B2 (ja) ベルト式無段変速機の制御装置と制御方法
JP4610672B1 (ja) 車両用ベルト式無段変速機の制御装置と制御方法
JP2006090442A (ja) 無段変速機の制御装置
JP2019116935A (ja) ベルト式無段変速機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159036.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009522266

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/011416

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117027452

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4801/KOLNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009844010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009844010

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011148590

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13266804

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925073

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0925073

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111031