WO2010116665A1 - 単核球由来の新規血管再生細胞群及びその分化誘導法 - Google Patents

単核球由来の新規血管再生細胞群及びその分化誘導法 Download PDF

Info

Publication number
WO2010116665A1
WO2010116665A1 PCT/JP2010/002254 JP2010002254W WO2010116665A1 WO 2010116665 A1 WO2010116665 A1 WO 2010116665A1 JP 2010002254 W JP2010002254 W JP 2010002254W WO 2010116665 A1 WO2010116665 A1 WO 2010116665A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
cd11b
cell group
medium
Prior art date
Application number
PCT/JP2010/002254
Other languages
English (en)
French (fr)
Inventor
水上裕輔
笹島順平
杉山祥晃
佐藤一也
高後裕
Original Assignee
国立大学法人旭川医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人旭川医科大学 filed Critical 国立大学法人旭川医科大学
Priority to JP2011508224A priority Critical patent/JP5725509B2/ja
Priority to EP10761371A priority patent/EP2418272A4/en
Priority to US13/138,835 priority patent/US8951795B2/en
Publication of WO2010116665A1 publication Critical patent/WO2010116665A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)

Definitions

  • the present invention relates to a novel vascular regenerative cell group derived from a mononuclear cell group and a method for inducing differentiation thereof. More specifically, the present invention relates to a novel mononuclear cell-derived revascularized cell group that promotes stabilization and maturation of new blood vessels and leads to ischemia and tissue repair, and a safe and simple differentiation induction method thereof.
  • G-CSF granulocyte colony-stimulating factor
  • Non-Patent Documents 1 and 2 In the case of patients and elderly people who have basic diseases such as arteriosclerosis and diabetes, it is feared that in addition to difficulty in collecting bone marrow, the function of cells itself is reduced (see Non-Patent Documents 1 and 2). . As a new attempt, a method has been reported in which progenitor cells contained in umbilical cord blood are amplified in vivo ex vivo (see Patent Document 2). In the future, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are also expected to be used as a source of such undifferentiated cells (stem cells). However, the road to realization is still far away.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • EPCs endothelial progenitor cells
  • mononuclear cells were cultured in a medium such as EBM2 that contains cytokines such as vascular endothelial growth factor (VEGF) and optimized for vascular endothelial cell culture.
  • VEGF vascular endothelial growth factor
  • Adherent cells obtained by inducing differentiation culture of mouse peripheral blood or bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS in a culture dish treated with rat vitronectin are acetylated LDL (acetylated LDL).
  • acetylated LDL acetylated LDL
  • cells having a spindle shape and cells having a circular shape are mixed.
  • the ratio of the former is large, but when cultured for a longer period of time, cells having a paving stone-like morphology presumed to be derived from the latter grow densely.
  • the adherent cells obtained by the above-mentioned method include different cell groups, and that EPC is included in the latter fraction.
  • the frequency of appearance of cells that can be passaged from the formation of paving stone-like colonies is extremely low, and spindle-shaped cells that are often found in the early stage of differentiation-inducing culture expand and expand, and the survival rate thereof is significantly reduced.
  • Improving ischemia can be obtained by transplanting cells obtained by culturing mouse mononuclear cells for a short period of about 1 week into small animals such as mice whose myocardium or lower limbs are ischemic (local and systemic administration). It is known. That is, it is known that cells (group) induced to differentiate from mononuclear cells have an effect of promoting angiogenesis. On the other hand, cells induced to differentiate from mononuclear cells have an effect of reducing the hypoxic region of tumor (cancer) tissue (see Patent Document 3), an effect of suppressing liver fibrosis (see Patent Document 4), and the like. It is also known.
  • EPC markers such as CD34 and VEGF receptor 2 (VEGFR2 / Flk-1 / KDR) (see Non-Patent Document 4) on the cell membrane. It is unclear whether these are cells that lost stem cell antigens during the differentiation process of hematopoietic stem cells or cells derived from non-hematopoietic stem cells that do not express stem cell antigens from the beginning.
  • adherent cells obtained by differentiation induction culture in an EGM2-MV medium supplemented with 10% FBS in a culture dish obtained by treating human peripheral blood mononuclear cells with human fibronectin are circular in the culture period of about 1 week. It has the ability to maintain the spindle-shaped morphology well, promote the luminal formation of human vascular endothelial cells such as HUVEC (see Non-Patent Document 5), and inhibit necrosis associated with lower limb ischemia in nude mice (See Non-Patent Document 6). Clinical trial results have shown that cardiac function after myocardial infarction has been improved by autologous transplantation of human peripheral blood mononuclear cells that have undergone similar differentiation-inducing treatment.
  • CD11b is one of the blood cell differentiation antigens mainly expressed on monocytes and lymphocytes.
  • CD11b-positive cells include cells and lymphocytes that play a role in immune surveillance, such as macrophages, dendritic cells, natural killer cells (NK cells), and the like.
  • VEGFR1 VEGF receptor 1
  • CXCR4 SDF-1 receptor
  • Tie-2 angiopoietin-1 receptor
  • CD11b positive cells there are relatively undifferentiated fractions among CD11b positive cells.
  • Some of the CD11b-positive cells in the bone marrow are CD31 antigen-positive in the presence of angiogenic factors such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF).
  • VEGF vascular endothelial growth factor
  • PDGF platelet-derived growth factor
  • VEGF vascular endothelial growth factor
  • SMA smooth muscle actin
  • relatively young cells such as vascular progenitor cells; VPC (see Non-Patent Document 12) obtained by inducing differentiation of ES cells are considered to have the same properties, and their final differentiation direction. May depend on the environment.
  • CD11b positive cells directly become components of new blood vessels, or are indirectly involved in the promotion of neovascularization or stabilization of new blood vessels through cytokine production. Suggest.
  • non-hematopoietic stem cells that express monocyte differentiation markers such as CD11b, which are relatively abundant in mononuclear cells, as a source for differentiation induction of cells that have functions such as vascular regeneration, vascular repair, and vascular stabilization
  • FBS fetal bovine serum
  • Non-Patent Document 13 cells expressing a monocyte marker such as CD11b differentiate into endothelial cells in tumor blood vessels in a living body having a tumor (cancer)
  • a monocyte marker such as CD11b
  • CD11b positive cell co-expressing Tie2 or the like see Non-Patent Document 14
  • it is difficult to distinguish the characteristics and roles strictly for convenience see Non-Patent Document 15).
  • the inventors have intensively studied to solve the above-mentioned problems, and have found that cells (groups), mainly a monocyte / lymphocyte fraction present in a relatively large amount in peripheral blood, specifically, a CD11b-positive cell. From the department, we succeeded in inducing differentiation of the target cells.
  • the obtained cells did not directly differentiate into vascular endothelial cells, but promoted the stabilization and maturation of new blood vessels, thereby promoting vascular regeneration and causing ischemia and tissue repair. That is, when systemically administered to a living body having an ischemic region such as cancer, it was distributed around new blood vessels and promoted stabilization and maturation of blood vessels. Moreover, this cell expressed CD11b in addition to CD31 and CXCR4, and slightly expressed the surface antigen of c-Kit. From the above characteristics, it was suggested that the cells induced to differentiate from mononuclear cells are cells (groups) belonging to a class different from those conventionally defined as EPC.
  • the mononuclear cell group is divided into vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), thrombopoietin (TPO). ), Differentiation induction by culturing using a medium containing one or more selected from granulocyte-colony stimulating factor (G-CSF) and FMS-like tyrosine kinase 3 ligand (FLT3L),
  • G-CSF granulocyte-colony stimulating factor
  • FLT3L FMS-like tyrosine kinase 3 ligand
  • the present invention relates to a cell group characterized by expressing CD11b.
  • the cell group of the present invention is preferably cultured using a serum-free medium.
  • the cell group of the present invention is further characterized by expressing CD31 and CXCR4. CD105 is also expressed.
  • the mononuclear cells used include peripheral blood, bone marrow, or umbilical cord blood-derived mononu
  • Cultivation is preferably performed under hypoxic conditions.
  • the low oxygen condition means an oxygen concentration condition of 1% to 10%.
  • the mononuclear cell group is cultured using a medium containing VEGF, bFGF, and TPO.
  • the cell group of the present invention is characterized by having blood vessel regeneration ability.
  • the cell group of the present invention has the ability to regenerate blood vessels through stabilization of new blood vessels or promotion of maturation.
  • the present invention also provides a cell preparation for revascularization treatment comprising the above-described cell group of the present invention.
  • the cell preparation of the present invention is characterized by having an ischemic improvement and / or blood vessel maturation effect.
  • the present invention also provides a cancer localization diagnostic agent comprising the above-described cell group of the present invention.
  • this invention provides the preparation method of the cell group which has the blood vessel regeneration ability including the following processes: 1) The mononuclear cell group is divided into vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), thrombopoietin (TPO), granulocyte Culturing using a medium containing at least one selected from granulocyte-colony stimulating factor (G-CSF) and FMS-like tyrosine kinase 3 ligand (FLT3L) 2) From the cell mass obtained by the culture A group of cells expressing CD11b is collected.
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • TPO thrombopoietin
  • G-CSF granulocyte-colony stimulating factor
  • FLT3L FMS-like tyrosine kinase 3 ligand
  • the medium is preferably a serum-free medium, and the culture is preferably performed under hypoxic conditions.
  • the low oxygen condition means a condition with an oxygen concentration of 1% to 10%.
  • the mononuclear cell group is cultured using a medium containing VEGF, bFGF, and TPO.
  • the cells according to the present invention have functions of stabilizing new blood vessels, maturation, and protection, promote lumen formation by mature vascular endothelial cells, and functionally normalize tumor blood vessels. Since the present invention uses monocyte cells that can be collected relatively easily from peripheral blood as a source, the present invention is useful as an alternative method for conventional revascularization treatment using rare (hematopoietic) stem cells as a source. In addition, since the cells according to the present invention are induced to differentiate from monocytic cells under conditions where animal serum is not used, there is no risk of infection and a safe cell preparation that can be clinically applied can be provided.
  • FIG. 1 shows the promotion of MS-1 lumen formation by adherent cells obtained by inducing differentiation of mouse bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS.
  • FIG. 2-1 shows vascular maturation by adherent cells obtained by differentiation induction culture of mouse bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS.
  • FIG. 2-2 shows the results of transplantation of adherent cells obtained by inducing differentiation culture of mouse bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS to cancer-bearing nude mice.
  • FIG. 1 shows the promotion of MS-1 lumen formation by adherent cells obtained by inducing differentiation of mouse bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS.
  • FIG. 2-1 shows vascular maturation by adherent cells obtained by differentiation induction culture of mouse bone marrow mononuclear cells in EGM2-MV medium supplemented with 10% FBS
  • FIG. 3 shows the results of gene expression analysis by quantitative RT-PCR using a TaqMan probe (upper left: CA9, upper middle: hENT1, upper right: dCK, lower left: Oct4, lower middle: MDR1, lower right: ABCG2).
  • FIG. 4 shows the morphology of mouse bone marrow mononuclear cell CD11b positive fraction and CD11b negative fraction.
  • FIG. 5 shows the results of differentiation induction culture of mouse bone marrow mononuclear cell CD11b positive fraction in EGM2-MV medium supplemented with 10% FBS.
  • FIG. 6 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in EGM2-MV medium supplemented with 10% FBS.
  • FIG. 7 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in an EGM2-MV medium supplemented with 5% or 1% FBS in a hypoxic environment.
  • FIG. 8 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in 20% autologous serum-supplemented X-VIVO 15 medium (1 ng / mL, human VEGF also added) and 20% autologous serum-added EGM2-MV medium.
  • FIG. 9 shows the differentiation induction culture results of human peripheral blood mononuclear cells in 5% autologous serum, 50 ng / mL VEGF, 50 ng / mL bFGF added X-VIVO 15 medium.
  • FIG. 10 shows the expression of surface markers on adherent cells obtained by differentiation induction culture of human peripheral blood mononuclear cells in 5% autologous serum, 50 ng / mL VEGF, 50 ng / mL bFGF-added X-VIVO 15 medium.
  • FIG. 11 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF in the presence of 0, 1, 5, 10% autologous serum. Show.
  • FIG. 11 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF in the presence of 0, 1, 5, 10% autologous serum. Show.
  • FIG. 11 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemente
  • FIG. 12 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in 50-ng / mL VEGF, 50-ng / mL bFGF-added X-VIVO 15 medium in the presence or absence of 10% autologous serum.
  • FIG. 13 shows the FLT3L concentration dependence of differentiation-inducing culture of human peripheral blood mononuclear cells in 50 ng / mL VEGF, 50 ng / mL bFGF-added X-VIVO 15 medium.
  • FIG. 13 shows the FLT3L concentration dependence of differentiation-inducing culture of human peripheral blood mononuclear cells in 50 ng / mL VEGF, 50 ng / mL bFGF-added X-VIVO 15 medium.
  • FIG. 14 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL G-CSF supplemented X-VIVO 15 medium.
  • FIG. 15-1 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL TPO.
  • FIG. 15-1 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL TPO.
  • FIG. 15-2 shows a cell aggregate obtained by inducing differentiation of human peripheral blood mononuclear cells in 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL TPO-added X-VIVO 15 medium. The quantitative analysis results are shown.
  • FIG. 16 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL TPO.
  • FIG. 16 shows the results of differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, 0-100 ng / mL TPO.
  • FIG. 17 shows a cell cluster obtained by inducing differentiation of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, and 100 ng / mL TPO. The result of further culturing in 20% FBS-added EGM2-MV medium is shown.
  • FIG. 18 shows the results of differentiation induction culture of peripheral blood mononuclear cells (CD11b positive cells / CD11b negative cells) from multiple myeloma patients in 50-ng / mL VEGF, 50-ng / mL bFGF-added X-VIVO 15 medium. .
  • FIG. 19-1 shows the results of 2-color flow cytometry analysis of human peripheral blood mononuclear cell CD11b positive fraction.
  • FIG. 19-2 shows a CD11b weak positive fraction (CD11b) of a cell group obtained by inducing differentiation of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF for 4 days.
  • (dim ) shows the result of 2 color flow cytometry analysis.
  • FIG. 19-2 shows a CD11b weak positive fraction (CD11b) of a cell group obtained by inducing differentiation of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF for 4 days.
  • (dim ) shows the result of 2 color flow cytometry analysis.
  • FIG. 19-3 shows a CD11b strong positive fraction (CD11b) of a cell group obtained by differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF for 4 days. The result of 2 color flow cytometry analysis of bright ) is shown.
  • Fig. 19-4 shows cells obtained by inducing differentiation of human peripheral blood mononuclear cells, their CD11b positive fraction and CD14 positive fraction in 50-ng / mL VEGF, 50-ng / mL bFGF-added X-VIVO 15 medium. Show groups.
  • Fig. 19-3 shows a CD11b strong positive fraction (CD11b) of a cell group obtained by differentiation induction culture of human peripheral blood mononuclear cells in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mL bFGF for 4 days.
  • FIG. 19-5 shows magnetic beads of the CD11b positive fraction of the cell group obtained by differentiation induction culture of human peripheral blood mononuclear cells in 50 ng / mL VEGF, 50 ng / mL bFGF added X-VIVO 15 medium for 4 days 2 shows the result of 2 color flow cytometry analysis in which was separated by labeled antibody.
  • FIG. 20 shows the expression analysis results of G-CSF receptor, TPO receptor, and VE-cadherin mRNA in human peripheral blood mononuclear cells (CD11b positive fraction / CD11b negative fraction / total mononuclear cells).
