WO2010119901A1 - 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム - Google Patents

検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム Download PDF

Info

Publication number
WO2010119901A1
WO2010119901A1 PCT/JP2010/056701 JP2010056701W WO2010119901A1 WO 2010119901 A1 WO2010119901 A1 WO 2010119901A1 JP 2010056701 W JP2010056701 W JP 2010056701W WO 2010119901 A1 WO2010119901 A1 WO 2010119901A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
circuit
abnormality
power supply
supply voltage
Prior art date
Application number
PCT/JP2010/056701
Other languages
English (en)
French (fr)
Inventor
ウィリアムソン スィ
大地 田尻
建治 由類江
康章 栗田
ユルゲン ステグマイヤー
ウィッシャア ムスタファ アブ
武男 秋田
稔 高崎
長谷川 徹
岡田 卓也
勇 人見
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to EP10764485A priority Critical patent/EP2420851A1/en
Priority to JP2011509319A priority patent/JPWO2010119901A1/ja
Priority to CN2010800167654A priority patent/CN102395892A/zh
Priority to US13/264,889 priority patent/US20120035824A1/en
Publication of WO2010119901A1 publication Critical patent/WO2010119901A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • G01R31/3004Current or voltage test

Definitions

  • the present invention relates to an abnormality detection device for detecting an abnormality in an electric circuit, particularly a detection circuit, and a detection system and an electronic system using the abnormality detection device.
  • a detection system that detects the pressure of a negative pressure booster that assists the braking force of a vehicle braking device (brake) is known.
  • the detection system includes a pressure sensor that detects a negative pressure booster pressure, and a processing device (for example, ECU) that processes an output from the pressure sensor.
  • a processing device for example, ECU
  • the detection signal level may be within the normal range, and it may be difficult to detect the abnormality in the sensor circuit.
  • a method for detecting an abnormality in a sensor circuit techniques using test pulses described in Patent Documents 1 and 2 have been proposed.
  • Patent Document 1 detects a failure of an electric circuit including a vehicle speed sensor when the detected value of the vehicle speed sensor indicates a value less than a predetermined value in a brake system that performs an antilock operation of the vehicle using the detected value of the vehicle speed sensor.
  • the vehicle speed sensor 18 is connected to the sensor signal conditional circuit 36 via the electric circuit 22, and the conditional circuit 36 determines that the value of the detection signal from the vehicle speed sensor 18 exceeds a predetermined value.
  • a signal is output to the microprocessor 37.
  • the electric circuit 22 is connected between two signal lines connecting the two terminals on the output side of the vehicle speed sensor 18 and the two terminals on the input side of the conditional circuit 36, and between these two signal lines. Input impedance 35.
  • a direct current (test pulse) is provided between the two signal lines of the electrical circuit 22 from the continuity test circuit 38 to provide the sensor 18 or the electrical circuit. 22 continuity tests are performed. If the sensor 18 or the electrical circuit 22 is conductive (normal), there is a relatively small voltage drop between the input terminals of the conditional circuit 36, and no output is produced from the conditional circuit 36. On the other hand, if the sensor 18 or the electric circuit 22 is not conductive (abnormal), the impedance viewed from the continuity test circuit 38 is high, and a voltage drop of a predetermined value or more occurs between both terminals of the input of the conditional circuit 36. An output is generated from the auxiliary circuit 36.
  • the test pulse is provided between the two signal lines of the electric circuit 22 and the output of the conditional circuit 36 is 0, the sensor 18 or the electric circuit 22 is normal and the conditional circuit 36 is normal. Is not 0, it is determined that the sensor 18 or the electric circuit 22 is abnormal.
  • Patent Document 2 relates to a diagnostic apparatus for diagnosing a failure in an electric system of an automobile.
  • a test pulse signal is output from a pulse generator (see FIG. 4) to a diagnosis target component, and a response to the test pulse of the target component is detected (see FIG. 1), thereby detecting an abnormality in the target component.
  • a device for diagnosis is described.
  • the pressure detection system of the negative pressure booster cannot detect abnormality of the sensor circuit using the test pulse as in Patent Documents 1 and 2.
  • Patent Documents 1 and 2 require additional parts for a circuit for generating a test pulse, a circuit for evaluating the output of the test pulse, and the like, which may increase the cost.
  • An object of the present invention is to make it possible to reliably detect abnormality of an electric circuit even in a situation where the value of the surrounding environment cannot be specified in an electric circuit whose behavior changes according to the surrounding environment.
  • an object of the present invention is to make it possible to easily and reliably detect an abnormality in an electric circuit whose behavior changes according to the surrounding environment.
  • One embodiment of the present invention relates to an abnormality detection device that detects an abnormality of a detection circuit (112) that detects a specific type of physical quantity.
  • This abnormality detection device changes the magnitude of the power supply voltage (Vcc ′) supplied to the detection circuit (112), and based on the output signal (Vo2) from the detection circuit at the changed power supply voltage (Vc2).
  • an abnormality detector (220a) for detecting an abnormality of the detection circuit.
  • specific types of physical quantities include values of pressure, temperature, speed, acceleration, and humidity, but are not limited thereto.
  • the magnitude of the power supply voltage supplied to the detection circuit is changed, and the output signal (Vo2) of the detection circuit with respect to the changed power supply voltage (Vc2) is a predetermined input voltage. It is possible to detect abnormality of the detection circuit by determining whether or not the output characteristic is complied with. That is, even if the current physical quantity is unknown, an abnormality in the detection circuit can be detected if the input / output characteristics of the detection circuit are known in advance.
  • the input / output characteristics are the relationship between the input and output values of the detection circuit and indicate the relationship between the power supply voltage (input) and the output signal.
  • the abnormality detection unit (220a) is configured such that the output signals (Vo1, Vo2) from the detection circuit (112) before and after the power supply voltage change are input / output characteristics with respect to the same physical quantity (P). An abnormality of the detection circuit (112) is detected based on whether or not it is on the curve.
  • an input / output characteristic curve corresponding to each physical quantity is obtained and stored in advance, and the output signals (Vo1, Vo2) of the detection circuit (112) before and after the power supply voltage change within a short time that the physical quantity does not change. ) Are detected and the detection circuit is determined to be normal when they are on the input / output characteristic curve for the same physical quantity, and the detection circuit is determined to be abnormal when they are not on the input / output characteristic curve for the same physical quantity. .
  • the input / output characteristic curve of the detection circuit can be calculated, the input / output characteristic curve corresponding to each physical quantity need not be stored in advance when calculating the input / output characteristic during the abnormality detection process.
  • the input / output characteristics of the detection circuit are linear, there is no need to store the input / output characteristic curves corresponding to each physical quantity in advance, and the ratio of output signals before and after the change matches the ratio of inputs before and after the change.
  • An abnormality of the detection circuit can also be detected based on whether or not to do so.
  • the abnormality detection unit (220a) is configured such that the ratio of the output signals (Vo1, Vo2) from the detection circuit (112) before and after the power supply voltage change is the power supply voltage (Vc1, Vc2) before and after the change.
  • An abnormality of the detection circuit (112) is detected on the basis of whether or not the ratio matches.
  • the input / output characteristic of the detection circuit is a straight line
  • an abnormality of the detection circuit can be detected based on whether the ratio of the output signals before and after the change matches the ratio of the inputs before and after the change.
  • the abnormality detection unit (220a) changes the power supply voltage to a plurality of different voltages (Vc2, Vc3), and uses the changed power supply voltages (Vc2, Vc3).
  • An abnormality of the detection circuit (112) is detected based on the output signals (Vo2, Vo3) from the detection circuit (112).
  • output signals (Vo2, Vo3) at the plurality of changed power supply voltages (Vc2, Vc3) are in accordance with predetermined input / output characteristics, and an abnormality of the detection circuit is detected. Can do. Further, output signals (Vo1, Vo2, Vo3) for three or more types of power supply voltages (Vc1, Vc2, Vc3) including a power supply voltage (Vcc) before the change and a plurality of power supply voltages (Vc2, Vc3) after the change are predetermined. It may be determined whether or not the input / output characteristics are obeyed. In this case, when the input / output characteristic is a curve, it can be determined with high accuracy whether or not the output signal follows the predetermined input / output characteristic.
  • the abnormality detection unit (220a) measures the output signal from the detection circuit (112) with respect to the power supply voltage value (Vc1) before the change at least twice at a predetermined time interval.
  • the abnormality of the detection circuit is detected based on the output signal (Vo2) from the detection circuit at the changed power supply voltage (Vc2) To do.
  • the physical quantity to be detected does not change in a short time, and the physical quantity is The abnormality detection process can be executed under a condition that does not change in a short time.
  • a power supply voltage control unit (230) that changes the magnitude of the power supply voltage (Vcc ') supplied to the detection circuit (112) by the control of the abnormality detection unit (220a) is provided.
  • Vcc ' the magnitude of the power supply voltage supplied to the detection circuit (112) by the control of the abnormality detection unit (220a)
  • the detection circuit (112) is a pressure sensor that detects a pressure in a negative pressure booster that assists a vehicle braking device.
  • the negative pressure booster residual pressure may remain even after the engine is stopped, and the pressure value cannot be determined. Therefore, the conventional method using the test pulse cannot detect abnormality of the pressure sensor.
  • the present invention even if the pressure value at the time of diagnosis is unknown, an abnormality in the detection circuit can be detected if the input / output characteristics of the detection circuit are known in advance.
  • An embodiment of the present invention relates to an abnormality detection device that detects an abnormality of an electric circuit (112) whose behavior changes according to the surrounding environment.
  • This abnormality detection device changes the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112), and based on the behavior (Vo2) of the electric circuit at the changed power supply voltage (Vc2),
  • An abnormality detection unit (220a) for detecting an abnormality in the electric circuit is provided.
  • the ambient environment is a state such as pressure, temperature, speed, acceleration, temperature, and humidity around the electric circuit.
  • the detection system includes a detection circuit (112) that detects a specific type of physical quantity, a processing device (200) that processes an output from the detection circuit (112), and an electrical connection between the detection circuit and the processing device.
  • Conductive lines (L1, 101; L2, 102; L3, 103) connected to each other and monitoring conductive lines (L1a, 101a; L2a, electrically connected to the conductive lines on the detection circuit (112) side) 102a; L3a, 103a), and detecting a potential at a connection point between the conductive line and the monitoring conductive line by the monitoring conductive line, thereby detecting a resistance state of the conductive line.
  • the detection system further changes the magnitude of the power supply voltage (Vcc ′) supplied to the detection circuit (112) and outputs the output signal (Vo2) from the detection circuit at the changed power supply voltage (Vc2).
  • Vcc ′ the power supply voltage supplied to the detection circuit (112
  • Vo2 the output signal from the detection circuit at the changed power supply voltage (Vc2).
  • the electronic system includes a first electric circuit (112) whose behavior changes according to an ambient environment, a second electric circuit (200), and between the first electric circuit and the second electric circuit.
  • Conductive lines (L1, 101; L2, 102; L3, 103) and monitoring signal lines (L1a, 101a; electrically connected to the conductive lines on the first electric circuit side).
  • L2a, 102a; L3a, 103a) and detecting a potential at a connection point between the conductive line and the monitoring signal line by the monitoring signal line, thereby detecting a resistance state of the conductive line.
  • the electronic system further changes the magnitude of the power supply voltage (Vcc ′) supplied to the first electric circuit (112), and changes the power supply voltage (Vc2) of the first electric circuit after the change.
  • An abnormality detection unit (220a) that detects an abnormality of the first electric circuit (112) based on the behavior (Vo2) is provided.
  • the power supply voltage (Vcc ′) supplied to the detection circuit (112) is large.
  • 112 is provided with an abnormality detection unit (220b) for detecting the abnormality.
  • the abnormality detection unit (220b) is further configured to electrically connect the detection circuit (112) to the outside based on the power supply voltage (Vx) at which the detection unit (151) stops. Detect the resistance state of the line.
  • the power supply voltage (Vcc ′) supplied to the detection circuit (112) is large.
  • the power supply voltage (Vx) at which the detection unit (151) stops is detected by changing the length, and the resistance state of the conductive wire connecting the detection circuit (112) to the outside is detected based on the detected value
  • An abnormality detection unit (220b) is provided.
  • the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112) is changed, and the electric circuit (112) is included in the one embodiment.
  • An abnormality that detects an output signal (Vout) of the electric circuit (112) below the power supply voltage (Vx) at which the unit (151) stops and detects an abnormality of the electric circuit (112) based on the detected value A detection unit (220b) is provided.
  • the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112) is changed, and a part of the electric circuit (112) ( 151) includes an abnormality detection unit (220b) that detects the power supply voltage (Vx) that stops and detects a resistance state of a conductive line that connects the electric circuit (112) to the outside based on the detected value.
  • the first abnormality detection unit (220a) changes the magnitude of the power supply voltage (Vcc ′) supplied to the detection circuit (112) and is equal to or higher than the power supply voltage (Vx) at which the detection unit (151) stops. In this range, an output signal (Vo2) from the detection circuit with respect to the changed power supply voltage (Vc2) is detected, and an abnormality of the detection circuit is detected based on the detected value.
  • the second abnormality detection unit (220b) detects the power supply voltage (Vx) at which the detection unit (151) stops, and based on this detection value, a conductive wire that connects the detection circuit (112) to the outside The resistance state of is detected.
  • One embodiment of the present invention is an abnormality detection device that detects an abnormality of an electric circuit (112) including a circuit part (151) whose behavior changes according to the surrounding environment, and includes a first abnormality detection unit (220a). And a second abnormality detection unit (220b).
  • the first abnormality detection unit (220a) changes the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112) so as to be equal to or higher than the power supply voltage (Vx) at which the circuit portion (151) stops. In this range, an output signal (Vo2) from the detection circuit with respect to the changed power supply voltage (Vc2) is detected, and an abnormality of the electric circuit is detected based on the detected value.
  • the second abnormality detection unit (220b) detects the power supply voltage (Vx) at which the circuit portion (151) stops, and based on the detected value, a conductive wire that connects the electric circuit (112) to the outside The resistance state of is detected.
  • the detection system includes a detection circuit (112) including a detection unit (151) that detects a specific type of physical quantity, a processing device (200) that processes an output from the detection circuit (112), the detection circuit, and the detection circuit.
  • Conductive lines (L1, 101; L2, 102; L3, 103) that are electrically connected to the processing apparatus, and monitoring conductive lines that are electrically connected to the conductive lines on the detection circuit (112) side (L1a, 101a; L2a, 102a; L3a, 103a), and by detecting a potential at a connection point between the conductive line and the monitoring conductive line by the monitoring conductive line, the resistance state of the conductive line Is detected.
  • the detection system further changes the magnitude of the power supply voltage (Vcc ′) supplied to the detection circuit (112), so that the detection unit (151) is less than the power supply voltage (Vx) at which it stops.
  • An abnormality detection unit (220b) that detects an output signal (Vout) of the detection circuit (112) and detects an abnormality of the detection circuit (112) based on the detected value.
  • the electronic system includes a first electric circuit (112), a second electric circuit (200), and a conductive wire (electrically connecting between the first electric circuit and the second electric circuit).
  • the resistance state of the conductive line is detected by detecting the potential at the connection point between the conductive line and the monitoring signal line by the monitoring signal line.
  • the electronic system further changes the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112), and stops the power supply voltage (Vx) at which a part (151) of the electric circuit stops.
  • An abnormality detection unit (220b) that detects an output signal (Vout) of the electric circuit (112) at less than and detects an abnormality of the electric circuit (112) based on the detected value.
  • the first abnormality detection unit (220a) changes the magnitude of the power supply voltage (Vcc ′) supplied to the detection circuit (112) and is equal to or higher than the power supply voltage (Vx) at which the detection unit (151) stops. In this range, an output signal (Vo2) from the detection circuit with respect to the changed power supply voltage (Vc2) is detected, and an abnormality of the detection circuit is detected based on the detected value.
  • the second abnormality detection unit (220b) detects the output signal (Vout) of the detection circuit (112) below the power supply voltage (Vx) at which the detection unit (151) stops, and based on this detection value The abnormality of the detection circuit (112) is detected.
  • One embodiment of the present invention is an abnormality detection device that detects an abnormality of an electric circuit (112) including a circuit part (151) whose behavior changes according to the surrounding environment, and includes a first abnormality detection unit (220a). And a second abnormality detection unit (220b).
  • the first abnormality detection unit (220a) changes the magnitude of the power supply voltage (Vcc ′) supplied to the electric circuit (112) so as to be equal to or higher than the power supply voltage (Vx) at which the circuit portion (151) stops. In this range, an output signal (Vo2) from the detection circuit with respect to the changed power supply voltage (Vc2) is detected, and an abnormality of the electric circuit is detected based on the detected value.
  • the second abnormality detector (220b) detects the output signal (Vout) of the electric circuit (112) below the stop power supply voltage (Vx) at which a part (151) of the electric circuit stops, and this detected value Based on the above, an abnormality of the electric circuit (112) is detected.
  • One embodiment of the present invention is an electrical system, comprising: a first electrical circuit (112); a ground line (L3, 103) connected to a ground terminal of the first electrical circuit (112); And a monitoring conductive line (L3a, 103a) that is electrically connected to the ground line and detects a potential (V2 ′) at a connection point with the ground line, and detects a voltage (V2) detected by the monitoring conductive line. Based on this, the behavior (Vout) of the first electric circuit (112) is corrected.
  • the monitoring conductive line (L3a, 103a) is connected to the power supply voltage (Vcc) via the first resistor (R5) and via the second resistor (R6). Are connected to the ground potential (GND), and the abnormality of the monitoring conductive line itself is detected by detecting the voltage of the second resistor as the detection voltage (V2).
  • the detection voltage (V2) by the monitoring conductive line is smaller than a first threshold
  • the detection voltage (V2) by the monitoring conductive line is used, and the first electric
  • the behavior (Vout) of the circuit (112) is corrected and the detection voltage (V2) by the monitoring conductive line is equal to or higher than a first threshold, it is determined that the monitoring conductive line is disconnected.
  • the detection voltage (V2) by the monitoring conductive line is smaller than a second threshold value smaller than the first threshold value, it is determined that the ground line is normal, and the first The correction is not performed when the behavior (Vout) of the electric circuit (112) of the first electric circuit (112) is executed, and the detection voltage (V 2) by the monitoring conductive line is equal to or higher than the second threshold and lower than the first threshold.
  • the detected voltage (V2) of the first electric circuit (112) is corrected using the detected voltage (V2) of the conductive wire for detection, and the detected voltage (V2) of the conductive wire for monitoring is the first threshold value. When it is above, it is determined that the monitoring conductive wire is disconnected.
  • the first electric circuit (112) is a detection circuit that detects a specific type of physical quantity, and the detection circuit (V2) is used to detect the detection circuit ( 112) is corrected.
  • an output voltage (Vout) of the detection circuit (112) and an upper limit value (VDD) of the output voltage (Vout) are detected using the detection voltage (V2) by the monitoring conductive line.
  • the physical quantity to be detected is corrected by correcting.
  • the detection circuit (112) is a pressure sensor that detects a pressure in a negative pressure booster that assists a vehicle braking device, and the output voltage (Vout) is a pressure detection signal.
  • the semiconductor device further includes a third resistor (R7) interposed in the monitoring conductive line (L3a, 103a), and one end of the third resistor (R7) is connected to the first resistor. (R5) and the other end of the third resistor (R7) is connected to the second resistor (R6).
  • R7 interposed in the monitoring conductive line (L3a, 103a), and one end of the third resistor (R7) is connected to the first resistor. (R5) and the other end of the third resistor (R7) is connected to the second resistor (R6).
  • the monitoring conductive line is further connected to a ground potential via a first capacitor (C1) connected in parallel to the second resistor (R6).
  • FIG. 1 is a circuit diagram of a detection system according to a first embodiment of the present invention.
  • the circuit diagram when the ground line is in a high resistance state In the circuit diagram of the detection system which concerns on 1st Embodiment, the circuit diagram in the case of connecting a monitoring line and a ground line outside a sensor chip.
  • the circuit diagram of the detection system concerning a 2nd embodiment of the present invention.
  • the circuit diagram when the grounding line will be in a high resistance state in the detection system which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a circuit diagram in which an embodiment of the present invention is applied to a power supply line and a detection signal line.
  • the circuit diagram of the detection system concerning a 3rd embodiment.
  • An input / output characteristic curve representing the behavior of the circuit under diagnosis for each value of the surrounding environment.
  • 9 is a flowchart for explaining abnormality detection processing of a detection circuit 112 according to a third embodiment.
  • FIG. 11 is a diagram when the input / output characteristic is a straight line in FIG. 10.
