JP4103309B2 - p型窒化物半導体の製造方法 - Google Patents

p型窒化物半導体の製造方法 Download PDF

Info

Publication number
JP4103309B2
JP4103309B2 JP2000212356A JP2000212356A JP4103309B2 JP 4103309 B2 JP4103309 B2 JP 4103309B2 JP 2000212356 A JP2000212356 A JP 2000212356A JP 2000212356 A JP2000212356 A JP 2000212356A JP 4103309 B2 JP4103309 B2 JP 4103309B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
type nitride
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000212356A
Other languages
English (en)
Other versions
JP2002033279A (ja
Inventor
英徳 亀井
修一 品川
英見 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000212356A priority Critical patent/JP4103309B2/ja
Priority to US09/680,943 priority patent/US7056755B1/en
Priority to DE2001134181 priority patent/DE10134181B4/de
Publication of JP2002033279A publication Critical patent/JP2002033279A/ja
Priority to US11/395,128 priority patent/US20060183260A1/en
Application granted granted Critical
Publication of JP4103309B2 publication Critical patent/JP4103309B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子や受光素子、ダイオード、トランジスタ等に用いられるGaN系III族窒化物半導体のうちのp型窒化物半導体、特に、形成後のアニーリング処理が不要なp型窒化物半導体の製造方法に関する。
【0002】
【従来の技術】
近年、ますます情報量が増大する光情報処理装置等に用いられる短波長の発光素子の材料として、比較的バンドギャップが大きいGaN系III族窒化物半導体が注目されている。これらダイオード素子やレーザ素子等の発光素子にはその接合面の近傍でキャリアを再結合させ、その再結合光を放射するpn接合を有する構成が不可欠である。良く知られているように、Mg等のアクセプタがドープされてなるp型窒化物半導体は、Mgの活性化率がドナーと比べて著しく低いため、低抵抗のp型窒化物半導体を得るのは容易でない。
【0003】
そこで、従来は、形成後に室温に戻しても高抵抗であったp型窒化物半導体に対して熱処理(ポストアニーリング)を行なって、Mgと水素とからなる複合体の水素をMgから解離させることにより、低抵抗のp型窒化物半導体を得る方法が一般に行なわれている。しかしながら、生産性の向上を図るためにも、ポストアニーリングを行なわずに低抵抗のp型窒化物半導体を得る研究が進められつつある。
【0004】
以下、特開平10−135575号公報に開示されている、ポストアニーリングが不要な従来のp型窒化物半導体の製造方法について説明する。
【0005】
この公報には、有機金属気相成長(MOVPE)法を用いて、サファイアからなる基板上に、TMG等のIII族源、アンモニア等の窒素源及びp型ドーパントを含む有機Mg化合物を、濃度が0.8容量%〜20容量%の水素ガスを含む窒素ガスをキャリアガスとして導入し、基板温度を1100℃としてp型窒化物半導体を成長させる方法を開示している。これにより、Mgと水素とからなる複合体の形成が阻止されることにより、成長時に低抵抗性を示すp型窒化物半導体を得ている。さらに、冷却工程においては、約32容量%のアンモニアを含む窒素ガスの雰囲気で350℃まで降温し、その後、アンモニアの導入を停止して室温まで降下させる方法を開示している。
