WO2018043596A1 - 細胞製剤および細胞製剤の製造方法 - Google Patents
細胞製剤および細胞製剤の製造方法 Download PDFInfo
- Publication number
- WO2018043596A1 WO2018043596A1 PCT/JP2017/031246 JP2017031246W WO2018043596A1 WO 2018043596 A1 WO2018043596 A1 WO 2018043596A1 JP 2017031246 W JP2017031246 W JP 2017031246W WO 2018043596 A1 WO2018043596 A1 WO 2018043596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microglia
- cell
- ogd
- culture
- monocytes
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 210000004027 cell Anatomy 0.000 claims abstract description 129
- 210000001616 monocyte Anatomy 0.000 claims abstract description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 230000033115 angiogenesis Effects 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 35
- 208000026106 cerebrovascular disease Diseases 0.000 claims abstract description 32
- 230000003376 axonal effect Effects 0.000 claims abstract description 29
- 238000012258 culturing Methods 0.000 claims abstract description 18
- 230000000472 traumatic effect Effects 0.000 claims abstract description 14
- 238000004113 cell culture Methods 0.000 claims abstract description 9
- 208000031225 myocardial ischemia Diseases 0.000 claims abstract description 9
- 210000000274 microglia Anatomy 0.000 claims description 165
- 230000000302 ischemic effect Effects 0.000 claims description 41
- 210000004556 brain Anatomy 0.000 claims description 17
- 201000001119 neuropathy Diseases 0.000 claims description 14
- 230000007823 neuropathy Effects 0.000 claims description 14
- 210000005259 peripheral blood Anatomy 0.000 claims description 14
- 239000011886 peripheral blood Substances 0.000 claims description 14
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 14
- 230000001737 promoting effect Effects 0.000 claims description 13
- 210000005087 mononuclear cell Anatomy 0.000 claims description 12
- 210000004976 peripheral blood cell Anatomy 0.000 claims description 3
- 208000019622 heart disease Diseases 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 230000002025 microglial effect Effects 0.000 abstract description 2
- 206010008118 cerebral infarction Diseases 0.000 description 62
- 238000002054 transplantation Methods 0.000 description 46
- 201000006474 Brain Ischemia Diseases 0.000 description 37
- 206010008120 Cerebral ischaemia Diseases 0.000 description 37
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 35
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 29
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 29
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 29
- 239000002609 medium Substances 0.000 description 29
- 241000700159 Rattus Species 0.000 description 28
- 230000028327 secretion Effects 0.000 description 28
- 230000000638 stimulation Effects 0.000 description 26
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 24
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 24
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 23
- 102000001776 Matrix metalloproteinase-9 Human genes 0.000 description 21
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 210000001185 bone marrow Anatomy 0.000 description 15
- 208000028867 ischemia Diseases 0.000 description 14
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 12
- 108010059480 Chondroitin Sulfate Proteoglycans Proteins 0.000 description 11
- 102000005598 Chondroitin Sulfate Proteoglycans Human genes 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 208000014644 Brain disease Diseases 0.000 description 10
- 238000011084 recovery Methods 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 206010021143 Hypoxia Diseases 0.000 description 9
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 9
- 230000002490 cerebral effect Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 208000010125 myocardial infarction Diseases 0.000 description 9
- 238000011552 rat model Methods 0.000 description 9
- 230000001052 transient effect Effects 0.000 description 9
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 8
- 206010018852 Haematoma Diseases 0.000 description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 8
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 8
- 210000003050 axon Anatomy 0.000 description 8
- 239000012228 culture supernatant Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 230000030833 cell death Effects 0.000 description 7
- 230000001146 hypoxic effect Effects 0.000 description 7
- 230000000926 neurological effect Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 6
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 6
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 6
- 101000916489 Homo sapiens Chondroitin sulfate proteoglycan 4 Proteins 0.000 description 6
- 230000003110 anti-inflammatory effect Effects 0.000 description 6
- 230000008499 blood brain barrier function Effects 0.000 description 6
- 210000001218 blood-brain barrier Anatomy 0.000 description 6
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 6
- 210000003710 cerebral cortex Anatomy 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 238000007634 remodeling Methods 0.000 description 6
- 210000004885 white matter Anatomy 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 108090001005 Interleukin-6 Proteins 0.000 description 5
- 102000004889 Interleukin-6 Human genes 0.000 description 5
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 5
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 208000023589 ischemic disease Diseases 0.000 description 5
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 5
- 210000005036 nerve Anatomy 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 4
- 102000003814 Interleukin-10 Human genes 0.000 description 4
- 108090000174 Interleukin-10 Proteins 0.000 description 4
- 208000032382 Ischaemic stroke Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000003125 immunofluorescent labeling Methods 0.000 description 4
- 238000012744 immunostaining Methods 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 210000000944 nerve tissue Anatomy 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 230000007959 normoxia Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000006711 vascular endothelial growth factor production Effects 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 229920001917 Ficoll Polymers 0.000 description 3
- 208000032843 Hemorrhage Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010061216 Infarction Diseases 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 210000000269 carotid artery external Anatomy 0.000 description 3
- 238000002659 cell therapy Methods 0.000 description 3
- 230000007657 cerebral ischemic lesion Effects 0.000 description 3
- 238000004624 confocal microscopy Methods 0.000 description 3
- 230000003073 embolic effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000006481 glucose medium Substances 0.000 description 3
- 230000007574 infarction Effects 0.000 description 3
- 229940076144 interleukin-10 Drugs 0.000 description 3
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000012758 nuclear staining Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 206010008088 Cerebral artery embolism Diseases 0.000 description 2
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 2
- 206010008132 Cerebral thrombosis Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- -1 IL-1β Proteins 0.000 description 2
- 201000001429 Intracranial Thrombosis Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 description 2
- 108090000901 Transferrin Proteins 0.000 description 2
- 102000004338 Transferrin Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 2
- 230000003925 brain function Effects 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 230000001269 cardiogenic effect Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 210000004720 cerebrum Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 230000002518 glial effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 2
- 229960003132 halothane Drugs 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 230000002008 hemorrhagic effect Effects 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 2
- 201000010849 intracranial embolism Diseases 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 238000002843 lactate dehydrogenase assay Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000003657 middle cerebral artery Anatomy 0.000 description 2
- 201000007309 middle cerebral artery infarction Diseases 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 210000003668 pericyte Anatomy 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000012581 transferrin Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VIBDVOOELVZGDU-UHFFFAOYSA-N 4-(1h-indol-2-yl)benzene-1,3-dicarboximidamide Chemical compound NC(=N)C1=CC(C(=N)N)=CC=C1C1=CC2=CC=CC=C2N1 VIBDVOOELVZGDU-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000018152 Cerebral disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 208000004552 Lacunar Stroke Diseases 0.000 description 1
- 206010051078 Lacunar infarction Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010061296 Motor dysfunction Diseases 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 208000006193 Pulmonary infarction Diseases 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010038470 Renal infarct Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013176 antiplatelet therapy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000004004 carotid artery internal Anatomy 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009593 lumbar puncture Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000004980 monocyte derived macrophage Anatomy 0.000 description 1
- 229940028444 muse Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000005155 neural progenitor cell Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000007575 pulmonary infarction Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 229940000207 selenious acid Drugs 0.000 description 1
- MCAHWIHFGHIESP-UHFFFAOYSA-N selenous acid Chemical compound O[Se](O)=O MCAHWIHFGHIESP-UHFFFAOYSA-N 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/15—Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4614—Monocytes; Macrophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0622—Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0645—Macrophages, e.g. Kuepfer cells in the liver; Monocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/02—Atmosphere, e.g. low oxygen conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
Definitions
- the present invention relates to a cell preparation effective for the repair and regeneration of tissue damaged by, for example, cerebral infarction, a method for producing the same, and the like.
- Cerebral infarction refers to cerebral dysfunction caused by ischemic necrosis in the brain, is a disease that requires emergency treatment, and is one of the three leading causes of death along with cancer and heart disease. Cerebral infarction is classified into thrombotic, embolic, and hemodynamic in terms of mechanism of action, and is classified into atherothrombotic cerebral infarction, cardiogenic cerebral embolism, lacunar infarction in terms of clinical findings.
- Ischemia occurs when cerebrovascular lesions such as arteriosclerosis, or local cerebral blood flow is blocked by cardiogenic thrombus, and nerve cell death is caused by energy depletion at the central part of ischemia. After ischemia, nerve regeneration is poor, and in the chronic phase, recovery of symptoms is difficult at present, and half have some sequelae. As a process of nerve regeneration at the peripheral part of the ischemic center, blood vessel regeneration is assumed to be the trigger. The development of a therapeutic method is desired for that target.
- Patent Documents 1 and 2 Various attempts have been made regarding the treatment of cerebral infarction, but it is not sufficient, and in recent years, treatment methods using living cells have been tried (see Patent Documents 1 and 2 and Non-Patent Document 1).
- Patent Document 1 describes a method of treating cells containing mesenchymal stem cells collected from bone marrow or blood without using an anticoagulant such as heparin, and using this to treat diseases such as cerebral infarction.
- Patent Document 2 describes a method for treating cerebral infarction using MUSE cells.
- bone marrow-derived monocytes (CD115 positive cells) were intravenously administered in a mouse cerebral infarction model, and this cell was transferred to the infarct and its effect was confirmed. It was not (refer nonpatent literature 1).
- Patent Document 1 since it is necessary to collect bone marrow fluid, the burden on the patient is great, and long-term culture is required to obtain mesenchymal stem cells. There is a problem of need.
