WO2010122919A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2010122919A1
WO2010122919A1 PCT/JP2010/056564 JP2010056564W WO2010122919A1 WO 2010122919 A1 WO2010122919 A1 WO 2010122919A1 JP 2010056564 W JP2010056564 W JP 2010056564W WO 2010122919 A1 WO2010122919 A1 WO 2010122919A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetoresistive element
magnetic
magnetic layer
insulating
Prior art date
Application number
PCT/JP2010/056564
Other languages
English (en)
French (fr)
Inventor
修二 前川
秀人 安藤
和彦 今井
雅之 尾花
浩太 朝妻
文人 小池
一郎 徳永
昌廣 川村
武也 猪俣
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2011510288A priority Critical patent/JP5223001B2/ja
Publication of WO2010122919A1 publication Critical patent/WO2010122919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Definitions

  • the present invention relates to a magnetic sensor provided with a plurality of magnetoresistive elements in which magnetization directions of pinned magnetic layers are opposite to each other.
  • a magnetic sensor provided with a bridge circuit configured using a plurality of magnetoresistive elements uses two types of the magnetoresistive elements having opposite electrical characteristics with respect to an external magnetic field in order to increase the output.
  • a GMR element a giant magnetoresistive element
  • the magnetization direction (P direction) of the pinned magnetic layer constituting the GMR element is one of the magnetoresistive element and the other magnetoresistive element.
  • the electrical characteristics can be reversed.
  • a magnetic sensor has been manufactured by the following method.
  • the same four magnetoresistance effect elements 2 to 5 are formed on the substrate 1. Further, terminal portions 2a, 2b to 5a, 5b are formed on both ends of each of the magnetoresistance effect elements 2 to 5.
  • the magnetoresistance effect elements 2 to 5 are GMR elements (giant magnetoresistance effect elements) having a basic structure of a laminated structure of antiferromagnetic layer / fixed magnetic layer / nonmagnetic layer / free magnetic layer.
  • the magnetization direction of the pinned magnetic layer constituting the GMR element is pinned in one direction.
  • the magnetization direction is made variable by the external magnetic field.
  • the pinned magnetic layer is magnetically pinned by an exchange coupling magnetic field (Hex) generated with the antiferromagnetic layer by heat treatment in a magnetic field.
  • Hex exchange coupling magnetic field
  • the substrate 1 is divided into chips, one chip 8 is inverted 180 degrees, and the chips 7 and 8 are placed on the common support substrate 6 (FIG. c)).
  • the magnetization direction (P direction) of the pinned magnetic layer of the magnetoresistance effect elements 2 and 3 provided on one chip 7 and the magnetoresistance effect element provided on the other chip 8 The magnetization directions (P direction) of the 4 and 5 fixed magnetic layers are opposite to each other. This makes it possible to reverse the electrical characteristics of the magnetoresistive elements 2 and 3 and the electrical characteristics of the magnetoresistive elements 4 and 5 with respect to the external magnetic field.
  • the supporting substrate 6 shown in FIG. 6C is provided with an input electrode, a ground electrode, and an output electrode (not shown), and terminal portions 2a, 2b to 5a, 5b connected to the respective magnetoresistance effect elements 2 to 5
  • the bridge circuit can be configured only by, for example, wire bonding between the and each electrode. Therefore, in addition to the complexity of the manufacturing process requiring wire bonding, an extra resistance is added to the bridge circuit in addition to the resistance of the magnetoresistance effect elements 2 to 5, noise is easily superimposed, and the midpoint potential also varies. It is likely to occur and cause a decrease in detection accuracy.
  • the present invention is intended to solve the above-mentioned conventional problems, and in particular, to provide a magnetic sensor capable of adjusting the magnetization directions of fixed magnetic layers of a plurality of magnetoresistance effect elements in a single chip configuration antiparallel. To aim.
  • the present invention is a magnetic sensor provided with a magnetoresistive effect element,
  • the lower magnetoresistive element and the upper magnetoresistive element are stacked on the same substrate via the insulating intermediate layer,
  • the lower magnetoresistive element and the upper magnetoresistive element both have a fixed magnetic layer whose magnetization direction is fixed, and an external magnetic field laminated on the fixed magnetic layer via a nonmagnetic layer so that the magnetization direction is the same.
  • the layer configurations of the pinned magnetic layer constituting the lower magnetoresistive element and the pinned magnetic layer constituting the upper magnetoresistive element are different,
  • the magnetization direction of the contact layer of the pinned magnetic layer forming the lower magnetoresistive element with the nonmagnetic layer and the magnetization direction of the nonmagnetic layer of the pinned magnetic layer forming the upper magnetoresistive element It is characterized in that the magnetization direction of the contact layer is antiparallel.
  • the “contact layer with nonmagnetic layer” refers to the magnetic layer in contact with the nonmagnetic layer among the plurality of magnetic layers when the fixed magnetic layer has a laminated ferrimagnetic structure, and the fixed magnetic layer is magnetic.
  • the entire pinned magnetic layer corresponds to the contact layer.
  • the magnetic sensor can be configured as one chip, which can promote the miniaturization of the magnetic sensor, reduce the manufacturing variation, further increase the number of devices to be taken, and reduce the manufacturing cost.
  • the structure of the pinned magnetic layer is changed between the lower magnetoresistance effect element and the upper magnetoresistance effect element, so that the lower magnetoresistance effect can be obtained by one heat treatment in a magnetic field.
  • the magnetization direction of the pinned magnetic layer of the element can be antiparallel to the magnetization direction of the pinned magnetic layer of the upper magnetoresistance effect element.
  • both the lower magnetoresistive element and the upper magnetoresistive element have a laminated ferri structure
  • the number of magnetic layers constituting the fixed magnetic layer of either the lower magnetoresistive element or the upper magnetoresistive element is an odd number, and the number of magnetic layers constituting the other fixed magnetic layer Is preferably an even number.
  • the number of the magnetic layers constituting the fixed magnetic layer of either the lower magnetoresistive element or the upper magnetoresistive element is 3, and the magnetic layer constituting the other fixed magnetic layer More preferably, the number of is two. This makes it possible to weaken the influence of the leakage magnetic field from the pinned magnetic layer to the free magnetic layer while minimizing the element height of each magnetoresistance effect element, and the detection accuracy can be improved. Also, the magnetization fixing force of the pinned magnetic layer can be strengthened.
  • the surface of the insulating intermediate layer is planarized, and the upper magnetoresistive element is formed on the planarized surface of the insulating intermediate layer.
  • the upper side magnetoresistance effect element can be formed in a predetermined shape with high accuracy.
  • a plurality of the lower magnetoresistive elements, a plurality of the upper magnetoresistive elements, an input electrode, a ground electrode, a first output electrode, and a plurality of the lower magnetoresistive elements are provided in the same plane of the substrate. It is preferable that two output electrodes are formed, and the lower magnetoresistive element and the upper magnetoresistive element are connected to each electrode to form a bridge circuit.
  • the bridge circuit can be formed in one chip, noise superposition can be suppressed and detection accuracy can be improved.
  • the plurality of lower magnetoresistive elements and the plurality of upper magnetoresistive elements are juxtaposed in the X direction in plan view, and the X direction is formed via the magnetoresistive element.
  • the input electrode and the ground electrode are juxtaposed in the X direction at one of both side positions in the Y direction orthogonal to the first, and the first output electrode and the second output electrode in the X direction on the other. It is preferred that they be juxtaposed.
  • the element lengths of the respective magnetoresistive elements can be easily adjusted to be the same, and the midpoint potential of the bridge circuit can be easily adjusted with high accuracy.
  • the lead-out length from the magnetoresistive element to each electrode can be reduced, which can further contribute to the miniaturization of the magnetic sensor.
  • the lower magnetoresistive element formed by extending the electrode connected to both the lower magnetoresistive element and the upper magnetoresistive element from the lower magnetoresistive element.
  • a laminated portion in which an upper laminated film having the same layer configuration as the upper magnetoresistive effect element formed extending from the upper magnetoresistive effect element and the lower laminated film having the same layer configuration as the same as the above is laminated via the insulating intermediate layer.
  • the conductive film has a concave portion which is exposed from the side surface of the upper laminated film to the lower laminated film. Are preferably electrically connected. Thereby, the stability of the electrical connection can be improved with a simple structure.
  • the insulating intermediate layer is laminated in order of the first insulating layer, the second insulating layer, and the third insulating layer from the bottom, and the first insulating layer is an Al 2 O 3 layer, the second Preferably, the insulating layer is formed of SiO 2 or SiN, and the third insulating layer is formed of Al 2 O 3 .
  • the thickness of the second insulating layer is preferably 5,000 ⁇ or more and 20,000 ⁇ or less.
  • the thickness of the second insulating layer is more preferably 10000 ⁇ or more and 15000 ⁇ or less.
  • the magnetic sensor can be configured as one chip, which can promote the miniaturization of the magnetic sensor, can reduce the manufacturing variation, further increase the number of pieces to be taken, and reduce the manufacturing cost. it can.
  • the structure of the pinned magnetic layer is changed between the lower magnetoresistance effect element and the upper magnetoresistance effect element, so that the lower magnetoresistance effect can be obtained by one heat treatment in a magnetic field.
  • the magnetization direction of the pinned magnetic layer of the element can be antiparallel to the magnetization direction of the pinned magnetic layer of the upper magnetoresistance effect element.
  • FIG. 3 (a) is a partially enlarged longitudinal sectional view of the magnetic sensor shown in FIG. 1 taken along the line B-B
  • FIG. 3 (b) is a partially enlarged longitudinal sectional view showing a modification of FIG. 3 (a) , 4 (a) and 4 (b) are enlarged longitudinal sectional views of the laminated structure of the lower magnetoresistive element and the upper magnetoresistive element
  • a circuit diagram of the magnetic sensor of the present embodiment A plan view showing a manufacturing process of a conventional magnetic sensor
  • FIG. 1 is a plan view of the magnetic sensor according to the present embodiment
  • FIG. 2 is a partially enlarged longitudinal sectional view of the magnetic sensor shown in FIG. 1 cut along the line AA
  • FIG. 3A is shown in FIG. 3 (b) is a partially enlarged longitudinal sectional view showing a modification of FIG. 3 (a)
  • FIG. 4 (a) (b) is a partially enlarged longitudinal sectional view in which the magnetic sensor is cut along the line B-B.
  • FIG. 5 is an enlarged vertical sectional view of a laminated structure of a lower magnetoresistive element and an upper magnetoresistive element
  • FIG. 5 is a circuit diagram of a magnetic sensor according to the present embodiment.
  • two lower magnetoresistive elements 13 and 14 and two upper magnetoresistive elements 15 and 16 are provided on the same substrate 11. It is laminated via an insulating interlayer.
  • the insulating base layer 12 is formed on the substrate 11, and the lower magnetoresistive elements 13 and 14 are formed on the insulating base layer 12.
  • the upper magnetoresistive elements 15 and 16 are formed on the planarized surface 17 a of the insulating intermediate layer 17.
  • the upper magnetoresistive elements 15 and 16 are covered with a protective layer 18.
  • the insulating base layer 12 is formed of, for example, Al 2 O 3 with a film thickness of about 1000 ⁇ .
  • the insulating interlayer 17, from the bottom, for example, film thickness and the Al 2 O 3 layer of about 1000 ⁇ is, the thickness of the SiO 2 layer of about 5000 ⁇ ⁇ 20000 ⁇ or SiN layer, the film thickness of about 1000 ⁇ Al 2 O It is formed in a laminated structure with three layers.
  • the insulating intermediate layer 17 preferably has a three-layer structure as described above.
  • the first insulating layer, the second insulating layer, and the third insulating layer are stacked in this order from the bottom, and the Al 2 O 3 layer that constitutes the first insulating layer oxidizes the lower magnetoresistive elements 13 and 14.
  • the SiO 2 layer or the SiN layer constituting the second insulating layer electrically separates the lower magnetoresistive elements 13 and 14 from the upper magnetoresistive elements 15 and 16 and a film necessary for ESD resistance is sufficient.
  • the Al 2 O 3 layer constituting the third insulating layer is provided for the purpose of obtaining the stability of the GMR characteristics of the upper magnetic detection elements 15 and 16.
  • the film thickness of the second insulating layer needs to be 5000 ⁇ or more, more preferably 10000 ⁇ or more.
  • the film thickness of the second insulating layer is too thick, the film forming process and the etching process time for the upper and lower contacts of the electrode become long, so the thickness is preferably 20000 ⁇ or less, particularly preferably 15000 ⁇ or less.
  • the protective layer 18 is formed of an Al 2 O 3 layer or an SiO 2 layer of about 2000 ⁇ .
  • the above-described insulation configuration is merely an example. Although the inorganic insulating material is used above, an organic insulating material can also be used.
  • the upper magnetoresistive elements 15 and 16 are spaced apart in the X direction.
  • the upper magnetoresistive elements 15 and 16 are formed in a meander shape.
  • the lower magnetoresistive elements 13 and 14 are formed in a meander shape so as to overlap with the upper magnetoresistive elements 15 and 16 via the insulating intermediate layer 17.
  • the upper magnetoresistive elements 15 and 16 are formed.
  • the portion of the side of the surface that extends into the XY plane is indicated by a dotted line.
  • the first output electrode 20 and the second output electrode 21 are arranged at intervals in the X direction on the Y 1 side of the magnetoresistive elements 13 to 16 in the drawing.
  • the left end 15 a of the upper magnetoresistive element 15 is extended to the position of the first output electrode 20 and connected to the first output electrode 20.
  • the right end 13 a of the lower side magnetoresistive element 13 is extended to the position of the first output electrode 20 and connected to the first output electrode 20.
  • the left end 16 a of the upper magnetoresistive element 16 is extended to the position of the second output electrode 21 and connected to the second output electrode 21.
  • the right end 14 a of the lower magnetoresistance effect element 14 is extended to the position of the second output electrode 21 and connected to the second output electrode 21.
  • an input electrode 22 and ground electrodes 23 and 24 are disposed at intervals in the X direction on the Y 2 side of the magnetoresistive elements 13 to 16 in the drawing.
  • two ground electrodes 23 and 24 and one input electrode 22 are provided.
  • the input electrode 22 is disposed between the ground electrodes 23 and 24. Then, the right end 15 b of the upper magnetoresistive element 15 is extended to the position of the input electrode 22 and connected to the input electrode 22. The left end 14 b of the lower magnetoresistance effect element 14 is extended to the position of the input electrode 22 and connected to the input electrode 22.
  • the left end 13b of the lower magnetoresistance effect element 13 is extended to the position of the ground electrode 23 on the X2 side and connected to the ground electrode 23.
  • the right end portion 16 b of the upper side magnetoresistance effect element 16 is extended to the position of the ground electrode 24 on the side of the illustration X 1 and connected to the ground electrode 24.
  • FIG. 3A is a longitudinal cross section of the input electrode 22.
  • the conductive layer 25 plated with, for example, Au is provided on the input electrode 22, and the exposed surface 25a of the conductive layer 25 is the electrode surface.
  • the conductive layer 25 is provided substantially at the center of the input electrode 22, and around the conductive layer 25, a lower lamination having the same configuration as the lower magnetoresistive elements 13 and 14 is provided.
  • a laminated portion 32 of the film 26 and the upper laminated film 27 having the same configuration as the upper magnetoresistive elements 15 and 16 is provided on the lower laminated film 26 with the insulating intermediate layer 17 interposed therebetween.
  • a method of manufacturing the structure of FIG. 3A will be described.
  • the lower magnetoresistance effect element is formed on the entire surface of the substrate 11 by sputtering or the like, and the lower magnetoresistance effect elements 13 and 14 having the meander shape are formed using the etching method.
  • a film 26 is formed in the formation region of each of the electrodes 20-24. At this time, it is not essential to form the lower laminated film 26 in the formation region of the ground electrode 24.
  • the ground electrode 24 is connected only to the upper magnetoresistive element 16.
  • the lower laminated film 26 formed on the first output electrode 20, the second output electrode 21, the ground electrode 23, and the input electrode 22 is integrally formed with the lower magnetoresistive elements 13 and 14.
  • the insulating intermediate layer 17 is formed on the lower magnetoresistive effect elements 13 and 14 and the lower laminated film 26, and the surface of the insulating intermediate layer 17 is planarized, and then the upper side on the insulating intermediate layer 17.
  • the magnetoresistive effect elements 15 and 16 are formed, and the upper laminated film 27 is formed in the formation region of each of the electrodes 20 to 24.
  • the upper magnetoresistive element is formed on the entire surface of the substrate 11 by sputtering or the like, and the upper magnetoresistive elements 15 and 16 of meander shape are formed using the etching method. It forms in the formation area of 20-24. At this time, it is not essential to form the upper laminated film 27 in the formation region of the ground electrode 23.
  • the ground electrode 23 is connected only to the lower magnetoresistive element 13.
  • the upper laminated film 27 formed on the first output electrode 20, the second output electrode 21, the ground electrode 24, and the input electrode 22 is integrally formed with the upper magnetoresistive elements 15 and 16.
  • the lower laminated film 26, the insulating intermediate layer 17, and the upper laminated film 27 in the approximate center of each of the electrodes 20 to 24 are removed by etching to form a recess 33.
  • the conductive base layer 28 is formed on the upper surface of the conductive layer 28 by using, for example, a sputtering method.
  • the recess 18a communicating with the conductive base layer 28 is formed, and the conductive layer 25 is formed by plating, for example, in the recess 18a.
  • the electrical contact stability between each of the electrodes 20 to 24 and the lower magnetoresistive elements 13 and 16 and the upper magnetoresistive elements 15 and 16 is improved. It can be done. Moreover, between the lower magnetoresistive elements 13 and 14 and the conductive layer 25, through the conductive underlayer 28 and the lower laminated film 26, between the upper magnetoresistive elements 15 and 16 and the conductive layer 25, and the conductive underlayer 28 and The upper laminated film 27 can be electrically connected to realize a simple and reliable connection structure.
  • the lower laminated film 26 and the insulating intermediate layer 17 are formed, and the lower laminated film 26 and the insulating intermediate layer 17 in the substantially central region of each of the electrodes 20 to 24 are etched.
  • the first conductive layer 30 of Au, Al or the like is formed in the recess 29 where the insulating base layer 12 is exposed, and then, after the upper laminated film 27 is formed, the surface of the first conductive layer 30 is formed.
  • a second conductive layer 31 plated with Au or the like is formed on the surface of the upper laminated film 27.
  • the cross-sectional structure of FIG. 3 is preferably applied to the input electrode 22 and the output electrodes 20 and 21 to which both the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 are connected.
  • FIG. 4 (a) is a longitudinal sectional view showing, for example, a laminated structure of lower magnetoresistive elements 13 and 14.
  • FIG. 4 (b) is a longitudinal sectional view showing, for example, a laminated structure of upper magnetoresistive elements 15 and 16. It is a front view.
  • the lower magnetoresistance effect elements 13 and 14 are, from the bottom, the underlayer 40, the antiferromagnetic layer 41, the pinned magnetic layer 42, the nonmagnetic layer 43, the free magnetic layer 44, and the protective layer. It is a giant magnetoresistive element (GMR element) stacked in the order of 45.
  • GMR element giant magnetoresistive element
  • the antiferromagnetic layer 41 is formed of an antiferromagnetic material such as an Ir-Mn alloy (iridium-manganese alloy).
  • the nonmagnetic layer 43 is Cu (copper) or the like.
  • the free magnetic layer 44 is formed of a soft magnetic material such as a Ni-Fe alloy (nickel-iron alloy).
  • the protective layer 45 is Ta (tantalum) or the like.
  • the pinned magnetic layers 42 of the lower magnetoresistance effect elements 13 and 14 are stacked in the order of the first magnetic layer 46, the nonmagnetic intermediate layer 47, and the second magnetic layer 48 from the bottom. It is a ferri structure.
  • the first magnetic layer 46 and the second magnetic layer 48 are both formed of a Co—Fe alloy, and the nonmagnetic intermediate layer 47 is formed of Ru (ruthenium).
  • the heat treatment in the magnetic field between the antiferromagnetic layer 41 and the first magnetic layer 46 generates an exchange coupling magnetic field (Hex) by heat treatment, and the RKKY interaction occurs between the first magnetic layer 46 and the second magnetic layer 48,
  • the magnetization directions of the first magnetic layer 46 and the second magnetic layer 48 are fixed antiparallel to each other.
  • the magnetization direction (P1 direction) of the first magnetic layer 46 is the X2 direction
  • the magnetization direction (P2 direction) of the second magnetic layer 48 is the X1 direction.
  • “the magnetization direction of the pinned magnetic layer 42” refers to the magnetization direction (P2 direction) of the second magnetic layer 48 in contact with the nonmagnetic layer 43.
  • the total thickness of the lower magnetoresistive elements 13 and 14 shown in FIG. 4A is about 200 to 300 ⁇ .
  • the upper side magnetoresistance effect elements 15 and 16 are, from the bottom, the base layer 40, the antiferromagnetic layer 41, the pinned magnetic layer 49, the nonmagnetic layer 43, the free magnetic layer 44 and the protective layer. It is a giant magnetoresistive element (GMR element) stacked in the order of 45.
  • GMR element giant magnetoresistive element
  • the pinned magnetic layer 49 of the upper magnetoresistive effect elements 15 and 16 has the first magnetic layer 50, the nonmagnetic intermediate layer 51, the second magnetic layer 52, the nonmagnetic intermediate layer 53 from the bottom.
  • the third magnetic layer 54 in the order of the laminated ferrimagnetic structure.
  • the first magnetic layer 50, the second magnetic layer 52, and the third magnetic layer 54 are all formed of a Co—Fe alloy
  • the nonmagnetic intermediate layers 51 and 53 are formed of Ru (ruthenium).
  • the heat treatment in the magnetic field between the antiferromagnetic layer 41 and the first magnetic layer 50 generates an exchange coupling magnetic field (Hex) by the heat treatment in the magnetic field, and between the first magnetic layer 50 and the second magnetic layer 52, and the second magnetic layer 52 and the second
  • the RKKY interaction occurs between the three magnetic layers 54, and the magnetization directions of the magnetic layers facing each other via the nonmagnetic intermediate layers 51 and 53 are fixed in an antiparallel state.
  • the magnetization direction (P1 direction) of the first magnetic layer 50 and the third magnetic layer 54 is the X2 direction
  • the magnetization direction (P2 direction) of the second magnetic layer 48 is the X1 direction. It is.
  • the “magnetization direction of the pinned magnetic layer 49” in FIG. 4B is the magnetization direction (P3 direction) of the third magnetic layer 54 in contact with the nonmagnetic layer 43.
  • the total thickness of the upper magnetoresistance effect elements 15 and 16 shown in FIG. 4B is about 200 to 300 ⁇ as in the lower magnetoresistance effect elements 13 and 14, but from the lower magnetoresistance effect elements 13 and 14. Also, as the number of layers is large, the total thickness is slightly thicker than the lower magnetoresistance effect elements 13 and 14 (a few ⁇ to several tens ⁇ thick).
  • the magnetization direction (P2 direction) of the pinned magnetic layer 42 of the lower magnetoresistance elements 13 and 14 and the magnetization direction of the pinned magnetic layer 49 of the upper magnetoresistance elements 15 and 16 are shown.
  • the magnetization direction (P3 direction) is antiparallel.
  • the magnetization direction of the free magnetic layer 44 fluctuates due to the external magnetic field. For example, when an external magnetic field acts in the X1 direction, the magnetization of the free magnetic layer 44 is oriented in the X1 direction. At this time, since the magnetization direction (P2 direction) of the pinned magnetic layer 42 of the lower magnetoresistive elements 13 and 14 is the X1 direction, the magnetization direction of the free magnetic layer 44 and the magnetization direction of the pinned magnetic layer 42 become parallel. The electric resistance value of the lower side magnetoresistive elements 13 and 14 becomes the minimum value.
  • the magnetization direction (P3 direction) of the pinned magnetic layer 42 of the upper magnetoresistive elements 15 and 16 is the X2 direction
  • the magnetization direction of the free magnetic layer 44 and the magnetization direction of the pinned magnetic layer 42 become antiparallel.
  • the electric resistance value of the upper side magnetoresistive elements 15 and 16 becomes the maximum value. Since the magnetization directions of the pinned magnetic layers of the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 are antiparallel as described above, the electrical characteristics of the lower magnetoresistive elements 13 and 14 and the upper The electrical characteristics of the magnetoresistance effect elements 15 and 16 are reversed.
  • the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 constitute a bridge circuit.
  • the output from the first output electrode 20 and the second output electrode 21 of the bridge circuit shown in FIG. 5 is the variation of the electrical resistance value of the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16. Change based on The first output electrode 20 and the second output electrode 21 are connected to a differential amplifier of an integrated circuit (not shown), whereby a differential output can be obtained.
  • the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 are stacked on the same substrate 11 with the insulating intermediate layer 17 interposed therebetween.
  • the magnetic sensor 10 can be configured by one chip. Thereby, the miniaturization of the magnetic sensor 10 can be promoted. Further, compared to the case where the magnetic sensor 10 is configured of a plurality of chips as in the prior art, it is not necessary to position each chip and so on, so that manufacturing variations can be reduced, the number can be further increased, and the manufacturing cost can be suppressed. it can.
  • the structure of the pinned magnetic layers 42 and 49 is different between the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 so that a single magnetic field can be obtained.
  • the magnetization direction (P2 direction) of the pinned magnetic layer 42 of the lower magnetoresistance effect elements 13 and 14 and the magnetization direction (P3 direction) of the pinned magnetic layer 49 of the upper magnetoresistance effect elements 15 and 16 are It can be antiparallel.
  • the heat treatment in a magnetic field is performed to generate an exchange coupling magnetic field (Hex) between the antiferromagnetic layer 41 and the first magnetic layers 46 and 50 as described above.
  • Hex exchange coupling magnetic field
  • the pinned magnetic layers 42 and 49 of the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 both have a laminated ferrimagnetic structure.
  • Three magnetic layers 50, 52, 54 constituting the pinned magnetic layer 49 of the upper magnetoresistive elements 15, 16 are provided.
  • the pinned magnetic layer constituting the upper magnetoresistance effect elements 15 and 16 shown in FIG. 49 can also be formed in a single layer structure of one magnetic layer. Also by this, the magnetization direction (P2 direction) of the pinned magnetic layer 42 of the lower magnetoresistive elements 13 and 14 and the magnetization direction of the pinned magnetic layer 49 of the upper magnetoresistive elements 15 and 16 are made antiparallel. Becomes possible.
  • the pinned magnetic layer has a laminated ferri structure shown in FIGS. 4A and 4B rather than a single layer (or laminated) structure of the magnetic layer, the magnetic field leaking from the pinned magnetic layers 42 and 49 to the free magnetic layer 44 It is preferable because it can be made smaller and the detection accuracy can be improved. Moreover, the magnetization fixed force of a fixed magnetic layer can be strengthened by setting it as a laminated ferri structure.
  • the number of magnetic layers constituting the pinned magnetic layer is not limited, as shown in FIGS. 4 (a) and 4 (b), two magnetic layers 46 and 48 of one pinned magnetic layer 42 formed in a laminated ferri structure are used.
  • the number of magnetic layers 50, 52, 54 of the other pinned magnetic layer 42 of the laminated ferrimagnetic structure is set to three, when both of the pinned magnetic layers have a laminated ferrimagnetic structure, one of the magnetic layers has a minimum number of magnetic layers.
  • the magnetization direction (P2 direction) of the pinned magnetic layer 42 and the magnetization direction (P3 direction) of the other pinned magnetic layer 49 can be made antiparallel.
  • the structure of FIG. 4A may be the layer structure of the upper magnetoresistive elements 15 and 16 and the structure of FIG. 4B may be the layer structure of the lower magnetoresistive elements 13 and 14.
  • the surface of the insulating intermediate layer 17 is formed as a planarized surface 17a by planarization. Thereby, it is possible to form the upper magnetoresistive elements 15 and 16 formed on the insulating intermediate layer 17 with a predetermined shape with high accuracy.
  • a plurality of lower magnetoresistive elements 13 and 14 and upper magnetoresistive elements 15 and 16, an input electrode 22, and a ground electrode are provided in the same plane of the substrate 11. 23 and 24, a first output electrode 20, and a second output electrode 21 are formed. Then, as shown in FIGS. 1 and 5, the lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 are connected to the electrodes 20 to 24 to form a bridge circuit. .
  • the miniaturization of the magnetic sensor 10 can be effectively promoted. Also, by being able to form a bridge circuit in one chip, excess resistance can not easily get on the bridge circuit compared to the case where the chips are connected by wire bonding to form a bridge circuit, noise superposition can be suppressed, and detection accuracy Can be effectively improved.
  • the plurality of lower magnetoresistive elements 13 and 14 and the upper magnetoresistive elements 15 and 16 are juxtaposed in the X direction.
  • the input electrode 22 and the ground electrodes 23 and 24 are provided on one side (Y 2 side in FIG. 1) of the Y direction orthogonal to the X direction through the magnetoresistive elements 13 to 16.
  • the first output electrode 20 and the second output electrode 21 are arranged in parallel in the X direction on the other side (Y1 side in FIG. 1) in the Y direction.
  • the width dimensions T1 and T2 in the X direction of the first output electrode 20 and the second output electrode 21 are substantially the same as the width dimensions in the X direction of the magnetoresistive elements 13-16. is there.
  • the first output electrode 20 is provided at a position facing the lower magnetoresistive element 13 and the upper magnetoresistive element 15 in the Y1-Y2 direction.
  • the second output electrode 21 is provided at a position facing the lower magnetoresistive element 14 and the upper magnetoresistive element 16 in the Y1-Y2 direction.
  • the tip portions 13a to 16a of one of the magnetoresistive elements 13 to 16 are extended in the Y1 direction by the gap between each of the magnetoresistive elements 13 to 15 and the output electrodes 20, 21 so that each magnetoresistive effect can be obtained.
  • the elements 13 to 15 and the output electrodes 20 and 21 are connected.
  • the input electrode 22 is provided at a position where the tip 15b of the upper magnetoresistance effect element 15 and the tip 14b of the lower magnetoresistance effect element 14 face each other in the Y1-Y2 direction.
  • the ground electrode 23 is provided at a position facing the tip 13b of the lower magnetoresistance effect element 13 in the Y1-Y2 direction
  • the ground electrode 24 is provided with the tip 16b of the upper magnetoresistance effect element 16 and Y1 ⁇ . It is provided at the opposite position in the Y2 direction.
  • the tip portions 13b to 16b of the magnetoresistance effect elements 13 to 16 are extended in the Y2 direction by gaps between the magnetoresistance effect elements 13 to 16 and the input electrode 22 and the ground electrodes 23 and 24, respectively.
  • the resistance effect elements 13 to 16 are connected to the input electrode 22 and the ground electrodes 23 and 24.
  • the magnetoresistance effect elements 13 to 16 are formed in substantially the same meander shape, and as shown in FIG. 1, the magnetoresistance effect elements 13 to 16 and the electrodes 20 to 24 are arranged.
  • the extension lengths of the tip portions 13a, 13b to 16a, 16b of the magnetoresistance effect elements 13 to 16 to the electrodes 20 to 24 can be made substantially the same. Therefore, the element lengths of the magnetoresistive effect elements 13 to 16 can be easily matched to each other, and the midpoint potential of the bridge circuit can be easily adjusted with high accuracy. Further, the extension lengths of the tip portions 13a, 16a to 13b, 16b from the magnetoresistance effect elements 13 to 16 to the electrodes 20 to 24 can be reduced, and the miniaturization of the magnetic sensor 1 can be promoted more effectively.
  • the electrode denoted by reference numeral 22 shown in FIG. 1 may be a ground electrode, and the electrodes denoted by reference numerals 23 and 24 may be input electrodes.

Abstract

【課題】 特に、1チップ構成でも複数の磁気抵抗効果素子の固定磁性層の磁化方向を反対方向にできる磁気センサを提供することを目的とする。 【解決手段】 同一基板11に、下側磁気抵抗効果素子13,14と、上側磁気抵抗効果素子15,16とが絶縁中間層を介して積層されている。下側磁気抵抗効果素子及び上側磁気抵抗効果素子はともに巨大磁気抵抗効果素子(GMR素子)である。下側磁気抵抗効果素子13,14の固定磁性層42は磁性層46,48が2つの積層フェリ構造で、上側磁気抵抗効果素子15,16は磁性層50,52,54が3つの積層フェリ構造である。これにより1チップ構成でも1回の磁場中熱処理により、下側磁気抵抗効果素子の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子の前記固定磁性層の磁化方向とを反平行状態にできる。

Description

磁気センサ
 本発明は、固定磁性層の磁化方向が反対方向の複数の磁気抵抗効果素子を備える磁気センサに関する。
 複数の磁気抵抗効果素子を用いて構成されたブリッジ回路を備える磁気センサは、出力を大きくすべく、外部磁場に対して逆の電気特性となる2種類の前記磁気抵抗効果素子を使用する。磁気抵抗効果素子としてGMR素子(巨大磁気抵抗効果素子)を用いた場合、GMR素子を構成する固定磁性層の磁化方向(P方向)を一方の磁気抵抗効果素子と他方の磁気抵抗効果素子とで反対にすれば、電気特性を逆にすることが出来る。従来では、次のような方法で磁気センサを製造していた。
 まず図6(a)に示すように、基板1上に同形の4つの磁気抵抗効果素子2~5を形成する。また個々の磁気抵抗効果素子2~5の両端には端子部2a,2b~5a,5bを形成する。
 磁気抵抗効果素子2~5は、反強磁性層/固定磁性層/非磁性層/フリー磁性層の積層構造を基本構造とするGMR素子(巨大磁気抵抗効果素子)である。GMR素子を構成する固定磁性層は磁化方向が一方向に固定される。一方、フリー磁性層は、磁化方向が外部磁場により変動可能にされている。
 固定磁性層は、磁場中熱処理により反強磁性層との間で生じる交換結合磁界(Hex)により磁化固定される。
 図6(a)のように、同形状の4つの磁気抵抗効果素子2~5を形成した後、磁場中熱処理を施して、全ての磁気抵抗効果素子2~5の固定磁性層を同じ磁化方向(P方向)に固定する。
 続いて、図6(b)の工程では、基板1を分断してチップ化し、一方のチップ8を180度反転させ、各チップ7,8を共通の支持基板6上に設置する(図6(c))。
 図6(c)に示すように、一方のチップ7に設けられた磁気抵抗効果素子2,3の固定磁性層の磁化方向(P方向)と、他方のチップ8に設けられた磁気抵抗効果素子4,5の固定磁性層の磁化方向(P方向)は反対方向となる。これにより外部磁場に対し、磁気抵抗効果素子2,3の電気特性と、磁気抵抗効果素子4,5の電気特性を逆にすることが出来る。
特開2007-242989号公報
 しかしながら、従来では、各基板1a,1b上に磁気抵抗効果素子2,3(4,5)が2つずつ設けられたチップ7,8を2つ必要とし、各チップ7,8を支持基板6に設置するため磁気センサが大型化する問題があった。
 また従来では、基板1を切断した後、一方のチップ8を180度反転させて、さらに各チップ7,8を支持基板に貼り付ける(ダイボンディング)という一連の作業工程が必要になり、また1つの基板1から製造できる取り個数が少なくなり製造工程の煩雑化及び製造コストの上昇が問題となった。また製造ばらつきが生じやすく磁気センサの検出精度にもばらつきが生じやすくなった。
 また図6(c)に示す支持基板6には図示しない入力電極、グランド電極、出力電極が設けられており、各磁気抵抗効果素子2~5に接続された端子部2a,2b~5a,5bと各電極間を例えばワイヤボンディングして初めてブリッジ回路を構成できる。このためワイヤボンディングを必要とする製造工程の煩雑さに加え、磁気抵抗効果素子2~5の抵抗以外に余分な抵抗がブリッジ回路に加味され、ノイズが重畳されやすく、また中点電位もばらつきが生じやすくなり検出精度の低下を招きやすかった。
 そこで本発明は、上記従来の課題を解決するためのものであり、特に、1チップ構成で複数の磁気抵抗効果素子の固定磁性層の磁化方向を反平行に調整できる磁気センサを提供することを目的とする。
 本発明は、磁気抵抗効果素子を備えた磁気センサであって、
 同一基板に、下側磁気抵抗効果素子と、上側磁気抵抗効果素子とが絶縁中間層を介して積層され、
 前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子はともに、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層された外部磁場を受けて磁化方向が変動するフリー磁性層と、前記固定磁性層の前記非磁性層とは反対側の面に形成され、前記固定磁性層との間で磁場中熱処理により交換結合磁界を生じさせる反強磁性層と、を有する積層構造を備えており、
 前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の少なくともどちらか一方の前記固定磁性層は、複数の磁性層と前記磁性層の間に介在する非磁性中間層との積層フェリ構造で構成されており、前記下側磁気抵抗効果素子を構成する固定磁性層と前記上側磁気抵抗効果素子を構成する固定磁性層の層構成が異なっており、
 前記下側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向と、前記上側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向とが反平行になっていることを特徴とするものである。
 ここで「非磁性層との当接層」とは、固定磁性層が積層フェリ構造であるときは、複数の磁性層のうち、非磁性層に当接する磁性層を指し、固定磁性層が磁性層の単層構造、あるいは磁性層の積層構造であるときは、固定磁性層全体が前記当接層に該当する。
 本発明では1チップにて構成でき、これにより、磁気センサの小型化を促進でき、また製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。しかも本発明では、1チップ構成でも、固定磁性層の構造を、下側磁気抵抗効果素子と上側磁気抵抗効果素子とで変更することで、1回の磁場中熱処理にて、下側磁気抵抗効果素子の固定磁性層の磁化方向と、上側磁気抵抗効果素子の固定磁性層の磁化方向とを反平行にすることが出来る。
 また、前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子がともに積層フェリ構造であり、
 前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が奇数であり、他方の前記固定磁性層を構成する前記磁性層の数が偶数であることが好ましい。また、前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が3であり、他方の前記固定磁性層を構成する前記磁性層の数が2であることがより好ましい。これにより、各磁気抵抗効果素子の素子高さを最小限に抑えつつ、固定磁性層からフリー磁性層への漏れ磁界の影響を弱めることができ、検出精度を向上させることができる。また固定磁性層の磁化固定力を強めることができる。
 また本発明では、前記絶縁中間層の表面が平坦化処理されており、前記絶縁中間層の平坦化面上に前記上側磁気抵抗効果素子が形成されていることが好ましい。これにより、上側磁気抵抗効果素子を高精度に所定形状に形成することができる。
 また本発明では、前記基板の同一面内に、複数の前記下側磁気抵抗効果素子と、複数の前記上側磁気抵抗効果素子と、入力電極と、グランド電極と、第1の出力電極と、第2の出力電極とが形成され、前記下側磁気抵抗効果素子と前記上側磁気抵抗効果素子とが各電極に接続されてブリッジ回路を構成していることが好ましい。このように1チップ内に磁気抵抗効果素子と共に各種の電極を配置できるため、磁気センサの小型化をより効果的に促進できる。また、1チップ内でブリッジ回路を構成できることで、ノイズ重畳を抑制でき、検出精度を向上できる。
 また本発明では、平面視にて、複数の前記下側磁気抵抗効果素子及び複数の前記上側磁気抵抗効果素子はX方向に並設されており、前記磁気抵抗効果素子を介して、前記X方向に直交するY方向の両側位置の一方に、前記入力電極と前記グランド電極とがX方向に並設され、他方に、前記第1の出力電極と、前記第2の出力電極とがX方向に並設されていることが好ましい。これにより各磁気抵抗効果素子の素子長さを同じに合わせ易く、ブリッジ回路の中点電位を高精度に調整しやすい。また磁気抵抗効果素子から各電極までの引き出し長さを小さくでき、より磁気センサの小型化に貢献できる。
 また本発明では、少なくとも前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の双方と接続される電極は、前記下側磁気抵抗効果素子から延出して形成された前記下側磁気抵抗効果素子と同じ層構成の下側積層膜及び前記上側磁気抵抗効果素子から延出して形成された前記上側磁気抵抗効果素子と同じ層構成の上側積層膜が前記絶縁中間層を介して積層された積層部を有し、前記電極には、前記上側積層膜の側面から前記下側積層膜まで露出する凹部が設けられ、前記凹部内に埋め込まれた導電層と、前記上側積層膜及び前記下側積層膜とが電気的に接続されていることが好ましい。これにより、簡単な構造にて、電気接続の安定性を向上させることができる。
 本発明では、前記絶縁中間層は、下から第1の絶縁層、第2の絶縁層及び第3の絶縁層の順に積層され、前記第1の絶縁層はAl23層、前記第2の絶縁層は、SiO2層あるいはSiN層、前記第3の絶縁層は、Al23層で形成されることが好ましい。
 また本発明では、前記第2の絶縁層の膜厚は5000Å以上で20000Å以下であることが好ましい。前記第2の絶縁層の膜厚は10000Å以上で15000Å以下であることがより好ましい。
 本発明の磁気センサによれば、1チップにて構成でき、これにより、磁気センサの小型化を促進でき、また製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。しかも本発明では、1チップ構成でも、固定磁性層の構造を、下側磁気抵抗効果素子と上側磁気抵抗効果素子とで変更することで、1回の磁場中熱処理にて、下側磁気抵抗効果素子の固定磁性層の磁化方向と、上側磁気抵抗効果素子の固定磁性層の磁化方向とを反平行にすることが出来る。
本実施形態における磁気センサの平面図、 図1に示す磁気センサをA-A線に沿って切断した部分拡大縦断面図、 図3(a)は、図1に示す磁気センサをB-B線に沿って切断した部分拡大縦断面図、図3(b)は図3(a)の変形例を示す部分拡大縦断面図、 図4(a)(b)は、下側磁気抵抗効果素子及び上側磁気抵抗効果素子の積層構造を拡大縦断面図、 本実施形態の磁気センサの回路図、 従来の磁気センサの製造工程を示す平面図、
 図1は本実施形態における磁気センサの平面図、図2は、図1に示す磁気センサをA-A線に沿って切断した部分拡大縦断面図、図3(a)は、図1に示す磁気センサをB-B線に沿って切断した部分拡大縦断面図、図3(b)は図3(a)の変形例を示す部分拡大縦断面図、図4(a)(b)は、下側磁気抵抗効果素子及び上側磁気抵抗効果素子の積層構造を拡大縦断面図、図5は、本実施形態の磁気センサの回路図、である。
 本実施形態の磁気センサ10は、図1,図2に示すように、同一の基板11に、2つの下側磁気抵抗効果素子13,14と、2つの上側磁気抵抗効果素子15,16とが絶縁中間層を介して積層されている。
 図2に示すように、基板11上には絶縁下地層12が形成され、この絶縁下地層12の上に下側磁気抵抗効果素子13,14が形成されている。また、上側磁気抵抗効果素子15,16は絶縁中間層17の平坦化面17a上に形成される。図2に示すように上側磁気抵抗効果素子15,16上は保護層18で覆われている。ここで絶縁下地層12は例えば膜厚が1000Å程度のAl23で形成される。また、絶縁中間層17は、下から、例えば膜厚が1000Å程度のAl23層と、膜厚が5000Å~20000Å程度のSiO2層又はSiN層と、膜厚が1000Å程度のAl23層との積層構造で形成される。
 ここで、絶縁中間層17は、上記のように3層構造とすることが好ましい。下から第1の絶縁層、第2の絶縁層、第3の絶縁層の順に積層され、第1の絶縁層を構成するAl23層は、下側磁気抵抗効果素子13,14を酸化等から保護する。また第2の絶縁層を構成するSiO2層又はSiN層は、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16間を電気的に分離し且つ耐ESDに必要十分な膜厚を有する。また、第3の絶縁層を構成するAl23層は、上側磁気検出素子15,16のGMR特性の安定を得る目的のため設けられる。特に、ESD耐性を確保するために、第2の絶縁層の膜厚は5000Å以上で、更に好ましくは10000Å以上必要である。また、第2の絶縁層の膜厚は厚すぎると成膜プロセス及び電極の上下コンタクトのためのエッチングプロセス時間が長くなるため、20000Å以下、特に好ましくは15000Å以下とすることが好ましい。
 また保護層18は、2000Å程度のAl23層やSiO2層で形成される。なお上記の絶縁構成はあくまでも一例である。上記では無機絶縁材料を使用したが有機絶縁材料を用いることもできる。
 図1に示すように上側磁気抵抗効果素子15,16はX方向に間隔を空けて配置されている。上側磁気抵抗効果素子15,16はミアンダ形状で形成されている。下側磁気抵抗効果素子13,14は、絶縁中間層17を介して上側磁気抵抗効果素子15,16と重なるようにミアンダ形状で形成されており、図1では、上側磁気抵抗効果素子15,16の側面からX-Y平面にはみ出した部分を点線で示している。
 図1に示すように、磁気抵抗効果素子13~16の図示Y1側には第1の出力電極20と第2の出力電極21とがX方向に間隔を空けて配置されている。図1に示すように、上側磁気抵抗効果素子15の左側先端部15aが、第1の出力電極20の位置まで延ばされて前記第1の出力電極20に接続されている。また、下側磁気抵抗効果素子13の右側先端部13aが、第1の出力電極20の位置まで延ばされて前記第1の出力電極20に接続されている。また、上側磁気抵抗効果素子16の左側先端部16aが、第2の出力電極21の位置まで延ばされて前記第2の出力電極21に接続されている。また、下側磁気抵抗効果素子14の右側先端部14aが、第2の出力電極21の位置まで延ばされて前記第2の出力電極21に接続されている。
 図1に示すように、磁気抵抗効果素子13~16の図示Y2側には入力電極22と、グランド電極23,24とがX方向に間隔を空けて配置されている。図1の実施形態ではグランド電極23,24が2つ、入力電極22が1つである。
 図1に示すように、入力電極22は、グランド電極23,24の間に配置される。そして、上側磁気抵抗効果素子15の右側先端部15bが、入力電極22の位置まで延ばされて前記入力電極22に接続されている。また、下側磁気抵抗効果素子14の左側先端部14bが、入力電極22の位置まで延ばされて前記入力電極22に接続されている。
 また図1に示すように、下側磁気抵抗効果素子13の左側先端部13bが、図示X2側のグランド電極23の位置まで延ばされて前記グランド電極23に接続されている。また、上側磁気抵抗効果素子16の右側先端部16bが、図示X1側のグランド電極24の位置まで延ばされて前記グランド電極24に接続されている。
 図3(a)は入力電極22の縦断面である。図3(a)に示すように、入力電極22には、例えばAuでメッキ形成された導電層25が設けられ、導電層25の露出表面25aが電極表面となっている。図3(a)に示すように、導電層25は、入力電極22の略中央位置に設けられ、導電層25の周囲には、下側磁気抵抗効果素子13,14と同じ構成の下側積層膜26と、前記下側積層膜26の上に絶縁中間層17を介して、上側磁気抵抗効果素子15,16と同じ構成の上側積層膜27との積層部32が設けられる。図3(a)の構造の製造方法について説明する。
 例えばまず、下側磁気抵抗効果素子を基板11の面内全域にスパッタ法等で形成し、エッチング法を用いて、ミアンダ形状の下側磁気抵抗効果素子13,14を形成するとともに、下側積層膜26を各電極20~24の形成領域に形成する。このとき、下側積層膜26を、グランド電極24の形成領域に形成することは必須でない。グランド電極24は、上側磁気抵抗効果素子16とのみ接続されるためである。また、第1出力電極20、第2の出力電極21、グランド電極23及び入力電極22に形成される下側積層膜26については、各下側磁気抵抗効果素子13,14と一体形成する。
 そして、下側磁気抵抗効果素子13,14上及び下側積層膜26上に絶縁中間層17を形成し、絶縁中間層17の表面を平坦化処理した後、前記絶縁中間層17上に、上側磁気抵抗効果素子15,16を形成するとともに、上側積層膜27を、各電極20~24の形成領域に形成する。
 例えば上側磁気抵抗効果素子を基板11の面内全域にスパッタ法等で形成し、エッチング法を用いて、ミアンダ形状の上側磁気抵抗効果素子15,16を形成するとともに、上側積層膜27を各電極20~24の形成領域に形成する。このとき、上側積層膜27を、グランド電極23の形成領域に形成することは必須でない。グランド電極23は、下側磁気抵抗効果素子13とのみ接続されるためである。また、第1出力電極20、第2の出力電極21、グランド電極24及び入力電極22に形成される上側積層膜27については、各上側磁気抵抗効果素子15,16と一体形成する。
 続いて、エッチングにて、各電極20~24の略中央部分の下側積層膜26,絶縁中間層17及び上側積層膜27を除去して凹部33を形成する。そして、図3(a)に示すように、凹部33内に露出する上側積層膜27の上面から、上側積層膜27、絶縁中間層17及び下側積層膜26の側面、さらには絶縁下地層12の上面にかけて導電下地層28を例えばスパッタ法を用いて形成する。そして、その後に形成された保護層18に導電下地層28にまで通じる凹部18aを形成し、その凹部18a内に導電層25を例えばメッキ形成する。
 図3(a)に示す断面構造に形成することで、各電極20~24と、下側磁気抵抗効果素子13,16及び上側磁気抵抗効果素子15,16間の電気的な接触安定性を向上させることができる。しかも、下側磁気抵抗効果素子13,14と導電層25間を、導電下地層28及び下側積層膜26を通じて、上側磁気抵抗効果素子15,16と導電層25間を、導電下地層28及び上側積層膜27を通じて、電気的に接続でき簡単且つ確実な接続構造を実現できる。
 図3(b)に示す他の実施形態では、下側積層膜26及び絶縁中間層17まで形成し、各電極20~24の略中央領域の下側積層膜26及び絶縁中間層17をエッチングで除去した後、絶縁下地層12が露出した凹部29内にAuやAl等の第1の導電層30を形成し、続いて、上側積層膜27の形成後、第1の導電層30の表面から上側積層膜27の表面にかけて、Au等でメッキされた第2の導電層31を形成している。
 この実施形態でも、下側磁気抵抗効果素子13,14と導電層30,31間を、下側積層膜26を通じて、上側磁気抵抗効果素子15,16と導電層30,31間を、上側積層膜27を通じて、電気的に接続でき簡単且つ確実な接続構造を実現できる。
 図3の断面構造は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の双方が接続される入力電極22、出力電極20,21に好ましく適用される。
 図4(a)は、例えば下側磁気抵抗効果素子13,14の積層構造を示す縦断面図であり、図4(b)は、例えば上側磁気抵抗効果素子15,16の積層構造を示す縦断面図である。
 図4(a)に示すように、下側磁気抵抗効果素子13,14は、下から下地層40、反強磁性層41、固定磁性層42、非磁性層43、フリー磁性層44及び保護層45の順に積層された巨大磁気抵抗効果素子(GMR素子)である。
 反強磁性層41は、Ir-Mn合金(イリジウム-マンガン合金)などの反強磁性材料で形成されている。非磁性層43はCu(銅)などである。フリー磁性層44は、Ni-Fe合金(ニッケル-鉄合金)などの軟磁性材料で形成されている。保護層45はTa(タンタル)などである。
 図4(a)に示すように下側磁気抵抗効果素子13,14の固定磁性層42は、下から第1磁性層46、非磁性中間層47、第2磁性層48の順に積層された積層フェリ構造である。例えば、第1磁性層46及び第2磁性層48は共にCo-Fe合金で形成され、非磁性中間層47はRu(ルテニウム)で形成される。
 反強磁性層41と第1磁性層46の間では磁場中熱処理により交換結合磁界(Hex)が生じるとともに、第1磁性層46と第2磁性層48の間ではRKKY的相互作用が生じて、第1磁性層46と第2磁性層48の磁化方向は互いに反平行状態で固定される。図4(a)に示すように、例えば、第1磁性層46の磁化方向(P1方向)はX2方向で、第2磁性層48の磁化方向(P2方向)はX1方向である。本実施形態において、「固定磁性層42の磁化方向」とは、非磁性層43に接する第2磁性層48の磁化方向(P2方向)を指す。
 図4(a)に示す下側磁気抵抗効果素子13,14の総厚は、200~300Å程度である。
 また図4(b)に示すように、上側磁気抵抗効果素子15,16は、下から下地層40、反強磁性層41、固定磁性層49、非磁性層43、フリー磁性層44及び保護層45の順に積層された巨大磁気抵抗効果素子(GMR素子)である。図4(b)に示すように、上側磁気抵抗効果素子15,16の固定磁性層49は、下から第1磁性層50、非磁性中間層51、第2磁性層52、非磁性中間層53、第3磁性層54の順に積層された積層フェリ構造である。例えば、第1磁性層50、第2磁性層52、及び第3磁性層54は共にCo-Fe合金で形成され、非磁性中間層51,53はRu(ルテニウム)で形成される。
 反強磁性層41と第1磁性層50の間では磁場中熱処理により交換結合磁界(Hex)が生じるとともに、第1磁性層50と第2磁性層52の間、及び第2磁性層52と第3磁性層54の間ではRKKY的相互作用が生じて、非磁性中間層51,53を介して互いに対向する磁性層同士の磁化方向は反平行状態で固定される。図4(b)に示すように、例えば、第1磁性層50及び第3磁性層54の磁化方向(P1方向)はX2方向で、第2磁性層48の磁化方向(P2方向)はX1方向である。図4(b)での「固定磁性層49の磁化方向」は、非磁性層43に接する第3磁性層54の磁化方向(P3方向)である。
 図4(b)に示す上側磁気抵抗効果素子15,16の総厚は、下側磁気抵抗効果素子13,14と同様、200~300Å程度であるが、下側磁気抵抗効果素子13,14よりも層数が多い分、やや総厚が、下側磁気抵抗効果素子13,14よりも厚くなる(数Å~数十Å程度厚くなる)。
 図4(a)(b)に示すように、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とが反平行になっている。
 一方、フリー磁性層44の磁化方向は、外部磁場により変動する。例えば、外部磁場がX1方向に作用するとフリー磁性層44の磁化はX1方向に向く。このとき下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)はX1方向であるため、フリー磁性層44の磁化方向と固定磁性層42の磁化方向とが平行になり下側磁気抵抗効果素子13,14の電気抵抗値は最小値になる。一方、上側磁気抵抗効果素子15,16の固定磁性層42の磁化方向(P3方向)はX2方向であるため、フリー磁性層44の磁化方向と固定磁性層42の磁化方向とが反平行になり上側磁気抵抗効果素子15,16の電気抵抗値は最大値になる。このように下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16の固定磁性層の磁化方向は反平行であるため、下側磁気抵抗効果素子13,14の電気特性と、上側磁気抵抗効果素子15,16の電気特性は逆になる。
 図5に示すように下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16によりブリッジ回路が構成される。そして図5に示すブリッジ回路の第1の出力電極20及び第2の出力電極21からの出力は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の電気抵抗値の変動に基づいて変化する。第1の出力電極20及び第2の出力電極21は、図示しない集積回路の差動増幅器に接続され、これにより差動出力を得ることが出来る。
 図1,図2に示すように、本実施形態では、同一の基板11に、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16とを絶縁中間層17を介して積層しており、1チップにて磁気センサ10を構成できる。これにより、磁気センサ10の小型化を促進できる。また従来のように複数のチップで磁気センサ10を構成する場合に比べて、各チップ間の位置決め等が必要なく製造ばらつきを小さくでき、さらに取り個数を増やすことができ、製造コストを抑えることができる。
 しかも本実施形態では、1チップ構成でも、固定磁性層42,49の構造を、下側磁気抵抗効果素子13,14と上側磁気抵抗効果素子15,16とで異ならすことで、1回の磁場中熱処理にて、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とを反平行にすることが出来る。
 磁場中熱処理は、上記したように、反強磁性層41と第1磁性層46,50間に交換結合磁界(Hex)を生じさせるために行う。この磁場中熱処理は、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の双方を形成した後、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16に対して同時に行なう。
 下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16の固定磁性層42,49は共に積層フェリ構造である。本実施形態では、図4(a)に示すように下側磁気抵抗効果素子13,14の固定磁性層42を構成する磁性層46,48を2つ、図4(b)に示すように、上側磁気抵抗効果素子15,16の固定磁性層49を構成する磁性層50,52,54を3つ設けている。そして、下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16に対して磁場中熱処理を施すと、反強磁性層41との間で交換結合磁界(Hex)が生じ、さらに各磁性層間でRKKY的相互作用が生じ、これにより、非磁性中間層を介して対向する磁性層同士は互いに反平行に磁化固定される。本実施形態では、一方の磁気抵抗効果素子の固定磁性層を構成する磁性層の数を偶数に、他方の磁気抵抗効果素子の固定磁性層を構成する磁性層の数を奇数にしたことで、1回の磁場中熱処理でも、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向(P3方向)とを反平行にすることが可能になる。
 例えば、図4(a)に示す下側磁気抵抗効果素子13,14の固定磁性層42の構成はそのままで、図4(b)に示す上側磁気抵抗効果素子15,16を構成する固定磁性層49を1つの磁性層の単層構造で形成することもできる。これによっても、下側磁気抵抗効果素子13,14の固定磁性層42の磁化方向(P2方向)と、上側磁気抵抗効果素子15,16の固定磁性層49の磁化方向とを反平行にすることが可能になる。
 ただし固定磁性層を磁性層の単層(あるいは積層)構造とするより図4(a)(b)に示す積層フェリ構造としたほうが、固定磁性層42,49からフリー磁性層44に漏れる磁界を小さくでき、検出精度を向上させることができて好適である。また、積層フェリ構造とすることで、固定磁性層の磁化固定力を強めることが出来る。
 また固定磁性層を構成する磁性層の数は限定しないが、図4(a)(b)に示すように、積層フェリ構造で形成された一方の固定磁性層42の磁性層46,48を2つ、積層フェリ構造で形成された他方の固定磁性層42の磁性層50,52,54を3つとすることで、両方の固定磁性層を積層フェリ構造としたときに最小数の磁性層で一方の固定磁性層42の磁化方向(P2方向)と他方の固定磁性層49の磁化方向(P3方向)とを反平行にできる。
 なお図4(a)の構成が上側磁気抵抗効果素子15,16の層構成で、図4(b)の構成が下側磁気抵抗効果素子13,14の層構成であってもよい。
 図2に示すように絶縁中間層17の表面は平坦化処理により平坦化面17aで形成されている。これにより、絶縁中間層17上に形成される上側磁気抵抗効果素子15,16を高精度に所定形状で形成することが可能である。
 また図1に示すように、本実施形態では、基板11の同一面内に、複数の下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16と、入力電極22と、グランド電極23,24と、第1の出力電極20と、第2の出力電極21とが形成されている。そして、図1,図5に示すように、各下側磁気抵抗効果素子13,14及び各上側磁気抵抗効果素子15,16とが各電極20~24に接続されてブリッジ回路を構成している。
 このように本実施形態では、1チップ内に磁気抵抗効果素子13~16と共に各電極20~24を配置するため磁気センサ10の小型化を効果的に促進できる。また1チップ内でブリッジ回路を構成できることで、各チップ間をワイヤボンディングで接続してブリッジ回路を構成するような場合に比べて余分な抵抗がブリッジ回路に乗りにくくノイズ重畳を抑制でき、検出精度を効果的に向上させることができる。
 また、図1に示すように、複数の下側磁気抵抗効果素子13,14及び上側磁気抵抗効果素子15,16は、X方向に並設されている。そして、図1に示すように、磁気抵抗効果素子13~16を介してX方向と直交するY方向の両側の一方(図1ではY2側)に、入力電極22と、グランド電極23,24とがX方向に並設されている。また、Y方向の他方(図1ではY1側)には、第1の出力電極20と第2の出力電極21とがX方向に並設されている。
 図1に示すように、第1の出力電極20及び第2の出力電極21のX方向への幅寸法T1,T2は、ほぼ磁気抵抗効果素子13~16のX方向への幅寸法と同じである。第1の出力電極20は、下側磁気抵抗効果素子13及び上側磁気抵抗効果素子15とY1-Y2方向へ対向する位置に設けられる。また、第2の出力電極21は、下側磁気抵抗効果素子14及び上側磁気抵抗効果素子16とY1-Y2方向へ対向する位置に設けられる。そして、各磁気抵抗効果素子13~16の一方の先端部13a~16aがY1方向へ、各磁気抵抗効果素子13~15と出力電極20,21間のギャップ分延ばされて、各磁気抵抗効果素子13~15と各出力電極20,21が接続されている。
 また図1に示すように、入力電極22は、上側磁気抵抗効果素子15の先端部15bと下側磁気抵抗効果素子14の先端部14bとY1-Y2方向にて対向する位置に設けられている。また、グランド電極23は、下側磁気抵抗効果素子13の先端部13bとY1-Y2方向にて対向する位置に設けられ、グランド電極24は、上側磁気抵抗効果素子16の先端部16bとY1-Y2方向にて対向する位置に設けられる。そして、各磁気抵抗効果素子13~16の先端部13b~16bがY2方向へ、各磁気抵抗効果素子13~16と入力電極22及びグランド電極23,24間のギャップ分延ばされて、各磁気抵抗効果素子13~16と入力電極22及びグランド電極23,24が接続されている。
 図1に示すように、各磁気抵抗効果素子13~16は略同一のミアンダ形状で形成され、また図1のように、各磁気抵抗効果素子13~16と各電極20~24とを配置することで、各磁気抵抗効果素子13~16の先端部13a,13b~16a,16bの各電極20~24までの延出長さもほぼ同じに出来る。したがって、各磁気抵抗効果素子13~16の素子長さを同一に合わせ易く、ブリッジ回路の中点電位を高精度に調整しやすい。また、磁気抵抗効果素子13~16から各電極20~24までの各先端部13a,16a~13b,16bの延出長さを小さくでき、より効果的に磁気センサ1の小型化を促進できる。
 なお図1に示す符号22の電極がグランド電極で、符号23,24の電極が入力電極であってもよい。
10 磁気センサ
11 基板
13,14 下側磁気抵抗効果素子
15,16 上側磁気抵抗効果素子
17 絶縁中間層
18 保護層
20,21 出力電極
22 入力電極
23,24 グランド電極
25,30,31 導電層
26 下側積層膜
27 上側積層膜
18a,29,33 凹部
41 反強磁性層
42,49 固定磁性層
43 非磁性層
44 フリー磁性層
46,48,50,52,54 (固定磁性層を構成する)磁性層
47,51,53 非磁性中間層

Claims (10)

  1.  磁気抵抗効果素子を備えた磁気センサであって、
     同一基板に、下側磁気抵抗効果素子と、上側磁気抵抗効果素子とが絶縁中間層を介して積層され、
     前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子はともに、磁化方向が固定される固定磁性層と、前記固定磁性層に非磁性層を介して積層された外部磁場を受けて磁化方向が変動するフリー磁性層と、前記固定磁性層の前記非磁性層とは反対側の面に形成され、前記固定磁性層との間で磁場中熱処理により交換結合磁界を生じさせる反強磁性層と、を有する積層構造を備えており、
     前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の少なくともどちらか一方の前記固定磁性層は、複数の磁性層と前記磁性層の間に介在する非磁性中間層との積層フェリ構造で構成されており、前記下側磁気抵抗効果素子を構成する固定磁性層と前記上側磁気抵抗効果素子を構成する固定磁性層の層構成が異なっており、
     前記下側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向と、前記上側磁気抵抗効果素子を構成する前記固定磁性層の前記非磁性層との当接層の磁化方向とが反平行になっていることを特徴とする磁気センサ。
  2.  前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子がともに積層フェリ構造であり、
     前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が奇数であり、他方の前記固定磁性層を構成する前記磁性層の数が偶数である請求項1記載の磁気センサ。
  3.  前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子のどちらか一方の前記固定磁性層を構成する前記磁性層の数が3であり、他方の前記固定磁性層を構成する前記磁性層の数が2である請求項2記載の磁気センサ。
  4.  前記絶縁中間層の表面が平坦化処理されており、前記絶縁中間層の平坦化面上に前記上側磁気抵抗効果素子が形成されている請求項1ないし3のいずれか1項に記載の磁気センサ。
  5.  前記基板の同一面内に、複数の前記下側磁気抵抗効果素子と、複数の前記上側磁気抵抗効果素子と、入力電極と、グランド電極と、第1の出力電極と、第2の出力電極とが形成され、前記下側磁気抵抗効果素子と前記上側磁気抵抗効果素子とが各電極に接続されてブリッジ回路を構成している請求項1ないし4のいずれか1項に記載の磁気センサ。
  6.  平面視にて、複数の前記下側磁気抵抗効果素子及び複数の前記上側磁気抵抗効果素子はX方向に並設されており、前記磁気抵抗効果素子を介して、前記X方向に直交するY方向の両側位置の一方に、前記入力電極と前記グランド電極とがX方向に並設され、他方に、前記第1の出力電極と、前記第2の出力電極とがX方向に並設されている請求項5記載の磁気センサ。
  7.  前記下側磁気抵抗効果素子及び前記上側磁気抵抗効果素子の双方と接続される電極は、前記下側磁気抵抗効果素子から延出して形成された前記下側磁気抵抗効果素子と同じ層構成の下側積層膜及び前記上側磁気抵抗効果素子から延出して形成された前記上側磁気抵抗効果素子と同じ層構成の上側積層膜が前記絶縁中間層を介して積層された積層部を有し、前記電極には、前記上側積層膜の側面から前記下側積層膜まで露出する凹部が設けられ、前記凹部内に埋め込まれた導電層と、前記上側積層膜及び前記下側積層膜とが電気的に接続されている請求項1ないし6のいずれか1項に記載の磁気センサ。
  8.  前記絶縁中間層は、下から第1の絶縁層、第2の絶縁層及び第3の絶縁層の順に積層され、前記第1の絶縁層はAl23層、前記第2の絶縁層は、SiO2層あるいはSiN層、前記第3の絶縁層は、Al23層で形成される請求項1ないし7のいずれか1項に記載の磁気センサ。
  9.  前記第2の絶縁層の膜厚は5000Å以上で20000Å以下である請求項8記載の磁気センサ。
  10.  前記第2の絶縁層の膜厚は10000Å以上で15000Å以下である請求項9記載の磁気センサ。
PCT/JP2010/056564 2009-04-22 2010-04-13 磁気センサ WO2010122919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510288A JP5223001B2 (ja) 2009-04-22 2010-04-13 磁気センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103737 2009-04-22
JP2009-103737 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122919A1 true WO2010122919A1 (ja) 2010-10-28

Family

ID=43011037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056564 WO2010122919A1 (ja) 2009-04-22 2010-04-13 磁気センサ

Country Status (2)

Country Link
JP (1) JP5223001B2 (ja)
WO (1) WO2010122919A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279373A (zh) * 2011-07-13 2011-12-14 中国人民解放军国防科学技术大学 一种单轴静电驱动的弱磁场测量传感器
JP2013032989A (ja) * 2011-08-02 2013-02-14 Alps Electric Co Ltd 磁気センサ
JP2015500992A (ja) * 2011-12-05 2015-01-08 アドバンスド マイクロセンサーズ コーポレーション 磁界検知装置及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283816A (ja) * 1996-04-08 1997-10-31 Fujitsu Ltd 磁界を感知する磁気抵抗センサ
JP2007064695A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2009031539A1 (ja) * 2007-09-03 2009-03-12 Alps Electric Co., Ltd. 磁気検出装置
JP2009064528A (ja) * 2007-09-07 2009-03-26 Hitachi Ltd 磁気抵抗効果ヘッド及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283816A (ja) * 1996-04-08 1997-10-31 Fujitsu Ltd 磁界を感知する磁気抵抗センサ
JP2007064695A (ja) * 2005-08-29 2007-03-15 Yamaha Corp 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
WO2009031539A1 (ja) * 2007-09-03 2009-03-12 Alps Electric Co., Ltd. 磁気検出装置
JP2009064528A (ja) * 2007-09-07 2009-03-26 Hitachi Ltd 磁気抵抗効果ヘッド及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279373A (zh) * 2011-07-13 2011-12-14 中国人民解放军国防科学技术大学 一种单轴静电驱动的弱磁场测量传感器
JP2013032989A (ja) * 2011-08-02 2013-02-14 Alps Electric Co Ltd 磁気センサ
JP2015500992A (ja) * 2011-12-05 2015-01-08 アドバンスド マイクロセンサーズ コーポレーション 磁界検知装置及び方法

Also Published As

Publication number Publication date
JP5223001B2 (ja) 2013-06-26
JPWO2010122919A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5066579B2 (ja) 磁気センサ及び磁気センサモジュール
JP5021764B2 (ja) 磁気センサ
US9182458B2 (en) Magnetoresistive sensing device
JP5174911B2 (ja) 磁気センサ及び磁気センサモジュール
JP5686635B2 (ja) 磁気センサ及びその製造方法
TWI443360B (zh) 磁阻感測器及其製造方法
WO2009151024A1 (ja) 磁気センサ及び磁気センサモジュール
JPWO2015182644A1 (ja) 磁気抵抗素子、磁気センサおよび電流センサ
WO2009151023A1 (ja) 磁気センサ及び磁気センサモジュール
JP5237943B2 (ja) 磁気検出装置及びその製造方法、ならびに前記磁気検出装置を用いた角度検出装置、位置検出装置及び磁気スイッチ
JP5802565B2 (ja) 磁気センサ
WO2010122919A1 (ja) 磁気センサ
JP5066525B2 (ja) 磁気検出装置およびその製造方法
JP4689516B2 (ja) 磁気検出装置
JP5898986B2 (ja) 磁気センサ及びその製造方法
JP6380530B2 (ja) 異方性磁気抵抗素子、磁気センサおよび電流センサ
JP5341865B2 (ja) 磁気センサ
JP5265689B2 (ja) 磁気結合型アイソレータ
WO2010137606A1 (ja) 磁気センサ
JP5284288B2 (ja) 磁気センサ及びその製造方法
JP4914502B2 (ja) 磁気センサ及び磁気エンコーダ
JP2016206006A (ja) 磁気センサ
JP2009302279A (ja) 磁気センサの製造方法
JP2019211385A (ja) 磁気検出装置及び磁気バイアス装置
WO2011111458A1 (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510288

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766976

Country of ref document: EP

Kind code of ref document: A1