WO2010116794A1 - N-オキシル化合物の回収・再利用方法 - Google Patents

N-オキシル化合物の回収・再利用方法 Download PDF

Info

Publication number
WO2010116794A1
WO2010116794A1 PCT/JP2010/052277 JP2010052277W WO2010116794A1 WO 2010116794 A1 WO2010116794 A1 WO 2010116794A1 JP 2010052277 W JP2010052277 W JP 2010052277W WO 2010116794 A1 WO2010116794 A1 WO 2010116794A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste water
oxyl compound
electrodialysis
raw material
oxyl
Prior art date
Application number
PCT/JP2010/052277
Other languages
English (en)
French (fr)
Inventor
宮脇 正一
志穂 勝川
裕 阿部
夕子 飯嶋
明 磯貝
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2010533771A priority Critical patent/JP4669584B2/ja
Priority to US13/257,732 priority patent/US8865886B2/en
Priority to CA2755338A priority patent/CA2755338C/en
Priority to EP10761496.8A priority patent/EP2415761B1/en
Priority to CN201080013754.0A priority patent/CN102361854B/zh
Publication of WO2010116794A1 publication Critical patent/WO2010116794A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/94Oxygen atom, e.g. piperidine N-oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention efficiently collects an expensive N-oxyl compound from wastewater generated in an oxidized cellulose production process using an N-oxyl compound as a cellulose oxidation catalyst, and contains the N-oxyl compound after the recovery treatment. On how to reuse.
  • Non-patent Document 1 It is known that a primary hydroxyl group of cellulose can be oxidized into a carboxyl group and an aldehyde group by treating a cellulose-based raw material in the presence of a catalytic amount of an N-oxyl compound and a chlorine-based oxidant.
  • N-oxyl compound which is a catalyst used in this oxidized cellulose production technology, is very expensive, it is desirable to recover it from the waste water after completion of the reaction and reuse it.
  • the present invention recovers N-oxyl compounds at a high recovery rate from waste water after oxidation treatment of cellulosic raw materials containing inorganic salts, water-soluble organic substances, N-oxyl compounds, and the like.
  • An object is to provide a method capable of
  • the present inventors have conducted electrodialysis of the waste water after the oxidation treatment of the cellulosic raw material to desalinate it to a specific inorganic salt concentration, thereby obtaining a high recovery rate of the N-oxyl compound.
  • the inventors have found that it can be easily recovered, and that the recovered N-oxyl compound can be reused well, and the present invention has been completed. That is, the present invention is as follows. 1. (1) N-oxyl compound, and (2) from waste water generated when oxidizing a cellulosic raw material using an oxidizing agent in the presence of a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • a method for recovering an N-oxyl compound which comprises desalting the waste water by electrodialysis so that the concentration of inorganic salts in the waste water is less than 0.4%.
  • 2. The method according to 1 above, wherein the waste water is treated with an ion exchange resin before the waste water is desalted by electrodialysis. 3.
  • 3. The method according to 1 or 2 above, wherein the waste water is subjected to reduction treatment before desalting the waste water by electrodialysis. 4). 4. The method according to any one of 1 to 3 above, wherein the waste water is subjected to reduction treatment, then treated with an ion exchange resin, and then desalted by electrodialysis. 5).
  • the recovered N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO), 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine.
  • -N-oxy radical (4-hydroxy TEMPO), a 4-hydroxy TEMPO derivative obtained by etherification or esterification of a hydroxyl group of 4-hydroxy TEMPO, an azaadamantane type nitroxy radical, or a mixture thereof, 5.
  • the method according to any one of 4 to 4. 6).
  • wastewater containing N-oxyl compound is desalted using electrodialysis, so that expensive N-oxyl compound is recovered at a high recovery rate, preferably at a recovery rate of 80% or more.
  • N-oxyl compounds used for the oxidation of cellulosic raw materials have a relatively low molecular weight, so when subjected to electrodialysis treatment, they diffuse through the membrane in large quantities, and most of them are lost along with inorganic salts. Therefore, it was a surprising result that the electrodialysis treatment of the present invention was able to recover the N-oxyl compound at a high recovery rate.
  • the inventors of the present invention have described a liquid after electrodialysis treatment containing an N-oxyl compound and desalted to an inorganic salt concentration of less than 0.4% as a whole or one of the oxidation catalysts in the oxidation of cellulosic raw materials. It was found for the first time that cellulose nanofibers having high transparency can be obtained by reusing them as parts.
  • the desalination efficiency during electrodialysis is further improved by treating the wastewater with an ion exchange resin to remove impurities (substances other than N-oxyl compounds) before the electrodialysis of the wastewater.
  • N-oxyl compound can be recovered at a higher recovery rate.
  • the liquid containing the N-oxyl compound thus obtained can be reused as all or part of the oxidation catalyst in the oxidation of the cellulosic raw material, and cellulose nanofibers having higher transparency can be obtained.
  • the present invention relates to a method for recovering and reusing an N-oxyl compound from wastewater generated by oxidation of a cellulosic raw material using the N-oxyl compound, and in addition to the N-oxyl compound, bromide and / or iodide Wastewater containing impurities such as sodium chloride, oxidant, calcium ions, pulp-derived water-soluble polysaccharides as impurities is removed by electrodialysis to remove impurities from the wastewater, and N-oxyl in the wastewater It is characterized by concentrating the compound.
  • impurities such as sodium chloride, oxidant, calcium ions, pulp-derived water-soluble polysaccharides as impurities
  • wastewater generated from a reaction of oxidizing a cellulosic raw material using an oxidizing agent in the presence of an N-oxyl compound and bromide and / or iodide can be used.
  • R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • 4-hydroxy-2,2,6,6-tetramethyl-1 A -piperidine-oxy radical hereinafter referred to as 4-hydroxy TEMPO
  • the N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity. Since the 4-hydroxy TEMPO derivative is inexpensive and can provide a uniform oxidized pulp, it can be preferably used for the oxidation of cellulosic raw materials, and can be efficiently recovered by the method of the present invention.
  • R is a linear or branched carbon chain having 4 or less carbon atoms.
  • N-oxyl compound represented by the following formula 5, that is, an azaadamantane type nitroxy radical, is also preferable for the same reason as the 4-hydroxy TEMPO derivative.
  • R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used in the oxidation of the cellulosic raw material is generally 0.01 to 10 mmol, preferably 0.01 to 1 mmol, more preferably relative to 1 g of the cellulosic raw material. Is about 0.05 to 0.5 mmol.
  • bromide or iodide used in the oxidation of the cellulose-based raw material examples include compounds that can be dissociated and ionized in water, such as alkali metal bromide and alkali metal iodide.
  • Bromide or iodide is generally used in an amount of about 0.1 to 100 mmol, preferably 0.1 to 10 mmol, more preferably about 0.5 to 5 mmol with respect to 1 g of cellulosic raw material.
  • Examples of the oxidizing agent used in oxidizing the cellulosic raw material include halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like.
  • sodium hypochlorite which is inexpensive and has a low environmental load, is particularly preferably used from the viewpoint of production cost.
  • the oxidizing agent is generally used in an amount of about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol with respect to 1 g of an absolutely dry cellulosic raw material.
  • Cellulosic raw materials that are oxidized using an oxidizing agent in the presence of an N-oxyl compound and bromide and / or iodide are not particularly limited, but include kraft pulp or sulfite pulp derived from various woods, and high-pressure homogenizers thereof.
  • powdered cellulose pulverized by a slab or mill, or microcrystalline cellulose powder purified by chemical treatment such as acid hydrolysis plants such as kenaf, hemp, rice, bacus, bamboo, etc. may be used.
  • bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost.
  • the oxidation of cellulosic raw materials carried out using an oxidizing agent in the presence of an N-oxyl compound and bromide and / or iodide is generally alkaline, such as an aqueous sodium hydroxide solution, at room temperature of about 15 to 30 ° C.
  • an aqueous sodium hydroxide solution such as an aqueous sodium hydroxide solution
  • the reaction is carried out at a reaction time of about 0.5 to 4 hours while maintaining the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the N-oxyl compound is recovered from waste water generated when the cellulosic raw material is oxidized using an oxidizing agent in the presence of the N-oxyl compound and bromide and / or iodide. This drainage can be obtained by removing the oxidized cellulose raw material by filtering the reaction solution after the oxidation reaction of the cellulose raw material is completed.
  • the wastewater generated when the cellulosic material is oxidized with an oxidizing agent in the presence of the N-oxyl compound and bromide and / or iodide includes bromide and / or in addition to the N-oxyl compound. It is considered that impurities such as iodide, sodium chloride, oxidizing agent, anionic and water-soluble oligomers and copolymers (water-soluble polysaccharides) derived from cellulose and hemicellulose, and calcium ions are included.
  • Electrodialysis is a method of separating ionic substances in a liquid using an ion exchange membrane and electricity.
  • a general cation exchange membrane and anion exchange membrane are used to separate cations and anions in a liquid, and the concentration of inorganic salts in waste water is reduced to less than 0.4%.
  • cation exchange membrane for example, various cation exchange membranes in which acidic ion exchange groups such as a sulfonic acid group, a sulfate ester group, a phosphate ester group, and a carboxyl group are introduced into a styrene-divinylbenzene copolymer are used. it can.
  • anion exchange membrane for example, various anion exchange membranes in which a basic ion exchange group such as a dodecylamino group, a dioctylamino group, or a pyridyl group is introduced into a styrene-divinylbenzene copolymer can be used.
  • the waste water is electrodialyzed by flowing waste water containing an N-oxyl compound generated by oxidation of the cellulosic raw material to the electrodialysis apparatus equipped with the above-described general ion exchange membrane. Is desalted to be less than 0.4%.
  • the voltage, current density, and treatment time applied to the electrodialyzer can be appropriately selected depending on the concentration of inorganic salts to be desalted.
  • electrodialysis is used. It is desirable to set the conditions such that the desalting rate of the water is 20% or more, preferably 30% or more.
  • electrodialysis is preferably performed at a voltage of 5 to 15 V for 2 to 60 minutes, preferably 10 to 30 minutes.
  • the electrode solution a 3 to 5% aqueous solution of sulfate or nitrate is used. It is preferable.
  • the waste water desalted by the electrodialysis treatment of the present invention contains an N-oxyl compound at a relatively high concentration.
  • the recovery rate of the N-oxyl compound by the electrodialysis treatment of the present invention is 80% or more, preferably 85% or more, and most preferably 90% or more.
  • the wastewater containing the N-oxyl compound obtained by the electrodialysis treatment of the present invention has a low concentration of impurities such as inorganic salts and polymer substances, and the N-oxyl compound having oxidation catalyst ability is relatively Because it is contained at a high concentration, it can be reused as it is as a whole or part of the oxidation catalyst in the oxidation of cellulosic raw materials without further purification / extraction operations of the N-oxyl compound. Thus, an oxidized pulp can be produced with the same high efficiency as when a simple oxidation catalyst (N-oxyl compound) is used.
  • the waste water may be treated with an ion exchange resin prior to the electrodialysis of the waste water.
  • an ion exchange resin prior to electrodialysis
  • the desalting efficiency during electrodialysis can be improved, and the N-oxyl compound can be recovered at a higher recovery rate.
  • the liquid containing the N-oxyl compound recovered by performing both the ion exchange resin treatment and the electrodialysis treatment is reused as all or part of the oxidation catalyst in the oxidation of the cellulosic raw material.
  • a cellulose nanofiber having transparency can be obtained.
  • the method for treating the wastewater with the ion exchange resin is not particularly limited, and examples thereof include a method of passing the wastewater through a column filled with the ion exchange resin.
  • the ion exchange resin includes an anion exchange resin and a cation exchange resin. In the present invention, either one may be used, or both may be used, and both are preferably used.
  • the waste water may be brought into contact with each resin in order, or the waste water may be brought into contact with a mixed bed containing both resins. It is preferable to contact each resin in order.
  • anion exchange resin that can be used for the ion exchange resin treatment
  • anion exchange resins include, but are not limited to, quaternary ammonium groups as ion exchange groups introduced into styrene and acrylic resins such as crosslinked polystyrene as a polymer substrate.
  • quaternary ammonium groups as ion exchange groups introduced into styrene and acrylic resins such as crosslinked polystyrene as a polymer substrate.
  • strong basic anion exchange resins and various weak basic anion exchange resins into which primary to tertiary amines are introduced can be used.
  • Amberlite IRA958Cl Amberlite IRA958Cl (Rohm and Haas) can be used.
  • anionic water-soluble organic substance in the waste water can be removed, and thereby the desalting efficiency by the electrodialysis treatment can be improved.
  • anion exchange resin treatment of the present invention for example, anionic water-soluble organic substances in waste water can be removed by 85% or more, preferably 95% or more.
  • cation exchange resin that can be used for the ion exchange resin treatment
  • examples of the cation exchange resin that can be used for the ion exchange resin treatment include, but are not limited to, styrene-based, acrylic, and methacrylic resins such as crosslinked polystyrene as a polymer substrate, and sulfonic acid groups as ion-exchange groups. It is possible to use various strongly acidic cation exchange resins into which is introduced, and various weak acid cation exchange resins into which phosphone groups or carboxyl groups are introduced. For example, a commercially available Amberlite IRC747 (manufactured by Rohm and Haas) can be used.
  • polyvalent cations represented by calcium ions in the waste water can be removed, and thereby the desalting efficiency by the electrodialysis treatment can be improved.
  • calcium ions in waste water can be removed by 90% or more, preferably 95% or more.
  • the waste water may be further reduced prior to the electrodialysis of the waste water.
  • the reduction treatment is a treatment that invalidates the oxidizing ability of the oxidant remaining in the waste water after the oxidation reaction of the cellulosic material.
  • a reducing agent such as sulfite or thiosulfate is added to the waste water to reduce the concentration of residual halogen (eg, chlorine) derived from the oxidizing agent in the waste water.
  • residual halogen eg, chlorine
  • the concentration of residual halogen for example, chlorine
  • the addition amount of a reducing agent is suitably set according to the amount of residual oxidant in the wastewater to be treated, it is usually about 0.2 g or less with respect to 500 ml of wastewater.
  • the reduction treatment of the waste water it is possible to prevent the deterioration of the ion exchange resin and the ion exchange membrane.
  • the ion exchange resin treatment is performed prior to the electrodialysis, it is preferable to perform the reduction treatment before the ion exchange resin treatment.
  • Cellulose nanofibers which are cellulose single microfibrils having a width of about 2 to 5 nm and a length of about 1 to 5 ⁇ m, are obtained by wet pulverization and dispersion of oxidized pulp obtained by oxidation of cellulose-based raw materials. be able to.
  • a mixing / stirring and emulsifying / dispersing device such as a high-speed shear mixer, a high-pressure homogenizer, and an ultrahigh-pressure homogenizer can be used alone or in combination of two or more.
  • a highly transparent cellulose nanofiber dispersion can be obtained by defibrating and dispersing oxidized pulp produced using wastewater obtained by desalting to an inorganic salt concentration of less than 0.4% of the present invention.
  • the transparency of the cellulose nanofiber dispersion obtained by the method of the present invention is preferably 75% or more, more preferably expressed by the transmittance of light at a wavelength of 660 nm in a 0.1% (w / v) aqueous dispersion. Is 80% or more, particularly preferably 90% or more.
  • TN (total nitrogen) unit was incorporated into a TOC-V device manufactured by Shimadzu Corporation, and TN (total nitrogen concentration, mg / L) in waste water containing TEMPO was measured.
  • solutions having different concentrations in which TEMPO was dissolved in ultrapure water were prepared, TN of each solution was measured, and a calibration curve representing the relationship between the concentrations of TN and TEMPO was created. Using the calibration curve, the TEMPO concentration (mg / L) was calculated from TN (mg / L) in the waste water.
  • the TEMPO recovery rate after desalting was calculated from the TEMPO concentration of the wastewater obtained by oxidation of the cellulose-based raw material and the value of the TEMPO concentration of the wastewater after electrodialysis.
  • the inorganic salt concentration in the wastewater obtained by oxidation of the cellulose raw material and the inorganic salt concentration in the wastewater after electrodialysis were measured using an electric conductivity meter (CT-57101B manufactured by Toa DKK Corporation). Moreover, the desalination rate was calculated using these values.
  • the waste water (500 ml) was desalted using a desktop desalting apparatus, micro-acylator S3 type electrodialysis apparatus (standard desalting performance: 500 ml / Hr) manufactured by Astom.
  • the membrane used is the company's cartridge-type ion exchange membrane Neoceptor cartridge AC-220-550 (effective current-carrying area 550 cm 2 , both ion-exchange type, molecular weight cut off: 300), and the treatment temperature is room temperature (22 ° C.).
  • 500 g of 0.28N sodium sulfate aqueous solution was used as the electrode solution
  • 500 g of ultrapure water was used as the salt recovery solution.
  • Example 3 The same operation as in Example 1 was performed except that the electrodialysis time was 15 minutes. The current value after starting was 0 A, and the current value after finishing was 0.29 A. The electric conductivity at the start of electrodialysis was 6.1 mS / cm, and the electric conductivity at the end was 0.7 mS / cm. The TEMPO recovery rate after the desalting treatment was 93.9%. The desalting rate calculated from the electrical conductivity was 89%, and the inorganic salt concentration was 0.05%. [Example 3]
  • Example 2 The same operation as in Example 1 was performed except that the electrodialysis time was 20 minutes. The current value was changed from 0A at the start to 0A after the end. The electric conductivity at the start of electrodialysis was 6.1 mS / cm, and the electric conductivity at the end was 0 mS / cm. The TEMPO recovery rate after the desalting treatment was 86.1%. The desalting rate calculated from the electrical conductivity was 100%, and the inorganic salt concentration was 0%.
  • Example 1 The same operation as in Example 1 was performed except that the electrodialysis time was 3 minutes. The current value at the start was 0 A, and the current value after the end was 0.32 A. The electric conductivity at the start of electrodialysis was 6.1 mS / cm, and the electric conductivity at the end was 5.5 mS / cm. The TEMPO recovery rate after the desalting treatment was 99.6%. The desalting rate calculated from the electrical conductivity was 8%, and the inorganic salt concentration was 0.41%. [Example 4]
  • the obtained oxidized pulp was defibrated and dispersed with a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotary blade to prepare a 0.1% cellulose nanofiber dispersion.
  • the transparency (660 nm light transmittance) of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 80.5%.
  • Example 4 Except for using the wastewater obtained in Example 2 (containing 0.470 mmol of TEMPO), the same operation as in Example 4 was performed to obtain oxidized pulp.
  • the amount of carboxyl groups in the obtained oxidized pulp was 1.33 mmol / g.
  • the cellulose nanofiber dispersion liquid was obtained from the obtained oxidized pulp by the same operation as in Example 4.
  • the transparency of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 79.5%.
  • Example 4 Except for using the wastewater obtained in Example 3 (containing 0.431 mmol of TEMPO), the same operation as in Example 4 was performed to obtain oxidized pulp.
  • the resulting oxidized pulp had a carboxyl group content of 1.27 mmol / g.
  • a cellulose nanofiber dispersion was obtained from the obtained oxidized pulp by the same operation as in Example 4.
  • the transparency of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 76.1%.
  • Comparative Example 2 Except using the waste water obtained in Comparative Example 1 (containing 0.498 mmol of TEMPO), the same operation as in Example 4 was performed to obtain oxidized pulp.
  • the resulting oxidized pulp had a carboxyl group content of 1.09 mmol / g.
  • a cellulose nanofiber dispersion was obtained from the obtained oxidized pulp by the same operation as in Example 4.
  • the transparency of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 70.6%.
  • the cellulose nanofiber dispersion liquid was obtained from the obtained oxidized pulp by the same operation as in Example 4.
  • the transparency of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 62.8%.
  • the amount of residual chlorine in 500 ml of the waste water was measured and found to be 37 ppm. Therefore, 0.031 g of sodium sulfite (reducing agent) was added to adjust the amount of residual chlorine in the waste water to 1 ppm or less (reducing agent treatment). Subsequently, 0.5N hydrochloric acid aqueous solution was added and pH was adjusted to 7. Thereafter, the solution was passed through a column packed with 70 mL of a commercially available anion exchange resin (Rum & Haas, Amberlite IRA958Cl). As a result, the TOC decreased from 750 ppm to 190 ppm (water-soluble organic matter removal rate: 75%).
  • a commercially available anion exchange resin Amberlite IRA958Cl
  • the membrane used is a cartridge-type ion exchange membrane Neoceptor cartridge AC-220-550 manufactured by the same company (effective current conduction area 550 cm 2 , both ion exchange type, fractional molecular weight: 300), the processing temperature is 22 ° C., and the electrode 500 g of 0.28N sodium sulfate aqueous solution was used as the liquid and 500 g of ultrapure water was used as the salt recovery liquid.
  • a voltage of 12.1 V was applied, and electrodialysis was performed at an end set current value of 0 A for 10 minutes.
  • the electric conductivity at the start of electrodialysis was 6.1 mS / cm, and the electric conductivity at the end was 1.2 mS / cm.
  • the TEMPO recovery rate after the desalting treatment was 98.2%.
  • the desalting rate calculated from the electrical conductivity was 80%, and the inorganic salt concentration was 0.10%.
  • oxidized pulp was produced by the same operation as in Example 4 using the obtained waste water (containing 0.491 mmol of TEMPO).
  • the amount of carboxyl groups of the obtained oxidized pulp was 1.46 mmol / g.
  • a cellulose nanofiber dispersion was prepared from the resulting oxidized pulp by the same operation as in Example 4. The transparency of the obtained 0.1% (w / v) cellulose nanofiber dispersion was 95.2%.
  • Example 9 Except for the electrodialysis time being 15 minutes, the same operation as in Example 7 was performed to demineralize the waste water. Subsequently, using the obtained waste water (containing 0.481 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7. [Example 9]
  • Example 10 Except for the electrodialysis time of 20 minutes, the same operation as in Example 7 was performed to demineralize the waste water. Subsequently, using the obtained waste water (containing 0.471 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7. [Example 10]
  • Example 11 Except that the treatment with the cation exchange resin was not performed, the same operation as in Example 7 was performed to demineralize the waste water. Subsequently, using the obtained waste water (containing 0.490 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7. [Example 11]
  • Example 12 Except that the treatment with the anion exchange resin was not performed, the same operation as in Example 7 was performed to demineralize the waste water. Subsequently, using the obtained waste water (containing 0.487 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7. [Example 12]
  • Example 13 Except that neither the treatment with the anion exchange resin nor the treatment with the cation exchange resin was performed, the same operation as in Example 7 was performed, and the waste water was desalted. Subsequently, using the obtained waste water (containing 0.486 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7. [Example 13]
  • Example 7 Except for the electrodialysis time of 3 minutes, the same operation as in Example 7 was performed to demineralize the waste water. Subsequently, using the obtained waste water (containing 0.499 mmol of TEMPO), an oxidized pulp and a cellulose nanofiber dispersion were prepared in the same manner as in Example 7.
  • Table 1 shows the desalination rate of the wastewater electrodialyzed according to Examples 1 to 3 and 7 to 13 and Comparative Example 1, the concentration of inorganic salts after desalting, and the TEMPO recovery rate.
  • Table 2 shows the carboxyl group amount of the oxidized pulp prepared according to Examples 4 to 13 and Comparative Examples 2 and 3, and the transparency of the cellulose nanofibers.
  • a highly transparent cellulose nanofiber dispersion can be prepared by defibrating and dispersing the oxidized pulp thus obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