- administration of bone marrow-derived monocytes described in Non-Patent Document 1 has confirmed the transition to the infarct region, but there is a problem that the effect of treatment such as cerebral infarction is insufficient.
- an object of the present invention is to provide a cell preparation that is less burdensome on the patient, is highly safe, and has a high therapeutic effect on cerebral infarction, and a method for producing the same.
- the present inventors By administering mononuclear cells containing microglia or monocytes treated with hypoxia and low sugar (OGD), the present inventors prevent deterioration after the onset of cerebral infarction, and promote angiogenesis and axonal extension.
- OGD hypoxia and low sugar
- the present inventors have found that cerebral infarction can be treated and have completed the present invention. That is, the present invention is as follows.
- the present invention is a method for producing a cell culture for the treatment of a disease selected from ischemic brain disease, myocardial infarction, cerebral hemorrhage and cerebrospinal traumatic neuropathy, comprising microglia and / or monocytes
- a disease selected from ischemic brain disease, myocardial infarction, cerebral hemorrhage and cerebrospinal traumatic neuropathy, comprising microglia and / or monocytes
- a method comprising producing the culture by culturing a group of cells under conditions of low oxygen concentration and / or low sugar concentration.
- the present invention relates to a method for producing a cell culture for promoting angiogenesis or axonal extension, wherein a cell group containing microglia and / or monocytes is treated with a low oxygen concentration and / or a low sugar concentration.
- the cell group is preferably cultured in a basic medium.
- the cell group containing the monocytes is a peripheral blood cell or a fraction thereof.
- the cell group containing monocytes is a fraction containing mononuclear cells collected from peripheral blood.
- the low oxygen concentration may be an oxygen concentration of less than 1%.
- the low sugar concentration may be a sugar concentration of 1.0 g / L or less.
- the cell group In the production of the culture, the cell group may be cultured for less than 24 hours under conditions of low oxygen concentration and low sugar concentration.
- the produced culture may be washed, and the washed culture may be sealed in a container.
- the present invention relates to microglia having the ability to promote angiogenesis and / or promote axonal extension sufficient for the treatment of diseases selected from ischemic brain disease, myocardial infarction, cerebral hemorrhage and cerebrospinal traumatic neuropathy. Or a cell preparation for the treatment of a disease selected from ischemic brain disease, myocardial infarction, cerebral hemorrhage and cerebrospinal traumatic neuropathy, including monocytes.
- the present invention relates to an ischemic brain disease, myocardial infarction, comprising a culture produced by culturing a group of cells containing microglia and / or monocytes under conditions of low oxygen concentration and / or low sugar concentration.
- the present invention relates to promotion of angiogenesis or axon including a culture produced by culturing a group of cells containing microglia and / or monocytes under conditions of low oxygen concentration and / or low sugar concentration. It is a cell preparation for promoting extension.
- the present invention provides a therapeutically effective amount of microglia and / or monocytes produced by culturing a group of cells containing microglia and / or monocytes under conditions of low oxygen concentration and / or low sugar concentration.
- microglia or monocytes can be imparted with an ability to promote angiogenesis and axonal extension only by culturing under extremely low oxygen concentration and / or low sugar concentration conditions for a short period of time. Treatment is possible from early onset of blood brain disease and myocardial infarction. Moreover, since there is no restriction of implementation in a cell regulation facility (CPC) as in the case of using mesenchymal stem cells or bone marrow stem cells, it can be widely used in general medical institutions. Further, since serum or growth factors are not required for culture, cell preparations can be provided inexpensively and safely.
- CPC cell regulation facility
- FIG. 1 is a diagram showing an example of an improvement result of neurological outcome in a transient focal cerebral ischemic rat model after transplantation of OGD pretreated microglia.
- FIG. 2 is a diagram showing another example of the improvement result of neurological outcome in a transient focal cerebral ischemic rat model after transplantation of OGD pretreated microglia.
- FIG. 3 shows the characteristics of mouse primary cultured microglia pretreated with OGD.
- FIG. 4 is a diagram showing other characteristics of mouse primary cultured microglia pretreated with OGD.
- FIG. 6 shows the intensity of VEGF 28 days after cerebral ischemia, promoted by transplantation of OGD pretreated microglia.
- FIG. 5 shows the intensity of MMP-9 on day 28 after cerebral ischemia, promoted by transplantation of OGD pretreated microglia.
- FIG. 6 shows the TGF- ⁇ intensity 28 days after cerebral ischemia, promoted by transplantation of OGD pretreated microglia.
- FIG. 8 is a diagram showing immunoreactivity of CD31 volume per unit volume.
- FIG. 9 is a diagram showing the immunoreactivity of the volume of SMI31 per unit volume.
- FIG. 10 is a graph showing the relative intensity of chondroitin sulfate proteoglycan / neuronal glial antigen 2 (CSPG / NG2) from the cerebral cortex in rats after ischemia on 28th day and before ischemia.
- FIG. 11 is a diagram showing the mechanism of OGD pretreated microglia transplantation after cerebral ischemia.
- FIG. 12 is a flowchart showing a method for producing a cell preparation.
- FIG. 12 is a flowchart showing a method for producing a cell preparation.
- FIG. 13 is a diagram showing an example of an improvement result of neurological outcome in a transient focal cerebral ischemic rat model after transplantation of OGD pretreated peripheral blood mononuclear cells (PMNC).
- PMNC peripheral blood mononuclear cells
- FIG. 14 is a graph showing the transplant cell number dependence of OGD pretreated PMNC in improving neurological outcome in a transient focal cerebral ischemic rat model.
- “#” indicates that p ⁇ 0.05 relative to the control.
- FIG. 15 is a diagram showing the promotion of angiogenesis in a cerebral ischemic lesion in a transient focal cerebral ischemic rat model transplanted with OGD pretreated PMNC.
- the upper panel is a double-stained image of immunostaining of CD31, an angiogenesis marker, and nuclear staining with DAPI
- the lower panel is a graph showing the blood vessel volume calculated from the staining result.
- FIG. 16 is a diagram showing promotion of nerve axon extension in a cerebral ischemic lesion in a transient focal cerebral ischemic rat model transplanted with OGD pretreated PMNC.
- the upper panel is a double-stained image of immunostaining of SMI31, which is a neuronal axon marker, and nuclear staining with DAPI
- the lower panel is a graph showing the calculation of the nerve axon volume from the staining result.
- FIG. 17 is a diagram showing the effect of hypoxic stimulation (OD), hypoglycosyl stimulation (GD), or hypoxic hypoglycosyl stimulation (OGD) on VEGF production (A) and secretion (B) in human PMNC.
- OD hypoxic stimulation
- GD hypoglycosyl stimulation
- OGD hypoxic hypoglycosyl stimulation
- A Western blot image (left) of cell extract (upper panel) and culture supernatant (lower panel) after each stimulation, and graph showing relative band intensity (right) of VEGF.
- B A graph showing the ELISA results for the culture supernatant after each stimulation. In the figure, “**” indicates p ⁇ 0.01, and “*” indicates p ⁇ 0.05.
- Cell therapy using bone marrow mononuclear cells or bone marrow-derived mesenchymal stem cells / stromal cells may be another treatment method for promoting functional recovery in stroke patients in the subacute phase and chronic phase.
- One mechanism of cell-based therapy using neural progenitor cells, bone marrow stromal cells, and mesenchymal stem cells induces angiogenesis through secretion of VEGF or brain-derived neurotrophic factor (BDNF).
- BDNF brain-derived neurotrophic factor
- Axonal extension after cell therapy has also been reported.
- recent multi-randomised controlled trials have demonstrated that there was no beneficial effect of intravenous administration of bone marrow mononuclear stem cells on ischemic stroke.
- BBB blood brain barrier
- microglial cells are the main source of the above growth factors in the central nervous system (CNS).
- CNS central nervous system
- M2 microglia This protective microglia is referred to as M2 microglia, and its protective effect is VEGF and BDNF, matrix metalloproteinase-9 (MMP-9), which can promote angiogenesis and axonal extension after cerebral ischemia, And is thought to be caused by secreting remodeling factors such as transforming growth factor ⁇ (TGF- ⁇ ).
- TGF- ⁇ transforming growth factor ⁇
- the transplanted microglia can pass through the BBB and migrate into the brain, particularly in a cerebral ischemic state. It is also known that blood monocytes migrate into the brain and differentiate into microglia.
- the inventors of the present invention microglia or monocytes preliminarily adjusted with OGD and translocated into the brain parenchyma through the BBB, secrete remodeling factors, and are subacute. It was hypothesized that a multifaceted therapeutic effect could be exerted through promotion of angiogenesis and axonal extension for local cerebral ischemia in the stage.
- the present inventors administered OGD-treated microglia or peripheral blood mononuclear cells (PMNC) to a rat model of transient focal cerebral ischemia. It has been found that it can pass through the BBB and migrate into the brain, promoting the recovery of brain function through the promotion of angiogenesis and axonal extension.
- PMNC peripheral blood mononuclear cells
- the present inventors also provide a solution for angiogenesis in the cell population when human PMNC is treated with OGD and when either hypoxia (OD) or low sugar (GD) is stimulated.