  • FIG. 20 shows the expression analysis results of G-CSF receptor, TPO receptor, and VE-cadherin mRNA in human peripheral blood mononuclear cells (CD11b positive fraction / CD11b negative fraction / total mononuclear cells).
  • 21-1 shows CD11b-positive cells among peripheral blood mononuclear cells of a patient with multiple myeloma and cells obtained by differentiation induction culture in 50 ng / mL VEGF, 50 ng / mL bFGF-added X-VIVO 15 medium.
  • 2 shows the results of color flow cytometry analysis (CD14, UEA-lectin affinity).
  • FIG. 21-2 shows TPO reception in cells obtained by differentiation induction culture of peripheral blood mononuclear CD11b positive cells of multiple myeloma patients in 50-ng / mL VEGF, 50-ng / mL bFGF-added X-VIVO 15 medium.
  • FIG. 22 shows CD11b obtained by inducing differentiation of human peripheral blood mononuclear cells in a culture dish using X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, and 20 ng / mL TPO.
  • the luminal formation of the positive fraction on Matrigel (cultured in EGM2-MV medium supplemented with 10% FBS) is shown.
  • FIG. 23-1 shows the results of the lower limb ischemia model test.
  • FIG. 23-2 shows a fluorescence micrograph (20x objective) immunohistologically detected with an anti-BS1-lectin antibody (nude mouse lower limb ischemia model test).
  • FIG. 23-3 shows the results of quantification of functional blood vessels in the vicinity of the ischemic area visualized by BS1-lectin using ImageJ software (nude mouse lower limb ischemia model test).
  • FIG. 24 shows the results of blood flow evaluation by laser Doppler (improved ratio of ischemic limb / healthy limb ratio immediately after treatment) (nude mouse lower limb ischemia model test).
  • FIG. 25 shows the results of gene expression analysis by quantitative RT-PCR in peripheral mononuclear cell-derived CD11b-positive cells of multiple myeloma patients who received G-CSF after chemotherapy.
  • CD11b positive cells purified with magnetic beads (fre CD11b), the CD11b positive cells in 20% oxygen (cul CD11b) in X-VIVO 15 medium supplemented with 50 ng / mL VEGF and 50 ng / mLbFGF in 20% O 2 ), cells cultured under 5% oxygen (cul CD11b in 20% O 2 ).
  • Cell population of the present invention is a CD11b-positive cell population having the ability to regenerate blood vessels, which is induced to differentiate from mammalian mononuclear cells.
  • the cell group of the present invention is derived from “mononuclear cells”.
  • “Mononuclear cells” are mononuclear mesenchymal cells that are widely distributed in connective tissue, lymphoid tissue, and bloodstream, and are present in migratory mononuclear leukocytes and tissues such as monocytes and lymphocytes. It is classified into a mononuclear phagocytic cell group represented by macrophages.
  • mononuclear cells (white blood cells) derived from peripheral blood, bone marrow, or umbilical cord blood belonging to the former are preferable. In particular, mononuclear cells derived from peripheral blood are preferable because they are abundant and easy to obtain.
  • the mononuclear cells used are derived from the patient to whom they are administered, so that a safe regenerative medical cell group (cell preparation) avoiding rejection can be prepared.
  • the cell group of the present invention is prepared by subjecting the mononuclear cell group prepared as described above to differentiation induction culture using a serum-free medium containing an appropriate “cytokine”. By adding a cytokine, the mononuclear cells proliferate suitably even in a serum-free medium, and are induced to differentiate into cells having the intended ability to regenerate blood vessels. In addition, since the medium used does not contain serum, there is no risk of infection and the prepared cell group (cell preparation) can be directly used for clinical application.
  • the cell group of the present invention can be obtained as a semi-floating (spheroid) cell cluster with weak adhesion by culturing using a serum-free medium.
  • serum such as the patient's autologous serum
  • CD11b is one of the blood cell differentiation antigens expressed mainly in monocytes and lymphocytes.
  • CD11b positive cells include macrophages, dendritic cells, immune cells such as NK cells and lymphocytes, abnormal neovascular cells found in cancer, CD31 antigen positive vascular endothelial cells or smooth muscle actin (SMA) Relatively undifferentiated cells that differentiate into antigen-positive mural cells are also included.
  • SMA smooth muscle actin
  • the cell group of the present invention expresses CD31 and CXCR4, in addition to CD11b, and a slight amount of c-Kit is observed. CD105 expression is also observed.
  • the inventors have found that a CD11b positive cell group that is induced to differentiate from a mononuclear cell by a specific method using a serum-free medium has excellent blood vessel regeneration ability in vivo and in vitro.
  • the cell group of the present invention is considered to be derived from the CD11b dim / CD31 dim / CD14 ⁇ cell group (mainly lymphocytes) or the CD11b bright / CD31 bright / CD14 bright cell group (mainly monocytes). .
  • CD11b dim / CD14 - / CD8 - and populations expressing / CD31 dim / CXCR4 + a population that express CD11b bright / CD14 + / CD105 + / CXCR4 + present .
  • “Dim” indicates that immunostaining is weak and the expression level of the marker is relatively small
  • “bright” indicates that immunostaining is strong and the expression level of the marker is relatively large.
  • the in vivo revascularization ability of the mononuclear cell group and the CD11b positive cell group originally contained in the mononuclear cell group is low.
  • the cell group conventionally called EPC is induced to differentiate from the CD11b-negative cell group of the mononuclear cell group, and the expression of the surface marker is CD45 ⁇ / CD11b ⁇ / CD34 + / CD133 + / Flk-1 + In this respect, it is clearly distinguished from the cell group of the present invention.
  • the cell group of the present invention does not differentiate directly into vascular endothelial cells, but promotes the regeneration and maturation of new blood vessels, thereby promoting vascular regeneration and causing ischemia and tissue repair.
  • the blood vessels are distributed around the new blood vessels, enhancing the lining of the new blood vessels (micro blood vessels) endothelial cells by the pericytes, etc. Promote transformation and maturation.
  • Revascularization ability means a function that promotes or assists the mechanism by which a new blood vessel is formed in a tissue.
  • Angiogenesis in which existing blood vessel endothelial cells proliferate and migrate to create a new blood vessel, ischemic blood vessel Is reconstructed (becomes thicker), forms collateral blood vessels that form a conduit that replenishes blood flow to new blood vessels, and bone marrow-derived cells reach the ischemic site via the blood flow, and the vascular endothelium and periplasm Includes angiogenesis that differentiates into any contribution at any stage.
  • EPCs endothelial progenitor cells
  • the cell group of the present invention does not directly differentiate into vascular endothelial cells, but contributes to revascularization treatment by promoting the stabilization and maturation of new blood vessels.
  • the cell group of the present invention is prepared from the mononuclear cell group by the following steps. 1) The mononuclear cell group is divided into vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), thrombopoietin (TPO), granulocyte Culturing in serum-free medium containing one or more selected from colony stimulating factor (G-CSF) and FMS-like tyrosine kinase 3 ligand (FLT3L) 2) Expressing CD11b from cell clusters Collecting cell populations.
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • TPO thrombopoietin
  • G-CSF colony stimulating factor
  • FLT3L FMS-like tyrosine kinase 3 ligand
  • the medium used in the present invention is not particularly limited as long as it is a medium suitable for mononuclear cell culture.
  • Standard media include MEM medium, BME medium, DME medium, ⁇ -MEM medium, IMEM medium, ES medium, DM-160 medium, Fisher medium, F12 medium, WE medium, RPMI medium, StemSpan medium, StemPro medium and Mention may be made of these mixtures.
  • vascular endothelial cell medium for example, EGM-2 medium, EBM-2 medium and the like.
  • the medium is preferably a “serum-free medium” that does not contain animal serum such as FBS and FCS.
  • the “serum-free medium” is not particularly limited as long as it is a medium suitable for mononuclear cell culture, and a commercially available serum-free medium may be used or may be appropriately prepared.
  • the present inventors have established a simple differentiation induction method for the cell group of the present invention using a “serum-free medium”. A serum-free medium containing no animal serum is free from infection and the prepared cell group (cell preparation) can be directly used for clinical application.
  • Cytokines “Differentiation induction” from a mononuclear cell group is performed by adding an appropriate “cytokine” to the aforementioned serum-free medium and culturing. Due to cytokines, mononuclear cells proliferate favorably even in serum-free media and are induced to differentiate into cells having the desired ability to regenerate blood vessels.
  • cytokine used in the present invention, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), thrombopoietin (TPO), Granulocyte-colony stimulating factor (G-CSF), FMS-like tyrosine kinase 3 ligand (FLT3L), Macrophage-colony stimulating factor (M-CSF), hedgehog ligand, CEACAM (cancer) Fetal antigen-related cell adhesion factor) and the like, but are not limited thereto as long as they meet the purpose and effect of the present invention.
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • TPO thrombopoietin
  • G-CSF Granulocyte-colony stimulating factor
  • FMS-like tyrosine kinase 3 ligand FMS-like tyrosine kinase 3 ligand
  • M-CSF Macrophage-
  • VEGF vascular endothelial growth factor
  • VEGFR VEGF receptor
  • VEGF-A Growth factors involved in angiogenesis, angiogenesis, and lymphangiogenesis are VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-D, VEGF-E, PlGF-1, and PlGF-2. These are collectively referred to as the “VEGF family”, and only VEGF-A is sometimes simply referred to as VEGF. There are also several subtypes of some VEGF family members.
  • the “vascular endothelial growth factor (VEGF)” used in the present invention includes these VEGF families and their subtypes as long as the object and effect of the present invention are not impaired.
  • Base fibroblast growth factor is a heparin-binding mitogenic protein, and has a function of promoting angiogenesis and arteriogenesis as a powerful angiogenic factor (peptide), and is a nerve. Also involved in bone formation. It is known to have an effect of increasing proliferation of various types of cells under serum-free culture or culture conditions with a small amount of serum.
  • TPO Thrombopoietin
  • Platelets differentiate from hematopoietic stem cells via megakaryocytes, play an important role in blood coagulation, and are also involved in various immune responses.
  • TPO was reported as a factor having the activity of promoting platelet formation and was first cloned in 1994. Later, it was elucidated that TPO is a ligand of c-mpl that has the function of suppressing the formation of megakaryocyte colonies, and is thought to be an important factor in the production of hematopoietic cells.
  • G-CSF Granulocyte-colony stimulating factor
  • FMS-like tyrosine kinase 3 ligand is a tyrosine kinase 3 ligand, and the proliferation and differentiation of hematopoietic progenitor cells and stem cells through signal transduction through the Flt3 receptor (CD135), a type of receptor tyrosine kinase. It is known to control.
  • Flt3 ligand is known to have proliferative activity against monocytic cells such as CD34 or CD133 positive hematopoietic stem cells and dendritic cells, and these can be amplified in vivo or in vitro.
  • the cytokines such as VEGF, bFGF, TPO and FLT3L used in the present invention may be natural or recombinant. These cytokines are preferably derived from the same species as the mononuclear cells used. Therefore, human VEGF is preferred when human mononuclear cells are used. As VEGF, commercially available products (reagents or pharmaceuticals) may be used, or recombinantly produced based on known sequence information may be used.
  • a serum-free medium containing at least one of the above cytokines is used.
  • the serum-free medium contains VEGF, bFGF, and TPO.
  • the expression of TPO receptor is low in CD11b-positive cells, which may be due to the paracrine effect via CD11b-negative cells, or in the case of young CD11b-positive cells from bone marrow with G-CSF, the process of differentiation induction Although a direct effect is also expected due to the increased expression of TPO receptor, the mechanism of action is unknown.
  • the amount of cytokine in the medium is appropriately set according to the cells to be used, but is generally about 1 to 100 ⁇ g / ml.
  • Culture is performed under conditions normally used for lymphocyte culture, using a surface-treated culture dish or the like. That is, the temperature is 37 ° C. and the oxygen concentration is 20%.
  • Cultivation is preferably performed under hypoxic conditions.
  • “low oxygen condition” means an oxygen concentration at least lower than the oxygen content in air (about 21%), and specifically means an oxygen concentration of 1% to 10%. .
  • Cultivation of cells is preferably carried out in a cell preparation facility “CPC (Cell Processing Center)” based on GMP.
  • CPC Cell Processing Center
  • Preparation of “clinical grade cells” to be administered to a subject is a facility specially designed to manipulate cells in a sterile condition, more specifically air conditioning control, room pressure control, temperature / humidity control, particle counter, HEPA It is preferable to use CPC with cleanliness guaranteed by a filter or the like.
  • all devices used in the CPC are guaranteed to have performance through validation, and it is preferable to monitor and record their functions as needed. It is desirable to strictly manage and record according to the “procedure manual”.
  • CD11b-positive cells By culturing using a serum-free medium, it is obtained as a semi-floating (spheroid) cell cluster with weak adhesion. Cells expressing CD11b are recovered from this cell cluster. Recovery of cells expressing CD11b can be easily performed using a CD11b antibody according to a conventional method.
  • CD11b positive cells may be separated using a magnetic bead labeled with a CD11b antibody, a cell sorter using a fluorescently labeled CD11b antibody, or a column on which a CD11b antibody is immobilized.
  • the CD11b antibody a commercially available one may be used, or it may be prepared using CD11b or a partial peptide thereof according to a conventional method.
  • Cell preparation 3.1 Cell preparation for revascularization The cell group of the present invention does not directly differentiate into vascular endothelial cells, but promotes the regeneration of blood vessels by promoting the stabilization and maturation of new blood vessels to promote ischemia and tissue. Bring repair.
  • the cell group of the present invention can be used as a “cell preparation for revascularization treatment” that promotes the stabilization and maturation of blood vessels when administered to a patient having an ischemic region such as cancer.
  • the cell preparation of the present invention does not directly differentiate itself into vascular endothelial cells, but exhibits the ability to regenerate blood vessels through the stabilization of new blood vessels or the promotion of maturation. It is clearly distinguished from cell preparations for revascularization treatment.
  • the administration method of the cell preparation of the present invention is not particularly limited, and depending on the application site, local transplantation by surgical means, intravenous administration, lumbar puncture administration, local injection administration, subcutaneous administration, intradermal administration, intraperitoneal administration, Intramuscular administration, intracerebral administration, intraventricular administration, intravenous administration, and the like are possible.
  • local administration or intravenous administration is preferable as an administration method to ischemic sites including cancer.
  • Angiogenesis such as VE-cadherin, VEGF receptor 1 (VEGFR1), SDF-1 receptor (CXCR4), angiopoietin-1 receptor (Tie-2) together with CD11b antigen It is known that receptor expression for factors is observed (see above).
  • the cell group of the present invention has selective directivity to tumor tissues and ischemic regions, and is administered intravenously or locally to localize the tumor and to provide structural and functional blood vessels of the tumor blood vessels. There is a possibility of repair.
  • the angiogenic ability of mononuclear cells obtained from peripheral blood of patients with lifestyle-related diseases such as hypertension, diabetes and hyperlipidemia, or elderly patients may be impaired. Even in patients having such various complications, regenerative treatment using their own cells becomes possible by preparing the cell preparation of the present invention using mononuclear cells obtained from the peripheral blood.
  • the cell preparation of the present invention may contain scaffold materials and components for assisting cell maintenance / proliferation and administration to the affected area, and other pharmaceutically acceptable carriers.
