WO2010100754A1 - 検出システム及び電気システム - Google Patents

検出システム及び電気システム Download PDF

Info

Publication number
WO2010100754A1
WO2010100754A1 PCT/JP2009/054299 JP2009054299W WO2010100754A1 WO 2010100754 A1 WO2010100754 A1 WO 2010100754A1 JP 2009054299 W JP2009054299 W JP 2009054299W WO 2010100754 A1 WO2010100754 A1 WO 2010100754A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
detection
monitoring
detection system
potential
Prior art date
Application number
PCT/JP2009/054299
Other languages
English (en)
French (fr)
Inventor
ウィリアムソン スィ
大地 田尻
建治 由類江
康章 栗田
ユルゲン ステグマイヤー
武男 秋田
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to PCT/JP2009/054299 priority Critical patent/WO2010100754A1/ja
Priority to JP2011502554A priority patent/JPWO2010100754A1/ja
Publication of WO2010100754A1 publication Critical patent/WO2010100754A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Definitions

  • the present invention relates to an electrical system that performs power supply or signal communication between a plurality of circuits, and more particularly, to a detection system that detects and processes a specific physical quantity.
  • a detection system for detecting a pressure of a negative pressure booster that assists a braking force of a braking device includes a pressure sensor that detects a negative pressure booster pressure, and a processing device (for example, ECU) that processes an output from the pressure sensor. Consists of The system includes a power supply line for supplying power supply voltage from the processing device to the pressure sensor, a ground line for supplying ground potential from the processing device to the pressure sensor, and a detection signal line for supplying output from the pressure sensor to the processing device. A signal line interconnects the pressure sensor and the processing device.
  • the pressure sensor has a structure in which a sensor chip or a circuit board is accommodated in a resin housing, and a connector portion is formed in the shape of a recess in the housing, and each signal line (power line, ground) is formed in the recess. A connector to which one end of a line or a detection signal line) is connected is fitted. The other end of each signal line is also connected to the ECU by a connector.
  • the pressure sensor since the pressure sensor is installed on the negative pressure booster, the vibration generated in the negative pressure booster is directly transmitted to the pressure sensor, and this vibration is caused by poor contact at the connection between the pressure sensor and each signal line. As a result, the resistance value of each signal line may increase. The disconnection of each signal line can be detected by monitoring the signal from the detection signal line, but if the resistance value changes due to poor contact, the signal level from the detection signal line is within the normal range. There is a possibility that the abnormality of the signal line cannot be detected. In the pressure detection system of the negative pressure booster, the desired negative pressure is generated by the sensor output even though the desired negative pressure is not generated due to the increase in the resistance value of the signal line. If it is determined that the vehicle is braking, a sufficient braking force cannot be obtained when the vehicle needs to be braked, and the possibility of a dangerous state cannot be denied.
  • Patent Document 1 examples of techniques for detecting an abnormality in a signal line in a detection system include those described in Patent Documents 1 and 2.
  • Patent Document 1 in a detection system including the detection device 1 and the processing device 2, two paths for signals input from the detection unit 10 of the detection device 1 to the processing unit 22 of the processing device 2 are provided. A configuration is described in which a disconnection of the ground line L2 is detected by comparing signals in the paths.
  • Patent Document 2 in a sensor system in which a pressure sensor 20 and an ECU 10 are connected by a power supply line Lp, a detection signal line Lo, and a ground line Lg, a switch is provided between the regulator 11 that supplies a voltage of 5 V and the power supply line Lp.
  • positioned 12 is disclosed (refer FIG. 1).
  • the regulator 11 and the power supply line Lp are connected by the switch 12 during normal operation, and the output of the regulator 11 is switched to the detection signal line Lo when a failure is detected.
  • the regulator 11, the detection signal line Lo, the pressure sensor 20, and the ground line The current returning from Lg to the regulator 11 is detected, and the detected value is compared with the reference value to detect a defect in the detection signal line Lo.
  • Patent Document 2 it is possible to detect a resistance change in the detection signal line Lo, but it is necessary to temporarily stop pressure detection for failure detection, and a switch for switching the current path is necessary. .
  • An object of the present invention is to make it possible to detect a resistance state of a signal line with a simple configuration in an electrical system such as a detection system.
  • the detection system includes a detection unit (112) that detects a specific physical quantity, a processing device (200) that processes an output from the detection unit (112), and an electrical connection between the detection unit and the processing device.
  • Conductive wires (L1, 101; L2, 102; L3, 103) connected to the monitor, and monitoring conductive wires (L1a, 101a; L2a, 102a) electrically connected to the conductive wires on the detection unit (112) side L3a, 103a), and detecting the potential at the connection point between the conductive line and the monitoring conductive line with the monitoring conductive line, thereby detecting the resistance state of the conductive line.
  • an abnormality in which the conductive line is in a high resistance state is detected based on the potential at the connection point.
  • the resistance state of the conductive line is detected by comparing a potential on the path including the conductive line as a reference value and comparing the potential at the connection point with the reference value.
  • the disconnection of the monitoring conductive wire is further detected based on the output from the monitoring conductive wire.
  • a resistance for voltage correction (R3) is connected in series to the conductive line, and the conductive line is normal (in a low resistance state) by the resistance (R3).
  • the potential at the connection point is adjusted.
  • the detection unit (112) is a pressure sensor and is attached to a negative pressure booster of a vehicle. In one embodiment of the present invention, the detection unit (112) is accommodated in a housing (110), and the conductive wire is connected to an electrode provided in the housing.
  • the electrical system includes an electrical circuit between a first electrical circuit (112), a second electrical circuit (200), and the first electrical circuit (112) and the second electrical circuit (200).
  • conductive wires for monitoring (L1a, 101a; electrically connected to the conductive wires on the first electric circuit (112) side) (L1, 101; L2, 102; L3, 103).
  • L2a, 102a; L3a, 103a) and detecting a potential at a connection point between the conductive line and the monitoring conductive line by the monitoring conductive line, thereby detecting a resistance state of the conductive line.
  • FIG. 1 is a circuit diagram of a detection system according to a first embodiment of the present invention.
  • the circuit diagram when the ground line is in a high resistance state In the circuit diagram of the detection system which concerns on 1st Embodiment, the circuit diagram in the case of connecting a monitoring line and a ground line outside a sensor chip.
  • the circuit diagram of the detection system concerning a 2nd embodiment of the present invention.
  • the circuit diagram when the grounding line will be in a high resistance state in the detection system which concerns on 2nd Embodiment of this invention.
  • an equivalent circuit diagram when the ground line is in a high resistance state In the circuit diagram of the detection system according to the first embodiment, an equivalent circuit diagram when the ground line is in a high resistance state. In the circuit diagram of the detection system according to the second embodiment, an equivalent circuit diagram when the ground line is in a high resistance state.
  • 1 is a circuit diagram in which an embodiment of the present invention is applied to a power supply line and a detection signal line.
  • Detection System 100 Detection Device (Sensor Device) 200 Processing unit (ECU) 101, L1, 201 Detection signal line 102, L2, 202 Power supply line 103, L3, 203 Ground line 101a to 103a, L1a to L3a, 201a to 203a Monitoring lines P1 to P3, P1a to P3a Electrodes T1 to T3, T1a to T3a Terminal 110 Housing 111 Sensor chip 112 Detection circuit unit 210 Analog to digital converter (ADC) 220 processing unit R2, R3 resistance Vcc power supply voltage source, power supply voltage
  • ADC Analog to digital converter
  • FIG. 1 shows a circuit diagram of a detection system according to the first embodiment of the present invention.
  • the detection system used for detecting the pressure of the negative pressure booster for assisting the braking device of the vehicle will be described as an example, but the present invention is not limited to the detection system, Any configuration can be applied to any electrical system as long as power supply or signal communication is performed between a plurality of circuits.
  • a detection system 1 shown in FIG. 1 includes a detection device 100 and a processing device 200, and the detection device 100 and the processing device 200 are electrically connected by signal lines (conductive lines) L1 to L3 and L3a.
  • the detection device 100 is a pressure detection device, and is a detection device that is mounted on a negative pressure booster (not shown) that assists the braking device of the vehicle and detects the pressure (negative pressure) in the negative pressure booster.
  • the processing device 200 is, for example, an electronic control unit (ECU) mounted on a vehicle, receives a pressure detection signal from the detection device 100, and uses the pressure detection signal for various controls of the vehicle.
  • ECU electronice control unit
  • the signal line L1 is a detection signal line that outputs a pressure detection signal in the detection device 100 to the processing device 200, and is connected to the detection signal electrode P1 of the detection device 100 and the detection signal terminal T1 of the processing device 200.
  • the signal line L2 is a power supply line that supplies a power supply voltage Vcc (for example, 5 V) from the processing device 200 to the detection device 100, and is connected to the power supply electrode P2 of the detection device 100 and the power supply terminal T2 of the processing device 200.
  • the signal line L3 is a ground line that supplies a ground potential (GND) from the processing device 200 to the detection device 100, and is connected to the ground electrode P3 of the detection device 100 and the ground terminal T3 of the processing device 200.
  • the signal line L3a is a monitoring line for monitoring and detecting an abnormality in the ground line L3, and supplies the processing device 200 with the potential V2 'on the detection device 100 side of the ground line L3.
  • the detecting device 100 includes a resin-molded housing 110 and a sensor chip 111 installed in the housing 110.
  • the sensor chip 111 includes a pressure detection unit 112, and the pressure detection unit 112 is provided with, for example, a pressure sensor including a diaphragm and a resistance bridge, an amplification circuit, and the like.
  • the sensor chip 111 and the signal lines L1 to L3 are connected by the detection signal line 101, the power line 102, the ground line 103, and the wires 101 to 103 and 103a as the monitoring line 103a, and the wires 101 to 103 and 103a are connected.
  • the pressure detection unit 112 is connected to the signal lines L1 to L3 via.
  • the pressure detector 112 detects the pressure in the negative pressure booster, and outputs a pressure detection signal to the detection signal terminal T1 of the processing device 200 via the detection signal line 101, the detection signal electrode P1, and the detection signal line L1. Further, the pressure detection signal is input to the detection signal terminal 211 of the ADC 210 via the detection signal line 201. Further, a power supply voltage Vcc is supplied to the pressure detection unit 112 from the power supply Vcc of the processing apparatus 200 through the power supply line 202, the power supply terminal T2, the power supply line L2, the power supply electrode P2, and the power supply line 102. In addition, the ground potential GND is supplied to the pressure detection unit 112 from the ground line 203 of the processing apparatus 200 through the ground terminal T3, the ground line L3, the ground electrode P3, and the ground line 103.
  • the housing 110 is formed with a recess for receiving a connector (not shown) attached to one end of the signal lines L1 to L3 and L3a during resin molding, and the bottom surface of the recess penetrates into and out of the housing.
  • Comb-like electrodes P1 to P3 and P3a corresponding to the signal lines L1 to L3 and L3a are provided.
  • the recess and the electrodes P1 to P3 and P3a constitute a connector on the detection device 100 side.
  • the electrodes P1 to P3 and P3a are formed inside the housing 110 to receive the tips of the wires 101 to 103 and 103a, and the tips of the wires 101 to 103 and 103a are fitted and connected to the electrodes P1 to P3.
  • the wires 101 to 103 and 103a are electrically connected to the signal lines L1 to L3 and L3a via the electrodes P1 to P3, respectively.
  • the ground lines L3 and 103 and the monitoring lines L3a and 103a are electrically connected in the sensor chip 111.
  • an analog / digital converter (ADC) 210 is provided in the processing apparatus 200.
  • the ADC 210 includes a detection signal terminal 211 to which a pressure detection signal is input, a reference terminal 212 to which a power supply voltage Vcc is supplied via a power supply line 202 in the processing apparatus 200, and the ground lines L3 and 103 on the processing apparatus 200 side.
  • the detection signal terminal T1 of the processing device 200 is connected to the detection signal terminal 211 of the ADC 210 via the detection signal line 201 and is connected to the power source VA via the pull-up resistor R2.
  • the voltage of the pressure detection signal input to the ADC 210 changes in the range of 0.25V to 4.75V, and the detection signal line L1 is disconnected (detection signal terminal)
  • the detection signal line L1 is disconnected (detection signal terminal)
  • the voltage input from the power source VA to the ADC 210 via the resistor R2 is 5 V or more.
  • the disconnection of the detection signal line L1 can be detected based on the difference in input voltage to the ADC 210.
  • the power supply voltage Vcc is supplied from the power supply Vcc of the processing apparatus 200 to the pressure detection unit 112 in the sensor chip 111 via the power supply line 202 and the power supply lines L2 and 102. Further, the pressure detection signal from the pressure detection unit 112 is supplied to the detection signal terminal 211 of the ADC 210 via the detection signal lines 101, L 1, 201. Further, the ground potential of the processing apparatus 200 is supplied from the ground line 203 to the pressure detection unit 112 of the detection apparatus 100 through the ground lines L3 and 103.
  • the ground potential of the processing apparatus 200 is input from the ground line 203 to the signal terminal 213 of the ADC 210, and the potential V2 ′ at the connection point between the ground lines L3 and 103 and the monitoring lines L3a and 103a is changed to the monitoring line 103a,
  • the signal is input to the monitoring terminal 213a of the ADC 210 via the monitoring electrode P3a and the monitoring lines L3a and 203a.
  • the power supply voltage Vcc is a resistance value R0 of the sensor chip 111 (a resistance value between the input portion of the power supply line 101 of the sensor chip 111 and the connection point (V2 ′)).
  • the resistor RX can be calculated by the following equation (1) based on the potential V2 'at the connection point.
  • RX V2 ′ / (Vcc ⁇ V2 ′) * R0 (1)
  • the resistance state of the ground line L3 can be evaluated by the resistance value RX. Further, since the potential V2 ′ at the connection point has a one-to-one correspondence with the resistance value RX, it is also possible to evaluate the resistance state of the ground line using the potential V2 ′ at the connection point.
  • Specific processing in the processing apparatus 200 is as follows.
  • the signal is input to the monitoring terminal 213a of the ADC 210 via L3a and 203a.
  • the ADC 210 converts the potential V1 (reference value) on the processing device 200 side of the ground lines L3 and 103 and the potential V2 at the connection point into digital signals and outputs them to the processing unit 220.
  • the processing unit 220 may calculate the resistance value RX of the ground line using the detected value of V2 ′ and the equation (1). In this case, it is possible to monitor the resistance value RX and detect a change in the resistance value of the ground line and an abnormality that causes a high resistance state.
  • the potential V2 ′ at the connection point between the ground lines L3, 103 and the monitoring lines L3a, 103a is monitored via the monitoring lines L3a, 103a, thereby reducing the resistance of the ground line.
  • the state can be detected. Therefore, it is possible to reliably detect an abnormality in which the ground lines L3 and 103 are in a high resistance state.
  • vibration due to the operation of the negative pressure booster is transmitted to the detection device 100, and the contact resistance between the ground lines L3, 103 and the electrode P3 is deteriorated.
  • the resistance value RX of the ground line can be detected.
  • the resistance state of the ground lines L3, 103 is monitored by monitoring the potential V2 ′ at the connection point between the ground lines L3, 103 and the monitoring lines L3a, 103a via the monitoring lines L3a, 103a. Therefore, it is possible to detect anomalies with a simple configuration.
  • the monitoring lines L3a and 103a that are electrically connected to the ground lines L3 and 103 are provided on the detection device 100 side, and the resistance state of the ground lines L3 and 103 is detected.
  • the present invention can also be applied to the lines L2, 102 and the detection signal lines L1, 101.
  • the power supply potential Vcc input to the terminal 212 of the ADC 210 is used as a reference value, and the potential at the connection point between the power supply lines L2 and 102 and the monitoring lines L2a and 102a is monitored. Detect resistance state.
  • the detection signal line for example, the detection signal voltage at the time of calibration for releasing the pressure in the negative pressure booster to the atmosphere (voltage input to the terminal 211 of the ADC 210) is used as the reference value, and the detection signal line L1, The potential of the connection point between 101 and the monitoring lines L1a and 101a is detected, and the resistance state of the detection signal line is detected by comparing this with the reference value.
  • the processing unit 220 may be provided outside the processing apparatus 200, or both the ADC 210 and the processing unit may be provided in the processing apparatus. It may be provided outside the 200.
  • a sensor in which the sensor detection unit 112 is arranged on a printed wiring board may be used instead of the sensor chip 111.
  • FIG. 4 shows a circuit diagram of a detection system according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and portions different from those in the first embodiment will be described below.
  • a potential correcting resistor R3 (10 ⁇ ) is interposed on the ground line 203 in the detection apparatus 100.
  • the contact resistance increases at the connection portion between the electrode P3 and the ground line L3 of the detection device 100 (or the connection portion between the electrode P3 and the ground line 103), and the contact resistance increases on the ground lines L3 and 103.
  • the resistor RX is generated, the power supply voltage Vcc is divided by the resistance value R0, the resistor R3, and the resistor RX of the sensor chip 111 as shown in the equivalent circuit of FIG. 7B. Therefore, the resistor RX can be calculated by the following equation (2) based on the potential V2 'at the connection point.
  • the determination of the resistance state of the ground line is performed as follows using the potential V2 'at the connection point or the input V2 of the ADC 210.
  • V2 the potential of the ADC 210.
  • 99 mV-10 mV ⁇ V2 ( ⁇ V) ⁇ 99 mV + 10 mV
  • 99 mV + 10 mV ⁇ V2 ( ⁇ V) it is determined that the “ground line is in a high resistance state”
  • ⁇ 10 mV ⁇ V2 ( ⁇ V ) If ⁇ 10 mV, it may be determined that “the monitoring line is disconnected”.
  • V2 ( ⁇ V) when V2 ( ⁇ V) is within a predetermined value (0V, 99 mV) ⁇ 10 mV, it is determined that V2 ( ⁇ V) matches the predetermined value (0V, 99 mV). Is appropriately determined according to the resolution of the ADC 210.
  • the ADC 210 outputs digital signals corresponding to the input analog signals V1 and V2.
  • the processing unit 220 determines that “the ground line is normal” when ⁇ V is 99 mV ⁇ 10 mV ⁇ V ⁇ 99 mV + 10 mV, and determines that “the ground line is in a high resistance state” when 99 mV + 10 mV ⁇ ⁇ V, and ⁇ 10 mV ⁇ When ⁇ V ⁇ 10 mV, it is determined that “the monitoring line is disconnected”.
  • the resistor R3 is provided on the ground line 203 in the processing apparatus 200, the resistor R3 may be provided on the ground line 103 side in the sensor chip 111 as shown in FIG.
  • the potential correcting resistor R3 may be provided at any location on the ground line as long as it is electrically connected to the ground lines 103 and 203 in series.

Abstract

 検出システムのような電気システムにおいて、簡易な構成で信号線の抵抗状態を検出可能とすることにある。 本発明に係る検出システムは、特定の物理量を検出する検出部(112)と、前記検出部(112)からの出力を処理する処理装置(200)と、前記検出部と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記検出部(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する。

Description

検出システム及び電気システム
 本発明は、複数の回路間で電源供給又は信号通信を行う電気システムに関し、特に、特定の物理量を検出して処理する検出システムに関する。
 車両において、制動装置の制動力を補助する負圧ブースタの圧力を検出する検出システムは、負圧ブースタ圧力を検出する圧力センサと、圧力センサからの出力を処理する処理装置(例えば、ECU)とから構成される。このシステムでは、処理装置から圧力センサに電源電圧を供給する電源ラインと、処理装置から圧力センサに接地電位を供給する接地ラインと、圧力センサからの出力を処理装置に供給する検出信号ラインを含む信号線によって、圧力センサと処理装置の間が相互に接続されている。圧力センサは、樹脂製のハウジング内にセンサチップ又は回路基板を収容した構成であり、ハウジングには、凹部の形状にコネクタ部が成形されており、この凹部には各信号線(電源ライン、接地ライン、検出信号ライン)の一端を接続したコネクタが嵌合される。各信号線の他端もコネクタによりECUに接続される。
 しかしながら、圧力センサが負圧ブースタ上に設置されるため、負圧ブースタで発生する振動が圧力センサに直接伝達され、この振動により、圧力センサと各信号線との接続部における接触不良に起因して、各信号線の抵抗値が増大するおそれがある。各信号線の断線は、検出信号ラインからの信号を監視することで検出することが可能であるが、接触不良により抵抗値が変化した場合には、検出信号ラインからの信号レベルが正常範囲内となることがあり、信号線の異常を検出できないおそれがある。負圧ブースタの圧力検出システムでは、このような信号線の抵抗値の増加に起因して、所望の負圧が発生していないにも関わらず、センサの出力によって所望の負圧を発生していると判断してしまうと、車両の制動が必要な場合に十分な制動力が得られず、危険な状態となる可能性も否定できない。
 検出システムにおける信号線の異常を検出する技術としては、例えば、特許文献1及び2に記載されたものがある。特許文献1には、検出装置1と処理装置2とを備える検出システムにおいて、検出装置1の検出部10から処理装置2の処理部22に入力される信号の経路を2つ設け、2つの信号経路における信号を比較することによって接地線L2の断線を検出する構成が記載されている。
 特許文献2には、圧力センサ20とECU10とが電源ラインLp、検出信号ラインLo及び接地ラインLgで接続されたセンサシステムにおいて、5Vの電圧を供給するレギュレータ11と電源ラインLpとの間にスイッチ12を配置した構成が開示されている(図1参照)。この構成では、通常運転時にはスイッチ12によりレギュレータ11と電源ラインLpとを接続し、故障検出時にはレギュレータ11の出力を検出信号ラインLoに切り替え、レギュレータ11、検出信号ラインLo、圧力センサ20、接地ラインLgからレギュレータ11に戻る電流を検出して、検出値を基準値と比較することによって検出信号ラインLoの不良を検出する。
特開2008-209230号公報 特開2001-194256号公報
 上述した特許文献1の構成では、接地線L2の断線の有無を検出できるが、接地線L2の接触不良による抵抗値の増大を検出することはできない。また、電流経路を追加するためにオペアンプ等の電子素子を追加する必要があり、回路構成が複雑である。
 特許文献2の構成では、検出信号ラインLoにおける抵抗変化を検出することができるが、故障検出のために圧力検出を一時的に停止する必要があり、電流経路を切り替えるためのスイッチが必要である。
 本発明の目的は、検出システムのような電気システムにおいて、簡易な構成で信号線の抵抗状態を検出可能とすることにある。
 本発明の一実施態様は、検出システムに関する。この検出システムは、特定の物理量を検出する検出部(112)と、前記検出部(112)からの出力を処理する処理装置(200)と、前記検出部と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記検出部(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する。
 本発明の一実施態様では、前記接続点の電位によって、前記導電線が高抵抗状態となる異常を検出する。
 本発明の一実施態様では、前記導電線を含む経路上の電位を基準値とし、前記接続点の電位を前記基準値と比較することによって、前記導電線の抵抗状態を検出する。
 本発明の一実施態様では、前記監視用導電線からの出力に基づいて、前記監視用導電線の断線を更に検出する。
 本発明の一実施態様では、前記導電線に直列に電圧補正用の抵抗(R3)が接続され、該抵抗(R3)によって、前記導電線が正常である場合(低抵抗状態である場合)の前記接続点の電位を調整する。
 本発明の一実施態様では、前記検出部(112)は、圧力センサであり、車両の負圧ブースタに取り付けられる。本発明の一実施態様では、前記検出部(112)は、ハウジング(110)内に収容され、該ハウジングに設けられた電極に前記導電線が接続される。
 本発明の一実施態様は、電気システムに関する。この電気システムは、第1の電気回路(112)と、第2の電気回路(200)と、前記第1の電気回路(112)と前記第2の電気回路(200)との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、前記第1の電気回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する。
本発明の第1実施形態に係る検出システムの回路図。 第1実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の回路図。 第1実施形態に係る検出システムの回路図において、センサチップの外部で監視ラインと接地ラインとを接続する場合の回路図。 本発明の第2実施形態に係る検出システムの回路図。 本発明の第2実施形態に係る検出システムにおいて、接地ラインが高抵抗状態となった場合の回路図。 本発明の第2実施形態に検出システムにおいて、電圧調整用の抵抗を検出装置内に配置した変形例。 第1実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の等価回路図。 第2実施形態に係る検出システムの回路図において、接地ラインが高抵抗状態となった場合の等価回路図。 本発明の一実施形態を電源ライン及び検出信号ラインに適用した回路図。
符号の説明
1   検出システム
100 検出装置(センサ装置)
200 処理装置(ECU)
101、L1、201 検出信号ライン
102、L2、202 電源ライン
103、L3、203 接地ライン
101a~103a、L1a~L3a、201a~203a  監視ライン
P1~P3、P1a~P3a  電極
T1~T3、T1a~T3a  端子
110 ハウジング
111 センサチップ
112 検出回路部
210 アナログデジタルコンバータ(ADC)
220 処理部
R2,R3 抵抗
Vcc 電源電圧源、電源電圧
 (第1実施形態)
 図1は、本発明の第1実施形態に係る検出システムの回路図を示す。ここでは、車両の制動装置を補助するための負圧ブースタの圧力を検出するために使用される検出システムを例に挙げて説明するが、本発明は、検出システムに限定されるものではなく、複数の回路間で電源供給又は信号通信を行う構成であれば、任意の電気システムに適用可能である。
  [回路構成]
 図1に示す検出システム1は、検出装置100と処理装置200とを備え、検出装置100と処理装置200との間は信号線(導電線)L1~L3、L3aによって電気的に接続されている。検出装置100は、圧力検出装置であり、車両の制動装置の補助を行う負圧ブースタ(図示せず)に装着されて負圧ブースタ内の圧力(負圧)を検出する検出装置である。処理装置200は、例えば、車両に搭載される電子制御装置(ECU)であり、検出装置100から圧力検出信号を受信し、この圧力検出信号を車両の各種制御に用いる。
 信号線L1は、検出装置100における圧力検出信号を処理装置200に出力する検出信号ラインであり、検出装置100の検出信号電極P1と処理装置200の検出信号端子T1に接続される。信号線L2は、処理装置200から検出装置100に電源電圧Vcc(例えば、5V)を供給する電源ラインであり、検出装置100の電源電極P2と処理装置200の電源端子T2に接続される。信号線L3は、処理装置200から検出装置100に接地電位(GND)を供給する接地ラインであり、検出装置100の接地電極P3と処理装置200の接地端子T3に接続される。信号線L3aは、接地ラインL3の異常を監視し検出するための監視ラインであり、接地ラインL3の検出装置100側での電位V2’を処理装置200に供給する。
 検出装置100は、樹脂成形されたハウジング110と、ハウジング110内に設置されたセンサチップ111とを備えている。センサチップ111は、圧力検出部112を備え、圧力検出部112には、例えば、ダイヤフラムと抵抗ブリッジとからなる圧力センサ、増幅回路等が設けられている。センサチップ111と信号線L1~L3との間は、検出信号ライン101、電源ライン102、接地ライン103、監視ライン103aとしてのワイヤ101~103、103aによって接続されており、ワイヤ101~103、103aを介して圧力検出部112が信号線L1~L3と接続されている。圧力検出部112は、負圧ブースタ内の圧力を検出し、圧力検出信号を検出信号ライン101、検出信号電極P1、検出信号ラインL1を介して、処理装置200の検出信号端子T1に出力する。更に、圧力検出信号は、検出信号ライン201を介して、ADC210の検出信号端子211に入力される。また、圧力検出部112には、処理装置200の電源Vccから電源ライン202、電源端子T2、電源ラインL2、電源電極P2及び電源ライン102を介して電源電圧Vccが供給される。また、圧力検出部112には、処理装置200の接地ライン203から接地端子T3、接地ラインL3、接地電極P3及び接地ライン103を介して接地電位GNDが供給される。
 ハウジング110には、樹脂成形の際に、信号線L1~L3、L3aの一端に取り付けられたコネクタ(図示せず)を受け入れる凹部が形成されており、この凹部の底面をハウジングの内外に貫通して、信号線L1~L3、L3aの各々に対応する櫛歯状の電極P1~P3、P3aが設けられている。この凹部及び電極P1~P3、P3aが検出装置100側のコネクタを構成する。ハウジング110の凹部に、信号線L1~L3、L3a側のコネクタが嵌合されると、信号線L1~L3、L3aが各々電極P1~P3、L3aに電気的に接続される。電極P1~P3、P3aは、ハウジング110の内側でワイヤ101~103、103aの先端部を受け入れる形状に形成され、各電極P1~P3にワイヤ101~103、103aの先端が嵌合して接続される。これにより、電極P1~P3を介してワイヤ101~103、103aがそれぞれ信号線L1~L3、L3aに導通する。また、接地ラインL3,103と監視ラインL3a,103aとは、センサチップ111内で導通される。
 処理装置200内には、アナログ/デジタルコンバータ(ADC)210が設けられている。ADC210は、圧力検出信号が入力される検出信号端子211と、処理装置200内の電源ライン202を介して電源電圧Vccが供給されるリファレンス端子212と、接地ラインL3,103の処理装置200側の電位(処理装置200の接地電位V1=GND)が入力される信号端子213と、接地ラインL3,103の検出装置100側の電位V2’が、監視ライン103a,L3a,203aを介して入力される監視端子213aとを備えている。
 また、処理装置200の検出信号端子T1は、検出信号ライン201を介してADC210の検出信号端子211に接続されるとともに、プルアップ抵抗R2を介して電源VAに接続されている。例えば、R2=680kΩ、VA=5.5~16Vの定電圧とする。検出信号ラインL1の断線等によって検出信号端子T1がオープン状態になった場合には、電圧VAが抵抗R2、検出信号ライン201を介して、ADC210の検出信号端子211に入力される。例えば、信号線L1~L3が正常な場合には、ADC210に入力される圧力検出信号の電圧は0.25V~4.75Vの範囲で変化し、検出信号ラインL1が断線した場合(検出信号端子T1がオープン状態)に、電源VAから抵抗R2を介してADC210に入力される電圧は5V以上となる。ADC210への入力電圧の差に基づいて、検出信号ラインL1の断線を検出することができる。
 このような検出システム1では、処理装置200の電源Vccから電源ライン202、電源ラインL2,102を介して、センサチップ111内の圧力検出部112に電源電圧Vccが供給される。また、圧力検出部112からの圧力検出信号は、検出信号ライン101,L1,201介して、ADC210の検出信号端子211に供給される。また、処理装置200の接地電位が、接地ライン203から接地ラインL3,103を介して検出装置100の圧力検出部112に供給される。更に、処理装置200の接地電位は、接地ライン203からADC210の信号端子213に入力されると共に、接地ラインL3,103と監視ラインL3a,103aとの接続点の電位V2’が、監視ライン103a、監視電極P3a、監視ラインL3a,203aを経由して、ADC210の監視端子213aに入力される。
  [異状検出処理]
 以下、検出システム1における接地ラインの異常検出処理を説明する。この異常検出処理では、圧力検出部112側における接地ラインと監視ラインとの接続点の電位V2’に基づいて、接地ラインの抵抗状態を検出する。以下では、接地ライン203の電位(V1=GND)を基準値とし、V1=0とする。
 接地ラインL3,103が正常な場合には、検出装置100の接地ライン103は、接地ラインL3を介して処理装置200の接地ライン203(V1=0)に低抵抗状態で接続されており、接続点の電位V2’は、処理装置200の接地電位V1=0に一致する(V2’=0)。
 一方、図2に示すように、負圧ブースタの動作による振動により、検出装置100の接地電極P3と接地ラインL3との接続部又は接地電極P3と接地ライン103との接続部の接触が不良となり接触抵抗が増大して、接地ラインL3,103上に抵抗RXが発生すると、接続点の電位V2’は、抵抗RXを介して、処理装置200の接地ライン203(V1=0)に接続される。このとき、電源電圧Vccは、図7Aの等価回路に示すように、センサチップ111の抵抗値R0(センサチップ111の電源ライン101の入力部から接続点(V2’)までの間の抵抗値)と抵抗RXとによって分圧される。従って、抵抗RXは、接続点の電位V2’によって、以下の式(1)で算出することができる。
 RX=V2’/(Vcc-V2’)*R0・・・(1)
 抵抗値RXによって接地ラインL3の抵抗状態を評価することが可能である。また、接続点の電位V2’は、抵抗値RXに一対一に対応するため、接続点の電位V2’を用いて接地ラインの抵抗状態を評価することも可能である。
 Vcc=5V、R0=500Ωとして、抵抗RX=10Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続して、接続点の電位V2’=V2を測定した結果、V2’=V2=0.098Vとなった。これを式(1)に代入すると、RX=9.996Ωとなる。抵抗RX=300Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続した場合、接続点の電位V2’=V2=1.894Vとなった。これを式(1)に代入すると、RX=304.9Ωとなる。この結果、接続点の電位V2’を測定することにより、接地ラインの抵抗状態を精度良く評価できることが分かる。
 接触不良等に起因して抵抗値RXが増加すると接続点の電位V2’=V2も増加するため、接地ラインの抵抗状態の判断は、接続点の電位V2’又はADC210への入力V2を用いて以下のように行えば良い。V2’=V2=0の場合(ここでは、-10mV<V2’=V2<10mV)には「接地ラインが正常」と判断し、10mV≦V2’=V2の場合には「接地ラインが高抵抗状態」と判断することにより、接地ラインL3,103が高抵抗状態になる異状を検出できる。なお、ここでは、V2’=V2が-10mV<V2’=V2<10mVの範囲内である場合に、V2’=V2=0が所定値(0V)と一致すると判断しているが、この範囲はADC210の解像度に応じて適宜決定する。
 処理装置200における具体的な処理は以下の通りである。接地ラインL3の処理装置200側の電位V1=0(基準値)がADC210の信号端子213に入力されると共に、接続点の電位V2’(=V2)が監視ライン103a、監視電極3a、監視ラインL3a,203aを介してADC210の監視端子213aに入力される。ADC210は、接地ラインL3,103の処理装置200側の電位V1(基準値)及び接続点の電位V2を各々デジタル信号に変換して処理部220に出力する。処理部220は、電位差ΔV=V2-V1を算出し、ΔVが-10mV<ΔV<10mVであれば「接地ラインが正常」と判断し、一方、ΔVが10mV≦ΔVであれば「接地ラインが高抵抗状態」と判断し、「接地ラインが高抵抗状態」であることを示す警告表示を行う。
 なお、処理部220では、V2’の検出値及び式(1)を用いて、接地ラインの抵抗値RXを算出しても良い。この場合には、抵抗値RXを監視して接地ラインの抵抗値の変化及び高抵抗状態となる異常を検出することが可能である。
 上述した本発明の第1実施形態によれば、接地ラインL3,103と監視ラインL3a,103aの接続点の電位V2’を、監視ラインL3a,103aを介して監視することにより、接地ラインの抵抗状態を検出可能である。従って、接地ラインL3,103が高抵抗状態になる異常を確実に検出することができる。検出装置100が負圧ブースタ上に設置される場合、負圧ブースタの動作による振動が検出装置100に伝達され、接地ラインL3,103と電極P3との間の接触が悪くなることによって接触抵抗が増大した場合に、接地ラインL3,103が高抵抗状態になる異状を確実に検出することができる。また、上述した本発明の第1実施形態によれば、接地ラインの抵抗値RXを検出することが可能である。
 また、上記実施形態によれば、接地ラインL3,103と監視ラインL3a,103aの接続点の電位V2’を、監視ラインL3a,103aを介して監視することによって、接地ラインL3,103の抵抗状態を直接検出できるので、簡易な構成で確実な異常検出が可能である。
  [変形例]
 なお、上記では、接地ラインL3,103と監視ラインL3a,103aとをセンサチップ111内で導通させる場合を例に挙げて説明したが、図3に示すように、監視電極P3aと接地電極103とを導通させて監視ラインL3aと接地ラインL3とを導通させても良い。
 上記では、検出装置100側で接地ラインL3,103と導通する監視ラインL3a,103aを設け、接地ラインL3,103の抵抗状態を検出したが、本実施形態は、図8に示すように、電源ラインL2,102及び検出信号ラインL1,101についても適用可能である。電源ラインの場合は、ADC210の端子212に入力される電源電位Vccを基準値として用い、電源ラインL2,102と監視用ラインL2a,102aとの接続点の電位を監視することによって、電源ラインの抵抗状態を検出する。検出信号ラインの場合には、例えば、負圧ブースタ内の圧力を大気に開放するキャリブレーション時の検出信号電圧(ADC210の端子211に入力される電圧)を基準値として用い、検出信号ラインL1,101と監視用ラインL1a,101aとの接続点の電位を検出し、これと基準値とを比較することによって検出信号ラインの抵抗状態を検出する。
 なお、ここでは、ADC210及び処理部220が処理装置200内に設けられる場合を説明したが、処理部220が処理装置200の外部に設けられても良いし、ADC210及び処理部の両方が処理装置200の外部に設けられても良い。
 また、検出装置100において、センサチップ111の代りにプリント配線板上にセンサ検出部112を配置したものを用いても良い。
 (第2実施形態)
 図4は、本発明の第2実施形態に係る検出システムの回路図を示す。第1実施形態と同様の構成には同一の符号を付し、それらの説明を省略し、第1実施形態と異なる部分を以下に説明する。
 第1実施形態では、監視ラインL3a自体が断線した場合には、ADC210の監視端子213aがオープンとなるためV2が接地電位V1=となり、V2=ΔV=0となる。一方、上述したように、接地ラインが正常な場合にはV2=ΔV=0であるので、監視ラインL3a自体が断線する異常の場合(V2=ΔV=0)と区別できない。すなわち、監視ラインL3a自体が断線する異常を検出できない。そこで、第2実施形態では、監視ラインL3a自体が断線する異常の検出を可能とする検出システムを提供する。
 図4に示すように、第2実施形態では、検出装置100において接地ライン203上に電位補正用の抵抗R3(10Ω)を介装する。
 以下、第2実施形態に係る検出システム1における接地ラインの異常検出処理を説明する。接地ラインL3,103が正常な場合には、接地ラインL3,103と監視ラインL3a,103aとの接続点の電位V2’=V2は、抵抗R3を介して接地ライン203に接続されるので、V1=0よりも、抵抗R3による電圧降下分(R3=10Ωで99mV)だけ高くなる。よって、第2実施形態では、V2’=V2=99mV(ΔV=V2-V1=0.1V)が、「接地ラインが正常」と判断する基準となる。これは、第1実施形態における「接地ラインが正常」と判断する基準値V2’=V2=0(ΔV=0)を、抵抗R3によって+0.1Vだけ補正することに相当する。
 一方、図5に示すように、検出装置100の電極P3と接地ラインL3との接続部(又は電極P3と接地ライン103との接続部)において接触抵抗が増加し、接地ラインL3,103上に抵抗RXが発生すると、電源電圧Vccは、図7Bの等価回路に示すように、センサチップ111の抵抗値R0と、抵抗R3と、抵抗RXとによって分圧される。従って、抵抗RXは、接続点の電位V2’によって、以下の式(2)で算出することができる。
 RX=V2’/(Vcc-V2’)*R0-R3・・・(2)
 Vcc=5V、R0=500Ω、R3=10Ωとして、抵抗RXがない(RX=0)場合の接続点の電位V2’=V2を測定した結果、V2’=V2=99mVとなった。これを式(2)に代入すると、RX=0.100Ωとなり、0Ωにほぼ一致する。また、抵抗RX=300Ωを接地電極P3と接地ラインL3との間(又は接地電極P3と接地ライン103との間)に接続した場合には、接続点の電位の測定値は、V2’=V2=1.927Vとなり、RX=303.5Ωとなる。従って、接続点の電位V2’から抵抗RXの値を求めることができることが分かる。
 一方、監視ラインL3a,103aが断線した場合は、V2=0となり、常にV1=V2=0、つまりΔV=V2-V1=0となる。上述したように、本実施形態では、「接地ラインが正常」の場合にはV2=ΔV=99mVであるので、監視ラインが断線した場合(ΔV=0)と、「接地ラインが正常」の場合(ΔV=99mV)とを区別可能である。従って、ΔV=0の場合には「監視ラインが断線」と判断すれば良い。
 接地ラインの抵抗状態の判断は、接続点の電位V2’又はADC210の入力V2を用いて以下のように行う。99mV-10mV<V2(ΔV)<99mV+10mVの場合に「接地ラインが正常」と判断し、99mV+10mV≦V2(ΔV)の場合に「接地ラインが高抵抗状態」と判断し、-10mV<V2(ΔV)<10mVの場合に「監視ラインが断線」と判断すれば良い。なお、ここでは、V2(ΔV)が所定値(0V、99mV)±10mVの範囲内である場合に、V2(ΔV)が所定値(0V、99mV)と一致すると判断しているが、この範囲はADC210の解像度に応じて適宜決定する。
 処理装置200における具体的な処理は、以下のようになる。ADC210は、入力されるアナログ信号V1,V2に対応するデジタル信号を出力する。処理部220は、デジタル信号V1,V2からΔV=V2-V1を算出する。処理部220は、ΔVが99mV-10mV<ΔV<99mV+10mVの場合には「接地ラインが正常」と判断し、99mV+10mV≦ΔVの場合には「接地ラインが高抵抗状態」と判断し、-10mV<ΔV<10mVの場合には「監視ラインが断線」と判断する。
 なお、ここでは、処理装置200内で接地ライン203上に抵抗R3を介装したが、図6に示すように、センサチップ111内で接地ライン103側に抵抗R3を介装しても良い。また、電位補正用の抵抗R3は、接地ライン103,203に電気的に直列に接続される限り、接地ライン上の何れの箇所に設けても良い。
 上述した本発明の第2実施形態によれば、第1実施形態と同様の作用効果を奏する。更に、第2実施形態では、接地ライン203,L3,103の経路上に直列に電圧補正用の抵抗R3を介装したことにより、「接地ラインが正常」と判断するADC210の入力V2を抵抗R3による電圧降下分(99mV)だけ補正し、監視ラインL3a,103a自体が断線した場合のΔV=0と区別可能とした。これにより、「監視ラインが断線」する異常の検出が可能である。

Claims (8)

  1.  検出システムであって、
     特定の物理量を検出する検出部(112)と、
     前記検出部(112)からの出力を処理する処理装置(200)と、
     前記検出部と前記処理装置との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記検出部(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する、検出システム。
  2.  請求項1に記載の検出システムにおいて、前記接続点の電位によって、前記導電線が高抵抗状態となる異常を検出する、検出システム。
  3.  請求項1又は2に記載の検出システムにおいて、前記導電線を含む経路上の電位を基準値とし、前記接続点の電位を前記基準値と比較することによって、前記導電線の抵抗状態を検出する、検出システム。
  4.  請求項1乃至3の何れかに記載の検出システムにおいて、
     前記監視用導電線からの出力に基づいて、前記監視用導電線の断線を更に検出する、検出システム。
  5.  請求項4に記載の検出システムにおいて、
     前記導電線に直列に電圧補正用の抵抗(R3)が接続され、該抵抗(R3)によって、前記導電線が正常である場合の前記接続点の電位を調整する、検出システム。
  6.  請求項1乃至5の何れかに記載の検出システムにおいて、
     前記検出部(112)は、圧力センサであり、車両の負圧ブースタに取り付けられる、検出システム。
  7.  請求項6に記載の検出システムにおいて、
     前記検出部(112)は、ハウジング(110)内に収容され、該ハウジングに設けられた電極に前記導電線が接続される、検出システム。
  8.  電気システムであって、
     第1の電気回路(112)と、
     第2の電気回路(200)と、
     前記第1の電気回路(112)と前記第2の電気回路(200)との間を電気的に接続する導電線(L1,101;L2,102;L3,103)と、
     前記第1の電気回路(112)側で前記導電線に電気的に接続される監視用導電線(L1a,101a;L2a,102a;L3a,103a)とを備え、
     前記導電線と前記監視用導電線との接続点における電位を前記監視用導電線によって検出することによって、前記導電線の抵抗状態を検出する、電気システム。
PCT/JP2009/054299 2009-03-06 2009-03-06 検出システム及び電気システム WO2010100754A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/054299 WO2010100754A1 (ja) 2009-03-06 2009-03-06 検出システム及び電気システム
JP2011502554A JPWO2010100754A1 (ja) 2009-03-06 2009-03-06 検出システム及び電気システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054299 WO2010100754A1 (ja) 2009-03-06 2009-03-06 検出システム及び電気システム

Publications (1)

Publication Number Publication Date
WO2010100754A1 true WO2010100754A1 (ja) 2010-09-10

Family

ID=42709332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054299 WO2010100754A1 (ja) 2009-03-06 2009-03-06 検出システム及び電気システム

Country Status (2)

Country Link
JP (1) JPWO2010100754A1 (ja)
WO (1) WO2010100754A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153595A (ja) * 2012-01-25 2013-08-08 Panasonic Corp 車載用充電装置
JP2014202504A (ja) * 2013-04-01 2014-10-27 富士通コンポーネント株式会社 電流センサ
JP2017146280A (ja) * 2016-02-19 2017-08-24 株式会社デンソー 検査方法及び検査装置
US10994627B2 (en) 2018-06-01 2021-05-04 Toyota Jidosha Kabushiki Kaisha Charge management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312878A (ja) * 1992-05-13 1993-11-26 Hitachi Electron Service Co Ltd 接地極付電源コンセントの配線状態検査治具
JPH07251736A (ja) * 1994-03-16 1995-10-03 Honda Motor Co Ltd 電動ポンプの制御装置
JPH11225429A (ja) * 1998-02-06 1999-08-17 Fujitsu Denso Ltd リモートセンス式電源供給装置
JP2001183253A (ja) * 1999-12-24 2001-07-06 Denso Corp 力学量センサ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312878A (ja) * 1992-05-13 1993-11-26 Hitachi Electron Service Co Ltd 接地極付電源コンセントの配線状態検査治具
JPH07251736A (ja) * 1994-03-16 1995-10-03 Honda Motor Co Ltd 電動ポンプの制御装置
JPH11225429A (ja) * 1998-02-06 1999-08-17 Fujitsu Denso Ltd リモートセンス式電源供給装置
JP2001183253A (ja) * 1999-12-24 2001-07-06 Denso Corp 力学量センサ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153595A (ja) * 2012-01-25 2013-08-08 Panasonic Corp 車載用充電装置
JP2014202504A (ja) * 2013-04-01 2014-10-27 富士通コンポーネント株式会社 電流センサ
JP2017146280A (ja) * 2016-02-19 2017-08-24 株式会社デンソー 検査方法及び検査装置
US10994627B2 (en) 2018-06-01 2021-05-04 Toyota Jidosha Kabushiki Kaisha Charge management system

Also Published As

Publication number Publication date
JPWO2010100754A1 (ja) 2012-09-06

Similar Documents

Publication Publication Date Title
WO2010119901A1 (ja) 検出回路及び電気回路の異常検出装置、並びに、その異常検出装置を用いる検出システム及び電子システム
US7615986B2 (en) Temperature detection function-incorporating current sensor
CN109416382B (zh) 接地损耗检测电路
CN103026195B (zh) 压敏换能器组件和用于包括这种组件的系统的控制方法
US10054648B2 (en) Power source voltage detection apparatus
US6343498B1 (en) Physical quantity sensor having fault detection function
WO2012164915A2 (en) Detecting device and current sensor
JP4316598B2 (ja) 乗員検出装置
JP4103280B2 (ja) 力学量センサ装置
JP2004294069A (ja) 物理量センサ装置
US11131720B2 (en) Electronic control device
WO2010100754A1 (ja) 検出システム及び電気システム
JP2010210238A (ja) プローブカード、それを備えた半導体検査装置及びプローブカードのヒューズチェック方法
CN105445525A (zh) 在具有霍尔传感器的电流传感器中的过电流识别
US7443075B2 (en) Entrapment detecting system
US10514307B2 (en) Fault detection apparatus
JP4517490B2 (ja) センサ装置
CN110832292B (zh) 电容传感器布置结构
WO2009081522A1 (ja) 試験装置および測定装置
KR101766981B1 (ko) 회전체 감지를 위한 통합 센서
US20220113341A1 (en) Circuit device for a vehicle, and method for operating a circuit device
JP2001183253A (ja) 力学量センサ装置
US11041931B2 (en) Voltage measurement device with self-diagnosis function, and self-diagnosis method of voltage measurement device
JP2008298468A (ja) 基板検査装置
JP2018141662A (ja) 検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841116

Country of ref document: EP

Kind code of ref document: A1