  • 10 is a flowchart for explaining an abnormality detection process of the detection circuit 112 according to the third embodiment when the input / output characteristic is a straight line.
  • 2 is a configuration example of a power supply voltage control circuit.
  • the circuit diagram of the detection system concerning a 4th embodiment of the present invention.
  • the block diagram showing the structure of a detection circuit.
  • An input / output characteristic curve representing the behavior of the circuit under diagnosis for each value of the surrounding environment.
  • FIG. 1 shows a circuit diagram of a detection system according to the first embodiment of the present invention.
  • the detection system used for detecting the pressure of the negative pressure booster for assisting the braking device of the vehicle will be described as an example.
  • the present embodiment is not limited to the detection system. Any configuration can be applied to any electrical system as long as power supply or signal communication is performed between a plurality of circuits.
  • a detection system 1 shown in FIG. 1 includes a detection device 100 and a processing device 200, and the detection device 100 and the processing device 200 are electrically connected by signal lines (conductive lines) L1 to L3 and L3a.
  • the detection device 100 is a pressure detection device, and is a detection device that is mounted on a negative pressure booster (not shown) that assists the braking device of the vehicle and detects the pressure (negative pressure) in the negative pressure booster.
  • the processing device 200 is, for example, an electronic control unit (ECU) mounted on a vehicle, and supplies a power supply voltage (input signal) to the detection device 100 and receives a pressure detection signal (output signal) from the detection device 100.
  • the pressure detection signal is used for various vehicle controls.
  • the signal line L1 is a detection signal line that outputs a pressure detection signal in the detection device 100 to the processing device 200, and is connected to the detection signal electrode P1 of the detection device 100 and the detection signal terminal T1 of the processing device 200.
  • the signal line L2 is a power supply line that supplies a power supply voltage Vcc (for example, 5 V) from the processing device 200 to the detection device 100, and is connected to the power supply electrode P2 of the detection device 100 and the power supply terminal T2 of the processing device 200.
  • the signal line L3 is a ground line that supplies a ground potential (GND) from the processing device 200 to the detection device 100, and is connected to the ground electrode P3 of the detection device 100 and the ground terminal T3 of the processing device 200.
  • the signal line L3a is a monitoring line for monitoring and detecting an abnormality in the ground line L3, and supplies the processing device 200 with the potential V2 'on the detection device 100 side of the ground line L3.
  • the detecting device 100 includes a resin-molded housing 110 and a sensor chip 111 installed in the housing 110.
  • the sensor chip 111 includes a pressure detection circuit 112, and the pressure detection circuit 112 is provided with, for example, a pressure sensor including a diaphragm and a resistance bridge, an amplification circuit, and the like.
  • the sensor chip 111 and the signal lines L1 to L3 are connected by the detection signal line 101, the power line 102, the ground line 103, and the wires 101 to 103 and 103a as the monitoring line 103a, and the wires 101 to 103 and 103a are connected.
  • the pressure detection circuit 112 is connected to the signal lines L1 to L3 via.
  • the pressure detection circuit 112 detects the pressure in the negative pressure booster, and outputs a pressure detection signal to the detection signal terminal T1 of the processing device 200 via the detection signal line 101, the detection signal electrode P1, and the detection signal line L1. Further, the pressure detection signal is input to the detection signal terminal 211 of the ADC 210 via the detection signal line 201.
  • the pressure detection circuit 112 is supplied with the power supply voltage Vcc from the power supply Vcc of the processing apparatus 200 via the power supply line 202, the power supply terminal T 2, the power supply line L 2, the power supply electrode P 2, and the power supply line 102. Further, the ground potential GND is supplied to the pressure detection circuit 112 from the ground line 203 of the processing apparatus 200 through the ground terminal T3, the ground line L3, the ground electrode P3, and the ground line 103.
  • the housing 110 is formed with a recess for receiving a connector (not shown) attached to one end of the signal lines L1 to L3 and L3a during resin molding, and the bottom surface of the recess penetrates into and out of the housing.
  • Comb-like electrodes P1 to P3 and P3a corresponding to the signal lines L1 to L3 and L3a are provided.
  • the recess and the electrodes P1 to P3 and P3a constitute a connector on the detection device 100 side.
  • the electrodes P1 to P3 and P3a are formed inside the housing 110 to receive the tips of the wires 101 to 103 and 103a, and the tips of the wires 101 to 103 and 103a are fitted and connected to the electrodes P1 to P3.
  • the wires 101 to 103 and 103a are electrically connected to the signal lines L1 to L3 and L3a via the electrodes P1 to P3, respectively.
  • the ground lines L3 and 103 and the monitoring lines L3a and 103a are electrically connected in the sensor chip 111.
  • an analog / digital converter (ADC) 210 is provided in the processing apparatus 200.
  • the ADC 210 includes a detection signal terminal 211 to which a pressure detection signal is input, a reference terminal 212 to which a power supply voltage Vcc is supplied via a power supply line 202 in the processing apparatus 200, and the ground lines L3 and 103 on the processing apparatus 200 side.
  • the detection signal terminal T1 of the processing device 200 is connected to the detection signal terminal 211 of the ADC 210 via the detection signal line 201 and is connected to the power source VA via the pull-up resistor R2.
  • the voltage of the pressure detection signal input to the ADC 210 changes in the range of 0.25V to 4.75V, and the detection signal line L1 is disconnected (detection signal terminal)
  • the detection signal line L1 is disconnected (detection signal terminal)
  • the voltage input from the power source VA to the ADC 210 via the resistor R2 is 5 V or more.
  • the disconnection of the detection signal line L1 can be detected based on the difference in input voltage to the ADC 210.
  • the power supply voltage Vcc is supplied from the power supply Vcc of the processing apparatus 200 to the pressure detection circuit 112 in the sensor chip 111 via the power supply line 202 and the power supply lines L2 and 102.
  • the pressure detection signal from the pressure detection circuit 112 is supplied to the detection signal terminal 211 of the ADC 210 via the detection signal lines 101, L 1, 201.
  • the ground potential GND of the processing apparatus 200 is supplied from the ground line 203 to the pressure detection circuit 112 of the detection apparatus 100 via the ground lines L3 and L103.
  • the ground potential GND of the processing device 200 is input from the ground line 203 to the signal terminal 213 of the ADC 210, and the potential V2 ′ at the connection point (monitoring point) between the ground lines L3, 103 and the monitoring lines L3a, 103a is set.
  • the monitoring terminal 213a of the ADC 210 via the monitoring line 103a, the monitoring electrode P3a, and the monitoring lines L3a and 203a.
  • the power supply voltage Vcc is a resistance value R0 of the sensor chip 111 (a resistance value between the input portion of the power supply line 102 of the sensor chip 111 and the connection point (V2 ′)).
  • the resistor RX can be calculated by the following equation (1) based on the potential V2 ′ at the connection point.
  • RX V2 ′ / (Vcc ⁇ V2 ′) * R0 (1)
  • the resistance state of the ground line L3 can be evaluated by the resistance value RX. Further, since the potential V2 'at the connection point has a one-to-one correspondence with the resistance value RX, the resistance state of the ground line can be evaluated using the potential V2' at the connection point.
  • Specific processing in the processing apparatus 200 is as follows.
  • the signal is input to the monitoring terminal 213a of the ADC 210 via L3a and 203a.
  • the ADC 210 converts the potential V1 (reference value) on the processing device 200 side of the ground lines L3 and 103 and the potential V2 at the connection point into digital signals and outputs them to the processing unit 220.
  • the processing unit 220 may calculate the resistance value RX of the ground line using the detected value of V2 ′ and the equation (1). In this case, it is possible to monitor the resistance value RX and detect a change in the resistance value of the ground line and an abnormality that causes a high resistance state.
  • the potential V2 ′ at the connection point between the ground lines L3, 103 and the monitoring lines L3a, 103a is monitored via the monitoring lines L3a, 103a, thereby reducing the resistance of the ground line.
  • the state can be detected. Therefore, it is possible to reliably detect an abnormality in which the ground lines L3 and 103 are in a high resistance state.
  • vibration due to the operation of the negative pressure booster is transmitted to the detection device 100, and the contact resistance between the ground lines L3, 103 and the electrode P3 is deteriorated.
  • the resistance value RX of the ground line can be detected.
  • the resistance state of the ground lines L3, 103 is monitored by monitoring the potential V2 ′ at the connection point between the ground lines L3, 103 and the monitoring lines L3a, 103a via the monitoring lines L3a, 103a. Therefore, it is possible to detect anomalies with a simple configuration.
  • the monitoring lines L3a and 103a that are electrically connected to the ground lines L3 and 103 are provided on the detection device 100 side, and the resistance state of the ground lines L3 and 103 is detected.
  • the present invention can also be applied to the lines L2, 102 and the detection signal lines L1, 101.
  • the power supply potential Vcc input to the terminal 212 of the ADC 210 is used as a reference value, and the potential at the connection point between the power supply lines L2 and 102 and the monitoring lines L2a and 102a is monitored. Detect resistance state.
  • the detection signal line for example, the detection signal voltage at the time of calibration for releasing the pressure in the negative pressure booster to the atmosphere (voltage input to the terminal 211 of the ADC 210) is used as the reference value, and the detection signal line L1, The potential of the connection point between 101 and the monitoring lines L1a and 101a is detected, and the resistance state of the detection signal line is detected by comparing this with the reference value.
  • the processing unit 220 may be provided outside the processing apparatus 200, or both the ADC 210 and the processing unit may be provided in the processing apparatus. It may be provided outside the 200.
  • a sensor in which a sensor detection circuit 112 is arranged on a printed wiring board may be used instead of the sensor chip 111.
  • FIG. 4 shows a circuit diagram of a detection system according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and portions different from those in the first embodiment will be described below.
  • a potential correcting resistor R3 (10 ⁇ ) is interposed on the ground line 203 in the detection apparatus 100.
  • the contact resistance increases at the connection portion between the electrode P3 and the ground line L3 of the detection device 100 (or the connection portion between the electrode P3 and the ground line 103), and the contact resistance increases on the ground lines L3 and 103.
  • the resistor RX can be calculated by the following equation (2) based on the potential V2 ′ at the connection point.
  • RX V2 ′ / (Vcc ⁇ V2 ′) * R0 ⁇ R3 (2)
  • the determination of the resistance state of the ground line is performed as follows using the potential V2 'at the connection point or the input V2 of the ADC 210.
  • V2 the potential of the ADC 210.
  • 99 mV-10 mV ⁇ V2 ( ⁇ V) ⁇ 99 mV + 10 mV
  • 99 mV + 10 mV ⁇ V2 ( ⁇ V) it is determined that the “ground line is in a high resistance state”
  • ⁇ 10 mV ⁇ V2 ( ⁇ V ) If ⁇ 10 mV, it may be determined that “the monitoring line is disconnected”.
  • V2 ( ⁇ V) when V2 ( ⁇ V) is within a predetermined value (0V, 99 mV) ⁇ 10 mV, it is determined that V2 ( ⁇ V) matches the predetermined value (0V, 99 mV). Is appropriately determined according to the resolution of the ADC 210.
  • the ADC 210 outputs digital signals corresponding to the input analog signals V1 and V2.
  • the processing unit 220 determines that “the ground line is normal” when ⁇ V is 99 mV ⁇ 10 mV ⁇ V ⁇ 99 mV + 10 mV, and determines that “the ground line is in a high resistance state” when 99 mV + 10 mV ⁇ ⁇ V, and ⁇ 10 mV ⁇ When ⁇ V ⁇ 10 mV, it is determined that “the monitoring line is disconnected”.
  • the resistor R3 is provided on the ground line 203 in the processing apparatus 200, the resistor R3 may be provided on the ground line 103 side in the sensor chip 111 as shown in FIG.
  • the potential correcting resistor R3 may be provided at any location on the ground line as long as it is electrically connected to the ground lines 103 and 203 in series.
  • FIG. 9 shows a circuit diagram of a detection system according to the third embodiment of the present invention.
  • This embodiment has the same configuration as that of the detection system of the first embodiment shown in FIG. 1 except that a power supply voltage control circuit 230 is added on the power supply line.
  • a power supply voltage control circuit 230 is added on the power supply line.
  • the detection system 1 shown in FIG. 9 includes a power supply voltage control circuit 230 on the power supply line 202 of the processing apparatus 200 in the detection system 1 of FIG.
  • An abnormality detection unit 220 a that detects an abnormality of the detection circuit 112 is provided in the processing unit 220.
  • the power supply voltage control circuit 230 may be disposed outside the processing apparatus 200.
  • the power supply voltage control circuit 230 is interposed in series with the power supply line 202, and includes a voltage drop resistor RL and a switching circuit 231.
  • a supply path of the power supply voltage Vcc ′ that does not pass through the resistor RL is referred to as a path I
  • a supply path of the power supply voltage Vcc ′ that passes through the resistor RL is referred to as a path II.
  • Vcc ′ Vcc ⁇ Vcc is output to the detection circuit 112.
  • the switching circuit 231 is configured by, for example, a switch having a mechanical contact or a semiconductor switch.
  • the switching circuit 231 may have any configuration as long as it is an element or a circuit that can switch the supply path of the power supply voltage Vcc to the paths I and II.
  • the switching circuit 231 is connected to the abnormality detection unit 220a of the processing device 220 via the control line 232, and is switched between a conduction state and an open state by a control signal from the abnormality detection unit 220a.
  • the switching circuit 231 becomes conductive.
  • the processing device 220 includes, for example, a CPU and a microprocessor, and executes an abnormality detection process for detecting the high resistance state of the signal lines (L1, 101; L2, 102; L3, 103) described in the first embodiment.
  • an abnormality detection unit 220a that detects an abnormality of the detection circuit 112 based on the detection signal (output signal) Vout after the power supply voltage is changed is further provided.
  • the abnormality detection unit 220a controls the switching circuit 231 to change the power supply voltage Vcc ′ output to the detection circuit 112, and executes abnormality detection processing (described later with reference to the flowchart of FIG. 12).
  • FIG. 10 shows an input / output characteristic curve representing the behavior of the diagnosis target circuit with respect to each value P of the surrounding environment.
  • the diagnosis target circuit is the detection circuit 112 of the detection apparatus 100
  • the value of the surrounding environment is a pressure value (a negative pressure value of the negative pressure booster) that is detected by the detection circuit 112.
  • the behavior of the circuit to be diagnosed represents the relationship (Vcc ′, Vout) between the input (power supply voltage Vcc ′) and the output (detection signal Vout) of the detection circuit 112 with respect to each pressure value P.
  • the input / output characteristic curve represents the behavior (Vcc ′, Vout) of the detection circuit 112 with respect to the value (pressure value) P of the same ambient environment as a curve (including a straight line).
  • the present invention is not limited to the detection circuit, and can be applied to any electric circuit, electric element, and electronic element whose behavior changes according to the value of the surrounding environment.
  • the value of the surrounding environment is not limited to the pressure value, and may be any physical quantity such as temperature, speed, acceleration, humidity, and the like.
  • the behavior of the diagnosis target circuit with respect to each value of the surrounding environment is not limited to the input / output voltage, and at least one of the input and the output may be a current.
  • the power supply voltage Vcc ′ is changed from Vc1 to Vc2 within a time during which the pressure value in the negative pressure booster (value of the surrounding environment) does not change, for example, within 100 msec (preferably 10 msec), and the output signal Vout is changed. If the detection circuit 112 is normal when detected, the value of the output signal Vout, that is, the behavior of the detection circuit 112 changes on the same input / output characteristic curve (CB) as shown by points s1 to s2 in FIG. .
  • CB input / output characteristic curve
  • the detection circuit 112 if the detection circuit 112 is abnormal, the value of the detection signal Vout, that is, the behavior of the detection circuit 112 deviates from the same input / output characteristic curve (CB), for example, from point s1 to point s21 or s22 in FIG. Change.
  • CB input / output characteristic curve
  • the detection circuit 112 of the detection circuit 112 is determined by determining “the detection circuit 112 is abnormal”. An abnormality detection process can be executed.
  • the behaviors s1 and s2 before and after the change of the power supply voltage are the same as the input / output characteristics in order to enable detection even when the pressure (value of the surrounding environment) slightly fluctuates before and after the change of the power supply voltage (input).
  • FIG. 12 is a flowchart for explaining abnormality detection processing of the detection circuit 112 according to the present embodiment.
  • step S13 the values Vo1 and Vo1 ′ of the output signal Vout obtained in steps S10 and S12 are compared. If both are equal, that is, the pressure value (the value of the surrounding environment) changes between steps S10 to S12. If not, the process proceeds to step S14 to determine whether the detection circuit 112 is abnormal. On the other hand, if it is determined in step S13 that Vo1 and Vo1 'are different, the process returns to step S10 and the acquisition of the output signal Vout before and after the power supply voltage change is executed again.
  • step S14 the output signal Vo1 (behavior s1 (Vc1, Vo1)) of the detection circuit 112 before the power supply voltage change and the output signal Vo2 (behavior s2 (Vc2, Vo2)) of the detection circuit 112 after the power supply voltage change are generated. It is determined whether or not they are on the input / output characteristic curve for the same pressure value. If both are on the same input / output characteristic curve, it is determined that the detection circuit 112 is normal (step S15). If they are not on the same input / output characteristic curve, it is determined that the detection circuit 112 is abnormal (step S16).
  • the reason why the output signal Vo1 (behavior s1 (Vc1, Vo1)) for the power supply voltage value Vc1 before the change is measured twice in steps S10 and S12 is that the pressure value (the value of the surrounding environment) changes. This is because the behavior of the detection circuit 112 before and after the change of the power supply voltage is compared to determine whether or not there is an abnormality in a situation where the power supply voltage is not changed. Note that even if there is an error within a predetermined range (for example, about 1%) in the measurement value of the detection signal Vout twice with respect to the power supply voltage Vc1 before the change, it may be determined that the two measurement values match.
  • a predetermined range for example, about 17%
  • a predetermined error for example, 1%) in Vo2 (detection value
  • the output signal Vo1 (behavior s1) of the detection circuit 112 with respect to the power supply voltage Vc1 before the change and the output signal Vo2 (behavior s2) of the detection circuit 112 with respect to the power supply voltage Vc2 after the change are the same input / output.
  • the power supply voltage is changed from Vc1 to two or more different power supply voltages (for example, Vc2 and Vc3).
  • the output signal Vo1 (behavior s1) for the power supply voltage Vc1 before the change the output signal Vo2 (behavior s2) for the power supply voltage Vc2 after the change, and the output signal for the power supply voltage Vc3 after the change. If all of Vo3 (behavior s3) are on the same input / output characteristic curve, it may be determined that “the detection circuit 112 is normal”. When the input / output characteristic for the pressure value is a curve, it is determined whether or not there is an abnormality in the detection circuit 112 by determining whether or not three or more points are on the same input / output characteristic curve. can do. In this case, the power supply voltage control circuit 231 is configured as shown in FIG.
  • FIG. 13 is an input / output characteristic curve (input / output) when the relationship between the input (Vcc ′) and the output (Vout) of the detection circuit 112 is a straight line for each pressure value P in the input / output characteristic curve of FIG. Characteristic line).
  • the output signal Vo1 (behavior s1 (Vc1, Vo1)) of the detection circuit 112 before the power supply voltage change and the output signal Vo2 of the detection circuit 112 after the power supply voltage change (Whether or not the behavior s2 (Vc2, Vo2)) is on the same characteristic line depends on whether the output signals Vo1, Vo2 (behavior s1, s2) of the detection circuit 112 before and after the power supply voltage change change at a predetermined ratio. This can be determined by examining the above.
  • FIG. 14 is a flowchart illustrating an abnormality detection process of the detection circuit 112 according to the present embodiment when the input / output characteristic curve of the detection circuit 112 is a straight line. This flowchart is the same as the flowchart of FIG. 12 except for step S14a.
  • step S14a it is determined whether or not the ratio Vo1 / Vo2 of the output signal Vout before and after the change of the power supply voltage matches the ratio Vc1 / Vc2 of the power supply voltage before and after the change. Is determined to be normal (step S15), and if they do not match, the detection circuit 112 is determined to be abnormal (step S16).
  • step S14a when the ratio Vo1 / Vo2 of the output (Vout) before and after the power supply voltage change is within the range of Vc1 / Vc2 ⁇ predetermined error (for example, 1%), “Vo1 / Vo2 is Vc1 / Vc2. It may be determined that “matches”.
  • step S14a the detection value Vo2 acquired in step S11 is compared with the theoretical value Vo2, and it is determined whether or not they match to detect an abnormality in the detection circuit 112. .
  • a predetermined error range for example, 1%) of the theoretical value Vo2
  • the resistance state of the signal line connected to the detection circuit 112 can be monitored by the monitoring line, and the output signal after the power supply voltage is changed.
  • the abnormality of the detection circuit 112 itself can be reliably detected with a simple configuration. That is, according to the third embodiment, comprehensive abnormality detection for the detection apparatus 100 can be performed easily and reliably.
  • the ambient environment value (pressure value, etc.) of the detection circuit 112 is known at the time of abnormality detection processing.
  • the ambient environment value (pressure value, etc.) of the detection circuit 112 is known at the time of abnormality detection processing.
  • residual pressure may remain in the negative pressure booster even when the engine is stopped, and it is not possible to determine whether the pressure value when the engine is stopped is atmospheric pressure or negative pressure remaining. I can't.
  • the ambient environment values (pressure values, etc.) themselves are known, and the input / output characteristics of the detection circuit 112 for each pressure value are known.
  • the abnormality of the detection circuit 112 is determined by determining whether the output of the detection circuit 112 before and after the power supply voltage change is in accordance with a known input / output characteristic (whether it is on the same input / output characteristic curve). Can be detected.
  • the monitoring lines and the electrodes for connecting the monitoring lines described in the first and second embodiments are omitted, for example, the monitoring lines 103a, L3a, 203a, the electrode P3a, and the terminal T3a are omitted in FIG. good.
  • the abnormality of the detection circuit 112 is detected without requiring an additional signal line for connecting the two, an additional electrode and a terminal for connecting the additional signal line. It can be reliably detected with a simple configuration.