  • Components necessary for cell maintenance / proliferation include media components such as carbon sources, nitrogen sources, vitamins, minerals, salts, various cytokines, and extracellular matrix preparations such as Matrigel TM .
  • scaffold materials and components that assist administration to the affected area include biodegradable polymers; for example, collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof, and a complex composed of two or more thereof, an aqueous solution for injection;
  • aqueous solution for injection For example, physiological saline, medium, physiological buffer such as PBS, isotonic solution (eg D-sorbitol, D-mannose, D-mannitol, sodium chloride) containing glucose and other adjuvants, etc.
  • An auxiliary agent such as alcohol, specifically ethanol, polyalcohol such as propylene glycol, polyethylene glycol, nonionic surfactant such as polysorbate 80, HCO-50, etc. may be used in combination.
  • organic solvents polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose as necessary , Ethyl cellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives, It may contain a buffer, an emulsifier, a suspension, a soothing agent, a stabilizer and the like.
  • a purified antibody is dissolved in a solvent such as physiological saline, buffer solution, glucose solution, etc., and an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • a solvent such as physiological saline, buffer solution, glucose solution, etc.
  • an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • Tween 80, Tween 20, gelatin or the like is added thereto.
  • Diseases that can be the subject of the cell preparation of the present invention include, for example, bed sores / skin ulcers, surgical scars, wounds including refractory peptic ulcers, inflammatory diseases including chronic inflammatory bowel diseases such as ulcerative colitis and Crohn's disease All diseases requiring revascularization are included, such as diseases, severe limb ischemia, ischemic heart disease including myocardial infarction / angina pectoris / heart failure, cerebral infarction, diabetic neuropathy, cancer with severe ischemia.
  • diabetics including severe chronic lower limb ischemia (obstructive arteriosclerosis, Buerger's disease), treatment-refractory ischemic heart disease, cancer with severe ischemia, and retinopathy that are difficult to treat with conventional medicine Vascular disorders and the like are preferred as target diseases.
  • severe chronic lower limb ischemia obstructive arteriosclerosis, Buerger's disease
  • treatment-refractory ischemic heart disease cancer with severe ischemia
  • cancer with severe ischemia cancer with severe ischemia
  • retinopathy that are difficult to treat with conventional medicine Vascular disorders and the like are preferred as target diseases.
  • the cell group of the present invention has selective directivity to tumor tissues and ischemic regions. Therefore, if the cell group of the present invention is labeled with nanoparticles or the like, it can be applied to an image diagnosis in which the localization of cancer including ischemia and metastasis is observed. Cell labeling can be easily performed by labeling with a magnetic substance or a fluorescent dye according to a conventional method.
  • the cell group of the present invention has selective directivity to tumor tissue, it may be used as a carrier for proteins and drugs having cytotoxicity against anticancer drugs and tumor cells. .
  • Example 1 Induction of differentiation of mouse mononuclear cells in EGM2-MV medium Mononuclear cells were prepared from mouse bone marrow as follows. The femur of mice was crushed using a mortar and DPBSE (PBS containing EDTA at a concentration of 5 mM), and bone marrow fluid was collected. The collected bone marrow fluid is filtered using a membrane filter with a diameter of 70 ⁇ m to collect a bone marrow cell suspension, suspended in 10 ml of DPBSE, and this suspension is put into a 15 ml centrifuge tube containing 4 ml of Histopaque 1083 (Sigma). Layered quietly. After this mixture was subjected to density gradient centrifugation (400 g, 20 minutes, room temperature), the cells layered in the middle were collected with a pipette to isolate bone marrow mononuclear cells (BM-MNC).
  • BM-MNC bone marrow mononuclear cells
  • EGM2-MV supplemented with 10% FBS in a temperature-sensitive culture dish obtained by treating rat mouse bone marrow mononuclear cells with rat vitronctin Differentiation induction culture was performed in a medium for 1 week to obtain adherent cells.
  • -EGM2-MV medium Contains EGF, VEGF, IGF, bFGF (Growth factor concentrations are not disclosed; manufactured by Lonza)
  • Culture conditions 20% oxygen, 5% CO 2 , cultured at 37 ° C for 4 days, re-seeded in a new UpCell culture dish that has been suspended at room temperature and not coated, and adheres after 3 days was resuspended and collected.
  • adherent cells derived from mouse bone marrow mononuclear cells on angiogenesis.
  • CD31 antibody vascular endothelial cells; red, manufactured by BD
  • NG2 antibody pericytes; green, manufactured by Millipore
  • nuclear staining blue
  • pericyte lining of the lumen area and microvessels The proportion of accompanying mature blood vessels was determined. As a result, it was confirmed that the vascular area of tumor blood vessels and the lining (blood vessel maturation) by NG2-positive pericyte were improved by transplantation of cultured mononuclear cells (FIG. 2-1).
  • adherent cells obtained by inducing differentiation of mononuclear cells using EGM2-MV medium supplemented with serum can promote the stabilization of new blood vessels and correct structural abnormalities of tumor blood vessels It was confirmed.
  • Example 2 Induction of differentiation of mouse mononuclear cell CD11b positive fraction Mononuclear cells were prepared from mouse bone marrow in the same manner as in Example 1. Next, a CD11b positive fraction was prepared from the obtained mouse bone marrow mononuclear cells using immunomagnetic beads (Miltenyi Biotech) with a CD11b antibody immobilized thereon.
  • CD11b positive fraction When cells of CD11b positive fraction were cultured in an EGM2-MV medium supplemented with 10% FBS in a culture dish treated with rat vitronectin for 3 weeks, the cells expanded and developed, but showed no tendency to proliferate. That is, CD11b-positive cells are observed as spindle-shaped adherent cells from the early stage of culture, but colony formation is weak and proliferation ability is poor (upper part of FIG. 5).
  • the Lineage negative c-Kit positive fraction (fraction containing hematopoietic stem cells) was similarly subjected to differentiation induction culture for 3 weeks or more in EGM2-MV medium supplemented with 10% FBS.
  • EGM2-MV medium supplemented with 10% FBS.
  • FBS 10% FBS
  • the appearance of cells that grew from colony formation and had a paving stone shape was observed (FIG. 5). Since this cell can be passaged, it can be said that it is close to EPC having proliferative ability and is different from a cell derived from CD11b positive cells (lower row in FIG. 5).
  • EPC vascular endothelial progenitor cells
  • Example 3 Differentiation induction of human mononuclear cells under various conditions 20 mL of DPBSE was added to 30 mL of peripheral blood obtained from healthy volunteers, and centrifuged at 400 xg for 35 minutes at 20 ° C to collect the buffy coat. After resuspending in 20 mL of DPBSE, density gradient centrifugation (400 g, 20 minutes, room temperature) using Histopaque 1077 (manufactured by Sigma), and the layered cells in the middle were collected with a pipette. Mononuclear cells were isolated and cultured on a plate coated with human fibronectin for 4-7 days using EBM-2 supplemented with a medium for microvascular endothelial cells EGM2-MV medium kit (Lonza). Adherent cells Got.
  • Human peripheral blood mononuclear cells were cultured for differentiation induction in an EGM2-MV medium supplemented with 10% FBS in a culture dish treated with human fibronectin. In the culture period of about 1 week, the circular shape and the spindle shape are well maintained, but when the culture is performed for about 2 weeks, aging phenomenon such as swelling and extension is shown and the survival rate is remarkably reduced (FIG. 6). ).
  • the EGM2-MV medium composition and culture conditions are the same as in Example 1.
  • DiI-acLDL labeled with acetylated LDL was added to EGM2-MV medium supplemented with 5% or 1% FBS, and human peripheral blood mononuclear cells were subjected to differentiation induction culture in a culture dish treated with human fibronectin as in the previous section.
  • Adherent cells visualized by acetylated LDL uptake are cultured in a 5% hypoxic environment to reduce senescence phenomena such as swelling and extension, improve cell viability, and reduce serum dependence. (Fig. 7).
  • Human peripheral blood mononuclear cells were cultured for differentiation induction in a culture dish treated with human fibronectin using X-VIVO 15 medium supplemented with 20% autologous serum (1 ng / mL human VEGF also added).
  • X-VIVO 15 medium is suitable for culturing human monocytes, macrophages and various cell lines, granulocytes, and natural killer (NK) cells in addition to purified CD3 + lymphocytes isolated from peripheral blood and human tumors. Culturing was performed at 20% oxygen, 5% CO 2 and 37 ° C. The obtained adherent cells were confirmed to have a low level of cell aging observed 2 weeks after the start of culture, compared to cells obtained with EGM2-MV medium supplemented with 20% autologous serum. (FIG. 8).
  • Peripheral blood mononuclear cells were cultured for 7 days in a culture dish treated with human fibronectin. The resulting adherent cells showed a spindle-shaped morphology (FIG. 9).
  • Di-acLDL labeled with acetylated LDL was added to X-VIVO 15 medium supplemented with 0, 1, 5, 10% autologous serum, 10 ng / mL VEGF, and 10 ng / mL bFGF, and human peripheral blood Differentiation induction culture was performed in a culture dish in which mononuclear cells were treated with poly-L-lysine (PLL) for 14 days. As a result, it was confirmed that there were viable cells that were visualized by the uptake of DiI-labeled acetylated LDL even under serum-free conditions (FIG. 11).
  • Human peripheral blood mononuclear cells are obtained by inducing differentiation induction culture in a culture dish in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, and 0-100 ng / mL TPO for 1 week.
  • the semi-floating cell conglomerate was collected, replated in an EGM2-MV medium supplemented with 20% FBS in a culture dish treated with PLL, and cultured for 3 days.
  • adherent cells with spindle-shaped morphology were obtained, and that the number of adherent cells after re-seeding increased most when differentiation induction culture was performed in the presence of 100 ng / mL TPO.
  • FIG. 16 Human peripheral blood mononuclear cells are obtained by inducing differentiation induction culture in a culture dish in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, and 0-100
  • the X-VIVO 15 medium is more suitable than the EGM2-MV medium for inducing differentiation of cells having the desired angiogenic ability. It was also suggested that cell viability was improved by culture under hypoxic conditions and addition of bFGF. In addition, it was confirmed that the addition of FLT3L, G-CSF, and TPO (during serum-free culture) improved the recovery rate of the target angiogenic ability in a concentration-dependent manner. Furthermore, differentiation-induced culture under hypoxic conditions dramatically increases the adhesion in the presence of blood, so that it is predicted that the ability to localize in the ischemic site of interest will be enhanced even in vivo. . In addition, pre-administration of G-CSF at the time of collection of peripheral blood mononuclear cells is expected to increase the ability to form spheroids and obtain target vascular stabilized cells more effectively.
  • Example 4 Flow cytometry and quantitative RT-PCR analysis of human peripheral blood mononuclear cell CD11b positive fraction
  • Human peripheral blood mononuclear cells were analyzed by 2 color flow cytometry.
  • the CD11b positive fraction of human peripheral blood mononuclear cells consists of CD11b dim and CD11b bright , the former being CD31 dim / CD14 ⁇ (mainly lymphocytes) and the latter being CD31 bright / CD14 + (mainly monocytes) ( Fig. 19-1).
  • “Dim” indicates that immunostaining is weak and the expression level of the marker is relatively small
  • “bright” indicates that immunostaining is strong and the expression level of the marker is relatively large.
  • CD11b dim among the CD11b positive fractions of human peripheral blood mononuclear cells / CD31 dim / CD14 ⁇ became the main cell source of cell clumps with vascular stabilization by differentiation-inducing culture, or the presence of CD11b dim / CD31 dim / CD14 ⁇ is a CD11b bright / CD31 bright / CD14 + blood vessel It was predicted to be necessary for differentiation into cells having a stabilizing action (FIG. 19-4).
  • CD11b positive fractions were purified from human peripheral blood mononuclear cells using magnetic beads, and the expression of G-CSF receptor, TPO receptor and VE-cadherin mRNA in these was compared with CD11b negative fractions and mononuclear cells as a whole.
  • the expression of G-CSF receptor and VE-cadherin was high in the CD11b positive fraction, whereas the expression of TPO receptor was high in the CD11b negative fraction (FIG. 20).
  • G-CSF receptor in CD11b-positive cells was significantly higher than that of mononuclear cells before isolation, but no increase in expression was observed by differentiation-inducing culture.
  • CXCR4 in CD11b positive cells was enhanced about 3-fold (FIG. 21-2).
  • CD11b dim / CD31 dim / CD14 - / CXCR4 + or CD11b bright / CD14 + / CD105 presence of + can be important to the induction of differentiation of cell clusters having a vascular stabilizing effect Sex was suggested.
  • the CD11b positive fraction of peripheral blood mononuclear cells mobilized from the bone marrow by administration of G-CSF has high colony-forming ability in serum-free medium supplemented with VEGF, etc., thus inducing stabilization of new blood vessels It was considered more preferable as a source of cells.
  • CXCR4 expression is enhanced, it is expected that the ability to localize to ischemic tissue is enhanced. Further study is needed on the significance of the decrease in CD14 expression in the process of differentiation induction and the enhancement of affinity for UEA-lectin.
  • Example 5 In vitro angiogenesis ability and mouse lower limb ischemia model transplantation experiment (1) Half of human peripheral blood mononuclear cells obtained by inducing differentiation induction culture for 4 days in X-VIVO 15 medium supplemented with 50 ng / mL VEGF, 50 ng / mL bFGF, and 20 ng / mL TPO in a culture dish The floating cell clumps were collected, and the CD11b positive fraction was purified using magnetic beads on which the CD11b antibody was immobilized. This CD11b positive fraction was incorporated with DiI-labeled acetylated LDL and cultured on Matrigel in EGM2-MV medium supplemented with 10% FBS for 7 days. As a result, it was confirmed that the visualized cells formed a lumen (FIG. 22).
  • BS1-lectin was injected into the heart, allowed to stand for 5 minutes, and then perfused with 4% paraformaldehyde to collect ischemic limbs. Post-fixation with 4% paraformaldehyde was performed (3 hours, 4 ° C.) and embedded in paraffin to prepare a tissue section. Fluorescence micrograph showing immunohistological detection of reactive angiogenesis (functional blood vessels) in the vicinity of ischemia (in the vicinity of the area where inflammatory cell infiltration accompanying ischemia is observed; border ischemic zone) with anti-BS1-lectin antibody ( (Object 20 ⁇ ) (FIG. 23-2: The lower part is a merge image with nuclear staining by DAPI. Scale is 100 ⁇ m).
  • CD11b positive cells CD11b + from cultured MNC purified by magnetic beads in lower limb ischemic mice, CD11b positive cells without differentiation induction culture (fresh CD11b + ), mononuclear cells with differentiation induction culture Balls (cultured MNC) and Matrigel (control) were transplanted, and blood flow evaluation (improvement ratio of ischemic limb / healthy limb ratio immediately after treatment) was performed 14 days after ligation of the lower limbs.
  • Example 6 Multiple myeloma patient Gene expression analysis by quantitative RT-PCR in peripheral mononuclear cell-derived CD11b-positive cells G-CSF was administered after chemotherapy and collected at the time of peripheral blood stem cell transplantation CD11b-positive fractions from peripheral blood mononuclear cells from patients with multiple myeloma (fre CD11b), and these CD11b-positive cells supplemented with 50 ng / mL VEGF and 50 ng / mLbFGF X-VIVO Differentiation induction culture was performed for 4 days in 15 medium under 20% oxygen (cul CD11b in 20% O 2 ) and 5% oxygen (cul CD11b in 20% O 2 ).
  • the cell group according to the present invention is induced to differentiate under conditions in which animal serum is not used, using a mononuclear cell that can be collected relatively easily from the peripheral blood of a patient as a source. Therefore, the cell group according to the present invention has no risk of infection and is useful as a safe cell preparation that can be clinically applied.
  • the present invention is useful as an alternative method of conventional revascularization treatment using rare (hematopoietic) stem cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、新生血管の安定化と成熟化を促進し、虚血や組織修復をもたらす細胞を単核球から安全かつ簡便に分化誘導する手法に関する。本発明の細胞は、単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む培地(特に、無血清培地)を用いて培養することにより分化誘導し、CD11bを発現している細胞群を回収する。