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来のポストアニーリングを行なわないp型窒化物半導体の製造方法は以下のような問題がある。すなわち、前記公報の発明者らがその後に公開した論文(Applied Physics Letters,vol.72,(1998),p.1748)に示しているように、結晶成長工程における水素濃度が2.4%から3.7%に増加しただけで大幅にMgの活性化が劣り、非常に低い水素濃度で成長させなければ、成長時にp型窒化物半導体を得ることができない。その上、低い水素濃度でp型窒化物半導体を成長させると、表面マイグレーションが不十分となるため、表面上の最適位置に所定の原子が配置されず、良質な結晶が得られない。
【0007】
本発明は、前記従来の問題を解決し、ポストアニーリングを行なうことなく良質なp型窒化物半導体を得られるようにすることを目的とする。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、本発明は、p型窒化物半導体層形成工程において低抵抗なp型窒化物半導体を形成した後、冷却工程における特定の基板温度範囲、即ちp型窒化物半導体層中のp型ドーパントの不活性化が生じる基板温度範囲、である略950℃〜略700℃において、冷却条件に工夫を施したものである。
【0009】
第1のp型窒化物半導体の製造方法は、前記特定の基板温度範囲において、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却時間の組合わせでp型窒化物半導体層を冷却することを特徴とする。
【0010】
また、第2のp型窒化物半導体の製造方法は、前記特定の基板温度範囲において、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却速度の組合わせでp型窒化物半導体層を冷却することを特徴とする。
【0011】
こうすることで、p型窒化物半導体の低抵抗性をp型半導体として実用可能な範囲内に維持することができる。
【0012】
【発明の実施の形態】
請求項1に記載の発明は、基板の上に、該基板の温度を950℃以上に保持して、p型ドーパント源と窒素源とIII族源とを導入することにより、前記基板上に低抵抗のp型窒化物半導体層を形成するp型窒化物半導体層形成工程と、
前記p型窒化物半導体層が形成された基板を水素ガスを含んだ雰囲気ガス中で冷却する冷却工程と、を備えるp型窒化物半導体の製造方法であって、
前記冷却工程における前記基板の温度が950℃から700℃まで連続して降下する間において、p型窒化物半導体層が冷却後の正孔キャリア濃度が1×1016cm-3以上の低抵抗性を維持できる雰囲気の水素濃度と冷却時間の組合わせであって、前記雰囲気の水素濃度(容量%)をX軸、950℃から700℃までの冷却時間(分)をY軸とし、座標を(X、Y)として、点A(50、1.0)、点B(30、1.8)、点C(10、4.1)、点D(0、15)、点E(0、0.5)、及び点F(50、0.5)で表される各点によって囲まれた領域ABCDEF内でp型窒化物半導体層が形成された基板を冷却することを特徴とするものであり、冷却工程におけるp型ドーパントの不活性化を抑制することができるという作用を有する。
【0016】
ここで、特定のガスの雰囲気の濃度とは、その雰囲気におけるそのガスの容量比をいう。
【0017】
以下に、本発明のp型窒化物半導体の製造方法に係わる実施の形態の具体例を、図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は、本発明の一実施の形態に係るp型窒化物半導体を示す構成断面図を示している。図1に示すように、サファイアからなる基板11上には、GaNからなるバッファ層12と、GaNからなるp型窒化物半導体層13とが順次形成されている。
【0019】
具体的には、基板11を反応管(図示せず)内の基板ホルダーに保持し、基板11の温度を約1000℃として窒素ガス及び水素ガスを流しながら、基板11の表面をクリーニングした。
【0020】
次に、基板11の温度を約550℃にまで降下させ、キャリアガスとして窒素ガスを流しながら、アンモニアとトリメチルガリウム(以下、TMGと略称する。)を供給して、基板11の表面上に、バッファ層12を形成した。
【0021】
次に、反応管へのTMGの供給を一旦止めて、基板温度を約1050℃にまで昇温した後、キャリアガスとして窒素ガス及び水素ガスを流しながら、アンモニアとTMGとビスシクロペンタジエニルマグネシウム(以下、Cp2Mgと略称する。)を供給して、p型ドーパントであるMgをドープしたGaNからなるp型窒化物半導体層13を、バッファ層12上に形成した。
【0022】
次に、反応管へのTMGとCp2Mgとの供給を停止した後、雰囲気ガスとして、窒素ガスと水素ガスとアンモニアを流しながら、基板11の温度を1050℃から700℃まで降下させ、さらにこの後、水素ガスとアンモニアの供給を停止して、雰囲気ガスとして窒素ガスを流しながら、基板11の温度が100℃以下になるまで冷却した。
【0023】
ここで、本発明の第1のp型窒化物半導体の製造方法は、冷却工程において、基板温度が略950℃〜略700℃の間で、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却時間の組合わせでp型窒化物半導体層を冷却することが特徴であり、以下にこのことについて説明する。
【0024】
本発明者らは、略950℃以上の基板温度でp型窒化物半導体を形成した後の冷却工程において、特に基板の温度範囲が略950℃〜略700℃の間において、雰囲気に存在する水素によりp型窒化物半導体の正孔キャリア濃度が低減されるという事実を発見した。
【0025】
図2は、本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における正孔キャリア濃度に対する基板保持温度依存性を示すグラフである。即ち、基板温度1050℃でMgドープGaN層を形成した後、冷却工程において、ある基板温度で10分間保持して、その後室温まで冷却した場合のp型窒化物半導体の正孔キャリア濃度を示したものであり、横軸に10分間保持した基板温度を、縦軸に正孔キャリア濃度をプロットしたものである。冷却工程における雰囲気は、窒素をベースとして、アンモニア濃度を20%とし、水素濃度を30%と0%の2通りで行った。図2から明らかなように、水素濃度が30%の場合、略800℃を最小点として950℃〜700℃の温度域で正孔キャリア濃度の著しい低下がみられた。一方、水素濃度が0%の場合は、同じ温度域で正孔キャリア濃度の低下がみられたが、その程度は小さかった。即ち、950℃〜700℃の温度範囲において雰囲気に存在する水素濃度に応じて、p型窒化物半導体の正孔キャリア濃度が低下することが明らかとなった。この正孔キャリア濃度の低下は、p型窒化物半導体中のp型ドーパントが水素と結合して不活性化するためと推測される。水素濃度が0%の場合でも若干の低下が生じたのは、アンモニアが分解して生じた水素が影響したものと考えられる。
【0026】
さらに、本発明者らは、冷却工程において、基板温度が略950℃から略700℃まで降下する冷却時間と、正孔キャリア濃度の関係を調べた。
【0027】
図3は、本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における正孔キャリア濃度に対する略950℃から略700℃までの基板冷却時間依存性を示すグラフである。即ち、基板温度1050℃でMgをドープしたGaN層を形成した後、冷却工程において、種々の冷却速度で700℃まで冷却し、その後室温まで冷却した場合のp型窒化物半導体の正孔キャリア濃度を示したものであり、横軸に基板温度が略950℃から略700℃まで降下するのに要する冷却時間を、縦軸に正孔キャリア濃度をプロットしたものである。冷却速度は少なくとも基板温度が略950℃〜略700℃の間はほぼ一定となるように制御した。冷却工程における雰囲気は、窒素をベースとして、アンモニア濃度を20%とし、水素濃度を50%、30%、10%、及び0%の4通りで行った。図3から明らかなように、いずれの水素濃度においても、冷却時間が長くなるに伴い正孔キャリア濃度が低下した。図3から、室温での正孔キャリア濃度が約1×1016cm-3となる冷却時間を求めた結果、水素濃度が50%、30%、10%、及び0%の場合で、各々1.0分、1.8分、4.1分、及び15分であった。即ち、p型半導体として実用的な約1×1016cm-3以上を確保するためには、水素濃度が50%、30%、10%、及び0%の場合で、基板温度が略950℃から略700℃までの冷却時間が各々1.0分、1.8分、4.1分、及び15分以内とする必要があることが分かった。
【0028】
図4は、本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における雰囲気の水素濃度と略950℃から略700℃までの基板冷却時間の関係を示すグラフである。
【0029】
上述の結果より、p型窒化物半導体を形成した後の冷却工程において、基板温度が略950℃から略700℃まで降下する間に、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却時間の組合わせとして、図4に示すように、雰囲気の水素濃度(%)をX軸、基板温度が略950℃〜略700℃の間の冷却時間(分)をY軸とし、座標を(X、Y)として、点A(50、1.0)、点B(30、1.8)、点C(10、4.1)、点D(0、15)、点E(0、0.5)、及び点F(50、0.5)で表される各点によって囲まれた領域ABCDEF内で規定される組合わせを選択することが好ましい。ここで、水素濃度に無関係に直線EFで規定される下限の冷却時間が0.5分であるのは、これより短い冷却時間で冷却すると、熱衝撃によりp型窒化物半導体にクラックが入りやすくなるからである。
【0030】
(実施の形態2)
本発明の第2のp型窒化物半導体の製造方法によって、第1の実施の形態と同様に図1に示す断面構造のp型窒化物半導体を作製した。
【0031】
まず、第1の実施の形態と同様の方法を用いて、図1に示すように、基板11上に、バッファ層12と、p型窒化物半導体層13を順次形成する。
【0032】
ここで、本発明の第2のp型窒化物半導体の製造方法は、冷却工程における基板の温度が略800℃の時点において、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却速度の組合わせでp型窒化物半導体層を冷却する。
【0033】
図2に示したように、基板温度が略950℃〜略700℃の間において、最もp型ドーパントの不活性化が顕著に進行するのは、基板温度が略800℃である。したがって、基板温度が略800℃付近にある時間を極力短くすること、言い換えれば、略800℃での冷却速度を所定の値以上にすることが、p型窒化物半導体の低抵抗性を維持する上で効果的である。
【0034】
そこで、図3から、p型半導体として実用的な約1×1016cm-3以上を確保するためには、基板温度が略800℃における冷却速度が、水素濃度が50%、30%、10%、及び0%の場合に、各々250℃/分、140℃/分、61℃/分、及び17℃/分以上とする必要があることが分かった。
【0035】
図5は、本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における雰囲気の水素濃度と略800℃における基板冷却速度の関係を示すグラフである。
【0036】
上述の結果より、p型窒化物半導体を形成した後の冷却工程において、基板温度が略800℃で、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却速度の組合わせとして、図5に示すように、雰囲気の水素濃度(%)をX軸、基板温度が略800℃での冷却速度(℃/分)をY軸とし、座標を(X、Y)として、点O(50、250)、点P(30、140)、点Q(10、61)、点R(0、17)、点S(0、500)、及び点T(50、500)で表される各点によって囲まれた領域OPQRST内で規定される組合わせを選択することが好ましい。ここで、水素濃度に無関係に直線STで規定される上限の冷却速度が500℃/分であるのは、これより速い冷却速度で冷却すると、熱衝撃によりp型窒化物半導体にクラックが入りやすくなるからである。
【0037】
基板11には、サファイア以外に、SiC、スピネル、Si、GaAs等の窒化物半導体とは異種材料からなるものを用いることができ、また、GaN等の窒化物半導体からなるものを用いることもできる。基板11が異種材料からなる場合は、基板11とその上に形成するp型窒化物半導体層13との間に、窒化物半導体と基板11との結晶の格子不整合を緩和するために、略400℃〜略600℃の低い基板温度でGaN等からなるバッファ層12を形成する。基板11が窒化物半導体からなる場合は、バッファ層12を形成することなく、基板11上に直接にp型窒化物半導体層13を形成することができる。
【0038】
p型窒化物半導体層13は、予め基板11の上にn型窒化物半導体層や窒化物半導体からなる活性層を形成した後に、この上に形成することで、pn接合を有する素子層構成とすることもできる。
【0039】
p型窒化物半導体層13は、基板11の温度を略950℃以上に保持して、p型ドーパント源と窒素源とIII族源とを導入することにより形成することができる。基板温度としては、略950℃〜略1200℃の範囲が望ましい。基板温度が950℃より低いと、p型窒化物半導体層13の形成過程においてp型ドーパントが水素と結合して不活性化しやすくなり、低抵抗なp型窒化物半導体層が形成できないからであり、1200℃より高いと、良好な結晶性を有するp型窒化物半導体層が形成困難となるからである。
【0040】
p型窒化物半導体層13は、GaNやAlGaN、InGaN、InAlGaN等の単層、若しくはこれらの層を積層したものを用いることができるが、略950℃以上の基板温度で良好な結晶性が得られやすいAlxGa1-xN(0≦x<1)、またはこれに微量のInがドープされたものを用いることが好ましい。