  • the component added in the processing device 200 is only the power supply voltage control circuit 231 including the resistor RL, the switch 231 and the like, and the abnormality of the detection circuit 112 is detected by software processing of the processing unit 220a with the minimum additional components. can do.
  • the processing apparatus 200 when the processing apparatus 200 originally has a configuration in which the power supply voltage such as a regulator or a DC / DC converter is variable, it is not necessary to add the power supply voltage control circuit 231 and the processing unit 220a is software-like. An abnormality of the detection circuit 112 can be detected only by the processing.
  • the power supply voltage control circuit 230 has been described as a configuration including the resistor RL and the switch 231, it may be a regulator or a DC / DC converter.
  • the abnormality detection processing of the detection circuit 112 according to the present embodiment is not limited to the circuit shown in FIG. 1, but can be applied to the circuits of FIGS. 3, 4, 6, and 8 and modifications thereof. That is, the detection circuit 112 is obtained by combining the abnormality detection processing using the input / output characteristics of the detection circuit according to the third embodiment with the abnormality detection processing of the signal line using the monitoring line according to the first and second embodiments. It is possible to monitor the resistance state of the signal line connected to, and to reliably detect abnormality of the detection circuit 112 itself.
  • FIG. 16 shows a circuit diagram of a detection system according to the fourth embodiment of the present invention.
  • the present embodiment includes a power supply voltage control circuit 240 instead of the power supply voltage control circuit 230, an abnormality detection unit 220b instead of the abnormality detection unit 220a, and a monitoring line.
  • the configuration is the same as that of the detection system of the third embodiment shown in FIG. 9 except that 103a, L3a, and 203a are omitted.
  • the power supply voltage control circuit 240 receives an input of the power supply voltage Vcc, continuously changes the power supply voltage Vcc ′, and outputs it to the detection device 100.
  • the power supply voltage control circuit 240 is a circuit that continuously changes the power supply voltage Vcc ′ by controlling switching elements such as transistors, and is a regulator circuit such as a DC / DC converter, for example.
  • the power supply voltage control circuit 240 is connected to the processing unit 220 via the control line 241, and the value of the output power supply voltage Vcc ′ is controlled by the abnormality detection unit 220 b of the processing unit 220.
  • FIG. 17 is a block diagram showing the configuration of the detection circuit 112.
  • the detection circuit 112 is corrected by the detection unit (sensor) 151 that detects a physical quantity such as pressure, the correction circuit 152 that adds a predetermined correction ⁇ v to the detection signal vo output from the detection unit 151, and the correction circuit 152.
  • the output signal Vout is input to the processing device 200 via the detection signal lines 101 and L1.
  • the detection unit 151 is, for example, a pressure sensor including a diaphragm and a resistance bridge, and outputs an electric signal (detection signal) vo indicating a change in resistance due to deformation of the diaphragm.
  • a predetermined correction value ⁇ v is added to the signal vo.
  • the correction value ⁇ v is adjusted according to the value of the power supply voltage Vcc ′ supplied to the detection circuit 112 and is proportional to the power supply voltage Vcc ′.
  • the correction value ⁇ v is adjusted in a decreasing direction so that the output signal Vout is output from the amplifier circuit 153 in the range of 0.3V to 2.7V.
  • FIG. 19 shows an input / output characteristic curve (here, a straight line) of the detection circuit 112 for each pressure value.
  • P PA, PB, PC (PA ⁇ PB ⁇ PC)
  • Vcc ′ supplied to the detection circuit 112
  • Vcc for example, 5 V
  • the input / output characteristic of the detection circuit 112 is a straight line will be described as an example, but the input / output characteristic may be a curve as in the case of the third embodiment.
  • the input / output characteristics of the detection circuit 112 change in accordance with the power supply voltage Vcc ′ regardless of the pressure value P and the region I that changes in response to the power supply voltage Vcc ′ for each pressure value P. Region II.
  • an abnormality in a conductive line connecting the detection circuit 112 to an external circuit and an abnormality in the detection circuit 112 itself (abnormality in the detection circuit 112). Is detected.
  • one of the conductive lines (L1, 101; L2, 102; L3, 103) is in a high resistance state based on the change (Vx0 ⁇ Vx1) of the minimum operating power supply voltage Vx. Detect that it is abnormal.
  • any one of the conductive lines (L1, 101; L2, 102; L3, 103) is brought into a high resistance state due to the contact resistance or the like at the terminals P1 to P3, and for example, a resistance RX on the conductive line L3. (See FIG. 2 and the like), a part ⁇ Vcc of Vcc ′ supplied from the power supply voltage control circuit 240 is consumed by the resistor RX, and Vcc′ ⁇ Vcc is supplied to the detection circuit 112.
  • Vcc ′ Vx0 + ⁇ Vcc
  • Vx0 is supplied to the detection circuit 112
  • the detection unit 151 (FIG. 17) does not operate and the input / output characteristics of the detection circuit 112 are determined regardless of the pressure value P. Abnormalities can be detected.
  • FIG. 22 is a flowchart for explaining abnormality detection processing of the detection circuit 112 according to the fourth embodiment.
  • the abnormality detection unit 220b controls the power supply voltage control circuit 240 to sweep the power supply voltage Vcc ′ from Vcc to 0 as shown in the horizontal axis of the graph of FIG. 19 (step S20), and from the change in the output signal Vout, the detection unit The minimum operating power supply voltage Vx at which 151 stops is detected (step S21), and the input / output characteristic curve C or the output signal Vout of the detection circuit 112 less than the minimum operating power supply voltage Vx is detected (step S22).
  • the power supply voltage Vcc ′ is swept from Vcc to 0 V will be described.
  • the power supply voltage Vcc ′ may be changed starting from a voltage lower than Vcc within a range in which the minimum operation power supply voltage Vx can be detected.
  • the minimum operating power supply voltage Vx Vx0 (reference value) when the conductive line is normal and the value of the input / output characteristic curve C0 or the output signal Vout below Vx0 when the detection circuit 112 is normal are stored in advance. Keep it.
  • step S23 the lowest operating power supply voltage Vx detected in step S21 is compared with Vx0 (reference value), and if the two match, it is determined that the conductive line is normal (step S24). On the other hand, if the minimum operating power supply voltage Vx and Vx0 (reference value) are different in step S23 (see FIG. 20), it is determined that the conductive line is abnormal (step S25).
  • step S26 the input / output characteristic curve C detected in step S22 is compared with the reference curve C0, and when the two match, the detection circuit 112 determines that it is normal (step S27). On the other hand, if the input / output characteristic curve C is different from the reference curve C0 in step S26 (see FIG. 21), the detection circuit 112 determines that it is abnormal (step S28).
  • step S22 When the input / output characteristic curve C0 below the minimum operating power supply voltage Vx0 is a straight line, one value of Vout below Vx is checked in step S22, and the detected value of Vout is compared with the reference value in step S26. May be.
  • the detection circuit 112 based on the minimum operating power supply voltage Vx of the detection unit 151 determined regardless of the pressure value, the detection circuit 112 depends on the high resistance state of the conductive line connecting the external circuit. An abnormality can be detected, and an abnormality of the detection circuit 112 itself can be detected based on the input / output characteristics of the detection circuit 112 less than the minimum operating power supply voltage Vx.
  • the abnormality detection processing since the region of the input / output characteristics not related to the pressure value is used, the abnormality detection of the detection circuit 112 is detected even when the ambient environment value (pressure value, etc.) itself is not known. Processing can be executed.
  • the abnormality detection process for the detection circuit 112 and the conductive wire can be executed regardless of the pressure value even in a situation where the pressure value frequently fluctuates. Further, an abnormality caused by the high resistance state of the conductive wire can be detected without adding a monitoring line.
  • the detection circuit that detects pressure is described as an example.
  • the present embodiment can be applied to any detection circuit such as a detection circuit that detects temperature, speed, acceleration, humidity, and the like. is there.
  • the abnormality detection method since the minimum operating power supply voltage Vx at which the detection unit 151 (FIG. 17) stops is used, actually, the correction circuit 152 excluding the detection unit 151 in the detection circuit 112 and An abnormality in the amplifier circuit 153 is detected.
  • the abnormality detection process of the detection circuit 112 according to the third embodiment is equivalent to executing the abnormality detection process using the input / output characteristics of the region (I) above the minimum operating power supply voltage Vx in FIG. Therefore, it is possible to detect the presence or absence of abnormality in the entire detection circuit 112.
  • the abnormality detection process of the detection circuit 112 itself is executed by the abnormality detection method according to the third embodiment, and the abnormality detection process of the conductive line connecting the detection circuit 112 to the external circuit is changed to the fourth embodiment. This is performed by the abnormality detection method.
  • FIG. 23 is a flowchart for explaining the abnormality detection process of the detection circuit according to the fifth embodiment.
  • the abnormality detection process of the detection circuit 112 itself is executed by the abnormality detection method according to the third embodiment, and the abnormality according to the fourth embodiment is performed. It is a flowchart which performs the abnormality detection process of a conductive wire with a detection method.
  • the abnormality detection function of the processing unit 220 in this case is referred to as an abnormality detection unit 220c (not shown).
  • the processing in step S31 corresponds to steps S10 and S11 in FIGS.
  • the processing of steps S12 and S13 in FIGS. 12 and 14 may be added to confirm that the pressure value does not change, and then the diagnosis of the detection circuit 112 may be executed.
  • step S33 the lowest operating power supply voltage Vx detected in step S32 is compared with Vx0 (reference value). If the two match, it is determined that the conductive line is normal (step S34), and the two do not match. Determines that the conductive wire is abnormal (step S35).
  • step S38 the detection circuit 112 determines that there is an abnormality.
  • the abnormality detection processing it is possible to detect an abnormality due to the high resistance state of the conductive wire without adding a monitoring line, and based on the input / output characteristics of the detection circuit 112 at Vx or higher. The presence or absence of abnormality in the entire detection circuit 112 including the detection unit 151 can be detected.
  • the abnormality detection process of the detection circuit 112 itself may be executed using the method of the fourth embodiment, and the abnormality detection process of the conductive line may be executed using the method using the monitoring line of the first and second embodiments. In this case, it is possible to identify which conductive line has an abnormality by the method using the monitoring line, and it is possible to execute the abnormality detection process of the detection circuit 112 even in an ambient environment where the pressure is frequent.
  • both the abnormality detection process of the detection circuit 112 itself according to the third embodiment and the abnormality detection process of the detection circuit 112 itself according to the fourth embodiment may be executed.
  • the abnormality detection process of the third embodiment can detect an abnormality of the entire detection circuit including the detection unit in a situation where there is no pressure fluctuation, and the abnormality detection process of the fourth embodiment frequently causes a pressure fluctuation. Even underneath, it is possible to detect abnormality of the detection circuit excluding the detection unit. Therefore, the abnormality of the detection circuit 112 can be detected more reliably.
  • the abnormality detection process of the conductive wire according to the fourth embodiment is combined to make the detection circuit 112 It is possible to easily and reliably perform the abnormality detection of the comprehensive detection circuit 112 including abnormality detection of the conductive wire connected to the external circuit.
  • the abnormality detection process of the detection circuit 112 itself the abnormality detection process of the detection circuit 112 itself according to the fourth embodiment, the abnormality detection process of the conductive line according to the first and second embodiments, and the fourth embodiment.
  • the abnormality detection of the comprehensive detection circuit 112 including the abnormality detection of the conductive line connecting the detection circuit 112 to the external circuit can be more reliably performed.
  • the technical idea of the present invention is not limited to the detection of an abnormality in an electric circuit such as a detection circuit, but is also applicable to the detection of an abnormality in another electric device such as an electric motor or an electronic device.
  • a predetermined power supply voltage Vcc ′ Vcc, that is, a sufficiently high power supply voltage is supplied and the motor is rotating at a high speed, even if the motor is in a high friction state due to a problem such as a bearing, the output rotation speed of the motor The change in is small and it is difficult to detect defects.
  • the power supply voltage Vcc ′ when the supply power supply voltage Vcc ′ is decreased (when the rotational speed of the motor is decreased), the rotational speed of the motor is significantly reduced in the high friction state as compared with the normal state. Therefore, the power supply voltage Vcc is reduced to the power supply voltage Vy ( ⁇ Vcc) that causes a significant difference in the rotational speed of the motor between the normal state and the high friction state, and the detected value of the rotational speed is compared with the reference value.
  • the abnormality detection process is performed as follows. During operation of the electric motor, the power supply voltage is decreased from Vcc to Vy, and the rotational speed R of the electric motor is detected. If the detected value R matches the reference value R0, it is determined that “the electric motor is normal”. Judge that “the motor is abnormal”.
  • FIG. 24 is a circuit diagram of a detection system according to the sixth embodiment.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • parts different from the above embodiment will be described in detail.
  • This detection system has a disconnection detection circuit 250 interposed in a monitoring line 203 a connected to the monitoring line 203 in the processing circuit 200.
  • the detection circuit 250 includes a resistor R5 interposed between the monitoring line 203a and the power supply voltage Vcc, a resistor R6 interposed between the monitoring line 203a and the ground potential GND, and the monitoring line 203a and the ground potential GND.
  • the monitoring line 203a is further connected to the ground potential GND via a capacitor C1 connected in parallel to the resistor R6.
  • a resistor R7 is interposed in series with the monitoring line 203a. One end of the resistor R7 is connected to the first capacitor C1, and the other end of the resistor R7 is connected to the resistor R6.
  • the power supply voltage Vcc is connected to the ground potential GND through the resistors R5, R7, and R6, and is connected to the ground potential GND through the resistor R5 and the capacitor C1.
  • the capacitor C1 is provided to stabilize the potential of the monitoring line 203a.
  • the resistor R7 is for limiting the current flowing into the ground terminal 213a of the ADC 210.
  • RC1 and RC2 indicate the contact resistance and the resistance component of the conductive wire in the electrode or terminal.
  • RC1 is connected to the contact resistance between the ground electrode P3 of the detection device 100 and the ground line 103, the contact resistance between the ground electrode P3 of the detection device 100 and the ground line L3, and the ground electrode P3 of the detection device 100.
  • a resistance component between the point (V2 ′) and a resistance component on the ground line L3 are included.
  • RC4 includes a contact resistance between the ground terminal T3 of the processing apparatus 200 and the ground line L3, a contact resistance between the ground terminal T3 of the processing apparatus 200 and the ground line 203, and a resistance component on the ground line 203. Including.
  • the processing is performed.
  • the current from the power supply voltage Vcc charges the capacitor C1 via the resistor R5, and after charging the capacitor C1, the current from the power supply voltage Vcc is changed to the monitoring lines 203a, L3a, It flows to the ground potential GND through 103a and the ground lines 103, L3, and 203.
  • the current from the power supply voltage Vcc does not flow to the resistor R7 side, and the detection voltage V2 input from the monitoring line 203a to the monitoring terminal 213a of the ADC 210 is the same (0 V) as the ground potential GND.
  • the contact resistances RC1 and RC2 are not 0 (when the resistance value of the path of the ground lines 203, L3 and 103 from the ground potential GND to the connection point (V2 ′) cannot be regarded as substantially 0), A potential difference is generated between the potential V2 ′ and the ground potential GND of the processing circuit 200. Accordingly, the potential of the ground terminal 112a of the detection circuit 112 (the same potential as the potential V2 'at the connection point) is also different from the ground potential GND of the processing circuit 200. In the present embodiment, the influence of the high resistance state of the ground line on the behavior (output voltage Vout) of the detection circuit 112 is corrected based on the detection voltage V2 indicating the resistance state of the ground line (103, L3, 203).
  • the potential V2 ′ at the connection point is the current Ids flowing from the detection circuit 112 through the ground line (103, L3, 203) and the power supply voltage.
  • the following expression (3)-(5) is expressed by the current Icc flowing from Vcc through the resistor R5, the monitoring lines (203a, L3a, 103a), and the ground lines (103, L3, 203).
  • V2 (Ids + Icc) * (RC1 + RC2)
  • Ids 10mA
  • Icc Vcc / (R5 + RC1 + RC2) (5)
  • Ids is assumed to be a value of 10 mA (a constant value) that typically flows in the detection circuit 112.
  • the potential V2 'at the connection point is a value proportional to RC1 + RC2.
  • the contact resistance RC1 + RC2 is compared with the resistance value of the resistor R7.
  • the current I7 flowing through the resistor R7 is sufficiently smaller than the current Ids and can be ignored.
  • the current Icc is several mA, and the current I7 flowing through the resistor R7 is about 1 ⁇ A.
  • the voltage drop at the resistor R7 can be ignored, and the detection voltage V2 input to the monitoring terminal 213a of the ADC 210 can be regarded as the potential V2 'at the connection point.
  • the detection voltage V2 input to the monitoring terminal 213a of the ADC 210 can be regarded as the potential V2 'at the connection point.
  • the potential shift of the ground terminal of the detection circuit 112 can be corrected using the detection voltage V2.
  • FIG. 26 is an explanatory diagram for explaining a process of correcting the output voltage Vout of the detection circuit 112 with the detection voltage V2.
  • FIG. 26A is a characteristic curve showing the relationship between the output voltage Vout and the detected pressure (negative pressure) when the potential V2 'at the connection point matches the ground potential (0V).
  • FIG. 26B shows a characteristic curve when the potential V2 'at the connection point rises due to the contact resistance RC1 + RC2 of the ground line.
  • the characteristic curve of the pressure detection circuit 112 is a curve as shown in FIG.
  • the section decreasing linearly in the characteristic curve of FIG. 26 (a) is expressed by equation (6).
  • Vout (c1 * pe + c0) * VDD (6)
  • Vout is the output voltage [V] of the pressure detection circuit 112
  • pe is the detection pressure (negative pressure: [kPa]).
  • c1 and c0 are constants determined by the specification of the pressure detection circuit 112.
  • VDD is a reference voltage that determines the slope of the characteristic curve, and corresponds to the upper limit value [V] (3.3 [V] in this example) of the pressure detection range of the pressure detection circuit 112.
  • the reference voltage VDD is set in advance according to the value of the power supply voltage Vcc according to the type of the pressure detection circuit 112.
  • FIG. 26B is a characteristic curve when the potential V2 ′ (detection voltage V2) at the connection point increases due to the contact resistance Rc1 + RC2 of the ground line.
  • V2 ′ detection voltage V2
  • the output voltage Vout and the reference voltage VDD are corrected by the correction amount V2 as in Expression (7).
  • the corrected output voltage Vout and the reference voltage VDD are set as an effective output voltage Vout_eff and an effective reference voltage VDD_eff, respectively.
  • Vout_eff Vout ⁇ V2
  • VDD_eff VDD ⁇ V2 (7)
  • the detected pressure pe is calculated by the equation (8).
  • the detected pressure pe compensated for the contact resistance of the ground line can be calculated. This process can compensate for the influence of the resistance value on the ground line on the detected pressure pe even when the resistance value is unexpectedly increased on the ground line.
  • the detection voltage V2 input to the monitoring terminal 213a of the ADC 210 is a voltage applied to the resistor R6.
  • the voltage of the resistor R6 is a voltage obtained by dividing the power supply voltage Vcc by the resistor R5 + R7 and the resistor R6, and is given by Expression (9).
  • V2 Vcc * R6 / (R5 + R7 + R6) (9)
  • V2 2.88 [V].
  • the ADC 210 outputs digital signals corresponding to the input analog signals V1 and V2.
  • the processing unit 220 determines that “the ground line is normal” when ⁇ V is ⁇ 10 mV ⁇ V ⁇ 10 mV, and determines that “the ground line is in a high resistance state” when 10 mV ⁇ ⁇ V ⁇ Vth, and Vth ⁇ In the case of ⁇ V, it is determined that “the monitoring line is disconnected”.
  • V2 ′ V2 matches the predetermined value (0 V).
  • this range is appropriately determined according to the resolution of the ADC 210. decide.
  • the detected pressure pe may be calculated by the equation (6) without correcting the output voltage Vout and the reference voltage VDD.
  • This process can compensate for the influence of the resistance value on the ground line on the detected pressure pe even when the resistance value is unexpectedly increased on the ground line.
  • the detected pressure Pe can be corrected according to the resistance state of the ground line, and accurate pressure detection is continued while avoiding the stoppage of the system. be able to.
  • the disconnection detection circuit 250 including the resistors R5 and R6 interposed between the monitoring line and the power supply voltage Vcc and the ground potential GND is arranged, so that the detection apparatus 110 has a special configuration. It is possible to detect the disconnection of the monitoring line itself for monitoring the resistance state of the ground line without adding.
  • the correction processing of the output voltage Vout and the reference voltage VDD described above can also be applied to the first embodiment.
  • the output voltage Vout and the reference voltage VDD may be corrected using ⁇ V calculated in the first embodiment as a correction amount.
  • the detection system has been mainly described.
  • the present invention is not limited to the detection system, and can be applied to any electric system as long as power supply or signal communication is performed between a plurality of circuits. is there.
  • Detection System 100 Detection Device (Sensor Device) 200 Processing unit (ECU) 101, L1, 201 Detection signal line 102, L2, 202 Power supply line 103, L3, 203 Ground line 101a to 103a, L1a to L3a, 201a to 203a Monitoring lines P1 to P3, P1a to P3a Electrodes T1 to T3, T1a to T3a Terminal 110 Housing 111 Sensor chip 112 Detection circuit 112a Ground terminal 151 Detection unit 152 Correction circuit 153 Amplification circuit 210 Analog to digital converter (ADC) 220 processing unit 220a, 220b abnormality detection unit R2, R3 resistance Vcc power supply voltage source, power supply voltage 230, 240 power supply voltage control circuit 231 switching circuit 232, 241 control line 250 disconnection detection circuit RL resistance for voltage drop