Description

単核球由来の新規血管再生細胞群及びその分化誘導法
 本発明は、単核球細胞群に由来する新規血管再生細胞群とその分化誘導法に関する。より詳しくは、新生血管の安定化と成熟化を促進し、虚血や組織修復をもたらす単核球由来の新規な血管再生細胞群と、その安全かつ簡便な分化誘導方法に関する。
 動脈硬化に伴う様々な虚血性疾患の治療において自家骨髄細胞(単核球)の局所ないし経静脈的な移植による血管再生治療が先端医療として行われている。現状では、多くの場合CD34陽性細胞やCD133陽性細胞などの造血幹細胞を含む分画が虚血改善効果を担うと考えられているため(特許文献1参照)、これらの表面抗原を有する細胞の純化による治療成績の向上が期待されている。骨髄や臍帯血は未分化細胞を比較的多数含み、前述した細胞の供給源となりうるが、末梢血に含まれるCD34陽性細胞やCD133陽性細胞は極めて少ない。そのため、末梢血を用いる場合には、顆粒球コロニー刺激因子(G-CSF)等による骨髄前駆細胞の多量動員が一般に行われるが、それでも一定の治療効果を得るのに必要な細胞数を回収することが困難な場合もある。
 動脈硬化や糖尿病等の基礎疾患を有する患者や高齢者の場合、骨髄採取が困難なことに加えて、細胞の機能そのものが低下していることが懸念される(非特許文献1及び2参照)。新たな試みとして、臍帯血に含まれる前駆細胞をex vivoで細胞増幅して用いる方法も報告されている(特許文献2参照)。また、将来的には、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)を、このような未分化細胞(幹細胞)のソースとして利用することも期待されている。しかしながら、現実化への道のりはまだ遠い。
 希少な(造血)幹細胞を血管再生治療のソースとする方法に対し、骨髄あるいは末梢血に含まれる単核球を分化誘導して得られる血管内皮前駆細胞(endothelial progenitor cell; EPC)の利用を示唆する報告もある(非特許文献3参照)。この報告では、血管内皮細胞増殖因子(VEGF)をはじめとするサイトカインを含み、血管内皮細胞の培養に最適化されたEBM2等の培地を用いて単核球を培養し、付着細胞あるいは浮遊細胞として回収される細胞をEPCと称している。
 マウスの末梢血あるいは骨髄単核球を、ラットvitronectin処理した培養皿で10 % FBSを添加したEGM2-MV培地にて分化誘導培養して得られる付着細胞は、アセチル化低密度リポタンパク質(acetylated LDL)を取り込み、レクチン(lectin)に親和性を示す。この付着細胞には、紡錘形の形態を呈する細胞と類円形の形態を呈する細胞が混在している。培養開始1週間以内では前者の割合が多いが、より長期間培養すると後者に由来すると推察される敷石状の形態を呈する細胞が密に増殖してくる。すなわち、上記した方法で得られる付着細胞は異なる細胞群を含み、EPCは後者の分画に含まれると考えるのが妥当である。しかしながら、敷石状のコロニー形成から継代可能な細胞が出現する頻度は極めて低く、分化誘導培養の初期段階で多く見られる紡錘形の細胞は膨化・伸展し、その生存率は著しく低下する。
 マウス単核球を1週間程度の短期間培養して得られる細胞を、心筋あるいは下肢が虚血状態に陥ったマウスなどの小動物に移植(局所ならびに全身投与)すると、虚血の改善が得られることが知られている。すなわち、単核球から分化誘導された細胞(群)は血管新生を促進する効果を有することが知られている。一方で、単核球から分化誘導された細胞は、腫瘍(がん)組織の低酸素領域の縮小効果(特許文献3参照)や、肝線維化の抑制効果(特許文献4参照)などを有することも知られている。しかしながら、これらの細胞は、必ずしも細胞膜上にCD34及びVEGF受容体2(VEGFR2/Flk-1/KDR)などのEPCマーカーと呼ばれる抗原(非特許文献4参照)を発現していない。これらは造血幹細胞の分化過程に伴い幹細胞抗原を失ったものか、あるいは当初より幹細胞抗原を発現しない非造血幹細胞に由来する細胞群なのかは不明である。
 同様に、ヒト末梢血単核球をヒトfibronectin処理した培養皿で10 % FBSを添加したEGM2-MV培地にて分化誘導培養して得た付着細胞は、1週間程度の培養期間においては類円形から紡錘形の形態を良く維持し、HUVECなどのヒト血管内皮細胞の管腔形成を促進する能力を有し(非特許文献5参照)、ヌードマウスの下肢虚血に伴う壊死を抑制することが報告されている(非特許文献6参照)。同様の分化誘導処理を施したヒト末梢血単核球を自家移植することで、心筋梗塞後の心機能が改善したことを示す臨床試験成績も報告されており、移植された細胞はFlk-1、CD31、CD105、VE-cadherin等の表面抗原を発現するEPCと定義されている(非特許文献7参照)。しかしながら、培養期間が3日間と短いことから、造血幹細胞が大量に増幅された可能性はむしろ少ないと考えるのが妥当であり、単球系由来の細胞であった可能性が否定できない。
 単核球の長期間の分化誘導培養によって、効率よく目的とする細胞が得られるか、またこれらの細胞機能と細胞の品質が良好に保たれるかについては明らかにされていない。分化誘導に際して、低酸素環境がEPCの未分化性の保持(非特許文献8参照)、抗酸化作用等(非特許文献9参照)が知られているが、これまでの報告の大部分はFBSを含有するEGM2-MV培地を用いているため、そのまま臨床応用(ヒトへの投与)することはできない。
 単核球をソースとして血管内皮細胞への分化能を有するEPCを分化誘導することは、CD34あるいはCD113陽性の造血幹細胞による血管再生治療の代替方法として期待される。しかしながら、上述したとおり、単核球から分化誘導される付着細胞(群)はヘテロな群であって、血管再生治療に好適なEPCのみを効率的に分化誘導する臨床応用可能な手法の未だ確立されていない。
 CD11bは、主として単球及びリンパ球に発現している血球分化抗原のひとつである。CD11b陽性細胞にはマクロファージや樹状細胞、natural killer細胞(NK細胞)等のように免疫監視機構を担う細胞やリンパ球の一部も含まれる。一方で、がん等において見られる異常な新生血管において、CD11b抗原とともにVE-cadherin、VEGF受容体1(VEGFR1)、SDF-1受容体(CXCR4)、angiopoietin-1受容体(Tie-2)などの血管新生因子に対する受容体の発現がみられることが知られている。すなわち、これらのマーカーを発現している非幹細胞が血管新生促進効果を有する細胞に分化するなど、血管新生において重要な役割を担っている可能性が示唆されている(非特許文献10参照)。
 一方で、CD11b陽性細胞のなかには比較的未分化な分画も存在する。骨髄中のCD11b陽性細胞の一部は血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)や血小板由来成長因子(platelet-derived growth factor; PDGF)などの血管新生因子の存在下では、CD31抗原陽性の血管内皮細胞あるいはsmooth muscle actin(SMA)抗原陽性の壁細胞へと分化することが可能であることが報告されている(非特許文献11参照)。また、ES細胞の分化誘導によって得られたvascular progenitor cell; VPC(非特許文献12参照)などの比較的幼弱な細胞は、これらと同様の性質を有すると考えられ、その最終的な分化方向は環境に依存する可能性がある。
 以上の事実は、CD11b陽性細胞の一部が直接的に新生血管の構成要素となる、あるいはサイトカイン産生等を介して間接的に血管新生の促進、あるいは新生血管の安定化に関わっている可能性を示唆する。しかし、単核球に比較的多く含まれるCD11b等の単球系分化マーカーを発現する非造血幹細胞をソースとして、血管再生、血管修復、血管安定化などの働きのある細胞を分化誘導するための、ウシ胎児血清(FBS, FCS)等の動物由来の試料を含まない分化誘導システムは確立されていない。また、CD11bなどの単球マーカーを発現する細胞は、腫瘍(がん)を有する生体内において腫瘍血管において内皮細胞へと分化する場合(非特許文献13参照)と、血管内皮細胞には分化せずに血管周囲に存在する場合(たとえば、Tie2などを共発現するCD11b陽性細胞;非特許文献14参照)があり、その特性や役割を厳密に区別して考えることは便宜上難しい(非特許文献15参照)。すなわち、CD11b発現単核球を分化誘導して得られる細胞が最終的にEPCとして機能しているか否かは明らかではない。
特表2001-503427号 WO2006/90882 WO2008/142862 特開2008-266220号
Ii M, et al: Circ Res 98; 697-704, 2006 Chang EI, et al: Circulation 116; 2818-2829, 2007 Gulati R, et al: Circ Res 93; 1023-1025, 2003 Asahara T, et al: Science 275; 964-967, 1997 Yamazaki M, et al: Cancer Sci 99; 1131, 2008 Kalka C, et al: PNAS 97; 3422-7, 2000 Assmus B, et al: Circulation 106; 3009-3017, 2002 第104回日本内科学会講演会シンポジウム 3.細胞療法の可能性と限界 3)血管再生療法の現状と展望.日本内科学会雑誌 Vol. 96, No. 9, pp29-136, 2007 Kubo M, et al: Am J Physiol heat Circ Physiol 294; H590-5, 2008 Karbel RS. N Engl J Med 358; 2039-49, 2008 Yamada T, Takakura N. JEM 203; 1055-65, 2006 Yurugi-Kobayashi T, et al: Blood 101; 2675-2678, 2003 Yang L, et al: Cancer Cell 6; 409-421, 2004 De Plama M, et al.: Cancer Cell 8; 211-226, 2005 Rehman J, et al.: Circulation 107; 1164-169, 2003
 本発明の課題は、量的に限られたCD34陽性あるいはCD133陽性の造血幹細胞に代えて、新生血管の安定化と成熟化を促進し、虚血や組織修復をもたらす細胞を単核球から安全かつ簡便に分化誘導する手法を確立し、血管再生治療の新たな手段を提供することにある。
 発明者らは、上記課題を解決するために鋭意検討し、末梢血液中に比較的多く存在する単球・リンパ球分画を中心とした細胞(群)、具体的にはCD11b陽性細胞の一部から、目的とする細胞を分化誘導することに成功した。
 得られた細胞は、血管内皮細胞には直接分化しないが、新生血管の安定化と成熟化を促進することで、血管再生を促し虚血や組織修復をもたらした。すなわち、がんなどの虚血領域を有する生体に全身投与すると、新生血管の周辺に分布して血管の安定化や成熟化を促進した。また、この細胞は、CD31、CXCR4に加えてCD11bを発現し、またわずかにc-Kitの表面抗原を発現していた。以上の特徴から、単核球から分化誘導された細胞は、従来EPCと定義されている細胞とは異なる部類に属する細胞(群)であることが示唆された。
 すなわち、本発明は、単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む培地を用いて培養することにより分化誘導される、CD11bを発現していることを特徴とする細胞群に関する。
 本発明の細胞群は、無血清培地を用いて培養されることが好ましい。
 本発明の細胞群は、さらに、CD31及びCXCR4を発現していることを特徴とする。また、CD105も発現していることを特徴とする。
 用いられる単核球としては、末梢血、骨髄、又は臍帯血由来の単核球が挙げられる。
 培養は、低酸素条件下で行われることが好ましい。ここで、低酸素条件とは、1%~10%の酸素濃度の条件を意味する。
 ある実施形態において、単核球細胞群は、VEGF、bFGF、及びTPOを含む培地を用いて培養される。
 本発明の細胞群は、血管再生能を有することを特徴とする。特に、本発明の細胞群は新生血管の安定化あるいは成熟化の促進を介して血管再生能を有する。
 本発明は、上記した本発明の細胞群を含む、血管再生治療用細胞製剤も提供する。
 本発明の細胞製剤は、虚血改善及び/又は血管成熟効果を有することを特徴とする。
 本発明はまた、上記した本発明の細胞群を含む、がんの局在診断剤も提供する。
 さらに本発明は、以下の工程を含む、血管再生能を有する細胞群の調製方法を提供する:
1)単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む培地を用いて培養する
2)前記培養によって得られる細胞集塊からCD11bを発現している細胞群を回収する。
 上記方法において、培地は無血清培地であることが好ましく、また培養は低酸素条件下で行われることが好ましい。なお、低酸素条件とは1%~10%の酸素濃度の条件を意味する。
 ある実施形態において、単核球細胞群は、VEGF、bFGF、及びTPOを含む培地を用いて培養される。
 本発明にかかる細胞は、新生血管の安定化、成熟、保護機能を有し、成熟血管内皮細胞による管腔形成を促進するとともに、腫瘍血管をも機能的に正常化する。本発明は、末梢血から比較的容易に採取可能な単球系細胞をソースとするため、希少な(造血)幹細胞をソースとする従来の血管再生治療の代替方法として有用である。また、本発明にかかる細胞は、動物血清を使用しない条件下で単球系細胞から分化誘導されるため、感染の危険がなく、臨床応用可能な安全な細胞製剤を提供しうる。
図1は、マウス骨髄単核球を10 % FBS添加EGM2-MV培地で分化誘導培養して得た付着細胞によるMS-1の管腔形成促進を示す。 図2-1は、マウス骨髄単核球を10 % FBS添加EGM2-MV培地で分化誘導培養して得た付着細胞による血管成熟化を示す。 図2-2は、マウス骨髄単核球を10 % FBS添加EGM2-MV培地で分化誘導培養して得た付着細胞の担がんヌードマウスへの移植結果を示す。 図3は、TaqManプローブを用いた定量的RT-PCRによる遺伝子発現解析結果を示す(上左:CA9、上中:hENT1、上右:dCK、下左:Oct4、下中:MDR1、下右:ABCG2)。 図4は、マウス骨髄単核球CD11b陽性分画とCD11b陰性分画の形態を示す。 図5は、マウス骨髄単核球CD11b陽性分画を10 % FBS添加EGM2-MV培地で分化誘導培養した結果を示す。 図6は、ヒト末梢血単核球を10 % FBS添加EGM2-MV培地で分化誘導培養した結果を示す。 図7は、ヒト末梢血単核球を5 %又は1 % FBS添加EGM2-MV培地にて、低酸素環境で分化誘導培養した結果を示す。 図8は、ヒト末梢血単核球を20%自家血清添加X-VIVO 15培地(1 ng/mL ヒトVEGFも添加)と20 %自家血清添加EGM2-MV培地で分化誘導培養した結果を示す。 図9は、ヒト末梢血単核球を5 %自家血清、50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地での分化誘導培養結果を示す。 図10は、ヒト末梢血単核球を5 %自家血清、50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養して得た付着細胞の表面マーカーの発現を示す。 図11は、ヒト末梢血単核球を、0, 1, 5, 10 %自家血清存在下で、50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養した結果を示す。 図12は、ヒト末梢血単核球を、10 %自家血清存在又は無存在下で、50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養した結果を示す。 図13は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地での分化誘導培養のFLT3L濃度依存性を示す。 図14は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF、0-100 ng/mL G-CSF添加X-VIVO 15培地で分化誘導培養した結果を示す。 図15-1は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF、0-100 ng/mL TPO添加X-VIVO 15培地で分化誘導培養した結果を示す。 図15-2は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF、0-100 ng/mL TPO添加X-VIVO 15培地で分化誘導培養して得られる細胞集塊の定量的解析結果を示す。 図16は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF、0-100 ng/mL TPOを添加X-VIVO 15培地にて分化誘導培養した結果を示す。 図17は、ヒト末梢血単核球を50 ng/mLのVEGF、50 ng/mLのbFGF、100 ng/mL TPOを添加したX-VIVO 15培地で分化誘導培養して得た細胞集塊を20 % FBS添加EGM2-MV培地でさらに培養した結果を示す。 図18は、多発性骨髄腫患者の末梢血単核球(CD11b陽性細胞/CD11b陰性細胞)を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養した結果を示す。 図19-1は、ヒト末梢血単核球CD11b陽性分画の2 colorフローサイトメトリー解析の結果を示す。 図19-2は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で4日間分化誘導培養して得た細胞群のCD11b弱陽性分画(CD11bdim)の2 colorフローサイトメトリー解析の結果を示す。 図19-3は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で4日間分化誘導培養して得た細胞群のCD11b強陽性分画(CD11bbright)の2 colorフローサイトメトリー解析の結果を示す。 図19-4は、ヒト末梢血単核球、そのCD11b陽性分画、CD14陽性分画を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養して得た細胞群を示す。 図19-5は、ヒト末梢血単核球を50 ng/mL VEGF、50 ng/mL bFGF添加X-VIVO 15培地で4日間分化誘導培養して得た細胞群のCD11b陽性分画を磁気ビーズを標識下抗体によって分離した2 colorフローサイトメトリー解析の結果を示す。 図20は、ヒト末梢血単核球(CD11b陽性分画/ CD11b陰性分画/単核球全体)におけるG-CSF受容体、TPO受容体、VE-cadherin mRNAの発現解析結果を示す。 図21-1は、多発性骨髄腫患者の末梢血単核球及びこれを50 ng/mLVEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養して得た細胞のうちCD11b陽性細胞の2 colorフローサイトメトリー解析結果(CD14、UEA-lectin親和性)を示す。 図21-2は、多発性骨髄腫患者の末梢血単核球CD11b陽性細胞を50 ng/mLVEGF、50 ng/mL bFGF添加X-VIVO 15培地で分化誘導培養して得た細胞における、TPO受容体、G-CSF受容体、CXCR4の発現解析結果を示す。 図22は、ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、20 ng/mL TPOを添加したX-VIVO 15培地で分化誘導培養して得たCD11b陽性分画の、マトリゲル上(10 % FBS添加EGM2-MV培地で培養)での管腔形成を示す。 図23-1は、下肢虚血モデル試験の結果を示す。 図23-2は、抗BS1‐lectin抗体で免疫組織学的に検出した蛍光顕微鏡写真(対物20倍)を示す(ヌードマウス下肢虚血モデル試験)。 図23-3は、BS1‐lectinによって可視化された虚血域近傍の機能血管をImageJ softwareで定量した結果を示す(ヌードマウス下肢虚血モデル試験)。 図24は、レーザードップラーによる血流評価(治療直後の虚血肢/健側肢比の改善割合)結果を示す(ヌードマウス下肢虚血モデル試験)。グラフ左から、マトリゲル移植群(control)、分化誘導培養を行わないCD11b陽性細胞移植群(fresh CD11b+)、分化誘導培養を行った単核球移植群(cultured MNC)、磁気ビーズによって純化したCD11b陽性細胞移植群(CD11b+ from cultured MNC)。 図25は、化学療法後にG-CSFの投与を受けた多発性骨髄腫患者の末梢単核球由来CD11b陽性細胞における定量的RT-PCRによる遺伝子発現解析結果を示す。各グラフ左から、磁気ビーズによって純化したCD11b陽性細胞(fre CD11b)、前記CD11b陽性細胞を50 ng/mL VEGF、50 ng/mLbFGFを添加したX-VIVO 15培地にて20% 酸素下(cul CD11b in 20% O2)、5% 酸素下(cul CD11b in 20% O2)で培養した細胞。
 本明細書は、本願の優先権の基礎である特願2009-93459号の明細書に記載された内容を包含する。
1.本発明の細胞群(Cell Population)
 本発明の細胞群(Cell Population)は、哺乳動物の単核球から分化誘導される、血管再生能を有するCD11b陽性の細胞集団である。
1.1 由来
 本発明の細胞群は「単核球」に由来する。「単核球」とは、結合組織、リンパ組織、血流中に広く分布する単核の間葉系細胞群で、単球やリンパ球に代表される遊走単核白血球と組織中に存在するマクロファージに代表される単核貪食系の細胞群に分類される。本発明で用いられる単核球としては、前者に属する末梢血、骨髄、又は臍帯血由来の単核球(白血球)が好ましい。特に、豊富に存在し、取得が容易である点において、末梢血由来の単核球が好ましい。
 用いられる単核球は、これを投与する患者由来のものとすることで、拒絶反応を回避した安全な再生医療用の細胞群(細胞製剤)を調製することができる。
1.2 分化誘導
 本発明の細胞群は、上記のようにして調製した単核球細胞群を、適切な「サイトカイン」を含む無血清培地を用いて分化誘導培養することにより調製される。サイトカインを添加することにより、単核球は無血清培地においても好適に増殖し、目的とする血管再生能を有する細胞へと分化誘導される。また、用いられる培地は血清を含まないため、感染等の恐れがなく、調製された細胞群(細胞製剤)は、そのまま臨床応用に供することができる。
 本発明の細胞群の分化誘導(調製)方法については、次項「2.本発明の細胞群の調製方法」において、詳細に説明する。
1.3 細胞群の形態
 本発明の細胞群は、無血清培地を用いた培養により、接着性の弱い、半浮遊(スフェロイド)状の細胞集塊として得られる。この細胞群は、再播種して血清(患者の自己血清等)存在下で培養すると接着性の強い紡錘形をした付着性細胞となる。
1.4 表面マーカー
 本発明の細胞群は、CD11bを発現していることを特徴とする。
 「CD11b」は、主として単球及びリンパ球に発現している血球分化抗原のひとつである。CD11b陽性細胞には、マクロファージや樹状細胞、NK細胞等のような免疫細胞やリンパ球のほか、がん等において見られる異常な新生血管の細胞、CD31抗原陽性の血管内皮細胞あるいはsmooth muscle actin(SMA)抗原陽性の壁細胞へと分化する比較的未分化な細胞も含まれる。これまでの報告は、CD11b発現細胞が血管新生促進効果を有する細胞に分化するなど、血管新生において重要な役割を担っている可能性は示唆するものの(前掲)、これが最終的に血管内皮細胞へと分化する場合とそうでない場合の両方がありうることを示す。
 本発明の細胞群は、CD11bのほか、CD31及びCXCR4を発現し、さらにわずかではあるが、c-Kitの発現が認められる。また、CD105の発現も認められる。発明者らは、単核球から無血清培地を用いた特定の方法で分化誘導されるCD11b陽性細胞群が、in vivo及びin vitroにおいて優れた血管再生能力を有することを見出した。
 さらに詳細に言えば、本発明の細胞群は、CD11bdim/CD31dim/CD14-細胞群(主としてリンパ球)あるいは、CD11bbright/CD31bright/CD14bright細胞群(主として単球)に由来すると考えられる。また、分化誘導後の表面マーカーの特性として、CD11bdim/CD14-/CD8-/CD31dim/CXCR4+を発現する集団と、CD11bbright/CD14+/CD105+/CXCR4+を発現する集団が存在する。なお、「dim」は、免疫染色が弱く、マーカーの発現量が比較的少ないこと、「bright」は免疫染色が強く、マーカーの発現量が比較的多いことを示す。
 同時に、単核球細胞群や単核球細胞群に元々含まれるCD11b陽性細胞群には、in vivoでの血管再生能力は低い。また、従来EPCと称されてきた細胞群は、単核球細胞群のCD11b陰性細胞群から分化誘導され、その表面マーカーの発現はCD45-/CD11b-/CD34+/CD133+/ Flk-1+という点において、本発明の細胞群とは明らかに区別される。
1.5 血管再生能
 本発明の細胞群は、血管内皮細胞には直接分化しないが、新生血管の安定化と成熟化を促進することで、血管再生を促し虚血や組織修復をもたらす。すなわち、がんなどの虚血領域を有する生体に全身あるいは局所投与すると、新生血管の周辺に分布し、周被細胞による新生血管(微少血管)内皮細胞の裏打ちを増強すること等によって血管の安定化や成熟化を促進する。
 「血管再生能」とは、組織中にあらたな血管ができる機序を促すあるいは助ける機能を意味し、既存の血管内皮細胞が増殖・遊走し新しい血管が作られる血管新生、虚血部位の血管が再構築され(太くなり)、新生血管に血流を補給する導管を形成する側副血行路形成、骨髄由来の細胞が血流を介して虚血部位に到達し、血管内皮や周被細胞へと分化する脈管形成、そのいずれの段階における貢献をも含む。
 従来血管内皮前駆細胞(endothelial progenitor cell; EPC)と定義される細胞は、骨髄などに由来し、最終的に血管内皮細胞への分化能を有することで血管新生を促し、血管再生治療に貢献する。これに対し、本発明の細胞群は、血管内皮細胞には直接分化しないが、新生血管の安定化と成熟化を促進することで、血管再生治療に貢献する。
2.細胞の調製方法
 本発明の細胞群は、単核球細胞群から以下の工程により調製される。
1)単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む無血清培地を用いて培養する
2)細胞集塊からCD11bを発現している細胞群を回収する。
2.1 単核球の調製
 各組織からの単核球の分離は、市販のキット等を用いて、周知の方法により容易に実施できる。たとえば、採取した血液を適宜希釈し、あらかじめ分離液が入った遠心管に入れ、1500rpm程度で遠心して、比重の違いにより分離する。リンパ球・単球から成る末梢血単核細胞は、血漿(黄色味を帯びる)と分離液(透明)の中間に、白い帯状の層として回収される。
2.2 培地-無血清培地
 本発明で用いられる培地は、単核球の培養に適した培地である限り、特に限定されない。標準的な培地としては、MEM培地、BME培地、DME培地、α-MEM培地、IMEM培地、ES培地、DM-160培地、Fisher培地、F12培地、WE培地、RPMI培地、StemSpan培地、StemPro培地及びこれらの混合物を挙げることができる。あるいは市販のリンパ球培養用培地:たとえばGT-T培地(タカラバイオ)、AIM V培地(インビトロジェン)、Tリンパ球培養用培養液(コスモバイオ)、X-VIVO培地(Lonza社製)、市販の血管内皮細胞用培地:たとえばEGM-2培地やEBM-2培地等を挙げることができる。
 前記培地は、特にFBS, FCS等の動物血清を含まない「無血清培地」であることが好ましい。「無血清培地」は、単核球の培養に適した培地である限り、特に限定されず、市販の無血清培地を用いてもよいし、適宜調製してもよい。本発明者らは、「無血清培地」を用いて、本発明の細胞群の簡便な分化誘導方法を確立した。動物血清を含まない無血清培地は、感染等の恐れがなく、調製された細胞群(細胞製剤)はそのまま臨床応用に供することができる。
2.3 サイトカイン
 単核球細胞群からの「分化誘導」は、適切な「サイトカイン」を、前記した無血清培地に添加して培養することにより行われる。サイトカインにより、単核球は無血清培地においても好適に増殖し、目的とする血管再生能を有する細胞へと分化誘導される。
 本発明で用いられる「サイトカイン」としては、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、FMS-like tyrosine kinase 3 ligand(FLT3L)、マクロファージコロニー刺激因子(Macrophage-colony stimulating factor; M-CSF)、hedgehogリガンド、CEACAM(癌胎児性抗原関連細胞接着因子)等を挙げることができるが、本発明の目的と効果に適合する限り、これらに限定されない。
 「血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)」は、脈管形成及び血管新生に関与する一群の糖タンパクである。VEGFは主に血管内皮細胞表面に存在するVEGF受容体 (VEGFR) に結合し、細胞分裂や遊走、分化を刺激したり、微小血管の血管透過性を亢進させたりするが、単球・マクロファージの活性化にも関与する。正常な体の血管新生に関わる他、腫瘍の血管形成や転移など、悪性化の過程にも関与する。
 脈管形成や血管新生、リンパ管新生に関与する増殖因子にはVEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-D、VEGF-E、PlGF-1、PlGF-2の7つがあり、これらをまとめて「VEGFファミリー」と呼び、VEGF-Aのみを単にVEGFと呼ぶこともある。さらにいくつかのVEGFファミリーメンバーには、いくつかの亜型も存在する。本発明で用いられる「血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)」には、本発明の目的と効果を損なわない限りにおいて、これらVEGFファミリーとその亜型を含む。
 「塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)」は、ヘパリン結合分裂促進タンパク質で、強力な血管新生因子(ペプチド)として、血管新生及び動脈形成を促進する機能を有し、神経や骨の形成にも関与する。無血清培養あるいは血清量の少ない培養条件でさまざまな種類の細胞の増殖を高める効果を有することが知られている。
 「トロンボポイエチン(thrombopoietin; TPO)」は、血小板の前駆細胞の増殖及び分化に関与する造血因子である。血小板は造血幹細胞から巨核球を経て分化し、血液凝固において重要な役割を果たすとともに、種々の免疫反応にも関与している。TPOは血小板の形成を促進する活性を有する因子として報告され、1994年にはじめてクローニングされた。その後、TPOは巨核球コロニーの形成を抑制する機能を持つc-mplのリガンドであることが解明され、造血系細胞の産生に重要な因子であると考えられている。
 「顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)」は、顆粒球産出の促進、好中球の機能を高める作用がある。主にマクロファージより分泌され、GM-CSFの作用を経て分化がより顆粒球系に方向付けられた前駆細胞を標的とする。そのため、遺伝子組換えヒトG-CSF製剤は、がん化学療法による好中球減少症や再生不良性貧血に伴う好中球減少症に用いられている。
 「FMS-like tyrosine kinase 3 ligand(FLT3L)」は、チロシンキナーゼ3リガンドで、受容体型チロシンキナーゼの一種であるFlt3レセプター(CD135)を介したシグナル伝達により造血系の前駆細胞や幹細胞の増殖、分化を制御することが知られている。Flt3リガンドはCD34あるいはCD133陽性の造血幹細胞や樹状細胞などの単球系細胞に対して、増殖活性を有することが知られており、生体内あるいは生体外でこれらを増幅させることができる。
 本発明で用いられるVEGF、bFGF、TPO、FLT3L等のサイトカインは、天然のものであっても、組換え体であってもよい。これらサイトカインは、用いる単核球と同じ種に由来するものが好ましい。したがって、ヒトの単核球を利用する場合であれば、ヒトVEGFが好ましい。VEGFは、市販のもの(試薬あるいは医薬品)を用いてもよいし、公知の配列情報に基づいて組換え製造して用いてもよい。
 本発明では、上記したサイトカインのうち、少なくとも1種を含む無血清培地を用いる。好ましくは、無血清培地は、VEGF、bFGF、及びTPOを含む。CD11b陽性細胞でTPO受容体の発現が低いことから、CD11b陰性細胞を介したparacrine効果を介している可能性や、G-CSFで骨髄からの幼弱なCD11b陽性細胞の場合、分化誘導の過程でTPO受容体の発現上昇が見られることから直接的な効果も想定されるが、その作用機序は不明である。
 培地へのサイトカインの量は、用いる細胞に応じて適宜設定されるが、一般には1~100μg/ml程度である。
2.4 培養条件
 培養は、表面処理した培養皿等を用いて、通常リンパ球の培養に用いられる条件において行われる。すなわち、温度37℃、酸素濃度20%である。
 培養は、低酸素条件下で行われることが好ましい。ここで、「低酸素条件」とは、空気中の酸素含有量(約21%)を少なくとも下回る酸素濃度を意味し、具体的には、1%~10%の酸素濃度であることを意味する。低酸素条件下で培養することにより、細胞の生存率が向上し、目的とする血管再生能を有する細胞を高効率で得ることができる。
 細胞の培養は、好ましくはGMP基準の細胞調製施設「CPC(Cell Processing Center)」で行う。対象へ投与する「臨床グレードの細胞」の調製は、無菌状態で細胞を操作すべく特別に設計された施設、より具体的には、空調制御、室圧制御、温湿度制御、パーティクルカウンター、HEPAフィルターなどにより清潔度が担保されたCPCで行うことが好ましい。また、CPC施設自体のみならず、CPC内で使用する全ての機器は、バリデーションにより性能が保障され、その機能を、随時モニタリング・記録することが好ましく、CPCでの細胞処理操作は、全て「標準手順書」によって厳格に管理・記録することが望ましい。
2.5 CD11b陽性細胞の分離
 無血清培地を用いた培養により、接着性の弱い、半浮遊(スフェロイド)状の細胞集塊として得られる。この細胞集塊からCD11bを発現している細胞を回収する。CD11bを発現している細胞の回収は、常法にしたがいCD11b抗体を用いて容易に実施できる。たとえば、CD11b抗体で標識された磁気ビーズ、蛍光標識されたCD11b抗体を用いたセルソーターによる分離、あるいはCD11b抗体を固相化したカラムなどを用いて、CD11b陽性細胞を分離すればよい。CD11b抗体は、市販のものを利用してもよいし、常法にしたがいCD11bあるいはその部分ペプチドを用いて作製してもよい。
3.細胞製剤
3.1 血管再生治療用細胞製剤
 本発明の細胞群は、血管内皮細胞には直接分化しないが、新生血管の安定化と成熟化を促進することで、血管再生を促し虚血や組織修復をもたらす。
 それゆえ、本発明の細胞群は、がんなどの虚血領域を有する患者に投与することで、血管の安定化や成熟化を促進する「血管再生治療用細胞製剤」として利用できる。本発明の細胞製剤は、それ自身が血管内皮細胞に直接分化するのではなく、新生血管の安定化あるいは成熟化の促進を介して血管再生能を発揮するという点で、EPCを用いた従来の血管再生治療用細胞製剤とは明確に区別される。
 本発明の細胞製剤の投与方法は特に限定されず、適用部位に応じて、外科的手段による局所移植、静脈内投与、腰椎穿刺投与、局所注入投与、皮下投与、皮内投与、腹腔内投与、筋肉内投与、脳内投与、脳室内投与、又は静脈投与などが考えられる。とくに、がんをはじめとする虚血部位への投与方法としては、局所投与あるいは経静脈投与が好ましい。
 がん等において見られる異常な新生血管では、CD11b抗原とともにVE-cadherin、VEGF受容体1(VEGFR1)、SDF-1受容体(CXCR4)、angiopoietin-1受容体(Tie-2)などの血管新生因子に対する受容体の発現がみられることが知られている(前掲)。本発明の細胞群は、腫瘍組織や虚血領域への選択的指向性があり、経静脈的あるいは局所投与することで、腫瘍に局在し、腫瘍血管の有する構造的・機能的な血管を修復する可能性がある。
 高血圧や糖尿病、高脂血症などで生活習慣病を有する患者、あるいは高齢の患者の末梢血から得た単核球の有する血管新生能は障害を受けている可能性がある。このような様々な合併症を有する患者においても、その末梢血から得た単核球を用いて本発明の細胞製剤を調製することで、自己の細胞を用いた再生治療が可能となる。
 本発明の細胞製剤は、細胞の維持・増殖、患部への投与を補助する足場材料や成分、他の医薬的に許容しうる担体を含んでいてもよい。
 細胞の維持・増殖に必要な成分としては、炭素源、窒素源、ビタミン、ミネラル、塩類、各種サイトカイン等の培地成分、あるいはマトリゲルTM等の細胞外マトリックス調製品、が挙げられる。
 患部への投与を補助する足場材料や成分としては、生分解性ポリマー;例えば、コラーゲン、ポリ乳酸、ヒアルロン酸、セルロース、及びこれらの誘導体、ならびにその2種以上からなる複合体、注射用水溶液;例えば生理食塩水、培地、PBSなどの生理緩衝液、ブドウ糖やその他の補助剤を含む等張液(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)等が挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80、HCO-50等と併用してもよいが挙げられる。
 その他、必要に応じて、医薬的に許容される有機溶剤、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤等を含んでいてもよい。
 実際の添加物は、本発明の治療剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれるが、これらに限定するものではない。例えば、注射用製剤として使用する場合、精製された抗体を溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばTween80、Tween20、ゼラチン等を加えたものを使用することができる。
 本発明の細胞製剤の対象となりうる疾患としては、例えば、床ずれ・皮膚潰瘍、手術瘢痕、難治性消化性潰瘍を含む創傷、潰瘍性大腸炎、クローン病などの慢性炎症性腸疾患を含む炎症性疾患、重症四肢虚血、心筋梗塞・狭心症・心不全を含む虚血性心疾患、脳梗塞、糖尿病性ニューロパチー、重症虚血を伴うがん等、血管再生を必要とするあらゆる疾患が含まれる。とくに、通常の医薬では治療が困難な、重症慢性下肢虚血(閉塞性動脈硬化症、バージャー病)、治療不応性虚血性心疾患、重症虚血を伴うがん、網膜症を含めた糖尿病性血管障害等が対象疾患として好ましい。
3.2 がんの局在診断剤
 本発明の細胞群は腫瘍組織や虚血領域への選択的指向性を有する。それゆえ、本発明の細胞群をナノ粒子等で標識すれば、虚血、転移巣を含むがんの局在をみる画像診断に応用することができる。細胞の標識は、常法にしたがい、磁性体や蛍光色素等で標識することにより簡単に行うことができる。
3.3 その他
 本発明の細胞群は腫瘍組織への選択的指向性があるため、抗がん剤や腫瘍細胞に対して細胞障害性を有するタンパク質や薬剤などのキャリアーとして利用できる可能性がある。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:マウス単核球のEGM2-MV培地での分化誘導
 マウス骨髄から、以下のようにして単核球を調製した。マウスの大腿骨などを乳鉢とDPBSE(5mMの濃度でEDTAを含有したPBS)を用いて破砕し、骨髄液を採取した。採取した骨髄液から径70μmのメンブレンフィルターを用いてろ過して骨髄細胞懸濁液を集め、DPBSE10mlに懸濁し、この懸濁液を4mlのHistopaque 1083(Sigma社)が入った15mlの遠心チューブに静かに重層した。この混合物を用いて密度勾配遠心分離(400g、20分間、室温)した後、中間に層状になった細胞をピペットにより採取して骨髄単核球(BM-MNC)を単離した。
 得られたマウス骨髄単核球をラットvitronectin処理した温度感受性培養皿(UpCell;セルシード社製;http://www.cellseed.com/product/004.html)で10 % FBSを添加したEGM2-MV培地にて1週間分化誘導培養し、付着細胞を得た。
・EGM2-MV培地:EGF, VEGF, IGF, bFGFを含む(増殖因子の濃度は非公開;Lonza社製)
・培養条件:20 %酸素、5 % CO2、37℃にて4日間培養し、付着細胞を室温にて浮遊させコーティング処理を施さない新しいUpCell培養皿に再播種して、3日後に付着細胞を再度浮遊させて回収した。
 マウス骨髄単核球から分化誘導された付着細胞群の血管形成に対する影響について検討した。
(1)
 前項で得られた付着細胞をGFPで標識し、増殖因子の含有量の少ないマトリゲル上でマウス血管内皮細胞株MS-1と同様の培地を用いて共培養した。その結果、培養単核球の添加により、MS-1の管腔形成が促進されることが確認された(図1)。
(2)
 前項で得られた付着細胞105個を4日の間隔で合計3回、ヒト膵癌細胞株KP-1Nを皮下移植した担がんヌードマウスに対して経静脈的に移植した。すなわち、腫瘍径が8 mm以上に達した時点で、培養単核球5 x 105個を経静脈的に移植し、1週間後に腫瘍組織を回収して、腫瘍血管を免疫組織学的に解析した。
 CD31抗体(血管内皮細胞;赤、BD社製)、NG2抗体(周皮細胞;緑、Millipore社製)、核染色(青)を行い、管腔面積と微少血管のうち周皮細胞の裏打ちを伴う成熟血管の割合を求めた。その結果、培養単核球の移植により、腫瘍血管の血管面積とNG2陽性のpericyteによる裏打ち(血管成熟化)が向上することが確認された(図2-1)。
(3)
 また、CD31抗体(血管内皮細胞;赤)、核染色(青)を行い、GFPで蛍光標識(緑)して移植単核球の局在をみた。その結果、移植細胞は腫瘍血管の周辺(perivascular area)に分布するだけで、血管内皮細胞には分化しないことが確認された(図2-2)。
(4)
 上記(2)で得られた腫瘍よりRNAを抽出し、TaqManプローブを用いた定量的RT-PCRによって癌細胞由来(ヒト膵癌細胞KP-1N)の遺伝子発現を解析した(図3)。その結果、CA9の発現が顕著に減少する一方、hENTの発現は上昇し、幹細胞マーカーであるOct4、薬剤耐性に関わるMDR-1、ABCG2などの発現が低下することが確認された。
考 察:
 以上の結果から、血清を添加したEGM2-MV培地を用いて単核球を分化誘導して得られる付着細胞は、新生血管の安定化を促進させ、腫瘍血管の構造的異常性を修正しうることが確認された。
 定量的RT-PCRにおけるCA9の顕著な発現減少から、前記した方法(10 % FBSを添加したEGM2-MV培地での分化誘導培養)で培養したマウス骨髄細胞の移植に伴う腫瘍血管の構造的安定化に伴い、がん組織の低酸素環境が解除されることが示唆された。また、hENTの発現上昇から、膵癌の標準的な治療薬である塩酸ゲムシタビンの取り込みが改善することが示唆された。さらに、幹細胞マーカーの発現低下から、上記の培養マウス骨髄細胞の移植はがん幹細胞分画を減少させ、がん治療抵抗性を軽減することが示唆された。
実施例2:マウス単核球CD11b陽性分画の分化誘導
 実施例1と同様にして、マウス骨髄から単核球を調製した。次いで、取得したマウス骨髄単核球からCD11b抗体を固定化した免疫磁気ビーズ(ミルテニーバイオテク社製)を用いてCD11b陽性分画を調製した。
(1)
 CD11b陽性分画の細胞では、全単核球と同様に紡錘形の付着細胞が観察された。一方、同様の形態を有する細胞は、CD11b陰性分画を用いた場合には極めて少なかった(図4)。このことから、培養初期に見られる紡錘形細胞は単球由来であると考えられた。
(2)
 CD11b陽性分画の細胞を、ラットvitronectin処理した培養皿で10 % FBSを添加したEGM2-MV培地において3週間培養したところ、細胞の膨化と進展がみられたが、増殖傾向は示さなかった。すなわち、CD11b陽性細胞は培養の早期段階より紡錘形の付着細胞として観察されるがコロニー形成が弱く、増殖能に乏しい(図5上段)。
 一方、CD11b陰性分画のうち特にLineage陰性c-Kit陽性分画(造血幹細胞を含む分画)を、同様に10% FBSを添加したEGM2-MV培地によって3週間以上の分化誘導培養を行ったところ、コロニー形成を起点として増殖し、敷石状の形態を呈する細胞の出現が観察された(図5)。この細胞は継代可能であることから、増殖能を有するEPCに近いものと言え、CD11b陽性細胞由来の細胞とは異なるものと思われた(図5下段)。
考 察:
 以上の結果から、従来血管内皮前駆細胞(EPC)と呼ばれてきた細胞は、CD11b陰性分画のうち特にLineage陰性c-Kit陽性分画に由来し、一方初期付着細胞の多くは、CD11b発現細胞であると思われた。
実施例3:種々の条件下におけるヒト単核球の分化誘導
 健常ボランティアから得た末梢血30mLにDPBSEを20mLを添加して、20℃、400×g で 35分間遠心し、バフィーコートを回収して20mLのDPBSEに再懸濁した後に、Histopaque 1077(Sigma社製)を用いて密度勾配遠心分離(400g、20分間、室温)した後、中間に層状になった細胞をピペットにより採取して、単核球を単離し、ヒトフィブロネクチンをコーティングしたプレート上で、微小血管内皮細胞用培地EGM2-MV培地キット(Lonza社製)で補完したEBM-2を用いて4~7日間培養し、付着細胞を得た。
(1)
 ヒト末梢血単核球をヒトfibronectin処理した培養皿で10 % FBSを添加したEGM2-MV培地にて分化誘導培養した。1週間程度の培養期間においては類円形から紡錘形の形態を良く維持するが、2週間程度の培養を行うと膨化・伸展といった老化現象を示し生存率は著しく低下することが確認された(図6)。EGM2-MV培地組成と培養条件は実施例1と同じである。
(2)
 5 %又は1 % FBSを添加したEGM2-MV培地にアセチル化LDLでラベルしたDiI-acLDLを加え、前項と同様に、ヒト末梢血単核球をヒトfibronectin処理した培養皿で分化誘導培養した。アセチル化LDLの取り込みによって可視化した付着細胞は、5 %の低酸素環境で培養することによって、膨化や伸展などの老化現象が軽減され、細胞の生存率が向上すること、また血清依存性が低下することが確認された(図7)。
(3)
 20%自家血清を添加したX-VIVO 15培地(1 ng/mL ヒトVEGFも添加)を用いて、ヒト末梢血単核球をヒトfibronectin処理した培養皿で分化誘導培養した。X-VIVO 15培地は末梢血及びヒト腫瘍から分離された精製CD3+リンパ球の他、ヒト単球、マクロファージ及び各種細胞株、顆粒球、及びナチュラルキラー(NK)細胞の培養に適している。培養は、20 %酸素、5 % CO2、37℃にて実施した。得られた付着細胞は、20 %自家血清を添加したEGM2-MV培地によって得た細胞に比較して、培養開始から2週間後に観察される細胞の老化現象が低いレベルに抑えられることが確認された(図8)。
(4)
 5 %自家血清と10 ng/mLのVEGF、10 ng/mLの塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)を添加したX-VIVO 15培地を用いて、前項と同様に、ヒト末梢血単核球をヒトfibronectin処理した培養皿で7日間分化誘導培養した。得られた付着細胞は、紡錘形の形態を示した(図9)。
(5)
 5 %自家血清と10 ng/mLのVEGF、10 ng/mLのbFGFを添加したX-VIVO 15培地を用いて、前項と同様に、ヒト末梢血単核球をヒトfibronectin処理した培養皿で7日間分化誘導培養した。得られた付着細胞について、フローサイトメトリーを用いて表面マーカーの発現を確認した。その結果、付着細胞は細胞膜上にCD11b、CD14、CD31、CD105、CD146、VEGF受容体2(VEGFR2)、SDF-1受容体(CXCR4),G-CSF受容体を発現することが確認された(図10)。
(6)
 0, 1, 5, 10 %自家血清と10 ng/mLのVEGF、10 ng/mLのbFGFを添加したX-VIVO 15培地に、アセチル化LDLでラベルしたDiI-acLDLを添加し、ヒト末梢血単核球をpoly-L-lysine(PLL)処理した培養皿で14日間分化誘導培養を行った。その結果、無血清条件下においても接着は弱いがDiIラベルしたアセチル化LDLの取り込みによって可視化される生細胞が存在することが確認された(図11)。
(7)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGFを添加したX-VIVO 15培地にて1週間分化誘導培養した。その結果、無血清状態では半浮遊状(スフェロイド状)の細胞集塊が出現することが確認された。これらの細胞集塊は細胞接着性が弱いのに対し、10 %自家血清の存在下では、類円形から紡錘形の形態を示す細胞集塊が得られ、細胞の接着性が増強し、細胞面積は増大することが確認された(図12)。これら、血清含有培地で見られる接着細胞はacLDLの取り込み能を有するものの、CD11b陽性かつ、単球系マーカーであるCD14などを発現するためEPCとは言えないと思われた。
(8)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、0-100 ng/mL FMS-like tyrosine kinase 3 ligand(FLT3L)を添加したX-VIVO 15培地にて1週間分化誘導培養した。その結果、半浮遊状の細胞集塊の数はFLT3Lの濃度依存性に増加することが確認された(図13)。
(9)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、0-100 ng/mL 顆粒球増殖因子(granulocyte-colony stimulating factor; G-CSF)を添加したX-VIVO 15培地にて1週間分化誘導培養した。その結果、半浮遊状の細胞集塊の数がG-CSFの濃度依存性に増加することが確認された(図14)。
(10)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、0-100 ng/mL TPOを添加したX-VIVO 15培地にて1週間分化誘導培養した。その結果、半浮遊状の細胞集塊の数がthrombopoietin(TPO)の濃度依存性に増加することが確認された(図15-1)。また、培養4日目における細胞集塊の数をサイズごとに計測し、定量的に解析した結果、TPOの添加によって、サイズの大きな細胞集塊の数が増大し、特に10‐100 ng/mLを添加した際にサイズが大きな細胞集塊の出現頻度が増加する傾向が得られた(図15-2)。この実験結果から、培地に添加するTPOの至適濃度は10‐100 ng/mLと考えられた。
(11)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、0-100 ng/mL TPOを添加したX-VIVO 15培地にて1週間分化誘導培養することで得た半浮遊状の細胞集塊を回収し、PLL処理した培養皿で20 % FBSを添加したEGM2-MV培地に再播種して3日間培養した。その結果、紡錘形の形態を呈する付着細胞が得られること、さらに100 ng/mL TPOの存在下で分化誘導培養を行った場合に、再播種後の付着細胞数が最も増加することが確認された(図16)。
(12)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、100 ng/mL TPOを添加したX-VIVO 15培地にて、20%あるいは5%酸素濃度のもとで1週間分化誘導培養して得た半浮遊状の細胞集塊を回収し、PLL処理した培養皿で20 % FBSを添加したEGM2-MV培地に再播種して3日間培養した。その結果、紡錘形の形態を呈する付着細胞が得られること、さらにこれらがDiIをラベルしたアセチル化LDLの取り込みによって可視化されることが確認された。また、初期培養を5 %の酸素濃度下(低酸素培養)で行った場合に、再播種後の付着細胞数が増加することが確認された(図17)。
(13)
 自家末梢血幹細胞移植のための細胞採取時に、化学療法後にG-CSFの投与を受けて、骨髄からの前駆細胞の動員を行った多発性骨髄腫の患者より得た末梢血単核球、磁気ビーズによって純化したCD11b陽性細胞及びCD11b陰性細胞を50 ng/mLのVEGF、50 ng/mLのbFGFを添加したX-VIVO 15培地にて4日間分化誘導培養した。その結果、CD11b陽性細胞においてスフェロイド状の細胞集塊の形成が高頻度にみられた(図18)。また、一部に紡錘形の付着細胞も観察された。
考 察:
 以上の結果から、目的とする血管新生能力を有する細胞の分化誘導には、EGM2-MV培地よりもX-VIVO 15培地のほうが適していること。また、低酸素条件下での培養やbFGFの添加によって、細胞の生存率が向上することが示唆された。
 また、FLT3L、G-CSF、TPOの添加(無血清培養時)によって濃度依存的に目的とする血管新生能力の回収率が向上することが確認された。さらに低酸素条件下での分化誘導培養によって、血性存在下での接着性が飛躍的に高まることから、生体内においても目的とする虚血部位などにおける局在能が増強することが予測される。また、末梢血単核球の採取に際して、G-CSFの前投与が行われることで、スフェロイドの形成能が高まり、より効果的に目的とする血管安定化細胞が得られることが期待できる。
 無血清培地で接着性が弱い細胞も環境次第では接着性を獲得する。特に血清含有培地へ再播種した際の接着性は、低酸素条件下(5 % O2)での分化誘導を行った際に、劇的に高まる。ただし、培養皿に強く接着した細胞は、回収が困難で生存率も高くない。また半浮遊状態で培養することで、細胞の回収は容易になる。
 さらに、単核球から分化誘導される細胞群のうち、CD11b陽性分画が初期付着細胞の主要なソースであることが示唆された。
実施例4:ヒト末梢血単核球CD11b陽性分画のフローサイトメトリー及び定量的RT-PCR解析 
(1)
 ヒト末梢血単核球を2 color フローサイトメトリーで解析した。ヒト末梢血単核球のCD11b陽性分画は、CD11bdim及びCD11bbrightからなり、前者はCD31dim/CD14-(主としてリンパ球)、後者はCD31bright/CD14(主として単球)であった(図19-1)。なお、「dim」は、免疫染色が弱く、マーカーの発現量が比較的少ないこと、「bright」は免疫染色が強く、マーカーの発現量が比較的多いことを示す。
(2)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGFを添加したX-VIVO 15培地にて4日間分化誘導培養し、2 color フローサイトメトリーで解析した。CD11bdim分画はCXCR4、CD31を発現しており、c‐Kit陽性細胞もわずかながら検出された(図19-2)。また、CD11bbright分画はCD14、CD31、CD105、CXCR4を発現しており、c‐Kit、Flk‐1陽性細胞もわずかながら検出された。(図19-3)。
 ヒト末梢血単核球、あるいはCD11b陽性細胞、CD14陽性細胞を磁気ビーズにてソーティングした細胞を血清を加えないX‐VIVO 15(50 ng/mL VEGF、50 ng/mL bFGFを添加)で4日間分化誘導培養を行った。CD14陽性分画(CD11bbright/CD31bright/CD14)のみ培養した場合には半浮遊状の細胞集塊の出現頻度が少ないことから、ヒト末梢血単核球のCD11b陽性分画のうちCD11bdim/CD31dim/CD14-が分化誘導培養による血管安定化作用を有する細胞集塊の主たる細胞源となったか、あるいはCD11bdim/CD31dim/CD14-の存在がCD11bbright/CD31bright/CD14の血管安定化作用を有する細胞への分化に必要であることが予測された(図19-4)。
(3)
 ヒト末梢血単核球を血清を加えないX-VIVO 15(50 ng/mL VEGF、50 ng/mL bFGFを添加)で4日間分化誘導培養を行い、CD11b陽性細胞を磁気ビーズにてソーティングした。
2 colorフローサイトメトリー法によってCD11b陽性分画の表面マーカーの発現を解析したところ、CD14陽性細胞が主体であった(図19-5)
(4)
 ヒト末梢血単核球から磁気ビーズによってCD11b陽性分画を純化し、これらにおけるG-CSF受容体、TPO受容体ならびにVE-cadherin mRNAの発現をCD11b陰性分画及び単核球全体と比較解析を行った結果、G-CSF受容体、VE-cadherinの発現がCD11b陽性分画に高かったが、逆にTPO受容体の発現はCD11b陰性分画で高かった(図20)。
(5)
 化学療法後にG-CSFの投与を受け、末梢血幹細胞移植の細胞採取時に回収された多発性骨髄腫患者の末梢血単核球、及びこれらを血清を加えないX-VIVO 15(50 ng/mL VEGF、50 ng/mL bFGFを添加)で4日間分化誘導培養を行った細胞を、それぞれCD11b陽性細胞を磁気ビーズにてソーティングして、2 colorフローサイトメトリー法によってCD11b陽性分画のCD14の発現及びUEA-lectinに対する親和性を解析した(図21-1)。
(6)
 自家末梢血幹細胞移植のための細胞採取時に、化学療法後にG-CSFの投与を受けて、骨髄からの前駆細胞の動員を行った多発性骨髄腫の患者より得た末梢血単核球から磁気ビーズによってCD11b陽性細胞に分離した細胞(fresh CD11b+)と、これらを50 ng/mLのVEGF、50 ng/mLのbFGFを添加したX-VIVO 15培地にて4日間分化誘導培養して得た細胞よりそれぞれRNAを抽出し、TPO受容体mRNAを定量的RT-PCRによって解析した。その結果、TPO受容体の発現量は培養前に比較して100倍以上となった。また、CD11b陽性細胞におけるG-CSF受容体の発現は分離前の単核球に比較して著しく高かったが、分化誘導培養による発現の増強はみられなかった。一方で、CD11b陽性細胞におけるCXCR4の発現は約3倍に増強した(図21-2)。
考 察:
 以上より、CD11b陽性分画のうち、CD11bdim/CD31dim/CD14-/CXCR4+又はCD11bbright/CD14+/CD105+の存在が血管安定化作用を有する細胞集塊の分化誘導に重要である可能性が示唆された。
 また、G-CSFの投与によって骨髄より動員された末梢血単核球のCD11b陽性分画はVEGF等を添加した無血清培地において高いコロニー形成能を有することから、新生血管の安定化を誘導する細胞のソースとしてより好ましいと考えられた。さらにCXCR4の発現増強がみられることから、虚血組織への局在能が増強されることが期待できる。分化誘導の過程においてCD14の発現が低下し、UEA-lectinに対する親和性が増強する意義については、さらなる検討が必要である。
実施例5:in vitroでの血管新生能及びマウス下肢虚血モデル移植実験
(1)
 ヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、20 ng/mL TPOを添加したX-VIVO 15培地にて4日間分化誘導培養することで得た半浮遊状の細胞集塊を回収して、CD11b抗体を固定化した磁気ビーズを用いてCD11b陽性分画を純化した。このCD11b陽性分画にDiIをラベルしたアセチル化LDLを取り込ませ、マトリゲル上にて10 % FBSを添加したEGM2-MV培地で7日間培養した。その結果、可視化された細胞が管腔を形成することが確認された(図22)。
(2)
 ヒト末梢血単核球をX‐VIVO 15(50 ng/mL VEGF、50 ng/mL bFGFを添加)に20 ng/mL TPOを添加して、4日間培養したときに得られるスフェロイド状の細胞集塊を回収してAnnexin‐Vを標識した磁気ビーズを用いて死細胞を除去した後に、CD11b陽性細胞を磁気ビーズによって純化した(CD11b+ cultured MNC)。PBS、分化誘導培養を行わないCD11b陽性細胞(fresh CD11b+)、分化誘導培養を行った単核球(cultured MNC)をコントロールとして用いた。8週齢、メスのBalb/c nude mouseを用いて右大腿動脈を2カ所結紮して作成した下肢虚血モデルを作成して、3日後に各群3 x105個を増殖因子濃度の低いマトリゲル(growth factor reduced matrigel; BD354230)に懸濁して、5カ所に分けて虚血肢に局注した。2週間後の虚血肢及び健側肢の写真を示す(図23-1)。
 細胞移植の2週間後にBS1‐lectinを心注し、5分間放置後に4%パラフォルムアルデヒドを用いて環流固定し、虚血肢を回収した。4%パラフォルムアルデヒドによる後固定を行い(3時間、4℃)、パラフィンに包埋して組織切片を作成した。虚血近傍(虚血に伴う炎症性細胞浸潤がみられる領域の近傍;border ischemic zone)における反応性血管新生(機能血管)を抗BS1‐lectin抗体で免疫組織学的に検出した蛍光顕微鏡写真(対物20倍)を示す(図23-2:下段はDAPIによる核染色とのmerge imageである。スケールは100μm)。
 BS1‐lectinによって可視化された虚血域近傍の機能血管をImageJ softwareを用いて定量した。筋線維に沿った微少血管をカウントし、血管密度を算出した(図23-3)。
 最終的に、コントロール(control; マトリゲルの移植)では全例(8/8)において阻血に伴う足部壊死が見られたが、治療群ではすべての個体で足部壊死に伴う下肢短縮を回避することができた(0/6)。一方で、ヒト末梢血単核球のうち磁気ビーズによって純化したCD11b陽性細胞(fresh CD11b+)、またヒト末梢血単核球を培養皿で50 ng/mLのVEGF、50 ng/mLのbFGF、20 ng/mL TPOを添加したX-VIVO 15培地にて4日間分化誘導培養することで得た半浮遊状の細胞集塊のうち死細胞除去処理を施して得た細胞(cultured MNC)3 x105個を同様に下肢虚血マウスに対して移植したが、虚血の改善効果は認められなかった。
(3)
 上記した方法にしたがい、下肢虚血マウスに磁気ビーズによって純化したCD11b陽性細胞(CD11b+ from cultured MNC)、分化誘導培養を行わないCD11b陽性細胞(fresh CD11b+)、分化誘導培養を行った単核球(cultured MNC)、マトリゲル(コントロール)を移植し、下肢結紮14日後にレーザードップラーによる血流評価(治療直後の虚血肢/健側肢比の改善割合)を実施した。
 その結果、コントロール群(n=11)22.6±8.3 %、分化誘導培養を行わないCD11b陽性細胞移植群(n=7)29.8±6.9 %、分化誘導培養を行った単核球移植群(n=7)27.9±5.7 %に対して、CD11b陽性細胞移植群(n=8)では42.6±10.9 %と、下肢虚血の有意な回復の促進が見られた(図24)。
考 察:
 以上の結果から、ヒト末梢血単核球自体(CD11b陽性細胞群も含めて)が有する血管新生能に比較して、この細胞から分化誘導されるCD11b陽性細胞群は新生血管の構造的・機能的な安定化を促進する能力を有し、下肢虚血を著名に改善しうることが確認された。
実施例6:多発性骨髄腫患者 末梢単核球由来CD11b陽性細胞における定量的RT-PCRによる遺伝子発現解析
 化学療法後にG-CSFの投与を受け、末梢血幹細胞移植の細胞採取時に回収された多発性骨髄腫患者の末梢血単核球よりCD11b陽性細胞を磁気ビーズによって純化した分画(fre CD11b)、及びこれらのCD11b陽性細胞を50 ng/mL VEGF、50 ng/mLbFGFを添加したX-VIVO 15培地にて20% 酸素下(cul CD11b in 20% O2)、5% 酸素下(cul CD11b in 20% O2)で4日間の分化誘導培養を行った。
 各分画における遺伝子発現をTaqMan法による定量的RT-PCRによって解析したところ、4日間の培養によってCXCR4、PDGFRbβ、Tie2の発現増強がみられ、この誘導は低酸素環境下での培養によってより増強された(図25)。VE-cadherinの発現増強は認められなかった。
考 察:
 このことから、骨髄より動員された末梢血CD11b陽性単核球は特に低酸素環境下での分化誘導培養によって新生血管の安定化に関わる周皮細胞(pericyte)への分化が促進されることが示唆された。また、培養によってCXCR4やTie2の発現が高くなることから、SDF-1やAngiopoietin-1およびAngiopoietin-2が産生されるがん微少環境への集積能が高まること、さらに同部位に局在した後のこれらのリガンドによる活性化を受けやすい状態になると考えられる。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。
 本発明にかかる細胞群は、患者の末梢血から比較的容易に採取可能な単核球をソースとして、動物血清を使用しない条件下で分化誘導される。したがって、本発明にかかる細胞群は、感染の危険がなく、臨床応用可能な安全な細胞製剤として有用である。また本発明は、希少な(造血)幹細胞を利用した従来の血管再生治療の代替方法として有用である。

Claims (17)

  1.  単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む培地を用いて培養することにより分化誘導される、CD11bを発現していることを特徴とする細胞群。
  2.  培地が無血清培地であることを特徴とする、請求項1記載の細胞群。
  3.  さらに、CD31及びCXCR4を発現していることを特徴とする、請求項1又は2記載の細胞群。
  4.  単核球が末梢血、骨髄、又は臍帯血由来であることを特徴とする、請求項1~3のいずれか1項に記載の細胞群。
  5.  培養が低酸素条件下で行われることを特徴とする、請求項1~4のいずれか1項に記載の細胞群。
  6.  低酸素条件が1%~10%の酸素濃度の条件であることを特徴とする、請求項5に記載の細胞群。
  7.  VEGF、bFGF、及びTPOを含む培地を用いて培養することを特徴とする、請求項1~6のいずれか1項に記載の細胞群。
  8.  血管再生能を有することを特徴とする、請求項1~7のいずれか1項に記載の細胞群。
  9.  新生血管の安定化あるいは成熟化の促進を介して血管再生能を有することを特徴とする、請求項8記載の細胞群。
  10.  請求項1~9のいずれか1項に記載の細胞群を含む、血管再生治療用細胞製剤。
  11.  虚血改善及び/又は血管成熟効果を有することを特徴とする、請求項10記載の細胞製剤。
  12.  請求項1~9のいずれか1項に記載の細胞群を含む、がんの局在診断剤。
  13.  以下の工程を含む、血管再生能を有する細胞群の調製方法:
    1)単核球細胞群を、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)、塩基性線維芽細胞増殖因子(basic fibroblast growth factor: bFGF)、トロンボポイエチン(thrombopoietin; TPO)、顆粒球コロニー刺激因子(granulocyte-colony stimulating factor; G-CSF)、及びFMS-like tyrosine kinase 3 ligand(FLT3L)から選ばれる1以上を含む培地を用いて培養する
    2)前記培養によって得られる細胞集塊からCD11bを発現している細胞群を回収する。
  14.  培地が無血清培地であることを特徴とする、請求項13記載の方法。
  15.  培養が低酸素条件下で行われることを特徴とする、請求項14記載の方法。
  16.  低酸素条件が1%~10%の酸素濃度の条件であることを特徴とする、請求項15記載の方法。
  17.  VEGF、bFGF、及びTPOを含む培地を用いて培養することを特徴とする、請求項13~16のいずれか1項に記載の方法。
PCT/JP2010/002254 2009-04-07 2010-03-29 単核球由来の新規血管再生細胞群及びその分化誘導法 WO2010116665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011508224A JP5725509B2 (ja) 2009-04-07 2010-03-29 単核球由来の新規血管再生細胞群及びその分化誘導法
EP10761371A EP2418272A4 (en) 2009-04-07 2010-03-29 NOVEL REVASCULARIZATION CELLS DERIVED FROM MONOCYTES, AND METHOD FOR INDUCING THE DIFFERENTIATION THEREOF
US13/138,835 US8951795B2 (en) 2009-04-07 2010-03-29 Revascularization cells derived from mononuclear cells, and method of inducing differentiation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-093459 2009-04-07
JP2009093459 2009-04-07

Publications (1)

Publication Number Publication Date
WO2010116665A1 true WO2010116665A1 (ja) 2010-10-14

Family

ID=42935964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002254 WO2010116665A1 (ja) 2009-04-07 2010-03-29 単核球由来の新規血管再生細胞群及びその分化誘導法

Country Status (4)

Country Link
US (1) US8951795B2 (ja)
EP (1) EP2418272A4 (ja)
JP (1) JP5725509B2 (ja)
WO (1) WO2010116665A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175759A1 (ja) * 2012-05-22 2013-11-28 国立大学法人旭川医科大学 ヒト単核球由来の新規血管再生細胞群及びその分化誘導法
JPWO2014051154A1 (ja) * 2012-09-28 2016-08-25 公益財団法人先端医療振興財団 虚血性疾患治療に適した細胞を含む細胞群の生体外増幅方法
WO2018043596A1 (ja) * 2016-08-30 2018-03-08 国立大学法人 新潟大学 細胞製剤および細胞製剤の製造方法
KR20180123106A (ko) * 2016-03-24 2018-11-14 스템랩, 에스에이 조직 회복을 위한 제대혈 파생 엑소좀의 이용

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809798B2 (en) 2011-03-11 2017-11-07 National University Of Singapore Pericyte progenitors from peripheral blood

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020298A (ja) * 2000-07-10 2002-01-23 Junkanki Kenkyusho:Kk 血管新生促進剤
WO2004063365A1 (ja) * 2003-01-15 2004-07-29 Toudai Tlo, Ltd. TGFβ阻害活性を有する化合物の新規用途
WO2008142862A1 (ja) * 2007-05-18 2008-11-27 National University Corporation Asahikawa Medical College 血管内皮前駆細胞の移植による抗がん療法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980887A (en) 1996-11-08 1999-11-09 St. Elizabeth's Medical Center Of Boston Methods for enhancing angiogenesis with endothelial progenitor cells
US8492148B2 (en) 2005-02-23 2013-07-23 Foundation For Biomedical Research & Innovation Method for amplification of endothelial progenitor cell in vitro
CA2644508A1 (en) * 2006-03-01 2007-09-07 The Regenerative Medicine Institute Compostions and populations of cells obtained from the umbilical cord and methods of producing the same
US20080070830A1 (en) * 2006-07-28 2008-03-20 Dzau Victor J Homing of cells to myocardium
JP2008266220A (ja) 2007-04-20 2008-11-06 Univ Of Tsukuba 肝線維化抑制剤
JP2009055817A (ja) 2007-08-30 2009-03-19 Tokai Univ 細胞運命の解析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020298A (ja) * 2000-07-10 2002-01-23 Junkanki Kenkyusho:Kk 血管新生促進剤
WO2004063365A1 (ja) * 2003-01-15 2004-07-29 Toudai Tlo, Ltd. TGFβ阻害活性を有する化合物の新規用途
WO2008142862A1 (ja) * 2007-05-18 2008-11-27 National University Corporation Asahikawa Medical College 血管内皮前駆細胞の移植による抗がん療法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418272A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175759A1 (ja) * 2012-05-22 2013-11-28 国立大学法人旭川医科大学 ヒト単核球由来の新規血管再生細胞群及びその分化誘導法
JPWO2014051154A1 (ja) * 2012-09-28 2016-08-25 公益財団法人先端医療振興財団 虚血性疾患治療に適した細胞を含む細胞群の生体外増幅方法
KR20180123106A (ko) * 2016-03-24 2018-11-14 스템랩, 에스에이 조직 회복을 위한 제대혈 파생 엑소좀의 이용
JP2019513414A (ja) * 2016-03-24 2019-05-30 ステムラボ,エスエイ 組織修復のための臍帯血由来エキソソームの使用
KR102469326B1 (ko) * 2016-03-24 2022-11-23 스템랩, 에스에이 조직 회복을 위한 제대혈 파생 엑소좀의 이용
WO2018043596A1 (ja) * 2016-08-30 2018-03-08 国立大学法人 新潟大学 細胞製剤および細胞製剤の製造方法
JPWO2018043596A1 (ja) * 2016-08-30 2019-08-08 国立大学法人 新潟大学 細胞製剤および細胞製剤の製造方法
US11311579B2 (en) 2016-08-30 2022-04-26 Niigata University Cell preparation and method for producing cell preparation
JP7089283B2 (ja) 2016-08-30 2022-06-22 国立大学法人 新潟大学 細胞製剤および細胞製剤の製造方法

Also Published As

Publication number Publication date
EP2418272A4 (en) 2013-02-27
JPWO2010116665A1 (ja) 2012-10-18
JP5725509B2 (ja) 2015-05-27
EP2418272A1 (en) 2012-02-15
US8951795B2 (en) 2015-02-10
US20120100610A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US7470538B2 (en) Cell-based therapies for ischemia
JP4672370B2 (ja) 虚血の細胞ベースの治療
Tasso et al. The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model
US20060165667A1 (en) Novel methods, compositions and devices for inducing neovascularization
JP6105846B2 (ja) 虚血組織の細胞療法
JP6571537B2 (ja) 療法および予防のための細胞を単離する方法
JP7549355B2 (ja) 間葉系間質細胞を拡大するための方法
WO2008085229A2 (en) Cell-based therapies for treating liver disease
JP2009535035A (ja) 肝臓再生における脂肪細胞由来成体幹細胞
WO2010056341A2 (en) Compositions and methods for tissue repair
JP5725509B2 (ja) 単核球由来の新規血管再生細胞群及びその分化誘導法
WO2014046417A1 (en) Method for preparing mesenchymal stem cell aggregates
JP5339533B2 (ja) 血管内皮前駆細胞の移植による抗がん療法
Al-Rifai et al. In vivo efficacy of endothelial growth medium stimulated mesenchymal stem cells derived from patients with critical limb ischemia
JP2024128116A (ja) 細胞群及びその取得方法
EP2643028B1 (en) Composition and method to improve the therapeutic effect of stem cells
WO2013175759A1 (ja) ヒト単核球由来の新規血管再生細胞群及びその分化誘導法
KR101659846B1 (ko) Har-nds 유래 조혈줄기세포, 그 분리방법 및 용도
KR20240094983A (ko) vMSC의 분비체 및 이의 용도
JP2022017977A (ja) 細胞、組成物及び治療用組成物
JP2017139975A (ja) 単核球培養用無血清培地

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508224

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010761371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010761371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13138835

Country of ref document: US