- OGD hypoxia
- GD low sugar
- the present invention relates to a cell culture for promoting angiogenesis or axonal extension, particularly ischemic brain diseases (cerebral infarction) such as cerebral thrombosis or cerebral infarction, or hemorrhagic encephalopathy such as intracerebral hemorrhage or subarachnoid hemorrhage (Cerebral hemorrhage), ischemic heart disease such as myocardial infarction, or a method for producing the culture for the treatment of cerebrospinal traumatic neuropathy (hereinafter also referred to as “manufacturing method of the present invention”) is provided.
- ischemic brain diseases Cerebral infarction
- cerebral thrombosis or cerebral infarction or hemorrhagic encephalopathy
- hemorrhagic encephalopathy such as intracerebral hemorrhage or subarachnoid hemorrhage (Cerebral hemorrhage)
- ischemic heart disease such as myocardi
- the method includes producing the culture by culturing a group of cells containing microglia and / or monocytes under conditions of low oxygen concentration and / or low sugar concentration.
- the cell group used in the production method of the present invention is not particularly limited as long as it is a cell group containing microglia or monocytes, and can be a human or other mammal (eg, mouse, rat, dog, Cats, monkeys, cows, pigs, etc.).
- cells containing microglia are dispersed in a nerve tissue such as the cerebrum and cultured in an adhesive cell culture vessel using a serum-added culture solution.
- glial cells mainly composed of astrocytes grow on the surface of the culture vessel to form a monolayer.
- microglia By collecting and culturing the microglia, a culture test system for microglia can be made. A method of shaking the culture container at the time of cell collection is often used. In this method, physical stimulation is applied to release microglia adhering to the monolayer astrocyte cultured cells, and more cells can be collected.
- microglia can be purified directly from a dispersion of nerve tissue such as the cerebrum, or by micro-cellular fraction obtained by the above method by MACS or FACS using an anti-CD115 antibody using CD115 as an index. It can also be obtained by differentiating from progenitor cells and stem cells such as monocytes and hematopoietic stem cells.
- a bone marrow-derived mononuclear cell fraction or a peripheral blood-derived mononuclear cell fraction obtained by a known method can be used.
- mononuclear cells derived from peripheral blood Minutes are more preferred.
- the mononuclear cell fraction can be separated and purified from bone marrow fluid and peripheral blood by a method known per se using, for example, Ficoll density gradient centrifugation.
- monocytes can be generated and used by MACS or FACS using an anti-CD14 antibody. In addition, it can be differentiated from hematopoietic stem cells or pluripotent stem cells.
- the low oxygen low sugar treatment (OGD treatment) in the present application refers to a treatment in which the above cell group is cultured in a low oxygen, low sugar medium as compared with normal culture conditions.
- the conditions for OGD treatment are appropriately selected depending on the type of cell group containing microglia or monocytes used in the present application, but the expression level is maximized using the production amount of VEGF, TGF- ⁇ , and MMP-9 as an index. You can select before and after the condition.
- the culture chamber under the conditions of this example when the culture chamber under the conditions of this example is sealed and cultured in a DMEM medium containing 1.0 g / L glucose in an oxygen-free atmosphere, The oxygen concentration decreased to less than 1% in 1 hour and decreased to 0.1-0.4% in 4 hours and was maintained throughout the experiment.
- a 24-hour culture under OGD caused cell death, and an 18-hour culture under OGD did not cause cell death as assessed by propidium iodide and lactate dehydrogenase assays.
- M2 microglia began to be detected 12 hours after the start of OGD culture, increased to a maximum at 24 hours, and then decreased significantly. Therefore, under the above conditions, OGD treatment for about 18 hours (eg, 18 ⁇ 6 hours) is desirable.
- the “low oxygen concentration” preferably means a concentration that mimics the oxygen concentration in the cerebral infarction region, and is, for example, less than 1%, more preferably 0.1 to 0.4%. . It has been reported that culturing at a low oxygen concentration exceeding 1% (eg, 2 to 10%) is effective for maintaining undifferentiated ES cells and improving the establishment efficiency of iPS cells.
- (OD) treatment is a severe hypoxic condition that causes cell death of microglia and monocytes after 24 hours. The hypoxic condition can be created, for example, by replacing the air in the culture chamber with an oxygen-free inert gas such as nitrogen gas containing 5% CO 2 .
- the “low sugar concentration” preferably means a concentration that mimics the sugar concentration in the cerebral infarction region, and is, for example, 1.0 g / L or less. In order to achieve the effects of the present invention, it is sufficient that the sugar concentration is 1.0 g / L or less, and even lowering the sugar concentration more than necessary may be rather undesirable for cell survival.
- the low sugar condition can be created by culturing a cell group containing microglia or monocytes in a medium having the low sugar concentration.
- the medium for example, Eagle medium, minimal essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), RPMI medium (eg, RPMI1630, RPMI1640), Fisher medium, Ham medium (eg, F10, F12), MCDB medium (
- well-known basic media such as MCDB104 and MCDB107
- a low glucose medium can be selected and used.
- a glucose-free medium is commercially available, and sugar can be added to the medium so as to obtain a desired low sugar concentration.
- the sugar is not particularly limited as long as it can assimilate microglia and monocytes, and glucose, galactose, fructose and the like can be used, but glucose is usually used.
- the medium includes 5-20% serum (eg, fetal bovine serum) or serum replacement (eg, Knockout ⁇ Serum Replacement), growth factors (eg, EGF, PDGF, IGF- I, IGF-II, insulin, IL-1, IL-6), albumin, transferrin, protease inhibitor (eg, ⁇ 1-antitrypsin), cell adhesion factor (eg, fibronectin, laminin), lipid (eg, cholesterol, linole) Acid, steroids), trace elements (iron, zinc, selenious acid, manganese, copper) and the like may contain well-known and conventional medium additives, but the present invention contains animal-derived components such as serum and growth factors.
- serum eg, fetal bovine serum
- serum replacement eg, Knockout ⁇ Serum Replacement
- growth factors eg, EGF, PDGF, IGF- I, IGF-II, insulin, IL-1, IL-6
- albumin transferrin
- angiogenesis and / or axonal extension promoting ability can be imparted to microglia and monocytes.
- growth factor can be used as the medium consisting substantially only the basic medium.
- the low oxygen concentration is less than 1%
- the low sugar concentration is 1.0 g / L or less
- the culture time is less than 24 hours.
- the culture time is preferably 18 hours or less.
- the cell culture obtained as described above can be formulated as it is or with a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carriers include aqueous solutions for injection such as isotonic solutions (eg, D-sorbitol, D-mannitol, sodium chloride) containing physiological saline, glucose and other adjuvants. be able to.
- the cell preparation containing the cell culture of the present invention includes, for example, a buffer (for example, phosphate buffer, sodium acetate buffer), a soothing agent (for example, benzalkonium chloride, procaine, etc.), a stabilizer ( For example, human serum albumin, polyethylene glycol, etc.), preservatives, antioxidants and the like may be blended.
- a culture obtained by OGD treatment of a group of cells containing microglia or monocytes is a culture treated under normal oxygen concentration / sugar concentration conditions (or the cell group before OGD treatment).
- VEGF secretion is significantly high
- B It has a physical property that the secretion amount of MMP-9 is significantly high
- c the secretion amount of TGF- ⁇ is significantly high. Since VEGF, MMP-9 and TGF- ⁇ have angiogenesis and axonal extension promoting effects, administration of OGD-treated culture induces regeneration of nerve tissue damaged or destroyed by ischemia or hemorrhage be able to.
- a culture in which a cell group containing microglia or monocytes is OGD-treated is compared with a culture treated under normal oxygen concentration / sugar concentration conditions (or the cell group before OGD treatment), (D)
- the ratio of the secretion amount of TGF- ⁇ to the secretion amount of TNF- ⁇ is significantly high, and / or (e) the secretion property of IL-6 is significantly low. That is, by secreting anti-inflammatory cytokines more preferentially than inflammatory cytokines, an effect of suppressing inflammation at the ischemia / bleeding site can be achieved.
- a cell preparation containing a culture obtained by OGD treatment of a group of cells containing microglia or monocytes can be used for the treatment of ischemic brain disease or ischemic heart disease, and is expected to promote angiogenesis and have anti-inflammatory effects. it can.
- the ischemic brain disease in the present application refers to a so-called cerebrovascular disorder, and includes cerebral infarction (cerebral thrombosis, cerebral embolism) and hemorrhagic cerebral disorder (intracerebral hemorrhage, subarachnoid hemorrhage).
- a preferred indication is cerebral infarction.
- a cell preparation containing a culture obtained by OGD treatment of a cell group containing monocytes can also be used for ischemic diseases such as ischemic heart disease (eg, myocardial infarction). Alternatively, it can be used for traumatic cerebrospinal neuropathy.
- ischemic diseases such as ischemic heart disease (eg, myocardial infarction).
- myocardial infarction e.g, myocardial infarction
- it can be used for traumatic cerebrospinal neuropathy.
- Examples of a method for delivering a cell preparation produced by the method of the present invention to an affected area include local transplantation by surgical means, intravenous administration, local injection administration, subcutaneous administration, intradermal administration, intraperitoneal administration, intramuscular administration, Intracerebral administration, intraventricular administration, intraarterial administration, and the like are possible.
- the cells to be transplanted are suspended in an artificial cerebrospinal fluid or physiological saline, and stored in a syringe to perform surgery.
- it may be transplanted in the vicinity of the damaged site, and the effect can be expected by injection into cerebrospinal fluid.
- an effect can be expected by intravenous injection. Therefore, it is preferable in that transplantation can be performed in the manner of normal blood transfusion and transplantation operation in a ward is possible.
- the dosage of the cell preparation of the present invention is, for example, when PMNC is intravenously administered to a cerebral infarction patient, the number of mononuclear cells is 10 5 to 10 8 , preferably 5 ⁇ 10 5 to 10 7. Can do. Since the proportion of monocytes in the mononuclear cells is estimated to be about 1/3 to 1/15, it is considered that the number of monocytes may be administered by multiplying the mononuclear series by the proportion. As for the dose of microglia, the number of cells corresponding to the dose of monocytes can be mentioned.
- anesthesia was induced in rats by inhalation of 1.5% halothane in a mixture of 70% nitrous oxide and 30% oxygen.
- a nylon monofilament with a diameter of 0.148 mm was used for vessel occlusion.
- the tip of the nylon monofilament was rolled with heat.
- the end 11 mm of the suture was coated with silicone having a diameter of 0.350 mm.
- the middle cerebral artery (MCA) was occluded by inserting an embolic thread into the internal carotid artery via the external carotid artery. Ninety minutes after ischemia, the embolic thread was withdrawn to restore blood flow.
- MAP2 microtubule-associated protein 2
- Rats surviving on days 1, 3, 7, 14, and 28 after cerebral ischemia were treated with cold 0.1 M phosphate buffered physiology following intracardiac perfusion with saline. Perfused with cold 4% paraformaldehyde in saline (PBS; pH 7.4) and euthanized by overdose of halothane.
- PBS paraformaldehyde
- the brain was removed and embedded in paraffin wax. Serial sections (thickness 4 ⁇ m) were cut from the paraffin block and stained with antibodies. In addition, freeft sections were prepared (50 ⁇ m thickness) and stained. Nuclear staining was performed with vector shield 4 ′, 6′-diamidino-2-phenylindole (DAPI). Sections were examined under a confocal laser scanning microscope. Cerebral cortical tissue corresponding to the ischemic center or penumbra was determined by MAP2 staining. (Quantitative analysis of brain tissue structure by immunostaining)
- tissue sections were divided into differentiation (CD) 31 (endothelial cell and angiogenesis markers), MAP2 (neuronal dendritic marker), SMI31 and growth-related protein 43 (GAP43). (Neuron axon marker), immunostained with antibodies to VEGF, TGF- ⁇ , and MMP-9 and counted.
- CD differentiation
- MAP2 neurotrophic factor
- GAP43 growth-related protein 43
- DMEM Dulbecco's modified Eagle medium
- FBS fetal bovine serum
- Rat or human peripheral blood is mixed with PBS to a total volume of 35 mL, layered on 15 mL of Ficoll (GE Healthcare Japan Ficoll-Paque Premium 1.084) in a 50 mL conical tube, centrifuged at 400 ⁇ g for 30 minutes, and Ficoll The PMNC layer that appeared on the layer was separated.
- Ficoll GE Healthcare Japan Ficoll-Paque Premium 1.084
- OGD Stimulation with low oxygen and low sugar
- OD Stimulation with low oxygen
- GD Stimulation with low sugar
- serum components were first removed by thoroughly washing the serum-containing medium twice with PBS.
- the medium was replaced with a low sugar medium, and the inside of the hypoxic chamber was replaced with a mixed gas of 95% N 2 and 5% CO 2 for 1 hour, and then closed for 18 hours.
- the low sugar medium DMEM (Dulbecco's modified Eagles medium) was used, and the sugar concentration was 1.0 g / L.
- the oxygen concentration in the hypoxic chamber decreased to less than 1% in 1 hour and decreased to 0.1-0.4% in 4 hours and was maintained throughout the experiment.
- OD was performed in the same manner as OGD except that serum-free high glucose (4.5 g / L) DMEM was used instead of low-sugar medium.
- GD was performed in the same manner as OGD except that the atmosphere in the chamber was 5% CO 2 and 95% air.
- M2 microglia began to be detected 12 hours after the start of OGD culture, increased to a maximum at 24 hours, and then decreased significantly. Therefore, in this example, 18 hours of OGD was selected.
- microglia cultured under OGD is hereinafter referred to as OGD pretreated microglia.
- OGD pretreated microglia microglia cultured under normal oxygen concentration (for example, about 20%) is referred to as normoxic microglia.
- mice having an average body weight of ⁇ 2 SD or less were excluded on the 7th day after cerebral ischemia in order to achieve the same physiological state.
- 1 ⁇ 10 6 microglia or 1 ⁇ 10 5 or 1 ⁇ 10 6 rat PMNCs were diluted with 300 ⁇ L of PBS.
- rats subjected to transient MCAO mouse cerebral artery occlusion
- mice subjected to transient MCAO were randomly assigned to the following groups. These groups consisted of a cell-treated group consisting of rats implanted with microglia or PMNC via a stump in the external carotid artery (ECA) over a period of 3 minutes, and a cell-free control consisting of rats injected with the same volume of PBS.
- ECA external carotid artery
- the cell treatment group includes an OGD pretreated microglia or PMNC transplant group consisting of rats transplanted with OGD pretreated microglia or PMNC, and a normoxic microglia or PMNC composed of rats transplanted with normoxic microglia or PMNC.
- OGD pretreated PMNC transplant group includes a 1 ⁇ 10 5 PMNC transplant group and a 1 ⁇ 10 6 PMNC transplant group depending on the number of transplanted cells.
- Sensorimotor evaluation was performed before and after cerebral ischemia, 1st day, 4th day, 7th day, 10th day (3rd day after transplantation), 14th day (7th day after transplantation), 21st day ( On the 14th day after transplantation) and on the 28th day (21st day after transplantation), corner tests were performed. In the corner test, 20 tests were conducted in which the rat escaped from the corner either left or right, and the number of escapes from the right was counted.
- this example uses primary microglia from GFP mice.
- Primary cells from GFP mice were pretreated with OGD and the cells were administered intraarterially. Thereafter, confocal microscopy was performed on the 3rd and 21st days after transplantation performed 7 days after cerebral ischemia.
- FIG. 1 is a diagram showing an example of the improvement result of neurological outcome after transplantation of OGD pretreated microglia.
- the rats in the OGD pretreated microglia transplanted group showed a significant improvement in functional recovery as compared to the cells in the cell-free control group after 20 corner tests. That is, in the corner test performed 20 times on the 28th day after cerebral ischemia, in the OGD pretreated microglia transplanted group, the rat turned to the right at a rate of about 50%, and in the cell-free control group, about Rats turned to the right at a rate of 10%. This indicates that the improvement of neuropathy was significantly better in the OGD pretreated microglia transplant group than in the cell free control group. In these groups, there was no significant difference in body weight before cerebral ischemia and on the 7th, 14th, 21st, and 28th days after cerebral ischemia.
- FIG. 2 is a diagram showing another example of the improvement result of neurological outcome after transplantation of OGD pretreated microglia.
- Rats after OGD pretreated microglia transplantation had a significant improvement in functional recovery compared to norms after normoxic microglia transplantation by a 20 corner test. That is, in the corner test performed 20 times on the 28th day after cerebral ischemia, in the OGD pretreated microglia transplanted group, the rat turned to the right at a rate of about 40%, and in the normoxic microglia transplanted group, Rats turned to the right at a rate of about 10%.
- microglia from GFP mice were administered intraarterially, that is, on day 21 after transplantation, the microglia was not observed, but on day 3 after transplantation, The microglia was observed in the boundary region between the ischemic center and the penumbra. In other words, it was confirmed by confocal microscopy that microglia migrated from blood to brain parenchyma.
- FIG. 3 shows the characteristics of mouse primary cultured microglia pretreated by OGD. Specifically, FIG. 3 shows the levels of normoxic (norm) and OGD secretion into the medium of mouse primary culture microglia for each. 3 (a) shows the secretion level of vascular endothelial growth factor (VEGF), (b) shows the secretion level of brain-derived neurotrophic factor (BDNF), and (c) shows the secretion of MMP-9. Indicates the level.
- VEGF vascular endothelial growth factor
- BDNF brain-derived neurotrophic factor
- FIG. 3B there was no difference in the level of BDNF secretion from the microglia medium between OGD and normoxia.
- FIG. 3 (c) it was found that the secretion level of MMP-9 from the medium of OGD pretreated microglia was higher than that of normoxic microglia.
- FIG. 4 is a diagram showing other characteristics of mouse primary cultured microglia pretreated by OGD. Specifically, FIG. 4 shows the level of secretion from the culture medium of mouse primary culture microglia for normoxia (norm) and OGD, as in FIG. FIGS. 4 (a) and (b) show the levels of secretion of anti-inflammatory cytokines such as transforming growth factor ⁇ (TGF- ⁇ ) and interleukin 10 (IL-10). 4 (c), (d) and (e) show the levels of secretion of inflammatory cytokines such as IL-6, tumor necrosis factor ⁇ (TNF- ⁇ ) and IL-1 ⁇ . FIG. 4 (f) shows the ratio of TGF- ⁇ to TNF- ⁇ .
- TGF- ⁇ transforming growth factor ⁇
- IL-10 interleukin 10
- FIG. 4 (f) shows the ratio of TGF- ⁇ to TNF- ⁇ .
- M1 microglia secrete TNF- ⁇ , IL-1 ⁇ , and IL-6, while brain-protective M2 microglia secrete IL-10 and TGF- ⁇ .
- the secretion level of the anti-inflammatory cytokine TGF- ⁇ by OGD pretreated microglia is 25 times higher than the secretion level by normoxic microglia.
- FIG. 4 (c) it was found that the secretion level of the inflammatory cytokine IL-6 by OGD pretreated microglia was half that of the secretion level by normoxic microglia.
- FIG. 4 (b) there was no difference in the secretion level of the anti-inflammatory cytokine IL-10 by OGD pretreated microglia and normoxic microglia.
- FIGS. 4 (d) and (e) the secretion levels of inflammatory cytokines, that is, TNF- ⁇ and IL-1 ⁇ by OGD-pretreated microglia are compared with those by normoxic microglia. 3 or 4 times higher.
- the ratio of TGF- ⁇ to TNF- ⁇ indicating the bias between M1 microglia and M2 microglia from the OGD pretreated microglia is higher than the ratio from normoxic microglia.
- This increase in the ratio of TGF- ⁇ to TNF- ⁇ indicates a bias towards M2 microglia after OGD pretreatment. That is, these results demonstrated that optimal OGD pretreatment predominates microglia for anti-inflammatory M2 subtypes.
- VEGF, MMP-9, and TGF- ⁇ by transplantation of OGD pretreated microglia will be described. Analyzes were performed to ascertain whether improved results after transplantation of OGD pretreated microglia were caused by elevated remodeling factors (VEGF, MMP-9, and TGF- ⁇ ) in the brain parenchyma . That is, immunohistochemical analysis of the brain of the transplanted rat 28 days after cerebral ischemia was performed using antibodies against VEGF, MMP-9 and TGF- ⁇ . Expression of VEGF, MMP-9, and TGF- ⁇ was not detectable in the rat brain prior to ischemia, but their expression was ischemic on day 28 (21 days post-transplant) after cerebral ischemia. Observed at the border region between the center and the penumbra.
- FIGS. 5 to 7 are diagrams showing expression of various factors that promote remodeling on the 28th day after cerebral ischemia, which is promoted by transplantation of OGD pretreated microglia.
- FIG. 5 shows the intensity of VEGF
- FIG. 6 shows the intensity of MMP-9
- FIG. 7 shows the intensity of TGF- ⁇ .
- FIGS. 5-7 Analysis of the intensity of immunoreactivity shown in FIGS. 5-7 demonstrated that the expression of these remodeling factors was more prominent in the OGD pretreated microglia transplant group compared to the cell-free control group. .
- VEGF and MMP-9 were observed not only in microglia but also in pericytes, endothelial cells, and neurons in ischemic rats.
- TGF- ⁇ expression was observed not only in microglia but also in pericytes and neurons in ischemic rats.
- OGD pretreated microglia transplantation was confirmed to promote angiogenesis in the border region within the ischemic center and axonal extension in the ischemic penumbra 28 days after cerebral ischemia.
- promotion of angiogenesis by OGD pretreated microglia transplantation will be described.
- the present inventors speculated that expression of VEGF, MMP-9, and TGF- ⁇ by OGD pretreated microglia transplantation promotes angiogenesis. Therefore, the present inventors examined the effect of OGD pretreated microglia transplantation on angiogenesis by immunofluorescence staining of cerebral cortex using an angiogenesis marker anti-CD31 antibody on the 28th day after cerebral ischemia.
- FIG. 8 is a diagram showing CD31 immunoreactivity per unit volume. Specifically, the CD31 immunoreactivity as the volume of 1 ⁇ m per 3 each ischemic core of cell-free control group and OGD preprocessed microglia grafted groups in ischemia day 28 ([mu] m 3), That is, it is expressed as a volume ratio.
- OGD pretreated microglia transplantation promotion of axonal extension by OGD pretreated microglia transplantation will be described.
- the present inventors examined the effect of OGD pretreated microglia transplantation on axon extension by immunofluorescence staining of ischemic cortex 28 days after cerebral ischemia using a neurofilament protein marker anti-SMI31 antibody.
- FIG. 9 is a diagram showing the immunoreactivity of SMI31 per unit volume. Specifically, the SMI31 immunoreactivity as the volume of 1 ⁇ m per 3 each ischemic penumbra of the cell-free control group and OGD- microglia transplanted group in ischemia day 28 ([mu] m 3), i.e. the ratio Is expressed as The expression of SMI31 in the ischemic penumbra in the OGD pretreated microglia transplant group was more prominent than in the cell-free control group.
- CSPG chondroitin sulfate proteoglycan
- the present inventors used anti-CSPG / NG2 antibody.
- the used immunofluorescent staining was performed (NG2 is the main component of CSPG).
- FIG. 10 is a graph showing the relative intensity of chondroitin sulfate proteoglycan / neuronal glial antigen 2 (CSPG / NG2) from the cerebral cortex on the 28th day after ischemia in the sham-operated group of rats.
- the cerebral cortex includes a cell-free control cortex and an OGD pretreated microglia transplanted cortex.
- FIG. 10 is a diagram showing the mechanism of OGD pretreated microglia transplantation after cerebral ischemia.
- OGDG pretreated microglia transplantation directly secretes VEGF, TGF- ⁇ , and MMP-9. These factors may be due to paracrine secreted by resident cells via remodeling factors secreted by OGD pretreated microglia. These factors directly promote angiogenesis at the ischemic center.
- the ischemic center is defined as a MAP2-immunonegative site, and is composed of an irreversible angiogenesis-negative ischemic center and an angiogenesis-positive ischemic center in which angiogenesis is observed.
- MMP-9 from microglia reduces the expression of CSPG, an axonal extension inhibitor. For this reason, it becomes easy to induce axonal extension.
- VEGF, TGF- ⁇ , and MMP-9 may also directly induce axonal extension.
- Monocytes pass from the cerebral blood vessels through the BBB to the brain parenchyma and differentiate into microglia. Since monocytes can be easily collected from peripheral blood, they can be obtained with less invasiveness than microglia. Accordingly, whether or not peripheral blood mononuclear cell (PMNC) fractions containing monocytes can be treated with OGD to obtain the same effect as microglia is examined for regional cerebral ischemia transplanted with rat PMNC (1 ⁇ 10 6 ). It was verified by sensorimotor evaluation in a rat model. The results are shown in FIG.
- PMNC peripheral blood mononuclear cell
- the PMNC-administered group (normoxia) without OGD stimulation was not significantly different from the non-cell-administered group (PBS control), but the OGD-stimulated PMNC-administered group (OGD) was significantly symptomatic on the 28th day after ischemia treatment. Improved.
- VEGF production was significantly increased compared to the PMNC administration group (norm) without OGD stimulation.
- the amount of secretion into the medium was not significantly different from the control by OD stimulation alone, whereas an increasing tendency was observed from the control by GD stimulation alone.
- the amount of VEGF secretion further increased by OGD stimulation, showing a significant difference not only for control but also for OD stimulation alone.
- an example of a treatment protocol for cerebral hemorrhage by isolating microglia from the white matter destroyed around the hematoma removed during hematoma removal surgery in a cerebral hemorrhage patient, stimulating the microglia with OGD, and then reimplanting the patient in the patient Show.
- the hematoma is aspirated and removed under neuroendoscopic observation, then the bleeding blood vessel is identified and hemostasis is performed. After washing the hematoma cavity, the destroyed white matter is collected using forceps. After dissociating the white matter cells, microglia are isolated by MACS or FACS using an anti-CD115 antibody. After the obtained microglia is stimulated by OGD for 18 hours, 1 ⁇ 10 6 microglia are suspended in PBS and intravenously administered to the patient.
- a culture for treating cerebral infarction, promoting angiogenesis, and promoting axon extension is obtained by culturing a group of cells containing microglia or monocytes under OGD conditions.
- a cell preparation containing could be produced.
- the therapeutic effect could be enhanced by OGD.
- the cell group may be cultured under conditions of only one of low oxygen concentration and low sugar concentration, but the cell group should be cultured at least under the condition of low sugar concentration.
- the cell group is cultured under the conditions of OGD, that is, under conditions of low oxygen concentration and low sugar concentration.
- the cell group may be a peripheral blood cell or a cell fraction thereof, for example, a fraction containing mononuclear cells collected from peripheral blood. Therefore, since it is not necessary to collect bone marrow fluid for the production of cell preparations, it is possible to reduce the burden on the patient and improve safety in the treatment of cerebral infarction.
- the oxygen concentration in the low oxygen chamber is decreased to less than 1% in 1 hour, and is decreased to 0.1 to 0.4% in 4 hours and maintained as it is.
- Microglia and PMNC could be imparted with angiogenesis and axonal extension promoting activity sufficient for brain function recovery in a rat model of cerebral ischemia. This means that if the average oxygen concentration in the culture atmosphere is 1% to less than 0.4%, it is sufficient to achieve the effects of the present invention.
- the activity could be imparted to microglia and PMNC by setting the sugar concentration to 1.0 g / L. This means that the sugar concentration in the culture medium is 1.0 g / L or less in order to achieve the effects of the present invention.
- the cell group was cultured for 18 hours under the OGD condition.
- the culture time is an example and may be less than 24 hours. This is because, as described above, M2 microglia increased to a maximum at 24 hours and then decreased significantly, and further caused cell death at 24 hours.
- the cell preparation produced by the above example is typically a cell preparation for treating cerebral infarction, but this cell preparation is used as long as microglia or monocytes can reach the ischemic site. It has therapeutic effects not only on infarctions but also on any ischemic disease. For example, there is a therapeutic effect on myocardial infarction, pulmonary infarction or renal infarction.
- the culture may be washed.
- FIG. 12 is a flowchart showing a method for producing a cell preparation.
- a culture is produced by culturing a cell group containing microglia and / or monocytes under conditions of low oxygen concentration and / or low sugar concentration (step S1).
- the culture is washed (step S2). Specifically, granulocytes or debris killed by OGD are separated from the culture by centrifugal force, and then the culture is washed.
- a cell preparation is produced by enclosing the culture in a bag (step S3).
- the present invention may also be a therapeutic method for treating an ischemic disease (for example, cerebral infarction) by administering a cell preparation produced according to the flowchart of FIG. 12 to a patient.
- an ischemic disease for example, cerebral infarction
- a cell preparation produced according to the flowchart of FIG. 12 for example, about 1 ⁇ 10 8 cells are enclosed in a 40 mL bag.
- transplantation is performed by administering the cell preparation intravenously over 30 minutes to 1 hour, for example.
- the cell preparation may be administered not only intravenously but also into an artery or cerebrospinal cavity.
- lumbar puncture administration, intracerebral administration, intraventricular administration, or local administration may be used.
- peripheral blood is collected from a patient and a cell group including monocytes is separated from the peripheral blood before step S1 shown in FIG. That is, the cell group is a fraction containing monocytes collected from peripheral blood. Alternatively, the cell group is a fraction containing mononuclear cells collected from peripheral blood. Then, a cell preparation is produced by culturing the cell group under the conditions of OGD and administered to the patient. In this case, there is an effect that the burden on the patient is extremely small and the safety is high. Also, there is no need to grow monocytes and no addition of drugs is necessary. Furthermore, since the culture time is short, treatment from an early stage of onset is possible. On the other hand, even if time has passed since the onset, a therapeutic effect can be expected. In addition, this treatment is low cost and is effective even when administered intravenously.
- step S1 shown in FIG. 12 for example, as shown in (Primary cell culture) of the above-mentioned example, microglia is collected from the brains of animals other than humans.
- the cell group containing is cultured under the conditions of OGD.
- a cell preparation is produced by the culture and administered to an animal other than the patient.
- the patient when it is only described as a patient, the patient means a person and an animal other than a person.
- the culture contained in the cell preparation produced by the above example is microglia and / or monocytes cultured under OGD conditions.
- the microglia or monocytes cultured in this way cannot be specified as a structure even if the common general knowledge at the time of filing is taken into consideration, or at least it is not practical to specify as a structure.
- the microglia or monocyte may be identified.
- the cell preparation of the present invention has a remarkable effect on the functional recovery of an ischemic disease, and can be used as a drug for the disease.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Mycology (AREA)
- Developmental Biology & Embryology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cardiology (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Gastroenterology & Hepatology (AREA)
- Dispersion Chemistry (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
すなわち、本発明は、以下の通りである。
<2>前記いずれかの方法において、少なくとも低糖濃度条件下で該細胞群を培養することが好ましい。
<3>前記いずれかの方法において、好ましくは、該細胞群は基本培地中で培養される。
<4>例えば、前記単球を含む細胞群は、末梢血細胞またはその分画である。
<4a>または、前記単球を含む細胞群は、末梢血から採取した単核球を含む画分である。
<5>また、低酸素濃度は、1%未満の酸素濃度であってもよい。
<6>また、低糖濃度は、1.0g/L以下の糖濃度であってもよい。
<7>また、前記培養物の生成では、前記細胞群を低酸素濃度かつ低糖濃度の条件下で24時間未満培養してもよい。
<8>また、前記細胞製剤の製造では、さらに、生成された前記培養物を洗浄し、洗浄された前記培養物を容器に封入してもよい。
<9a>本発明は、ミクログリアおよび/または単球を含む細胞群を、低酸素濃度および/または低糖濃度の条件下で培養することにより生成された培養物を含む、虚血性脳疾患、心筋梗塞、脳出血及び脳脊髄外傷性神経障害から選ばれる疾患の治療のための細胞製剤である。
さらに、末梢血由来の単球を含む細胞群を用いる場合には、骨髄液を採取する必要がないため、脳梗塞の治療において患者の負担を軽減し安全性を高めることができる。
一方、脳出血又は脳脊髄外傷患者の場合、血腫除去手術後、血腫周辺の破壊された白質から容易にミクログリアを採取することができるので、患者の脳や脊髄から直接採取したミクログリアに本発明を適用することにより、前記疾患の治療が可能となる。
また、低酸素濃度および/または低糖濃度の条件下での培養を行うため、血管新生および軸索伸展をより促進することができ、治療効果を高めることができる。
また、血液中の単球が脳内に移行しミクログリアに分化することも知られている。
本発明の製造方法において使用される細胞群は、ミクログリア又は単球を含んでいる細胞群であれば、その由来に特に制限はなく、ヒト又は他の哺乳動物(例、マウス、ラット、イヌ、ネコ、サル、ウシ、ブタ等)から適宜採取することができる。ミクログリアを含む細胞は、例えば、大脳などの神経組織を分散し、血清添加培養液を用いて接着性の細胞培養容器で培養する。これにより、まず培養容器表面にアストロサイトを主とするグリア細胞が増殖し単層状になる。この後にミクログリアの増殖が容易に認められる状態になるが、これを採取し、培養することによりミクログリアの培養試験系を作ることが出来る。この細胞採取時には培養容器を振とうする方法が、よく用いられる。これは単層アストロサイト培養細胞上に接着しているミクログリアを遊離させるため物理的刺激を加えるもので、より多くの細胞を採取することが出来る。また大脳などの神経組織の分散液から直接、又は上記方法で得られたミクログリア細胞画分を、CD115を指標に、抗CD115抗体を用いたMACSやFACSによりミクログリアを精製することもできる。また、単球や造血幹細胞等の前駆細胞や幹細胞から分化させることにより得ることができる。
ヒトへの適用においては、例えば、脳出血や脳外傷により外科的手術を必要とする患者において、血腫除去後に、神経内視鏡を用いて、血腫周辺の破壊された白質を切除し、該白質内に遊走したミクログリアを単離して使用することができる。ヒトからのミクログリアの採取は高侵襲性で本来難しいが、上記の場合、手術により必然的に採取される破壊された白質をソースとするので、十分に許容され得る。
(a)VEGFの分泌量が有意に高い、
(b)MMP-9の分泌量が有意に高い、及び
(c)TGF-βの分泌量が有意に高い
という物性を有することを特徴とする。VEGF、MMP-9及びTGF-βは血管新生及び軸索伸展促進作用を有するので、OGD処理した培養物を投与することにより、虚血や出血により損傷・破壊された神経組織の再生を誘導することができる。
また、ミクログリア又は単球を含む細胞群をOGD処理した培養物は、通常の酸素濃度・糖濃度条件下で処理した培養物(あるいは、OGD処理前の該細胞群)と比較して、
(d)TNF-α分泌量に対するTGF-βの分泌量の比が有意に高い、及び/又は
(e)IL-6の分泌量が有意に低い
という物性をさらに有する。即ち、炎症性サイトカインに比べて抗炎症性のサイトカインを優位に分泌することで、虚血/出血部位における炎症抑制効果を奏し得る。
従って、ミクログリア又は単球を含む細胞群をOGD処理した培養物を含む細胞製剤は、虚血性脳疾患または虚血性心疾患の治療のために使用でき、血管新生の促進や抗炎症の作用が期待できる。本願における虚血性脳疾患とは、いわゆる脳血管障害を指し、脳梗塞(脳血栓、脳塞栓)の他、出血性脳障害(脳内出血、クモ膜下出血)も含まれる。好ましい適応としては、脳梗塞があげられる。また、単球を含む細胞群をOGD処理した培養物を含む細胞製剤は、虚血性心疾患(例、心筋梗塞)等の虚血性疾患にも使用することができる。あるいは、外傷性の脳脊髄神経障害にも使用することができる。
一過性局所脳虚血は、体重290~320グラムの雄性のSprague-Dawleyラットを用いて、シリコーンコートナイロンモノフィラメントにて誘導した。
脳虚血後1日目、3日目、7日目、14日目、および28日目に生存したラットを、生理食塩水での心臓内灌流の後、冷0.1Mのリン酸緩衝生理食塩水(PBS;pH7.4)の冷4%パラホルムアルデヒドで灌流し、ハロタンの過剰投与で安楽死させた。
(免疫染色による脳組織構造の定量分析)
初代マウスミクログリアを採取した。具体的には、パパインで大脳皮質を消化した後、10%ウシ胎児血清(FBS)を添加したダルベッコ改変イーグル培地(DMEM)中で細胞懸濁液を10日間培養させることによって、混合グリア細胞を出生後のC57BL/6マウスの大脳皮質から分離した。10日後、ミクログリアを単離するために培養フラスコを15分間振とうした。フローサイトメトリーにおけるMac-1(CD11b/CD18)免疫反応性による評価では、これらのミクログリアの培養物の純度は99%であった。
ラットまたはヒト末梢血をPBSと混和して全量35mLとし、50mLコニカルチューブ中のフィコール(GEヘルスケアジャパン Ficoll-Paque Premium 1.084)15mL上に重層し、400×gで30分間遠心し、フィコール層上に出現するPMNC層を分離した。
OGDの誘導のために、まず、血清含有培地を、二回PBSで十分に洗浄することにより、血清成分を除去した。次に、低糖培地に置換し、95%N2及び5%CO2の混合ガスにて、低酸素チャンバー中を1時間で置換し、その後18時間閉鎖した。低糖培地には、DMEM(Dulbecco’s modified Eagles medium)を用い、その糖濃度を1.0g/Lとした。
低酸素チャンバー内の酸素濃度は、1時間で1%未満に減少し、4時間で0.1~0.4%に減少し、実験を通して維持された。
ODは低糖培地の代わりに血清不含高グルコース(4.5g/L)DMEMを用いる以外はOGDと同様に行った。GDは、チャンバー内雰囲気を5%CO2、95%大気とする以外は、OGDと同様に行った。
本実施例では、同じ生理学的状態にするため、脳虚血後7日目に平均-2SD以下の体重のラットを除外した。1×106個のミクログリア又は1×105個もしくは1×106個のラットPMNCをPBS300μLで希釈した。脳虚血後7日目に、一過性のMCAO(中大脳動脈閉塞術)に供したラットを無作為に以下の群に割り当てた。これらの群は、ゆっくりと3分間にわたって外頚動脈(ECA)の断端を介してミクログリア又はPMNCが移植されたラットからなる細胞処理群と、同じ体積のPBSが注入されたラットからなる無細胞対照群とである。なお、細胞処理群には、OGD前処理済みミクログリア又はPMNCが移植されたラットからなるOGD前処理済みミクログリア又はPMNC移植群と、正常酸素ミクログリア又はPMNCが移植されたラットからなる正常酸素ミクログリア又はPMNC移植群とがある。さらに、OGD前処理済みPMNC移植群には、移植細胞数により、1×105個PMNC移植群と、1×106個PMNC移植群とがある。
感覚運動評価は、脳虚血前と後、1日目、4日目、7日目、10日目(移植後3日目)、14日目(移植後7日目)、21日目(移植後14日目)、および28日目(移植後21日目)に、コーナーテストによって行われた。コーナーテストでは、ラットがコーナーから左右いずれかに回って脱出するテスト20回実施し、右から脱出する回数をカウントした。
移植されたミクログリアが、動脈内投与された後に、それらの有益な効果を発揮するために血液から脳実質への移行できるかどうかを判断するために、本実施例では、GFPマウスからの初代ミクログリアを用いた。GFPマウスからの初代ミクログリアをOGDによって前処理した後、動脈内にこの細胞を投与した。その後、脳虚血7日後に行った移植から、3日目および21日目に、共焦点顕微鏡検査を行った。
ヒトPMNCを18時間OGD、GD又はOD刺激した後、細胞と培養上清とを分離した。細胞抽出液と培養上清のそれぞれについてSDS-ポリアクリルアミド電気泳動を行い、マウス抗ヒトVEGF抗体及び標識化抗マウスIgG抗体を用いたウェスタブロットによりVEGFを定量した。内部標準としてβ-アクチン(細胞抽出液)又はトランスフェリン(培養上清)をそれぞれ用いた。また、培養上清については、ELISAによるVEGFの定量も実施した。
まず、局所脳虚血に対するOGD前処理済みミクログリア移植の治療効果について説明する。
局所脳虚血に対するOGD前処理済みミクログリア移植の治療効果を比較するために、局所脳虚血後の感覚運動評価によって、無細胞対照群と、OGD前処理済みミクログリア移植群の間で神経学的転帰を分析した。
図1は、OGD前処理済みミクログリア移植後の神経学的転帰の改善結果の一例を示す図である。
図2は、OGD前処理済みミクログリア移植後の神経学的転帰の改善結果の他の例を示す図である。
OGD前処理済みミクログリア移植後のラットは、20回実施したコーナーテストにより、正常酸素ミクログリア移植後のラット(norm)と比較して、機能回復が大幅に改善された。つまり、脳虚血後28日目に行われた20回実施されたコーナーテストにおいて、OGD前処理済みミクログリア移植群では、約40%の割合でラットが右に回り、正常酸素ミクログリア移植群では、約10%の割合でラットが右に回った。これは、OGD前処理済みミクログリア移植群では、正常酸素ミクログリア移植群よりも、神経障害の改善が有意に良好であったことを示している。なお、これらの群において、脳虚血前と後7日目、14日目、21日目、および28日目における体重に有意な差はなかった。
OGD前処理済みミクログリアの移植後の改善された結果が、脳実質におけるリモデリング因子(VEGF、MMP-9、およびTGF-β)の上昇によって引き起こされたかどうかを確認するために、分析を行った。すなわち、VEGF、MMP-9およびTGF-βに対する抗体を用いて、脳虚血後28日目の移植したラットの脳の免疫組織化学的分析を行った。VEGF、MMP-9、およびTGF-βの発現が虚血前のラットの脳では検出できなかったが、それらの発現は、脳虚血後の28日目(移植後21日目)の虚血中心とペナンブラ内の境界領域で観察された。
まず、OGD前処理済みミクログリア移植による血管新生の促進について説明する。
本発明者らは、ニューロフィラメントのタンパク質マーカー抗SMI31抗体を用いた脳虚血後28日目の虚血性皮質の免疫蛍光染色によって、OGD前処理済みミクログリア移植の軸索伸展に対する効果を調べた。
OGD前処理済みミクログリア移植群における虚血性ペナンブラでのSMI31の発現は、無細胞対照群における発現よりも顕著であった。
図11は、脳虚血後のOGD前処理済みミクログリア移植のメカニズムを示す図である。
結果を図13に示す。OGD刺激のないPMNC投与群(normoxia)では、細胞非投与群(PBS control)と有意な差はなかったが、OGD刺激PMNC投与群(OGD)では、虚血処理後28日目で有意に症状の改善を認めた。
結果を図14に示す。OGD刺激PMNC投与群では、虚血処理後28日目で、細胞数依存的に有意に症状の改善を認めた。
結果を図15及び16に示す。OGD刺激1×106個PMNC投与群(OGD-PMNC 10^6)では、OGD刺激のないPMNC投与群(norm)に比べて、有意に血管新生及び軸索伸展が促進されていた。
結果を図17に示す。OD刺激のみでも、細胞のVEGF産生量は、OGD刺激のないPMNC投与群(norm)に比べて増加傾向にあったが、GD刺激のみの方がより高値であり、OGD刺激によりさらに高値を示し、OGD刺激のないPMNC投与群(norm)に対して有意にVEGF産生量が増大していた。一方、培地への分泌量は、OD刺激のみではコントロールに対して顕著な差は認められなかったのに対し、GD刺激のみでもコントロールに対して増加傾向が認められた。OGD刺激によりさらにVEGF分泌量は増大し、コントロールのみならず、OD刺激のみに対しても有意差を示した。
まず、神経内視鏡観察下で血腫を吸引除去した後、出血血管を同定し止血を行う。血腫腔を洗浄した後、破壊された白質を鉗子を用いて採取する。該白質の細胞を解離させた後、抗CD115抗体を用いたMACSもしくはFACSによりミクログリアを単離する。得られたミクログリアを18時間OGD刺激した後、1×106個のミクログリアをPBS中に懸濁し、患者に静脈内投与する。
以上のように、上記実施例では、ミクログリア又は単球を含む細胞群をOGD条件下で培養することによって、脳梗塞の治療、血管新生の促進、および軸索伸展の促進のための培養物を含む細胞製剤を製造することができた。また、OGDによって治療効果を高めることができた。
また、本発明の一態様に係る細胞製剤の製造方法は、培養物の洗浄などを行ってもよい。
図12は、細胞製剤の製造方法を示すフローチャートである。
Claims (13)
- 血管新生の促進または軸索伸展の促進のための細胞培養物の製造方法であって、ミクログリアおよび/または単球を含む細胞群を、低酸素濃度および/または低糖濃度の条件下で培養することにより前記培養物を生成することを含む、方法。
- 前記培養物が脳血管障害、虚血性心疾患または外傷性脳脊髄神経障害の治療用である、請求項1に記載の方法。
- 前記単球を含む細胞群は、末梢血細胞又はその細胞分画である、請求項1または2に記載の細胞製剤の製造方法。
- 前記単球を含む細胞群は、末梢血から採取した単核球を含む画分である、請求項1~3の何れか1項に記載の方法。
- 低酸素濃度は、1%未満の酸素濃度である、請求項1~4の何れか1項に記載の方法。
- 低糖濃度は、1.0g/L以下の糖濃度である、請求項1~5の何れか1項に記載の方法。
- 前記細胞群を低酸素濃度かつ低糖濃度の条件下で24時間未満培養する、請求項1~6の何れか1項に記載の方法。
- 前記培養物を洗浄した後、容器に封入することをさらに含む、請求項1~7の何れか1項に記載の方法。
- 脳血管障害、虚血性心疾患または外傷性脳脊髄神経障害の治療に十分な血管新生の促進および/または軸索伸展の促進能力を有するミクログリアおよび/または単球を含む、脳血管障害、虚血性心疾患または外傷性脳脊髄神経障害の治療のための細胞製剤。
- 請求項1~8の何れか1項に記載の方法により生成された培養物を含む、請求項9に記載の細胞製剤。
- 請求項1~8の何れか1項に記載の方法により生成された培養物を含む、血管新生の促進または軸索伸展の促進のための細胞製剤。
- ミクログリアおよび/または単球を含む細胞群を、低酸素濃度および/または低糖濃度の条件下で培養することにより生成された、治療上有効量のミクログリアおよび/または単球を含む培養物を、対象に投与することを含む、脳血管障害、虚血性心疾患または外傷性脳脊髄神経障害の治療方法。
- 脳血管障害、虚血性心疾患または外傷性脳脊髄神経障害の治療における使用のための、低酸素濃度および/または低糖濃度の条件下で培養されたミクログリアおよび/または単球。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197008890A KR20190042684A (ko) | 2016-08-30 | 2017-08-30 | 세포 제제 및 세포 제제의 제조 방법 |
EP17846600.9A EP3508207B1 (en) | 2016-08-30 | 2017-08-30 | Cell preparations cultivated under low oxygen and sugar conditions, and their uses in therapy. |
US16/329,039 US11311579B2 (en) | 2016-08-30 | 2017-08-30 | Cell preparation and method for producing cell preparation |
CN201780067469.9A CN109963573B (zh) | 2016-08-30 | 2017-08-30 | 细胞制剂和细胞制剂的制造方法 |
JP2018537363A JP7089283B2 (ja) | 2016-08-30 | 2017-08-30 | 細胞製剤および細胞製剤の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-168543 | 2016-08-30 | ||
JP2016168543 | 2016-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043596A1 true WO2018043596A1 (ja) | 2018-03-08 |
Family
ID=61300937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031246 WO2018043596A1 (ja) | 2016-08-30 | 2017-08-30 | 細胞製剤および細胞製剤の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11311579B2 (ja) |
EP (1) | EP3508207B1 (ja) |
JP (1) | JP7089283B2 (ja) |
KR (1) | KR20190042684A (ja) |
CN (1) | CN109963573B (ja) |
WO (1) | WO2018043596A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113243332A (zh) * | 2020-02-07 | 2021-08-13 | 上海市东方医院(同济大学附属东方医院) | 一种广泛脑区神经元树突发育障碍动物模型的制备与应用 |
WO2022210224A1 (ja) * | 2021-03-29 | 2022-10-06 | 国立大学法人新潟大学 | 細胞製剤の製造方法及びこれに用いる低酸素刺激用容器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202100006569A1 (it) * | 2021-03-18 | 2022-09-18 | Hemera S R L | Metodo per ottenere macrofagi rigenerativi educati dal tumore e loro uso nella medicina rigenerativa |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009034708A1 (ja) | 2007-09-11 | 2009-03-19 | Sapporo Medical University | 細胞増殖方法ならびに組織の修復および再生のための医薬 |
WO2010116665A1 (ja) * | 2009-04-07 | 2010-10-14 | 国立大学法人旭川医科大学 | 単核球由来の新規血管再生細胞群及びその分化誘導法 |
JP2015159895A (ja) | 2014-02-26 | 2015-09-07 | 株式会社Clio | 脳梗塞治療のための多能性幹細胞 |
WO2016068217A1 (ja) * | 2014-10-29 | 2016-05-06 | 国立大学法人山口大学 | 末梢血単核球又は末梢血単核球より分泌される因子を伴う線維芽細胞を含む細胞シート |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102641293B (zh) * | 2011-02-21 | 2016-02-24 | 杨子江 | 用于治疗缺血性脑血管疾病的制剂及其制备方法 |
-
2017
- 2017-08-30 JP JP2018537363A patent/JP7089283B2/ja active Active
- 2017-08-30 US US16/329,039 patent/US11311579B2/en active Active
- 2017-08-30 EP EP17846600.9A patent/EP3508207B1/en active Active
- 2017-08-30 CN CN201780067469.9A patent/CN109963573B/zh active Active
- 2017-08-30 KR KR1020197008890A patent/KR20190042684A/ko not_active Application Discontinuation
- 2017-08-30 WO PCT/JP2017/031246 patent/WO2018043596A1/ja active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009034708A1 (ja) | 2007-09-11 | 2009-03-19 | Sapporo Medical University | 細胞増殖方法ならびに組織の修復および再生のための医薬 |
WO2010116665A1 (ja) * | 2009-04-07 | 2010-10-14 | 国立大学法人旭川医科大学 | 単核球由来の新規血管再生細胞群及びその分化誘導法 |
JP2015159895A (ja) | 2014-02-26 | 2015-09-07 | 株式会社Clio | 脳梗塞治療のための多能性幹細胞 |
WO2016068217A1 (ja) * | 2014-10-29 | 2016-05-06 | 国立大学法人山口大学 | 末梢血単核球又は末梢血単核球より分泌される因子を伴う線維芽細胞を含む細胞シート |
Non-Patent Citations (9)
Title |
---|
GUIDA, E. ET AL.: "Influence of hypoxia and glucose deprivation on tumour necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor expression in human cultured monocytes", CELL PHYSIOL BIOCHEM, vol. 8, no. 1-2, 1998, pages 75 - 88, XP009513641, DOI: 10.1159/000016272 * |
HUANG, Y. C. ET AL.: "The good and bad microglia/macrophages: new hope in stroke therapeutics", ACTA PHARMACOLOGICA SINICA, vol. 34, no. 1, 2013 - 7, pages 6, XP055586858, ISSN: 1671.4083 * |
KUBO, MASAYUKI ET AL.: "2P-1072: Hypoxic preconditioning increases the angiogenic potency of peripheral blood mononuclear cells ", THE JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 80, no. 1, 2008, pages 2P-1072, XP009513792, ISSN: 0037-1017 * |
REDZIC, Z. B. ET AL.: "Differential effects of paracrine factors on the survival of cells of the neurovascular unit during oxygen glucose deprivation", INT J STROKE, vol. 10, no. 3, 2013, pages 407 - 414, XP009513788, ISSN: 1747-4930, DOI: 10.1111/ijs.12197 * |
SHIMOHATA, TAKAYOSHI ET AL.: "Multiple therapeutic effects of a growth factor, progranulin on ischemic brain injury, Cerebral Blood Flow and Metabolism", CEREBRAL BLOOD FLOW AND METABOLISM (JAPANESE JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM), vol. 27, 29 July 2016 (2016-07-29), pages 265 - 269, XP055586854, ISSN: 0915-9401 * |
SOMSAK WATTANANIT: "Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice", THE JOURNAL OF NEUROSCIENCE, vol. 36, no. 15, 13 April 2016 (2016-04-13), pages 4182 - 4195 |
WESLEY, U. V. ET AL.: "Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling", BRAIN RES., vol. 1496, 16 February 2013 (2013-02-16), pages 1 - 9, XP055586756, ISSN: 0006-8993 * |
YAMAZAKI, RYOU: "Macrophage in neuroinflammation - microglia and monocyte", INFLAMMATION AND IMMUNITY, vol. 23, no. 2, 2015, pages 15 - 20, XP009513789, ISSN: 0918-8371 * |
ZIEMKA -NALECZ M. ET AL.: "Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases", ACTA NEUROBIOL EXP. 2013, vol. 73, 2013, pages 130 - 142, XP055586746, ISSN: 0065-1400 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113243332A (zh) * | 2020-02-07 | 2021-08-13 | 上海市东方医院(同济大学附属东方医院) | 一种广泛脑区神经元树突发育障碍动物模型的制备与应用 |
WO2022210224A1 (ja) * | 2021-03-29 | 2022-10-06 | 国立大学法人新潟大学 | 細胞製剤の製造方法及びこれに用いる低酸素刺激用容器 |
Also Published As
Publication number | Publication date |
---|---|
JP7089283B2 (ja) | 2022-06-22 |
US20190216856A1 (en) | 2019-07-18 |
JPWO2018043596A1 (ja) | 2019-08-08 |
KR20190042684A (ko) | 2019-04-24 |
EP3508207A1 (en) | 2019-07-10 |
EP3508207B1 (en) | 2021-08-11 |
CN109963573B (zh) | 2022-08-30 |
CN109963573A (zh) | 2019-07-02 |
EP3508207A4 (en) | 2020-03-18 |
US11311579B2 (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6105846B2 (ja) | 虚血組織の細胞療法 | |
US8119398B2 (en) | Adipose-derived stem cells for tissue regeneration and wound healing | |
KR101405437B1 (ko) | 줄기세포 유래 미세소포를 포함하는 신경 생성 촉진용 조성물 | |
US20090214484A1 (en) | Stem cell therapy for the treatment of central nervous system disorders | |
EP2902483B1 (en) | Method for in vitro proliferation of cell population containing cells suitable for treatment of ischemic disease | |
US20200030380A1 (en) | Stimulation of therapeutic angiogenesis by t regulatory cells | |
WO2018043596A1 (ja) | 細胞製剤および細胞製剤の製造方法 | |
JP2024128116A (ja) | 細胞群及びその取得方法 | |
US7491389B2 (en) | Modulating angiogenesis | |
AU2015284180B2 (en) | Gonad-derived side population stem cells | |
KR101540698B1 (ko) | 허혈혈청을 포함하는 줄기세포 활성화 촉진용 조성물 및 줄기세포의 활성화 촉진 방법 | |
KR101423659B1 (ko) | 초기 분화된 양수 줄기세포를 포함하는 요실금 치료제 | |
JP2018087141A (ja) | 脱分化脂肪細胞を有効成分とする血管再生療法用組成物 | |
CN117241807A (zh) | 小体积卒中的细胞疗法和治疗方法 | |
CN113846052A (zh) | 内皮细胞及其前体细胞在治疗脱髓鞘疾病中的应用 | |
WO2005097170A1 (ja) | 血管新生促進剤および血管新生療法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018537363 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197008890 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017846600 Country of ref document: EP Effective date: 20190401 |