WO2010116824A1 - 熱交換換気装置 - Google Patents

熱交換換気装置 Download PDF

Info

Publication number
WO2010116824A1
WO2010116824A1 PCT/JP2010/053469 JP2010053469W WO2010116824A1 WO 2010116824 A1 WO2010116824 A1 WO 2010116824A1 JP 2010053469 W JP2010053469 W JP 2010053469W WO 2010116824 A1 WO2010116824 A1 WO 2010116824A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
outdoor
exhaust
indoor
Prior art date
Application number
PCT/JP2010/053469
Other languages
English (en)
French (fr)
Inventor
真裕 上田
正宣 鈴木
浩人 小宮山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010547389A priority Critical patent/JPWO2010116824A1/ja
Priority to EP10761526A priority patent/EP2345855A4/en
Publication of WO2010116824A1 publication Critical patent/WO2010116824A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange ventilator that performs heat exchange by simultaneous supply and exhaust through a heat exchanger.
  • a box body in which a pair of inlets and outlets are provided on each of the indoor side and the outdoor side, an air supply path extending from the indoor side to the outdoor side provided so as to intersect within the box, and An exhaust passage, a blower for forming an air supply flow and an exhaust flow provided in the supply passage and the exhaust passage, and a heat exchanger provided at the intersection to exchange heat between the supply air flow and the exhaust flow
  • a bypass passage that is arranged in parallel with the exhaust passage and bypasses the heat exchanger, a bypass damper that opens and closes the bypass passage, and an air passage switching damper that is provided on a side wall of the exhaust passage, the bypass damper,
  • a ventilator with a heat exchanger in which the suction and blowing directions of the blower are switched by the air path switching damper (see, for example, Patent Document 1).
  • An outdoor temperature sensor and an outdoor humidity sensor that output signals, respectively, an indoor temperature sensor and an indoor humidity sensor that are installed in the indoor suction port, detect the temperature and humidity of the indoor air, and output temperature and humidity signals, respectively;
  • There is a heat exchange ventilator configured to control the air volume of the air supply blower and the exhaust air blower based on the outdoor, indoor temperature sensor and the output signal of the outdoor and indoor humidity sensors (example) If, see Patent Document 2).
  • Patent Document 1 it is possible to supply outside air as it is without heat exchange by bypass operation or to increase the supply air volume by switching the air path. Since it was performed manually, it was not possible to respond sufficiently to changes in temperature inside and outside the room. In addition, although the supply air volume is increased by switching the air path, exhaust is lost and the supply / exhaust balance is lost. In fact, efficient ventilation cannot be achieved unless another exhaust port is provided.
  • the present invention has been made in view of the above, and heat exchange ventilation that can obtain a cooling effect in a short time by automatically introducing a large amount of outdoor air when the outdoor temperature is low with a simple configuration.
  • the object is to obtain a device.
  • the present invention is stored in a casing, sucks outdoor air from an outdoor suction port by an air supply blower, and passes through an air supply passage of a heat exchanger from an indoor outlet.
  • An outdoor temperature sensor that detects the temperature of the vehicle and outputs a temperature signal
  • an indoor temperature sensor that detects the temperature of the indoor air and outputs a temperature signal
  • the control device is in a state of heat exchange ventilation operation in which the damper opens the air supply passage side or the exhaust passage side, and the outdoor air temperature is equal to or higher than a first threshold value and the outdoor air temperature is When it is determined that the difference from the temperature of the room air is greater than or equal to the second threshold, the damper is switched to the bypass passage side to perform normal ventilation operation, and the air volume of the supply and exhaust fans is switched to normal ventilation operation. Control is performed to increase the air volume during the previous heat exchange ventilation operation.
  • the heat exchange ventilation operation and the normal ventilation operation that bypasses the heat exchanger and does not perform heat exchange are automatically switched to save the energy-saving effect according to the temperature situation. It is possible to reduce the power consumption of air conditioners and the like by providing ventilation.
  • the ventilation air volume is also automatically increased temporarily, so that outside air can be rapidly taken into the room to efficiently cool the room, and the ventilation air volume once increased from the middle can be increased. By returning to the original air volume, it is possible to obtain a heat exchange ventilator that realizes comfort in consideration of noise.
  • FIG. 1 is a perspective view showing a first embodiment of a heat exchange ventilator according to the present invention.
  • FIG. 2 is a perspective plan view of the heat exchange ventilation apparatus of the first embodiment.
  • FIG. 3 is a transparent side view of the heat exchange ventilator according to the first embodiment.
  • FIG. 4 is a block diagram of the blower control device according to the first embodiment.
  • FIG. 5 is an operation flowchart of the automatic normal ventilation operation according to the first embodiment.
  • FIG. 1 is a perspective view showing a first embodiment of a heat exchange ventilator according to the present invention
  • FIG. 2 is a perspective plan view
  • FIG. 3 is a perspective side view
  • FIG. 4 is a blower.
  • FIG. 5 is a flowchart showing the operation of the automatic normal ventilation operation.
  • a heat exchange ventilator 100 includes a heat exchanger 1 for exchanging heat between outdoor air and indoor air in a main body casing 2 formed in a rectangular parallelepiped box shape. Ventilate the room while exchanging heat by supplying and exhausting air.
  • the heat exchanger 1, the air supply fan 3, and the exhaust air fan 4 are assembled in the main body casing 2, and the air supply path component 7, the exhaust path component 8, the air supply side inlet part 9, and the exhaust side inlet part 10 are mounted.
  • an air supply path 5 and an exhaust path 6 are formed.
  • the air supply path 5 uses the opening of the main body casing 2 corresponding to the air supply side inlet component 9 as an outdoor suction port 11, and the heat exchanger 1 from the upper surface of the heat exchanger 1 through the air supply side inlet component 9.
  • the air supply passage 1a is passed through the air supply blower 3 to the outlet portion 7a of the air supply path component 7, and the opening of the main casing 2 corresponding to the opening of the outlet portion 7a is formed as an air outlet 12 for the indoor side outlet 12. Is done.
  • the exhaust path 6 uses the opening of the main casing 2 corresponding to the exhaust side inlet part 10 as an indoor suction port 13, and exhausts the heat exchanger 1 from the exhaust side inlet part 10 to the upper surface of the heat exchanger 1.
  • the exhaust fan 4 is connected to the outlet portion 8a of the exhaust passage component 8 through the passage 1b, and is formed as a ventilation passage having the opening of the main casing 2 corresponding to the opening of the outlet portion 8a as the outdoor outlet 14.
  • the bypass passage 15 is closed by the bypass damper 16 in front of the heat exchanger 1 upstream of the air supply path 5 and the bypass passage 15 side is opened by opening the bypass passage 15 side.
  • 11 is formed as a ventilation path that bypasses the heat exchanger 1 through the air supply side inlet part 9, passes through the bypass passage 15, and supplies outdoor air from the outlet part 7 a of the air supply path part 7 to the indoor side outlet 12. ing.
  • a duct connection cylinder 17 is attached to the outdoor inlet 11 and the indoor outlet 12 of the air supply passage 5 and the indoor inlet 13 and the outdoor outlet 14 of the exhaust passage 6. ing.
  • the heat exchange ventilator 100 configured in this manner supplies outdoor air through the heat exchanger 1 through the air supply path 5 into the room, and simultaneously exhausts indoor air through the heat exchanger 1 through the exhaust path 6.
  • the heat exchanger 1 can perform heat exchange ventilation operation by simultaneous supply and exhaust while performing heat exchange between the supply and exhaust in the heat exchanger 1.
  • an outdoor temperature sensor 18 that detects the temperature of outdoor air is installed at the outdoor suction port 11, and an indoor temperature sensor 19 that detects the temperature of indoor air is installed at the indoor suction port 13.
  • the outdoor temperature sensor 18 detects the temperature of the outdoor air and outputs a temperature signal to the control device.
  • the room temperature sensor 19 detects the temperature of room air and outputs it to the control device.
  • the heat exchange ventilator 100 can arbitrarily select the magnitude of ventilation airflow and the type of ventilation (heat exchange ventilation operation or normal ventilation operation bypassing the heat exchanger) by an external controller (not shown).
  • an external controller not shown
  • a case where the heat exchange ventilation operation is selected by the external controller (not shown) will be described.
  • the control device includes a calculation means 21, an air volume setting means 22, and a motor drive device 20.
  • the air volume setting means 22 selects the ventilation type selected by an external controller (not shown) and the external controller (not shown).
  • the motor driving device 20 operates the motors 3a and 4a of the blowers 3 and 4 based on the air volume signal selected in (1).
  • the calculation means 21 calculates the temperature difference between the outdoor air and the indoor air based on the temperature signals output from the outdoor temperature sensor 18 and the indoor temperature sensor 19.
  • the calculation means 21 outputs the calculation result of the temperature difference between the outdoor air and the room air to the air volume setting means 22, and the air volume setting means 22 determines the magnitude of the temperature difference between the output outdoor air and the room air, and the temperature of the outdoor air.
  • the bypass damper 16 is automatically switched and the air volume signal is output. Is automatically changed.
  • step S2 it is determined whether the ventilation type is heat exchange ventilation operation. If the ventilation type is heat exchange ventilation operation, the process proceeds to step S3. If the ventilation type is normal ventilation operation, the process returns to step 2. In step S3, it is determined whether the outdoor air temperature T1 detected by the outdoor temperature sensor 18 is equal to or higher than a threshold (first threshold) set assuming summer, for example, whether T1 ⁇ 19 ° C. To do.
  • a threshold first threshold
  • step S4 the outdoor air temperature T1 and the indoor air temperature T2 detected by the indoor temperature sensor 19 are compared, and a threshold value (second threshold value) at which the temperature difference ⁇ T by T2 ⁇ T1 is set. ) It is determined whether or not, for example, ⁇ T ⁇ 3K.
  • ⁇ T ⁇ 3K the process proceeds to step S5, and the air supply side bypass damper 16 is operated for the purpose of bringing the outdoor air cooler than the room temperature into the room directly without heat exchange and bringing a cooling effect.
  • the air passage is switched to the bypass passage 15 to bypass the heat exchanger 1, and the switching from the heat exchange ventilation operation to the normal ventilation operation without heat exchange is performed, and the air temperature signal from the external controller is ignored and the room temperature is rapidly increased.
  • the air volume setting means 22 outputs a signal of a strong air volume dedicated to the normal ventilation operation having a larger air volume than the maximum air volume that can be selected in the heat exchange ventilation operation.
  • a timer (not shown) is started at the same time as the forced air flow is forcibly operated.
  • step S6 it is determined whether or not the timer (not shown) for measuring the elapsed time since the start of the normal ventilation operation has passed a set threshold time, for example, whether 15 minutes have passed.
  • the process proceeds to step S7, where the air volume setting means 22 cancels the increased air volume at the start of the normal ventilation operation and is selected by the external controller (not shown) which is the air volume before the increase.
  • the airflow signal is output to the motor drive device 20, and the airflow of the blowers 3 and 4 is controlled to return to the airflow during the heat exchange ventilation operation.
  • the time during which the air flow rate is increased is within the threshold time, so that the time during which the noise is high is limited to a certain time. be able to. Therefore, at the start of normal ventilation operation where the outdoor temperature is significantly lower than the room temperature, the air volume is increased to effectively lower the room temperature in a short time, and after the room temperature has dropped to some extent, the air flow is restored to reduce the noise. It is possible to achieve both effective cooling by the outside air and comfortable driving sound.
  • step S6 If it is determined in step S6 that the timer is less than the above threshold value of 15 minutes, the process proceeds to step S8 to check whether the temperature difference ⁇ T between the outdoor air temperature T1 and the indoor air temperature T2 is within a set threshold range, for example, 0K ⁇ ⁇ T ⁇ 1K. If 0K ⁇ ⁇ T ⁇ 1K, the process proceeds to step S7 as described above.
  • step S9 it is determined whether or not the temperature difference ⁇ T is less than a set threshold value (fourth threshold value), for example, ⁇ T ⁇ 0K. If ⁇ T ⁇ 0K, the process proceeds to step S10, and the supply side The bypass damper 16 is operated again and switched from the bypass passage 15 to the intake passage 1a of the heat exchanger 1, thereby switching from the normal ventilation operation without heat exchange to the heat exchange ventilation operation and automatically performing the original heat exchange ventilation operation. Return to. Then, the process returns to step S2. In step S9, when ⁇ T includes a threshold value, that is, when ⁇ T ⁇ 0, the process may proceed to step S10.
  • a threshold value for example, ⁇ T ⁇ 0K
  • step S8 If it is determined in step S8 that 0K ⁇ ⁇ T ⁇ 1K is not satisfied, the process proceeds to step S11 to determine whether or not the temperature difference ⁇ T is less than a set threshold (third threshold), for example, ⁇ T ⁇ 0K. If ⁇ T ⁇ 0K, the process proceeds to step S10, and if ⁇ T ⁇ 0K is not satisfied, the process returns to step S6.
  • step S11 when ⁇ T includes a threshold value, that is, when ⁇ T ⁇ 0, the process may proceed to step S10. In this case, in step S8, if 0K ⁇ T ⁇ 1K is not satisfied, it is necessary to proceed to step S11.
  • the control device when operating with an air conditioner (not shown) and a heat exchange ventilator, the control device is provided with a detection device (detection means) for detecting an operation (cooling, etc.) signal from the air conditioner in the heat exchange ventilator.
  • a cooling signal from the air conditioner may be used instead of the outdoor temperature by the outdoor temperature sensor 18 in step S3.
  • the air conditioner (not shown) is in the cooling operation, the outdoor ventilation temperature can be operated when the outdoor air temperature is lower than the indoor air temperature regardless of the absolute value of the outdoor air temperature. Even in rooms with OA equipment that performs cooling operation even in seasons other than summer such as 19 ° C, it is possible to perform cooling using the outside air temperature by normal ventilation operation, and the air conditioner that cools regardless of the season It can reduce the load and save energy.
  • step S4 when ⁇ T ⁇ 3K, the air volume setting means 22 outputs the signal of the strong notch air volume with the highest air volume, but instead of the strong notch air volume, the air volume selected by the external controller 1.
  • the air volume signal output may be 2 to 1.5 times. In such a case, it takes more time for the room temperature to drop than ventilation with the maximum air volume as described above, but noise can be suppressed from that at the maximum air volume, so that a balance with quietness can be achieved.
  • the bypass passage 15 is provided on the supply passage 5 side.
  • the bypass passage is provided on the exhaust passage 6 side, and the exhaust side inlet part 10 is connected to the exhaust passage 6 from the indoor suction port 13. Then, the bypass damper may be switched to the bypass passage to bypass the heat exchanger 1, and the indoor air may be exhausted from the outlet portion 8a of the exhaust passage component 8 to the outdoor outlet 14.
  • the external controller (not shown) can select the ventilation type (heat exchange ventilation operation or normal ventilation operation bypassing the heat exchanger) and the ventilation air volume. If there is a change, the operation of the step is stopped immediately, and the operation is controlled so that the operation is performed with the ventilation type and the ventilation air volume selected and changed by the external controller.
  • the ventilation type heat exchange ventilation operation or normal ventilation operation bypassing the heat exchanger
  • threshold values for T1 and ⁇ T which are the reference for various controls, are stored in advance in a storage unit (not shown).
  • the threshold values of T1 and ⁇ T may be configured to be appropriately changed according to the use environment of the heat exchange ventilator 100.
  • the heat exchange ventilator according to the present invention is useful for a ventilator that performs indoor cooling using outside air according to the outdoor temperature.

Abstract

 本発明は、ケーシング2に格納され、室外空気を室内に給気する給気路5と、ケーシングに格納され、室内空気を室外に排気する排気路6と、室外空気の温度を検出する室外温度センサ18と、室内空気の温度を検出する室内温度センサ19と、室外温度センサと室内温度センサの出力信号に基づいて給気送風機及び排気送風機の送風量を制御する制御装置と、給気通路又は排気通路と並設され熱交換器を迂回するバイパス通路15と、給気通路又は排気通路とバイパス通路とを切換えるダンパ16と、を備え、制御装置は、熱交換換気運転の状態であって、室外空気の温度がある第1の閾値以上で、室外空気の温度と室内空気の温度との差が第2の閾値以上である、と判定した時、ダンパをバイパス通路側へ切換えて普通換気運転を行わせるとともに、給気送風機と排気送風機の風量を普通換気運転切り替え前の熱交換換気運転時の風量より増加させる制御を行う。

Description

熱交換換気装置
 本発明は、熱交換器を介して同時給排気による熱交換を行う熱交換換気装置に関するものである。
 従来、吸込口と吹出口とを室内側と室外側のそれぞれに一組ずつ設けた箱体と、この箱体内で交差するように設けられた上記室内側から上記室外側に至る給気路および排気路と、これらの給気路と排気路に設けられた給気流および排気流を形成する送風機と、上記交差部に設けられ上記給気流と上記排気流との間で熱交換する熱交換器と、上記排気路と並設され上記熱交換器を迂回するバイパス通路と、このバイパス通路を開閉するバイパスダンパと、上記排気通路の側壁に設けられた風路切換えダンパを備え、上記バイパスダンパと上記風路切換えダンパにより上記送風機の吸込みおよび吹出し方向を切換えるようにした熱交換器付換気装置がある(例えば、特許文献1参照)。
 また、ケーシングに格納され、給気送風機により室外側吸込口から室外空気を吸込み、熱交換器の給気通路を通して室内側吹出口から室内に給気する給気路と、排気送風機により室内側吸込口から室内空気を吸込み、前記熱交換器の排気通路を通して室外側吹出口から室外に排気する排気路を備え、前記室外側吸込口に設置され室外空気の温度及び湿度を検出して温度及び湿度信号を夫々出力する室外温度センサ及び室外湿度センサと、前記室内側吸込口に設置され室内空気の温度及び湿度を検出して温度及び湿度信号を夫々出力する室内温度センサ及び室内湿度センサと、前記室外、室内温度センサ及び室外、室内湿度センサの出力信号に基づいて前記給気送風機及び排気送風機の送風量を制御するようにした熱交換換気装置がある(例えば、特許文献2参照)。
特開平01-318841号公報 特開2008-309381号公報
 しかしながら、特許文献1に記載された従来の技術によれば、バイパス運転により熱交換しないで外気をそのまま給気したり、風路切り替えによる給気風量を増加させたりすることができるが、その切り替えは手動で行っていたため、室内外の温度変化に対してその都度十分に対応することはできなかった。また、風路切り替えにより給気風量は増加させられるが、排気がなくなってしまうため給排気バランスがくずれ、実際には別の排気口を設けないと効率的な換気ができなかった。
 また、特許文献2に記載された従来の技術によれば、室外側吸込口及び室内側吸込口に湿度センサを設置しなければならず、そのためコストが上がり、制御回路が複雑になってしまう、という問題があった。また、除湿を目的とした風量制御であるため、夏場で室外温度が室内温度より低い場合などに室外空気を使って室内を冷却するような外気冷房もできなかった。
 本発明は、上記に鑑みてなされたものであって、簡単な構成で室外温度が低いとき自動的に多量の室外空気を導入することで、短時間で冷房効果を得ることができる熱交換換気装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、ケーシングに格納され、給気送風機により室外側吸込口から室外空気を吸込み、熱交換器の給気通路を通して室内側吹出口から室内に給気する給気路と、ケーシングに格納され、排気送風機により室内側吸込口から室内空気を吸込み、熱交換器の排気通路を通して室外側吹出口から室外に排気する排気路と、室外空気の温度を検出し温度信号を出力する室外温度センサと、室内空気の温度を検出し温度信号を出力する室内温度センサと、室外温度センサと室内温度センサの出力信号に基づいて給気送風機及び排気送風機の送風量を制御する制御装置と、給気通路又は排気通路と並設され熱交換器を迂回するバイパス通路と、給気通路又は排気通路とバイパス通路とを切換えるダンパと、を備え、制御装置は、ダンパが給気通路側又は排気通路側を開いた熱交換換気運転の状態であって、室外空気の温度がある第1の閾値以上で、室外空気の温度と室内空気の温度との差が第2の閾値以上である、と判定した時、ダンパをバイパス通路側へ切換えて普通換気運転を行わせるとともに、給気送風機と排気送風機の風量を普通換気運転切り替え前の熱交換換気運転時の風量より増加させる制御を行うことを特徴とする。
 この発明によれば室外温度と室内温度の温度状況に合わせて、熱交換換気運転と、熱交換器を迂回させて熱交換させない普通換気運転を自動で切り替えることで、温度状況にあわせた省エネ効果のある換気を実現し空調機等の消費電力を低減させることができる。また自動で普通換気に切り替えた時に換気風量も自動で一時的に増加させることで、外気を急速に室内に取り入れ効率よく室内を冷房することができると共に、更に途中からいったん増加させた換気風量を元の風量に戻すことで騒音にも考慮した快適性を実現した熱交換換気装置を得ることができる。
図1は、本発明にかかる熱交換換気装置の実施の形態1を示す透視斜視図である。 図2は、実施の形態1の熱交換換気装置の透視平面図である。 図3は、実施の形態1の熱交換換気装置の透視側面図である。 図4は、実施の形態1の送風機の制御装置のブロック図である。 図5は、実施の形態1の自動普通換気運転の動作フローチャート図である。
 以下に、本発明にかかる熱交換換気装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる熱交換換気装置の実施の形態1を示す透視斜視図であり、図2は、透視平面図であり、図3は、透視側面図であり、図4は、送風機の制御装置のブロック図であり、図5は、自動普通換気運転の動作を表したフローチャート図である。図1~図3に示すように、熱交換換気装置100は、室外空気と室内空気の熱交換を行う熱交換器1が、直方体の箱形に形成された本体ケーシング2内に設置され、同時給排気により、熱交換を行いながら室内の換気を行う。
 本体ケーシング2内には、給気送風機3により室外側吸込口11から室外空気を吸込み、熱交換器1の給気通路1a(図3参照)を通して室内側吹出口12から室内に給気する給気路5と、排気送風機4により室内側吸込口13から室内空気を吸込み、熱交換器1の排気通路1b(図3参照)を通して室外側吹出口14から室外に排気する排気路6と、が形成されている。
 また本体ケーシング2内に、熱交換器1、給気送風機3及び排気送風機4を組付け、給気路部品7と排気路部品8、給気側入口部品9と排気側入口部品10を装着することにより、給気路5と排気路6が形成される。
 給気路5は、給気側入口部品9に対応する本体ケーシング2の開口部を室外側吸込口11とし、給気側入口部品9から熱交換器1の上側の面から熱交換器1の給気通路1aを経て給気送風機3から給気路部品7の出口部分7aに至り、出口部分7aの開口部に対応する本体ケーシング2の開口部を室内側吹出口12とする通風路として形成される。
 一方、排気路6は、排気側入口部品10に対応する本体ケーシング2の開口部を室内側吸込口13とし、排気側入口部品10から熱交換器1の上側の面から熱交換器1の排気通路1bを経て排気送風機4から排気路部品8の出口部分8aに至り、出口部分8aの開口部に対応する本体ケーシング2の開口部を室外側吹出口14とする通風路として形成される。
 また、バイパス通路15は、バイパスダンパ16により給気路5の熱交換器1の上流側手前で給気路5を閉じバイパス通路15側を開放することにより、給気路5の室外側吸込口11から給気側入口部品9を経て熱交換器1を迂回してバイパス通路15を通り給気路部品7の出口部分7aから室内側吹出口12に室外空気を給気する通風路として形成されている。
 本体ケーシング2の外側側面で、給気路5の室外側吸込口11及び室内側吹出口12、排気路6の室内側吸込口13及び室外側吹出口14には、ダクト接続筒17が取付けられている。
 このように構成された熱交換換気装置100は、給気路5により熱交換器1を通して室外空気を室内へ給気すると同時に、排気路6により熱交換器1を通して室内空気を室外に排気することができ、熱交換器1で給気と排気の間で熱交換を行いながら同時給排気による熱交換換気運転を行うことができる。
 また、バイパスダンパ16によりバイパス通路15へ切り替えることにより、給気送風機3により室外空気を、熱交換器1を通さずに室内へ給気することができ、熱交換を伴わない普通換気運転を行うことができる。
 本体ケーシング2内には、室外側吸込口11に室外空気の温度を検出する室外温度センサ18、室内側吸込口13に室内空気の温度を検出する室内温度センサ19を夫々設置している。室外温度センサ18は、室外空気の温度を検出し、温度信号を制御装置に向けて出力する。室内温度センサ19は、室内空気の温度を検出し、制御装置に向けて出力する。
 次に制御の概略について説明する。熱交換換気装置100は外部コントローラ(図示せず)により、換気風量の大小および換気種類(熱交換換気運転又は熱交換器を迂回させた普通換気運転)を任意に選択できるようになっている。以下は前記外部コントローラ(図示せず)で熱交換換気運転が選択されている場合について説明する。
 制御装置は、演算手段21、風量設定手段22、モータ駆動装置20を備える。図4のブロック図に示すように、熱交換換気装置100の運転が開始されると、風量設定手段22は、外部コントローラ(図示せず)で選択された換気種類、および前記外部コントローラ(図示せず)で選択された風量信号に基づき、モータ駆動装置20に送風機3、4のモータ3a、4aを動作させる。演算手段21は、換気種類が熱交換換気運転の場合には、室外温度センサ18、室内温度センサ19から出力された温度信号に基づいて、室外空気と室内空気の温度差を算出する。
 演算手段21は、室外空気と室内空気の温度差の演算結果を風量設定手段22に出力し、風量設定手段22は、出力された室外空気と室内空気の温度差の大小と、室外空気の温度によっては、前記外部コントローラ(図示せず)で選択されている換気種類及び風量を無視し、自動でバイパスダンパ16の切り替え及び風量信号の出力を行い、モータ駆動装置20により送風機3、4の風量が自動変更される。
 次に図5のフローチャート図で自動普通換気運転の制御の詳細を説明する。熱交換換気装置100の運転を開始させると、ステップS1で前記外部コントローラ(図示せず)により選択された換気種類と風量信号に基づいた風量で換気運転が行われる。そしてステップS2で換気種類が熱交換換気運転であるかどうか判定し、熱交換換気運転である場合にはステップS3に進み、普通換気運転である場合にはステップ2の判定に戻る。そしてステップS3では、室外温度センサ18により検出された室外空気温度T1が夏を想定して設定された閾値(第1の閾値)以上であるかどうか、例えばT1≧19℃であるかどうかを判定する。
 T1≧19℃であればステップS4に進み、室外空気温度T1と室内温度センサ19により検出された室内空気温度T2を比較し、T2-T1による温度差ΔTが設定された閾値(第2の閾値)以上であるかどうか、例えばΔT≧3K であるかどうかを判定する。ΔT≧3Kである時はステップS5に進み、室内温度より冷たい室外空気を熱交換しないで冷たいまま直接室内へ取入れて冷房効果をもたらすことを目的として、給気側のバイパスダンパ16を動作させ、バイパス通路15に風路を切り替えて熱交換器1を迂回させ、熱交換換気運転から熱交換しない普通換気運転へ切り替えを行うと共に、前記外部コントローラからの風量信号を無視して急速に室内温度を下げさせるために風量設定手段22で、熱交換換気運転で選択可能な最大風量よりも更に風量の多い普通換気運転専用の特強風量の信号出力をさせ、それに基づき送風機3、4の送風量を強制的に特強風量で運転させると同時にタイマ(図示しない)をスタートさせる。
 このような制御を行うことで、熱交換されないで冷たいままの室外空気を室内に取り込み、熱い室内空気をそのまま室外に排出させることができるため、外気温度を利用した冷房を自動的に行うことができる。また、換気風量を強制的に最大風量とさせることで短時間に室内温度を下げ、冷房するための空調機の負荷を低減し省エネを図ることができる。
 次にステップS6で、普通換気運転を開始してからの経過時間を計測する前記タイマ(図示しない)が設定された閾値時間を経過したかどうか、例えば15分経過したかどうかを判定し、15分経過した場合には、ステップS7に進み、風量設定手段22は普通換気運転開始時に増加させた送風量を解除し、増加させる前の送風量である前記外部コントローラ(図示せず)で選択されている風量信号に基づき風量信号をモータ駆動装置20に出力し、送風機3、4の送風量を熱交換換気運転時の送風量に戻す制御を行う。
 このような制御を行うことで、送風量を増加させたことによる運転騒音増加に対し、送風量を増加させる時間を上記閾値時間内までとすることで、騒音が大きい時間を一定時間だけに留めることができる。そのため、室外温度が室内温度よりも著しく低い普通換気運転開始時には風量を増加させて短時間で効果的に室内温度を下げるとともに、ある程度室内温度が下がった後は送風量を元に戻し低騒音化を優先することで効果的な外気による冷房と快適な運転音の両立を図ることもできる。
 また、ステップS6でタイマが上記閾値である15分未満の場合、ステップS8に進み室外空気温度T1と室内空気温度T2の温度差ΔTが設定された閾値の範囲かどうか、例えば0K≦ΔT≦1Kであるかどうかを判定し、0K≦ΔT≦1Kであれば上記と同様にステップS7へ進む。このような制御を行うことで、短時間で急速に冷房できた場合には運転騒音小さい元の送風量に自動的に戻されるので外気による冷房と快適な運転音の両立を図ることができる。
 次にステップS9で、温度差ΔTが設定された閾値(第4の閾値)未満かどうか、例えばΔT<0Kであるかどうかを判定し、ΔT<0KであればステップS10に進み、給気側のバイパスダンパ16を再び動作させ、バイパス通路15から熱交換器1の吸気通路1aに切り替えることで、熱交換しない普通換気運転から熱交換換気運転へ切り替えを行い自動的に元の熱交換換気運転に戻す。そしてその後ステップS2に戻る。なお、ステップS9において、ΔTが閾値を含む場合、すなわちΔT≦0である場合にステップS10に進むように構成しても構わない。
 ステップS8で、0K≦ΔT≦1Kを満足しない場合にはステップS11へ進み、温度差ΔTが設定された閾値(第3の閾値)未満かどうか、例えばΔT<0Kであるかどうかを判定し、ΔT<0KであればステップS10へ進み、ΔT<0Kを満足しなければステップS6に戻る。なお、ステップS11において、ΔTが閾値を含む場合、すなわちΔT≦0である場合にステップS10に進むように構成しても構わない。この場合、ステップS8で、0K<ΔT≦1Kを満足しない場合にはステップS11へ進むように構成する必要がある。
 以上の動作により、普通換気運転と熱交換換気運転とを自動で切り替えることで、室外室内温度状況に合わせて空調機負荷を低減でき最適な省エネ換気を実現することができる。また風量を自動で制御することで急速に室内を冷房できるとともに温度状況に合わせて運転騒音を考慮した換気を行うことができる。
 また一旦熱交換換気運転に戻ったら、ΔT≧3Kを満たさないと自動的に普通換気運転を開始しないので、室外空気と室内空気の温度差が0K付近で変動する場合に、熱交換換気運転と普通換気運転との切り替えが多発することを抑えることができる。
 また、空調機(図示しない)と熱交換換気装置を併設して運転するとき、熱交換換気装置に空調機からの運転(冷房等)信号を検出する検出装置(検出手段)を制御装置に設けることで、ステップS3での室外温度センサ18による室外温度の代わりに空調機からの冷房信号を用いてもよい。この構成によれば空調機の使用状態が冷房運転であれば夏と判断でき、上記と同様に自動で普通換気運転による外気温度を利用した冷房をすることができる。またこの場合、空調機(図示しない)が冷房運転であれば室外空気温度の絶対値によらず、室外空気温度が室内空気温度より低い場合に普通換気運転ができるため、室外温度T1がT1<19℃のような夏季以外の季節でも冷房運転を行うようなOA機器等がある部屋等においても普通換気運転による外気温度を利用した冷房をすることができ、季節に関係なく冷房する空調機の負荷を低減し省エネを図ることができる。
 なお、ステップS4ではΔT≧3Kの場合、風量設定手段22で最も風量のある強ノッチ風量の信号出力をさせたが、強ノッチ風量の代わりに、前記外部コントローラで選択されている風量の1.2~1.5倍になるような風量信号出力を行ってもよい。その場合には、上記のような最大風量で換気するよりも室内温度が下がるまでの時間はかかるが、最大風量時より騒音が抑えられるため、静音性とのバランスをとることができる。
 また、熱交換器1の給気通路1aと排気通路1bにそれぞれ給気と排気の空気が流れることで、その給気側空気と排気側空気の間で熱交換されるため、給気側空気がバイパス通路15を通り吸気通路1aを通らない場合には排気通路1bを通る排気空気も熱交換されないため、給気空気も排気空気も熱交換を伴わない普通換気として機能している。従って、上記実施例では給気路5側にバイパス通路15を設けた実施例を示したが、排気路6側にバイパス通路を設け、排気路6の室内側吸込口13から排気側入口部品10を経て、バイパスダンパでバイパス通路に切り替えて熱交換器1を迂回し、排気路部品8の出口部分8aから室外側吹出口14に室内空気を排気するようにしてもよい。
 また、図5に示すどのステップの運転状態であっても、前記外部コントローラ(図示せず)の換気種類(熱交換換気運転又は熱交換器を迂回させた普通換気運転)および換気風量の選択に変化があれば直ぐにステップの動作を中止し、前記外部コントローラで変更選択された換気種類や換気風量で動作を行うように制御されている。
 なお、各種制御の基準となるT1やΔTの閾値は、図示しない記憶部に予め保持される。また、T1やΔTの閾値は、熱交換換気装置100の使用環境等に応じて適宜、変更可能に構成してもよい。
 以上のように、本発明にかかる熱交換換気装置は、室外温度に合わせて外気を利用した室内冷房を行う換気装置に有用である。
1 熱交換器
1a 給気通路
1b 排気通路
2 本体ケーシング
3 給気送風機
4 排気送風機
3a モータ
4a モータ
5 給気路
6 排気路
7 給気路部品
8 排気路部品
7a 出口部分
8a 出口部分
9 給気側入口部品
10 排気側入口部品
11 室外側吸込口
12 室内側吹出口
13 室内側吸込口
14 室外側吹出口
15 バイパス通路
16 バイパスダンパ
17 ダクト接続筒
18 室外温度センサ
19 室内温度センサ
20 モータ駆動装置
21 演算手段
22 風量設定手段
100 熱交換換気装置

Claims (6)

  1.  ケーシングに格納され、給気送風機により室外側吸込口から室外空気を吸込み、熱交換器の給気通路を通して室内側吹出口から室内に給気する給気路と、
     前記ケーシングに格納され、排気送風機により室内側吸込口から室内空気を吸込み、前記熱交換器の排気通路を通して室外側吹出口から室外に排気する排気路と、
     室外空気の温度を検出し温度信号を出力する室外温度センサと、
     室内空気の温度を検出し温度信号を出力する室内温度センサと、
     前記室外温度センサと前記室内温度センサの出力信号に基づいて前記給気送風機及び前記排気送風機の送風量を制御する制御装置と、
     前記給気通路又は前記排気通路と並設され前記熱交換器を迂回するバイパス通路と、
     前記給気通路又は前記排気通路と前記バイパス通路とを切換えるダンパと、を備え、
     前記制御装置は、前記ダンパが前記給気通路側又は前記排気通路側を開いた熱交換換気運転の状態であって、室外空気の温度がある第1の閾値以上で、室外空気の温度と室内空気の温度との差が第2の閾値以上である、と判定した時、前記ダンパを前記バイパス通路側へ切換えて普通換気運転を行わせるとともに、前記給気送風機と前記排気送風機の風量を前記普通換気運転切り替え前の熱交換換気運転時の風量より増加させる制御を行うことを特徴とする熱交換換気装置。
  2.  前記室外温度センサは、前記室外側吸込口に設置され、
     前記室内温度センサは、前記室内側吸込口に設置されることを特徴とする請求項1に記載の熱交換換気装置。
  3.  前記制御装置は、空調機の運転状態を検知する検知手段を設け、前記検知手段が前記空調機の冷房運転の信号を検出し、室外空気の温度が室内空気の温度より低い、と判定した時、前記ダンパを前記バイパス通路側へ切換えた普通換気運転を行うとともに、前記給気送風機と前記排気送風機の風量を前記普通換気運転切り替え前の熱交換換気運転時の風量より増加させる制御を行うことを特徴とする請求項1に記載の熱交換換気装置。
  4.  前記制御装置は前記ダンパを前記バイパス通路側へ切換えた普通換気運転の制御を行うとともに、前記給気送風機と前記排気送風機の風量を増加させてから一定時間経過後に前記給気送風機と前記排気送風機の風量を前記普通換気運転切り替え前の熱交換換気運転時の風量に戻す制御をすることを特徴とする請求項1に記載の熱交換換気装置。
  5.  前記制御装置は前記ダンパを前記バイパス通路側へ切換えた普通換気運転の制御を行うとともに、前記給気送風機と前記排気送風機の風量を増加させた後、前記室外温度センサによって検出された室外空気の温度と、前記室内温度センサによって検出された室内空気の温度との温度差が第3の閾値以下と判定した時、前記給気送風機と前記排気送風機の風量を前記普通換気運転切り替え前の熱交換換気運転時の風量に戻す制御をすることを特徴とする請求項1に記載の熱交換換気装置。
  6.  前記制御装置は前記ダンパを前記バイパス通路側へ切換えた普通換気運転の制御を行うとともに、前記給気送風機と前記排気送風機の風量を増加させた後、前記室外温度センサによって検出された室外空気の温度と、前記室内温度センサによって検出された室内空気の温度との温度差がある第4の閾値以下と判定した時、前記バイパス通路から前記熱交換器の前記給気通路又は前記排気通路へ前記ダンパを切換え、熱交換換気運転に戻す制御をすることを特徴とする請求項1に記載の熱交換換気装置。
     
PCT/JP2010/053469 2009-03-30 2010-03-03 熱交換換気装置 WO2010116824A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547389A JPWO2010116824A1 (ja) 2009-03-30 2010-03-03 熱交換換気装置
EP10761526A EP2345855A4 (en) 2009-03-30 2010-03-03 THERMAL EXCHANGE VENTILATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-082188 2009-03-30
JP2009082188 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116824A1 true WO2010116824A1 (ja) 2010-10-14

Family

ID=42936112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053469 WO2010116824A1 (ja) 2009-03-30 2010-03-03 熱交換換気装置

Country Status (4)

Country Link
EP (1) EP2345855A4 (ja)
JP (1) JPWO2010116824A1 (ja)
TW (1) TW201042218A (ja)
WO (1) WO2010116824A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563825A (zh) * 2011-12-26 2012-07-11 广东美的暖通设备有限公司 新风换热机组及其控制方法
JP2013015297A (ja) * 2011-07-06 2013-01-24 Mitsubishi Electric Corp 空気処理装置
JP2013092271A (ja) * 2011-10-24 2013-05-16 Mitsubishi Electric Corp 換気装置及び換気システム
CN105091178A (zh) * 2015-08-31 2015-11-25 江苏知民通风设备有限公司 一种带旁通通道的新风换气机
JP2016211753A (ja) * 2015-04-30 2016-12-15 ダイキン工業株式会社 調湿装置
JP2017203592A (ja) * 2016-05-12 2017-11-16 ダイキン工業株式会社 調湿装置
WO2019058516A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 熱交換型換気装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930030B2 (en) 2011-09-30 2015-01-06 Siemens Industry, Inc. Method and system for improving energy efficiency in an HVAC system
CN103206760A (zh) * 2013-04-03 2013-07-17 天长市通冠无动力风机有限公司 一种动力风机与无动力风机的联动排气控制系统和方法
GB2522629B (en) * 2014-01-29 2019-10-16 Nuaire Ltd A heat exchanger bypass apparatus
GB2531731B (en) * 2014-10-28 2020-08-26 Vent-Axia Group Ltd Casing for a heat recovery system
DE102015012848A1 (de) * 2015-10-06 2017-04-06 Eisenmann Se Vorrichtung zur Temperierung von Gegenständen sowie Verfahren zur Steuerung einer Vorrichtung zur Temperierung von Gegenständen
FR3096116B1 (fr) * 2019-05-13 2021-06-04 Atlantic Climatisation & Ventilation Systeme de ventilation d’un local
GB2600694B (en) * 2020-11-02 2022-11-02 Monodraught Ltd Ventilation arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318841A (ja) 1988-06-17 1989-12-25 Mitsubishi Electric Corp 熱交換器付換気装置
JP2002206778A (ja) * 2001-01-12 2002-07-26 Daikin Ind Ltd 空気調和装置
JP2007032936A (ja) * 2005-07-27 2007-02-08 Max Co Ltd 空調システムおよびこの空調システムを備えた建物
JP2008082691A (ja) * 2006-09-26 2008-04-10 Samsung Electronics Co Ltd 流路切換装置及びこれを備えた換気装置
JP2008309381A (ja) 2007-06-13 2008-12-25 Mitsubishi Electric Corp 熱交換換気装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428674B2 (ja) * 1993-03-12 2003-07-22 株式会社荏原製作所 全熱交換器
JPH07180876A (ja) * 1993-12-22 1995-07-18 Matsushita Seiko Co Ltd 空調換気扇
JP3438280B2 (ja) * 1993-12-24 2003-08-18 三菱電機株式会社 空調換気装置
JPH109635A (ja) * 1996-06-19 1998-01-16 Mitsubishi Electric Corp 熱交換換気装置
NL1009747C2 (nl) * 1998-01-09 1999-07-12 Stork J E Ventilatoren Bv Warmtewisselaar-systeem.
JPH11223372A (ja) * 1998-02-04 1999-08-17 Mitsubishi Electric Corp 換気装置
JP3755365B2 (ja) * 2000-01-12 2006-03-15 三菱電機株式会社 熱交換換気装置
DE10010832C1 (de) * 2000-03-09 2001-11-22 Krantz Tkt Gmbh Vorrichtung zur Temperierung und/oder Belüftung eines Raumes
JP3551124B2 (ja) * 2000-04-19 2004-08-04 ダイキン工業株式会社 空気調和装置
JP2002031384A (ja) * 2000-07-14 2002-01-31 Mitsubishi Electric Corp 熱交換換気装置
JP3744409B2 (ja) * 2001-11-14 2006-02-08 ダイキン工業株式会社 熱交換器ユニット
JP4295541B2 (ja) * 2003-03-28 2009-07-15 東芝キヤリア株式会社 換気システム
JP2005282949A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 空気調和装置
JP4675075B2 (ja) * 2004-09-03 2011-04-20 三洋電機株式会社 空気調和装置及び空気調和装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318841A (ja) 1988-06-17 1989-12-25 Mitsubishi Electric Corp 熱交換器付換気装置
JP2002206778A (ja) * 2001-01-12 2002-07-26 Daikin Ind Ltd 空気調和装置
JP2007032936A (ja) * 2005-07-27 2007-02-08 Max Co Ltd 空調システムおよびこの空調システムを備えた建物
JP2008082691A (ja) * 2006-09-26 2008-04-10 Samsung Electronics Co Ltd 流路切換装置及びこれを備えた換気装置
JP2008309381A (ja) 2007-06-13 2008-12-25 Mitsubishi Electric Corp 熱交換換気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2345855A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015297A (ja) * 2011-07-06 2013-01-24 Mitsubishi Electric Corp 空気処理装置
JP2013092271A (ja) * 2011-10-24 2013-05-16 Mitsubishi Electric Corp 換気装置及び換気システム
CN102563825A (zh) * 2011-12-26 2012-07-11 广东美的暖通设备有限公司 新风换热机组及其控制方法
JP2016211753A (ja) * 2015-04-30 2016-12-15 ダイキン工業株式会社 調湿装置
CN105091178A (zh) * 2015-08-31 2015-11-25 江苏知民通风设备有限公司 一种带旁通通道的新风换气机
JP2017203592A (ja) * 2016-05-12 2017-11-16 ダイキン工業株式会社 調湿装置
WO2019058516A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 熱交換型換気装置

Also Published As

Publication number Publication date
JPWO2010116824A1 (ja) 2012-10-18
TW201042218A (en) 2010-12-01
EP2345855A4 (en) 2012-06-13
EP2345855A1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2010116824A1 (ja) 熱交換換気装置
JP3551124B2 (ja) 空気調和装置
JP5061642B2 (ja) 空調換気装置
JP5312055B2 (ja) 空気調和システム
KR101034936B1 (ko) 전열교환형 환기장치 및 그 제어방법
JP3744409B2 (ja) 熱交換器ユニット
JP2013113473A (ja) 熱交換換気装置
WO2018056191A1 (ja) 熱交換形換気装置
JP2838941B2 (ja) ダクト式空気調和機
JP6156245B2 (ja) 換気装置及び換気空調システム
JP6074651B2 (ja) 全熱交換型換気装置
JP2016176653A (ja) 空気調和機
JP2000121132A (ja) 空気調和装置
KR20190114466A (ko) 공기 조화기 및 그의 제어방법
KR102374216B1 (ko) 열회수 기능을 구비한 제습 환기시스템
JP3102159B2 (ja) 空気調和装置
JP2002071184A (ja) 換気空調方法及び換気空調システム
JP2010145012A (ja) 熱交換型換気装置
JP3028065B2 (ja) 換気装置の運転制御装置
JP2000088327A (ja) 空調用室内機およびその吹出温度制御方法
JP5324204B2 (ja) サーバ室等の空調システム
JP6861824B2 (ja) 熱交換換気装置
JP2013137189A (ja) 空気調和システム
KR100816925B1 (ko) 환기 겸용 공기조화기
JP2007071495A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547389

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010761526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE