WO2010116424A1 - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
WO2010116424A1
WO2010116424A1 PCT/JP2009/003586 JP2009003586W WO2010116424A1 WO 2010116424 A1 WO2010116424 A1 WO 2010116424A1 JP 2009003586 W JP2009003586 W JP 2009003586W WO 2010116424 A1 WO2010116424 A1 WO 2010116424A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
gallium nitride
hydrogen
semiconductor layer
compound semiconductor
Prior art date
Application number
PCT/JP2009/003586
Other languages
English (en)
French (fr)
Inventor
加藤亮
藤金正樹
井上彰
山田篤志
横川俊哉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010502589A priority Critical patent/JPWO2010116424A1/ja
Priority to US13/061,544 priority patent/US8268706B2/en
Publication of WO2010116424A1 publication Critical patent/WO2010116424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a method for manufacturing a semiconductor element having a p-type gallium nitride compound semiconductor layer.
  • a nitride semiconductor having nitrogen (N) as a group V element is considered promising as a material for a short-wavelength light-emitting element because of its large band gap.
  • LEDs blue light-emitting diodes
  • FIG. 1 schematically shows a unit cell of GaN.
  • FIG. 2 shows four basic vectors a 1 , a 2 , a 3 , and c that are generally used to represent the surface of the wurtzite crystal structure in the 4-index notation (hexagonal crystal index).
  • the basic vector c extends in the [0001] direction, and this direction is called “c-axis”.
  • a plane perpendicular to the c-axis is called “c-plane” or “(0001) plane”.
  • c-axis” and “c-plane” may be referred to as “C-axis” and “C-plane”, respectively.
  • FIG. 3A schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate surface) of the nitride-based semiconductor whose surface is the c-plane.
  • the positions of the Ga atomic layer and the nitrogen atomic layer are slightly shifted in the c-axis direction, so that polarization (electrical polarization) is formed. For this reason, the “c-plane” is also called “polar plane”.
  • a piezoelectric field is generated along the c-axis direction in the InGaN quantum well in the active layer.
  • the position of electrons and holes in the active layer is displaced due to the quantum confinement Stark effect of carriers, so that the internal quantum efficiency is reduced.
  • An increase in threshold current is caused, and an LED causes an increase in power consumption and a decrease in light emission efficiency.
  • the piezo electric field is screened as the injected carrier density is increased, and the emission wavelength is also changed.
  • a substrate having a nonpolar plane, for example, a (10-10) plane called m-plane perpendicular to the [10-10] direction is used. It is being considered.
  • the m-plane is a plane parallel to the c-axis (basic vector c), and is orthogonal to the c-plane.
  • FIG. 3B schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate surface) of the nitride-based semiconductor whose surface is an m-plane.
  • the m-plane is a general term for the (10-10) plane, the (-1010) plane, the (1-100) plane, the (-1100) plane, the (01-10) plane, and the (0-110) plane.
  • the X plane is referred to as a “growth plane”, and a semiconductor layer formed by the X plane growth is referred to as an “X plane semiconductor layer”.
  • the p-type gallium nitride compound semiconductor layer is grown, for example, by supplying a source gas and a p-type dopant into the reaction chamber and performing metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • ammonia (NH 3 ) is generally supplied as a group V raw material
  • magnesium (Mg) capable of supplying positive carriers as holes is generally supplied as a p-type dopant.
  • a hydrogen atom separated from ammonia is combined with a magnesium atom and mixed into the crystal, and a phenomenon that magnesium is inactivated occurs, so that magnesium cannot serve as a p-type dopant. is there.
  • the resistivity of the p-type gallium nitride compound semiconductor layer increases.
  • annealing treatment heat treatment
  • This annealing process increases the number of element fabrication steps, increasing the complexity of the work and the production cost.
  • Patent Document 2 discloses a technique capable of obtaining the same effect as the annealing process by devising the cooling process of the substrate after crystal growth. According to this method, the annealing process becomes unnecessary, so that the complexity of device fabrication is eliminated. However, the activation of magnesium is insufficient as compared with the annealing process. Therefore, a resistivity lower than that of the annealing process cannot be achieved.
  • Patent Document 1 and Patent Document 2 are premised on the growth of a p-type gallium nitride compound semiconductor layer having a c-plane on the surface.
  • the phenomenon that magnesium is inactivated also occurs when m-plane growth is performed.
  • the present invention has been made to solve the above-described problems, and its purpose is to deactivate a p-type dopant in a p-type gallium nitride compound semiconductor layer having an m-plane on its surface without performing an annealing process. It is an object of the present invention to provide a semiconductor device having sufficient electrical characteristics by taking measures to prevent the above.
  • the method for producing a semiconductor device of the present invention comprises a step (a) of growing a p-type gallium nitride compound semiconductor layer having an m-plane as a growth surface in a heated atmosphere by metal organic vapor phase epitaxy, and the step (A) includes a step (b) of cooling the p-type gallium nitride compound semiconductor layer.
  • step (a) hydrogen is introduced into a reaction chamber in which the p-type gallium nitride compound semiconductor layer is grown.
  • step (b) the p-type gallium nitride compound semiconductor layer is cooled in a state where supply of the hydrogen to the reaction chamber is stopped.
  • the p-type dopant of the p-type gallium nitride compound semiconductor layer is magnesium, and in the step (a), the content of the magnesium contained in the p-type gallium nitride compound semiconductor layer is 4
  • the p-type gallium nitride compound semiconductor layer is grown so as to be not less than 0.0 ⁇ 10 18 cm ⁇ 3 and not more than 1.8 ⁇ 10 19 cm ⁇ 3 .
  • the magnesium content in the p-type gallium nitride compound semiconductor layer is 6.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 18 cm ⁇ 3.
  • the p-type gallium nitride compound semiconductor layer is grown so as to satisfy the following conditions.
  • step (b) cooling of the p-type gallium nitride compound semiconductor layer is started simultaneously with or after the supply of hydrogen is stopped.
  • the cooling of the p-type gallium nitride compound semiconductor layer is started before the supply of hydrogen is stopped.
  • the p-type gallium nitride compound semiconductor layer is heated to a temperature higher than 850 ° C., and in the step (b), cooling of the p-type gallium nitride compound semiconductor layer is started. Then, the supply of hydrogen is stopped in the step (b) until the temperature of the p-type gallium nitride compound semiconductor layer reaches 850 ° C.
  • a source gas containing ammonia is supplied to the reaction chamber.
  • the ammonia is supplied into the reaction chamber even after the supply of hydrogen is stopped. Supply.
  • step (a) nitrogen is supplied to the reaction chamber in addition to the source gas, and in the step (b), the supply of hydrogen is stopped after the supply of hydrogen is stopped.
  • the nitrogen supply rate is increased by a supply rate corresponding to the previous hydrogen supply rate.
  • the concentration of hydrogen existing in the reaction chamber in the cooling step can be made lower than before. .
  • hydrogen atoms bonded to the p-type dopant are easily desorbed from the p-type dopant in the cooling step.
  • the p-type dopant is activated and the resistivity of the p-type gallium nitride compound semiconductor layer is lowered.
  • the present invention since the low resistivity required for the semiconductor element can be realized without performing the annealing process, the complexity of the element fabrication can be alleviated and the manufacturing cost can be greatly reduced.
  • the annealing process can be omitted, the occurrence of surface roughness can be avoided. Such surface roughness does not occur in the c-plane p-type gallium nitride compound semiconductor layer that has been widely used conventionally. Therefore, the ability to omit the annealing treatment is particularly useful in the manufacturing process of a p-type gallium nitride compound semiconductor layer having an m-plane on the surface.
  • FIG. 1 It is a perspective view which shows typically the unit cell of GaN. It is a perspective view showing the basic vector a 1, a 2, a 3 , c wurtzite crystal structure.
  • A schematically shows a crystal structure in a cross section of a nitride-based semiconductor whose surface is c-plane (cross-section perpendicular to the substrate surface), and
  • (b) is a diagram of a nitride-based semiconductor whose surface is m-plane.
  • the crystal structure in a section (section perpendicular to the substrate surface) is shown typically. It is a graph which shows the result of having measured the resistivity of the p-type gallium nitride compound semiconductor layer of c plane growth and m plane growth.
  • (A)-(c) is the SEM image which image
  • MOCVD Metal Organic Chemical Vapor Deposition
  • FIG. 11B is an enlarged graph showing a region surrounded by a dotted frame in FIG. 6 is a graph showing the relationship between the hole concentration and the magnesium concentration of an m-plane p-GaN layer and a c-plane p-GaN layer that have been cooled with hydrogen completely removed.
  • (A) shows the resistivity when the m-plane p-GaN layer and the c-plane p-GaN layer formed by continuously supplying hydrogen in the cooling step after crystal growth are subjected to an annealing process as in the conventional case. It is a graph.
  • FIG. 13B is a graph showing the relationship between the magnesium concentration of the sample measured in FIG. 13A and the hole concentration measured after the annealing treatment.
  • FIG. 4 is a graph showing the results of measuring the resistivity of the p-type GaN layer with c-plane growth and m-plane growth.
  • the p-type GaN layer a layer that was grown by the same method as before and was not subjected to annealing treatment was used.
  • the horizontal axis indicates the magnesium concentration
  • the vertical axis indicates the resistivity.
  • the Mg concentration of each sample is 4.3 ⁇ 10 18 cm ⁇ 3 , 7.4 ⁇ 10 18 cm ⁇ 3 , 1.3 ⁇ 10 19 cm ⁇ 3 , 2.5 ⁇ 10 19 cm ⁇ in the m-plane semiconductor layer. 3 and 2.6 ⁇ 10 19 cm ⁇ 3 for the c-plane semiconductor layer.
  • the resistivity ( ⁇ ) of the m-plane semiconductor layer and the resistivity ( ⁇ ) of the c-plane semiconductor layer are both 1 ⁇ 10 7 ⁇ cm or more, and these semiconductor layers are almost insulators. I understand.
  • FIGS. 5A to 5C are SEM photographs taken of the surface of the p-type GaN layer produced by m-plane growth.
  • the p-type GaN layer from which the photographs of FIGS. 5A to 5C were taken was subjected to an annealing process at 830 ° C. for 20 minutes in a nitrogen atmosphere.
  • FIG. 5B is a photograph in which a part of the region photographed in the photograph of FIG.
  • FIG. 5A is photographed at a higher magnification than FIG. 5A.
  • FIG. 5C is a photograph of FIG. It is the photograph which image
  • the p-type GaN layer has surface roughness due to the formation of a large number of minute recesses or protrusions 200 on the surface.
  • surface roughness as shown in FIGS. 5A to 5C occurs, a problem such as nonuniform injection current density occurs. Such surface roughness is considered to occur in the same manner even when a part of Ga is substituted with Al or In.
  • the inventor of the present application also observed the surface after the annealing treatment for the p-type GaN layer produced by c-plane growth.
  • the surface roughness as shown in FIGS. 5A to 5C did not occur.
  • the surface roughness caused by the annealing treatment is a phenomenon peculiar to the p-type gallium nitride compound semiconductor layer manufactured by m-plane growth.
  • a p-type gallium nitride compound semiconductor layer produced by m-plane growth has a problem peculiar to the m-plane when the annealing treatment method is employed to achieve low resistance.
  • an embodiment of a semiconductor device including a p-type gallium nitride compound semiconductor layer produced by m-plane growth will be specifically described.
  • FIG. 6 is a flowchart showing manufacturing steps in the embodiment and the conventional art.
  • the manufacturing process of the present embodiment is indicated by a solid line arrow, and the manufacturing process conventionally performed conventionally is indicated by a dotted line arrow.
  • step S11 the substrate is cleaned in step S11, and the thermal cleaning is performed in step S12.
  • step S13 in a heated atmosphere, a semiconductor layer having an m-plane growth surface is crystal-grown on the substrate by metal organic vapor phase epitaxy.
  • the actual m-plane need not be a plane completely parallel to the m-plane, and may be inclined by a slight angle (0 to ⁇ 1 °) from the m-plane.
  • a semiconductor stacked structure including an n-type gallium nitride compound semiconductor layer, a light-emitting layer, and a p-type gallium nitride compound semiconductor layer is formed.
  • step S13 crystal growth is performed while supplying a source gas, a carrier gas, and, if necessary, a dopant gas into the reaction chamber.
  • a source gas e.g., trimethylgallium (TMG) or triethylgallium (TEG), which is a gallium source gas, and ammonia, which is a nitrogen source gas
  • nitrogen (N 2 ) and hydrogen (H 2 ) are supplied as the carrier gas.
  • step S14 the substrate is cooled in step S14.
  • the conventional cooling process is performed in a state in which the supply of hydrogen performed from step S13 is continued.
  • the cooling process of this embodiment is performed in a state where the supply of hydrogen to the reaction chamber is stopped.
  • the supply of TMG (or TEG) which is a gallium source gas
  • ammonia which is a nitrogen source gas, is used to prevent nitrogen from escaping from the p-type gallium nitride compound semiconductor layer. Will continue to be supplied.
  • step S15 When the cooling process is completed, the substrate is taken out of the reaction chamber in step S15, and electrodes and the like are manufactured in step S17.
  • a p-side electrode is formed on the p-type gallium nitride compound semiconductor layer, and an n-side electrode is formed on the n-type gallium nitride compound semiconductor layer.
  • the semiconductor element of this embodiment is formed.
  • the concentration of hydrogen present in the reaction chamber in the cooling step can be made lower than before.
  • hydrogen atoms bonded to the p-type dopant are easily desorbed from the p-type dopant in the cooling step.
  • the p-type dopant is activated and the resistivity of the p-type gallium nitride compound semiconductor layer is lowered.
  • step S16 there has been a case where an annealing process for desorbing hydrogen from the p-type dopant has been performed.
  • the annealing process is not performed, and the low necessary for the semiconductor element is required. Resistivity can be realized. Thereby, the complexity of device fabrication can be eased, and the manufacturing cost can be greatly reduced.
  • the annealing process can be omitted, the occurrence of surface roughness can be avoided. Such surface roughness does not occur in the c-plane p-type gallium nitride compound semiconductor layer that has been widely used conventionally. Therefore, the ability to omit the annealing treatment is particularly useful in the manufacturing process of a p-type gallium nitride compound semiconductor layer having an m-plane on the surface.
  • hydrogen is generally used as a carrier gas for forming a high-quality gallium nitride compound semiconductor layer. Therefore, it is usual to perform cooling while continuing the supply of hydrogen even after the growth of the p-type gallium nitride compound semiconductor layer is completed.
  • hydrogen atoms bonded to the p-type dopant can be separated in the cooling step.
  • FIG. 7 is a cross-sectional view showing a configuration example of the semiconductor element 100 formed by the manufacturing method of the embodiment.
  • the semiconductor element 100 includes a crystal growth substrate 101, an n-GaN layer 102, a GaN / InGaN multiple quantum well light emitting layer 105, and a p-GaN layer 106 formed on the crystal growth substrate 101. And a p-side electrode 108 formed on the semiconductor laminated structure 110, and an n-side electrode 107 formed on a part of the n-GaN layer 102.
  • the GaN / InGaN multiple quantum well light-emitting layer 105 has a structure in which three or more GaN barrier layers 103 and In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 are alternately arranged.
  • the GaN / InGaN multiple quantum well light emitting layer 105 and the p-GaN layer 106 are formed only on a part of the n-GaN layer 102, and the GaN / InGaN multiple quantum in the n-GaN layer 102.
  • An n-side electrode 107 is formed in a portion where the well light emitting layer 105 and the p-GaN layer 106 are not formed.
  • FIG. 8 is a schematic cross-sectional view showing the MOCVD apparatus used in this embodiment.
  • FIG. 9 shows changes in the substrate temperature in the manufacturing method of the present embodiment
  • FIG. 10 shows the types of gases supplied to the reaction chamber in each step.
  • a circle ( ⁇ ) is added to the column of the gas supplied into the reaction chamber in each step.
  • a substrate on which (10-10) m-plane gallium nitride (GaN) can be grown is used.
  • a gallium nitride free-standing substrate having an m-plane as the surface is most desirable, but a silicon carbide (SiC) having a lattice constant of 4H, 6H and having an m-plane as the surface. It may be.
  • SiC silicon carbide
  • sapphire with the m-plane as the surface may be used.
  • an appropriate gap is formed between the crystal growth substrate 101 and the gallium nitride compound semiconductor layer formed thereon. It is preferable to insert an intermediate layer or a buffer layer.
  • the crystal growth substrate 101 is cleaned.
  • the crystal growth substrate 101 is washed with a buffered hydrofluoric acid solution (BHF), and then sufficiently washed with water and dried.
  • BHF buffered hydrofluoric acid solution
  • the crystal growth substrate 101 after the cleaning is placed in the reaction chamber 1 of the MOCVD apparatus shown in FIG. 8 so as not to be exposed to air as much as possible.
  • a quartz tray 3 that supports the crystal growth substrate 2 and a carbon susceptor 4 on which the quartz tray 3 is placed are provided inside the reaction chamber 1.
  • a thermocouple (not shown) is inserted inside the carbon susceptor 4, and the temperature of the carbon susceptor 4 is actually measured by this thermocouple.
  • the carbon susceptor 4 is heated by a RF induction heating method from a coil (not shown) and functions as a heat source.
  • the crystal growth substrate 2 is heated by heat conduction from the carbon susceptor 4.
  • the “substrate temperature” in this specification is a temperature measured by a thermocouple. This temperature is the temperature of the carbon susceptor 4 that is a direct heat source for the crystal growth substrate 2.
  • the temperature measured by the thermocouple is considered to be approximately equal to the temperature of the crystal growth substrate 2.
  • the reaction chamber 1 is connected to a gas supply device 5, and various gases (source gas, carrier gas, dopant gas) are supplied from the gas supply device 5 into the reaction chamber 1.
  • a gas exhaust device 6 is connected to the reaction chamber 1, and the reaction chamber 1 is exhausted by the gas exhaust device (rotary pump) 6.
  • step S ⁇ b> 12 of FIG. 6 thermal cleaning is performed on the crystal growth substrate 101.
  • N 2 nitrogen
  • ammonia at a flow rate of 4 to 10 slm as a group V raw material.
  • the substrate surface is heated to 850 ° C., thereby cleaning the substrate surface.
  • step S13 of FIG. 6 in the reaction chamber 1, the crystal growth of the gallium nitride compound semiconductor layer is performed by the MOCVD method.
  • the substrate is heated to about 1100 ° C. while supplying the source gas, the n-type dopant, and the carrier gas into the reaction chamber 1, whereby the n-GaN layer 102 having a thickness of 1 to 4 ⁇ m.
  • the source gas TMG or TEG with a flow rate of 10 to 40 sccm is supplied as a group III source, and ammonia with a flow rate of 4 to 10 slm is supplied as a group V source.
  • Silane with a flow rate of 10 to 30 sccm is supplied as a raw material for supplying Si of the n-type dopant, and hydrogen with a flow rate of 4 to 10 slm and nitrogen with a flow rate of 3 to 8 slm are supplied as carrier gases.
  • the temperature of the substrate is cooled to less than 800 ° C. in order to form the GaN / InGaN multiple quantum well light emitting layer 105.
  • the supply of silane and TMG or TEG
  • the supply of ammonia at a flow rate of 15 to 20 slm is continued.
  • the supply of hydrogen in the carrier gas is stopped, and only nitrogen having a flow rate of 15 to 20 slm is supplied as the carrier gas.
  • the supply of hydrogen is stopped here, as shown in FIG. 10, the supply of hydrogen is continued until the formation of the GaN barrier layer 103 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 is completed. Does not resume.
  • the reason for stopping the supply of hydrogen is to increase the amount of In taken into the layer in the step of forming the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104. In this process, the supply of hydrogen is conventionally stopped.
  • TMG which is a Ga source gas
  • TMI trimethylindium
  • the reaction chamber 1 is supplied with nitrogen at a flow rate of 15-20 slm, ammonia at a flow rate of 15-20 slm, TMG (or TEG) at a flow rate of 4-10 sccm, and TMI at a flow rate of 300-600 sccm.
  • the supply of hydrogen is stopped.
  • the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 is typically 5 nm or more, and the thickness of the GaN barrier layer 103 is In x Ga 1-x N ( 0 ⁇ x ⁇ 1) A value corresponding to the thickness of the well layer 104 is preferably set. For example, when the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 is 9 nm, the thickness of the GaN barrier layer 103 is 15 to 30 nm.
  • GaN barrier layers 103 and In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 are alternately deposited.
  • a GaN / InGaN multiple quantum well light-emitting layer 105 serving as a light-emitting portion is formed, in which the GaN barrier layer 103 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 are stacked for three periods or more.
  • the reason why the number of periods is three or more is that the larger the number of In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104, the larger the volume capable of capturing carriers contributing to luminescence recombination, and This is because efficiency increases.
  • the thickness of the InGaN well layer constituting the light emitting portion in conventional (0001) c-plane growth, in order to reduce the influence of the quantum confined Stark effect, it was necessary to reduce the thickness of the InGaN well layer constituting the light emitting portion to a certain extent (typically 5 nm or less).
  • the nonpolar plane including the m plane when used as the surface, the quantum confined Stark effect does not occur. Therefore, in the case of m-plane growth, it is not necessary to reduce the thickness of the InGaN well layer 104.
  • Increasing the thickness of the InGaN well layer 104 increases the volume capable of capturing carriers contributing to luminescence recombination. Therefore, in the present embodiment, the thickness of the InGaN well layer 104 is preferably 5 nm or more.
  • the thickness is greater than 20 nm, it is not preferable in terms of non-uniformity of the In composition, and thus the thickness is preferably 20 nm or less.
  • the supply of TMI is stopped and the supply of hydrogen is resumed.
  • nitrogen having a flow rate of 3 to 8 slm and hydrogen having a flow rate of 4 to 10 slm are supplied into the reaction chamber 1 as carrier gases.
  • the growth temperature is raised to 1000 ° C., and Cp 2 Mg (biscyclopentadidi) is used as a raw material for TMG (or TEG) and ammonia, which are source gases, and magnesium as a p-type dopant.
  • the p-GaN layer 106 By supplying (enyl magnesium), the p-GaN layer 106 is formed.
  • the concentration of magnesium contained in the p-GaN layer 106 is 4.0 ⁇ 10 18 cm ⁇ 3 or more and 1.8 ⁇ 10 19 cm ⁇ 3 or less, more preferably 6.0 ⁇ 10 18 cm ⁇ .
  • Various conditions such as the Cp 2 Mg supply amount and the TMG (or TEG) supply amount are adjusted so as to be 3 or more and 9.0 ⁇ 10 18 cm ⁇ 3 or less.
  • the Cp 2 Mg supply amount may be controlled after setting the growth temperature to around 1000 ° C. and keeping the TMG (or TEG) supply amount constant.
  • TMG (or TEG) may be supplied at a flow rate of 5 to 10 sccm, ammonia at a flow rate of 4 to 10 slm, and Cp 2 Mg at a flow rate of 10 to 100 sccm.
  • magnesium having a concentration higher than 1.8 ⁇ 10 19 cm ⁇ 3 may be included in the depth of about 20 nm from the surface (the outermost surface region having a thickness of about 20 nm).
  • the magnesium concentration of the p-GaN layer 106 excluding the outermost surface region is 4.0 ⁇ 10 18 cm ⁇ 3 or more and 1.8 ⁇ 10 19 cm ⁇ 3 or less, more preferably 6.0 ⁇ 10. It may be 18 cm ⁇ 3 or more and 9.0 ⁇ 10 18 cm ⁇ 3 or less.
  • step S14 the substrate is cooled. Specifically, after the p-GaN layer 106 is formed, by controlling the gas supply device 5 shown in FIG. 8, TMG (or TEG) that is a Ga material, Cp 2 Mg that is a magnesium material, carrier The supply of hydrogen as a gas is stopped (FIG. 10). At the same time, hydrogen is removed from the atmosphere in the reaction chamber 1 by the gas exhaust device 6 shown in FIG. After sufficiently removing hydrogen, cooling of the substrate is started. In the substrate cooling step, in order to efficiently desorb H atoms in the p-GaN layer 106 from magnesium, it is important to completely remove hydrogen from the atmosphere in the reaction chamber 1 as much as possible. .
  • the MOCVD apparatus shown in FIG. 8 is provided with a heat source (carbon susceptor 4).
  • a heat source carbon susceptor 4
  • the substrate is heated in order to keep the substrate temperature (temperature measured by a thermocouple) constant.
  • the timing for starting the cooling of the substrate in step S14 refers to the time when the heating of the substrate is stopped, or the time when the amount of heat applied to the substrate is less than that in step S13 and the temperature of the substrate is lowered.
  • the rotary pump is always operated in the downstream gas exhaust device 6 to exhaust the reaction chamber 1.
  • the inside of the reaction chamber 1 is maintained at a constant pressure.
  • the hydrogen remaining in the reaction chamber 1 is also exhausted to the outside in a very short time.
  • the cooling of the substrate may be started at the same time as or after the supply of hydrogen from the gas supply device 5 to the reaction chamber 1 is stopped. Alternatively, the supply of hydrogen may be stopped until the substrate temperature reaches 850 ° C. after starting the cooling of the substrate.
  • the effect of the present invention can be obtained.
  • the gas flowing into the reaction chamber 1 is only nitrogen and ammonia.
  • Nitrogen is preferably supplied in place of the stopped hydrogen until the temperature of the substrate drops below 900 ° C. at the highest.
  • the supply rate of nitrogen is increased by the supply rate corresponding to the supply rate of hydrogen before the supply of hydrogen is stopped. For example, if 5 slm of hydrogen is supplied in step S13, the supply of hydrogen is stopped in step S14 and the flow rate of nitrogen is increased by 5 slm.
  • the temperature at which the supply of ammonia is stopped is not limited to 400 ° C., and may be any temperature that can prevent nitrogen from being released from the p-GaN layer 106.
  • the supply of ammonia may be stopped at a temperature between 600 ° C. and 800 ° C.
  • step S16 of FIG. 6 it is necessary to perform the annealing process of step S16 of FIG. 6 to activate the p-type dopant of the p-GaN layer 106.
  • the concentration of hydrogen present in the reaction chamber in the cooling process can be made lower than before. Accordingly, hydrogen atoms bonded to magnesium when forming the p-GaN layer 106 are easily desorbed from magnesium in the cooling process. As a result, magnesium is activated and the resistivity of the p-GaN layer 106 is lowered. Therefore, the annealing process for activating magnesium can be omitted.
  • Such hydrogen behavior is presumed to occur in the same manner even when part of Ga is substituted with Al or In in the p-GaN layer 106.
  • step S17 in FIG. 6 Only predetermined regions of the p-GaN layer 106 and the GaN / InGaN multiple quantum well light-emitting layer 105 are removed using a technique such as photolithography and etching, and a part of the n-GaN layer 102 is exposed. In the region where the n-GaN layer 102 is exposed, an n-side electrode 107 made of Ti / Al or the like is formed. A p-side electrode 108 is formed in a predetermined region on the p-GaN layer 106.
  • an electrode made of any one of Mg / Pt, Zn / Pt, Mg / Ag, and Zn / Ag may be formed, or an electrode made of Ni / Au may be formed.
  • the light emitting element 100 that emits light at a desired wavelength can be manufactured.
  • FIG. 11A is a graph showing the relationship between the magnesium concentration and the resistivity in the p-GaN layer.
  • the resistivity of the m-plane p-GaN layer produced by the method of the present embodiment is indicated by a black circle ( ⁇ ).
  • the m-plane semiconductor layer has Mg concentrations of 4.3 ⁇ 10 18 cm ⁇ 3 , 7.4 ⁇ 10 18 cm ⁇ 3 , 1.3 ⁇ 10 19 cm ⁇ 3 , and 2.5 ⁇ 10 19 cm ⁇ 3. A sample having was used.
  • the m-plane p-GaN layer according to the present embodiment completely removes hydrogen from the reaction chamber after crystal growth at 1000 ° C., and supplies nitrogen to the reaction chamber instead of stopped hydrogen, while the substrate temperature is 850 ° C. It was formed by cooling the substrate until. The cooling time from the growth temperature of the m-plane p-GaN layer to 850 ° C. was about 90 seconds. In addition, after the temperature fell to 850 ° C., the supply of nitrogen added in place of the stopped hydrogen was stopped, and cooling was continued. Ammonia continued to be fed until the temperature dropped below approximately 400 ° C. No additional annealing is performed on the substrate removed from the reaction chamber.
  • the resistivity of the c-plane p-GaN layer that has been cooled by completely removing hydrogen from the reaction chamber is indicated by a black triangle ( ⁇ ), as in this embodiment.
  • This c-plane p-GaN layer has a Mg concentration of 2.6 ⁇ 10 19 cm ⁇ 3 and is the same as the m-plane p-GaN layer of the present embodiment except that the growth surface is the c-plane. Formed.
  • the resistivity of the p-GaN layer when hydrogen is continuously supplied to the cooling process after crystal growth is represented by a white circle ( ⁇ ) for m-plane growth and a white triangle (c) for c-plane growth. ( ⁇ ).
  • This m-plane p-GaN layer was formed by the same method as the m-plane p-GaN layer of this embodiment except that hydrogen was continuously supplied in the cooling step.
  • the c-plane p-GaN layer was formed by the same method as the m-plane p-GaN layer of the present embodiment except that the growth plane was the c-plane and that hydrogen was continuously supplied in the cooling step.
  • the resistivity ( ⁇ ) of the m-plane p-GaN layer and the resistivity ( ⁇ ) of the c-plane p-GaN layer when hydrogen is supplied both exceed 1 ⁇ 10 7 ⁇ cm, and these are mostly insulators. It is.
  • the resistivity of the m-plane p-GaN layer and the c-plane p-GaN layer from which hydrogen is completely eliminated during cooling is significantly lower than that of the conventional one.
  • FIG. 11B is an enlarged view of a region surrounded by a dotted frame in FIG.
  • a resistivity of about 11 ⁇ cm was obtained in the c-plane p-GaN layer ( ⁇ ) formed by completely eliminating hydrogen during cooling.
  • a resistivity of 2.0 ⁇ cm or less cannot be achieved in the c-plane grown p-GaN layer without performing annealing treatment at any value of the magnesium concentration.
  • the m-plane p-GaN layer ( ⁇ ) formed by completely excluding hydrogen during cooling has a lower resistivity than that of the c-plane p-GaN layer.
  • the p-GaN layer has a resistivity of 2.0 ⁇ cm or less.
  • the impurity concentration showing a resistivity of 2.0 ⁇ cm or less is 4.0 ⁇ 10 18 cm ⁇ 3 or more and 1.8 ⁇ 10 19 cm ⁇ 3 or less.
  • the impurity concentration is in the range of 6.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 18 cm ⁇ 3 or less, a resistivity as low as about 1.5 ⁇ cm can be achieved.
  • a low resistivity preferable as a light emitting element can be obtained without performing additional annealing treatment.
  • FIG. 12 is a graph showing the relationship between the hole concentration and the magnesium concentration of the m-plane p-GaN layer and the c-plane p-GaN layer that have been cooled with hydrogen completely removed.
  • the Mg concentration of each sample is 4.3 ⁇ 10 18 cm ⁇ 3 , 7.4 ⁇ 10 18 cm ⁇ 3 , 1.3 ⁇ 10 19 cm ⁇ 3 , 2.5 ⁇ 10 19 cm ⁇ in the m-plane semiconductor layer. 3 and 2.6 ⁇ 10 19 cm ⁇ 3 for the c-plane semiconductor layer.
  • This measurement consists of a substrate, an undoped GaN layer having a thickness of 1 ⁇ m located on the substrate, and a p-GaN layer having a thickness of 0.7 to 1 ⁇ m located on the undoped GaN layer (m-plane p-GaN layer or c-plane p-GaN layer).
  • the m-plane p-GaN layer and the c-plane p-GaN layer were formed under the same conditions as those obtained by removing hydrogen from the samples measured for the results shown in FIGS. 11 (a) and 11 (b). As shown in FIG.
  • the m-plane p-GaN layer has a higher hole concentration and a higher activation rate of magnesium than the c-plane p-GaN layer.
  • the m-plane p-GaN layer has a lower resistivity in the layer than the c-plane p-GaN layer, and the results shown in FIGS. 11A and 11B are obtained.
  • FIG. 13 (a) shows the electrical characteristics when the p-GaN layer that has continued to supply hydrogen in the cooling step after crystal growth is annealed as usual.
  • FIG. 13A shows the resistivity of the m-plane p-GaN layer and the c-plane p-GaN layer.
  • the Mg concentration of each sample is 4.3 ⁇ 10 18 cm ⁇ 3 , 7.4 ⁇ 10 18 cm ⁇ 3 , 1.3 ⁇ 10 19 cm ⁇ 3 , 2.5 ⁇ 10 19 cm ⁇ in the m-plane semiconductor layer. 3 , and in the c-plane semiconductor layer, they are 1.3 ⁇ 10 19 cm ⁇ 3 , 2.6 ⁇ 10 19 cm ⁇ 3 , and 5.0 ⁇ 10 19 cm ⁇ 3 .
  • As the annealing treatment an annealing treatment apparatus different from the crystal growth apparatus was used for the substrate taken out from the reaction chamber, and the p-GaN layer was heated at 830 ° C. for 20 minutes in a
  • the m-plane p-GaN layer has a lower resistivity than the c-plane p-GaN layer even when the annealing treatment is performed.
  • the surface roughness of the m-plane p-GaN layer on which the measurement of FIG. 13A is performed partially generates the minute surface roughness as seen in FIGS. 5A to 5C.
  • Such minute surface roughness did not occur before the annealing treatment, it can be seen that this surface roughness was caused by the annealing treatment.
  • surface roughness did not occur in the c-plane p-GaN layer after the annealing treatment.
  • FIG. 13B shows the relationship between the magnesium concentration of the sample measured in FIG. 13A and the hole concentration measured after the annealing treatment.
  • the hole concentration Approaches a certain value (1 ⁇ 10 18 cm ⁇ 3 ) and saturates.
  • the magnesium concentration is less than about 2 ⁇ 10 19 cm ⁇ 3 (that is, when the hole concentration is not saturated)
  • the m-plane p-GaN layer is more c-plane p-GaN layer. Higher hole concentration.
  • the m-plane p-GaN layer has higher activation efficiency than the c-plane p-GaN layer.
  • the hole concentration of the c-plane p-GaN layer is about 3.5 ⁇ 10 17 cm ⁇ 3
  • the m-plane p-GaN layer is about 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the resistivity is minimum when the magnesium concentration is approximately 1.5 ⁇ 10 19 cm ⁇ 3
  • the c-plane p ⁇ In the GaN layer the resistivity is minimum when the magnesium concentration is approximately 2.5 ⁇ 10 19 cm ⁇ 3 .
  • the magnesium concentration when the resistivity is minimum in the m-plane p-GaN layer is approximately half the value of the magnesium concentration when the resistivity is minimum in the c-plane p-GaN layer.
  • the c-plane p-GaN layer has a relatively narrow magnesium concentration range where the desired resistivity (2.0 ⁇ cm or less) is achieved, whereas the m-plane p-GaN layer has a desirable resistivity (2.0 ⁇ cm or less).
  • the resistivity when the magnesium concentration is about 4.0 ⁇ 10 18 cm ⁇ 3 is also lower than 1.5 ⁇ cm.
  • the magnesium concentration is approximately 1.5 ⁇ 10 19 cm ⁇ .
  • the resistivity at 3 is already higher than 2.0 ⁇ cm. As the magnesium concentration decreases, the resistivity increases further. Thus, it can be seen that the magnesium concentration that can achieve the desired resistivity in the m-plane p-GaN layer is significantly lower than that in the c-plane p-GaN layer.
  • the resistivity when the magnesium is activated by the annealing treatment (FIG. 13A) and the resistivity when the magnesium is activated by the method of the present embodiment (FIG. 11B) are compared.
  • the density is approximately 1.5 ⁇ 10 19 cm ⁇ 3 in FIG. 13A, whereas it is approximately 7.0 ⁇ 10 18 cm ⁇ 3 in FIG. It is.
  • the magnesium concentration range in which the resistivity is lowered is shifted to a lower concentration side than when magnesium is activated by annealing treatment. It can be said that.
  • the hole concentration decreases as the magnesium concentration decreases, but the low hole concentration is compensated by the high mobility of holes.
  • the magnesium concentration exceeds 1.8 ⁇ 10 19 cm ⁇ 3 , the decrease in hole mobility is large, so that the resistivity is larger than 2.0 ⁇ cm as shown in FIG. turn into.
  • the magnesium concentration in the p-GaN layer is lowered, there are advantages such that reabsorption of light generated in the light emitting layer is less likely to occur and magnesium is less likely to diffuse from the p-GaN layer to the active layer.
  • the electrical characteristics (resistivity) of the m-plane p-GaN layer according to the method of the present embodiment shows that the c-plane p-GaN layer subjected to the conventional annealing treatment is used. Slightly inferior to the electrical properties of However, the m-plane p-GaN layer has characteristics that the activation efficiency is several times better than that of the c-plane p-GaN layer and that the magnesium concentration range in which low resistivity can be achieved is wide. By utilizing these two characteristics, a sufficiently low resistance as a light emitting element can be obtained in the m-plane p-GaN layer.
  • Patent Document 2 Japanese Patent No. 4103309 discloses a technique for activating a p-type gallium nitride compound semiconductor layer by controlling the hydrogen concentration in a reaction chamber during cooling of a substrate.
  • the technique disclosed in Patent Document 2 is premised on the growth of a c-plane p-GaN layer, and the concentration of positive holes that are positive carriers is sufficiently increased as compared with an m-plane p-GaN layer. Is difficult.
  • the present inventor stopped supplying hydrogen in the process of cooling the p-type gallium nitride compound semiconductor layer with the m-plane as the growth surface, and is comparable to the conventional annealing treatment. It has been found that a low resistivity can be obtained. This resistivity is obtained when the magnesium concentration in the crystal is in the range of 4.0 ⁇ 10 18 cm ⁇ 3 to 1.8 ⁇ 10 19 cm ⁇ 3 , more preferably 6.0 ⁇ 10 18 cm ⁇ 3 to 9. A particularly low value is obtained by adjusting to the range of 0 ⁇ 10 18 cm ⁇ 3 . Thereby, the annealing process can be omitted. Since the annealing treatment can be omitted, it is possible to avoid the occurrence of surface roughness in the m-plane p-type gallium nitride compound semiconductor layer.
  • Zn, Be etc. may be doped as p-type dopants other than Mg, for example.
  • the effects of the present invention can be widely applied to the manufacture of light emitting elements (semiconductor lasers) other than LEDs having a p-type gallium nitride compound semiconductor layer, and devices other than light emitting elements (for example, transistors and light receiving elements).
  • the present invention can be particularly suitably applied to a light-emitting element because an m-plane p-type gallium nitride compound semiconductor layer that does not generate a quantum confined Stark effect can achieve a low resistivity without causing surface roughness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

 本発明の半導体素子の製造方法は、加熱された雰囲気中で、m面を成長面とするp型窒化ガリウム系化合物半導体層を有機金属気相成長法によって成長させる成長工程(ステップS13)と、前記成長工程の後、p型窒化ガリウム系化合物半導体層を冷却する冷却工程(ステップS14)とを含み、成長工程では、p型窒化ガリウム系化合物半導体層を成長させる反応室内に水素を供給し、冷却工程では、反応室への水素の供給を停止した状態でp型窒化ガリウム系化合物半導体層を冷却する。

Description

半導体素子の製造方法
 本発明は、p型窒化ガリウム系化合物半導体層を有する半導体素子の製造方法に関する。
 V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体:AlxGayInzN(0≦x,y,z≦1、x+y+z=1))の研究は盛んに行なわれ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている。
 GaN系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlxGayInzN(0≦x,y,z≦1、x+y+z=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
 図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。
 GaN系半導体を用いて半導体素子を作製する場合、GaN系半導体結晶を成長させる基板として、c面基板すなわち(0001)面を表面に有する基板が使用される。図3(a)に、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。c面においてはGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、分極(Electrical Polarization)が形成される。このため、「c面」は「極性面」とも呼ばれている。分極の結果、活性層におけるInGaNの量子井戸にはc軸方向に沿ってピエゾ電界が発生する。このようなピエゾ電界が活性層に発生すると、キャリアの量子閉じ込めシュタルク効果により、活性層内における電子およびホールの分布に位置ずれが生じるため、内部量子効率が低下し、半導体レーザであれば、しきい値電流の増大が引き起こされ、LEDであれば、消費電力の増大や発光効率の低下が引き起こされる。また、注入キャリア密度の上昇と共にピエゾ電界のスクリーニングが起こり、発光波長の変化も生じる。
 そこで、これらの課題を解決するため、非極性面、例えば[10-10]方向に垂直な、m面と呼ばれる(10-10)面を表面に有する基板(m面GaN系基板)を使用することが検討されている。m面は、図2に示されるように、c軸(基本ベクトルc)に平行な面であり、c面と直交している。図3(b)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。m面においてはGa原子と窒素原子は同一原子面上に存在するため、m面に垂直な方向に自発分極は発生しない。その結果、m面に垂直な方向に半導体積層構造を形成すれば、活性層にピエゾ電界も発生しないため、上記課題を解決することができる。m面は、(10-10)面、(-1010)面、(1-100)面、(-1100)面、(01-10)面、(0-110)面の総称である。
 なお、本明細書では、六方晶ウルツ鉱構造のX面(X=c、m)に垂直な方向にエピタキシャル成長が生じることを「X面成長」と表現する。X面成長において、X面を「成長面」と称し、X面成長によって形成された半導体の層を「X面半導体層」と称する。
特許第3180710号公報 特許第4103309号公報
 p型窒化ガリウム系化合物半導体層は、例えば、原料ガスおよびp型ドーパントを反応室内に供給して有機金属気相成長法(MOCVD)を行なうことによって成長される。成長工程では、V族原料としてアンモニア(NH3)が、p型ドーパントとして、正のキャリアである正孔(ホール)を供出することができるマグネシウム(Mg)が一般的に供給される。しかしながら、成長工程において、アンモニアから離脱した水素原子がマグネシウム原子と結合して結晶内部に混入し、マグネシウムが不活性化される現象が起こり、マグネシウムがp型ドーパントとしての役割を果たせなくなるという問題がある。このようなマグネシウムの不活性化が起こると、p型窒化ガリウム系化合物半導体層の抵抗率が高くなってしまう。
 このため、特許文献1に開示されるように、結晶内部のマグネシウム原子と水素原子の結合を分離させ、水素原子を結晶の外へ脱離させる目的で、結晶成長後にアニーリング処理(熱処理)を追加する場合があった。このアニーリング処理によって、素子作製の工程数が増し、作業の煩雑さと生産コストが増大していた。
 特許文献2は、結晶成長後の基板の冷却工程を工夫することで、アニーリング処理と同じような効果が得られる技術を開示している。この方法によると、アニーリング処理が不要になるため素子作製の煩雑さは解消するが、アニーリング処理に比べてマグネシウムの活性化が不十分である。したがって、アニーリング処理に比べて小さい抵抗率を達成するには至らない。
 特許文献1および特許文献2は、c面を表面に有するp型窒化ガリウム系化合物半導体層の成長を前提としている。しかしながら、マグネシウムが不活性化される現象は、m面成長を行なった場合でも同様に生じる。
 本発明は上記課題を解決するためになされたものであり、その目的は、アニーリング処理を行なうことなく、m面を表面に有するp型窒化ガリウム系化合物半導体層内のp型ドーパントの不活性化を防止する手段を講ずることにより、十分な電気特性を有する半導体素子を提供することにある。
 本発明の半導体素子の製造方法は、加熱された雰囲気中で、m面を成長面とするp型窒化ガリウム系化合物半導体層を有機金属気相成長法によって成長させる工程(a)と、前記工程(a)の後、前記p型窒化ガリウム系化合物半導体層を冷却する工程(b)とを含み、前記工程(a)では、前記p型窒化ガリウム系化合物半導体層を成長させる反応室内に水素を供給し、前記工程(b)では、前記反応室への前記水素の供給を停止した状態で前記p型窒化ガリウム系化合物半導体層を冷却する。
 ある実施形態において、前記p型窒化ガリウム系化合物半導体層のp型ドーパントはマグネシウムであり、前記工程(a)では、前記p型窒化ガリウム系化合物半導体層に含まれる前記マグネシウムの含有量が、4.0×1018cm-3以上1.8×1019cm-3以下となるように、前記p型窒化ガリウム系化合物半導体層を成長させる。
 ある実施形態において、前記工程(a)では、前記p型窒化ガリウム系化合物半導体層に含まれる前記マグネシウムの含有量が、6.0×1018cm-3以上9.0×1018cm-3以下となるように、前記p型窒化ガリウム系化合物半導体層を成長させる。
 ある実施形態において、前記工程(b)では、前記水素の供給を停止すると同時または停止した後に、前記p型窒化ガリウム系化合物半導体層の冷却を開始する。
 ある実施形態において、前記工程(b)では、前記水素の供給を停止する前に、前記p型窒化ガリウム系化合物半導体層の冷却を開始する。
 ある実施形態において、前記工程(a)では、前記p型窒化ガリウム系化合物半導体層を850℃より高い温度に加熱し、前記工程(b)において前記p型窒化ガリウム系化合物半導体層の冷却を開始した後、前記p型窒化ガリウム系化合物半導体層の温度が850℃になるまでに、前記工程(b)において前記水素の供給を停止する。
 ある実施形態において、前記工程(a)では、前記反応室に、アンモニアを含む原料ガスを供給し、前記工程(b)では、前記水素の供給を停止した後も、前記反応室内に前記アンモニアを供給する。
 ある実施形態において、前記工程(a)では、前記原料ガスの他に窒素を前記反応室に供給し、前記工程(b)では、前記水素の供給を停止した後、前記水素の供給を停止する前の水素の供給レートに相当する供給レートの分だけ前記窒素の供給レートを増加させる。
 本発明によると、反応室への水素の供給を停止した状態でp型窒化ガリウム系化合物半導体層を冷却することにより、冷却工程において反応室内に存在する水素濃度を従来よりも低くすることができる。これにより、p型窒化ガリウム系化合物半導体層を形成する際にp型ドーパントと結合した水素原子が、冷却工程においてp型ドーパントから脱離しやすくなる。その結果、p型ドーパントが活性化され、p型窒化ガリウム系化合物半導体層の抵抗率が低くなる。本発明によると、アニーリング処理を行なわずに、半導体素子に必要な低い抵抗率を実現することができるため、素子作製の煩雑さを緩和することができ、製造コストを大幅に低減できる。
 また、本発明によると、アニーリング処理を省略できるため、表面荒れの発生を回避することができる。このような表面荒れは、従来から広く用いられるc面p型窒化ガリウム系化合物半導体層では発生しない。そのため、アニーリング処理を省略できることは、m面を表面に有するp型窒化ガリウム系化合物半導体層の製造工程に特に有用である。
GaNの単位格子を模式的に示す斜視図である。 ウルツ鉱型結晶構造の基本ベクトルa1、a2、a3、cを示す斜視図である。 (a)は、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示し、(b)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。 c面成長およびm面成長のp型窒化ガリウム系化合物半導体層の抵抗率を測定した結果を示すグラフである。 (a)から(c)は、m面成長で作成したp型窒化ガリウム系化合物半導体層の表面を撮影したSEM像である。 実施形態および従来の製造工程を示すフローチャートである。 実施形態の製造方法によって形成される半導体素子100を示す断面図である。 実施形態で用いるMOCVD(Metal Organic Chemical Vapor Deposition)装置を示す断面模式図である。 実施形態の半導体素子の製造方法における基板の温度の変化を示すグラフである。 実施形態の半導体素子の製造方法において、反応室へ供給する気体を示す表である。 (a)は、p-GaN層の抵抗率とマグネシウム濃度との関係を示すグラフである。(b)は、図11(a)の点線の枠に囲まれた領域を拡大して示すグラフである。 水素を完全に排除して冷却を行なったm面p-GaN層およびc面p-GaN層のホール濃度とマグネシウム濃度との関係を示すグラフである。 (a)は、結晶成長後の冷却工程で水素を供給し続けて形成したm面p-GaN層およびc面p-GaN層に対して、従来どおりアニーリング処理を施した場合の抵抗率を示すグラフである。(b)は、図13(a)の測定を行なった試料のマグネシウム濃度と、アニーリング処理後に測定したホール濃度との関係を示すグラフである。
 まず、本願発明者が測定および検討した結果を説明する。
 図4は、c面成長およびm面成長のp型GaN層の抵抗率を測定した結果を示すグラフである。p型GaN層としては、従来と同様の方法で成長させ、アニーリング処理を施していないものを用いた。図4において、横軸はマグネシウム濃度を示し、縦軸は抵抗率を示す。各試料のMg濃度は、m面半導体層では4.3×1018cm-3、7.4×1018cm-3、1.3×1019cm-3、2.5×1019cm-3であり、c面半導体層では2.6×1019cm-3である。図4に示すように、m面半導体層の抵抗率(○)およびc面半導体層の抵抗率(△)は、共に1×107Ωcm以上となり、これらの半導体層はほとんど絶縁体であることがわかる。
 さらに、本願発明者は、m面を表面に有するp型GaN層に対して従来と同様のアニーリング処理を実施した。その結果、m面を表面に有するp型GaN層では、部分的に微小な表面荒れが発生することを見出した。図5(a)から(c)は、m面成長によって作製されたp型GaN層の表面を撮影したSEM写真である。図5(a)から(c)の写真を撮影したp型GaN層には、窒素雰囲気中において830℃のアニーリング処理を20分間行なった。図5(b)は、図5(a)の写真に撮影されている領域の一部を図5(a)よりも高い倍率で撮影した写真であり、図5(c)は、図5(b)の写真に撮影されている領域の一部を図5(b)よりも高い倍率で撮影した写真である。図5(c)に示すように、p型GaN層には、多数の微小な凹部もしくは凸部200が表面に形成されることにより、表面荒れが発生している。図5(a)から(c)に示すような表面荒れが発生すると、注入電流密度の不均一といった不具合が生じる。このような表面荒れは、Gaの一部がAlやInで置換されていても同様に生じると考えられる。本願発明者は、c面成長によって作製されたp型GaN層についてもアニーリング処理後の表面を観察した。その結果、c面成長によって作製されたp型GaN層では、図5(a)から(c)に示すような表面荒れは生じなかった。このように、アニーリング処理によって表面荒れが生じるのは、m面成長で作製したp型窒化ガリウム系化合物半導体層に特有の現象である。
 以上の測定および考察から、m面成長で作製したp型窒化ガリウム系化合物半導体層では、低抵抗化を達成するためにアニーリング処理法を採用した場合、m面特有の課題が生じることがわかる。以下、m面成長で作製したp型窒化ガリウム系化合物半導体層を含む半導体素子の実施形態について、具体的に説明する。
 (実施形態)
 以下、図面を参照して、本発明による半導体素子の製造方法を説明する。図6は、実施形態および従来における製造工程を示すフローチャートである。図6では、本実施形態の製造工程が実線の矢印で示され、従来から典型的に行なわれてきた製造工程が点線の矢印で示されている。
 図6に示すように、本実施形態の半導体素子の製造方法では、まず、ステップS11において基板洗浄を行ない、ステップS12においてサーマルクリーニングを行なう。次に、ステップS13において、加熱された雰囲気中で、m面を成長面とする半導体層を基板上に有機金属気相成長法によって結晶成長させる。現実のm面は、m面に対して完全に平行な面である必要は無く、m面から僅かな角度(0~±1°)だけ傾斜していても良い。例えば、発光素子を形成する場合には、n型窒化ガリウム系化合物半導体層と、発光層と、p型窒化ガリウム系化合物半導体層とを含む半導体積層構造を形成する。ステップS13では、反応室内に、原料ガス、キャリアガス、および、必要に応じてドーパントガスを供給しながら結晶成長が行なわれる。典型的には、原料ガスとして、ガリウムの原料ガスであるトリメチルガリウム(TMG)もしくはトリエチルガリウム(TEG)と、窒素の原料ガスであるアンモニアとが供給される。また、キャリアガスとしては、窒素(N2)と水素(H2)とが供給される。
 p型窒化ガリウム系化合物半導体層の成長が終了した後、ステップS14において、基板を冷却する。従来の冷却工程は、ステップS14´に示すように、ステップS13から行なわれている水素の供給を継続した状態で行なわれる。それに対し、本実施形態の冷却工程は、反応室への水素の供給を停止した状態で行なわれる。この冷却工程では、ガリウムの原料ガスであるTMG(またはTEG)の供給は停止しているが、p型窒化ガリウム系化合物半導体層から窒素が抜けるのを防止するため、窒素の原料ガスであるアンモニアの供給は継続して行なう。冷却工程が終了すると、ステップS15において、反応室から基板が取り出され、ステップS17において、電極等の作製が行なわれる。発光素子を形成する場合には、p型窒化ガリウム系化合物半導体層の上にp側電極が、n型窒化ガリウム系化合物半導体層の上にn側電極が形成される。これにより、本実施形態の半導体素子が形成される。
 本実施形態では、反応室への水素の供給を停止した状態で基板を冷却することにより、冷却工程において反応室内に存在する水素濃度を従来よりも低くすることができる。これにより、p型窒化ガリウム系化合物半導体層を形成する際にp型ドーパントと結合した水素原子が、冷却工程においてp型ドーパントから脱離しやすくなる。その結果、p型ドーパントが活性化され、p型窒化ガリウム系化合物半導体層の抵抗率が低くなる。従来では、ステップS16に示すように、p型ドーパントから水素を脱離させるためのアニーリング処理を行なう場合があったが、本実施形態によると、アニーリング処理を行なわずに、半導体素子に必要な低い抵抗率を実現することができる。これにより、素子作製の煩雑さを緩和することができ、製造コストを大幅に低減できる。
 また、本実施形態によると、アニーリング処理を省略できるため、表面荒れの発生を回避することができる。このような表面荒れは、従来から広く用いられるc面p型窒化ガリウム系化合物半導体層では発生しない。そのため、アニーリング処理を省略できることは、m面を表面に有するp型窒化ガリウム系化合物半導体層の製造工程に特に有用である。
 従来から、良質の窒化ガリウム系化合物半導体層を形成する際のキャリアガスには水素を使用するのが一般的である。そのため、p型窒化ガリウム系化合物半導体層の成長が終了した後にも水素の供給を継続しながら冷却を行なうのが通例であった。本実施形態では、冷却時に反応室内への水素の供給を停止することにより、p型ドーパントと結合している水素原子を、冷却工程において離脱させることができる。
 図7は、実施形態の製造方法によって形成される半導体素子100の構成例を示す断面図である。図7に示すように、半導体素子100は、結晶成長用基板101、結晶成長用基板101の上に形成されたn-GaN層102、GaN/InGaN多重量子井戸発光層105およびp-GaN層106からなる半導体積層構造110と、半導体積層構造110の上に形成されたp側電極108と、n-GaN層102の一部の上に形成されたn側電極107とを備えている。GaN/InGaN多重量子井戸発光層105は、GaNバリア層103およびInxGa1-xN(0<x<1)井戸層104が交互に3層以上配置された構造を有する。
 半導体積層構造110のうちGaN/InGaN多重量子井戸発光層105およびp-GaN層106は、n-GaN層102の一部の上のみに形成され、n-GaN層102のうちGaN/InGaN多重量子井戸発光層105およびp-GaN層106が形成されていない部分には、n側電極107が形成されている。
 次に、図6から図10を用いて、本実施形態の半導体素子の製造方法について詳細に説明する。図8は、本実施形態で用いるMOCVD装置を示す断面模式図である。また、本実施形態の製造方法における基板温度の変化を図9に、それぞれの工程において反応室に供給する気体の種類を図10に示す。図10では、それぞれの工程において反応室内に供給されている気体の欄に丸印(○)が付されている。
 本実施形態では、結晶成長用基板101として、その上に(10-10)m面の窒化ガリウム(GaN)が成長できるものを使用する。そのような基板としては、m面を表面とする窒化ガリウムの自立基板が最も望ましいが、格子定数が近い炭化珪素(SiC)のうち、4H、6H構造を有し、m面を表面とする基板であってもよい。また、同じくm面を表面とするサファイアであってもよい。ただし、結晶成長用基板101として窒化ガリウム系化合物半導体とは異なる基板を使用するのであれば、結晶成長用基板101と、その上に形成される窒化ガリウム系化合物半導体層との間に、適切な中間層もしくは緩衝層を挿入することが好ましい。
 まず、図6のステップS11に示すように、結晶成長用基板101の洗浄を行なう。結晶成長用基板101をバッファードフッ酸溶液(BHF)で洗浄し、その後十分に水洗して乾燥する。洗浄を行なった後の結晶成長用基板101は、なるべく空気に触れさせないようにして、図8に示すMOCVD装置の反応室1に載置する。
 図8に示すように、反応室1の内部には、結晶成長用基板2を支持する石英トレイ3と、石英トレイ3を乗せるカーボンサセプタ4とが設けられている。カーボンサセプタ4の内部には、不図示の熱電対が挿入されており、この熱電対によってカーボンサセプタ4の温度が実測される。カーボンサセプタ4は、不図示のコイルからRF誘導加熱方式によって加熱され、熱源として機能する。結晶成長用基板2は、カーボンサセプタ4からの熱伝導によって加熱されることになる。なお、本明細書における「基板温度」は、熱電対によって測定される温度である。この温度は、結晶成長用基板2に対する直接的な熱源となるカーボンサセプタ4の温度である。熱電対によって測定される温度は、結晶成長用基板2の温度にほぼ等しいと考えられる。
 反応室1は、ガス供給装置5と連結されており、ガス供給装置5からは各種のガス(原料ガス、キャリアガス、ドーパントガス)が反応室1の内部に供給される。また反応室1にはガス排気装置6が連結されており、ガス排気装置(ロータリーポンプ)6によって反応室1の排気が行なわれる。
 次に、図6のステップS12に示すように、結晶成長用基板101に対してサーマルクリーニングを行なう。具体的には、図9および図10に示すように、流量4~10slmの水素および流量3~8slmの窒素(N2)をキャリアガスとし、流量4~10slmのアンモニアをV族原料として反応室1内に供給しながら、基板を850℃まで加熱することによって、基板表面にクリーニング処置を施す。
 次に、図6のステップS13に示すように、反応室1内において、窒化ガリウム系化合物半導体層の結晶成長をMOCVD法によって行なう。
 まず、図9に示すように、原料ガス、n型ドーパント、およびキャリアガスを反応室1内に供給しながら基板を1100℃程度に加熱することにより、厚さ1~4μmのn-GaN層102を形成する。図10に示すように、原料ガスとしては、III族原料として流量10~40sccmのTMGもしくはTEGを、V族原料として流量4~10slmのアンモニアを供給する。n型ドーパントのSiを供給するための原料として流量10~30sccmのシランを、キャリアガスとして流量4~10slmの水素および流量3~8slmの窒素を供給する。
 次に、図9に示すように、GaN/InGaN多重量子井戸発光層105を形成するため、基板の温度を800℃未満まで冷却する。この冷却工程では、図10に示すように、シランおよびTMG(またはTEG)の供給を停止し、流量15~20slmのアンモニアの供給を続ける。また、キャリアガスのうち水素の供給を停止し、キャリアガスとして流量15~20slmの窒素のみを供給する。ここで水素の供給を停止した後は、図10に示すように、GaNバリア層103およびInxGa1-xN(0<x<1)井戸層104の形成が完了するまで、水素の供給は再開しない。このように水素の供給を停止するのは、InxGa1-xN(0<x<1)井戸層104を形成する工程において、層内にInの取り込み量を多くするためである。この工程において水素の供給を停止することは、従来から行なわれている。
 基板の温度が800℃未満まで冷却され、温度が安定すると、Gaの原料ガスであるTMG(またはTEG)の供給を流量4~10sccmで再開する。これにより、GaNバリア層103を形成する。
 次に、基板の温度を保った状態でトリメチルインジウム(TMI)の供給を開始して、InxGa1-xN(0<x<1)井戸層104を形成する。このとき、図10に示すように、反応室1内には、流量15~20slmの窒素、流量15~20slmのアンモニア、流量4~10sccmのTMG(またはTEG)および流量300~600sccmのTMIが供給されており、水素の供給は停止されている。InxGa1-xN(0<x<1)井戸層104の厚さは典型的には5nm以上であることが望ましく、GaNバリア層103の厚さとしてはInxGa1-xN(0<x<1)井戸層104の厚さに応じた値を設定するのが好ましい。例えば、InxGa1-xN(0<x<1)井戸層104の厚さが9nmである場合、GaNバリア層103の厚さは15~30nmである。
 その後、GaNバリア層103とInxGa1-xN(0<x<1)井戸層104とを交互にそれぞれ3層以上堆積する。これにより、GaNバリア層103とInxGa1-xN(0<x<1)井戸層104とが3周期以上積層された、発光部となるGaN/InGaN多重量子井戸発光層105が形成される。3周期以上とするのは、InxGa1-xN(0<x<1)井戸層104の層数が多い方が、発光再結合に寄与するキャリアを捕獲できる体積が大きくなり、素子の効率が高まるためである。
 従来の(0001)c面成長では、量子閉じ込めシュタルク効果の影響を少なくするため、発光部を構成するInGaN井戸層の厚さをある程度まで(典型的には5nm以下)小さくする必要があった。一方、m面をはじめとする非極性面を表面とする場合には、量子閉じ込めシュタルク効果が発生しない。そのため、m面成長の場合には、InGaN井戸層104の厚さを小さくする必要はない。InGaN井戸層104の厚さを大きくしたほうが、発光再結合に寄与するキャリアを捕獲できる体積が大きくなる。そのため、本実施形態では、InGaN井戸層104の厚さが5nm以上であることが好ましい。一方、厚さが20nmよりも大きくなると、In組成の不均一性という点で好ましくないため、厚さは20nm以下であることが好ましい。
 GaN/InGaN多重量子井戸発光層105における全てのInxGa1-xN(0<x<1)井戸層104を形成した後、TMIの供給を停止し、水素の供給を再開する。これにより、キャリアガスとして、流量3~8slmの窒素および流量4~10slmの水素が反応室1内に供給される。さらに、図9および図10に示すように、成長温度を1000℃に上昇させ、原料ガスであるTMG(またはTEG)およびアンモニア、p型ドーパントであるマグネシウムの原料としてCp2Mg(ビスシクロペンタジエニルマグネシウム)を供給することにより、p-GaN層106を形成する。ただし、p-GaN層106内に含まれるマグネシウム濃度が4.0×1018cm-3以上1.8×1019cm-3以下となるように、より好ましくは6.0×1018cm-3以上9.0×1018cm-3以下となるように、Cp2Mg供給量、TMG(またはTEG)供給量などの諸条件を調整する。諸条件の調整方法としては、例えば、成長温度を1000℃付近とし、TMG(またはTEG)供給量を一定にした上でCp2Mg供給量を制御すればよい。例えば、TMG(またはTEG)を流量5~10sccmで、アンモニアを流量4~10slmで、Cp2Mgを流量10~100sccmで供給すればよい。
 ただし、p-GaN層106のうち、表面から深さ20nm程度(厚さ20nm程度の最表面領域)には、1.8×1019cm-3より高い濃度のマグネシウムを含めてもよい。この場合、p-GaN層106のうち最表面領域を除く領域のマグネシウム濃度を、4.0×1018cm-3以上1.8×1019cm-3以下、より好ましくは6.0×1018cm-3以上9.0×1018cm-3以下とすればよい。p側電極が接触するGaN層の最表面領域においてp型ドーパントの濃度を局所的に高めると、コンタクト抵抗を最も低くすることができる。また、このような不純物ドーピングを行なうことにより、電流―電圧特性の面内ばらつきも低減するため、駆動電圧のチップ間ばらつきを低減できるという利点も得られる。
 次に、ステップS14に示すように、基板の冷却を行なう。具体的には、p-GaN層106を形成した後、図8に示すガス供給装置5を制御することによって、Gaの原料であるTMG(またはTEG)、マグネシウムの原料であるCp2Mg、キャリアガスである水素の供給を停止する(図10)。同時に、図8に示すガス排気装置6によって反応室1内の雰囲気から水素を排除する。水素の排除を十分に行なった後、基板の冷却を開始する。基板の冷却工程では、p-GaN層106内のH原子を効率よくマグネシウムから脱離させるため、反応室1内の雰囲気から、水素を可能な限り、望ましくは完全に排除することが重要である。
 前述したように、図8に示すMOCVD装置には、熱源(カーボンサセプタ4)が設けられている。ステップS13においてp-GaN層106の成長を行なっている間、基板温度(熱電対によって測定される温度)を一定に保つために基板は加熱されている。ステップS14において基板の冷却を開始するタイミングとは、基板の加熱を停止する時点、または基板に与える熱量をステップS13よりも少なくし、基板の温度を低下させる時点のことをいう。
 図8に示す反応室1には、上流のガス供給装置5からガスが供給されると共に、下流側のガス排気装置6では常にロータリーポンプが運転され、反応室1内の排気が行なわれる。これにより、反応室1内が一定圧力に維持される。ガス供給装置5から反応室1への水素の供給が停止されると、反応室1内に残っている水素も、ごくわずかな時間に外部に排気される。基板の冷却はガス供給装置5から反応室1への水素の供給を停止すると同時、または停止した後すぐに開始してもよい。また、基板の冷却を開始した後、基板温度が850℃になるまでに水素の供給を停止するようにしてもよい。この場合にも、水素の供給を停止した時点から基板温度が850℃になるまでの間、反応室内の水素濃度は従来よりも低くなるため、本願発明の効果を得ることができる。ただし、水素の供給を停止してからは、反応室1に微量の水素も供給せずに完全に水素の供給を停止することが好ましい。
 図10に示すように、ステップS14の冷却工程において反応室1内に流れるガスは窒素とアンモニアのみである。基板の温度が高くとも900℃未満に下がるまでは、停止した水素の代わりに窒素を供給することが好ましい。水素の供給を停止した後には、水素の供給を停止する前の水素の供給レートに相当する供給レートの分だけ窒素の供給レートを増加させる。例えば、ステップS13で5slmの水素を供給していた場合には、ステップS14で水素の供給を停止すると同時に、窒素の流量を5slmだけ増加させる。このように窒素を供給することによって、基板の冷却が促進され、冷却時間を短縮することができる。発明者の検討によって、950℃以上の高温にm面を表面とする窒化ガリウム系化合物半導体層を長時間さらすと、表面がエッチングされて大きく荒れ始める現象があることが明らかとなっている。このため、p-GaN層106の成長温度である約1000℃から900℃までの間、基板の冷却はなるべく速やかに行なうことが望ましい。基板の温度が約1000℃から900℃未満まで下がるまでの時間は、典型的には2分未満であることが好ましい。
 一方、アンモニアは、基板の温度がおよそ400℃程度に下がるまで供給を続けることが好ましい。400℃になるとアンモニアの分解率がほぼゼロになるため、400℃程度に下がるまでアンモニアを供給し続けることによって、p-GaN層106から窒素が抜けるのを防止することができる。本実施形態では、基板の温度が400℃程度に下がるまで反応室1内に窒素も供給している。その後、基板の冷却が十分に進んだ後に、基板を反応室から取り出す(図6のステップS15)。なお、アンモニアの供給を停止する温度は400℃に限られることはなく、p-GaN層106から窒素が抜けることを防止できる温度であればよい。例えば、600℃から800℃の間の温度でアンモニアの供給を停止してもよい。
 従来の典型的な手順では、図6のステップS16のアニーリング処理を実施し、p―GaN層106のp型ドーパントの活性化を行なう必要があった。一方、本実施形態では、ステップS14において反応室1へ水素の供給を停止した状態で基板の冷却を行なうことによって、冷却工程において反応室内に存在する水素濃度を従来よりも低くすることができる。これにより、p―GaN層106を形成する際にマグネシウムと結合した水素原子が、冷却工程においてマグネシウムから脱離しやすくなる。その結果、マグネシウムが活性化され、p―GaN層106の抵抗率が低くなる。そのため、マグネシウムを活性化するためのアニーリング処理を省略することができる。なお、このような水素の挙動は、p-GaN層106において、Gaの一部がAlやInで置換されていても同様に生じると推定される。
 反応室から取り出した基板には、図6のステップS17の素子作製工程を施す。p-GaN層106およびGaN/InGaN多重量子井戸発光層105の所定の領域だけを、フォトリソグラフィー、エッチング等の手法を用いて除去し、n-GaN層102の一部を露出する。n-GaN層102が表出した領域にはTi/Al等で構成されるn側電極107を形成する。また、p-GaN層106上の所定の領域にはp側電極108を形成する。p側電極108としては、例えば、Mg/Pt、Zn/Pt、Mg/AgおよびZn/Agのいずれかからなる電極を形成してもよいし、Ni/Auからなる電極を形成してもよい。
 以上の過程によって、所望の波長で発光する発光素子100を作製することができる。
 図11(a)は、p-GaN層におけるマグネシウム濃度と抵抗率との関係を示すグラフである。図11(a)では、本実施形態の方法によって作製されたm面p-GaN層の抵抗率を黒い丸(●)で示している。m面半導体層としては、4.3×1018cm-3、7.4×1018cm-3、1.3×1019cm-3、2.5×1019cm-3のMg濃度を有する試料を用いた。本実施形態によるm面p-GaN層は、1000℃で結晶成長した後に反応室内から水素を完全に排除し、停止した水素に代えて窒素を反応室に供給しながら、基板の温度が850℃になるまで基板を冷却することによって形成した。m面p-GaN層の成長温度から850℃までの冷却時間はおよそ90秒であった。なお、850℃まで温度が下がった後は、停止した水素に代えて追加した分の窒素の供給を停止し、引き続き冷却をおこなった。アンモニアは、およそ400℃未満に温度が下がるまで供給し続けた。反応室から取り出した基板に対して追加的なアニーリング処理は一切行なっていない。
 図11(a)には、比較のため、本実施形態と同様に、反応室内から水素を完全に排除して冷却を行なったc面p-GaN層の抵抗率を黒い三角(▲)で示している。このc面p-GaN層は2.6×1019cm-3のMg濃度を有し、成長面がc面であること以外は、本実施形態のm面p-GaN層と同様の方法によって形成した。さらに、結晶成長後の冷却工程に従来どおり水素を供給し続けた場合のp-GaN層の抵抗率を、m面成長の場合は白い丸(○)で、c面成長の場合は白い三角(△)で示している。このm面p-GaN層は、冷却工程で水素を供給し続けること以外は、本実施形態のm面p-GaN層と同様の方法によって形成した。一方、c面p-GaN層は、成長面がc面であること、および冷却工程で水素を供給し続けること以外は、本実施形態のm面p-GaN層と同様の方法によって形成した。水素を供給した場合のm面p-GaN層の抵抗率(○)およびc面p-GaN層の抵抗率(△)は、いずれも1×107Ωcmを超えており、これらはほとんど絶縁体である。一方、冷却時に水素を完全に排除したm面p-GaN層およびc面p-GaN層では、従来と比較して、抵抗率が大幅に低下していることがわかる。
 図11(a)の点線の枠に囲まれた領域を拡大して図11(b)に示す。図11(b)に示すように、冷却時に水素を完全に排除して形成したc面p-GaN層(▲)では、約11Ωcmの抵抗率が得られた。ただし、本願発明者の実験により、c面成長p-GaN層では、マグネシウム濃度がどの値をとる場合でも、アニーリング処理を行なうことなく2.0Ωcm以下の抵抗率を達成することはできないことがわかっている。一方、冷却時に水素を完全に排除して形成したm面p-GaN層(●)では、c面p-GaN層の場合よりもさらに低い抵抗率が得られている。発光素子としては、p-GaN層が2.0Ωcm以下の抵抗率を示すことが好ましい。m面p-GaN層の測定結果において、抵抗率が2.0Ωcm以下の抵抗率を示す不純物濃度は、4.0×1018cm-3以上1.8×1019cm-3以下である。さらに、不純物濃度が6.0×1018cm-3以上9.0×1018cm-3以下の範囲では、1.5Ωcm程度の低い抵抗率を達成することができる。このように、本実施形態では、追加的なアニーリング処理を施さなくとも、発光素子として好ましい低い抵抗率を得ることができる。
 また、図11(b)に示す結果を測定したm面p-GaN層においては、図5(a)から(c)の写真に示されるような微小な表面荒れはいずれも観察されなかった。このように、本実施形態ではアニーリング処理を省略できるため、m面p-GaN層の表面荒れの発生を回避することができる。
 図12は、水素を完全に排除して冷却を行なったm面p-GaN層およびc面p-GaN層のホール濃度とマグネシウム濃度との関係を示すグラフである。各試料のMg濃度は、m面半導体層では4.3×1018cm-3、7.4×1018cm-3、1.3×1019cm-3、2.5×1019cm-3であり、c面半導体層では2.6×1019cm-3である。この測定は、基板と、基板の上に位置する厚さ1μmのアンドープGaN層と、アンドープGaN層の上に位置する厚さ0.7~1μmのp-GaN層(m面p-GaN層またはc面p-GaN層)とを有する試料を用いて行なった。m面p-GaN層およびc面p-GaN層は、図11(a)、(b)に示す結果を測定した試料のうち水素を排除して冷却したものと同じ条件で形成した。図12に示すように、c面p-GaN層では1×1017cm-3ほどのホール濃度しか得られないのに対して、同じマグネシウム濃度を持つm面p-GaN層では、3×1017cm-3から5×1017cm-3ほどの濃度のホールが供出されている。このように、c面p-GaN層よりもm面p-GaN層のほうが、ホール濃度が高く、マグネシウムの活性化率が高い。この結果、m面p-GaN層では層内の抵抗率がc面p-GaN層よりも低減され、図11(a)、(b)に示す結果が得られると考えられる。
 図13(a)は、結晶成長後の冷却工程に水素を供給し続けたp-GaN層に対して、従来どおりアニーリング処理を施した場合の電気特性を示す。図13(a)には、m面p-GaN層およびc面p-GaN層の抵抗率を示している。各試料のMg濃度は、m面半導体層では4.3×1018cm-3、7.4×1018cm-3、1.3×1019cm-3、2.5×1019cm-3であり、c面半導体層では1.3×1019cm-3、2.6×1019cm-3、5.0×1019cm-3である。アニーリング処理としては、反応室から取り出した基板に対して、結晶成長装置とは別のアニーリング処理装置を使用し、窒素雰囲気中、p-GaN層を830℃で20分間加熱した。
 図13(a)に示すように、アニーリング処理を施した場合も、c面p-GaN層よりもm面p-GaN層のほうが低い抵抗率を示している。しかしながら、図13(a)の測定を行なったm面p-GaN層の表面には、図5(a)から(c)に見られるような微小な表面荒れが部分的に発生しているのが確認された。このような微小な表面荒れは、アニーリング処理を施す前の段階では発生していなかったため、この表面荒れはアニーリング処理によって発生したことがわかる。一方、アニーリング処理後のc面p-GaN層では、表面荒れは発生していなかった。
 図13(b)は、図13(a)の測定を行なった試料のマグネシウム濃度と、アニーリング処理後に測定したホール濃度との関係を示す。図13(b)に示すように、c面p-GaN層およびm面p-GaN層のいずれにおいても、マグネシウム濃度がある一定量(2×1019cm-3)程度以上になると、ホール濃度は一定の値(1×1018cm-3)に近づき飽和する。マグネシウム濃度が2×1019cm-3程度未満の場合(すなわちホール濃度が飽和していない場合)には、同じマグネシウム濃度で比較すると、m面p-GaN層の方がc面p-GaN層よりも高いホール濃度を有する。この結果から、m面p-GaN層では、c面p-GaN層に比べて活性化の効率が高いことがわかる。例えばマグネシウム濃度が1.5×1019cm-3の場合には、c面p-GaN層のホール濃度は約3.5×1017cm-3であるのに対し、m面p-GaN層のホール濃度は約1.0×1018cm-3である。このように、m面p-GaN層では、c面p-GaN層と比較して3倍近く効率良くH原子を脱離できることがわかる。
 また、図13(a)では、m面p-GaN層では、マグネシウム濃度がおよそ1.5×1019cm-3のときに抵抗率が最小となっているのに対して、c面p-GaN層では、マグネシウム濃度がおよそ2.5×1019cm-3のときに抵抗率が最小となっている。このように、m面p-GaN層において抵抗率が最小となるときのマグネシウム濃度は、c面p-GaN層において抵抗率が最小となるときのマグネシウム濃度のほぼ半分の値である。加えて、c面p-GaN層では、望ましい抵抗率(2.0Ωcm以下)になるマグネシウム濃度の範囲が比較的狭いのに対し、m面p-GaN層では、望ましい抵抗率(2.0Ωcm以下)を達成できるマグネシウム濃度の範囲が広い。また、m面p-GaN層では、マグネシウム濃度が4.0×1018cm-3程度のときの抵抗率も1.5Ωcmを下回っている。一方、c面p-GaN層では、マグネシウム濃度がおよそ2.5×1019cm-3のときの抵抗率は1.5Ωcmを下回っているものの、マグネシウム濃度がおよそ1.5×1019cm-3のときの抵抗率はすでに2.0Ωcmよりも高くなっている。マグネシウム濃度が低くなれば抵抗率はさらに高くなる。このように、m面p-GaN層において望ましい抵抗率を実現できるマグネシウム濃度は、c面p-GaN層の場合よりも大幅に低いことがわかる。
 ここで、アニーリング処理によってマグネシウムを活性化した場合の抵抗率(図13(a))と、本実施形態の方法でマグネシウムを活性化した場合の抵抗率(図11(b))とを比較する。抵抗率が最小となるマグネシウム濃度で比較すると、図13(a)ではおよそ1.5×1019cm-3であるのに対し、図11(b)ではおよそ7.0×1018cm-3である。このように、本実施形態の方法でマグネシウムを活性化した場合には、アニーリング処理によってマグネシウムの活性化を行なった場合よりも、抵抗率が低くなるマグネシウム濃度の範囲が低濃度側にシフトしているといえる。この理由は、本実施形態の方法では、マグネシウム濃度が低くなればホール濃度も低くなるが、そのホール濃度の低さをホールの移動度の高さで補っているためと考えられる。実際に、マグネシウム濃度が1.8×1019cm-3を超えるとホールの移動度の減少分が大きいため、図11(b)に示すように、抵抗率は2.0Ωcmよりも大きな値になってしまう。p-GaN層におけるマグネシウム濃度が低くなると、発光層で発生した光の再吸収が起こりにくくなること、p-GaN層から活性層にマグネシウムが拡散しにくくなることといった利点がある。
 図11(b)と図13(a)とを比較すると、本実施形態の方法によるm面p-GaN層の電気特性(抵抗率)は、従来のアニーリング処理を施したc面p-GaN層の電気特性よりも、わずかに劣っている。しかしながら、m面p-GaN層は、c面p-GaN層よりも、活性化の効率が数倍良好である特性と、低抵抗率を達成できるマグネシウム濃度の範囲が広いという特性とを有する。このような2つの特性を利用することによって、発光素子としては十分に低い抵抗をm面p-GaN層において得ることができる。
 特許文献2(特許第4103309号公報)は、基板の冷却中に反応室内の水素濃度を制御することによってp型窒化ガリウム系化合物半導体層を活性化する技術を開示している。しかし、特許文献2に開示される技術では、c面p-GaN層の成長を前提としており、m面p-GaN層と比較して正のキャリアである正孔(ホール)濃度を十分に高めることが困難である。
 本願発明者は、鋭意検討を重ねた結果、m面を成長面とするp型窒化ガリウム系化合物半導体層を冷却する工程で水素の供給を停止することによって、従来のアニーリング処理に比肩するほどの低い抵抗率が得られることを見出した。この抵抗率は、結晶内に含まれるマグネシウム濃度を4.0×1018cm-3から1.8×1019cm-3の範囲、より好ましくは6.0×1018cm-3から9.0×1018cm-3の範囲に調整することによって特に低い値になる。これにより、アニーリング処理を省略することができる。アニーリング処理を省略することができるため、m面p型窒化ガリウム系化合物半導体層に表面荒れが生じるのを回避することができる。
 上述の説明では、気体の流量や窒化ガリウム系化合物半導体層の成長温度などの条件が例示されているが、本発明は、例示される条件によって限定されない。
 なお、本発明におけるp型窒化ガリウム系化合物半導体層はp-GaN層に限られず、p型のAlxInyGazN(x+y+z=1,x≧0,y≧0,z≧0)半導体であればよい。また、本発明では、Mg以外のp型ドーパントとして、例えばZn、Beなどがドープされていてもよい。
 本発明の効果は、p型窒化ガリウム系化合物半導体層を有するLED以外の発光素子(半導体レーザ)や、発光素子以外のデバイス(例えばトランジスタや受光素子)の製造に広く適用できる。
 本発明は、量子閉じ込めシュタルク効果が発生しないm面p型窒化ガリウム系化合物半導体層において、表面荒れを発生させずに低い抵抗率を実現することができるため、発光素子に特に好適に適用できる。
1    反応室
2    結晶成長用基板
3    石英トレイ
4    カーボンサセプタ
5    ガス供給装置
6    ガス排気装置
100  半導体素子
101  基板
102  n-GaN層
103  GaNバリア層
104  InxGa1-xN(0<x<1)井戸層
105  GaN/InGaN多重量子井戸発光層
106  p-GaN層
107  n側電極
108  p側電極
200  凹部もしくは凸部

Claims (8)

  1.  加熱された雰囲気中で、m面を成長面とするp型窒化ガリウム系化合物半導体層を有機金属気相成長法によって成長させる工程(a)と、
     前記工程(a)の後、前記p型窒化ガリウム系化合物半導体層を冷却する工程(b)とを含み、
     前記工程(a)では、前記p型窒化ガリウム系化合物半導体層を成長させる反応室内に水素を供給し、前記工程(b)では、前記反応室への前記水素の供給を停止した状態で前記p型窒化ガリウム系化合物半導体層を冷却する、半導体素子の製造方法。
  2.  前記p型窒化ガリウム系化合物半導体層のp型ドーパントはマグネシウムであり、
     前記工程(a)では、前記p型窒化ガリウム系化合物半導体層に含まれる前記マグネシウムの含有量が、4.0×1018cm-3以上1.8×1019cm-3以下となるように、前記p型窒化ガリウム系化合物半導体層を成長させる、請求項1に記載の半導体素子の製造方法。
  3.  前記工程(a)では、前記p型窒化ガリウム系化合物半導体層に含まれる前記マグネシウムの含有量が、6.0×1018cm-3以上9.0×1018cm-3以下となるように、前記p型窒化ガリウム系化合物半導体層を成長させる、請求項2に記載の半導体素子の製造方法。
  4.  前記工程(b)では、前記水素の供給を停止すると同時または停止した後に、前記p型窒化ガリウム系化合物半導体層の冷却を開始する、請求項1に記載の半導体素子の製造方法。
  5.  前記工程(b)では、前記水素の供給を停止する前に、前記p型窒化ガリウム系化合物半導体層の冷却を開始する、請求項1に記載の半導体素子の製造方法。
  6.  前記工程(a)では、前記p型窒化ガリウム系化合物半導体層を850℃より高い温度に加熱し、
     前記工程(b)において前記p型窒化ガリウム系化合物半導体層の冷却を開始した後、前記p型窒化ガリウム系化合物半導体層の温度が850℃になるまでに、前記工程(b)において前記水素の供給を停止する、請求項5に記載の半導体素子の製造方法。
  7.  前記工程(a)では、前記反応室に、アンモニアを含む原料ガスを供給し、
     前記工程(b)では、前記水素の供給を停止した後も、前記反応室内に前記アンモニアを供給する、請求項1に記載の半導体素子の製造方法。
  8.  前記工程(a)では、前記原料ガスの他に窒素を前記反応室に供給し、
     前記工程(b)では、前記水素の供給を停止した後、前記水素の供給を停止する前の水素の供給レートに相当する供給レートの分だけ前記窒素の供給レートを増加させる、請求項7に記載の半導体素子の製造方法。
PCT/JP2009/003586 2009-04-08 2009-07-29 半導体素子の製造方法 WO2010116424A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010502589A JPWO2010116424A1 (ja) 2009-04-08 2009-07-29 半導体素子の製造方法
US13/061,544 US8268706B2 (en) 2009-04-08 2009-07-29 Semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009094209 2009-04-08
JP2009-094209 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116424A1 true WO2010116424A1 (ja) 2010-10-14

Family

ID=42935737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003586 WO2010116424A1 (ja) 2009-04-08 2009-07-29 半導体素子の製造方法

Country Status (3)

Country Link
US (1) US8268706B2 (ja)
JP (1) JPWO2010116424A1 (ja)
WO (1) WO2010116424A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160068B1 (ko) * 2013-05-22 2020-09-25 서울바이오시스 주식회사 발광 소자 및 그것을 제조하는 방법
DE102015113670A1 (de) * 2014-08-19 2016-02-25 Seoul Viosys Co., Ltd Leuchtvorrichtung und Verfahren zu deren Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077414A (ja) * 1999-09-07 2001-03-23 Showa Denko Kk Iii族窒化物半導体発光素子
JP2005101623A (ja) * 2004-10-15 2005-04-14 Showa Denko Kk Iii族窒化物半導体結晶、その製造方法、iii族窒化物半導体エピタキシャルウェーハ
JP2006186257A (ja) * 2004-12-28 2006-07-13 Sony Corp 半導体発光素子の製造方法、集積型半導体発光装置の製造方法、画像表示装置の製造方法および照明装置の製造方法
JP2007173316A (ja) * 2005-12-19 2007-07-05 Matsushita Electric Ind Co Ltd 窒化物半導体発光素子及びその製造方法
JP2008117921A (ja) * 2006-11-02 2008-05-22 Mitsubishi Chemicals Corp 半導体装置の製造方法及び半導体処理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306662A (en) 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
JP2872096B2 (ja) 1996-01-19 1999-03-17 日本電気株式会社 低抵抗p型窒化ガリウム系化合物半導体の気相成長方法
JP3688843B2 (ja) 1996-09-06 2005-08-31 株式会社東芝 窒化物系半導体素子の製造方法
JP3180710B2 (ja) 1997-03-31 2001-06-25 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子の製造方法
JP2000212356A (ja) 1999-01-28 2000-08-02 Idemitsu Petrochem Co Ltd 芳香族ビニル重合体樹脂組成物、樹脂発泡シ―ト、樹脂発泡シ―トの製造方法及び容器
US7056755B1 (en) 1999-10-15 2006-06-06 Matsushita Electric Industrial Co., Ltd. P-type nitride semiconductor and method of manufacturing the same
JP4103309B2 (ja) * 2000-07-13 2008-06-18 松下電器産業株式会社 p型窒化物半導体の製造方法
JP3522610B2 (ja) 1999-10-15 2004-04-26 松下電器産業株式会社 p型窒化物半導体の製造方法
JP2001308460A (ja) 2000-04-27 2001-11-02 Sharp Corp 窒化物半導体レーザ素子とその光ピックアップ装置
JP4660333B2 (ja) 2005-09-30 2011-03-30 三洋電機株式会社 窒化物系半導体レーザ素子
EP2221856B1 (en) 2007-11-21 2020-09-09 Mitsubishi Chemical Corporation Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077414A (ja) * 1999-09-07 2001-03-23 Showa Denko Kk Iii族窒化物半導体発光素子
JP2005101623A (ja) * 2004-10-15 2005-04-14 Showa Denko Kk Iii族窒化物半導体結晶、その製造方法、iii族窒化物半導体エピタキシャルウェーハ
JP2006186257A (ja) * 2004-12-28 2006-07-13 Sony Corp 半導体発光素子の製造方法、集積型半導体発光装置の製造方法、画像表示装置の製造方法および照明装置の製造方法
JP2007173316A (ja) * 2005-12-19 2007-07-05 Matsushita Electric Ind Co Ltd 窒化物半導体発光素子及びその製造方法
JP2008117921A (ja) * 2006-11-02 2008-05-22 Mitsubishi Chemicals Corp 半導体装置の製造方法及び半導体処理装置

Also Published As

Publication number Publication date
US20110159667A1 (en) 2011-06-30
US8268706B2 (en) 2012-09-18
JPWO2010116424A1 (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5634368B2 (ja) 半導体装置
JP3866540B2 (ja) 窒化物半導体素子およびその製造方法
WO2013005789A1 (ja) 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
JP4510931B2 (ja) 窒化物系半導体発光素子およびその製造方法
JP5641506B2 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
JP5036907B2 (ja) 窒化ガリウム系化合物半導体発光素子
JPH0964477A (ja) 半導体発光素子及びその製造方法
JP4891462B2 (ja) 窒化ガリウム系化合物半導体発光素子
TW201145584A (en) Process for production of nitride semiconductor element, nitride semiconductor light-emitting element, and light-emitting device
JP3243111B2 (ja) 化合物半導体素子
JP2008091470A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP4647723B2 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
JP2008078186A (ja) 窒化物系化合物半導体の結晶成長方法
JP4103309B2 (ja) p型窒化物半導体の製造方法
WO2011070760A1 (ja) 半導体素子の製造方法
JP2004356522A (ja) 3−5族化合物半導体、その製造方法及びその用途
WO2010116424A1 (ja) 半導体素子の製造方法
JP6453542B2 (ja) 半導体装置及びこれの製造方法
JP4720519B2 (ja) p型窒化物半導体の製造方法
JP2005235960A (ja) GaN系半導体素子の製造方法
JP2006128653A (ja) 3−5族化合物半導体、その製造方法及びその用途
WO2020075849A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
JP5706696B2 (ja) 発光素子の製造方法及び発光素子
JP2006310886A (ja) 3−5族化合物半導体発光素子
JP2022120989A (ja) 半導体素子構造の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010502589

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842934

Country of ref document: EP

Kind code of ref document: A1