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Regulating Braking Force (AREA)

Abstract

 周囲環境に応じて挙動が変化する電気回路において、周囲環境の値が特定できない状況下でも、電気回路の異常を確実に検出可能とすることにある。 本発明に係る異常検出装置は、特定種類の物理量を検出する検出回路(112)の異常を検出する異常検出装置であって、前記検出回路に供給する電源電圧(Vcc')の大きさを変更し、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路(112)の異常を検出する異常検出部(220a)を備える。

Description

検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
 本発明は、電気回路、特に検出回路の異常を検出するための異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システムに関する。
 車両の制動装置(ブレーキ)の制動力を補助する負圧ブースタの圧力を検出する検出システムが知られている。この検出システムは、負圧ブースタ圧力を検出する圧力センサと、圧力センサからの出力を処理する処理装置(例えば、ECU)とから構成される。このような検出システムでは、センサ回路に異常がある場合でも検出信号レベルが正常範囲内となることがあり、センサ回路の異常の検出が困難な場合がある。センサ回路の異常を検出する方法としては、特許文献1及び2に記載されたテストパルスを用いる技術が提案されている。
 特許文献1は、車速センサの検出値を用いて車両のアンチロック動作を実行するブレーキシステムにおいて、車速センサの検出値が所定値未満を示す場合に、車速センサを含む電気回路の故障を検出するものである。このシステムは、車速センサ18が電気回路22を介してセンサ信号条件付回路36に接続されており、条件付回路36は、車速センサ18からの検出信号の値が所定の値を超える場合に、マイクロプロセッサ37に信号を出力する。電気回路22は、車速センサ18の出力側の2つの端子と、条件付回路36の入力側の2つの端子とを接続する2本の信号線と、これらの2本の信号線間に接続された入力インピーダンス35とを有する。このシステムでは、条件付回路36の出力が0になった場合に、導通試験回路38から電気回路22の2本の信号線の間に直流電流(テストパルス)を提供してセンサ18若しくは電気回路22の導通試験を行う。センサ18若しくは電気回路22が導通であれば(正常)、条件付回路36の入力の両端子間に比較的小さな電圧降下が存在し、条件付回路36から出力が生じない。一方、センサ18若しくは電気回路22が導通でなければ(異常)、導通試験回路38から見たインピーダンスが高く、条件付回路36の入力の両端子間には所定値以上の電圧降下が生じ、条件付回路36から出力が生じる。従って、このシステムでは、電気回路22の2本の信号線の間にテストパルスを提供して、条件付回路36の出力が0であれば、センサ18若しくは電気回路22が正常、条件付回路36の出力が0でなければ、センサ18若しくは電気回路22が異常と判断している。
 特許文献2は、自動車の電気系統の故障を診断する診断装置に関する。この診断装置では、パルス発生装置(第4図参照)から診断対象部品にテストパルス信号を出力させ、対象部品のテストパルスに対する応答を検出すること(第1図参照)によって、対象部品の異常を診断する装置が記載されている。
特表平5-503779号公報 特開平4-231838号公報
 しかしながら、負圧ブースタの圧力検出システムでは、エンジン停止時であっても残圧が残っている場合があるために圧力値が特定できず、判断基準となるセンサ回路出力を特定できない。このため、負圧ブースタの圧力検出システムでは、特許文献1及び2のようにテストパルスを用いてセンサ回路の異常検出を行うことはできない。
 また、特許文献1及び2に記載の方法では、テストパルスを発生させる回路、テストパルスによる出力を評価する回路等のための追加の部品が必要であり、コストアップをまねく虞がある。
 本発明の目的は、周囲環境に応じて挙動が変化する電気回路において、周囲環境の値が特定できない状況下でも、電気回路の異常を確実に検出可能とすることにある。
 また、本発明の目的は、周囲環境に応じて挙動が変化する電気回路の異常を簡易かつ確実に検出可能とすることにある。
 本発明の一実施態様は、特定種類の物理量を検出する検出回路(112)の異常を検出する異常検出装置に関する。この異常検出装置は、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路の異常を検出する異常検出部(220a)を備える。ここで、特定種類の物理量は、圧力、温度、速度、加速度、湿度の値を含むが、これらに限定されない。
 この検出回路(112)の異常検出装置によれば、検出回路に供給する電源電圧の大きさを変更し、変更後の電源電圧(Vc2)に対する検出回路の出力信号(Vo2)が、所定の入出力特性に従っているか否かを判断して、検出回路の異常を検出することができる。即ち、現在の物理量が不明であっても、検出回路の入出力特性が予め分かっていれば、検出回路の異常を検出することができる。ここで、入出力特性とは、検出回路の入出力値の関係であり、電源電圧(入力)と出力信号との関係を示す。
 本発明の一実施態様では、前記異常検出部(220a)は、前記電源電圧変更前後の前記検出回路(112)からの出力信号(Vo1,Vo2)が、同一の物理量(P)に対する入出力特性曲線上にあるか否かに基づいて、前記検出回路(112)の異常を検出する。
 この場合、各物理量に対応する入出力特性曲線を予め求めて記憶しておき、物理量が変化しない程度の短時間の間に、電源電圧変更前後の検出回路(112)の出力信号(Vo1,Vo2)を検出し、これらが同一の物理量に対する入出力特性曲線上にある場合に、検出回路が正常と判断し、同一の物理量に対する入出力特性曲線上にない場合に、検出回路が異常と判断する。なお、検出回路の入出力特性曲線が計算できる場合において、異常検出処理中に入出力特性を計算する場合には、各物理量に対応する入出力特性曲線を予め記憶する必要はない。なお、検出回路の入出力特性が直線になる場合には、各物理量に対応する入出力特性曲線を予め記憶する必要はなく、変更前後の出力信号の比が、変更前後の入力の比と一致するか否かに基づいて、検出回路の異常を検出することもできる。
 本発明の一実施態様では、前記異常検出部(220a)は、前記電源電圧変更前後の前記検出回路(112)からの出力信号(Vo1,Vo2)比が変更前後の電源電圧(Vc1,Vc2)の比に一致するか否かに基づいて、前記検出回路(112)の異常を検出する。検出回路の入出力特性が直線になる場合には、変更前後の出力信号の比が、変更前後の入力の比と一致するか否かに基づいて、検出回路の異常を検出することができる。
 本発明の一実施態様では、前記異常検出部(220a)は、前記電源電圧を、互いに異なる複数の電圧(Vc2,Vc3)に変更し、これら変更後の複数の電源電圧(Vc2,Vc3)での前記検出回路(112)からの出力信号(Vo2,Vo3)に基づいて、前記検出回路(112)の異常を検出する。
 この実施態様では、複数の変更後の電源電圧(Vc2,Vc3)での出力信号(Vo2,Vo3)が、所定の入出力特性に従っているか否かを判断して、検出回路の異常を検出することができる。また、変更前の電源電圧(Vcc)及び複数の変更後の電源電圧(Vc2,Vc3)を含む3種類以上の電源電圧(Vc1,Vc2,Vc3)に対する出力信号(Vo1,Vo2,Vo3)が所定の入出力特性に従うか否かを判断しても良い。この場合、入出力特性が曲線である場合に、出力信号が所定の入出力特性に従うか否かを高い精度で判断することができる。
 本発明の一実施態様では、前記異常検出部(220a)は、変更前における電源電圧値(Vc1)に対する前記検出回路(112)からの出力信号を所定の時間間隔をあけて少なくとも2回測定し、少なくとも2回の出力信号(Vo1,Vo1’)が一致する場合に、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路の異常を検出する。変更前における電源電圧値(Vc1)に対する出力信号の複数の測定値が一致するか否かに基づいて、検出対象である物理量が短時間では変動しない状況であるか否かを判断し、物理量が短時間では変動しない状況下で異常検出処理を実行することができる。
 本発明の一実施態様では、前記異常検出部(220a)の制御によって、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更する電源電圧制御部(230)を備える。例えば、抵抗及びスイッチからなる電源電圧制御部を追加するのみで、簡易な構成で、検出回路の異常検出を確実に行うことができる。
 本発明の一実施態様では、前記検出回路(112)は、車両の制動装置を補助する負圧ブースタ内の圧力を検出する圧力センサである。負圧ブースタ内には、エンジン停止後においても残圧が残っている場合があり、圧力値を確定できないため、従来のテストパルスを用いる方法では圧力センサの異常を検出することができない。これに対して、本発明によれば、診断時の圧力値が不明であっても、検出回路の入出力特性が予め分かっていれば、検出回路の異常を検出することができる。
 本発明の一実施態様は、周囲環境に応じて挙動が変化する電気回路(112)の異常を検出する異常検出装置に関する。この異常検出装置は、前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)における前記電気回路の挙動(Vo2)に基づいて、前記電気回路の異常を検出する異常検出部(220a)を備える。ここで、周囲環境は、電気回路周囲の圧力、温度、速度、加速度、温度、湿度等の状態である。
 本発明の一実施態様は、検出システムに関する。この検出システムは、特定種類の物理量を検出する検出回路(112)と、前記検出回路(112)からの出力を処理する処理装置(200)と、前記検出回路と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記検出回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する。また、この検出システムは、更に、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路(112)の異常を検出する異常検出部(220a)を備える。
 本発明の一実施態様は、電子システムに関する。この電子システムは、周囲環境に応じて挙動が変化する第1の電気回路(112)と、第2の電気回路(200)と、前記第1の電気回路と前記第2の電気回路との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記第1の電気回路側で前記導電線に電気的に接続される監視用信号線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用信号線との接続点における電位を前記監視用信号線によって検出することによって、前記導電線の抵抗状態を検出する。また、この電子システムは、更に、前記第1の電気回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)における前記第1の電気回路の挙動(Vo2)に基づいて、前記第1の電気回路(112)の異常を検出する異常検出部(220a)を備える。
 本発明の一実施態様は、特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する異常検出部(220b)を備える。
 本発明の一実施態様では、前記異常検出部(220b)は、更に、前記検出部(151)が停止する前記電源電圧(Vx)に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する。
 本発明の一実施態様は、特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する異常検出部(220b)を備える。
 本発明の一実施態様は、電気回路(112)の異常検出装置において、電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させ、前記電気回路(112)に含まれる一部(151)が停止する前記電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する異常検出部(220b)を備える。
 本発明の一実施態様は、電気回路(112)の異常検出装置において、電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させ、前記電気回路(112)の一部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記電気回路(112)を外部と接続する導電線の抵抗状態を検出する異常検出部(220b)を備える。
 本発明の一実施態様は、特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、第1の異常検出部(220a)と第2の異常検出部(220b)とを備えている。第1の異常検出部(220a)は、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記検出回路の異常を検出する。第2の異常検出部(220b)は、前記検出部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する。
 本発明の一実施態様は、周囲環境に応じて挙動が変化する回路部分(151)を含む電気回路(112)の異常を検出する異常検出装置であって、第1の異常検出部(220a)と第2の異常検出部(220b)とを備えている。第1の異常検出部(220a)は、前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記回路部分(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記電気回路の異常を検出する。第2の異常検出部(220b)は、前記回路部分(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記電気回路(112)を外部と接続する導電線の抵抗状態を検出する。
 本発明の一実施態様は、検出システムに関する。この検出システムは、特定種類の物理量を検出する検出部(151)を含む検出回路(112)と、前記検出回路(112)からの出力を処理する処理装置(200)と、前記検出回路と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記検出回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する。また、この検出システムは、更に、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する異常検出部(220b)を備える。
 本発明の一実施態様は、電子システムに関する。この電子システムは、第1の電気回路(112)と、第2の電気回路(200)と、前記第1の電気回路と前記第2の電気回路との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記第1の電気回路側で前記導電線に電気的に接続される監視用信号線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用信号線との接続点における電位を前記監視用信号線によって検出することによって、前記導電線の抵抗状態を検出する。また、この電子システムは、更に、前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記電気回路の一部(151)が停止する停止電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する異常検出部(220b)を備える。
 本発明の一実施態様は、特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、第1の異常検出部(220a)と第2の異常検出部(220b)とを備える。第1の異常検出部(220a)は、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記検出回路の異常を検出する。第2の異常検出部(220b)は、前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する。
 本発明の一実施態様は、周囲環境に応じて挙動が変化する回路部分(151)を含む電気回路(112)の異常を検出する異常検出装置であって、第1の異常検出部(220a)と第2の異常検出部(220b)とを備える。第1の異常検出部(220a)は、前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記回路部分(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記電気回路の異常を検出する。第2の異常検出部(220b)は、前記電気回路の一部(151)が停止する停止電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する。
 本発明の一実施態様は、電気システムであって、第1の電気回路(112)と、前記第1の電気回路(112)の接地端子に接続される接地線(L3,103)と、前記接地線に電気的に接続され、前記接地線との接続点における電位(V2’)を検出する監視用導電線(L3a,103a)とを備え、前記監視用導電線による検出電圧(V2)に基づいて、前記第1の電気回路(112)の挙動(Vout)を補正する。
 本発明の一実施態様では、前記監視用導電線(L3a,103a)は、第1の抵抗(R5)を介して電源電圧(Vcc)に接続されるとともに、第2の抵抗(R6)を介して接地電位(GND)に接続されており、前記第2の抵抗の電圧を前記検出電圧(V2)として検出することにより、前記監視用導電線自体の異常を検出する。
 本発明の一実施態様では、前記監視用導電線による検出電圧(V2)が第1の閾値よりも小さい場合に、前記監視用導電線による検出電圧(V2)を用いて、前記第1の電気回路(112)の挙動(Vout)の補正を実行し、前記監視用導電線による検出電圧(V2)が第1の閾値以上となった場合に、前記監視用導電線の断線と判断する。
 本発明の一実施態様では、前記監視用導電線による検出電圧(V2)が前記第1の閾値より小さい第2の閾値よりも小さい場合に、前記接地線が正常であると判断し、前記第1の電気回路(112)の挙動(Vout)の補正を実行せず、前記監視用導電線による検出電圧(V2)が前記第2の閾値以上かつ第1の閾値未満である場合に、前記監視用導電線による検出電圧(V2)を用いて、前記第1の電気回路(112)の挙動(Vout)の補正を実行し、前記監視用導電線による検出電圧(V2)が前記第1の閾値以上となった場合に、前記監視用導電線の断線と判断する。
 本発明の一実施態様では、前記第1の電気回路(112)は、特定種類の物理量を検出する検出回路であり、前記監視用導電線による検出電圧(V2)を用いて、前記検出回路(112)の出力電圧(Vout)を補正する。
 本発明の一実施態様では、前記監視用導電線による検出電圧(V2)を用いて、前記検出回路(112)の出力電圧(Vout)と、前記出力電圧(Vout)の上限値(VDD)とを補正することにより、検出する物理量の補正を実行する。
 本発明の一実施態様は、前記検出回路(112)は、車両の制動装置を補助する負圧ブースタ内の圧力を検出する圧力センサであり、前記出力電圧(Vout)は圧力検出信号である。
 本発明の一実施態様では、前記監視用導電線(L3a,103a)に介装される第3の抵抗(R7)を更に備え、前記第3の抵抗(R7)の一端は前記第1の抵抗(R5)に接続され、前記第3の抵抗(R7)の他端は前記第2の抵抗(R6)に接続されている。
 本発明の一実施態様では、前記監視用導電線は、前記第2の抵抗(R6)に並列に接続された第1のキャパシタ(C1)を介して、更に、接地電位に接続される。
本発明の第1実施形態に係る検出システムの回路図。 第1実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の回路図。 第1実施形態に係る検出システムの回路図において、センサチップの外部で監視ラインと接地ラインとを接続する場合の回路図。 本発明の第2実施形態に係る検出システムの回路図。 本発明の第2実施形態に係る検出システムにおいて、接地ラインが高抵抗状態となった場合の回路図。 本発明の第2実施形態に検出システムにおいて、電圧調整用の抵抗を検出装置内に配置した変形例。 第1実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の等価回路図。 第2実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の等価回路図。 本発明の一実施形態を電源ライン及び検出信号ラインに適用した回路図。 第3実施形態に係る検出システムの回路図。 周囲環境の各値に対する診断対象回路の挙動を表す入出力特性曲線。 入力変更前後の挙動が、同一の入出力特性曲線にあると判断するための許容範囲を説明する図。 第3実施形態に係る検出回路112の異常検出処理を説明するフローチャート。 図10において、入出力特性が直線となる場合の図。 入出力特性が直線となる場合における、第3実施形態に係る検出回路112の異常検出処理を説明するフローチャート。 電源電圧制御回路の構成例。 本発明の第4実施形態に係る検出システムの回路図。 検出回路の構成を表すブロック図。 検出回路の出力信号値の範囲を示す図。 周囲環境の各値に対する診断対象回路の挙動を表す入出力特性曲線。 導電線が高抵抗状態になった場合の入出力特性曲線の変化を示す図。 検出回路に異常が生じた場合の入出力特性曲線の変化を示す図。 第4実施形態に係る検出回路の異常検出処理を説明するフローチャート。 第5実施形態に係る検出回路の異常検出処理を説明するフローチャート。 第6実施形態に係る検出システムの回路図。 第6実施形態に係る検出システムにおける監視ポイントの電位を説明する説明図。 第6実施形態に係る検出回路出力の補正を説明するための説明図。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る検出システムの回路図を示す。ここでは、車両の制動装置を補助するための負圧ブースタの圧力を検出するために使用される検出システムを例に挙げて説明するが、本実施形態は、検出システムに限定されるものではなく、複数の回路間で電源供給又は信号通信を行う構成であれば、任意の電気システムに適用可能である。