【0041】
p型窒化物半導体層13のp型ドーパントとしては、MgやZn、Cd、C等を用いることができるが、比較的容易にp型伝導が得られるMgを用いることが好ましい。p型ドーパントの濃度は、1×1019cm-3以上で5×1020cm-3未満とすることが望ましい。p型ドーパント濃度が1×1019cm-3よりも低くなると、p型窒化物半導体層13の正孔キャリア濃度が低くなり、また、p型窒化物半導体層13の上に電極を形成する際にオーミック接触抵抗が高くなるからであり、5×1020cm-3よりも高くなると、p型ドーパントを高濃度にドープしたことに起因してp型窒化物半導体層13の結晶性が悪くなり、p型伝導が得られにくくなるからである。
【0042】
p型窒化物半導体層13を形成する際の反応管内の雰囲気は、濃度が5%〜70%程度の水素を含むことが好ましく、濃度が10%〜30%程度の水素を含むことがさらに好ましい。濃度が5%より低くなると、形成表面での原子のマイグレーションが低下することでp型窒化物半導体層13の結晶性の劣化が生じるようになり、且つ、p型窒化物半導体層13へのp型ドーパントの取り込まれ率が低下するからであり、濃度が70%を越えると、p型窒化物半導体層13の形成過程における水素によるp型ドーパントの不活性化が生じるようになるからである。
【0043】
冷却工程は、少なくとも基板温度が略950℃を下回るまでの間は、雰囲気のアンモニア濃度が5%以上であることが好ましい。アンモニア濃度が5%より低いと、p型窒化物半導体表面から窒素が脱離して表面の結晶性が劣化しやすくなるからである。
【0044】
また、冷却工程は、基板温度が略950℃〜略700℃の間は、雰囲気のアンモニア濃度が30%以下であることが好ましい。アンモニア濃度が30%より高いと、アンモニアの熱分解で生じる水素が増加してp型窒化物半導体の正孔キャリア濃度が低下しやすくなるからである。
【0045】
【実施例】
以下、本発明のp型窒化物半導体の製造方法の実施例について図面を参照しながら説明する。
【0046】
(実施例1)
本実施例においては、図1に示す断面構造を有するp型窒化物半導体を作製した。
【0047】
まず、表面を鏡面に仕上げられたサファイアからなる基板11を反応管(図示せず)内の基板ホルダーに載置した後、基板11の温度を約1000℃として、窒素ガスを5リットル/分及び水素ガスを5リットル/分で流しながら、基板11を約10分間加熱することにより、基板11の表面に付着している有機物等の汚れや水分を除去した。
【0048】
次に、基板11の温度を約550℃にまで降下させ、キャリアガスとして窒素ガスを約16リットル/分で流しながら、アンモニアを約4リットル/分、TMGを約40μmol/分、で供給して、基板11の表面上に、GaNからなるバッファ層12を約0.03μmの厚さで形成した。
【0049】
次に、反応管へのTMGの供給を一旦止めて、基板温度を約1050℃にまで昇温した後、キャリアガスとして窒素ガスを約12リットル/分及び水素ガスを約4リットル/分で流しながら、アンモニアを約4リットル/分、TMGを約80μmol/分、Cp2Mgを約0.2μmol/分、で供給して、p型ドーパントであるMgをドープしたGaNからなるp型窒化物半導体層13を、バッファ層12上に、2μmの厚さで形成した。このp型窒化物半導体層13のMg濃度は約2×1019cm-3であった。ここでいう水素ガスの流量には、TMGとCp2Mgとを気化させるための水素ガスをも含めている。
【0050】
次に、反応管へのTMGとCp2Mgとの供給を停止した後、雰囲気ガスとして、窒素ガスを約12リットル/分、水素ガスを約4リットル/分、アンモニアを約4リットル/分、で流しながら、基板11の温度を1050℃から950℃まで約0.5分で降下させた。
【0051】
この後、水素ガスの供給を停止して、雰囲気ガスとして、窒素ガスを約16リットル/分、アンモニアを約4リットル/分、で流しながら、基板11の温度を950℃から700℃まで約1.2分で降下させた。この時の基板11の温度が略800℃における冷却速度は約210℃/分であった。その後は、アンモニアの供給を停止して、雰囲気ガスとして窒素ガスを約20リットル/分で流しながら、基板11の温度が100℃以下になるまで冷却した。
【0052】