 N-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で、酸化剤を用いセルロース系原料を酸化する際に発生した排水を、電気透析により無機塩類濃度0.4%未満にまで脱塩することにより、排水中のN-オキシル化合物を濃縮して回収する。回収したN-オキシル化合物は、セルロース系原料の酸化に再利用することができる。電気透析に先立ち、排水を還元処理し、また、イオン交換樹脂で処理することが好ましい。

Description

N-オキシル化合物の回収・再利用方法
 本発明は、N-オキシル化合物をセルロース酸化触媒として利用する酸化セルロース製造工程で発生した排水中から、高価なN-オキシル化合物を効率良く回収し、回収処理後のN-オキシル化合物を含有した排水を再利用する方法に関する。
 セルロース系原料を触媒量のN-オキシル化合物と塩素系酸化剤共存下で処理することでセルロースの一級水酸基をカルボキシル基およびアルデヒド基へと酸化できることが知られている(非特許文献1)。
 この酸化セルロース製造技術に用いられる触媒であるN-オキシル化合物は、非常に高価であるため、反応終了後の排水から回収して再利用することが望ましい。しかしながら、排水からN-オキシル化合物を回収して再利用する方法についてはこれまで報告されていない。
Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007)
 N-オキシル化合物のように水および有機溶媒両方に溶解する両親媒性で揮発性が低く、低分子量の有機分子触媒を回収する一般的な方法としては、抽出や吸着などが考えられる。しかしながら、ヘキサンなどの有機溶剤による液液抽出では、抽出処理後の排水へ溶剤が残留するため、環境面での懸念があり、また、有機溶剤を回収するための別工程が必要となるためコストもかかる。また、疎水性合成樹脂などを用いて触媒を選択的に吸着・回収する方法では、樹脂表面に吸着した触媒を脱吸着する際に有機溶剤を用いるため、先の液液抽出同様、環境面に懸念があり、コストもかかる。
 以上のことを鑑み、本発明は、無機塩類、水溶性有機物、及びN-オキシル化合物などを含有するセルロース系原料の酸化処理後の排水から、N-オキシル化合物を、高い回収率で回収することができる方法を提供することを目的とする。
 本発明者らは、鋭意検討した結果、セルロース系原料の酸化処理後の排水を電気透析処理(electrodialysis)して特定の無機塩類濃度まで脱塩することにより、N-オキシル化合物を高い回収率で簡便に回収でき、さらに、回収したN-オキシル化合物を良好に再利用できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の通りである。
1. (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いセルロース系原料を酸化する際に発生した排水からN-オキシル化合物を回収する方法であって、排水中の無機塩類濃度が0.4%未満となるように前記排水を電気透析により脱塩することを特徴とするN-オキシル化合物の回収方法。
2. 前記排水を電気透析により脱塩する前に、前記排水をイオン交換樹脂で処理する、上記1に記載の方法。
3. 前記排水を電気透析により脱塩する前に、前記排水を還元処理する、上記1または2に記載の方法。
4. 前記排水を還元処理し、次に、イオン交換樹脂で処理し、次に、電気透析により脱塩する、上記1~3のいずれかに記載の方法。
5. 回収されるN-オキシル化合物が、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(4-ヒドロキシTEMPO)、4-ヒドロキシTEMPOの水酸基をエーテル化もしくはエステル化して得られる4-ヒドロキシTEMPO誘導体、又はアザアダマンタン型ニトロキシラジカル、或いはそれらの混合物である、上記1~4のいずれかに記載の方法。
6. (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いセルロース系原料を酸化する反応において、該N-オキシル化合物の全部又は一部として、上記1~5のいずれかに記載の方法により回収されたN-オキシル化合物を用いることを特徴とする、N-オキシル化合物の再利用方法。
7. (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いセルロース系原料を酸化する反応において、該N-オキシル化合物の全部又は一部として、上記1~5のいずれかに記載の方法により回収されたN-オキシル化合物を用い、これにより酸化されたセルロース系原料を調製し、
 次いで、得られた酸化されたセルロース系原料を湿式微粒化処理することによりセルロースナノファイバー分散液を調製する
ことを含む、セルロースナノファイバー分散液の製造方法。
 本発明は、電気透析を利用してN-オキシル化合物を含む排水を脱塩することにより、高価なN-オキシル化合物を高い回収率、好ましくは80%以上の回収率で回収しつつ、同時に排水中の無機塩類濃度を0.4%未満に脱塩する。このように高い触媒回収率と脱塩率とを同時に達成することにより、処理後のN-オキシル化合物が濃縮された液体を、セルロース系原料の酸化における酸化触媒の全部又は一部として再利用することができ、酸化パルプの製造コストを低下させることができる。
 水性液体脱塩のための電気透析膜の使用は、これまでにも行なわれてきたが、セルロース系原料の酸化により生じる排水から電気透析によりN-オキシル化合物を高い回収率で回収できることを実際に見い出したのは、本願が初めてである。セルロース系原料の酸化の際に用いられるN-オキシル化合物は、分子量が比較的小さいため、電気透析処理に付すと膜を通過して多量に拡散し、無機塩類などとともにその大半が失われるのではないかと予想されたので、本発明の電気透析処理により、高い回収率でN-オキシル化合物を回収できたことは、非常に意外な結果であった。
 また、本発明者らは、N-オキシル化合物を含有し、無機塩類濃度が0.4%未満まで脱塩された電気透析処理後の液体を、セルロース系原料の酸化における酸化触媒の全部又は一部として再利用することにより、高い透明性を有するセルロースナノファイバーを得ることができることを初めて見出した。
 本発明では、さらに、排水の電気透析前に、排水をイオン交換樹脂で処理して排水中の不純物(N-オキシル化合物以外の物質)を除去することにより、電気透析時の脱塩効率を向上させ、より高い回収率でN-オキシル化合物を回収することができる。こうして得られたN-オキシル化合物を含有する液体は、セルロース系原料の酸化における酸化触媒の全部又は一部として再利用することができ、さらに高い透明性を有するセルロースナノファイバーを得ることができる。
 本発明は、N-オキシル化合物を用いたセルロース系原料の酸化により生じる排水からN-オキシル化合物を回収し、再利用する方法であって、N-オキシル化合物のほかに、臭化物及び/またはヨウ化物、塩化ナトリウム、酸化剤、カルシウムイオン、パルプ由来の水溶性多糖類などを不純物として含有する排水を、電気透析処理により脱塩することにより、排水から不純物を除去して、排水中にN-オキシル化合物を濃縮することを特徴とするものである。
 (N-オキシル化合物を用いたセルロース系原料の酸化)
 本発明において、電気透析処理に付す排水としては、N-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で、酸化剤を用いセルロース系原料を酸化する反応から生じた排水を用いることができる。
 セルロース系原料の酸化の際に用いられ、かつ本発明により回収することのできるN-オキシル化合物としては、下記一般式(式1)で示される物質が挙げられる。
Figure JPOXMLDOC01-appb-C000001

(式1中、R1~R4は同一又は異なる炭素数1~4程度のアルキル基を示す。)
 式1で表される化合物のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)及び4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下、4-ヒドロキシTEMPOと称する)は好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸若しくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体は、安価であり、かつ均一な酸化パルプを得ることができるため、セルロース系原料の酸化に好ましく用いることができ、また、本発明の方法により効率よく回収することができる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004

(式2~4中、Rは炭素数4以下の直鎖又は分岐状炭素鎖である。)
 さらに、下記式5で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルも、4-ヒドロキシTEMPO誘導体と同様の理由から、好ましい。
Figure JPOXMLDOC01-appb-C000005
(式5中、R5及びR6は、同一又は異なる水素又はC1~C6の直鎖若しくは分岐鎖アルキル基を示す。)
 セルロース系原料の酸化の際に用いられるN-オキシル化合物の使用量は、一般的に、絶乾1gのセルロース系原料に対して、0.01~10mmol、好ましくは0.01~1mmol、さらに好ましくは0.05~0.5mmol程度である。
 セルロース系原料の酸化の際に用いられる臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが挙げられる。臭化物またはヨウ化物は、一般的に、絶乾1gのセルロース系原料に対して、0.1~100mmol、好ましくは0.1~10mmol、さらに好ましくは0.5~5mmol程度の量で用いられる。
 セルロース系原料の酸化の際に用いられる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などが挙げられる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが、生産コストの観点から、特に好ましく用いられる。酸化剤は、一般的に、絶乾1gのセルロース系原料に対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol程度の量で用いられる。
 N-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で酸化剤を用いて酸化されるセルロース系原料としては、特に限定されないが、各種木材由来のクラフトパルプ又はサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末が用いられる他、ケナフ、麻、イネ、バカス、竹等の植物が用いられることもある。このうち、漂白済みクラフトパルプ、漂白済みサルファイトパルプ、粉末セルロース、または微結晶セルロース粉末は、量産化やコストの観点から好ましく用いられる。
 N-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で酸化剤を用いて行なわれるセルロース系原料の酸化は、一般的に、15~30℃程度の室温で、水酸化ナトリウム水溶液などのアルカリ性溶液を添加することにより、反応液のpHを9~12、好ましくは10~11程度に維持しながら、0.5~4時間程度の反応時間で行なわれる。
 得られた酸化パルプにおけるカルボキシル基量は、酸化パルプの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量[mmol/gパルプ]= a[ml]× 0.05/酸化パルプ質量[g]
 (セルロース系原料の酸化の際に生じる排水)
 本発明では、上記のN-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で、酸化剤を用いてセルロース系原料を酸化した際に発生した排水から、N-オキシル化合物を回収する。この排水は、セルロース系原料の酸化反応を終了した後に、反応液を濾過するなどして、酸化されたセルロース系原料を取り除くことにより、得ることができる。
 上記のN-オキシル化合物、並びに臭化物及び/またはヨウ化物の存在下で、酸化剤を用いてセルロース系原料を酸化した際に発生した排水には、N-オキシル化合物の他に、臭化物及び/またはヨウ化物、塩化ナトリウム、酸化剤、セルロースやヘミセルロースに由来したアニオン性で水溶性のオリゴマーやコポリマー(水溶性多糖類)、及びカルシウムイオンなどの不純物が含まれると考えられる。
 (排水の電気透析処理)
 電気透析(electrodialysis)とは、イオン交換膜と電気を利用し、液体中のイオン性物質を分離する方法である。本発明の電気透析では、一般的な陽イオン交換膜及び陰イオン交換膜を使用して液体中の陽イオン及び陰イオンを分離し、排水中の無機塩類濃度を0.4%未満にまで低減させる。陽イオン交換膜としては、例えば、スチレン-ジビニルベンゼン共重合体に、スルホン酸基、硫酸エステル基、リン酸エステル基、カルボキシル基などの酸性イオン交換基を導入した各種の陽イオン交換膜を使用できる。陰イオン交換膜としては、例えば、スチレン-ジビニルベンゼン共重合体に、ドデシルアミノ基、ジオクチルアミノ基、ピリジル基などの塩基性イオン交換基を導入した各種の陰イオン交換膜を使用できる。
 本発明では、前記の一般的なイオン交換膜を装着した電気透析装置に、セルロース系原料の酸化により生じたN-オキシル化合物を含む排水を流すことにより、排水を電気透析処理し、無機塩類濃度が0.4%未満となるように脱塩する。電気透析装置に印加する電圧、電流密度および処理時間は、脱塩する無機塩類濃度により適宜選定することができるが、排水中の無機塩類濃度を0.4%未満とするには、電気透析での脱塩率が20%以上、好ましくは30%以上となるような条件に設定することが望ましい。具体的には、5V~15Vの電圧で、2分~60分間、好ましくは10~30分間電気透析を行なうのがよく、電極液としては3~5%の硫酸塩水溶液や硝酸塩水溶液等を用いることが好ましい。
 本発明の電気透析処理により脱塩された排水は、N-オキシル化合物を比較的高濃度に含有する。本発明の電気透析処理によるN-オキシル化合物の回収率は、80%以上、好ましくは85%以上、最も好ましくは90%以上である。高価なN-オキシル化合物を回収して再利用することにより、新たに使用するN-オキシル化合物の使用量が少なくて済むので、酸化パルプの製造コストを低下させることができる。
 (N-オキシル化合物の再利用)
 本発明の電気透析処理により得られたN-オキシル化合物を含有する排水は、無機塩類や高分子物質といった不純物の濃度が低く、また、酸化触媒能を保持しているN-オキシル化合物を比較的高濃度で含んでいるため、セルロース系原料の酸化における酸化触媒の全部又は一部として、N-オキシル化合物の更なる精製・抽出などの操作を行なうことなく、そのまま再利用することができ、フレッシュな酸化触媒(N-オキシル化合物)を用いたときと同様の高い効率で酸化パルプを製造することができる。
 (イオン交換樹脂による処理)
 本発明では、排水の電気透析に先立ち、排水をイオン交換樹脂で処理してもよい。排水を電気透析に先立ちイオン交換樹脂で処理することにより、電気透析時の脱塩効率を向上させることができ、より高い回収率でN-オキシル化合物を回収することができる。また、イオン交換樹脂処理と電気透析処理の両方を行うことにより回収したN-オキシル化合物を含む液体を、セルロース系原料の酸化における酸化触媒の全部又は一部として再利用することにより、非常に高い透明性を有するセルロースナノファイバーを得ることができる。
 排水を電気透析に先立ちイオン交換樹脂で処理することにより、電気透析時の脱塩効率を向上させることができる理由としては、以下のように推察される。排水中には、多糖類の酸化で生成したアニオン性で水溶性のオリゴマーやポリマーが不純物として存在しており、電気透析処理におけるイオン交換膜に付着し、イオン交換膜の機能を低下させると考えられる。また、カルシウムイオンは、炭酸カルシウムや硫酸カルシウムなどのスケールとしてイオン交換膜の表面に沈着したり、膜内部に析出し、電流効率を低下させると考えられる。このアニオン性ポリマーやカルシウムイオンを電気透析処理に先立ち除去することにより、電気透析処理におけるイオン交換膜の機能低下や、電流効率の低下を防ぐことができると考えられる。
 排水をイオン交換樹脂で処理する方法としては、特に限定されないが、イオン交換樹脂を充填したカラムに排水を通液する方法などが挙げられる。
 イオン交換樹脂には、アニオン交換樹脂とカチオン交換樹脂とがあるが、本発明では、いずれか1つを用いてもよいし、両方を用いてもよく、両方を用いることが好ましい。
 アニオン交換樹脂とカチオン交換樹脂との両方を用いる場合には、排水をそれぞれの樹脂に順に接触させてもよいし、両方の樹脂を含む混合床(mixed bed)に排水を接触させてもよいが、好ましくはそれぞれの樹脂に順に接触させるのがよい。
 (アニオン交換樹脂による処理)
 イオン交換樹脂処理に用いることができるアニオン交換樹脂としては、例えば、これらに限定されないが、高分子基体として架橋ポリスチレンのようなスチレン系及びアクリル系樹脂に、イオン交換基として4級アンモニウム基を導入した各種の強塩基性アニオン交換樹脂や、1~3級アミンを導入した各種の弱塩基性アニオン交換樹脂を使用することができる。例えば、市販品のアンバーライトIRA958Cl(ローム・アンド・ハース社製)を使用することができる。
 アニオン交換樹脂処理を行なうことにより、排水中のアニオン性の水溶性有機物を除去することができ、これにより電気透析処理による脱塩効率を向上させることができる。本発明のアニオン交換樹脂処理では、例えば、排水中のアニオン性の水溶性有機物を85%以上、好ましくは95%以上除去することができる。
 (カチオン交換樹脂による処理)
 イオン交換樹脂処理に用いることができるカチオン交換樹脂としては、例えば、これらに限定されないが、高分子基体として架橋ポリスチレンのようなスチレン系及びアクリル系、メタクリル系樹脂に、イオン交換基としてスルホン酸基を導入した各種の強酸性カチオン交換樹脂や、ホスホン基又はカルボキシル基などを導入した各種の弱酸性カチオン交換樹脂を使用することができる。例えば、市販品のアンバーライトIRC747(ローム・アンド・ハース社製)を使用することができる。
 カチオン交換樹脂処理を行なうことにより、排水中のカルシウムイオンに代表される多価カチオンを除去することができ、これにより電気透析処理による脱塩効率を向上させることができる。本発明のカチオン交換樹脂処理では、例えば、排水中のカルシウムイオンを90%以上、好ましくは95%以上除去することができる。
 (還元処理)
 本発明では、排水の電気透析に先立ち、さらに排水を還元処理してもよい。還元処理とは、セルロース系原料の酸化反応終了後に排水中に残留する酸化剤の酸化能を無効にする処理である。具体的には、例えば、排水中に、亜硫酸塩やチオ硫酸塩などの還元剤を添加し、排水中の酸化剤に由来する残留ハロゲン(例えば塩素)等の濃度を低下させる。本発明の還元処理では、残留ハロゲン(例えば塩素)の濃度を、1ppm以下に低下させることができる。還元剤の添加量は、処理する排水中の残留酸化剤量に応じて適宜設定されるが、通常、排水500mlに対して、0.2g以下程度である。
 排水の還元処理を行なうことにより、イオン交換樹脂やイオン交換膜の劣化を防止することができる。電気透析に先立ちイオン交換樹脂処理を行なう場合には、イオン交換樹脂処理の前に還元処理を行なうことが好ましい。
 (酸化パルプからのセルロースナノファイバーの製造)
 セルロース系原料の酸化により得られた酸化パルプを、湿式微粒化処理して解繊・分散することにより、幅2~5nm、長さ1~5μm程度のセルロースシングルミクロフィブリルであるセルロースナノファイバーを得ることができる。湿式微粒化処理には、例えば、高速せん断ミキサー、高圧ホモジナイザー、超高圧ホモジナイザーなどの混合・攪拌、乳化・分散装置を、必要に応じて単独もしくは2種類以上を組み合わせて用いることができる。
 また、本発明の0.4%未満の無機塩類濃度まで脱塩して得られた排水を用いて製造された酸化パルプを、解繊・分散することにより、透明度の高いセルロースナノファイバー分散液を得ることができる。本発明の方法により得られるセルロースナノファイバー分散液の透明度は、0.1%(w/v)の水分散液における波長660nm光の透過率で表して、好ましくは75%以上であり、より好ましくは80%以上であり、とりわけ好ましくは90%以上である。
 次に実施例に基づき、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 (セルロース系原料の酸化)
 針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社)5g(絶乾)を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)78mg(0.5mmol)と臭化ナトリウム754mg(7mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(2mol/L)12.5mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中、系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整しながら2時間反応させた。得られた酸化パルプをガラスフィルターを用いて濾別し、得られた濾液を以下の実施例においてTEMPOを含む排水として用いた。
 なお、上記で得られた酸化パルプのカルボキシル基量を、以下に記載の方法で測定したところ、1.55mmol/gであった。また、この酸化パルプを回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)で解繊・分散し、セルロースナノファイバー分散液を調製した。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度(660nm光の透過率)は、97.0%であった。これらの結果を、表2に参考例1として示す。
 (排水中のTEMPOの定量)
 島津製作所社製TOC-V装置にTN(全窒素)ユニットを組み込み、TEMPOを含む排水中のTN(全窒素濃度、mg/L)を測定した。また、TEMPOを超純水に溶かした濃度の異なる溶液を準備し、それぞれの溶液のTNを測定し、TNとTEMPOとの濃度の関係を表す検量線を作成した。検量線を用い、排水中のTN(mg/L)からTEMPO濃度(mg/L)を計算した。
 さらに、セルロース系原料の酸化により得られた排水のTEMPO濃度と、電気透析後の排水のTEMPO濃度の値から、脱塩処理後のTEMPO回収率を計算した。
 (排水の無機塩類濃度の測定)
 セルロース系原料の酸化により得られた排水の無機塩類濃度と、電気透析後の排水の無機塩類濃度を、電気伝導度計(東亜ディーケーケー(株)社製CT-57101B)を用いて測定した。また、これらの値を用いて、脱塩率を計算した。
 (酸化パルプのカルボキシル基量の測定)
 酸化パルプの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定した。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて酸化パルプのカルボキシル基量を算出した。
 カルボキシル基量[mmol/gパルプ]= a[ml]× 0.05/酸化パルプ質量[g]
 (セルロースナノファイバー分散液の透明度の測定)
 0.1%(w/v)のセルロースナノファイバー分散液の透明度を、島津製作所社製UV-VIS分光光度計UV-265FSを用いて、660nm光の透過率として、測定した。
 (排水中の残留塩素の定量)
 ハンナインスツルメンツ・ジャパン(株)製ポータブル型高濃度残留塩素計(HI95734型を用い、排水中の残留塩素量を測定した。
 (排水中の水溶性有機物の定量)
 島津製作所社製全有機炭素計(TOC-V)を用い、排水中の水溶性有機物量を、有機体炭素の総量(TOC)として測定した。
 (排水中のカルシウムイオンの定量)
 セイコーインスツルメント社製ICP発光分光分析装置(Vista-MPX)を用い、排水中のカルシウムイオン量を測定した。
 [実施例1]
 前記排水500mlをアストム社製の卓上型脱塩装置マイクロ・アシライザーS3型電気透析装置(標準脱塩性能:500ml/Hr)を用いて脱塩した。使用膜は、同社製のカートリッジ式イオン交換膜ネオセプタ・カートリッジAC-220-550(有効通電面積550cm2、両イオン交換型、分画分子量:300)であり、処理温度は室温(22℃)であり、電極液として0.28Nの硫酸ナトリウム水溶液を500g、塩回収液として超純水を500g用いた。9.0Vの電圧を印加し、終了設定電流値0Aで10分間電気透析を行ったところ、開始時の電流値0Aから終了後の電流値0.61Aとなった。電気透析開始時の電気伝導度は6.1mS/cm、終了時の電気伝導度は2.6mS/cmであった。脱塩処理後のTEMPO回収率は97.2%であった。電気伝導度から算出した脱塩率は57%であり、無機塩類濃度は0.19%であった。
 [実施例2]
 電気透析時間を15分間とした以外は実施例1と同様な操作を行った。開始時の電流値0Aから終了後の電流値0.29Aとなった。電気透析開始時の電気伝導度は6.1mS/cm、終了時の電気伝導度は0.7mS/cmであった。脱塩処理後のTEMPO回収率は93.9%であった。電気伝導度から算出した脱塩率は89%であり、無機塩類濃度は0.05%であった。
 [実施例3]
 電気透析時間を20分間とした以外は実施例1と同様な操作を行った。開始時の電流値0Aから終了後の電流値0Aとなった。電気透析開始時の電気伝導度は6.1mS/cm、終了時の電気伝導度は0mS/cmであった。脱塩処理後のTEMPO回収率は86.1%であった。電気伝導度から算出した脱塩率は100%であり、無機塩類濃度は0%であった。
 [比較例1]
 電気透析時間を3分間とした以外は実施例1と同様な操作を行った。開始時の電流値0Aから終了後の電流値0.32Aとなった。電気透析開始時の電気伝導度は6.1mS/cm、終了時の電気伝導度は5.5mS/cmであった。脱塩処理後のTEMPO回収率は99.6%であった。電気伝導度から算出した脱塩率は8%であり、無機塩類濃度は0.41%であった。
 [実施例4]
 実施例1で得られた排水全量500ml(0.486mmolのTEMPOを含有する)に臭化ナトリウム754mg(7mmol)を溶解した後、針葉樹由来の漂白済みの未叩解サルファイトパルプ(日本製紙ケミカル社製、カルボキシル基量:0.003mmol/g)5g(絶乾)を均一に分散するまで攪拌した。反応系に2M次亜塩素酸ナトリウム水溶液12.5ml(25mmol)を添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中、系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整しながら、2時間反応させた。反応終了後、パルプをガラスフィルターで濾別し、十分に水洗して酸化パルプを得た。得られた酸化パルプのカルボキシル基量は、1.37mmol/gであった。
 また、得られた酸化パルプを、回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)で解繊・分散し、0.1%のセルロースナノファイバー分散液を調製した。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度(660nm光の透過率)は、80.5%であった。
 [実施例5]
 実施例2で得られた排水(0.470mmolのTEMPOを含有する)を用いた以外は実施例4と同様の操作を行ない、酸化パルプを得た。得られた酸化パルプのカルボキシル基量は、1.33mmol/gであった。
 また、得られた酸化パルプから、実施例4と同様の操作により、セルロースナノファイバー分散液を得た。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度は79.5%であった。
 [実施例6]
 実施例3で得られた排水(0.431mmolのTEMPOを含有する)を用いた以外は実施例4と同様の操作を行ない、酸化パルプを得た。得られた酸化パルプのカルボキシル基量は、1.27mmol/gであった。
 また、得られた酸化パルプから、実施例4と同様の操作により、セルロースナノファイバー分散液を得た。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度は76.1%であった。
 [比較例2]
 比較例1で得られた排水(0.498mmolのTEMPOを含有する)を用いた以外は実施例4と同様の操作を行ない、酸化パルプを得た。得られた酸化パルプのカルボキシル基量は、1.09mmol/gであった。
 また、得られた酸化パルプから、実施例4と同様の操作により、セルロースナノファイバー分散液を得た。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度は70.6%であった。
 [比較例3]
 電気透析を行なわない排水(0.500mmolのTEMPOを含有する、無機塩類濃度0.45%)を用いた以外は実施例4と同様の操作を行ない、酸化パルプを得た。得られた酸化パルプのカルボキシル基量は、1.00mmol/gであった。
 また、得られた酸化パルプから、実施例4と同様の操作により、セルロースナノファイバー分散液を得た。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度は62.8%であった。
 [実施例7]
 前記排水500ml中の残留塩素量を測定したところ、37ppmであった。そこで、0.031gの亜硫酸ナトリウム(還元剤)を添加し、排水中の残留塩素量を1ppm以下に調整した(還元剤処理)。次いで、0.5N塩酸水溶液を添加し、pHを7に調整した。その後、市販のアニオン交換樹脂(ローム・アンド・ハース社製、アンバーライトIRA958Cl)70mLを充填したカラムに通液したところ、TOCが750ppmから190ppmに低下した(水溶性有機物除去率:75%)。さらに市販のカチオン交換樹脂(ローム・アンド・ハース社製、アンバーライトIRC747)70mLを充填したカラムに通液したところ、カルシウムイオン濃度が1.9ppmから0.08ppmに低下した(カルシウムイオン除去率:95.8%)。最後にアストム社製の卓上型脱塩装置マイクロ・アシライザーS3型電気透析装置(標準脱塩性能:500ml/Hr)を用いて、排水の電気透析処理を行なった。使用膜は、同社製のカートリッジ式イオン交換膜ネオセプタ・カートリッジAC-220-550(有効通電面積550cm2、両イオン交換型、分画分子量:300)であり、処理温度は22℃であり、電極液として0.28Nの硫酸ナトリウム水溶液を500g、塩回収液として超純水を500g用いた。12.1Vの電圧を印加し、終了設定電流値0Aで10分間電気透析を行なった。電気透析開始時の電気伝導度は6.1mS/cm、終了時の電気伝導度は1.2mS/cmであった。脱塩処理後のTEMPO回収率は98.2%であった。電気伝導度から算出した脱塩率は80%であり、無機塩類濃度は0.10%であった。
 次いで、得られた排水(0.491mmolのTEMPOを含有する)を用いて、実施例4と同様の操作により、酸化パルプを製造した。得られた酸化パルプのカルボキシル基量は、1.46mmol/gであった。
 また、得られた酸化パルプから、実施例4と同様の操作により、セルロースナノファイバー分散液を調製した。得られた0.1%(w/v)セルロースナノファイバー分散液の透明度は95.2%であった。
 [実施例8]
 電気透析時間を15分間とした以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.481mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 [実施例9]
 電気透析時間を20分間とした以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.471mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 [実施例10]
 カチオン交換樹脂による処理を行なわなかった以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.490mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 [実施例11]
 アニオン交換樹脂による処理を行なわなかった以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.487mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 [実施例12]
 アニオン交換樹脂による処理も、カチオン交換樹脂による処理も行なわなかった以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.486mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 [実施例13]
 電気透析時間を3分間とした以外は、実施例7と同様の操作を行ない、排水を脱塩した。次いで、得られた排水(0.499mmolのTEMPOを含有する)を用いて、実施例7と同様の操作により、酸化パルプと、セルロースナノファイバー分散液を調製した。
 実施例1~3及び7~13、並びに比較例1に従って電気透析処理した排水の脱塩率、脱塩後の無機塩類の濃度、及びTEMPO回収率を、表1に示す。また、実施例4~13及び比較例2、3に従って調製した酸化パルプのカルボキシル基量及びセルロースナノファイバーの透明度を、表2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1の結果より、排水の電気透析を行なうことで、排水を脱塩しつつ、TEMPOを高い回収率で回収できることがわかる。
 また、表2の結果より、本発明の方法に従って電気透析処理を行なった排水をセルロース系原料の酸化に再利用すると、セルロース系原料に十分な量のカルボキシル基量を導入することができることがわかる。これは、排水中の触媒(TEMPO)が、電気透析後も、十分な酸化能を保持していることを示す。
 また、こうして得られた酸化パルプを解繊・分散することにより、透明度の高いセルロースナノファイバー分散液を調製することができることがわかる。

