WO2010119662A1 - 同期電動機駆動システム - Google Patents
同期電動機駆動システム Download PDFInfo
- Publication number
- WO2010119662A1 WO2010119662A1 PCT/JP2010/002649 JP2010002649W WO2010119662A1 WO 2010119662 A1 WO2010119662 A1 WO 2010119662A1 JP 2010002649 W JP2010002649 W JP 2010002649W WO 2010119662 A1 WO2010119662 A1 WO 2010119662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- power
- stator
- synchronous motor
- inverters
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/22—Multiple windings; Windings for more than three phases
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/22—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/06—Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
Definitions
- the present invention relates to a synchronous motor drive system, and more particularly to an inverter control technology for supplying drive power to a synchronous motor.
- PWM control voltage-type pulse width modulation control
- Patent Document 1 and Patent Document 2 when the rotational speed is low, a three-phase inverter is operated at a low carrier frequency, and when the rotational speed is high, a high carrier is used.
- a technique for operating a three-phase inverter according to a frequency is disclosed. With such a technique, it is possible to suppress the switching loss that becomes a problem in the case of high frequency inverters according to the motor driving state.
- Patent Documents 1 and 2 can reduce the switching loss when the rotational speed is low, but cannot reduce the switching loss when the rotational speed is high.
- a three-phase inverter is operated with a low carrier frequency, there is a problem that current ripple increases and, accordingly, vibration / noise of the motor is caused.
- the present invention has been made in view of such a problem, and an object of the present invention is to provide a synchronous motor drive system capable of suppressing current ripple that causes vibration / noise of the motor while reducing switching loss.
- a synchronous motor drive system includes a plurality of three-phase inverters that convert DC power into three-phase AC power, a control circuit that controls operations of the plurality of three-phase inverters, A synchronous motor having a plurality of three-phase windings that receive the supply of three-phase AC power, and the control circuit controls the operation of the three-phase inverter, the first and second of the plurality of three-phase inverters A three-phase inverter generates three-phase AC power using different carrier frequencies, and the first and second three-phase inverters supply three-phase AC power to different three-phase windings, respectively. To do.
- a single motor is PWM-controlled by a plurality of three-phase inverters with the configuration described in the means for solving the problems.
- Frequency can be set individually.
- at least one of the plurality of three-phase inverters is set low so that the ripples of the motor current output by the respective three-phase inverters interfere with each other. It becomes possible to suppress the ripple of the motor current output from the phase inverter.
- a three-phase inverter that operates at a low carrier frequency also contributes to a reduction in switching loss.
- the present invention it is possible to suppress the motor current ripple that causes the vibration / noise of the motor while reducing the switching loss which is a problem due to the high frequency of the inverter, and the high efficiency, low noise, low EMC can provide a high-reliability synchronous motor drive system.
- FIG. 3 The figure which shows the whole structure of the synchronous motor drive system which concerns on 1st Embodiment.
- Top view of synchronous motor 300 Detailed view of the synchronous motor of FIG.
- Example of generation pattern of gate control signal in PWM signal generation circuit 414 (A) is a waveform diagram of the motor current command Ir_u1 and the carrier signal fc_1 in the PWM signal generation circuit 414, (b) is a waveform diagram of the motor current command Ir_u2 and the carrier signal fc_2 in the PWM signal generation circuit 415, and (c) is a waveform diagram.
- Waveform diagram of motor current command Ir_u3 and carrier signal fc_3 in PWM signal generation circuit 416 (A) is a top view of the inverter group 200, and (b) is a cross-sectional view at a-a '.
- the figure which shows the motor actual current waveform (only U phase) when the operating frequency of the 3-phase PWM voltage which 3-phase inverter 201,202,203 outputs is 20 kHz, 20 kHz, and 20 kHz, respectively.
- the figure which shows the motor actual current waveform (only U phase) when the operating frequency of the three-phase PWM voltage which the three-phase inverters 201, 202 and 203 output is 10 kHz, 10 kHz and 10 kHz, respectively.
- a close-up comparison of the waveforms shown in FIG. 9, FIG. 10, and FIG. The figure which shows the vibration level which occurs by the rotation of the synchronous motor for every frequency component of vibration.
- the figure which shows the positional relationship of the stator and rotor of the 1st Embodiment of this invention The figure which shows the time change of the electric current which a 3-phase inverter flows through each stator winding
- Detailed view of synchronous motor 304 The figure which shows the connection of the stator winding
- the figure which shows the motor actual current waveform (only U phase) when the operating frequency of the three-phase PWM voltage which the three-phase inverters 201, 202 and 203 output is 10 kHz, 20 kHz and 20 kHz, respectively.
- Waveform diagram of motor current command and carrier signal in PWM signal generation circuits 414, 415, and 416 when there is a difference in phase between carrier signals fc_1 and fc_3 The figure which shows the whole structure of the synchronous motor drive system which concerns on the modification of this invention.
- FIG. 1 is a diagram showing an overall configuration of a synchronous motor drive system according to a first embodiment of the present invention.
- the synchronous motor drive system includes a DC power supply 100, an inverter group 200, a synchronous motor 300, a control circuit 400, and a current detection module 500.
- the DC power supply 100 is a DC power supply and supplies DC power to the inverter group 200.
- Inverter group 200 includes three-phase inverters 201, 202, and 203, and three-phase inverters 201, 202, and 203 perform orthogonal transform operations in accordance with gate control signals from control circuit 400, respectively, and three-phase AC power is synchronous motor. 300.
- the three-phase inverters 201, 202, 203 are composed of power circuits 207, 208, 209 and gate drive circuits 204, 205, 206 corresponding to the respective power circuits. All the switching elements constituting the are encapsulated in a single module.
- the synchronous motor 300 includes three-phase windings 301, 302, and 303 connected to the three-phase inverters 201, 202, and 203, and is rotationally driven by AC power supplied from the inverter group 200.
- the motor current output from the three-phase inverters 201, 202, 203 to the three-phase windings 301, 302, 303 is the current detectors 51, 52, 53, 54, 55, constituting the current detection module 500. 56, 57, 58, and 59, and the detected current value is input to the control circuit 400 and used for feedback control so that a desired alternating current is obtained.
- FIG. 2 is a plan view of the synchronous motor 300
- FIG. 3 is a detailed view of the synchronous motor of FIG.
- the synchronous motor 300 includes a rotor 2 and a stator 3.
- the rotor 2 includes a rotor core 4 and a plurality of permanent magnets 5.
- the permanent magnets 5 are arranged on the rotor core 4 at equal intervals in the circumferential direction of the rotor.
- the synchronous motor 300 is a so-called magnet-embedded synchronous motor (IPM motor), and the permanent magnet 5 is disposed inside the rotor core.
- the magnetic pole 6 constituted by the permanent magnet 5 constitutes a magnetic pole pair in which N poles and S poles are alternately arranged with respect to the stator 3.
- the magnetic pole pair N pole and S pole have an electrical angle of 2 ⁇ radians, and the arrangement interval of adjacent magnetic poles has an electrical angle of ⁇ radians.
- the rotor has 20 magnetic poles, and the electrical angle is 10 times the mechanical angle.
- the number of magnetic poles arranged in the circumferential direction of the rotor 2 is 20 in total, and the number of stator teeth is 18 in total, which are shifted by 10/9 per half circumference.
- stator teeth set 8b when the counterclockwise rotation direction is the + direction, the stator teeth set 8b is arranged with a mechanical angle of ⁇ 60 ° and an electrical angle of + 2 ⁇ / 3 radians with respect to the stator teeth set 8a.
- the stator teeth group 8c is arranged with a mechanical angle of + 60 ° and an electrical angle of + 4 ⁇ / 3 radians ( ⁇ 2 ⁇ / 3 radians) with respect to the stator teeth group 8a. Therefore, the stator teeth group 8a, the stator teeth group 8b, and the stator teeth group 8c are arranged with an electrical angle of 2 ⁇ / 3 radians.
- stator teeth group 8a the stator teeth group 8b, and the stator teeth group 8c is two sets in the circumferential direction (stator teeth group 8a ′, stator teeth group 8b ′). , Stator Teeth Set 8c ′) The arrangement is repeated.
- the configuration of the stator tooth group 8a will be described in detail with reference to FIG. Hereinafter, the mechanical angle between the stator windings will be discussed, and the angle between the centers (one-dot chain lines) of the stator teeth around which the respective stator windings are wound is expressed.
- the stator teeth group 8a is composed of three adjacent stator teeth 61a, 62a, 63a.
- the stator teeth 61a, 62a, 63a are arranged with stator windings 81a, 82a, 83a wound in concentrated winding so that the winding directions are opposite to each other.
- stator teeth 61a around which the stator winding 81a is wound are arranged at a mechanical angle of + 20 ° with respect to the stator teeth 62a around which the stator winding 82a is wound. That is, they are arranged with a deviation of + ⁇ / 9 radians from the electrical angle ⁇ radians (mechanical angle 18 °), which is the magnetic pole spacing.
- stator winding 83a is disposed at a mechanical angle of ⁇ 20 ° with respect to the stator winding 82a. That is, they are arranged with a deviation of ⁇ / 9 radians from the electrical angle ⁇ radians, which is the magnetic pole interval.
- stator teeth set 8a the other two sets of stator teeth sets 8b and 8c shown in FIG. 2 are electrically connected from the electrical angle ⁇ radians in which the three windings are magnetic pole intervals. The corners are offset by + ⁇ / 9 radians and ⁇ / 9 radians.
- FIG. 4 is a diagram for explaining the connection of the stator windings of the synchronous motor shown in FIG.
- the a, b, and c at the end of the illustrated winding terminal numbers correspond to the windings constituting the stator tooth groups 8a, 8b, and 8c, respectively.
- the respective winding terminals 31a, 32a, 33a of the three stator windings 81a, 82a, 83a in the stator tooth set 8a are individually connected to the outside, and the winding terminal 31a is connected to the three-phase inverter 201.
- the winding terminal 32 a is individually connected to the U-phase connection terminal of the three-phase inverter 202, and the winding terminal 33 a is individually connected to the U-phase connection terminal of the three-phase inverter 203.
- the three winding terminals 31b, 32b, and 33b in the stator teeth set 8b and the three winding terminals 31c, 32c, and 33c in the stator teeth set 8c are individually brought out to the outside.
- the terminals of the stator windings having a phase difference of 2 ⁇ / 3 radians in different stator teeth groups 8a, 8b, 8c are commonly connected to the neutral point. That is, the winding terminal 34a, the winding terminal 34b, and the winding terminal 34c are connected to the first neutral point, and the winding terminal 35a, the winding terminal 35b, and the winding terminal 35c are connected to the second neutral point.
- the winding terminal 36a, the winding terminal 36b, and the winding terminal 36c are connected to the third neutral point.
- the first, second and third neutral points are electrically separated, but any two of these neutral points or all neutral points may be electrically connected. Good.
- stator teeth 8a there are two sets of stator teeth 8a, stator teeth 8b, and stator teeth 8c, and stator teeth sets having the same a, b, and c at the end of the stator teeth Are in the same positional relationship in terms of electrical angle.
- a neutral point connection may be configured between three adjacent stator teeth groups among the six stator teeth groups, or a neutral point connection between every other three stator teeth groups. Further, the neutral point connection may be constituted by all six sets of stator teeth.
- stator windings 81a, 81b, 81c, 81a ', 81b', 81c 'whose winding terminals are connected to the same three-phase inverter 201 constitute the three-phase winding 301 of FIG.
- stator windings 82a, 82b, 82c, 82a ′, 82b ′, and 82c ′ whose winding terminals are connected to the three-phase inverter 202 constitute the three-phase winding 302 of FIG.
- Stator windings 83a, 83b, 83c, 83a ′, 83b ′, 83c ′ connected to the phase inverter 203 constitute the three-phase winding 301 of FIG.
- the 18 stator teeth are arranged at intervals different from the rotor magnetic pole interval, and constitute a stator teeth group in units of 3 arranged in the circumferential direction. Further, the three stator windings in each stator tooth group are individually connected to independent external terminals.
- stator windings included in different stator teeth groups may be connected in common if the conditions permit. For example, a current of the same phase is supplied to the stator winding 81a included in the stator teeth set 8a and the stator winding 81a ′ included in the stator teeth set 8a ′. It is good also as connecting to the external terminal. Of course, there is no problem even if it is individually connected to the external terminal. ⁇ Control circuit 400> Next, details of the control circuit 400 will be described.
- the control circuit 400 includes a PWM control unit 401, a current detection unit 402, and a position estimation unit 403.
- the control circuit 400 outputs the gate control signals GU_u and GU_d to control the operations of the three-phase inverters 201, 202, and 203. Control.
- a torque command signal Is and a rotation speed command signal ⁇ r for instructing the synchronous motor 300 to be driven with a desired torque and rotation speed are input to the current detection unit 402 from the outside, and the input torque command signal Is and the rotation speed are input.
- the current phase angle ⁇ and the current amount Ia corresponding to the command signal ⁇ r are determined for each of the inverters 201, 202, and 203, and the motor current is monitored while monitoring the magnetic pole position of the rotor of the synchronous motor and the current value of each power wiring.
- Command signals Ir_u, Ir_v, Ir_w are output to the PWM control unit 401.
- the position estimation unit 403 receives at least one three-phase alternating current detection signal detected by the current detection module 500, calculates the inductance value of the winding from the current change rate for each switching operation of the power circuit, and calculates the inductance value. From the above, the rotor magnetic pole position ⁇ of the synchronous motor 300 is estimated and output to the current detector 402.
- the PWM control unit 401 includes carrier signal generation circuits 411, 412, and 413 and PWM signal generation circuits 414, 415, and 416.
- the carrier signal generation circuit 411 outputs a carrier signal fc_1 which is a 10 kHz triangular wave to the PWM signal generation circuit 414
- the carrier signal generation circuit 412 outputs a carrier signal fc_2 which is a 20 kHz triangular wave to the PWM signal generation circuit 415.
- the carrier signal generation circuit 413 outputs a carrier signal fc_3, which is a 10 kHz triangular wave, to the PWM signal generation circuit 416.
- Each of the PWM signal generation circuits 414, 415, and 416 receives a carrier signal and motor current command signals Ir_u, Ir_v, and Ir_w, and outputs a gate control signal based on the input signal.
- the PWM signal generation circuit 414 receives the carrier signal fc_1 and the motor current command signal Ir_u1 output from the current detection unit 402, compares the two signals, and the motor current command signal Ir_u1 is larger than the carrier signal fc_1.
- a gate control signal GU_u1 that turns on the upper arm corresponding to the motor current command signal Ir_u1 to be compared is output (High level in the drawing), and when the motor current command signal Ir_u1 is smaller than the carrier signal fc_1, A gate control signal GU_u1 for turning off the upper arm corresponding to the motor current command signal Ir_u1 to be compared is output (Low level in the figure).
- the lower arm gate control signal GU_d1 is inverted in logic level from the upper arm gate control signal GU_u1.
- the gate control signals GU_u and GU_d are provided with a very short pause period (not shown) in which both the upper and lower arms are shorted to prevent a short circuit.
- the generation of the gate control signal has been described using the motor current command Ir_u1 for one phase of the three-phase alternating current.
- the PWM signal generation circuit 414 also uses the motor current for the V and W phases of the other phases.
- Gate control signals based on motor current commands Ir_v1 and Ir_w1 that are 120 degrees and 240 degrees out of phase with respect to the command Ir_u1 are generated.
- the motor current command and the carrier signal are input similarly to the PWM signal generation circuit 414, and the gate control signal is generated based on these input signals. Is done.
- FIG. 7A shows a waveform diagram of the motor current command Ir_u1 and the carrier signal fc_1 in the PWM signal generation circuit 414
- FIG. 7B shows a waveform of the motor current command Ir_u2 and the carrier signal fc_2 in the PWM signal generation circuit 415
- FIG. 7C is a waveform diagram of the motor current command Ir_u3 and the carrier signal fc_3 in the PWM signal generation circuit 416.
- the gate control signal generated by the PWM signal generation circuit 414 using the carrier signal fc_1 having a triangular wave of 10 kHz is the gate drive of the three-phase inverter 201. Input to the circuit 204.
- the gate control signal generated by the PWM signal generation circuit 415 using the carrier signal fc_2 that is a triangular wave of 20 kHz is input to the gate drive circuit 205 of the three-phase inverter 202, and the carrier signal fc_3 that is a triangular wave of 10 kHz is used.
- the gate control signal generated by the PWM signal generation circuit 416 is input to the gate drive circuit 206 of the three-phase inverter 203.
- the operating frequencies of the three-phase PWM voltages output by the three-phase inverters 201, 202, and 203 in the present embodiment are 10 kHz, 20 kHz, and 10 kHz, respectively, and the three-phase windings 301, 302, and 303 are respectively
- the three-phase PWM voltage output from the three-phase inverters 201, 202, 203 is input.
- the stator winding shown in FIG. 3 will be described.
- the three-phase PWM voltage input to the stator windings 81a and 83a is 10 kHz, and the stator winding 82a sandwiched between the stator windings 81a and 83a.
- the three-phase PWM voltage input to is 20 kHz.
- FIG. 8A is a top view of the inverter group 200
- FIG. 8B is a cross-sectional view taken along aa ′.
- the inverter group 200 includes a three-phase inverter 201, 202, 203 arranged in parallel on an insulating substrate 240 and sealed with a mold resin 250 such as an epoxy resin to form a single module. is doing.
- the three-phase inverter 201 and the three-phase inverter 203 are configured by switching elements using inexpensive Si semiconductors, but the three-phase inverter 202 has a wider band than Si semiconductors, such as silicon carbide and gallium nitride, which have excellent heat resistance.
- the switching element uses a wide band gap semiconductor having a gap.
- the modules of the inverter group 200 have a thermal gradient substantially symmetric about the arrangement axis of the three-phase inverters 201, 202, and 203 around the three-phase inverter 202, and high reliability is obtained. Further, it is possible to provide a relatively inexpensive module as compared with the case where all the semiconductors in the module are formed of wide band gap semiconductors.
- the drive circuit that controls the three-phase inverter is arranged only above the three-phase inverter having a lower operating frequency, thereby suppressing the ambient temperature around the drive circuit. Therefore, a highly reliable module can be provided.
- FIG. 9 is a diagram showing a motor actual current waveform (U phase only) in the present embodiment in which the operating frequencies of the three-phase PWM voltages output from the three-phase inverters 201, 202, and 203 are 10 kHz, 20 kHz, and 10 kHz, respectively. It is.
- FIG. 10 shows a configuration similar to that of the present embodiment, but the actual motors when the operating frequencies of the three-phase PWM voltages output from the three-phase inverters 201, 202, and 203 are 20 kHz, 20 kHz, and 20 kHz, respectively.
- 11 shows current waveforms (U phase only)
- FIG. 11 shows the actual motor current when the operating frequencies of the three-phase PWM voltages output from the three-phase inverters 201, 202, and 203 are 10 kHz, 10 kHz, and 10 kHz, respectively. It is a figure which shows a waveform.
- FIG. 12 is a close-up comparison of the waveforms shown in FIG. 9, FIG. 10, and FIG.
- the second stage waveform in which all operating frequencies are set to 20 kHz has a waveform distortion 1 ⁇ 2 that of the third stage waveform in which all operating frequencies are set to 10 kHz. It is about.
- the waveform distortion in the actual motor current causes a serious problem of noise / vibration of the motor in driving the motor.
- Such an effect is obtained by implementing the present invention by setting the operating frequency of the three-phase PWM voltage to be input to the three-phase windings 301, 302, and 303 to 10 kHz, 20 kHz, and 10 kHz, respectively.
- the magnetic flux change generated by energizing the three-phase winding 302 having a frequency of 20 kHz suppresses the magnetic flux change generated by energizing the three-phase windings 301 and 303 having the operating frequency of 10 kHz, and the motor actual This is considered to be obtained by greatly reducing the waveform distortion of the current.
- the present embodiment by operating some of the three-phase inverters based on the gate control signal generated using the 10 kHz carrier signal, all the three-phase inverters use the 20 kHz carrier signal.
- the switching loss can be reduced as compared with the case of operating based on the gate control signal generated in this manner.
- the waveform distortion of the motor current due to ripple can be reduced.
- a motor drive system that solves important problems such as switching loss and EMC of a three-phase inverter accompanying the increase in operating frequency, and realizes low noise / low vibration in motor drive.
- ⁇ Variation 1 of the first embodiment> In the synchronous motor drive system according to the first embodiment of the present invention, it is preferable to supply currents having different phases to the plurality of winding terminals of the synchronous motor.
- an example of an energization method for rotationally driving the synchronous motor 300 whose structure is shown in FIGS. 2 and 3 will be described.
- FIG. 14 shows the positional relationship between the stator and the rotor according to the first embodiment of the present invention.
- FIGS. 14 (a), 14 (b), and 14 (c) show that the rotor 2 is counterclockwise.
- the positional relationship between the stator and the rotor when rotated by 2 ° in mechanical angle ( ⁇ / 9 radians in electrical angle) is shown.
- FIG. 15 is a diagram showing a change over time of the current flowing through each stator winding by the three-phase inverter. The times indicated by (a), (b), and (c) in FIG. 15 correspond to the positional relationships shown in FIGS. 14 (a), 14 (b), and 14 (c), respectively.
- the distance between the magnetic poles of the rotor is indicated by 10 and 11.
- the distance between the magnetic poles 10 and 11 of the rotor means the position of the magnetic neutral point between the magnetic pole N and the magnetic pole S which are composed of permanent magnets arranged on the rotor. Here, it is mechanically located between the magnets.
- the distance between the magnetic poles changing from the N pole to the S pole as viewed in the counterclockwise direction is indicated by 10, and the distance between the magnetic poles changing from the S pole to the N pole as viewed in the counterclockwise direction is indicated as 11.
- the inter-magnetic pole 11 ′ is at the same electrical angle as the inter-magnetic pole 11 but at a different mechanical angle.
- FIG. 14 (a) as indicated by the alternate long and short dash line, the center of the stator teeth 63a and the rotor magnetic poles 11 face each other in a positional relationship.
- the magnet torque which is the torque generated by the permanent magnet, is maximized.
- the angle between adjacent magnetic poles (18 °) and the angle between adjacent stator teeth (20 °) are different.
- FIG. 14B the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle of ⁇ / 9 radians) from FIG. 14A, and the stator teeth are shown as indicated by a one-dot chain line.
- the center of 62a and the rotor magnetic pole 10 face each other in a positional relationship that coincides.
- the interval between the rotor magnetic poles is a mechanical angle of 18 ° (electrical angle ⁇ radians), whereas the interval between the three stator teeth in the stator teeth group is a mechanical angle of 18 °.
- the mechanical angle is 20 ° which is deviated from °°.
- the stator teeth in the stator teeth group are arranged to have a phase difference of ⁇ / 9 radians with respect to the electrical angle ⁇ radians, and the stator wound around each stator tooth.
- the torque generated by each stator tooth can be made the same, so torque pulsation with ⁇ / 3 radians as the fundamental period can be generated. Since the torque generated by each stator tooth can be maximized, the overall torque can be increased.
- the synchronous motor of the first embodiment is a so-called magnet-embedded synchronous motor in which permanent magnets are arranged inside the rotor core, and uses reluctance torque due to a difference in magnetic resistance in addition to magnet torque due to the magnet.
- the synchronous motor drive system includes an inverter group 200, a synchronous motor 300, a control circuit 400, and a current detection module 500, an inverter group 210, a synchronous motor 304, and a control circuit, as compared with the configuration shown in FIG. 404 and the current detection module 501.
- an inverter group 200 a synchronous motor 300, a control circuit 400, and a current detection module 500, an inverter group 210, a synchronous motor 304, and a control circuit, as compared with the configuration shown in FIG. 404 and the current detection module 501.
- the inverter group 210 has a configuration in which the three-phase inverter 203 is removed from the inverter group 200.
- the control circuit 404 has a configuration in which the PWM control unit 401 of the control circuit 400 shown in FIG.
- FIG. 17 is a diagram illustrating a detailed configuration of the PWM control unit 405.
- the PWM control unit 405 has a configuration in which the carrier signal generation circuit 413 and the PWM signal generation circuit 416 are removed from the PWM control unit 401 shown in FIG. Thereby, the PWM control unit 405 outputs a gate control signal using a carrier signal of 10 kHz to the gate drive circuit 204 of the three-phase inverter 201, and to the gate drive circuit 205 of the three-phase inverter 202, A gate control signal using a 20 kHz carrier signal is output.
- the synchronous motor 304 has the configuration shown in FIG. 2 like the synchronous motor 300, the method of winding the stator winding around the stator teeth is different from that of the synchronous motor 300.
- FIG. 18 is a detailed view of the synchronous motor 304.
- the configuration of the stator tooth group 8a will be described in detail with reference to FIG. Hereinafter, the mechanical angle between the stator teeth will be discussed, and the angle between the centers (one-dot chain lines) of the stator teeth around which the respective stator windings are wound is expressed.
- the stator teeth group 8a is composed of three adjacent stator teeth 71a, 72a, 73a.
- the stator teeth 71a are arranged at a mechanical angle of + 20 ° with respect to the stator teeth 72a. That is, they are arranged with a deviation of + ⁇ / 9 radians from the electrical angle ⁇ radians (mechanical angle 18 °), which is the magnetic pole spacing.
- the stator teeth 73a are disposed at a mechanical angle of ⁇ 20 ° with respect to the stator teeth 72a. That is, they are arranged with a deviation of ⁇ / 9 radians from the electrical angle ⁇ radians, which is the magnetic pole interval.
- a portion (number of turns N1) of the stator winding 91a is wound around the stator teeth 71a, and a portion (number of turns N2) of the stator winding 92a is wound around the stator teeth 73a.
- the remaining portion of the stator winding 91a (the number of turns N21) and the remaining portion of the stator winding 92a (the number of turns N22) are wound around the teeth 72a.
- the stator winding 91a generates magnetic fields having opposite polarities between the portions wound around the stator teeth 71a and 72a.
- the portions wound around the stator teeth 72a and 73a generate magnetic fields having opposite polarities.
- the portions wound around the stator teeth 72a generate magnetic fields having the same polarity.
- N1 N2
- the maximum value of the magnetic flux generated in the stator teeth 71a, 72a, 73a can be made equal.
- the equal symbol includes a match that uses an integer close to the decimal, and further includes a match that can be ignored as a design error.
- stator teeth 8b and 8c adjacent to both sides of the stator teeth set 8a shown in FIG. 18 have the same configuration as the stator teeth set 8a shown in FIG.
- FIG. 19 is a diagram for explaining the connection of the stator windings of the synchronous motor shown in FIG.
- the a, b, and c at the end of the illustrated winding terminal numbers correspond to the windings constituting the stator tooth groups 8a, 8b, and 8c, respectively.
- the winding terminals 21a and 23a of the two stator windings 91a and 92a in the stator tooth set 8a are individually connected to the outside, and the winding terminal 21a is the U-phase of the three-phase inverter 201.
- the winding terminal 23 a is individually connected to the U-phase connection terminal of the three-phase inverter 202.
- the two winding terminals 21b and 23b in the stator teeth set 8b and the two winding terminals 21c and 23c in the stator teeth set 8c are individually brought out to the outside, and each has three phases.
- the inverters 201 and 202 are individually connected to the V-phase and W-phase connection terminals.
- the terminals of the stator windings having a phase difference of 2 ⁇ / 3 radians in different stator teeth groups 8a, 8b, 8c are commonly connected to the neutral point. That is, the winding terminal 22a, the winding terminal 22b, and the winding terminal 22c are connected to the first neutral point, and the winding terminal 24a, the winding terminal 24b, and the winding terminal 24c are connected to the second neutral point. ing. In this example, the first and second neutral points are electrically separated, but they may be electrically connected.
- stator teeth 8a there are two sets of stator teeth 8a, stator teeth 8b, and stator teeth 8c, and stator teeth sets having the same a, b, and c at the end of the stator teeth
- the electrical angle is the same.
- a neutral point connection may be configured between three adjacent stator teeth groups among the six stator teeth groups, or a neutral point connection between every other three stator teeth groups. Further, the neutral point connection may be constituted by all six sets of stator teeth.
- stator windings 91a, 91b, 91c, 91a ', 91b', 91c 'whose winding terminals are connected to the same three-phase inverter 201 constitute the three-phase winding 305 of FIG.
- stator windings 92a, 92b, 92c, 92a ', 92b', and 92c 'whose winding terminals are connected to the three-phase inverter 202 constitute the three-phase winding 306 of FIG.
- the configuration of the synchronous motor 304 has been described above.
- the 18 stator teeth are arranged at a different arrangement interval from the magnetic pole interval of the rotor, and constitute a stator teeth group in units of 3 arranged in the circumferential direction. Further, the two stator windings in each stator tooth group are individually connected to independent external terminals.
- stator windings included in different stator teeth groups may be connected in common if the conditions permit. For example, a current of the same phase is supplied to the stator winding 91a included in the stator teeth set 8a and the stator winding 91a ′ included in the stator teeth set 8a ′, and thus these are shared. It is good also as connecting to the external terminal. Of course, there is no problem even if it is individually connected to the external terminal.
- the synchronous motor drive system includes a drive device that supplies currents having different phases to the plurality of winding terminals of the synchronous motor. Next, the drive device and the energization method will be described.
- FIG. 20 shows the positional relationship between the stator and the rotor of this modification.
- FIGS. 20 (a), 20 (b), and 20 (c) show that the rotor 2 has a mechanical angle of 2 in the counterclockwise direction. The positional relationship between the stator and the rotor when rotated by ⁇ (9 / radian in electrical angle) is shown.
- FIG. 21 is a diagram showing a time change of the current flowing through each stator winding in the present modification. The times indicated by (a), (b), and (c) in FIG. 21 correspond to the positional relationships shown in FIGS. 20 (a), 20 (b), and 20 (c), respectively.
- the inter-magnetic pole 11 ′ is at the same electrical angle as the inter-magnetic pole 11 but at a different mechanical angle.
- FIG. 20 (a) as indicated by the alternate long and short dash line, the center of the stator teeth 73a and the rotor magnetic poles 11 face each other in a positional relationship.
- the magnet torque which is the torque generated by the permanent magnet, is maximized.
- the angle between adjacent magnetic poles (18 °) and the angle between adjacent stator teeth (20 °) are different.
- the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle ⁇ / 9 radians) from FIG. 20 (a).
- the center of 72a and the rotor magnetic pole 10 are opposed to each other in a matching positional relationship.
- the center of the stator teeth 73a and 11 between the rotor magnetic poles, and the center of the stator teeth 71a and 11 'between the rotor magnetic poles are opposed to each other in a shifted positional relationship.
- the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle ⁇ / 9 radians) from FIG. 20 (b).
- the center of 71a and the rotor magnetic pole 11 ' are opposed to each other in a matching positional relationship.
- the current is supplied by adjusting the phase so that the current flowing through the stator winding 91a is maximized in this positional relationship, the magnet torque that is the torque generated by the permanent magnet is maximized.
- the center of the stator teeth 73a and 11 between the rotor magnetic poles, and the center of the stator teeth 72a and 10 between the rotor magnetic poles face each other in a shifted positional relationship.
- the currents (currents flowing through the stator windings 91a and 92a) that the three-phase inverters 201 and 202 flow through the winding terminals 21a and 23a are shown on the vertical axis, and the time is shown on the horizontal axis.
- the current flowing through the winding terminal 23a is advanced by 2 ⁇ / 9 radians relative to the current flowing through the winding terminal 21a.
- FIG. 22 is a diagram showing an overall configuration of a synchronous motor drive system according to the second embodiment of the present invention.
- the synchronous motor drive system shown in FIG. 22 has a configuration in which the inverter group 200 and the control circuit 400 of the synchronous motor drive system shown in FIG. 1 are replaced with an inverter group 220 and a control circuit 406, respectively.
- a configuration different from the synchronous motor drive system according to the first embodiment will be described below.
- the three-phase inverters 221, 222, and 223 that constitute the inverter group 220 are different from the three-phase inverters 201, 202, and 203 in the first embodiment in that they have temperature sensors 61, 62, and 63, respectively.
- the control circuit 406 has a configuration in which the PWM control unit 401 of the control circuit 400 shown in FIG.
- FIG. 23 is a diagram illustrating a detailed configuration of the PWM control unit 407.
- the PWM control unit 405 has a configuration in which a carrier signal selection circuit 417 is added to the PWM control unit 401 shown in FIG.
- the carrier signal selection circuit 417 assigns carrier signals fc_1, fc_2, and fc_3 to the PWM signal generation circuits 414, 415, and 416 based on the temperature detection signals T1, T2, and T3 input from the temperature sensors 61, 62, and 63. Distribute. At this time, the carrier signal selection circuit 417 outputs a gate control signal having a higher operating frequency to the gate drive circuit corresponding to the power circuit indicating a low temperature among the power circuits 227, 228, and 229. The assignment of the carrier signal to the signal generation circuit is determined.
- the carrier signal selection circuit 417 compares the temperatures of the power circuits based on the determinations in steps S2 and S3.
- the carrier signal selection circuit 417 supplies the 20 kHz carrier signal fc_2 to the PWM signal generation circuit 414. And outputs fc_1 and fc_3, which are 10 kHz carrier signals, to the PWM signal generation circuits 415 and 416, respectively (step S3).
- step S2 If it is determined in step S2 that the temperature indicated by the temperature detection signal T2 is higher than the temperature indicated by the temperature detection signal T3 (step S4: No), the carrier signal selection circuit 417 determines fc_2, which is a 20 kHz carrier signal. Output to the PWM signal generation circuit 416 and output fc_1 and fc_3, which are 10 kHz carrier signals, to the PWM signal generation circuits 414 and 415, respectively (step S6).
- fc_2 is a 20 kHz carrier signal.
- the three-phase inverter that has been operated using the carrier signal of 20 kHz generates more heat in the power circuit than the three-phase inverter that is operated using the carrier signal of 10 kHz.
- the temperature relationship between the phase inverters will be switched.
- the temperature of the power circuit of each three-phase inverter is measured at a constant cycle, and the processing of steps S1 to S6 is repeatedly executed based on the latest temperature detection signals T1, T2, and T3.
- a gate control signal based on a carrier signal having a frequency higher than that of the others is supplied to the three-phase inverter having the lowest temperature of the power circuit at each time point.
- a stator winding fed from a three-phase inverter driven at a high carrier frequency has a larger iron loss than other stator windings, and therefore generates more heat.
- the three-phase inverter to which the gate control signal based on the high frequency carrier signal is supplied is sequentially switched, the heat generation of the plurality of stator windings is equalized even in the synchronous motor. Such an effect also contributes to improving the reliability of the system.
- control circuit 406 may be implemented by describing it in an application program and causing the microcomputer system to execute it.
- ⁇ Modification of Second Embodiment> As described above, the temperature of the power circuit is measured for each three-phase inverter, and the gate control signal based on the carrier signal of the high frequency is supplied to the one with the lowest temperature, so that the three-phase inverters 221, 222, 223 Heat load can be made even.
- Such period is determined by the structure of the inverter module. For example, when three three-phase inverters are arranged in parallel in the module, the heat dissipation of the three-phase inverter arranged at the center is inferior to the three-phase inverters at both ends. Therefore, the time interval for supplying the gate control signal based on the high-frequency carrier signal is preferably shorter in the central three-phase inverter than in the three-phase inverters at both ends.
- the destination for supplying a gate control signal based on a carrier signal of a high frequency is the same for all three-phase inverters. You may comprise so that it may switch at a time interval.
- FIG. 25 is a flowchart showing the flow of carrier signal assignment processing by the carrier signal selection circuit 417 in this modification.
- the carrier signal selection circuit 417 includes a timer that outputs a time-out signal every predetermined time and a working memory. First, in step S11, a variable X is set to 0 in the working memory, and steps S12 to S18 are performed. Repeat the loop process.
- the carrier signal selection circuit 417 waits for the timer to output a timeout signal (step S12), and calculates the remainder when the variable X is divided by 3.
- the carrier signal selection circuit 417 When the remainder is 0 (step S13: Yes), the carrier signal selection circuit 417 outputs fc_2, which is a carrier signal of 20 kHz, to the PWM signal generation circuit 414, and PWMs fc_1, fc_3, which are carrier signals of 10 kHz, respectively.
- the signal is output to the signal generation circuits 415 and 416 (step S14).
- the carrier signal selection circuit 417 When the remainder is 1 (step S15: Yes), the carrier signal selection circuit 417 outputs fc_2, which is a 20 kHz carrier signal, to the PWM signal generation circuit 415, and outputs fc_1 and fc_3, which are 10 kHz carrier signals, respectively.
- the signal is output to the signal generation circuits 414 and 416 (step S16).
- the carrier signal selection circuit 417 When the remainder is 2 (step S15: No), the carrier signal selection circuit 417 outputs fc_2, which is a 20 kHz carrier signal, to the PWM signal generation circuit 416, and outputs fc_1 and fc_3, which are 10 kHz carrier signals, respectively.
- the signal is output to the signal generation circuits 414 and 415 (step S17).
- variable X is incremented in step S18.
- a gate control signal based on a carrier signal having a high frequency is supplied in the order of the three-phase inverters 221, 222, and 223 at certain time intervals at which the timer outputs a timeout signal.
- the period for which the timer outputs the timeout signal should be set so that the temperature at which the three-phase inverter generates heat does not exceed the allowable temperature when a gate control signal based on a high frequency carrier signal is continuously supplied. Can do.
- FIG. 26 is a diagram showing an overall configuration of a synchronous motor drive system according to the third embodiment of the present invention.
- the synchronous motor drive system shown in FIG. 26 has a configuration in which the inverter group 200 of the synchronous motor drive system shown in FIG. A configuration different from the synchronous motor drive system according to the first embodiment will be described below.
- the inverter group 230 is characterized by the gate drive circuits 231, 232, and 233 of each three-phase inverter.
- the gate drive circuits 231, 232, and 233 have gate resistances with the corresponding power circuits 207, 208, and 209, respectively, but a gate control signal based on a 20 kHz carrier signal is input from the PWM control unit 401.
- the gate drive circuit 232 is characterized in that the resistance value of the gate resistance is smaller than that of the gate drive circuits 231 and 233 to which a gate control signal based on a carrier signal of 10 kHz is input.
- the power circuit 208 driven based on a high carrier signal can reduce the loss per switching operation with other power circuits.
- the balance of switching loss per unit time generated in each of the power circuits 207, 208, and 209 can be maintained. Therefore, it is possible to suppress the heat load from being concentrated on some of the power circuits, and to improve the reliability of the system.
- the temperature of the power circuit of each three-phase inverter is measured by the temperature sensor as in the configuration of the second embodiment, and the PWM control unit drives the gate corresponding to the power circuit having the lowest measured temperature.
- a gate control signal using a carrier frequency of 20 kHz is output to the circuit, and a gate control signal using a carrier frequency of 10 kHz is output to the other two gate drive circuits.
- each gate control circuit has a gate resistor 242 and a switch 243 connected in parallel between the gate drive signal output unit 241 and the gate terminal of the power circuit 207, as shown in FIG.
- the gate control circuit having such a configuration turns on the switch 243 and the gate control signal using the carrier frequency of 10 kHz from the PWM control unit. Is input, the switch 243 is turned OFF and the gate drive signal is output.
- the switching speed of the switching element of the power circuit is faster than that of the other three-phase inverter.
- FIG. 28 is a diagram showing an overall configuration of a synchronous motor drive system according to the third embodiment of the present invention.
- the synchronous motor drive system shown in FIG. 28 has a configuration in which the position estimation unit 403 of the synchronous motor drive system shown in FIG. A configuration different from the synchronous motor drive system according to the first embodiment will be described below.
- the position estimation unit 409 receives a three-phase AC current detection signal related to the three-phase inverter 201 detected by the current detectors 51, 52, and 53 among the three-phase AC current detection signals detected by the current detection module 500.
- the inductance value of the winding is obtained by calculation from the current change rate for each switching operation of the three-phase inverter 201, and the rotor magnetic pole position ⁇ of the synchronous motor 300 is estimated from the inductance value.
- the three-phase inverters 201, 202, and 203 operate based on gate control signals using carrier signals of 10 kHz, 20 kHz, and 10 kHz, respectively.
- the operation frequency of the carrier signal becomes the control calculation time. Therefore, in sensorless control for estimating and calculating the magnetic pole position ⁇ , it is relatively longer to use the output of the three-phase inverter operating at the operating frequency of 10 kHz than using the output of the three-phase inverter operating at the operating frequency of 20 kHz.
- Sensorless control can be performed in the control calculation time.
- the magnetic pole position ⁇ is set using the output of the three-phase inverter that operates at a lower carrier frequency. Since the estimation calculation is performed, it is not necessary to use an arithmetic device having high arithmetic processing capability for sensorless control, and the cost can be reduced by using a relatively inexpensive arithmetic device. Also, when the carrier signal is increased in frequency with the increase in the number of poles and the rotation speed of the motor, some of the three-phase inverters are operated at a low carrier frequency, and the output of the three-phase inverter operating at this low carrier frequency is used. By using the magnetic pole position ⁇ for estimation and calculation, it is possible to easily perform sensorless control even with respect to a motor having multiple poles and high speed rotation.
- a three-phase PWM voltage based on a carrier signal having a different frequency is input to a pair of adjacent stator windings 81a and 82a.
- a three-phase PWM voltage based on carrier signals having different frequencies is input to the pair of lines 82a and 83a.
- a magnetic flux change generated by energizing the stator winding having an operating frequency of 20 kHz is energized to the stator winding having an operating frequency of 10 kHz. Therefore, it can be expected that the change in magnetic flux generated by this is suppressed, and the increase in waveform distortion of the motor actual current is suppressed.
- stator teeth in the stator teeth group can be arranged at an interval corresponding to the maximum electrical angle ( ⁇ + 2 ⁇ / 3 m) radians.
- stator windings wound around the adjacent stator teeth have characteristics that generate opposite magnetic fields when currents of the same phase flow, these stator windings have ⁇ 2 ⁇ / What is necessary is just to supply the electric current from which a phase mutually differs within the range of 3 m radians.
- Adjacent stator windings are arranged at intervals corresponding to a maximum electrical angle of ( ⁇ + ⁇ / 15) radians.
- a current of a phase delayed by a maximum ( ⁇ + ⁇ / 15) radians is supplied to a stator winding at a position advanced by a maximum ( ⁇ + ⁇ / 15) radians in the rotation direction in the adjacent stator windings.
- the phases of the carrier signals fc_1 and fc_3 having a frequency of 10 kHz are shifted by 1/8 period can be considered.
- the configuration in which the magnetic pole position ⁇ is estimated by sensorless calculation has been described.
- the magnetic pole position ⁇ may be directly detected by using some detection means.
- an optical encoder, a hall sensor, a resolver, or the like, which is a position detector, can be used.
- the carrier signal generation circuits 411 and 413 generate 10 kHz carrier signals.
- the carrier signal generation circuits 411, 412 and 413 each have a different frequency carrier signal. It is also possible to implement as a configuration that generates
- two three-phase inverters are operated based on a carrier signal output from one of the carrier signal generation circuits,
- the remaining one of the three-phase inverters can be operated based on the carrier signal output from the other carrier signal generation circuit.
- the present invention can be implemented as a synchronous motor drive system having more carrier signal generation circuits than the number of three-phase inverters.
- the carrier frequency allocated to the three-phase inverter is changed according to the drive state of the synchronous motor such as torque and rotation speed. May be.
- the synchronous motor is operated at a high rotational speed.
- two three-phase inverters are operated using a 10 kHz carrier signal, and the remaining one three-phase inverter is operated using a 20 kHz carrier signal.
- two three-phase inverters are operated using an 8 kHz carrier signal, and the remaining one three-phase inverter is operated using a 15 kHz carrier signal.
- the DC power supplies 101, 102, and 103 shown in FIG. 33 may be realized by different types of power storage devices.
- a fuel cell that is lighter than lead-acid batteries but weak against overvoltage is used to supply power to a three-phase inverter that operates at a low carrier frequency
- lead-acid batteries are used to supply power to a three-phase inverter that operates at a high carrier frequency. It is preferable to use a lithium ion battery or the like.
- MOSFET metal-insulator-semiconductor field effect transistor
- a switching element using a three-phase inverter operating at a high carrier frequency that causes an increase in switching loss using a wide band gap semiconductor having a wider band gap than Si semiconductor, such as silicon carbide and gallium nitride.
- Si semiconductor such as silicon carbide and gallium nitride.
- a three-phase inverter operating at a low carrier frequency can be configured by using a switching element using an inexpensive Si semiconductor, thereby suppressing an increase in cost.
- the stator winding is wound around the stator teeth.
- the present invention is not limited to this, and can be applied to a so-called coreless motor having no stator teeth.
- the switching operation can be suppressed, for example, by performing orthogonal transform using a two-phase modulation method having a pause interval of 60 degrees. Therefore, in each of the above embodiments, a three-phase inverter that performs orthogonal transformation by a two-phase modulation method is used instead of a three-phase inverter that operates at a low carrier frequency, and a three-phase inverter that operates at a high carrier frequency is 3 The same effect can be obtained by using a three-phase inverter that performs quadrature transformation using a phase modulation method.
- the present invention can also be implemented with such a configuration.
- the present invention can be similarly applied.
- a skew arrangement may be applied in which the stator winding moves in the axial direction of the rotor and is shifted by a maximum in the circumferential direction by the stator winding arrangement interval.
- the outer rotor type synchronous motor in which the rotor is disposed outside the stator is described.
- the inner rotor type synchronous motor in which the rotor is disposed inside the stator, and the rotation Needless to say, a so-called face-facing axial gap synchronous motor in which the child and the stator are arranged with a gap in the axial direction and a synchronous motor having a structure in which a plurality of them are combined have the same effect.
- the magnetic poles of the rotor are composed of permanent magnets.
- the present invention can also be applied to a synchronous motor using a reluctance torque configured by a difference in magnetic resistance and a synchronous motor combining both of them with a rotor.
- the first to fourth embodiments and the above modification examples may be combined.
- the present invention can realize a synchronous motor drive system having high efficiency and low noise characteristics. Further, by realizing inexpensive sensorless control, the cost can be reduced. Therefore, hybrid electric vehicles and electric vehicles that are highly demanded for miniaturization, all electric motor drive systems including electric compressors, electric power steering, and elevators, and power generation systems such as wind power generation systems that are also highly demanded for miniaturization, etc. Useful.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Windings For Motors And Generators (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Inverter Devices (AREA)
Abstract
Description
(第1の実施形態)
<同期電動機駆動システム>
図1は、本発明の第1の実施形態に係る同期電動機駆動システムの全体構成を示す図である。
<同期電動機300>
先ず、図2から図7を用いて同期電動機300の詳細を説明する。
<制御回路400>
続いて、制御回路400の詳細について説明する。
<インバータ群200>
続いて、インバータ群200の詳細について説明する。図8の(a)は、インバータ群200の上面図、(b)はa-a’での断面図である。本図に示すようにインバータ群200は、3相インバータ201、202、203が、絶縁基板240上に並設されエポキシ樹脂等のモールド樹脂250により封止されることで、単一のモジュールを構成している。
<第1の実施形態の変形例1>
本発明の第1の実施形態に係る同期電動機駆動システムでは、上記同期電動機の複数の巻線端子に互いに位相の異なる電流を給電することが好ましい。以下に、図2、図3に構造を示した同期電動機300を回転駆動させる通電方法の一例を説明する。
<第1の実施形態の変形例2>
以下に、2つのインバータを有する同期電動機駆動システムに本発明を適用した変形例について説明する。図16は、本変形例に係る同期電動機駆動システムの全体構成を示す図である。
N21=N22=(N1)/{2cos(π/9)}
上記関係を満たすことにより固定子ティース71a、72a、73aに生じる磁束の最大値を同等にすることができる。なおここでは便宜上イコール記号(=)を用いているが、実際には完全に一致させることが困難な場合が多い。上記のイコール記号は、右辺が小数になる場合にはその小数に近い整数を採用する程度の一致を含み、さらには、設計上誤差として無視できる程度の一致を含むこととする。
(第2の実施形態)
図22は、本発明の第2の実施形態に係る同期電動機駆動システムの全体構成を示す図である。図22に示す同期電動機駆動システムは、図1に示す同期電動機駆動システムのインバータ群200及び制御回路400を、それぞれインバータ群220、及び制御回路406に置換した構成である。以下に第1の実施形態に係る同期電動機駆動システムと相違する構成について説明する。
<第2の実施形態の変形例>
上述のように、各3相インバータについてパワー回路の温度を計測し、最も温度が低いものに高い周波数のキャリア信号に基づいたゲート制御信号を供給することで、3相インバータ221、222、223の熱負荷を均等にすることができる。しかし、熱負荷による不具合を防ぐという観点では、複数の3相インバータで熱負荷を必ずしも均等にする必要はなく、各3相インバータにおいて、許容温度を超えるような過剰な発熱を防ぐことができればよい。
(第3の実施形態)
図26は、本発明の第3の実施形態に係る同期電動機駆動システムの全体構成を示す図である。図26に示す同期電動機駆動システムは、図1に示す同期電動機駆動システムのインバータ群200を、インバータ群230に置換した構成である。以下に第1の実施形態に係る同期電動機駆動システムと相違する構成について説明する。
<第3の実施形態の変形例>
本発明の第2の実施形態を、第3の実施形態に組み合わせることで、より高い効果が得られる。
(第4の実施形態)
図28は、本発明の第3の実施形態に係る同期電動機駆動システムの全体構成を示す図である。図28に示す同期電動機駆動システムは、図1に示す同期電動機駆動システムの位置推定部403を、位置推定部409に置換した構成である。以下に第1の実施形態に係る同期電動機駆動システムと相違する構成について説明する。
(その他の変形例)
以上、本発明に係る同期電動機駆動システムについて、実施形態に基づいて説明したが、本発明はこれらの実施形態に限られない。例えば、以下のような変形例が考えられる。
(1)第1の実施形態では、図3に示す3個の固定子巻線のうち、両端の固定子巻線81a、83aに入力される3相PWM電圧が10kHzとなり、中央の固定子巻線82aに入力される3相PWM電圧が20kHzとなる構成について説明した。しかしながら本発明はこれに限らず、固定子の周方向に並ぶ一対の固定子巻線のうち、一方が他方よりも低いキャリア信号に基づく3相PWM電圧が入力されるよう構成することで、ある程度の効果は見込める。
(2)各実施形態では、固定子ティース組を構成する固定子ティースの数が3個の場合(m=3)について説明しているが、本発明はこれに限らず、2以上の整数個であれば適用可能である。以下、固定子ティース組を構成する固定子ティースの数がm個の場合について検討する。
(3)複数の3相インバータにおいてキャリア周波数がほぼ同一のものに関しては、位相がずれていることが望ましい。
(4)各実施形態では、磁極位置θをセンサレス演算により推定する構成を示したが、何らかの検出手段を用いて、磁極位置θを直接検出する構成としてもよい。磁極位置θを検出する手段としては、位置検出器である光学式エンコーダ、ホールセンサ、レゾルバなどを用ることができる。
(5)各実施形態では、キャリア信号発生回路411、413が何れも10kHzのキャリア信号を発生させるとしたが、本発明は、キャリア信号発生回路411、412、413が、それぞれ異なる周波数のキャリア信号を発生させる構成としても実施可能である。
(6)各実施形態では、3相インバータ及び巻線の数と同数のキャリア信号発生回路を有する同期電動機駆動システムについて説明したが、3相インバータ及び巻線の数とは異なる数のキャリア信号発生回路を有する構成であっても、本発明は実施可能である。
(7)各実施形態では、高いキャリア周波数として20kHz、低いキャリア周波数として10kHzを例示しているが、複数のキャリア信号の動作周波数の関係は、10kHzと20kHzとのように、比例関係に限定されるものではない。本発明において複数のキャリア信号の動作周波数の関係は、一方が他方の2倍以下であることが望ましい。
(8)各実施形態では、全ての3相インバータが1つの直流電源から直流電力の供給を受ける例について説明したが、本発明は、図33に示すように、それぞれの3相インバータが異なる直流電源から直流電力の供給を受けるよう構成しても実施可能である。
(9)各実施形態において、複数の3相インバータは、同じ種類のスイッチング素子を用いてパワー回路を構成しても、異なる種類のスイッチング素子を用いてパワー回路を構成してもよい。
(10)実施形態では固定子巻線は固定子ティースに巻回されているが、本発明はこれに限らず、固定子ティースのない、いわゆるコアレスモータにも適用可能である。
(11)実施形態では、複数の3相インバータのうち少なくとも1個の3相インバータを他の3相インバータよりも低いキャリア周波数で動作させることで、スイッチング動作を減らし、それによりスイッチング損失の低減を図る構成について説明した。
(12)実施形態では特に挙げていないが、固定子巻線が回転子の軸方向に進むほど周方向に最大で固定子巻線の配置間隔だけずれていくスキュー配置を施すこととしてもよい。
(13)実施形態では、回転子が固定子の外側に配置されたアウターロータ型の同期電動機で説明しているが、回転子を固定子の内側に配置したインナーロータ型の同期電動機や、回転子と固定子とが軸方向に空隙を持って配置された、いわゆる面対向のアキシャルギャップ式同期電動機や、それらを複数組み合わせた構造の同期電動機でも同じ効果があることは言うまでもない。
(14)実施形態では、回転子の磁極を永久磁石により構成したが、磁気抵抗の差で構成したリラクタンストルクを利用した同期電動機、回転子に両者を組み合わせた同期電動機でも適用可能である。
(15)第1乃至第4の実施形態及び上記変形例をそれぞれ組み合わせるとしてもよい。
3 固定子
4 回転子コア
5 永久磁石
6 磁極
9 固定子巻線
10 回転子磁極間
11 回転子磁極間
21a~c 巻線端子
22a~c 巻線端子
23a~c 巻線端子
24a~c 巻線端子
31a~c 巻線端子
32a~c 巻線端子
33a~c 巻線端子
34a~c 巻線端子
35a~c 巻線端子
36a~c 巻線端子
7 固定子ティース
8 固定子ティース組
8a~c 固定子ティース組
51~59 電流検出器
61~63 温度センサ
100~103 直流電源
200、210、220、230 インバータ群
201~203 3相インバータ
204~206 ゲート駆動回路
207~209 パワー回路
241 ゲート駆動信号出力部
242 ゲート抵抗
243 スイッチ
240 絶縁基板
250 モールド樹脂
300、304 同期電動機
301~303 3相巻線
400 制御回路
401 PWM制御部
402 電流検出部
403 位置推定部
411~413 キャリア信号発生回路
414~416 PWM信号生成回路
417 キャリア信号選択回路
500 電流検出モジュール
Claims (21)
- 直流電力を3相交流電力に変換する複数の3相インバータと、
前記複数の3相インバータの動作を制御する制御回路と、
3相交流電力の供給を受ける3相巻線を複数有する同期電動機とを備え、
前記制御回路は、3相インバータの動作を制御するにあたり、前記複数の3相インバータのうち第1及び第2の3相インバータに、互いに異なるキャリア周波数を用いて3相交流電力を生成させ、
前記第1及び第2の3相インバータは、それぞれ異なる3相巻線へ3相交流電力を供給し、
前記同期電動機は、周方向に並設された複数の固定子巻線を含む固定子を有し、
前記複数の固定子巻線のそれぞれは、前記3相巻線の何れかに含まれ、
前記第1の3相インバータから給電される3相巻線に含まれる第1の固定子巻線と、前記第2の3相インバータから給電される3相巻線に含まれ、前記第1の固定子巻線と同相である第2の固定子巻線とは、前記同期電動機の固定子において隣接して配置されていること
を特徴とする同期電動機駆動システム。 - 前記同期電動機は更に、
周方向に等間隔に配設された複数の磁極を含む回転子を有し、
前記複数の固定子巻線は、それぞれ集中巻に巻回され、周方向に並ぶm個(mは2以上の整数)単位で固定子巻線組を構成し、このように構成された複数の固定子巻線組は周方向に等間隔に並んでおり、
各固定子巻線組において、m個の固定子巻線のうち少なくとも一対の隣り合う固定子巻線は、それぞれが異なる3相巻線に含まれ、前記第1及び第2の3相インバータから、個別に給電されること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記複数の3相インバータの数、及び前記mは3であり、
固定子巻線組を構成する周方向に並んだ3個の固定子巻線のうち、両端の2個の固定子巻線は、前記3個の3相インバータのうちの第3の3相インバータ及び前記第1の3相インバータから、個別に給電され、
前記3個の固定子巻線のうち中央の固定子巻線は、前記第2の3相インバータから給電され、
第1の3相インバータと第2の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差、及び第2の3相インバータと第3の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差は、第1の3相インバータと第3の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差よりも大きいこと
を特徴とする請求項2に記載の同期電動機駆動システム。 - 前記制御回路は、前記第3の3相インバータに、前記第1の3相インバータと同じキャリア周波数を用いて3相交流電力を生成させ、
前記第1及び第3の3相インバータが3相交流電力の生成に用いるキャリア周波数は、前記第2の3相インバータが3相交流電力の生成に用いるキャリア周波数よりも低いこと
を特徴とする請求項3に記載の同期電動機駆動システム。 - 前記mは奇数であり、
固定子巻線組を構成する周方向に並んだm個の固定子巻線のうち中央に配置される固定子巻線は、前記第2の3相インバータから給電され、
前記中央に配置される固定子巻線に隣接して配置される2つの固定子巻線は、前記3個の3相インバータのうちの第3の3相インバータ及び前記第1の3相インバータから、個別に給電され、
第1の3相インバータと第2の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差、及び第2の3相インバータと第3の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差は、第1の3相インバータと第3の3相インバータとで3相交流電力の生成に用いるキャリア周波数の差よりも大きいこと
を特徴とする請求項2に記載の同期電動機駆動システム。 - 前記制御回路は、前記第3の3相インバータに、前記第1の3相インバータと同じキャリア周波数を用いて3相交流電力を生成させ、
前記第1及び第3の3相インバータが3相交流電力の生成に用いるキャリア周波数は、前記第2の3相インバータが3相交流電力の生成に用いるキャリア周波数よりも低いこと
を特徴とする請求項5に記載の同期電動機駆動システム。 - 前記同期電動機は更に、
周方向に等間隔に配設された複数の磁極を含む回転子を有し、
前記固定子は、周方向に並設された複数の固定子ティースを含み、
前記複数の固定子ティースは、周方向に並ぶm個単位で(mは2以上の整数)固定子ティース組を構成し、このように構成された複数の固定子ティース組は周方向に等間隔に並んでおり、
各固定子ティース組において、m個の固定子ティースのうち第1、第2および第3の固定子ティースは、周方向に並び、
前記第1の固定子ティースには、前記複数の3相巻線のうちの一つに含まれる前記第1の固定子巻線の一部が巻回され、
前記第3の固定子ティースには、前記複数の3相巻線のうちの他の一つに含まれる前記第2の固定子巻線の一部が巻回され、
前記第2の固定子ティースには、前記第1の固定子巻線の残余の部分と前記第2の固定子巻線の残余の部分とが巻回され、
各固定子ティース組において、前記第1および第2の固定子巻線は、それぞれ前記第1及び第2の3相インバータから、個別に給電されること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記第2の3相インバータが3相交流電力の生成に用いるキャリア周波数と、前記第1の3相インバータが3相交流電力の生成に用いるキャリア周波数との比は、2以下であること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記制御回路は、前記第1の3相インバータにおいて用いるキャリア周波数と、前記第2の3相インバータにおいて用いるキャリア周波数とを、所定の条件で入れ替えて3相交流電力を生成させること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記複数の3相インバータは、各々、ゲート駆動回路と、前記ゲート駆動回路に対応したパワー回路と、前記パワー回路の温度を計測する温度センサとを有し、
前記制御回路は、前記第1及び第2の3相インバータのうち、温度センサで計測した温度が他方より高温であるものに、他方の3相インバータよりも低いキャリア周波数を用いて3相交流電力を生成させること
を特徴とする請求項9に記載の同期電動機駆動システム。 - 前記第1及び第2の3相インバータのうち、高いキャリア周波数を用いて3相交流電力を生成する3相インバータのゲート駆動回路は、他方の3相インバータのゲート駆動回路よりも、パワー回路を速いスイッチング速度で駆動させること
を特徴とする請求項10に記載の同期電動機駆動システム。 - 前記複数の3相インバータは、各々、ゲート駆動回路と、前記ゲート駆動回路に対応したパワー回路とを有し、
前記第1及び第2の3相インバータのうち、高いキャリア周波数を用いて3相交流電力を生成する3相インバータのゲート駆動回路は、他方の3相インバータのゲート駆動回路よりも、パワー回路を速いスイッチング速度で駆動させること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記第1及び第2の3相インバータのうち、低いキャリア周波数を用いて3相交流電力を生成するものから出力される交流電流を計測する電流検出器を更に備え、
前記制御回路は、前記同期電動機が有する回転子の磁極位置を、前記電流検出器で計測された値に基づいて演算により推定し、推定した磁極位置に応じて前記複数の3相インバータの動作を制御すること
を特徴とする請求項1に記載の同期電動機駆動システム。 - 前記制御手段は、前記同期電動機の駆動状態に応じて、前記第1及び第2の3相インバータに3相交流電力の生成させる際に用いるキャリア周波数を、それぞれ変化させること
を特徴とする請求項1記載の同期電動機駆動システム。 - 前記複数の3相インバータに直流電力を供給する直流電源は複数あり、
前記複数の3相インバータは、それぞれ異なる直流電源から直流電力の供給を受けること
を特徴とする請求項1記載の同期電動機駆動システム。 - 前記複数の直流電源のうち少なくとも2個は、互いに過電圧に対する耐性が異なり、
前記第1及び第2の3相インバータのうち、低いキャリア周波数を用いて3相交流電力を生成するものは、複数の直流電源のうち過電圧に弱い直流電源から直流電力の供給を受けること
を特徴とする請求項15記載の同期電動機駆動システム。 - 前記複数の直流電源のうち少なくとも2個は、異なる電圧で直流電力を供給し、
前記第1及び第2の3相インバータのうち、高いキャリア周波数を用いて3相交流電力を生成するものは、複数の直流電源のうち電圧の低い直流電源から直流電力の供給を受けること
を特徴とする請求項15記載の同期電動機駆動システム。 - 前記第1及び第2の3相インバータを構成するスイッチング素子の種類は互いに異なり、
前記第1及び第2の3相インバータのうち、高いキャリア周波数を用いて3相交流電力を生成するものは、ユニポーラ素子により構成されていること
を特徴とする請求項1記載の同期電動機駆動システム。 - 前記第1及び第2の3相インバータを構成するスイッチング素子の種類は互いに異なり、
前記第1及び第2の3相インバータのうち、低いキャリア周波数を用いて3相交流電力を生成するものは、Si半導体を用いたスイッチング素子により構成され、
前記第1及び第2の3相インバータのうち、高いキャリア周波数を用いて3相交流電力を生成するものは、Si半導体よりも広いバンドギャップを有するワイドバンドギャップ半導体を用いたスイッチング素子により構成されていること
を特徴とする請求項1記載の同期電動機駆動システム。 - 前記複数の3相インバータを構成する複数のスイッチング素子が、単一のモジュール内に納められていること
を特徴とする請求項1記載の同期電動機駆動システム。 - 前記モジュールには、3個の3相インバータが並設され、
前記並設された3相インバータのうち中央のものは、Si半導体よりも広いバンドギャップを有するワイドバンドギャップ半導体を用いたスイッチング素子により構成されていること
を特徴とする請求項20記載の同期電動機駆動システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/997,871 US8405341B2 (en) | 2009-04-13 | 2010-04-12 | Synchronous electric motor system |
JP2010534164A JP4625147B2 (ja) | 2009-04-13 | 2010-04-12 | 同期電動機駆動システム |
CN2010800022138A CN102113204B (zh) | 2009-04-13 | 2010-04-12 | 同步电动机驱动系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-097321 | 2009-04-13 | ||
JP2009097321 | 2009-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010119662A1 true WO2010119662A1 (ja) | 2010-10-21 |
WO2010119662A9 WO2010119662A9 (ja) | 2011-01-06 |
Family
ID=42982336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002649 WO2010119662A1 (ja) | 2009-04-13 | 2010-04-12 | 同期電動機駆動システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US8405341B2 (ja) |
JP (1) | JP4625147B2 (ja) |
CN (1) | CN102113204B (ja) |
WO (1) | WO2010119662A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016525857A (ja) * | 2013-06-11 | 2016-08-25 | ゲム モータース ディーオーオー | モジュール式多相電動機 |
JP2017163721A (ja) * | 2016-03-10 | 2017-09-14 | 日立オートモティブシステムズ株式会社 | 車両用モータ駆動装置、車両用電動パワーステアリング装置、及び車両用モータの駆動方法 |
JP2019201500A (ja) * | 2018-05-17 | 2019-11-21 | 株式会社デンソー | 回転電機制御装置 |
US10686397B2 (en) | 2016-06-17 | 2020-06-16 | Mitsubishi Electric Corporation | Motor system, motor drive device, refrigeration cycle device, and air conditioner |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010119662A1 (ja) * | 2009-04-13 | 2010-10-21 | パナソニック株式会社 | 同期電動機駆動システム |
JP5375715B2 (ja) * | 2010-03-31 | 2013-12-25 | 株式会社豊田自動織機 | 中性点昇圧方式の直流−三相変換装置 |
US9780716B2 (en) * | 2010-11-19 | 2017-10-03 | General Electric Company | High power-density, high back emf permanent magnet machine and method of making same |
JP2012170208A (ja) * | 2011-02-14 | 2012-09-06 | Seiko Epson Corp | 電気機械装置、移動体、ロボット及び電気機械装置の温度測定法 |
EP2763287B1 (en) * | 2011-09-30 | 2018-01-10 | Mitsubishi Electric Corporation | Main electric motor for railway vehicle |
JP5502913B2 (ja) * | 2012-01-23 | 2014-05-28 | 三菱電機株式会社 | 回転電機 |
WO2013113862A1 (en) * | 2012-02-01 | 2013-08-08 | Kone Corporation | Obtaining parameters of an elevator |
JP2013162536A (ja) | 2012-02-01 | 2013-08-19 | Mitsubishi Electric Corp | 電力変換装置 |
JP5851303B2 (ja) * | 2012-03-28 | 2016-02-03 | 三菱電機株式会社 | 冷凍サイクル装置および室外熱源ユニット |
DE102012219318A1 (de) * | 2012-10-23 | 2014-04-24 | Kuka Laboratories Gmbh | Elektrische Vorrichtung mit einem getakteten Netzteil und Verfahren zum Testen des Netzteils der elektrischen Vorrichtung |
GB2512078A (en) * | 2013-03-19 | 2014-09-24 | Control Tech Ltd | Control system for multi-phase rotary machines |
JP6184712B2 (ja) * | 2013-03-22 | 2017-08-23 | Ntn株式会社 | モータ駆動装置 |
DE102013208570A1 (de) * | 2013-05-08 | 2014-11-13 | Continental Automotive Gmbh | Elektrische Maschine, insbesondere für eine Lenkhilfe eines Kraftfahrzeugs |
FR3005811B1 (fr) * | 2013-05-16 | 2022-01-21 | Valeo Equip Electr Moteur | Procede de fabrication d'une machine electrique tournante synchrone polyphasee, et machine correspondante |
JP6177034B2 (ja) * | 2013-07-10 | 2017-08-09 | 株式会社日立製作所 | エレベータ装置 |
WO2015141795A1 (ja) * | 2014-03-20 | 2015-09-24 | 日本精工株式会社 | 電動機制御装置、電動パワーステアリング装置および車両 |
DE112015002556T5 (de) * | 2014-05-30 | 2017-02-23 | Mitsubishi Electric Corporation | Mehrgruppen-Mehrphasen-Antriebssystem und Antriebsverfahren für eine elektrische Rotationsmaschine |
JP6105168B2 (ja) | 2014-07-18 | 2017-03-29 | 三菱電機株式会社 | 車両用補助電源装置 |
WO2016174702A1 (ja) * | 2015-04-27 | 2016-11-03 | 三菱電機株式会社 | 交流回転機の制御装置および電動パワーステアリング装置 |
EP3331793B1 (en) | 2015-08-07 | 2024-10-09 | Otis Elevator Company | Rescue control and method of operating an elevator system including a permanent magnet (pm) synchronous motor drive system |
EP3331794A1 (en) | 2015-08-07 | 2018-06-13 | Otis Elevator Company | Elevator system including a permanent magnet (pm) synchronous motor drive system |
DE102015119064A1 (de) * | 2015-11-06 | 2017-05-11 | Robert Bosch Automotive Steering Gmbh | Reduzierung des stromes durch die kapazität des zwischenkreises |
JP6536479B2 (ja) | 2016-05-17 | 2019-07-03 | 株式会社デンソー | 回転機の制御装置 |
CN106374978A (zh) * | 2016-08-29 | 2017-02-01 | 阳光电源股份有限公司 | 电力载波信号耦合电路及通信系统 |
US9673743B1 (en) | 2016-09-08 | 2017-06-06 | Limiter Power Management System (PTY) LTD. | Efficient motor control |
EP3293876B1 (en) * | 2016-09-09 | 2021-06-23 | Black & Decker Inc. | Dual-inverter for a brushless motor |
WO2018108040A1 (zh) * | 2016-12-15 | 2018-06-21 | 上海理工大学 | 电动驱动装置、电动设备、逆变器以及多相交流电机 |
EP3944478A1 (en) * | 2017-06-01 | 2022-01-26 | MAHLE International GmbH | Electric machine |
DE102017213069A1 (de) * | 2017-07-28 | 2019-01-31 | Robert Bosch Gmbh | Verfahren zur Bestimmung einer Rotorlage einer elektrischen, rotierenden Maschine sowie eine elektrische, rotierende Maschine zur Durchführung eines solchen Verfahrens |
US10696175B2 (en) * | 2017-08-16 | 2020-06-30 | Ford Global Technologies, Llc | Variable inverter output |
CN108199627B (zh) * | 2017-12-26 | 2021-03-09 | 清华大学 | 一种分布式电机驱动控制系统 |
CN111713010B (zh) * | 2018-02-23 | 2023-04-07 | 三菱电机株式会社 | 旋转电机的控制方法、旋转电机的控制装置以及驱动系统 |
US10538169B2 (en) | 2018-06-04 | 2020-01-21 | Ford Global Technologies, Llc | Motor operating region based random pulse width modulation |
US11387764B2 (en) * | 2018-07-12 | 2022-07-12 | Zunum Aero, Inc. | Multi-inverter system for electric machine |
US11296569B2 (en) | 2018-07-12 | 2022-04-05 | Zunum Aero, Inc. | Multi-filar coil winding for electric machine |
ES2925389T3 (es) * | 2018-07-31 | 2022-10-17 | Ge Renewable Tech | Rotor para un generador síncrono |
KR20210048501A (ko) * | 2018-08-07 | 2021-05-03 | 타우 모터스, 인크. | 전기 모터 |
US10807730B2 (en) * | 2018-12-21 | 2020-10-20 | General Electric Company | Motor driven propulsor of an aircraft |
CN111030550B (zh) * | 2019-11-25 | 2022-05-17 | 华为技术有限公司 | 一种电机驱动器及动力系统 |
EP4270745A4 (en) * | 2020-12-23 | 2024-02-28 | Mitsubishi Electric Corporation | ELECTRIC LATHE WITH PERMANENT MAGNET |
JP2022126289A (ja) * | 2021-02-18 | 2022-08-30 | 愛三工業株式会社 | モータ制御装置 |
JP2022156662A (ja) * | 2021-03-31 | 2022-10-14 | 本田技研工業株式会社 | 回転電機装置 |
US20230353020A1 (en) * | 2022-04-29 | 2023-11-02 | Ut-Battelle, Llc | Electric drive system |
EP4287468A1 (de) * | 2022-05-31 | 2023-12-06 | Ovalo GmbH | Elektromotorsystem |
EP4287467A1 (de) * | 2022-05-31 | 2023-12-06 | Ovalo GmbH | Elektromotorsystem |
CN116070371B (zh) * | 2023-01-19 | 2023-08-22 | 佛山仙湖实验室 | 双定子电机设计方法、装置、电子设备及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04145870A (ja) * | 1990-10-02 | 1992-05-19 | Fuji Electric Co Ltd | 三相多重電圧形pwmインバータ |
JP2008043046A (ja) * | 2006-08-07 | 2008-02-21 | Aida Eng Ltd | サーボモータの制御方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6101109A (en) * | 1998-03-23 | 2000-08-08 | Duba; Greg A. | Static power converter multilevel phase driver containing power semiconductors and additional power semiconductor to attenuate ripple voltage |
US5933339A (en) * | 1998-03-23 | 1999-08-03 | Electric Boat Corporation | Modular static power converter connected in a multi-level, multi-phase, multi-circuit configuration |
JP2000343508A (ja) | 1999-06-09 | 2000-12-12 | Shoda Iron Works Co Ltd | ログハウス用木材加工システム |
JP3837986B2 (ja) | 1999-12-24 | 2006-10-25 | 三菱電機株式会社 | 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。 |
JP4123706B2 (ja) * | 2000-11-10 | 2008-07-23 | 株式会社デンソー | 車両用交流電動発電機のインバータ制御装置 |
JP3721116B2 (ja) * | 2000-11-14 | 2005-11-30 | 株式会社豊田中央研究所 | 駆動装置,動力出力装置およびその制御方法 |
JP4665360B2 (ja) * | 2001-08-06 | 2011-04-06 | 株式会社安川電機 | 電動機制御装置 |
JP4059039B2 (ja) * | 2002-08-30 | 2008-03-12 | 株式会社安川電機 | 同期電動機の制御装置 |
JP2004096940A (ja) | 2002-09-03 | 2004-03-25 | Mitsubishi Electric Corp | 永久磁石形同期電動機 |
US7248749B2 (en) * | 2003-07-29 | 2007-07-24 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for signal-to-noise ratio dependent image processing |
CN2684460Y (zh) | 2004-02-01 | 2005-03-09 | 丁振荣 | 基于具有多个分支绕组的交流电动机的高压变频系统 |
US7164242B2 (en) * | 2004-02-27 | 2007-01-16 | York International Corp. | Variable speed drive for multiple loads |
US7034497B2 (en) * | 2004-09-22 | 2006-04-25 | Hamilton Sundstrand Corporation | Carrier injection sensorless control of aircraft variable frequency wound field synchronous starter/generators |
KR100718232B1 (ko) | 2005-05-16 | 2007-05-15 | 삼성전자주식회사 | 모터제어장치 및 모터제어시스템 |
JP2008015444A (ja) | 2006-06-05 | 2008-01-24 | Sharp Corp | 清掃機構付き定着装置およびそれを備えてなる画像形成装置 |
JP2008017609A (ja) | 2006-07-05 | 2008-01-24 | Toshiba Corp | 電気車制御装置 |
JP4356715B2 (ja) * | 2006-08-02 | 2009-11-04 | トヨタ自動車株式会社 | 電源装置、および電源装置を備える車両 |
JP5391541B2 (ja) | 2006-11-22 | 2014-01-15 | 日産自動車株式会社 | 電力変換装置及び方法並びに多相交流モータシステム |
JP4380755B2 (ja) * | 2007-10-10 | 2009-12-09 | 株式会社デンソー | 回転電機装置 |
WO2010119662A1 (ja) * | 2009-04-13 | 2010-10-21 | パナソニック株式会社 | 同期電動機駆動システム |
EP2506414B1 (en) * | 2009-11-26 | 2019-01-02 | Panasonic Intellectual Property Management Co., Ltd. | Load drive system, electric motor drive system and vehicle control system |
-
2010
- 2010-04-12 WO PCT/JP2010/002649 patent/WO2010119662A1/ja active Application Filing
- 2010-04-12 US US12/997,871 patent/US8405341B2/en not_active Expired - Fee Related
- 2010-04-12 JP JP2010534164A patent/JP4625147B2/ja not_active Expired - Fee Related
- 2010-04-12 CN CN2010800022138A patent/CN102113204B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04145870A (ja) * | 1990-10-02 | 1992-05-19 | Fuji Electric Co Ltd | 三相多重電圧形pwmインバータ |
JP2008043046A (ja) * | 2006-08-07 | 2008-02-21 | Aida Eng Ltd | サーボモータの制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016525857A (ja) * | 2013-06-11 | 2016-08-25 | ゲム モータース ディーオーオー | モジュール式多相電動機 |
US9742335B2 (en) | 2013-06-11 | 2017-08-22 | Gem Motors D.O.O. | Modular multi-phase electric machine |
JP2017163721A (ja) * | 2016-03-10 | 2017-09-14 | 日立オートモティブシステムズ株式会社 | 車両用モータ駆動装置、車両用電動パワーステアリング装置、及び車両用モータの駆動方法 |
US10686397B2 (en) | 2016-06-17 | 2020-06-16 | Mitsubishi Electric Corporation | Motor system, motor drive device, refrigeration cycle device, and air conditioner |
JP2019201500A (ja) * | 2018-05-17 | 2019-11-21 | 株式会社デンソー | 回転電機制御装置 |
JP7244216B2 (ja) | 2018-05-17 | 2023-03-22 | 株式会社デンソー | 回転電機制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20110101906A1 (en) | 2011-05-05 |
WO2010119662A9 (ja) | 2011-01-06 |
CN102113204B (zh) | 2013-06-19 |
CN102113204A (zh) | 2011-06-29 |
JPWO2010119662A1 (ja) | 2012-10-22 |
US8405341B2 (en) | 2013-03-26 |
JP4625147B2 (ja) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4625147B2 (ja) | 同期電動機駆動システム | |
US9231513B2 (en) | Electric motor system | |
US8497648B2 (en) | Synchronous electric motor drive system | |
US8704472B2 (en) | Brushless electric motor provided with rotor having intermediate magnetic pole | |
JP5587693B2 (ja) | 回転電機、およびその回転電機を備えた車両 | |
JP5948061B2 (ja) | 回転電機、およびその回転電機を備えた車両 | |
JP5792363B2 (ja) | 回転電機の固定子巻線、および回転電機の固定子 | |
JP6227712B2 (ja) | 回転電機、およびその回転電機を備えた車両 | |
JP2003009486A (ja) | 可変速電動機 | |
GB2557203A (en) | A capacitor component | |
KR100439199B1 (ko) | 병렬결선 구조를 가진 무브러시 직류 전동기 및 그 제어회로 | |
CN105324931A (zh) | 模块化多相电机 | |
US11283384B2 (en) | Motor system provided with both motor having multiple-phase stator windings and control device controlling the motor | |
JP5885423B2 (ja) | 永久磁石式回転電機 | |
JP5219871B2 (ja) | 回転位置センサ、及びブラシレスモータ | |
JP6114786B2 (ja) | 回転電機の固定子巻線、回転電機の固定子、回転電機および車両 | |
JP5696438B2 (ja) | 永久磁石型電動機 | |
KR20200061063A (ko) | 스위치드 릴럭턴스 모터를 구동하는 구동 회로 | |
CN220190699U (zh) | 用于无刷电机的驱动电路和设备 | |
CN116545305B (zh) | 用于无刷电机的驱动方法、装置和设备 | |
CN116505803B (zh) | 用于无刷电机的驱动方法、装置、电路和设备 | |
JP2009291035A (ja) | 同期電動機駆動システム | |
CN117040319A (zh) | 用于无刷电机的驱动电路及其控制方法、装置和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080002213.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010534164 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12997871 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764249 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10764249 Country of ref document: EP Kind code of ref document: A1 |