  [回路構成]
 図1に示す検出システム1は、検出装置100と処理装置200とを備え、検出装置100と処理装置200との間は信号線(導電線)L1~L3、L3aによって電気的に接続されている。検出装置100は、圧力検出装置であり、車両の制動装置の補助を行う負圧ブースタ(図示せず)に装着されて負圧ブースタ内の圧力(負圧)を検出する検出装置である。処理装置200は、例えば、車両に搭載される電子制御装置(ECU)であり、検出装置100に電源電圧(入力信号)を供給するとともに、検出装置100から圧力検出信号(出力信号)を受信し、この圧力検出信号を車両の各種制御に用いる。
 信号線L1は、検出装置100における圧力検出信号を処理装置200に出力する検出信号ラインであり、検出装置100の検出信号電極P1と処理装置200の検出信号端子T1に接続される。信号線L2は、処理装置200から検出装置100に電源電圧Vcc(例えば、5V)を供給する電源ラインであり、検出装置100の電源電極P2と処理装置200の電源端子T2に接続される。信号線L3は、処理装置200から検出装置100に接地電位(GND)を供給する接地ラインであり、検出装置100の接地電極P3と処理装置200の接地端子T3に接続される。信号線L3aは、接地ラインL3の異常を監視し検出するための監視ラインであり、接地ラインL3の検出装置100側での電位V2’を処理装置200に供給する。
 検出装置100は、樹脂成形されたハウジング110と、ハウジング110内に設置されたセンサチップ111とを備えている。センサチップ111は、圧力検出回路112を備え、圧力検出回路112には、例えば、ダイヤフラムと抵抗ブリッジとからなる圧力センサ、増幅回路等が設けられている。センサチップ111と信号線L1~L3との間は、検出信号ライン101、電源ライン102、接地ライン103、監視ライン103aとしてのワイヤ101~103、103aによって接続されており、ワイヤ101~103、103aを介して圧力検出回路112が信号線L1~L3と接続されている。圧力検出回路112は、負圧ブースタ内の圧力を検出し、圧力検出信号を検出信号ライン101、検出信号電極P1、検出信号ラインL1を介して、処理装置200の検出信号端子T1に出力する。更に、圧力検出信号は、検出信号ライン201を介して、ADC210の検出信号端子211に入力される。また、圧力検出回路112には、処理装置200の電源Vccから電源ライン202、電源端子T2、電源ラインL2、電源電極P2及び電源ライン102を介して電源電圧Vccが供給される。また、圧力検出回路112には、処理装置200の接地ライン203から接地端子T3、接地ラインL3、接地電極P3及び接地ライン103を介して接地電位GNDが供給される。
 ハウジング110には、樹脂成形の際に、信号線L1~L3、L3aの一端に取り付けられたコネクタ(図示せず)を受け入れる凹部が形成されており、この凹部の底面をハウジングの内外に貫通して、信号線L1~L3、L3aの各々に対応する櫛歯状の電極P1~P3、P3aが設けられている。この凹部及び電極P1~P3、P3aが検出装置100側のコネクタを構成する。ハウジング110の凹部に、信号線L1~L3、L3a側のコネクタが嵌合されると、信号線L1~L3、L3aが各々電極P1~P3、L3aに電気的に接続される。電極P1~P3、P3aは、ハウジング110の内側でワイヤ101~103、103aの先端部を受け入れる形状に形成され、各電極P1~P3にワイヤ101~103、103aの先端が嵌合して接続される。これにより、電極P1~P3を介してワイヤ101~103、103aがそれぞれ信号線L1~L3、L3aに導通する。また、接地ラインL3,103と監視ラインL3a,103aとは、センサチップ111内で導通される。
 処理装置200内には、アナログ/デジタルコンバータ(ADC)210が設けられている。ADC210は、圧力検出信号が入力される検出信号端子211と、処理装置200内の電源ライン202を介して電源電圧Vccが供給されるリファレンス端子212と、接地ラインL3,103の処理装置200側の電位(処理装置200の接地電位V1=GND)が入力される信号端子213と、接地ラインL3,103の検出装置100側の電位V2’が、監視ライン103a,L3a,203aを介して入力される監視端子213aとを備えている。
 また、処理装置200の検出信号端子T1は、検出信号ライン201を介してADC210の検出信号端子211に接続されるとともに、プルアップ抵抗R2を介して電源VAに接続されている。例えば、R2=680kΩ、VA=5.5~16Vの定電圧とする。検出信号ラインL1の断線等によって検出信号端子T1がオープン状態になった場合には、電圧VAが抵抗R2、検出信号ライン201を介して、ADC210の検出信号端子211に入力される。例えば、信号線L1~L3が正常な場合には、ADC210に入力される圧力検出信号の電圧は0.25V~4.75Vの範囲で変化し、検出信号ラインL1が断線した場合(検出信号端子T1がオープン状態)に、電源VAから抵抗R2を介してADC210に入力される電圧は5V以上となる。ADC210への入力電圧の差に基づいて、検出信号ラインL1の断線を検出することができる。
 このような検出システム1では、処理装置200の電源Vccから電源ライン202、電源ラインL2,102を介して、センサチップ111内の圧力検出回路112に電源電圧Vccが供給される。また、圧力検出回路112からの圧力検出信号は、検出信号ライン101,L1,201介して、ADC210の検出信号端子211に供給される。また、処理装置200の接地電位GNDが、接地ライン203から接地ラインL3,103を介して検出装置100の圧力検出回路112に供給される。更に、処理装置200の接地電位GNDが、接地ライン203からADC210の信号端子213に入力されると共に、接地ラインL3,103と監視ラインL3a,103aとの接続点(監視ポイント)の電位V2’が、監視ライン103a、監視電極P3a、監視ラインL3a,203aを経由して、ADC210の監視端子213aに入力される。
  [異状検出処理]
 以下、検出システム1における接地ラインの異常検出処理を説明する。この異常検出処理では、圧力検出回路112側における接地ラインと監視ラインとの接続点の電位V2’に基づいて、接地ラインの抵抗状態を検出する。以下では、接地ライン203の電位(V1=GND)を基準値とし、V1=0とする。
 接地ラインL3,103が正常な場合には、検出装置100の接地ライン103は、接地ラインL3を介して処理装置200の接地ライン203(V1=0)に低抵抗状態で接続されており、接続点の電位V2’は、処理装置200の接地電位V1=0に一致する(V2’=0)。
 一方、図2に示すように、負圧ブースタの動作による振動により、検出装置100の接地電極P3と接地ラインL3との接続部又は接地電極P3と接地ライン103との接続部の接触が不良となり接触抵抗が増大して、接地ラインL3,103上に抵抗RXが発生すると、接続点の電位V2’は、抵抗RXを介して、処理装置200の接地ライン203(V1=0)に接続される。このとき、電源電圧Vccは、図7Aの等価回路に示すように、センサチップ111の抵抗値R0(センサチップ111の電源ライン102の入力部から接続点(V2’)までの間の抵抗値)と抵抗RXとによって分圧される。従って、抵抗RXは、接続点の電位V2’によって、以下の式(1)で算出することができる。
 RX=V2’/(Vcc-V2’)*R0・・・(1)
 抵抗値RXによって接地ラインL3の抵抗状態を評価することが可能である。また、接続点の電位V2’は、抵抗値RXに一対一に対応するため、接続点の電位V2’を用いて接地ラインの抵抗状態を評価することも可能である。
 Vcc=5V、R0=500Ωとして、抵抗RX=10Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続して、接続点の電位V2’=V2を測定した結果、V2’=V2=0.098Vとなった。これを式(1)に代入すると、RX=9.996Ωとなる。抵抗RX=300Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続した場合、接続点の電位V2’=V2=1.894Vとなった。これを式(1)に代入すると、RX=304.9Ωとなる。この結果、接続点の電位V2’を測定することにより、接地ラインの抵抗状態を精度良く評価できることが分かる。
 接触不良等に起因して抵抗値RXが増加すると接続点の電位V2’=V2も増加するため、接地ラインの抵抗状態の判断は、接続点の電位V2’又はADC210への入力V2を用いて以下のように行えば良い。V2’=V2=0の場合(ここでは、-10mV<V2’=V2<10mV)には「接地ラインが正常」と判断し、10mV≦V2’=V2の場合には「接地ラインが高抵抗状態」と判断することにより、接地ラインL3,103が高抵抗状態になる異状を検出できる。なお、ここでは、V2’=V2が-10mV<V2’=V2<10mVの範囲内である場合に、V2’=V2が所定値(0V)と一致すると判断しているが、この範囲はADC210の解像度に応じて適宜決定する。
 処理装置200における具体的な処理は以下の通りである。接地ラインL3の処理装置200側の電位V1=0(基準値)がADC210の信号端子213に入力されると共に、接続点の電位V2’(=V2)が監視ライン103a、監視電極3a、監視ラインL3a,203aを介してADC210の監視端子213aに入力される。ADC210は、接地ラインL3,103の処理装置200側の電位V1(基準値)及び接続点の電位V2を各々デジタル信号に変換して処理部220に出力する。処理部220は、電位差ΔV=V2-V1を算出し、ΔVが-10mV<ΔV<10mVであれば「接地ラインが正常」と判断し、一方、ΔVが10mV≦ΔVであれば「接地ラインが高抵抗状態」と判断し、「接地ラインが高抵抗状態」であることを示す警告表示を行う。
 なお、処理部220では、V2’の検出値及び式(1)を用いて、接地ラインの抵抗値RXを算出しても良い。この場合には、抵抗値RXを監視して接地ラインの抵抗値の変化及び高抵抗状態となる異常を検出することが可能である。
 上述した本発明の第1実施形態によれば、接地ラインL3,103と監視ラインL3a,103aの接続点の電位V2’を、監視ラインL3a,103aを介して監視することにより、接地ラインの抵抗状態を検出可能である。従って、接地ラインL3,103が高抵抗状態になる異常を確実に検出することができる。検出装置100が負圧ブースタ上に設置される場合、負圧ブースタの動作による振動が検出装置100に伝達され、接地ラインL3,103と電極P3との間の接触が悪くなることによって接触抵抗が増大した場合に、接地ラインL3,103が高抵抗状態になる異状を確実に検出することができる。また、上述した本発明の第1実施形態によれば、接地ラインの抵抗値RXを検出することが可能である。
 また、上記実施形態によれば、接地ラインL3,103と監視ラインL3a,103aの接続点の電位V2’を、監視ラインL3a,103aを介して監視することによって、接地ラインL3,103の抵抗状態を直接検出できるので、簡易な構成で確実な異常検出が可能である。
  [変形例]
 なお、上記では、接地ラインL3,103と監視ラインL3a,103aとをセンサチップ111内で導通させる場合を例に挙げて説明したが、図3に示すように、監視電極P3aと接地電極103とを導通させて監視ラインL3aと接地ラインL3とを導通させても良い。
 上記では、検出装置100側で接地ラインL3,103と導通する監視ラインL3a,103aを設け、接地ラインL3,103の抵抗状態を検出したが、本実施形態は、図8に示すように、電源ラインL2,102及び検出信号ラインL1,101についても適用可能である。電源ラインの場合は、ADC210の端子212に入力される電源電位Vccを基準値として用い、電源ラインL2,102と監視用ラインL2a,102aとの接続点の電位を監視することによって、電源ラインの抵抗状態を検出する。検出信号ラインの場合には、例えば、負圧ブースタ内の圧力を大気に開放するキャリブレーション時の検出信号電圧(ADC210の端子211に入力される電圧)を基準値として用い、検出信号ラインL1,101と監視用ラインL1a,101aとの接続点の電位を検出し、これと基準値とを比較することによって検出信号ラインの抵抗状態を検出する。
 なお、ここでは、ADC210及び処理部220が処理装置200内に設けられる場合を説明したが、処理部220が処理装置200の外部に設けられても良いし、ADC210及び処理部の両方が処理装置200の外部に設けられても良い。
 また、検出装置100において、センサチップ111の代りにプリント配線板上にセンサ検出回路112を配置したものを用いても良い。
 (第2実施形態)
 図4は、本発明の第2実施形態に係る検出システムの回路図を示す。第1実施形態と同様の構成には同一の符号を付し、それらの説明を省略し、第1実施形態と異なる部分を以下に説明する。
 第1実施形態では、監視ラインL3a自体が断線した場合には、ADC210の監視端子213aがオープンとなるためV2が接地電位V1=となり、V2=ΔV=0となる。一方、上述したように、接地ラインが正常な場合にはV2=ΔV=0であるので、監視ラインL3a自体が断線する異常の場合(V2=ΔV=0)と区別できない。すなわち、監視ラインL3a自体が断線する異常を検出できない。そこで、第2実施形態では、監視ラインL3a自体が断線する異常の検出を可能とする検出システムを提供する。
 図4に示すように、第2実施形態では、検出装置100において接地ライン203上に電位補正用の抵抗R3(10Ω)を介装する。
 以下、第2実施形態に係る検出システム1における接地ラインの異常検出処理を説明する。接地ラインL3,103が正常な場合には、接地ラインL3,103と監視ラインL3a,103aとの接続点の電位V2’=V2は、抵抗R3を介して接地ライン203に接続されるので、V1=0よりも、抵抗R3による電圧降下分(R3=10Ωで99mV)だけ高くなる。よって、第2実施形態では、V2’=V2=99mV(ΔV=V2-V1=0.1V)が、「接地ラインが正常」と判断する基準となる。これは、第1実施形態における「接地ラインが正常」と判断する基準値V2’=V2=0(ΔV=0)を、抵抗R3によって+99mVだけ補正することに相当する。
 一方、図5に示すように、検出装置100の電極P3と接地ラインL3との接続部(又は電極P3と接地ライン103との接続部)において接触抵抗が増加し、接地ラインL3,103上に抵抗RXが発生すると、電源電圧Vccは、図7Bの等価回路に示すように、センサチップ111の抵抗値R0と、抵抗R3と、抵抗RXとによって分圧される。従って、抵抗RXは、接続点の電位V2’によって、以下の式(2)で算出することができる。
 RX=V2’/(Vcc-V2’)*R0-R3・・・(2)
 Vcc=5V、R0=500Ω、R3=10Ωとして、抵抗RXがない(RX=0)場合の接続点の電位V2’=V2を測定した結果、V2’=V2=99mVとなった。これを式(2)に代入すると、RX=0.100Ωとなり、0Ωにほぼ一致する。また、抵抗RX=300Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続した場合には、接続点の電位の測定値は、V2’=V2=1.927Vとなり、RX=303.5Ωとなる。従って、接続点の電位V2’から抵抗RXの値を求めることができることが分かる。
 一方、監視ラインL3a,103aが断線した場合は、V2=0となり、常にV1=V2=0、つまりΔV=V2-V1=0となる。上述したように、本実施形態では、「接地ラインが正常」の場合にはV2=ΔV=99mVであるので、監視ラインが断線した場合(ΔV=0)と、「接地ラインが正常」の場合(ΔV=99mV)とを区別可能である。従って、ΔV=0の場合には「監視ラインが断線」と判断すれば良い。
 接地ラインの抵抗状態の判断は、接続点の電位V2’又はADC210の入力V2を用いて以下のように行う。99mV-10mV<V2(ΔV)<99mV+10mVの場合に「接地ラインが正常」と判断し、99mV+10mV≦V2(ΔV)の場合に「接地ラインが高抵抗状態」と判断し、-10mV<V2(ΔV)<10mVの場合に「監視ラインが断線」と判断すれば良い。なお、ここでは、V2(ΔV)が所定値(0V、99mV)±10mVの範囲内である場合に、V2(ΔV)が所定値(0V、99mV)と一致すると判断しているが、この範囲はADC210の解像度に応じて適宜決定する。
 処理装置200における具体的な処理は、以下のようになる。ADC210は、入力されるアナログ信号V1,V2に対応するデジタル信号を出力する。処理部220は、デジタル信号V1,V2からΔV=V2-V1を算出する。処理部220は、ΔVが99mV-10mV<ΔV<99mV+10mVの場合には「接地ラインが正常」と判断し、99mV+10mV≦ΔVの場合には「接地ラインが高抵抗状態」と判断し、-10mV<ΔV<10mVの場合には「監視ラインが断線」と判断する。
 なお、ここでは、処理装置200内で接地ライン203上に抵抗R3を介装したが、図6に示すように、センサチップ111内で接地ライン103側に抵抗R3を介装しても良い。また、電位補正用の抵抗R3は、接地ライン103,203に電気的に直列に接続される限り、接地ライン上の何れの箇所に設けても良い。
 上述した本発明の第2実施形態によれば、第1実施形態と同様の作用効果を奏する。更に、第2実施形態では、接地ライン203,L3,103の経路上に直列に電圧補正用の抵抗R3を介装したことにより、「接地ラインが正常」と判断するADC210の入力V2を抵抗R3による電圧降下分(99mV)だけ補正し、監視ラインL3a,103a自体が断線した場合のΔV=0と区別可能とした。これにより、「監視ラインが断線」する異常の検出が可能である。
 (第3実施形態)
 図9は、本発明の第3実施形態に係る検出システムの回路図を示す。本実施形態は、電源ライン上に電源電圧制御回路230が追加される点以外は、図1に示す第1実施形態の検出システムと同様の構成である。以下、同様の構成には第1実施形態と同一の符号を付し、異なる構成について詳細に説明する。
  [回路構成]
 図9に示す検出システム1は、図1の検出システム1において、処理装置200の電源ライン202上に電源電圧制御回路230を設け、電源電圧変更後の圧力検出信号(出力信号)Voutに基づいて検出回路112の異常を検出する異常検出部220aを処理部220に設けたものである。なお、ここでは、電源電圧制御回路230が処理装置200内に設けられる場合を説明するが、電源電圧制御回路230は処理装置200外に配置されても良い。
 電源電圧制御回路230は、電源ライン202に直列に介装されており、電圧降下用の抵抗RLと切換回路231とを備える。以下の説明では、抵抗RLを経由しない電源電圧Vcc’の供給経路を経路Iとし、抵抗RLを経由する電源電圧Vcc’の供給経路を経路IIとする。抵抗RLは、電源電圧Vccを所定の電圧ΔVccだけ電圧降下させて、電源電圧Vcc’=Vcc-ΔVccを検出回路112に出力する。切換回路231は、導通状態において、抵抗RLを通らない経路Iを経由して電源電圧Vcc’=Vccを検出回路112に出力し、開放状態で、抵抗RLを通る経路IIを経由して電源電圧Vcc’=Vcc-ΔVccを検出回路112に出力する。切換回路231は、例えば、機械接点を有するスイッチ、半導体スイッチによって構成される。なお、切換回路231は、電源電圧Vccの供給経路を経路I及びIIに切換えることが可能な素子又は回路であれば、如何なる構成でも良い。切換回路231は、制御ライン232を介して処理装置220の異常検出部220aに接続されており、異常検出部220aからの制御信号によって導通状態と開放状態との間で切り換えられる。
 例えば、電源電圧Vcc=5V、RL=125Ω、検出回路112の抵抗値(電源ライン102との接続部と接地ライン103の接続部との間の抵抗値)=500Ωとすると、切換回路231が導通状態の場合、Vcc’=Vcc=5Vが検出回路112に供給される。一方、切換回路231が開状態の場合、5Vが125Ω(RL)と500Ω(検出回路112)とで分圧され、電源電圧Vcc’=4Vが検出回路112に供給される。
 処理装置220は、例えば、CPU、マイクロプロセッサで構成され、第1実施形態で説明した信号ライン(L1,101;L2,102;L3,103)の高抵抗状態を検出する異常検出処理を実行すると共に、電源電圧変更後の検出信号(出力信号)Voutに基づいて検出回路112の異常を検出する異常検出部220aを更に備える。異常検出部220aは、切換回路231を制御して検出回路112に出力する電源電圧Vcc’を変更し、異常検出処理を実行する(図12のフローチャートを参照して後述)。
  [異状検出の原理]
 本実施形態に係る異常検出処理について、図9及び図10を参照して説明する。
 図10は、周囲環境の各値Pに対する診断対象回路の挙動を表す入出力特性曲線を示す。本実施形態では、診断対象回路は、検出装置100の検出回路112とし、周囲環境の値は、検出回路112が検出対象とする圧力値(負圧ブースタの負圧の値)とする。また、診断対象回路の挙動は、各圧力値Pに対する検出回路112の入力(電源電圧Vcc’)及び出力(検出信号Vout)の関係(Vcc’,Vout)を示すものとする。また、入出力特性曲線は、同一の周囲環境の値(圧力値)Pに対する検出回路112の挙動(Vcc’,Vout)を曲線(直線の場合も含む)で示すものとする。ここで、本発明は、検出回路に限らず、周囲環境の値に応じて挙動が変化する任意の電気回路、電気素子、及び電子素子に適用可能である。また、周囲環境の値は圧力値に限らず、温度、速度、加速度、湿度等の任意の物理量でも良い。また、周囲環境の各値に対する診断対象回路の挙動は、入出力の電圧に限らず、入力及び出力の少なくとも一方が電流であっても良い。
 図10では、圧力P=PA,PB,PC(PA<PB<PC)の場合の検出回路112の挙動(Vcc’,Vout)を表す入出力特性曲線CA,CB,CCを示す。図10中、点s1は、圧力P=PBの下で、図9の検出システムにおいて、電源電圧Vcc’=Vcc=Vc1(例えば、5V)を供給した場合の検出回路112の挙動(Vc1,Vo1)を示す。点s2は、圧力P=PBの下で、電源電圧Vcc’=Vc2(例えば4V)を供給した場合の検出回路112の挙動(Vc2,Vo2)を示す。点s21及びs22は、圧力P=PA及びPCの下で、電源電圧Vcc’=Vc2(例えば4V)を供給した場合の検出回路112の挙動(Vc2,Vo21)及び(Vc2,Vo22)を示す。
 ここで、負圧ブースタ内の圧力値(周囲環境の値)が変化しない時間、例えば、100m秒(好ましくは10m秒)以内に、電源電圧Vcc’をVc1からVc2に変更して出力信号Voutを検出した場合に、検出回路112が正常であれば、出力信号Voutの値、つまり検出回路112の挙動は、図10の点s1からs2のように同一入出力特性曲線(CB)上で変化する。一方、検出回路112に異常があれば、検出信号Voutの値、つまり検出回路112の挙動は、例えば図10の点s1から点s21又はs22のように、同一入出力特性曲線(CB)から逸脱して変化する。
 従って、電源電圧Vcc’をVc1からVc2に変更した場合に、電源電圧変更前後の検出回路112の挙動s(又は出力信号Vout)が同一の入出力特性曲線上で移動している場合には、「検出回路112が正常である」と判断し、同一の入出力特性曲線から逸脱して変化している場合には、「検出回路112が異常である」と判断することによって、検出回路112の異常検出処理を実行することができる。
 なお、実際には、電源電圧(入力)の変更前後で、圧力(周囲環境の値)が若干変動する場合も検出可能とするため、電源電圧変更前後の挙動s1,s2が同一の入出力特性曲線上であると判断する基準(又は検出回路112が正常であると判断する基準)に所定の許容範囲を設けても良い。例えば、図11に示すように、入力変更前にP=PBである場合に、入力変更後の挙動s2’が、物理量P=PB±所定誤差(例えば2%)に対する入出力特性曲線(曲線P=PB+,曲線P=PB-)の間にあれば、電源電圧変更前後で、検出回路112の挙動が同一入出力特性曲線上にある(検出回路112が正常である)と判断する。言い換えれば、電源電圧変更後の出力信号Vo2’が、Vo2±所定誤差(例えば1%)の範囲内にある場合に、同一入出力特性曲線上にある(検出回路112が正常である)と判断する。
  [異常検出処理]
 (異常検出処理例1)
 図12は、本実施形態に係る検出回路112の異常検出処理を説明するフローチャートである。
 ステップS10では、検出回路112に電源電圧Vcc’=Vc1(例えば5V)を供給している状態(電源電圧制御回路230で抵抗RLを通らない電源電圧供給経路Iが選択された状態)で、処理部220の異常検出部220aが、ADC210のリファレンス端子212に入力される電源電圧の値Vcc’=Vc1を取得すると共に、検出信号端子211に入力される検出信号(出力信号)の値Vout=Vo1(挙動s1(Vc1,Vo1))を取得する。
 ステップS11では、異常検出部220aが、電源電圧制御回路230を制御して抵抗RLを通る電源電圧供給経路IIを選択し、検出回路112に、Vcc’=Vc2(<Vc1)を出力させる(Vcc’=Vc1→Vc2)。そして、異常検出部220aは、ADC210のリファレンス端子212に入力される電源電圧の値Vcc’=Vc2を取得すると共に、電源電圧変更後の出力信号の値Vout=Vo2(挙動s2(Vc2,Vo2))を取得する。
 ステップS12では、異常検出部220aが、電源電圧制御回路230を制御して抵抗RLを通らない電源電圧供給経路Iを再度選択し、検出回路112に電源電圧Vcc’=Vc1を供給する(Vcc’=Vc2→Vc1)。そして、異常検出部220aは、ADC210のリファレンス端子212に入力される電源電圧の値Vcc’=Vc1を取得すると共に、検出信号端子211に入力される出力信号の値Vout=Vo1’(挙動s1(Vc1,Vo1’))を取得する。
 ステップS13では、ステップS10及びS12で取得された出力信号Voutの値Vo1とVo1’とを比較し、両者が等しい場合、つまりステップS10~S12の間に圧力値(周囲環境の値)が変化していない場合には、ステップS14に移行して、検出回路112の異常の有無を判断する。一方、ステップS13で、Vo1とVo1’とが異なると判断した場合には、ステップS10に戻り、電源電圧変更前後の出力信号Voutの取得を再度実行する。
 ステップS14では、電源電圧変更前の検出回路112の出力信号Vo1(挙動s1(Vc1,Vo1))と、電源電圧変更後の検出回路112の出力信号Vo2(挙動s2(Vc2,Vo2))とが、同一の圧力値に対する入出力特性曲線上にあるか否かを判断し、両者が同一の入出力特性曲線上にある場合には、検出回路112が正常であると判断し(ステップS15)、両者が同一の入出力特性曲線上にない場合には、検出回路112が異常であると判断する(ステップS16)。
 上記異常検出処理において、ステップS10及びS12で変更前の電源電圧値Vc1に対する出力信号Vo1(挙動s1(Vc1,Vo1))を2回測定する理由は、圧力値(周囲環境の値)が変化していない状況下で、電源電圧変更前後の検出回路112の挙動を比較して異常の有無を判断するためである。なお、変更前電源電圧Vc1に対する2回の検出信号Voutの測定値に所定範囲の誤差(例えば、1%程度)があっても、2回の測定値が一致すると判断しても良い。
 また、ステップS14では、例えば、各物理量P(例えば、PA,PB,PC)について、電源電圧Vcc’=Vc1,Vc2に対する出力信号の値Vout=Vo1,Vo2(基準値)を予め記憶しておく。そして、ステップS10で取得するVout=Vo1(検出値)に応じて物理量P(PA,PB,PC)を決定し、ステップS11で取得するVout=Vo2(検出値)が、決定された物理量Pに対するのVo2(基準値)に一致するか否かを判断する。ここで、Vo2(検出値)に所定の誤差(例えば1%)があっても、Vo2(基準値)に一致すると判断しても良い。
 なお、上記では、変更前の電源電圧Vc1に対する検出回路112の出力信号Vo1(挙動s1)と、変更後の電源電圧Vc2に対する検出回路112の出力信号Vo2(挙動s2)とが、同一の入出力特性曲線上にある場合に「検出回路112が正常」と判断したが、図10に示すように、電源電圧をVc1から2つ以上の異なる電源電圧(例えば、Vc2,Vc3)に変更し、変更後の電源電圧Vc2に対する出力信号Vo2(挙動s2)と、変更後の電源電圧Vc3に対する出力信号Vo3(挙動s3)とが同一の入出力特性曲線上にある場合に「検出回路112が正常」と判断しても良い。
 また、図10に示すように、変更前の電源電圧Vc1に対する出力信号Vo1(挙動s1)と、変更後の電源電圧Vc2に対する出力信号Vo2(挙動s2)と、変更後の電源電圧Vc3に対する出力信号Vo3(挙動s3)とが、全て同一入出力特性曲線上にある場合に「検出回路112が正常」と判断しても良い。圧力値に対する入出力特性が曲線となる場合には、3つ以上の点が同一入出力特性曲線上にあるか否かを判断することにより、より高い精度で検出回路112の異常の有無を判断することができる。なお、この場合、電源電圧制御回路231を例えば図15に示す構成とし、複数の異なる抵抗値RL,RL1の何れかを介して電源電圧を供給する経路を選択可能とすることによって、電源電圧を複数の異なる値(例えば、Vc2=4V、Vc3=3V)に変更することができる。
 (異常検出処理例2)
 図13は、図10の入出力特性曲線において、各圧力値Pに対して、検出回路112の入力(Vcc’)と出力(Vout)の関係が直線となる場合の入出力特性曲線(入出力特性直線)を示す。
 検出回路112の入出力の関係が直線となる場合、電源電圧変更前の検出回路112の出力信号Vo1(挙動s1(Vc1,Vo1))と、電源電圧変更後の検出回路112の出力信号Vo2(挙動s2(Vc2,Vo2))とが同一特性直線上にあるか否かは、電源電圧変更前後の検出回路112の出力信号Vo1,Vo2(挙動s1,s2)が所定の比率で変化するか否かを検討することで判断できる。
 例えば、図13において、電源電圧変更前後の出力(Vout)の比Vo1/Vo2が、電源電圧変更前後の入力(Vcc’)の比Vc1/Vc2に一致する場合には、電源電圧変更前後の出力(挙動)が同一直線(LB)上にあると判断でき、一致しない場合には、電源電圧変更前後の出力(挙動)が同一直線(LB)上にないと判断できる。Vc1=5V,Vc2=4Vである場合には、電源電圧変更前後の出力の比Vo1/Vo2が、電源電圧変更前後の入力(Vcc’)の比5/4に一致するか否かを判断すれば、変更前後の出力(挙動)が同一特性直線(LB)上にあるか否か、及び、検出回路112が正常か否かを判断できる。
 図14は、検出回路112の入出力特性曲線が直線となる場合における本実施形態に係る検出回路112の異常検出処理を説明するフローチャートである。このフローチャートでは、ステップS14a以外は、図12のフローチャートと同様である。
 ステップS14aでは、電源電圧変更前後の出力信号Voutの比Vo1/Vo2が、変更前後の電源電圧の比Vc1/Vc2と一致するか否かを判断し、両者が一致する場合には、検出回路112が正常であると判断し(ステップS15)、両者が一致しない場合には、検出回路112が異常であると判断する(ステップS16)。
 例えば、変更前の電源電圧をVcc’=5V、変更後の電源電圧をVcc’=4Vとすると、変更前後の電源電圧の比Vc1/Vc2=5/4(一定値)として、ステップS14aにおいて、Vo1/Vo2が5/4(一定値)と一致するか否かを判断しても良い。また、ステップS10でADC210のリファレンス端子212で検出するVc1、ステップS11でADC210のリファレンス端子212で検出するVc2を用いて、Vo1/Vo2がVc1/Vc2(検出値)に一致するか否かを判断しても良い。
 また、ステップS14aにおいて、電源電圧変更前後の出力(Vout)の比Vo1/Vo2が、Vc1/Vc2±所定誤差(例えば、1%)の範囲内にある場合に、「Vo1/Vo2がVc1/Vc2に一致する」と判断しても良い。
 また、検出回路112の挙動が図13のように直線の場合には、ステップS10で求めた点s1(Vc1,Vo1)と、原点(0,0)とを通る直線の式を算出し、この直線の式に変更後の電源電圧Vcc’=Vc2を代入して、電源電圧変更後の出力Vout=Vo2(理論値)を算出する。この処理は、例えば、ステップS13とS14aとの間で行う。そして、ステップS14aにおいて、ステップS11で取得する検出値Vo2と、理論値Vo2とを比較して、両者が一致するか否かを判断して、検出回路112の異常を検出するようにしても良い。なお、この場合も、検出値Vo2が理論値Vo2の所定誤差(例えば、1%)の範囲内にある場合に、両者が一致すると判断しても良い。
 なお、図13及び図14では、入出力特性曲線が原点を通る直線である場合を例に挙げて説明したが、原点を通らない場合(Vcc’=0でVoutが0でなく、オフセットがある場合)には、ステップS10~S11のVo1及びVo2の検出値からオフセット分を補正して、ステップS14aの処理を実行すれば良い。
 以上述べた第3実施形態によれば、第1実施形態において詳細に述べたように監視用ラインによって検出回路112に接続される信号ラインの抵抗状態を監視できると共に、電源電圧変更後の出力信号Voutを評価することによって、検出回路112自体の異常を簡易な構成で確実に検出することができる。つまり、第3実施形態によれば、検出装置100に対する総合的な異常検出を簡易かつ確実に行うことができる。
 また、テストパルスを用いる方法では、異常検出処理時において検出回路112の周囲環境の値(圧力値等)が既知であることが必要とされるが、負圧ブースタの圧力検出システムの場合には、エンジン停止時においても負圧ブースタ内に残圧が残っている場合があり、エンジン停止時の圧力値が大気圧か負圧残留状態か確定することができないため、テストパルスによる異常診断を行うことができない。これに対して、本実施形態による検出回路の異常検出方法では、周囲環境の値(圧力値等)自体が既知である必要はなく、各圧力値に対する検出回路112の入出力の特性が既知であれば、電源電圧変更前後の検出回路112の出力が、既知の入出力特性に従っているか否か(同一の入出力特性曲線上にあるか否か)を判断することにより、検出回路112の異常を検出することができる。
 [変形例]
 なお、第1及び第2実施形態で述べた監視用ライン及びそれを接続するための電極を省略、例えば、図9において監視用ライン103a,L3a,203a、電極P3a及び端子T3aを省略しても良い。この場合には、検出装置100及び処理装置200において、両者を接続する追加の信号線、追加の信号線を接続するための追加の電極及び端子を必要とすることなく、検出回路112の異常を簡易な構成で確実に検出することができる。処理装置200で追加する部品は、抵抗RL及びスイッチ231等からなる電源電圧制御回路231のみであり、最小限の追加部品によって、処理部220aのソフトウェア的な処理によって、検出回路112の異常を検出することができる。
 また、処理装置200において、元々レギュレータやDC/DCコンバータ等の電源電圧を可変とする構成を備えている場合には、電源電圧制御回路231を追加する必要がなく、処理部220aのソフトウェア的な処理のみによって、検出回路112の異常を検出することができる。
 また、電源電圧制御回路230は、抵抗RL及びスイッチ231からなる構成として説明したが、レギュレータやDC/DCコンバータでも良い。
 また、本実施形態に係る検出回路112の異常検出処理は、図1に示す回路に限らず、図3、図4、図6、図8の回路及びそれらの変形例に適用可能である。即ち、第1及び第2実施形態による監視用ラインを用いた信号ラインの異常検出処理に、第3実施形態に係る検出回路の入出力特性を用いた異常検出処理を組み合わせることによって、検出回路112に接続される信号ラインの抵抗状態を監視できると共に、検出回路112自体の異常をも確実に検出することができる。
 (第4実施形態)
 図16は、本発明の第4実施形態に係る検出システムの回路図を示す。本実施形態は、図9に示す第3実施形態の検出システムにおいて、電源電圧制御回路230の代りに電源電圧制御回路240を備え、異常検出部220aの代りに異常検出部220bを備え、監視ライン103a,L3a,203aを省略した点以外は、図9に示す第3実施形態の検出システムと同様の構成である。
  [回路構成]
 電源電圧制御回路240は、電源電圧Vccの入力を受け、電源電圧Vcc’を連続的に変化させて検出装置100に出力するものである。電源電圧制御回路240は、例えば、トランジスタ等のスイッチング素子を制御することにより電源電圧Vcc’を連続的に変化させる回路であり、例えば、DC/DCコンバータのようなレギュレータ回路である。電源電圧制御回路240は、制御ライン241を介して処理部220に接続されており、処理部220の異常検出部220bによって出力電源電圧Vcc’の値が制御される。
 図17は、検出回路112の構成を表すブロック図である。検出回路112は、圧力等の物理量を検出する検出部(センサ)151と、検出部151から出力される検出信号voに所定の補正Δvを付加する補正回路152と、補正回路152で補正された検出信号vo+Δvを所定の増幅率αで増幅して出力信号Vout=α(vo+Δv)を出力する増幅回路153とを備えている。出力信号Voutは、検出信号ライン101,L1を介して処理装置200に入力される。
 検出部151は、例えば、ダイヤフラムと抵抗ブリッジとからなる圧力センサであり、ダイヤフラムの変形による抵抗変化を示す電気信号(検出信号)voを出力する。補正回路152は、例えば、図18に示すように電源電圧Vcc’=5Vにおいて、検出圧力P(0~Pmax)に対して出力信号Voutを0.5V~4.5Vの範囲で検出回路112を使用する場合に、P=0で増幅回路153の出力信号VoutがVmin=0.5Vとなり、P=Pmax(最大検出圧力)でVoutがVmax=4.5Vとなるように、検出部151による検出信号voに所定の補正値Δvを加える。補正値Δvは、検出回路112に供給する電源電圧Vcc’の値に応じて調整されるものであり、電源電圧Vcc’に比例する。例えば、電源電圧Vcc’が3Vの場合には、増幅回路153から出力信号Voutが0.3V~2.7Vの範囲で出力されるように補正値Δvが減少方向に調節される。なお、ここでは、一例として、電源電圧Vcc’=5Vに対して出力信号Voutの範囲を0.5V~4.5Vとするが、0.25V~4.75Vの範囲等で動作させる場合もある。
  [異状検出の原理]
 本実施形態に係る異常検出処理について、図19~図21を参照して説明する。
 図19は、各圧力値に対する検出回路112の入出力特性曲線(ここでは、直線)を示すものであり、複数の検出圧力P=PA,PB,PC(PA<PB<PC)に対して、検出回路112に供給する電源電圧Vcc’をVcc(例えば5V)から0Vまで掃引した場合の出力信号Voutの変化を示す。
 図19において、電源電圧Vcc’=Vcc~Vx0の範囲(領域I)は、各圧力値Pに対して、電源電圧Vcc’の減少に伴い出力信号Voutが直線的に減少する特性を示す。これは、図13の入出力特性において、電源電圧Vcc’を連続的に減少させた場合の出力信号Voutの変化に対応する。なお、ここでは、検出回路112の入出力特性が直線である場合を例に挙げて説明するが、第3実施形態の場合と同様に入出力特性は曲線であっても良い。
 また、本実施形態では、図17に示す検出回路112の検出部151がVcc’<Vx0(最小動作電源電圧)において停止してvo=0となり、出力信号Vout=αΔv(ΔvはVcc’に比例)となって、圧力と無関係な特性となることを利用する。図19を参照すると、出力信号Voutは、領域Iにおいて圧力値Pごとに別個の曲線又は直線上で変化するが(図13と同様)、Vcc’=Vx0を境界として、領域II(Vcc’<Vx0)において、圧力値PA~PCと無関係に同一の曲線(又は直線)C上で変化する特性となることが分かる。このように、本実施形態に係る検出回路112の入出力特性は、圧力値P毎に電源電圧Vcc’に応じて変化する領域Iと、圧力値Pと無関係に電源電圧Vcc’に応じて変化する領域IIとを含む。
 本実施形態では、このような領域I及びIIからなる入出力特性を利用して、検出回路112を外部回路と接続する導電線の異常及び検出回路112自体の異常(検出回路112内部の異常)を検出する。
 第1に、図20に示すように、最低動作電源電圧Vxの変化(Vx0→Vx1)に基づいて、導電線(L1,101;L2,102;L3,103)の何れかが高抵抗状態の異常であることを検出する。図16において、導電線(L1,101;L2,102;L3,103)の何れかが、端子P1~P3における接触抵抗等に起因して高抵抗状態となり、例えば、導電線L3上に抵抗RXが発生した場合(図2等参照)には、電源電圧制御回路240から供給されるVcc’の一部ΔVccが抵抗RXで消費され、検出回路112にはVcc’-ΔVccが供給される。この結果、電源電圧制御回路240から電源電圧Vcc’=Vx0+ΔVccを出力した場合に、検出回路112にVx0が供給され、Vcc’=Vx0+ΔVcc未満で検出部151が停止する。つまり、検出部151が停止する時点における電源電圧Vcc’(最低動作電源電圧Vx)がVx0からVx0+ΔVccに増大し、図20に示すように、入出力特性曲線(CB)が曲線CB’のように左にシフトする。従って、最低動作電源電圧Vxの変化を検出することにより、導電線の何れかが高抵抗状態の異常であることを検出することができる。
 第2に、図21に示すように、最低動作電源電圧Vx未満の検出回路112の入出力特性(C)が基準となる正常時の入出力特性曲線C0に一致するか否かに基づいて、検出回路112の異常を検出する。電源電圧Vcc’が最低動作電源電圧Vx0未満では、検出部151(図17)は動作せず、圧力値Pに無関係に検出回路112の入出力特性が決まるので、圧力値に関わらず検出回路112の異常を検出することができる。
 補正回路152又は増幅回路153に異常が生じた場合、例えば、補正回路152の補正値Δvが異常となる又は増幅回路153の増幅率αが異常となる場合には、最低動作電源電圧Vx0未満の検出回路112の入出力特性は、図21に示すように、基準となる正常時の曲線又は直線(C0)から上方又は下方にずれる(曲線C+又はC-)。つまり、最低動作電源電圧Vx0未満の検出回路112の入出力特性又は出力信号Voutを、基準となる正常な場合の入出力特性C0又は出力信号と比較することによって、検出回路112の異常を検出することができる。なお、電源電圧Vcc’=0Vでは出力信号Vout=0となるので、入出力特性曲線は原点(Vcc’,Vout)=(0,0)を通る。
  [異常検出処理]
 図22は、第4実施形態に係る検出回路112の異常検出処理を説明するフローチャートである。
 異常検出部220bが電源電圧制御回路240を制御して、電源電圧Vcc’を図19のグラフ横軸に示すようにVccから0まで掃引し(ステップS20)、出力信号Voutの変化から、検出部151が停止する最低動作電源電圧Vxを検出する(ステップS21)とともに、最低動作電源電圧Vx未満の検出回路112の入出力特性曲線C又は出力信号Voutを検出する(ステップS22)。ここでは、電源電圧Vcc’をVccから0Vまで掃引する場合を説明するが、最低動作電源電圧Vxが検出できる範囲でVccより低い電圧から開始して電源電圧Vcc’を変化させても良い。なお、導電線が正常な場合の最低動作電源電圧Vx=Vx0(基準値)、及び、検出回路112が正常な場合のVx0未満の入出力特性曲線C0又は出力信号Voutの値は、予め記憶しておく。
 ステップS23では、ステップS21で検出した最低動作電源電圧VxとVx0(基準値)とを比較し、両者が一致する場合には、導電線が正常と判断する(ステップS24)。一方、ステップS23において、最低動作電源電圧VxとVx0(基準値)が異なる場合(図20参照)には、導電線が異常と判断する(ステップS25)。
 ステップS26では、ステップS22で検出した入出力特性曲線Cを基準曲線C0と比較し、両者が一致する場合には、検出回路112が正常と判断する(ステップS27)。一方、ステップS26において、入出力特性曲線Cが基準曲線C0と異なる場合(図21参照)には、検出回路112が異常と判断する(ステップS28)。
 なお、最低動作電源電圧Vx0未満の入出力特性曲線C0が直線である場合には、ステップS22においてVx未満でのVoutの値を1点検出し、ステップS26においてVoutの検出値を基準値と比較しても良い。
 以上述べた本実施形態に係る異常検出処理によれば、圧力値によらず決まる検出部151の最低動作電源電圧Vxに基づいて、検出回路112を外部回路と接続する導電線の高抵抗状態による異常を検出することができるとともに、最低動作電源電圧Vx未満の検出回路112の入出力特性に基づいて、検出回路112自体の異常を検出することができる。
 本実施形態に係る異常検出処理によれば、圧力値に関係しない入出力特性の領域を使用するため、周囲環境の値(圧力値等)自体が既知でない場合においても、検出回路112の異常検出処理を実行することができる。
 本実施形態に係る異常検出処理によれば、圧力値が頻繁に変動する状況においても、圧力値に関係なく検出回路112及び導電線の異常検出処理を実行することができる。また、監視ラインを追加することなく、導電線の高抵抗状態に起因する異常を検出することができる。
 また、上記では、圧力を検出する検出回路を例に挙げて説明したが、温度、速度、加速度、湿度等を検出する検出回路等の任意の検出回路に本実施形態を適用することが可能である。
 [第5実施形態]
 第4実施形態に係る異常検出方法では、検出部151(図17)が停止する最低動作電源電圧Vxを使用するため、実際には、検出回路112のうち検出部151を除いた補正回路152及び増幅回路153の異常を検出している。これに対して、第3実施形態に係る検出回路112の異常検出処理は、図19における最低動作電源電圧Vx以上の領域(I)の入出力特性を用いて異常検出処理を実行することに相当するので、検出回路112全体の異常の有無を検出することができる。そこで、本実施形態では、検出回路112自体の異常検出処理を第3実施形態に係る異常検出方法によって実行し、検出回路112を外部回路に接続する導電線の異常検出処理を第4実施形態に係る異常検出方法によって実行する。
 図23は、第5実施形態に係る検出回路の異常検出処理を説明するフローチャートであり、第3実施形態による異常検出方法によって検出回路112自体の異常検出処理を実行し、第4実施形態による異常検出方法によって導電線の異常検出処理を実行するフローチャートである。なお、以下の説明では、この場合の処理部220の異常検出機能を異常検出部220c(図示せず)とする。
 異常検出部220cが電源電圧制御回路240を制御して、電源電圧Vcc’を図19のグラフ横軸に示すようにVccから0まで掃引し(ステップS30)、電源電圧Vcc’=Vc1,Vc2における出力信号Vout=Vo1,Vo2を検出する(ステップS31)とともに、検出部151が停止する最低動作電源電圧Vxを検出する(ステップS32)。なお、ステップS31の処理は、図12及び図14のステップS10及びS11に相当する。また、図12及び図14のステップS12及びS13の処理を追加して、圧力値が変化しない状況であることを確認してから、検出回路112の診断を実行するようにしても良い。
 ステップS33では、ステップS32で検出した最低動作電源電圧VxをVx0(基準値)と比較し、両者が一致する場合には、導電線が正常と判断し(ステップS34)、両者が一致しない場合には、導電線が異常と判断する(ステップS35)。
 ステップS36では、ステップS31で検出した出力信号Vout=Vo1,Vo2が同一入出力特性曲線上にあるか否か、例えば、Vo1/Vo2=Vc1/Vc2であるか否かを判断する(図12及び図14のステップS14,S14a参照)。出力信号Vout=Vo1,Vo2が同一入出力特性曲線上にある場合には、検出回路112が正常と判断し(ステップS37)、出力信号Vout=Vo1,Vo2が同一入出力特性曲線上にない場合には、検出回路112が異常と判断する(ステップS38)。
 本実施形態に係る異常検出処理によれば、監視ラインを追加することなく、導電線の高抵抗状態による異常を検出することができるとともに、Vx以上での検出回路112の入出力特性に基づいて、検出部151を含む検出回路112全体の異常の有無を検出できる。
 [他の実施形態]
 第4実施形態の方法を用いて検出回路112自体の異常検出処理を実行し、第1及び第2実施形態の監視ラインによる方法を用いて導電線の異常検出処理を実行しても良い。この場合、監視ラインによる方法によって、何れの導電線に異常が生じたかを特定することができると共に、圧力が頻繁な周囲環境下においても検出回路112の異常検出処理を実行することができる。
 また、第3実施形態による検出回路112自体の異常検出処理と、第4実施形態による検出回路112自体の異常検出処理の両方を実行しても良い。この場合、第3実施形態の異常検出処理によって、圧力変動がない状況において検出部を含む検出回路全体の異常を検出できる共に、第4実施形態の異常検出処理によって、圧力変動が頻繁にある状況下においても検出部を除く検出回路の異常を検出することができる。従って、検出回路112の異常をより確実に検出することができる。
 第3実施形態による検出回路112自体の異常検出処理及び第4実施形態による検出回路112自体の異常検出処理に加え、第4実施形態による導電線の異常検出処理を組み合わせれば、検出回路112を外部回路と接続する導電線の異常検出も含めた総合的な検出回路112の異常検出を簡易かつ確実に行うことができる。
 第3実施形態による検出回路112自体の異常検出処理及び第4実施形態による検出回路112自体の異常検出処理、並びに、第1及び第2実施形態による導電線の異常検出処理及び第4実施形態による導電線の異常検出処理を組み合わせれば、検出回路112を外部回路と接続する導電線の異常検出も含めた総合的な検出回路112の異常検出を、更に確実に行うことができる。
 また、本発明の技術的な思想は、検出回路等の電気回路の異常検出に限らず、電動機等の他の電気装置又は電子装置の異常検出にも適用可能である。例えば、所定の電源電圧Vcc’=Vcc、つまり十分高い電源電圧が供給されて電動機が高速回転している場合、ベアリング等の不具合によって電動機が高摩擦状態になったとしても、電動機の出力回転数の変化は小さく、不具合を検出することは困難である。一方、供給電源電圧Vcc’を減少させた場合(電動機の回転数を減少させた場合)には、高摩擦状態では正常時に比較して電動機の回転数が顕著に低下する。そこで、正常時と高摩擦状態での電動機の回転数に顕著な差が生じる電源電圧Vy(<Vcc)まで電源電圧Vccを減少させて、回転数の検出値を基準値とを比較する。この場合、正常時と高摩擦状態での電動機の回転数に顕著な差が生じる電源電圧Vyの値、及び、電動機が正常な場合のVcc’=Vyに対する回転数R0の値(基準値)は予め測定しておく。異常検出処理は、以下のように行う。電動機の動作中に、電源電圧をVccからVyまで減少させ、電動機の回転数Rを検出し、この検出値Rが基準値R0に一致すれば「電動機が正常」と判断し、一致しなければ「電動機が異常」と判断する。
 また、電動機が始動する、つまり回転を開始する電源電圧Vcc’の値を検出することによって異常を検出することも可能である。ベアリング等の不具合によって電動機が高摩擦状態になった場合、電動機が始動する電源電圧(始動電圧)は、正常時の値Vccから増加する(Vcc→Vcc+ΔVcc)。従って、電動機の始動電圧Vstを検出し、この検出値Vstが基準値Vccに一致すれば「電動機が正常」と判断し、一致しなければ「電動機が異常」と判断することによって、電動機の異常を検出することができる。
 (第6実施形態)
 図24は、第6実施形態に係る検出システムの回路図を示す。上記実施形態と同様の構成には同一の符号を付し、詳細な説明を省略する。以下、上記実施形態と異なる部分について、詳細に説明する。
 この検出システムは、処理回路200内において、監視ライン203に接続される監視ライン203aに介装される断線検出回路250を有している。
 検知回路250は、監視ライン203aと電源電圧Vccとの間に介装される抵抗R5と、監視ライン203aと接地電位GNDとの間に介装される抵抗R6と、監視ライン203aと接地電位GNDとの間に抵抗R6と並列に介装されるキャパシタC1と、監視ライン203aの途中に介装され抵抗R5及び抵抗R6と直列に接続される抵抗R7とを備える。つまり、監視ライン203aは、処理回路200内において、抵抗R5を介して電源電圧Vccに接続されるとともに、抵抗R6を介して接地電位GNDに接続されている。また、監視ライン203aは、抵抗R6に並列に接続されたキャパシタC1を介して、更に接地電位GNDに接続されている。また、監視ライン203aには、抵抗R7が直列に介装されており、抵抗R7の一端が第1のキャパシタC1に接続されるとともに、抵抗R7の他端が抵抗R6に接続されている。この断線検出回路250では、電源電圧Vccは、抵抗R5、抵抗R7及び抵抗R6を介して接地電位GNDに接続されるとともに、抵抗R5及びキャパシタC1を介して接地電位GNDに接続される。ここで、キャパシタC1は、監視ライン203aの電位を安定させるために設けられるものである。また、抵抗R7は、ADC210の接地端子213aに流れ込む電流を制限するためのものである。
 図24において、RC1、RC2は、電極又は端子における接触抵抗及び導電線の抵抗成分を示す。RC1は、検出装置100の接地電極P3と接地ライン103との間の接触抵抗と、検出装置100の接地電極P3と接地ラインL3との間の接触抵抗と、検出装置100の接地電極P3と接続点(V2')との間の抵抗成分と、接地ラインL3上の抵抗成分とを含む。RC4は、処理装置200の接地端子T3と接地ラインL3との間の接触抵抗と、処理装置200の接地端子T3と接地ライン203との間の接触抵抗と、接地ライン203上の抵抗成分とを含む。
 接触抵抗RC1、RC2が0である場合(接地電位GNDから接続点(V2’)までの接地ライン203、L3、103の経路の抵抗値が実質的に0であるとみなせる場合)には、処理回路200の断線検出回路250において、電源電圧Vccからの電流は、抵抗R5を介してキャパシタC1を充電し、キャパシタC1を充電した後は、電源電圧Vccからの電流は、監視ライン203a、L3a、103a、接地ライン103、L3、203を介して接地電位GNDに流れる。この場合、電源電圧Vccからの電流は抵抗R7側に流れず、監視ライン203aからADC210の監視端子213aに入力される検出電圧V2は、接地電位GNDと同一(0V)となる。
 接触抵抗RC1、RC2が0でない場合(接地電位GNDから接続点(V2’)までの接地ライン203、L3、103の経路の抵抗値が実質的に0とみなせない場合)には、接続点の電位V2’と、処理回路200の接地電位GNDとの間には電位差が生じる。従って、検出回路112の接地端子112aの電位(接続点の電位V2’と同電位)も処理回路200の接地電位GNDとの間に電位差を生じる。本実施形態では、接地ライン(103、L3、203)の抵抗状態を示す検出電圧V2に基づいて、接地ラインの高抵抗状態が検出回路112の挙動(出力電圧Vout)に与える影響を補正する。
 図25に示すように、接触抵抗RC1、RC2が0でない場合には、接続点の電位V2’は、検出回路112から接地ライン(103、L3、203)を通って流れる電流Idsと、電源電圧Vccから抵抗R5、監視ライン(203a、L3a、103a)、接地ライン(103、L3、203)を通って流れる電流Iccとにより、以下の式(3)-(5)で表される。
 V2=(Ids+Icc)*(RC1+RC2)・・・・・・・(3)
 Ids=10mA・・・・・・・・・・・・・・・・・・・・・(4)
 Icc=Vcc/(R5+RC1+RC2)・・・・・・・・・(5)
 ここで、Idsは、検出回路112に典型的に流れる値10mA(一定値)としている。
 式(3)-(5)に示すように、接続点の電位V2’は、RC1+RC2に比例する値となる。ここで、抵抗R5、R7、R6の抵抗値を例えば、R5=1[kΩ]、R7=10[kΩ]、R6=15[kΩ]とすると、接触抵抗RC1+RC2が抵抗R7の抵抗値に比較して十分小さい場合には、抵抗R7を通って流れる電流I7は電流Idsと比較して十分小さく、無視できる。一例では、電流Iccは数mAであり、抵抗R7を流れる電流I7は1μA程度である。従って、抵抗R7での電圧降下分は無視でき、ADC210の監視端子213aに入力される検出電圧V2=接続点の電位V2’とみなすことができる。この結果、検出電圧V2を用いて接地ラインの抵抗成分RC1+RC2の状態を監視することができる。
 また、検出電圧V2が接続点の電位V2'と一致するため、検出電圧V2を用いて、検出回路112の接地端子の電位のずれを補正することができる。具体的には、後述するように、検出電圧V2(ΔV=V2-V1)を用いて、検出回路112の出力電圧Vout及び入力電圧Vccを補正する。
 図26は、検出回路112の出力電圧Voutを検出電圧V2で補正する処理を説明するための説明図である。図26(a)は、接続点の電位V2’が接地電位(0V)に一致する場合の出力電圧Voutと検出圧力(負圧)との関係を示す特性曲線である。図26(b)は、接地ラインの接触抵抗RC1+RC2に起因して接続点の電位V2’が上昇した場合の特性曲線を示す。
 ここでは、検出回路112は、圧力検出回路とし、負圧の値が大きく成るほど、出力電圧Voutが直線的に低下するタイプのものを例に挙げて説明する。この圧力検出回路112の圧力検出範囲は、図26(a)及び(b)に示すように、略-100kPaから-5kPaである。また、圧力検出回路112は、Vcc=5[V]が供給された場合に、0.3[V]から3.3[V]の範囲の出力電圧Voutを出力する。
 接続点の電位V2'が接地電位GNDに一致する場合、圧力検出回路112の特性曲線は、図26(a)に示すような曲線となる。図26(a)の特性曲線において直線状に減少する区間は、式(6)により表される。
 Vout=(c1*pe+c0)*VDD・・・・・・(6)
 ここで、Voutは圧力検出回路112の出力電圧[V]であり、peは検出圧力(負圧:[kPa])である。c1、c0は、圧力検出回路112の仕様により決まる定数である。VDDは、特性曲線の傾きを決定する基準電圧であり、圧力検出回路112の圧力検出範囲の上限値[V](この例では3.3[V])に対応する。基準電圧VDDは、圧力検出回路112の種類に応じて、電源電圧Vccの値の大きさに応じて予め設定されている。
 図26(b)は、接地ラインの接触抵抗Rc1+RC2に起因して接続点の電位V2’(検出電圧V2)が上昇した場合の特性曲線である。このとき、圧力検出回路112の出力電圧Voutは、V2’=0の場合と比較して、V2’=V2だけ増加方向にオフセットされた値として検出される。同様に、基準電圧VDDも、V2’=V2=0の場合と比較して、V2’=V2だけ増加方向にオフセットされた値として検出される。従って、出力電圧Vout、基準電圧VDDをオフセット分V2’=V2だけ補正する処理を実行する。前述したように、接続点の電位V2’は接地電位検出電圧V2と同一とみなせるため、式(7)のように、出力電圧Vout、基準電圧VDDを補正量V2で補正する。補正後の出力電圧Vout、基準電圧VDDをそれぞれ、有効出力電圧Vout_eff、有効基準電圧VDD_effとする。
 Vout_eff=Vout-V2
 VDD_eff=VDD-V2・・・・・・・・・・・・・・・(7)
 そして、式(6)において、Vout、VDDの代りに、式(7)のVout_eff、VDD_effを用いると、式(8)の関係が成り立つ。
 Vout_eff=(c1*pe+c0)*VDD_ef・・・・・・・(8)
 従って、圧力検出回路112の出力電圧Vout、基準電圧VDDを、検出電圧V2により補正した有効出力電圧Vout_eff、有効基準電圧VDD_effを用いて、式(8)により検出圧力peを算出するようにすれば、接地ラインの接触抵抗分を補償した検出圧力peを算出することができる。この処理により、接地ライン上に予期せぬ抵抗値の上昇があった場合であっても、接地ライン上の抵抗値が検出圧力peに及ぼす影響を補償することができる。
 また、監視ライン103a、L3a、203aが断線して過度に高抵抗状態となった場合には、断線検出回路250において、電源電圧Vccからの電流は、抵抗R7側にのみ流れる(Icc=0)。従って、ADC210の監視端子213aに入力される検出電圧V2は、抵抗R6にかかる電圧となる。抵抗R6の電圧は、電源電圧Vccを抵抗R5+R7と、抵抗R6とで分圧した電圧であり、式(9)で与えられる。
 V2=Vcc*R6/(R5+R7+R6)・・・・・(9)
 例えば、Vcc=5[V]、R5=1[kΩ]、R7=10[kΩ]、R6=15[kΩ]とすると、V2=2.88[V]となる。この場合、監視ラインが断線した場合のV2の閾値を、例えばVth=2.88[V]として、V2の値を監視すれば良い。
 処理装置200における具体的な処理は、以下のようになる。ADC210は、入力されるアナログ信号V1,V2に対応するデジタル信号を出力する。処理部220は、デジタル信号V1,V2からΔV=V2-V1を算出する。処理部220は、ΔVが-10mV<ΔV<10mVの場合には「接地ラインが正常」と判断し、10mV≦ΔV≦Vthの場合には「接地ラインが高抵抗状態」と判断し、Vth<ΔVの場合には「監視ラインが断線」と判断する。なお、ここでは、ΔVが-10mV<ΔV<10mVの範囲内である場合に、V2’=V2が所定値(0V)と一致すると判断しているが、この範囲はADC210の解像度に応じて適宜決定する。
 また、処理部220は、ΔV≦Vthの場合に、出力電圧Vout及び基準電圧VDDを式(7)によりΔV=V2だけ補正し、有効出力電圧Vout_eff、有効基準電圧VDD_effを算出する。そして、有効出力電圧Vout_eff、有効基準電圧VDD_effを用いて、式(8)から検出圧力peを算出する。
 なお、-10mV<ΔV<10mVの場合(ΔVが略0)の場合には、出力電圧Vout及び基準電圧VDDを補正せず、式(6)により検出圧力peを算出するようにしても良い。
 上述した本発明の第6実施形態によれば、接続点の電位V2'=V2を用いて、出力電圧Vout及び基準電圧VDDを補正し、接地ラインの接触抵抗分を補償した検出圧力peを算出することができる。この処理により、接地ライン上に予期せぬ抵抗値の上昇があった場合であっても、接地ライン上の抵抗値が検出圧力peに及ぼす影響を補償することができる。これにより、接地ラインの高抵抗状態を検出した場合に、接地ラインの抵抗状態に応じて、検出圧力Peを補正することが可能となり、システムの停止を回避しつつ、正確な圧力検出を継続することができる。
 また、処理装置200内において、監視ラインと電源電圧Vcc及び接地電位GNDとの間にそれぞれ介装された抵抗R5、R6を備える断線検出回路250を配置したことにより、検出装置110に特別な構成を加えることなく、接地ラインの抵抗状態を監視するための監視ライン自体の断線を検出することができる。
 なお、上述した出力電圧Vout及び基準電圧VDDの補正処理は、上記第1実施形態にも適用できる。具体的には、第1実施形態で算出するΔVを補正量として、出力電圧Vout及び基準電圧VDDを補正すれば良い。
 上記第1乃至第6実施形態では、主に検出システムについて説明したが、検出システムに限らず、複数の回路間で電源供給又は信号通信を行う構成であれば、任意の電気システムに適用可能である。
 本出願は、国際出願番号PCT/JP2009/57606号を基礎とする優先権主張出願であり、基礎出願における請求項1乃至21を請求項9乃至29とし、新たに請求項1乃至8を追加して、優先権主張出願を行うものである。
1   検出システム
100 検出装置(センサ装置)
200 処理装置(ECU)
101、L1、201 検出信号ライン
102、L2、202 電源ライン
103、L3、203 接地ライン
101a~103a、L1a~L3a、201a~203a  監視ライン
P1~P3、P1a~P3a  電極
T1~T3、T1a~T3a  端子
110 ハウジング
111 センサチップ
112 検出回路
112a 接地端子
151 検出部
152 補正回路
153 増幅回路
210 アナログデジタルコンバータ(ADC)
220 処理部
220a,220b 異常検出部
R2,R3 抵抗
Vcc 電源電圧源、電源電圧
230,240 電源電圧制御回路
231 切換回路
232,241 制御ライン
250 断線検出回路
RL 電圧降下用抵抗

Claims (29)

  1.  電気システムであって、
     第1の電気回路(112)と、
     前記第1の電気回路(112)の接地端子に接続される接地線(L3,103)と、
     前記接地線に電気的に接続され、前記接地線との接続点における電位(V2’)を検出する監視用導電線(L3a,103a)とを備え、
     前記監視用導電線による検出電圧(V2)に基づいて、前記第1の電気回路(112)の挙動(Vout)を補正する、電気システム。
  2.  請求項1に記載の電気システムにおいて、
     前記監視用導電線(L3a,103a)は、第1の抵抗(R5)を介して電源電圧(Vcc)に接続されるとともに、第2の抵抗(R6)を介して接地電位(GND)に接続されており、
     前記第2の抵抗の電圧を前記検出電圧(V2)として検出することにより、前記監視用導電線自体の異常を検出する、電気システム。
  3.  請求項2に記載の電気システムにおいて、
     前記監視用導電線による検出電圧(V2)が第1の閾値(Vth)よりも小さい場合に、前記監視用導電線による検出電圧(V2)を用いて、前記第1の電気回路(112)の挙動(Vout)の補正を実行し、
     前記監視用導電線による検出電圧(V2)が第1の閾値以上となった場合に、前記監視用導電線の断線と判断する、電気システム。
  4.  請求項2に記載の電気システムにおいて、
     前記監視用導電線による検出電圧(V2)が前記第1の閾値より小さい第2の閾値よりも小さい場合には、前記接地線が正常であると判断し、前記第1の電気回路(112)の挙動(Vout)の補正を実行せず、
     前記監視用導電線による検出電圧(V2)が前記第2の閾値以上かつ第1の閾値未満である場合に、前記監視用導電線による検出電圧(V2)を用いて、前記第1の電気回路(112)の挙動(Vout)の補正を実行し、
     前記監視用導電線による検出電圧(V2)が前記第1の閾値以上となった場合に、前記監視用導電線の断線と判断する、電気システム。
  5.  請求項1乃至4の何れかに記載の電気システムにおいて、
     前記第1の電気回路(112)は、特定種類の物理量を検出する検出回路であり、
     前記監視用導電線による検出電圧(V2)を用いて、前記検出回路(112)の出力電圧(Vout)を補正する、電気システム。
  6.  請求項5に記載の電気システムにおいて、
     前記監視用導電線による検出電圧(V2)を用いて、前記検出回路(112)の出力電圧(Vout)と、前記出力電圧(Vout)の上限値(VDD)とを補正することにより、検出する物理量の補正を実行する、電気システム。
  7.  請求項5に記載の電気システムにおいて、
     前記検出回路(112)は、車両の制動装置を補助する負圧ブースタ内の圧力を検出する圧力センサであり、前記出力電圧(Vout)は圧力検出信号である、電気システム。
  8.  請求項2に記載の電気システムにおいて、
     前記監視用導電線(L3a,103a)に介装される第3の抵抗(R7)を更に備え、
     前記第3の抵抗(R7)の一端は前記第1の抵抗(R5)に接続され、前記第3の抵抗(R7)の他端は前記第2の抵抗(R6)に接続されている、電気システム。
  9.  特定種類の物理量を検出する検出回路(112)の異常を検出する異常検出装置であって、
     前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路の異常を検出する異常検出部(220a)を備える、検出回路の異常検出装置。
  10.  請求項9に記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220a)は、前記電源電圧変更前後の前記検出回路(112)からの出力信号(Vo1,Vo2)が、同一の物理量(P)に対する入出力特性曲線上にあるか否かに基づいて、前記検出回路(112)の異常を検出する、検出回路の異常検出装置。
  11.  請求項9に記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220a)は、前記電源電圧変更前後の前記検出回路(112)からの出力信号(Vo1,Vo2)比が変更前後の電源電圧(Vc1,Vc2)の比に一致するか否かに基づいて、前記検出回路(112)の異常を検出する、検出回路の異常検出装置。
  12.  請求項9に記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220a)は、前記電源電圧を、互いに異なる複数の電圧(Vc2,Vc3)に変更し、これら変更後の複数の電源電圧(Vc2,Vc3)での前記検出回路(112)からの出力信号(Vo2,Vo3)に基づいて、前記検出回路(112)の異常を検出する、検出回路の異常検出装置。
  13.  請求項9乃至12の何れかに記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220a)は、変更前における電源電圧値(Vc1)に対する前記検出回路(112)からの出力信号を所定の時間間隔をあけて少なくとも2回測定し、少なくとも2回の出力信号(Vo1,Vo1’)が一致する場合に、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路の異常を検出する検出回路の異常検出装置。
  14.  請求項9乃至13の何れかに記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220a)の制御によって、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更する電源電圧制御部(230)を備える、検出回路の異常検出装置。
  15.  請求項9乃至14の何れかに記載の検出回路(112)の異常検出装置において、
     前記検出回路(112)は、車両の制動装置を補助する負圧ブースタ内の圧力を検出する圧力センサである、検出回路の異常検出装置。
  16.  周囲環境に応じて挙動が変化する電気回路(112)の異常を検出する異常検出装置であって、
     前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)における前記電気回路の挙動(Vo2)に基づいて、前記電気回路の異常を検出する異常検出部(220a)を備える、電気回路の異常検出装置。
  17.  検出システムであって、
     特定種類の物理量を検出する検出回路(112)と、
     前記検出回路(112)からの出力を処理する処理装置(200)と、
     前記検出回路と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記検出回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出し、
     更に、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)での前記検出回路からの出力信号(Vo2)に基づいて、前記検出回路(112)の異常を検出する異常検出部(220a)を備える、検出システム。
  18.  電子システムであって、
     周囲環境に応じて挙動が変化する第1の電気回路(112)と、
     第2の電気回路(200)と、
     前記第1の電気回路と前記第2の電気回路との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記第1の電気回路側で前記導電線に電気的に接続される監視用信号線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用信号線との接続点における電位を前記監視用信号線によって検出することによって、前記導電線の抵抗状態を検出し、
     更に、前記第1の電気回路(112)に供給する電源電圧(Vcc’)の大きさを変更し、変更後の電源電圧(Vc2)における前記第1の電気回路の挙動(Vo2)に基づいて、前記第1の電気回路(112)の異常を検出する異常検出部(220a)を備える、電子システム。
  19.  特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、
     前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する異常検出部(220b)を備える、検出回路の異常検出装置。
  20.  請求項19に記載の検出回路(112)の異常検出装置において、
     前記異常検出部(220b)は、更に、前記検出部(151)が停止する前記電源電圧(Vx)に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する、検出回路の異常検出装置。
  21.  特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、
     前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する異常検出部(220b)を備える、検出回路の異常検出装置。
  22.  電気回路(112)の異常検出装置において、
     電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させ、前記電気回路(112)に含まれる一部(151)が停止する前記電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する異常検出部(220b)を備える、電気回路の異常検出装置。
  23.  電気回路(112)の異常検出装置において、
     電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させ、前記電気回路(112)の一部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記電気回路(112)を外部と接続する導電線の抵抗状態を検出する異常検出部(220b)を備える、電気回路の異常検出装置。
  24.  特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、
     前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記検出回路の異常を検出する第1の異常検出部(220a)と、
     前記検出部(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記検出回路(112)を外部と接続する導電線の抵抗状態を検出する第2の異常検出部(220b)と、を備える検出回路の異常検出装置。
  25.  周囲環境に応じて挙動が変化する回路部分(151)を含む電気回路(112)の異常を検出する異常検出装置であって、
     前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記回路部分(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記電気回路の異常を検出する第1の異常検出部(220a)と、
     前記回路部分(151)が停止する前記電源電圧(Vx)を検出し、この検出値に基づいて、前記電気回路(112)を外部と接続する導電線の抵抗状態を検出する第2の異常検出部(220b)と、
    を備える電気回路の異常検出装置。
  26.  検出システムであって、
     特定種類の物理量を検出する検出部(151)を含む検出回路(112)と、
     前記検出回路(112)からの出力を処理する処理装置(200)と、
     前記検出回路と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記検出回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出し、
     更に、前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する異常検出部(220b)を備える、検出システム。
  27.  電子システムであって、
     第1の電気回路(112)と、
     第2の電気回路(200)と、
     前記第1の電気回路と前記第2の電気回路との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記第1の電気回路側で前記導電線に電気的に接続される監視用信号線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用信号線との接続点における電位を前記監視用信号線によって検出することによって、前記導電線の抵抗状態を検出し、
     更に、前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記電気回路の一部(151)が停止する停止電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する異常検出部(220b)を備える、電子システム。
  28.  特定種類の物理量を検出する検出部(151)を含む検出回路(112)の異常検出装置において、
     前記検出回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記検出部(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記検出回路の異常を検出する第1の異常検出部(220a)と、
     前記検出部(151)が停止する前記電源電圧(Vx)未満における前記検出回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記検出回路(112)の異常を検出する第2の異常検出部(220b)と、
    を備える検出回路の異常検出装置。
  29.  周囲環境に応じて挙動が変化する回路部分(151)を含む電気回路(112)の異常を検出する異常検出装置であって、
     前記電気回路(112)に供給する電源電圧(Vcc’)の大きさを変化させて、前記回路部分(151)が停止する前記電源電圧(Vx)以上の範囲において、変化後の電源電圧(Vc2)に対する前記検出回路からの出力信号(Vo2)を検出し、この検出値に基づいて、前記電気回路の異常を検出する第1の異常検出部(220a)と、
     前記電気回路の一部(151)が停止する停止電源電圧(Vx)未満における前記電気回路(112)の出力信号(Vout)を検出し、この検出値に基づいて、前記電気回路(112)の異常を検出する第2の異常検出部(220b)と、
    を備える電気回路の異常検出装置。
PCT/JP2010/056701 2009-04-15 2010-04-14 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム WO2010119901A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10764485A EP2420851A1 (en) 2009-04-15 2010-04-14 Abnormality detection device for detection circuit and electric circuit, and detection system and electronic system using the abnormality detection device
JP2011509319A JPWO2010119901A1 (ja) 2009-04-15 2010-04-14 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
CN2010800167654A CN102395892A (zh) 2009-04-15 2010-04-14 检测电路及电气电路的异常检测装置、和使用该异常检测装置的检测系统及电子系统
US13/264,889 US20120035824A1 (en) 2009-04-15 2010-04-14 Abnormality detection device for detection circuit and electric circuit, and detection system and electronic system which uses abnormality detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/057606 WO2010119532A1 (ja) 2009-04-15 2009-04-15 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
JPPCT/JP2009/057606 2009-04-15

Publications (1)

Publication Number Publication Date
WO2010119901A1 true WO2010119901A1 (ja) 2010-10-21

Family

ID=42982215

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/057606 WO2010119532A1 (ja) 2009-04-15 2009-04-15 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
PCT/JP2010/056701 WO2010119901A1 (ja) 2009-04-15 2010-04-14 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057606 WO2010119532A1 (ja) 2009-04-15 2009-04-15 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム

Country Status (5)

Country Link
US (1) US20120035824A1 (ja)
EP (1) EP2420851A1 (ja)
JP (1) JPWO2010119901A1 (ja)
CN (1) CN102395892A (ja)
WO (2) WO2010119532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212814A (ja) * 2012-04-04 2013-10-17 Ntn Corp 電動ブレーキ装置
JP2014211382A (ja) * 2013-04-19 2014-11-13 株式会社ハイレックスコーポレーション センサ装置
JP2017125866A (ja) * 2017-04-27 2017-07-20 パナソニックIpマネジメント株式会社 光学式エンコーダ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262973B1 (ko) * 2011-05-24 2013-05-08 기아자동차주식회사 하이브리드 전기 차량의 비상주행 제어시스템 및 그 제어방법
CN102279330B (zh) * 2011-06-29 2013-10-02 深圳市英威腾电源有限公司 一种故障检测系统和电子电路系统
CN103712642B (zh) * 2013-12-20 2016-08-17 大唐微电子技术有限公司 一种实现安全检测器自我检测的方法及装置
PT3101437T (pt) 2014-01-28 2019-06-06 Guangdong Oppo Mobile Telecommunications Corp Ltd Adaptador de energia, terminal e método para tratamento de anomalia de impedância no ciclo de carregamento
CN106461489B (zh) * 2014-03-27 2019-06-14 西铁城精密器件株式会社 压力检测装置的断线检测电路
EP3422024B1 (en) * 2014-09-22 2022-09-07 Panduit Corp A system for the verification of the absence of voltage
JP6374372B2 (ja) * 2015-11-27 2018-08-15 株式会社アドヴィックス 異常診断装置
US10845429B2 (en) * 2016-08-31 2020-11-24 Hitachi Automotive Systems, Ltd. Electronic control device
US10114061B2 (en) * 2016-11-28 2018-10-30 Kohler Co. Output cable measurement
EP3555646A4 (en) * 2016-12-16 2021-01-13 ABB Schweiz AG COMPENSATION OF DIFFERENCES IN EARTH
ES2893250T3 (es) 2016-12-22 2022-02-08 Vestas Wind Sys As Detección de fallos eléctricos en un sistema de control de generador de aerogenerador
CN109338441A (zh) * 2018-10-18 2019-02-15 东莞宇宙电路板设备有限公司 用于挂架跳起异常的检测装置及电镀设备
CN109696902B (zh) * 2018-12-06 2022-06-10 奇瑞汽车股份有限公司 一种信号记录装置、故障点检测电路及方法
JP2020140017A (ja) * 2019-02-27 2020-09-03 三菱電機株式会社 駆動回路、液晶駆動コントローラ、及び、液晶表示装置
JP7165080B2 (ja) * 2019-03-18 2022-11-02 セイコーエプソン株式会社 物理量検出回路、物理量センサー、電子機器、移動体及び物理量センサーの故障診断方法
CN112097992B (zh) * 2020-09-04 2021-10-08 苏州半山智能科技有限公司 双隔离膜片式卫生型自检定压力传感器
CN115955085B (zh) * 2023-03-10 2023-06-02 晶艺半导体有限公司 驱动电路及其驱动方法、控制电路以及电源芯片

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128195U (ja) * 1983-12-28 1984-08-29 富士通株式会社 ランプ断線検知回路
JPS60227174A (ja) * 1984-02-28 1985-11-12 Honda Motor Co Ltd 断線検出装置
JPS61251777A (ja) * 1985-04-30 1986-11-08 Nippon Denso Co Ltd 状態変化検出装置
JPH04231838A (ja) 1990-11-29 1992-08-20 Air Hightech Center:Kk 自動車用故障診断装置
JPH05503779A (ja) 1990-02-03 1993-06-17 グロウ・リミテッド 制御システム
JPH0545543U (ja) * 1991-11-22 1993-06-18 理化工業株式会社 センサの補正装置およびこれに接続するセンサ
JPH06229778A (ja) * 1992-10-07 1994-08-19 Nec Corp 故障検出回路付半導体センサ装置
JPH06273429A (ja) * 1993-03-15 1994-09-30 Sumitomo Electric Ind Ltd 回転センサの故障検出装置および故障検出機能付回転センサ
JP2005164435A (ja) * 2003-12-03 2005-06-23 Yamatake Corp 個体情報提供システム
US20080103705A1 (en) * 2006-10-27 2008-05-01 Dirk Hammerschmidt Online Testing Of A Signal Path By Means Of At Least Two Test Signals
JP2009057606A (ja) 2007-08-31 2009-03-19 Ntn Corp 浸炭窒化方法、機械部品の製造方法、機械部品および熱処理炉

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436045A (ja) * 1990-05-30 1992-02-06 Aisin Seiki Co Ltd センサの故障検出装置
JPH0835860A (ja) * 1994-07-22 1996-02-06 Mitsubishi Electric Corp センサ制御装置
JP4517490B2 (ja) * 1999-10-29 2010-08-04 株式会社デンソー センサ装置
JP3851043B2 (ja) * 1999-12-24 2006-11-29 トヨタ自動車株式会社 ブレーキ液圧制御装置
JP4082261B2 (ja) * 2003-03-31 2008-04-30 株式会社デンソー センサ装置用断線検出回路
JP2005160169A (ja) * 2003-11-21 2005-06-16 Texas Instr Japan Ltd バッテリ保護回路
DE102004038736A1 (de) * 2004-08-10 2006-02-23 Robert Bosch Gmbh Verfahren zur Nebenschlusserkennung bei Sensoren

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128195U (ja) * 1983-12-28 1984-08-29 富士通株式会社 ランプ断線検知回路
JPS60227174A (ja) * 1984-02-28 1985-11-12 Honda Motor Co Ltd 断線検出装置
JPS61251777A (ja) * 1985-04-30 1986-11-08 Nippon Denso Co Ltd 状態変化検出装置
JPH05503779A (ja) 1990-02-03 1993-06-17 グロウ・リミテッド 制御システム
JPH04231838A (ja) 1990-11-29 1992-08-20 Air Hightech Center:Kk 自動車用故障診断装置
JPH0545543U (ja) * 1991-11-22 1993-06-18 理化工業株式会社 センサの補正装置およびこれに接続するセンサ
JPH06229778A (ja) * 1992-10-07 1994-08-19 Nec Corp 故障検出回路付半導体センサ装置
JPH06273429A (ja) * 1993-03-15 1994-09-30 Sumitomo Electric Ind Ltd 回転センサの故障検出装置および故障検出機能付回転センサ
JP2005164435A (ja) * 2003-12-03 2005-06-23 Yamatake Corp 個体情報提供システム
US20080103705A1 (en) * 2006-10-27 2008-05-01 Dirk Hammerschmidt Online Testing Of A Signal Path By Means Of At Least Two Test Signals
JP2009057606A (ja) 2007-08-31 2009-03-19 Ntn Corp 浸炭窒化方法、機械部品の製造方法、機械部品および熱処理炉

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212814A (ja) * 2012-04-04 2013-10-17 Ntn Corp 電動ブレーキ装置
JP2014211382A (ja) * 2013-04-19 2014-11-13 株式会社ハイレックスコーポレーション センサ装置
JP2017125866A (ja) * 2017-04-27 2017-07-20 パナソニックIpマネジメント株式会社 光学式エンコーダ

Also Published As

Publication number Publication date
JPWO2010119901A1 (ja) 2012-10-22
US20120035824A1 (en) 2012-02-09
CN102395892A (zh) 2012-03-28
EP2420851A1 (en) 2012-02-22
WO2010119532A1 (ja) 2010-10-21

Similar Documents

Publication Publication Date Title
WO2010119901A1 (ja) 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
US7615986B2 (en) Temperature detection function-incorporating current sensor
CN103026195B (zh) 压敏换能器组件和用于包括这种组件的系统的控制方法
US9945886B2 (en) Electrical current detection device equipped with shunt resistor, and power supply device
CN102064597B (zh) 蓄电装置
US6343498B1 (en) Physical quantity sensor having fault detection function
US8258795B2 (en) Procedure for checking the operational capability of an electric circuit
US7633179B2 (en) Passenger detection apparatus for detecting breakage on shield line without being affected by peripheral shield cables
JP4103280B2 (ja) 力学量センサ装置
CN111551865B (zh) 用于监测电池单元的单元阻抗测量的可靠性的设备和方法
WO2011102524A1 (ja) 二次電池モジュールの診断装置
CN102608376B (zh) 能够自诊断的电子电路以及磁场检测装置
WO2011010349A1 (ja) 試験装置
CN104297569A (zh) 电阻测量
CN105445525A (zh) 在具有霍尔传感器的电流传感器中的过电流识别
US20100289499A1 (en) Monitoring device for monitoring a terminal of a terminal component
CN110622015A (zh) 用于对控制器供电的装置和用于监控供电的方法
WO2010100754A1 (ja) 検出システム及び電気システム
US20220229098A1 (en) Method for determining the electrical resistance of an electric supply line
US20170363481A1 (en) Fault Detection Apparatus
US20090261855A1 (en) Method and system for incorporating electronic signature analysis in low voltage power supplies
US20220308116A1 (en) Battery sensor
US11209490B2 (en) Method for operating a battery sensor, and battery sensor
JP2002174651A (ja) 物理量検出装置
US20120025863A1 (en) Solder joint inspection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016765.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509319

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010764485

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13264889

Country of ref document: US