Claims (7)

  1.  (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いセルロース系原料を酸化する際に発生した排水からN-オキシル化合物を回収する方法であって、排水中の無機塩類濃度が0.4%未満となるように前記排水を電気透析により脱塩することを特徴とするN-オキシル化合物の回収方法。
  2.  前記排水を電気透析により脱塩する前に、前記排水をイオン交換樹脂で処理する、請求項1に記載の方法。
  3.  前記排水を電気透析により脱塩する前に、前記排水を還元処理する、請求項1または2に記載の方法。
  4.  前記排水を還元処理し、次に、イオン交換樹脂で処理し、次に、電気透析により脱塩する、請求項1~3のいずれかに記載の方法。
  5.  回収されるN-オキシル化合物が、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(4-ヒドロキシTEMPO)、4-ヒドロキシTEMPOの水酸基をエーテル化もしくはエステル化して得られる4-ヒドロキシTEMPO誘導体、又はアザアダマンタン型ニトロキシラジカル、或いはそれらの混合物である、請求項1~4のいずれかに記載の方法。
  6.  (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いセルロース系原料を酸化する反応において、該N-オキシル化合物の全部又は一部として、請求項1~5のいずれかに記載の方法により回収されたN-オキシル化合物を用いることを特徴とする、N-オキシル化合物の再利用方法。
  7.  (1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いセルロース系原料を酸化する反応において、該N-オキシル化合物の全部又は一部として、請求項1~5のいずれかに記載の方法により回収されたN-オキシル化合物を用い、これにより酸化されたセルロース系原料を調製し、
     次いで、得られた酸化されたセルロース系原料を湿式微粒化処理することによりセルロースナノファイバー分散液を調製する
    ことを含む、セルロースナノファイバー分散液の製造方法。
PCT/JP2010/052277 2009-03-30 2010-02-16 N-オキシル化合物の回収・再利用方法 WO2010116794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010533771A JP4669584B2 (ja) 2009-03-30 2010-02-16 N−オキシル化合物の回収・再利用方法
US13/257,732 US8865886B2 (en) 2009-03-30 2010-02-16 Method for recovery/reuse of N-oxyl compound
CA2755338A CA2755338C (en) 2009-03-30 2010-02-16 Method for recovery/reuse of n-oxyl compound
EP10761496.8A EP2415761B1 (en) 2009-03-30 2010-02-16 Method for recovery/reuse of n-oxyl compound
CN201080013754.0A CN102361854B (zh) 2009-03-30 2010-02-16 N-氧自由基化合物的回收和再利用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009082296 2009-03-30
JP2009-082296 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116794A1 true WO2010116794A1 (ja) 2010-10-14

Family

ID=42936082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052277 WO2010116794A1 (ja) 2009-03-30 2010-02-16 N-オキシル化合物の回収・再利用方法

Country Status (6)

Country Link
US (1) US8865886B2 (ja)
EP (1) EP2415761B1 (ja)
JP (1) JP4669584B2 (ja)
CN (1) CN102361854B (ja)
CA (1) CA2755338C (ja)
WO (1) WO2010116794A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
CN102049248A (zh) * 2010-11-23 2011-05-11 南京林业大学 一种合成哌啶类氮氧自由基的催化剂及其制备方法
JP2011116866A (ja) * 2009-12-03 2011-06-16 Dai Ichi Kogyo Seiyaku Co Ltd 酸化多糖類の製法
JP2011116865A (ja) * 2009-12-03 2011-06-16 Dai Ichi Kogyo Seiyaku Co Ltd 酸化多糖類の製法
WO2013039070A1 (ja) * 2011-09-12 2013-03-21 グンゼ株式会社 親水性化セルロース繊維の製造方法
WO2014136730A1 (ja) * 2013-03-04 2014-09-12 小野薬品工業株式会社 転化率に優れた酸化反応
WO2015086901A1 (en) 2013-12-11 2015-06-18 Upm-Kymmene Corporation Method for recovering heterocyclic nitroxyl catalyst
US9512078B2 (en) 2009-09-18 2016-12-06 Paion Uk Limited Process for preparing 3-[(45)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process
JP2017508042A (ja) * 2014-02-28 2017-03-23 ノラム エンジニアリング アンド コンストラクターズ リミテッド 部分的に加水分解されたセルロースのための精製プロセス
US9777007B2 (en) 2006-07-10 2017-10-03 Paion Uk Limited Short-acting benzodiazepine salts and their polymorphic forms
JP6228707B1 (ja) * 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
US10195210B2 (en) 2010-11-08 2019-02-05 Paion Uk Ltd. Dosing regimen for sedation with CNS 7056 (Remimazolam)
JP2020165064A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 リンオキソ酸化パルプの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047198B (zh) * 2013-03-14 2016-11-23 金东纸业(江苏)股份有限公司 制备纳米纤维素的方法
CN104119212B (zh) * 2013-04-27 2016-03-02 中国科学院大连化学物理研究所 一种催化氧化3,3-二甲基-1-丁醇制备3,3-二甲基-1-丁醛的方法
CN109970873B (zh) * 2019-04-03 2021-06-18 湖南九典宏阳制药有限公司 一种药用辅料级微晶纤维素的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147043A (ja) * 1997-09-08 1999-06-02 Chugai Pharmaceut Co Ltd 有機化合物の1級水酸基の選択的酸化方法およびその方法に使用する触媒吸着樹脂
JP2009242590A (ja) * 2008-03-31 2009-10-22 Kao Corp 酸化セルロースの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012644A1 (fr) 1997-09-08 1999-03-18 Chugai Seiyaku Kabushiki Kaisha Procede d'oxydation selective des groupes hydroxyle primaires des composes organiques, et resines contenant un catalyseur adsorbe et destinees a cet effet
JP2002537448A (ja) * 1999-02-24 2002-11-05 エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ セルロースの選択的酸化方法
DE102006010347A1 (de) * 2006-03-03 2007-09-06 Degussa Gmbh Polymerisationsinhibitor zur Stabilisierung von olefinisch ungesättigten Monomeren
JP2008308802A (ja) * 2007-06-18 2008-12-25 Univ Of Tokyo セルロースナノファイバーの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147043A (ja) * 1997-09-08 1999-06-02 Chugai Pharmaceut Co Ltd 有機化合物の1級水酸基の選択的酸化方法およびその方法に使用する触媒吸着樹脂
JP2009242590A (ja) * 2008-03-31 2009-10-22 Kao Corp 酸化セルロースの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GHEORGHE, A. ET AL.: "Combination of Perfluoroalkyl and Triazole Moieties: A New Recovery Strategy for TEMPO", ORGANIC LETTERS, vol. 10, no. 19, 2008, pages 4171 - 4174, XP055098371 *
SAITO, T. ET AL., CELLULOSE COMMUN., vol. 14, no. 2, 2007, pages 62
See also references of EP2415761A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914738B2 (en) 2006-07-10 2018-03-13 Paion Uk Limited Short-acting benzodiazepine salts and their polymorphic forms
US9777007B2 (en) 2006-07-10 2017-10-03 Paion Uk Limited Short-acting benzodiazepine salts and their polymorphic forms
US10961250B2 (en) 2006-07-10 2021-03-30 Paion Uk Limited Short-acting benzodiazepine salts and their polymorphic forms
US10472365B2 (en) 2006-07-10 2019-11-12 Paion Uk Limited Short-acting benzodiazepine salts and their polymorphic forms
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
US8287692B2 (en) * 2007-12-28 2012-10-16 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers
US9512078B2 (en) 2009-09-18 2016-12-06 Paion Uk Limited Process for preparing 3-[(45)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process
US10000464B2 (en) 2009-09-18 2018-06-19 Paion Uk Limited Process for preparing 3-[(4S)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process
JP2011116865A (ja) * 2009-12-03 2011-06-16 Dai Ichi Kogyo Seiyaku Co Ltd 酸化多糖類の製法
JP2011116866A (ja) * 2009-12-03 2011-06-16 Dai Ichi Kogyo Seiyaku Co Ltd 酸化多糖類の製法
US10342800B2 (en) 2010-11-08 2019-07-09 Paion Uk Ltd. Dosing regimen for sedation with CNS 7056 (Remimazolam)
US10195210B2 (en) 2010-11-08 2019-02-05 Paion Uk Ltd. Dosing regimen for sedation with CNS 7056 (Remimazolam)
CN102049248B (zh) * 2010-11-23 2012-12-19 南京林业大学 一种合成哌啶类氮氧自由基的催化剂及其制备方法
CN102049248A (zh) * 2010-11-23 2011-05-11 南京林业大学 一种合成哌啶类氮氧自由基的催化剂及其制备方法
JP2013213213A (ja) * 2011-09-12 2013-10-17 Gunze Ltd 親水性化セルロース繊維
US9103065B2 (en) 2011-09-12 2015-08-11 Gunze Limited Method for producing hydrophilic cellulose fiber
WO2013039070A1 (ja) * 2011-09-12 2013-03-21 グンゼ株式会社 親水性化セルロース繊維の製造方法
JP5259028B1 (ja) * 2011-09-12 2013-08-07 グンゼ株式会社 親水性化セルロース繊維の製造方法
WO2014136730A1 (ja) * 2013-03-04 2014-09-12 小野薬品工業株式会社 転化率に優れた酸化反応
US9981941B2 (en) 2013-03-04 2018-05-29 Paion Uk Limited Process for preparing 3-[(4S)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-a][1,4]benzodiazepin-4-yl]propionic acid methyl ester benzenesulfonate
JPWO2014136730A1 (ja) * 2013-03-04 2017-02-09 パイオン ユーケー リミティド 転化率に優れた酸化反応
US10414749B2 (en) 2013-03-04 2019-09-17 Paion Uk Limited Process for preparing 3-[(S)-7-bromo-2-((2-oxopropyl)amino)-5-pyridin-2-yl-3H-1,4-benzodiazepin-3-yl]propionic acid methyl ester
US9656987B2 (en) 2013-03-04 2017-05-23 Paion Uk Limited Process for preparing 3-[(S)-7-bromo-2-((2-oxopropyl)amino)-5-pyridin-2-yl-3H-1,4-benzodiazepin-3-yl]Propionic acid methyl ester
EA032065B1 (ru) * 2013-03-04 2019-04-30 ПАЙОН ЮКей ЛИМИТЕД Реакция окисления, превосходящая в степени превращения
WO2015086901A1 (en) 2013-12-11 2015-06-18 Upm-Kymmene Corporation Method for recovering heterocyclic nitroxyl catalyst
US10144007B2 (en) 2013-12-11 2018-12-04 Upm-Kymmene Corporation Method for recovering catalyst
US10016726B2 (en) 2014-02-28 2018-07-10 Noram Engineering And Constructors Ltd. Purification process for partly-hydrolyzed cellulose
JP2017508042A (ja) * 2014-02-28 2017-03-23 ノラム エンジニアリング アンド コンストラクターズ リミテッド 部分的に加水分解されたセルロースのための精製プロセス
JP2018150499A (ja) * 2016-12-21 2018-09-27 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
WO2018116660A1 (ja) * 2016-12-21 2018-06-28 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
JP6228707B1 (ja) * 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
US11591721B2 (en) 2016-12-21 2023-02-28 Nippon Paper Industries Co., Ltd. Acid-type carboxymethylated cellulose nanofiber and production method thereof
JP2020165064A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 リンオキソ酸化パルプの製造方法
JP7346878B2 (ja) 2019-03-29 2023-09-20 王子ホールディングス株式会社 リンオキソ酸化パルプの製造方法

Also Published As

Publication number Publication date
JP4669584B2 (ja) 2011-04-13
CA2755338A1 (en) 2010-10-14
CN102361854A (zh) 2012-02-22
CA2755338C (en) 2017-01-10
CN102361854B (zh) 2014-11-12
EP2415761A1 (en) 2012-02-08
JPWO2010116794A1 (ja) 2012-10-18
US8865886B2 (en) 2014-10-21
EP2415761A4 (en) 2012-09-26
EP2415761B1 (en) 2013-11-13
US20120065389A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4669584B2 (ja) N−オキシル化合物の回収・再利用方法
Güler et al. Boron removal from seawater: state-of-the-art review
Li et al. Performance of mesoporous adsorbent resin and powdered activated carbon in mitigating ultrafiltration membrane fouling caused by algal extracellular organic matter
CN108602895B (zh) 阴离子改性纤维素纳米纤维分散液及其制造方法
JP5426209B2 (ja) 酸化パルプ中に残留する有機系酸化触媒の除去方法
Li et al. Fouling control in ultrafiltration of secondary effluent using polyaniline/TiO2 adsorption and subsequent treatment of desorption eluate using electrochemical oxidation
Nguyen et al. Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent
Wang et al. The disinfection by-products precursors removal efficiency and the subsequent effects on chlorine decay for humic acid synthetic water treated by coagulation process and coagulation–ultrafiltration process
EP2763790B1 (de) Verwendung eines porösen adsorbens zur abtrennung fluorierter organischer verbindungen aus kontaminierten fluiden
JP2010235669A (ja) 酸化パルプ中に残留する有機系酸化触媒の除去方法
JP7319619B2 (ja) ヒ素吸着性セルロース材料
WO2018216474A1 (ja) 酸化セルロースナノファイバー、酸化セルロースナノファイバー分散液、および酸化セルロースナノファイバー分散液の製造方法
JP2020037650A (ja) 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液
Schmal et al. Green synthesis of cellulose graft copolymers for anion exchange water purification
WO2022018472A1 (en) Pfas treatment process for liquid effluent
JP6863849B2 (ja) かび臭物質の除去方法およびかび臭物質を除去可能な水処理装置
JP6338668B2 (ja) 触媒を回収する方法
JPH1142498A (ja) 脱塩装置
Korus Ultrafiltration enhanced with poly (sodium acrylate) as an effective method for separation of heavy metals from multicomponent solutions
JP2007029925A (ja) ホウ素含有排水の処理方法
JP2010235454A (ja) N−オキシル化合物の回収・再利用方法
Abdillahi et al. Self-assembly of polyelectrolytes for the removal of metal cations from aqueous solutions
CN105329863A (zh) 一种从制备纳米纤维素的废液中回收氮氧化合物的方法
Şahin et al. Removal of Pb (II) ions from aqueous solution using complexation-ultrafiltration
CN118026478B (zh) 一种处理土壤洗脱液中五氯酚的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013754.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010533771

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2755338

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010761496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13257732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE