WO2010123094A1 - 複合多孔質膜の製造方法 - Google Patents
複合多孔質膜の製造方法 Download PDFInfo
- Publication number
- WO2010123094A1 WO2010123094A1 PCT/JP2010/057225 JP2010057225W WO2010123094A1 WO 2010123094 A1 WO2010123094 A1 WO 2010123094A1 JP 2010057225 W JP2010057225 W JP 2010057225W WO 2010123094 A1 WO2010123094 A1 WO 2010123094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- membrane
- hollow
- forming resin
- composite porous
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 100
- 229920005989 resin Polymers 0.000 claims abstract description 85
- 239000011347 resin Substances 0.000 claims abstract description 85
- 230000001112 coagulating effect Effects 0.000 claims abstract description 46
- 230000002093 peripheral effect Effects 0.000 claims abstract description 27
- 239000012528 membrane Substances 0.000 claims description 128
- 238000005345 coagulation Methods 0.000 claims description 97
- 230000015271 coagulation Effects 0.000 claims description 97
- 230000003014 reinforcing effect Effects 0.000 claims description 52
- 239000012510 hollow fiber Substances 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 77
- 239000000835 fiber Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229920001477 hydrophilic polymer Polymers 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 230000035515 penetration Effects 0.000 description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- -1 etc. Polymers 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001891 gel spinning Methods 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
- B01D67/00165—Composition of the coagulation baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
- B01D69/0871—Fibre guidance after spinning through the manufacturing apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/42—Details of membrane preparation apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/40—Fibre reinforced membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
Definitions
- the present invention relates generally to a method of making a composite porous, and in particular, relates to a method of making a braided composite porous membrane using a hollow reinforcing support.
- Composite porous membranes having an elongated shape based on synthetic fibers and the like have been widely used in the water treatment field and other fields.
- a composite porous membrane manufacturing method has been proposed in which hollow fiber membranes are produced by bringing several types of coagulating solutions into contact with nascent hollow fibers in a countercurrent manner in a column whose upper portion is depressurized (Patent Document 1). Also, a composite porous membrane is prepared by applying a membrane forming solution onto a hollow support and passing the support through a guide roll into a coagulation bath containing a coagulating solution to coagulate the membrane forming solution. A manufacturing method has been proposed (Patent Document 2)
- Patent Document 2 when the transport speed of the support is increased to improve the productivity, solidification of the membrane-forming solution occurs at a deeper position in the coagulation bath. As a result, there is a problem that the membrane-forming solution is pressed into the hollow portion of the support by the liquid pressure due to the water depth, and a desired hollow shape can not be obtained, or the hollow portion is blocked. In addition, even when the hollow support has a structure in which the membrane-forming solution is easily introduced into the inside, there are problems such that the desired hollow shape can not be obtained, the membrane-forming solution blocks the hollow portion, and the like.
- the present invention has been made to solve the above-mentioned problems, and is to obtain stable film quality and a desired hollow shape by controlling the infiltration of the film-forming resin solution into the hollow portion of the hollow reinforcing support. It is an object of the present invention to provide a method of producing a composite porous membrane that can
- a method for producing a composite porous membrane comprising Attaching a film forming resin solution to the outer peripheral surface of the hollow reinforcing support to form a film intermediate; Attaching a coagulating solution to the outer peripheral surface of the film intermediate; The film formability attached to the outer peripheral surface of the hollow reinforcing support while flowing the coagulation liquid along the outer peripheral surface of the membrane intermediate such that at least a part in the circumferential direction at the outermost interface of the coagulation liquid is made a free surface. Coagulating the resin solution.
- a method of making a composite porous membrane is provided.
- the step of coagulating the film-forming resin solution attached to the outer peripheral surface of the hollow reinforcing support while flowing the coagulation liquid which is a process in which the film-forming resin solution is coagulated by the coagulant. Since little external pressure is applied to the film-forming resin solution attached to the outer periphery of the intermediate, entry of the film-forming resin solution into the hollow reinforcing support due to the external pressure in this process is suppressed. For this reason, in this process, it is possible to sufficiently secure the coagulation time of the film-forming resin while suppressing the penetration of the film-forming resin solution. Further, the degree of penetration of the film-forming resin solution into the hollow reinforcing support can also be controlled by adjusting the external pressure applied to the film-forming resin solution in the step of attaching the coagulation liquid.
- the membrane intermediate in the step of coagulating the coagulating liquid, is transported in the vertical direction.
- the coagulating liquid in the affixing step, is supplied from a part or the entire circumference of the membrane intermediate in the circumferential direction.
- Supplying the coagulation liquid to the membrane intermediate refers to supplying the coagulation liquid toward the outermost interface of the membrane intermediate while the membrane intermediate is traveling.
- the supply from a part in the circumferential direction refers to supplying from only a part in the circumferential direction, that is, only a specific direction with respect to the circumferential direction of 360 degrees in the cross section perpendicular to the traveling direction of the film intermediate
- the direction may always change in the same direction or at any time.
- the supply position may be single or plural, and may be plural at different positions along the traveling direction.
- "supplying from the entire circumference” means supplying from a 360-degree direction with respect to a 360-degree circumferential direction in a cross section perpendicular to the traveling direction of the membrane intermediate.
- the hollow reinforcing support is a hollow braid, a hollow braid or a hollow fiber membrane.
- a method for producing a composite porous membrane capable of obtaining stable membrane quality and a desired hollow shape by controlling the penetration of a membrane forming resin solution into the hollow portion of a hollow reinforcing support. Be done.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a composite porous membrane production apparatus for carrying out an embodiment of the present invention. It is a schematic sectional drawing which shows schematic structure of the other composite porous membrane manufacturing apparatus which implements embodiment of this invention. It is a schematic cross section which shows schematic structure of the composite porous membrane manufacturing apparatus which implements the comparative example of this invention.
- the composite porous membrane is a porous membrane obtained by composite spinning so as to form (composite) a film forming resin solution layer continuous in the circumferential direction and the longitudinal direction on the outermost surface of the cross section of the elongated hollow reinforcing support.
- Point to The composite porous membrane includes a configuration in which a portion of the film-forming resin solution has entered the hollow reinforcing support and a configuration in which the solution has not entered after composite spinning.
- a configuration in which a part of the film forming resin solution has entered the hollow reinforcing support is preferable.
- a single film-forming resin layer may be formed by the film-forming resin solution used for the composite, or a plurality of film-forming resin layers may be formed.
- the composition of the film-forming resin constituting each film-forming resin layer may be the same or different, depending on the desired film structure and shape. Be selected accordingly.
- the method for producing a hollow porous membrane includes, for example, the following steps (i) to (iv). (I) applying a film-forming resin solution to the outermost peripheral surface of the hollow reinforcing support. (Ii) a step of coagulating the film-forming resin solution applied to the hollow reinforcing support to form a porous membrane layer to obtain a composite porous membrane. (Iii) removing unnecessary components from the composite porous membrane. (Iv) drying the composite porous membrane.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a composite porous membrane production apparatus 1 used in the steps (i) to (ii) which is an embodiment of the present invention.
- Composite porous membrane manufacturing apparatus 1 continuously forms a film-forming resin solution 4 on the outer peripheral surface of an elongated cylindrical hollow reinforcing support 2 continuously supplied from a hollow reinforcing support supply apparatus (not shown).
- a guide 16 for changing the traveling direction of the membrane intermediate.
- the hollow reinforcing support 2 used in the present embodiment is a known elongated hollow cylindrical reinforcing support generally used for producing a composite porous membrane, and is longitudinally continuous in a cross section perpendicular to the longitudinal direction.
- the interior may be any structure capable of moving the fluid in the longitudinal direction and the thickness direction.
- the cross-sectional shape of the hollow reinforcing support may be any shape such as circular or irregular, but in consideration of pressure resistance, shapeability and the like, it is preferable to be annular as in the present embodiment.
- hollow reinforcing support hollow braided cords, braids, etc. made of various hollow fiber membranes and various fibers such as crimp and non-crimp are used. Since such a support has gaps such as stitches on the wall surface, in addition to the penetration of the film-forming resin solution due to surface tension, the film-forming resin enters the hollow portion of the reinforcing support from the gaps having relatively large dimensions. Although it is easy to enter, it is suitable for the method of the present embodiment in which the external force due to water pressure is reduced. Furthermore, those in which a porous film is formed on the outer peripheral surface of the hollow reinforcing support as described above, those in which a film forming auxiliary liquid is applied, and the like are used. Besides, various other fibers and other supports used for separation membranes and the like can be used. Moreover, the material which comprises a support film may be single or combination of multiple types.
- examples of synthetic fibers include various fibers of polyamide type such as nylon 6, nylon 66, aromatic polyamide, etc., polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polyglycolic acid And polyester various fibers, polyacrylonitrile and other acrylic various fibers, polyethylene and polypropylene and other polyolefin various fibers, polyvinyl alcohol various fibers, polyvinylidene chloride various fibers, polyvinyl chloride based fibers, Various polyurethane-based fibers, phenol-based fibers, fluorine-based fibers such as polyvinylidene fluoride and polytetrafluoroethylene, and various polyalkylene-p-oxybenzoate-based fibers can be mentioned.
- semi-synthetic fibers include various cellulose-based derivative-based fibers using cellulose diacetate, cellulose triacetate, chitin, chitosan and the like as a raw material, and various protein-based fibers called promix.
- regenerated fiber examples include various regenerated cellulose fibers obtained by a viscose method, a copper-ammonia method, or an organic solvent method, specifically, rayon, cupra, polynozic and the like.
- polyester fibers, acrylic fibers, polyvinyl alcohol fibers, polyamide fibers, and polyolefin fibers are preferable, and polyester fibers and acrylic fibers are particularly preferable, from the viewpoint of excellent chemical resistance.
- the outer diameter of the hollow reinforcing support 2 is not particularly limited, but is preferably, for example, about 0.3 mm to 5 mm. Since the variation in the outer diameter of the hollow reinforcing support 2 particularly affects the quality such as the spinning stability and the film thickness, it is preferably as small as possible. For example, when the outer diameter is about 0.3 mm to 5 mm, the fluctuation range of the outer diameter is preferably ⁇ 10% or less.
- the annular nozzle 6 At the center of the annular nozzle 6 there is formed a conduit through which the hollow reinforcing support 2 passes.
- An annular discharge port for discharging a film-forming resin solution is formed on the outside of the passage position of the hollow reinforcing support 2 in the conduit.
- the film forming resin solution 4 supplied from the resin solution supply device 8 to the annular nozzle 6 is discharged from the discharge port, and the outer peripheral surface of the hollow reinforcing support 2 passing through the conduit is The coating film of the film forming resin solution 4 having a predetermined thickness is formed.
- the hollow reinforcing support 2 passes the annular nozzle 6 to form the coating film of the film forming resin solution 4 on the outer peripheral surface, that is, the film forming resin solution on the hollow reinforcing support Is a complex membrane intermediate 18.
- the membrane-forming resin used for the membrane-forming resin solution used in the present embodiment is not particularly limited as long as it is a membrane-forming resin capable of forming a porous hollow fiber membrane by wet or dry-wet spinning method .
- polysulfone resins such as polysulfone and polyethersulfone, polyacrylonitrile, cellulose derivatives, fluorine resins such as polyvinylidene fluoride, polyamide, polyester, polymethacrylate, polyacrylate and the like are preferable.
- copolymers of these resins or those obtained by introducing a substituent into part thereof may be used.
- it may be a mixture of two or more resins.
- the solvent used for the film-forming resin used in the present embodiment is not particularly limited as long as it can dissolve the film-forming resin.
- the film-forming resin solution used in the present embodiment is obtained by uniformly dissolving 10 to 30% by mass, preferably 15 to 25% by mass of the film-forming resin in a solvent.
- hydrophilic polymers such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl acetate and polyvinyl alcohol, non-solvents such as water and alcohol, and inorganic salts may be added.
- concentration is preferably 1 to 20% by mass, and more preferably 5 to 12% by mass.
- the viscosity at 40 ° C. is preferably 20,000 to 500,000 mPa ⁇ sec, more preferably 40,000 to 200,000 mPa ⁇ sec, and still more preferably 70,000 to 150,000 mPa ⁇ sec. preferable.
- a coagulation bath containing coagulation liquid 10 for coagulating the film forming resin solution 4 applied to the hollow reinforcing support 2 to form a porous membrane layer on the downstream side of the annular nozzle 6 in the transport direction of the membrane intermediate 18 12 are arranged.
- the coagulation bath 12 opens upward, and an orifice 14 through which the membrane intermediate 18 can pass is formed at the bottom.
- a free running portion is provided between the annular nozzle 6 and the coagulation bath 12.
- the pore diameter of the porous membrane is adjusted by causing the membrane forming resin solution to absorb moisture in the free running portion.
- the composite porous membrane manufacturing apparatus 1 introduces the membrane intermediate 18 having passed through the annular nozzle 6 into the coagulation liquid 10 contained in the coagulation bath 12 from the upper opening of the coagulation bath 12 and makes the orifice 14 at the bottom part It is configured to be passed out of the coagulation bath 12.
- the membrane intermediate 18 passes through the inside of the coagulation liquid 10 contained in the coagulation bath 12, it contacts the coagulation liquid 10, and the coagulation liquid 10 adheres to the outer peripheral surface.
- the orifice 14 is configured to allow passage of the membrane intermediate and allow the coagulation liquid to flow along the outer peripheral surface of the membrane intermediate 18 that has passed through the coagulation bath 12.
- the dimensions and shape of the orifice 14 are appropriately determined in accordance with the outer diameter of the hollow reinforcing support and the film forming conditions.
- the shape of the orifice may be circular or rectangular.
- the bottom of the coagulation bath 12 is provided with a member having a funnel-shaped portion tapered downward and an elongated cylindrical portion attached to the tip of the funnel-shaped portion, the lower end of the cylindrical portion being an orifice 14.
- the membrane intermediate 18 may be led out of the coagulation bath 12 through 14.
- one orifice 14 may be provided for one membrane intermediate 18 or a plurality of orifices may be provided for the membrane intermediate 18.
- the orifice in the case of passing one membrane intermediate 18 through an orifice 14 having a thickness of 3 mm in the membrane intermediate traveling direction, the orifice has a diameter of 8 mm to 15 mm when the membrane outer diameter is 1 to 6 mm and the coagulation liquid depth is 10 mm. Is preferred.
- the coagulation bath 12 of the composite porous membrane manufacturing apparatus 1 overflows the coagulation liquid, and the depth (coagulation liquid depth A) of the coagulation liquid in the coagulation bath 12, that is, the coagulation liquid of the membrane intermediate 18 in the coagulation bath.
- To control the contact length B the length to which the coagulation liquid is supplied to the membrane intermediate.
- the coagulating liquid used in the present embodiment is a liquid that reduces the concentration of the solvent in the film forming resin solution contained in the film intermediate 18 and causes a phase change of part or all of the film forming resin to a solid,
- the type is not particularly limited.
- an aqueous solution containing water excellent in operability and coagulation power and a solvent used for the film-forming resin solution is preferable.
- the concentration of dimethylacetamide in the coagulating solution is preferably 70% or less. If it exceeds 70%, the diffusion of the solvent to the coagulating liquid is reduced, the coagulation time of the membrane intermediate is delayed, and the guide or the like which is first contacted after the coagulation liquid contacts causes deformation or collapse of the membrane, etc. May not be obtained. More preferably, it is 50% or less, still more preferably 30% or less.
- a guide 16 is provided vertically below the orifice 14, and the membrane intermediate 18 carried out through the orifice 14 is configured to be transported vertically downward toward the guide 16.
- the coagulating liquid attached to the outer peripheral surface flows along the outer peripheral surface.
- the flow of the coagulation liquid along the membrane intermediate 18 means that the coagulation liquid flows in the longitudinal direction on the outer surface of the membrane intermediate 18 so that a part or all of the outer periphery of the membrane intermediate is in contact with the coagulation liquid. .
- the outermost interface of the coagulating liquid flowing on the outer peripheral surface of the film intermediate 18 comes in contact with air at atmospheric pressure and becomes a free surface.
- the guide 16 is configured of a rotary guide (roller) rotatably mounted, but if it is a fixed guide or the like that does not damage the membrane intermediate 18 due to sliding Anything is fine.
- the traveling direction of the film intermediate may be inclined as long as it does not affect external force such as fluid pressure which causes coagulation or penetration of the film forming resin solution into the hollow portion.
- external force such as fluid pressure which causes coagulation or penetration of the film forming resin solution into the hollow portion.
- the film-forming resin solution combined with the film intermediate is controlled.
- the free surface may be provided at least in part in the circumferential direction, which is a cross section perpendicular to the direction of flow of the coagulation liquid. This free surface is usually in contact with the gas, and has a much lower running resistance when the coagulation liquid is moved compared to the contact of a solid surface such as a tube.
- the interface with the coagulating liquid is a closed solid surface such as a pipe such as flow tube spinning
- an external force is generated on the outer periphery of the membrane intermediate due to the flow resistance generated between the coagulating liquid and the solid surface.
- This external force causes the film forming resin solution to enter the hollow portion of the hollow reinforcing support.
- the static pressure due to the coagulation liquid also affects.
- the membrane intermediate 18 is configured to be transported vertically downward in the air between the coagulation bath 12 and the guide 16, but as in the tube having a C-shaped cross section, It may be configured to be transported together with the coagulating liquid in a tubular body having a partially open outward shape.
- the film intermediate 18 When the film intermediate 18 is conveyed vertically downward in the air, it may be conveyed substantially vertically downward, and in consideration of the air resistance and the tension from the annular nozzle 6 and the guide 16, the film intermediate 18 may be conveyed vertically downward. It may be inclined several degrees (for example, about 2 to 5 degrees).
- the membrane intermediate 18 may be transported while being inclined with respect to the vertical direction. At this time, it is preferable to set the inclination angle to 30 ° or less with respect to the vertical direction because the contact time with the coagulating liquid can be easily adjusted.
- the membrane-forming resin solution 4 is attached to the outer peripheral surface of the hollow reinforcing support 2 in the composite porous membrane producing apparatus 1 to form the membrane intermediate 18. Then, the membrane intermediate 18 is allowed to pass through the coagulation bath 12, the coagulating liquid 10 is attached to the outer peripheral surface of the membrane intermediate 18, and the outer surface of the membrane intermediate is transported by conveying the membrane intermediate vertically downward.
- the film-forming resin solution 4 is coagulated while flowing the coagulating solution along.
- at least a part of the circumferential direction at the outermost interface of the coagulation liquid is made a free surface.
- the coagulation liquid flows down along the outer peripheral surface of the membrane intermediate by gravity, so by increasing the flow distance, the moving speed of the coagulation liquid is increased, and the surface renewal of the membrane intermediate is further promoted. Furthermore, since the flow resistance generated between the falling coagulating liquid and the membrane intermediate becomes the thrust for moving the membrane intermediate downward, the membrane intermediate first contacts when the falling distance of the coagulating liquid increases.
- the contact force to the guide or the like is reduced, and in addition, the weight of the film intermediate can also contribute to the same effect, and the effect of reducing the film deformation due to the guide contact can also be expected.
- the coagulation liquid depth A and the coagulation liquid contact length B can be adjusted separately, the coagulation liquid depth A is reduced to affect the penetration of the film forming resin solution into the hollow portion of the film intermediate. It is possible to lengthen the coagulation liquid contact length B without increasing the coagulation liquid pressure, and the entry control into the hollow portion becomes easy.
- the coagulation liquid contact length B is a portion through which the coagulation liquid flows, the coagulation liquid contact length B can be easily changed by changing the distance between the coagulation bath 12 and the guide 16, and the equipment and handling property Also excellent.
- the coagulation liquid depth A and coagulation liquid contact length B are preferably in the range of 0 to 500 mm for coagulation liquid depth A and 200 to 3000 mm for coagulation liquid contact length B.
- the composite porous membrane thus formed generally has a large pore diameter and potentially high water permeability, but unnecessary components remain in the membrane. Therefore, after the coagulation step, it is preferable to pass the step of removing unnecessary components remaining in the membrane.
- a step of removing unnecessary components is provided downstream of the guide 16.
- a solvent and an additive remain in the form of a solution in the membrane (porous portion).
- Such solvents and hydrophilic polymers are, to a certain extent, removed relatively easily by immersing the composite porous membrane in a cleaning solution. Therefore, first, the composite porous membrane is immersed in the cleaning solution. Then, an oxidizing agent is used, and a method of sequentially washing the hydrophilic polymer to a desired level by mainly lowering the molecular weight of the hydrophilic polymer can be mentioned.
- the hydrophilic polymer remains in the state of a solution of high concentration in the membrane (porous portion).
- Such high concentration of hydrophilic polymer is, to a certain extent, removed relatively easily by immersing the composite porous membrane in a cleaning solution. Therefore, as a preliminary step, first, the composite porous membrane is immersed in the cleaning solution. Then, the method of wash
- the drying method is not particularly limited, and examples thereof include a method of introducing the composite porous membrane into a drying apparatus such as a hot air dryer.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a composite porous membrane production apparatus of a second embodiment.
- the same referential mark is attached
- the composite porous membrane production apparatus 20 comprises an annular nozzle 6 for continuously applying a film-forming resin solution 4 to a hollow reinforcing support 2 continuously supplied from a hollow reinforcing support feeder (not shown);
- the resin solution supply device 8 for supplying the film forming resin solution 4 to the annular nozzle 6 and the coagulation liquid 10 for coagulating the film forming resin solution 4 applied to the hollow reinforcing support 2 are brought into contact with the film intermediate and supplied.
- a guide 16 for changing the traveling direction of the composite porous membrane.
- a method of causing the coagulation liquid to adhere to the traveling film intermediate in addition to a method of supplying it by a shower or a spray nozzle, a method of heating the coagulation liquid to pass through the generated vapor, film intermediate during transportation
- a method of forcibly supplying water vapor a method of traveling through liquid particles generated by a carburetor using a venturi, a mist blowing, an ultrasonic atomizer or the like.
- coagulating liquid supply methods may be used alone or in combination.
- a partition having an opening 15 may be provided between the coagulation liquid supply unit and the annular nozzle 6.
- a film-forming resin solution As a film-forming resin solution, polyvinylidene A (manufactured by Arkema, trade name: Kainer 301F), polyvinylidene fluoride B (Arkema, trade name: Kainer 9000 LD), polyvinylpyrrolidone A (ISP) Co., Ltd., trade name K-90, polyvinyl pyrrolidone B (trade name K-79, trade name K-79, manufactured by Nippon Shokuhin Co., Ltd.) N, N-dimethylacetamide is mixed and dissolved in the mass ratio shown in Table 2 to form a film forming resin The solution was adjusted.
- Examples 1 to 11 The hollow reinforcing support shown in Table 1 is supplied to the center hole of the annular nozzle, and the film forming resin solution shown in Table 2 whose temperature is controlled at 32 ° C. It was supplied from the slit and discharged in the vertical falling direction so as to be annularly laminated on the hollow reinforcing support.
- the membrane intermediate obtained by laminating and composite spinning both of them is allowed to pass through the empty running part and then passed through the coagulation bath having the coagulation liquid depth shown in Tables 3 and 4 to adhere the coagulation liquid, It passed the orifice part provided in the bottom. At the same time, coagulating liquid was also flowed vertically along the membrane intermediate from the orifice portion.
- the coagulating solution used was one obtained by dissolving dimethylacetamide (DMAc) in water at the concentration shown in Tables 3 and 4. After passing through the orifice portion, the flow length (BA) except for the coagulation liquid depth shown in Tables 3 and 4 was made to travel with the outer periphery of the coagulation liquid as a free surface. After that, the traveling direction was changed by the rotation guide and taken up by the take-up roll, unnecessary components were removed and dried to obtain the composite porous membrane.
- DMAc dimethylacetamide
- Example 12 Coagulation liquid adhesion is performed by showering from one direction, and the conditions of Examples 1 to 12 are the same as in Examples 1 to 12 except that the periphery of the coagulation liquid is changed to a free surface from coagulation liquid adhesion.
- the composite porous membrane was obtained under the conditions.
- Examples 13 to 17 The film-forming resin solution B shown in Table 2 whose temperature is controlled to 32 ° C. is supplied from the inner peripheral side of the annular slit having an outer diameter of 5.24 mm and an inner diameter of 3.4 mm of the annular nozzle. C. In the same manner as in Examples 1 to 12 except that C was supplied and the film forming resin solution was discharged in the vertical falling direction so that the film forming resin solution was annularly laminated on the hollow reinforcing support, according to the conditions of Tables 1 and 5. A composite porous membrane was obtained.
- the coagulating liquid 10 of FIG. 3 is introduced to the coagulating bath 30 and the rotary guide 32 for changing the traveling direction of the membrane intermediate is disposed in the coagulating bath, and the liquid surface of the coagulation bath is rotated.
- the depth to the central axis of the guide is the immersion liquid depth, and it is immersed in the liquid depth shown in Table 6.
- the traveling direction is changed by the rotary guide installed in the coagulation bath, and taken away by the take-up roll to remove unnecessary components. And dried to obtain a composite porous membrane.
- the composite porous membrane of the present invention is capable of separating and independently controlling the coagulation liquid contact length and the coagulation liquid depth, and maintaining the coagulation liquid contact length, while forming a film-forming resin for the hollow portion of the hollow reinforcing support
- the entry of the solution was made controllable.
- it is possible to easily form a film on a hollow reinforcing support, which has been difficult to form a film conventionally, to eliminate the adverse effect of hollow blockage at high speed, to cope with equipment, and to obtain stable film quality.
- It can be suitably used as a filtration membrane used for water treatment by ultrafiltration or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
また、中空状の支持体に製膜原液を塗布し、この支持体を、ガイドロールを介して凝固液の入った凝固浴槽内を通過させることによって、製膜原液を凝固させる複合多孔質膜の製造方法が提案されている(特許文献2)
また、中空補強支持体への膜形成性樹脂の進入度合いに関し特別な配慮はなされていない。
また、中空状の支持体が、内部に製膜原液が進入し易い構造を有する場合にも、所望の中空形状を得られない、製膜原液が中空部を閉塞する等の問題がある。
複合多孔質膜の製造方法であって、
中空補強支持体の外周面に膜形成性樹脂溶液を付着させ膜中間体とするステップと、
前記膜中間体の外周面に凝固液を付着させるステップと、
前記凝固液の最外界面における周方向の少なくとも一部が自由表面とされるように前記膜中間体の外周面に沿って凝固液を流しながら中空補強支持体の外周面に付着した膜形成性樹脂溶液を凝固させるステップと、を備えている、
複合多孔質膜の製造方法が提供される。
また、中空補強支持体への膜形成性樹脂溶液の進入度合いは、「凝固液を付着させるステップ」で膜形成性樹脂溶液にかかる外圧を調節することによっても制御することが可能になる。
本発明の他の好ましい態様によれば、前記付着させるステップにおいて、前記凝固液が、前記膜中間体の周方向の一部または全周から供給される。
また、周方向の一部からの供給とは、膜中間体の走行方向に直角な断面における360度の周方向に対し、周方向の一部、すなわち特定方向のみから供給することを指し、特定方向が常に同方向や随時変化してもよい。また、供給位置は、単独あるいは複数でもよく、走行方向に沿って異なった位置に複数箇所あっても良い。
さらに、全周から供給するとは、膜中間体の走行方向に直角な断面における360度の周方向に対し、360度方向から供給することを指す。
(i)中空補強支持体の最外周面に膜形成性樹脂溶液を塗布する工程。
(ii)中空補強支持体に塗布された膜形成性樹脂溶液を凝固させて多孔質膜層を形成し、複合多孔質膜を得る工程。
(iii)複合多孔質膜から不要な成分を除去する工程。
(iv)複合多孔質膜を乾燥する工程。
複合多孔質膜製造装置1は、中空補強支持体供給装置(図示せず)から連続的に供給される細長い円筒状の中空補強支持体2の外周面に連続的に膜形成性樹脂溶液4を付着させる環状ノズル6と、環状ノズル6に膜形成性樹脂溶液4を供給する樹脂溶液供給装置8と、膜形成性樹脂溶液4の凝固液10を収容した凝固浴槽12と、凝固浴槽12の底部に設けられたオリフィス部14と、膜中間体の走行方向を変えるガイド16とを備えている。
中空補強支持体の横断面形状は円形、異形等どのような形状でもよいが、耐圧性、賦形性等を考慮すると、本実施形態のように環状であるのが好ましい。
その他に、他の各種繊維や、分離膜等に使用される他の支持体が使用可能である。また、支持膜を構成する素材は、単一、または複数種の組み合わせであってもよい。
これらの中でも、耐薬品性に優れるという観点から、ポリエステル繊維、アクリル繊維、ポリビニルアルコール系繊維、ポリアミド繊維、ポリオレフィン繊維が好ましく、ポリエステル繊維、アクリル繊維が特に好ましい。
複合多孔質膜製造装置1は、樹脂溶液供給装置8から環状ノズル6に供給された膜形成性樹脂溶液4が吐出口から吐出され、管路を通過する中空補強支持体2の外周面に、所定厚の膜形成性樹脂溶液4の塗膜を形成するように構成されている。
また、その粘度は、40℃での粘度が20,000から500,000mPa・secが好ましく、より好ましくは40,000から200,000mPa・sec、さらに好ましくは70,000から150,000mPa・secが好ましい。
さらに、凝固浴槽12の底部に下方に向かって先細りする漏斗状部分と漏斗状部分の先端に取付けられた細長い円筒部を備えた部材を設け、円筒部の下端の開口をオリフィス14とし、このオリフィス14を通過して膜中間体18が凝固浴槽12外に導かれる構成でも良い。
凝固液深Aを変化させることによって、中空補強支持体2に塗布された膜形成性樹脂溶液4のかかる外圧を調整することが可能となる。
尚、膜中間体18を空気中で鉛直下方に搬送する場合、略鉛直下方に搬送されていればよく、空気抵抗や環状ノズル6、ガイド16のからの張力を考慮して、鉛直下方に対して数度(例えば2乃至5°程度)傾いていてもよい。
さらに、前述のごとく、凝固浴槽12の下部に円筒部を設けこの円筒部下端の開口をオリフィス14とした場合などは、膜中間体18は鉛直方向に対して傾いて搬送されてもよい。このとき、傾き角を鉛直方向に対して30°以下とすると凝固液との接触時間を容易に調整できるので好ましい。
凝固液深Aと凝固液接触長Bは、凝固液深Aは0~500mm、凝固液接触長Bは200~3000mmの範囲とすることが好ましい。
したがって、まず始めに複合多孔質膜を洗浄液に浸漬する。次いで酸化剤を使用し、主に親水性ポリマーの低分子量化により親水性ポリマーの洗浄を所望のレベルまで順次行う方法が挙げられる。
したがって、予備工程として、まず始めに複合多孔質膜を洗浄液に浸漬する。次いで本工程として酸化剤を使用した親水性ポリマーの低分子量化により親水性ポリマーの洗浄を順次行う方法が挙げられる。
さらに、下方向に走行させながら、リング状のスリットより膜中間体の走行方向に噴出させて供給する方法、膜形成性樹脂用溶液を紡出するノズルの環状スリット部より外周に、凝固液を供給する環状スリットを設け、凝固液を円筒状に供給する方法などがある。
これらの凝固液供給方法は、単独あるいは組み合わせで使用される。
表1に示した条件に基づき、原糸としてポリエステル繊維(ボビン5kg巻き)を合糸し、卓上型紐編機(圓井繊維機械(株)製、編針数12本、針サイズ16ゲージ、編針の円周直径8mm)に供給、加熱ダイスを通過させ中空補強支持体を得た。
膜形成性樹脂溶液としてポリフッ化ビニリデンA(アルケマ社製、商品名カイナー301F)、ポリフッ化ビニリデンB(アルケマ社製、商品名カイナー9000LD)、ポリビニルピロリドンA(ISP社製、商品名K-90)、ポリビニルピロリドンB(日本触媒社製、商品名K-79)N,N-ジメチルアセトアミドをそれぞれ、表2に示す質量比で混合、溶解し、膜形成性樹脂溶液を調整した。
表1に示す中空補強支持体を環状ノズルの中心穴へ供給し、32℃に温度制御された表2に示す膜形成性樹脂溶液を、環状ノズルの外径5.3mm内径4.5mmの環状スリットより供給し、中空補強支持体上に環状積層されるよう鉛直落下方向に吐出させた。両者を積層複合紡糸して得られた膜中間体は、空走部を通過させた後、表3,4に示す凝固液深を有する凝固浴槽を通過させて凝固液を付着させ、凝固浴槽の底部に設けられたオリフィス部を通過させた。同時に、凝固液もオリフィス部より膜中間体に沿って鉛直方向に流した。凝固液は、水にジメチルアセトアミド(DMAc)を表3,4に示す濃度で溶解したものを用いた。オリフィス部通過以降は凝固液の外周を自由表面にした状態で表3,4に示す凝固液深を除く流下長(B-A)を走行させた。その後、回転ガイドによって走行方向を変えて引取ロールによって引き取り、不要な成分の除去を行い、乾燥して複合多孔質膜を得た。
凝固液付着を一方向からのシャワリングによって行い、凝固液付着から凝固液の外周を自由表面にした状態にしたこと以外は、実施例1から12と同様の方法で表1及び2及び4の条件にて複合多孔質膜を得た。
環状ノズルの外径5.24mm内径3.4mmの環状スリットの内周側より、32℃に温度制御された表2に示す膜形成性樹脂溶液Bを供給し、外周側より膜形成性樹脂溶液Cを供給し、中空補強支持体上に膜形成性樹脂溶液が環状積層されるよう、鉛直落下方向に吐出させたこと以外は実施例1から12と同様の方法で表1及び5の条件によって複合多孔質膜を得た。
実施例と同様に紡出後、図3の凝固液10を溜めた凝固浴槽30に導き、凝固浴槽内に膜中間体の走行方向を変える回転ガイド32を配し、凝固槽の液面から回転ガイドの中心軸までの深さを凝固液深とし、表6に示す液深で浸漬し、凝固浴槽中に設置してある回転ガイドによって走行方向を変え、引取ロールによって引き取り、不要な成分の除去を行い、乾燥して複合多孔質膜を得た。
Claims (5)
- 複合多孔質膜の製造方法であって、
中空補強支持体の外周面に膜形成性樹脂溶液を付着させ膜中間体とするステップと、
前記膜中間体の外周面に凝固液を付着させるステップと、
前記凝固液の最外界面における周方向の少なくとも一部が自由表面とされるように前記膜中間体の外周面に沿って凝固液を流しながら中空補強支持体の外周面に付着した膜形成性樹脂溶液を凝固させるステップと、を備えている、
複合多孔質膜の製造方法。 - 前記凝固液を凝固させるステップにおいて、前記膜中間体が鉛直方向に搬送される、
請求項1に記載の複合多孔質膜の製造方法。 - 前記凝固液を凝固させるステップにおいて、前記膜中間体が鉛直面に対し、
- 前記付着させるステップにおいて、前記凝固液が、前記膜中間体の周方向の一部または全周から供給される、
請求項1ないし3のいずれか一項に記載の複合多孔質膜の製造方法。 - 前記中空補強支持体が中空編紐、中空組紐または中空糸膜である、
請求項1ないし4のいずれか1項に記載の複合多孔質膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10767149.7A EP2422872A4 (en) | 2009-04-24 | 2010-04-23 | METHOD FOR PRODUCING A POWDER COMPOSITE FILM |
US13/265,962 US9649600B2 (en) | 2009-04-24 | 2010-04-23 | Method for manufacturing a porous composite membrane |
CN201080017944.XA CN102413910B (zh) | 2009-04-24 | 2010-04-23 | 复合多孔质膜的制造方法 |
CA2759693A CA2759693C (en) | 2009-04-24 | 2010-04-23 | Porous composite membrane manufacturing method using flowing coagulating solution |
KR1020117027928A KR101340121B1 (ko) | 2009-04-24 | 2010-04-23 | 복합 다공질막의 제조 방법 |
JP2010519304A JP5565586B2 (ja) | 2009-04-24 | 2010-04-23 | 複合多孔質膜の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-106136 | 2009-04-24 | ||
JP2009106136 | 2009-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010123094A1 true WO2010123094A1 (ja) | 2010-10-28 |
Family
ID=43011208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057225 WO2010123094A1 (ja) | 2009-04-24 | 2010-04-23 | 複合多孔質膜の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9649600B2 (ja) |
EP (1) | EP2422872A4 (ja) |
JP (1) | JP5565586B2 (ja) |
KR (1) | KR101340121B1 (ja) |
CN (1) | CN102413910B (ja) |
CA (1) | CA2759693C (ja) |
TW (1) | TWI415669B (ja) |
WO (1) | WO2010123094A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013150961A (ja) * | 2012-01-26 | 2013-08-08 | Sekisui Chem Co Ltd | 高分子水処理膜の製造方法 |
JP2015229149A (ja) * | 2014-06-06 | 2015-12-21 | 三菱レイヨン株式会社 | 多孔質中空糸膜膜の製造方法及び孔質中空糸膜膜 |
JP2016000403A (ja) * | 2010-10-29 | 2016-01-07 | 三菱レイヨン株式会社 | 洗浄装置、および多孔質膜の製造方法 |
JP2016043319A (ja) * | 2014-08-25 | 2016-04-04 | 三菱レイヨン株式会社 | 中空状多孔質膜の製造装置 |
JP2016128166A (ja) * | 2011-02-07 | 2016-07-14 | 三菱レイヨン株式会社 | 編紐供給装置及び編紐供給方法 |
JP6004120B1 (ja) * | 2015-09-03 | 2016-10-05 | 三菱レイヨン株式会社 | 中空糸膜の製造方法及び中空糸膜紡糸用ノズル |
JP2016203156A (ja) * | 2015-04-20 | 2016-12-08 | ティアンジン ポリテクニック ユニヴァーシティ | 強化中空繊維膜およびそれを調製するための方法 |
US9528760B2 (en) | 2012-03-12 | 2016-12-27 | Mitsubishi Rayon Co., Ltd. | Method for producing porous membrane and drying device of porous membrane |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI377978B (en) * | 2008-05-21 | 2012-12-01 | Mitsubishi Rayon Co | Hollow porous film and manufacturing method thereof |
CN102600733B (zh) * | 2012-03-28 | 2014-03-19 | 天津工业大学 | 一种同质增强型聚偏氟乙烯中空纤维膜的制备方法 |
US10026269B2 (en) | 2016-09-22 | 2018-07-17 | Igt | Gaming systems and methods for providing progressive awards |
CN110201559B (zh) * | 2019-06-04 | 2021-11-09 | 泉州碧蓝膜科技有限责任公司 | 一种大通量加强型中空纤维膜及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164304A (ja) * | 1984-09-05 | 1986-04-02 | Nippon Denso Co Ltd | 中空糸複合膜の製造方法 |
JPH08229358A (ja) * | 1994-12-28 | 1996-09-10 | Praxair Technol Inc | 多層の複合膜の改良された製造 |
JPH0910563A (ja) | 1995-06-30 | 1997-01-14 | Praxair Technol Inc | 中空繊維膜を紡糸加工により製造するための方法及び装置 |
JP2005220202A (ja) * | 2004-02-04 | 2005-08-18 | Mitsubishi Rayon Co Ltd | 多孔質膜の製造方法及び多孔質膜 |
JP2008126199A (ja) | 2006-11-24 | 2008-06-05 | Mitsubishi Rayon Co Ltd | 中空状多孔質膜およびその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619257A (en) * | 1967-08-08 | 1971-11-09 | Toyo Tire & Rubber Co | Preparation of plural layer synthetic leather and the like |
JPS6157204A (ja) | 1984-08-27 | 1986-03-24 | Terumo Corp | 透析用中空糸及びその製造方法 |
DE3810757A1 (de) | 1988-03-30 | 1989-10-26 | Freudenberg Carl Fa | Verfahren zur herstellung einer mikroporoesen folie |
US5064580A (en) | 1988-03-31 | 1991-11-12 | The Dow Chemical Company | Process for making microporous membranes from poly(etheretherketone)-type polymers |
US5213689A (en) | 1992-01-08 | 1993-05-25 | Hoechst Celanese Corp. | Asymmetric fluoropolymer-coated polyolefin hollow fibers |
US5514413A (en) * | 1994-03-31 | 1996-05-07 | Air Products And Chemicals, Inc. | Process for producing composite membranes |
DE19512053C1 (de) * | 1995-03-31 | 1996-10-24 | Akzo Nobel Nv | Verfahren zum Herstellen von cellulosischen Fasern |
US7501084B2 (en) * | 2002-03-12 | 2009-03-10 | Koch Membrane Systems Gmbh | Method for producing fabric-reinforced capillary membranes, in particular for ultrafiltration |
CA2458378C (en) * | 2002-06-14 | 2013-04-02 | Toray Industries, Inc. | Porous membrane and method of manufacturing the same |
KR100910844B1 (ko) | 2002-07-19 | 2009-08-06 | 주식회사 파라 | 모노-필라멘트를 포함하는 보강용 지지체를 가지는기체분리 및 수처리용 외압식 중공사막, 그 제조방법 및제조장치 |
US7165682B1 (en) | 2003-07-16 | 2007-01-23 | Accord Partner Limited | Defect free composite membranes, method for producing said membranes and use of the same |
-
2010
- 2010-04-23 US US13/265,962 patent/US9649600B2/en not_active Expired - Fee Related
- 2010-04-23 CN CN201080017944.XA patent/CN102413910B/zh active Active
- 2010-04-23 TW TW099112845A patent/TWI415669B/zh not_active IP Right Cessation
- 2010-04-23 JP JP2010519304A patent/JP5565586B2/ja active Active
- 2010-04-23 CA CA2759693A patent/CA2759693C/en not_active Expired - Fee Related
- 2010-04-23 KR KR1020117027928A patent/KR101340121B1/ko active IP Right Grant
- 2010-04-23 WO PCT/JP2010/057225 patent/WO2010123094A1/ja active Application Filing
- 2010-04-23 EP EP10767149.7A patent/EP2422872A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164304A (ja) * | 1984-09-05 | 1986-04-02 | Nippon Denso Co Ltd | 中空糸複合膜の製造方法 |
JPH08229358A (ja) * | 1994-12-28 | 1996-09-10 | Praxair Technol Inc | 多層の複合膜の改良された製造 |
JPH0910563A (ja) | 1995-06-30 | 1997-01-14 | Praxair Technol Inc | 中空繊維膜を紡糸加工により製造するための方法及び装置 |
JP2005220202A (ja) * | 2004-02-04 | 2005-08-18 | Mitsubishi Rayon Co Ltd | 多孔質膜の製造方法及び多孔質膜 |
JP2008126199A (ja) | 2006-11-24 | 2008-06-05 | Mitsubishi Rayon Co Ltd | 中空状多孔質膜およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2422872A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016000403A (ja) * | 2010-10-29 | 2016-01-07 | 三菱レイヨン株式会社 | 洗浄装置、および多孔質膜の製造方法 |
EP2633900A4 (en) * | 2010-10-29 | 2016-10-12 | Mitsubishi Rayon Co | WASHING APPARATUS AND METHOD FOR PRODUCING A POROUS MEMBRANE |
JP2016128166A (ja) * | 2011-02-07 | 2016-07-14 | 三菱レイヨン株式会社 | 編紐供給装置及び編紐供給方法 |
JP2013150961A (ja) * | 2012-01-26 | 2013-08-08 | Sekisui Chem Co Ltd | 高分子水処理膜の製造方法 |
US9528760B2 (en) | 2012-03-12 | 2016-12-27 | Mitsubishi Rayon Co., Ltd. | Method for producing porous membrane and drying device of porous membrane |
JP2015229149A (ja) * | 2014-06-06 | 2015-12-21 | 三菱レイヨン株式会社 | 多孔質中空糸膜膜の製造方法及び孔質中空糸膜膜 |
JP2016043319A (ja) * | 2014-08-25 | 2016-04-04 | 三菱レイヨン株式会社 | 中空状多孔質膜の製造装置 |
JP2016203156A (ja) * | 2015-04-20 | 2016-12-08 | ティアンジン ポリテクニック ユニヴァーシティ | 強化中空繊維膜およびそれを調製するための方法 |
JP6004120B1 (ja) * | 2015-09-03 | 2016-10-05 | 三菱レイヨン株式会社 | 中空糸膜の製造方法及び中空糸膜紡糸用ノズル |
WO2017037912A1 (ja) * | 2015-09-03 | 2017-03-09 | 三菱レイヨン株式会社 | 中空糸膜の製造方法及び中空糸膜紡糸用ノズル |
Also Published As
Publication number | Publication date |
---|---|
CN102413910B (zh) | 2014-07-30 |
JPWO2010123094A1 (ja) | 2012-10-25 |
CA2759693A1 (en) | 2010-10-28 |
KR20120023009A (ko) | 2012-03-12 |
CN102413910A (zh) | 2012-04-11 |
CA2759693C (en) | 2015-10-20 |
TWI415669B (zh) | 2013-11-21 |
EP2422872A1 (en) | 2012-02-29 |
US9649600B2 (en) | 2017-05-16 |
US20120045580A1 (en) | 2012-02-23 |
TW201041644A (en) | 2010-12-01 |
JP5565586B2 (ja) | 2014-08-06 |
KR101340121B1 (ko) | 2013-12-10 |
EP2422872A4 (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010123094A1 (ja) | 複合多孔質膜の製造方法 | |
EP1658889A1 (en) | Longitudinal reinforced self-supporting capillary membranes and method for manufacturing thereof | |
US5871680A (en) | Method and apparatus for spinning hollow fiber membranes | |
CN113842786A (zh) | 中空纤维膜的制造方法以及中空纤维膜纺丝用喷嘴 | |
JP6004120B1 (ja) | 中空糸膜の製造方法及び中空糸膜紡糸用ノズル | |
US9610545B2 (en) | Hollow-fibre membrane having novel structure, and production method therefor | |
JP2008237987A (ja) | 中空糸膜の製造方法および中空糸膜 | |
KR102688844B1 (ko) | 복합 중공형 섬유 및 관련 방법 및 제품 | |
JP2011050881A (ja) | 中空糸膜の紡糸方法 | |
RU2086296C1 (ru) | Способ получения асимметричного микропористого полого волокна и асимметричное микропористое полое волокно | |
JP6638276B2 (ja) | 多孔質中空糸膜の製造方法 | |
JP5109092B2 (ja) | 中空糸膜の紡糸方法および中空糸膜 | |
JP5790180B2 (ja) | 多孔質中空糸膜の製造方法 | |
CN106000115A (zh) | 一种具有高效过滤无缺陷结构的中空纤维膜及其制造方法 | |
Matveev et al. | Fabrication of Hollow Fiber Membranes: Effect of Process Parameters | |
JP2016043319A (ja) | 中空状多孔質膜の製造装置 | |
JP5790181B2 (ja) | 多孔質中空糸膜の製造方法 | |
RU2676991C1 (ru) | Мембрана половолоконная | |
CN103717295B (zh) | 多孔质膜的制造方法及制造装置 | |
JP2007289938A (ja) | 微孔性膜の製造方法及び装置 | |
JPS6042285B2 (ja) | 選択透過性酢酸セルロ−ス中空繊維の製法 | |
JPH01245809A (ja) | 再生セルロース多孔膜中空糸の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080017944.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010519304 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10767149 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2759693 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13265962 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8560/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010767149 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117027928 Country of ref document: KR Kind code of ref document: A |