冷却後、反応管からp型窒化物半導体層13がその表面に形成された基板11を取り出し、ポストアニーリングを行うことなく、基板11を5mm角の大きさのチップに切り出し、Van der Pauw法によるホール効果測定を実施したところ、正孔キャリア濃度は1.6×1017cm-3であり、低抵抗で且つ良質なp型半導体層が形成できた。冷却前のp型窒化物半導体層13の正孔キャリア濃度は、図3において冷却時間を零に外挿して求まる約2.0×1017cm-3であったと推測されるので、冷却工程における正孔キャリア濃度の減少を約20%の減少に抑えることができた。
【0053】
(実施例2)
実施例2においては、上記実施例1において、冷却工程における雰囲気の条件を変化させた以外は、上記実施例1と同様の手順でp型窒化物半導体を作製した。
【0054】
具体的には、p型窒化物半導体層13を形成した後、反応管へのTMGとCp2Mgとの供給を停止し、雰囲気ガスとして、窒素ガスを約12リットル/分、水素ガスを約4リットル/分、アンモニアを約4リットル/分、で流しながら、基板11の温度を1050℃から700℃まで約1.7分で降下させた。この時、基板11の温度が1050℃から950℃まで降下するのに約0.5分、950℃から700℃まで降下するのに約1.2分を要した。また、この時の基板11の温度が800℃における冷却速度は約210℃/分であった。
【0055】
基板11の温度が700℃を下回った後は、水素ガスとアンモニアとの供給を停止して、雰囲気ガスとして窒素ガスを約20リットル/分で流しながら、基板11の温度が100℃以下になるまで冷却した。
【0056】
冷却後、反応管からp型窒化物半導体層13がその表面に形成された基板11を取り出し、基板11を5mm角の大きさのチップに切り出し、ホール効果測定を実施したところ、正孔キャリア濃度は約4.6×1016cm-3であった。冷却前のp型窒化物半導体層13の正孔キャリア濃度は、約2.0×1017cm-3であったと推測されるので、冷却工程における正孔キャリア濃度の減少を約77%の減少に抑えることができた。
【0057】
(比較例1)
比較例1においては、上記実施例2において、冷却工程における冷却時間(あるいは冷却速度)を変化させた以外は、上記実施例2と同様の手順でp型窒化物半導体を作製した。
【0058】
具体的には、p型窒化物半導体層13を形成した後、反応管へのTMGとCp2Mgとの供給を停止し、雰囲気ガスとして、窒素ガスを約12リットル/分、水素ガスを約4リットル/分、アンモニアを約4リットル/分、で流しながら、基板11の温度を1050℃から700℃まで約5.6分で降下させた。この時、基板11の温度が1050℃から950℃まで降下するのに約1.6分、950℃から700℃まで降下するのに約4.0分を要した。また、この時の基板11の温度が800℃における冷却速度は約63℃/分であった。
【0059】
基板11の温度が700℃を下回った後は、水素ガスとアンモニアとの供給を停止して、雰囲気ガスとして窒素ガスを約20リットル/分で流しながら、基板11の温度が100℃以下になるまで冷却した。
【0060】
冷却後、反応管からp型窒化物半導体層13がその表面に形成された基板11を取り出し、基板11を5mm角の大きさのチップに切り出し、ホール効果測定を実施したところ、正孔キャリア濃度は約2×1015cm-3で、高抵抗あった。冷却前のp型窒化物半導体層13の正孔キャリア濃度は、約2.0×1017cm-3であったと推測されるので、冷却工程において、正孔キャリア濃度は約99%減少した。
【0061】
(実施例3)
図6は、本発明の他の実施の形態に係るp型窒化物半導体を示す構成断面図である。
【0062】
本実施例においては、図6に示す断面構造を有する、p型窒化物半導体層を最上面に配置した窒化物半導体発光素子を作製した。
【0063】
窒化物半導体発光素子は、Siがドープされたn型GaNからなる基板21上に、ノンドープのGaNからなる第1のn型クラッド層22と、ノンドープのAlGaNからなる第2のn型クラッド層23と、ノンドープのInGaNからなる発光層24と、ノンドープのGaNからなる中間層25と、MgがドープされたAlGaNからなるp型クラッド層26とが順次積層されて構成されている。p型クラッド層26上には、PtとAuとがこの順に積層されてなるp側電極27が形成されており、基板21が露出された領域上にTiとAuからなるn側電極28が形成されている。このように、本発光素子は、発光層24を挟んでpn接合が形成されている発光ダイオードである。
【0064】
以下、前記のように構成された発光ダイオード素子の製造方法について説明する。
【0065】
まず、表面を鏡面に仕上げられ、Siがドープされることによりn型とされているGaNからなる基板21を反応管(図示せず)内の基板ホルダーに載置した後、基板21の温度を約1100℃として、窒素ガスを4リットル/分、水素ガスを4リットル/分、アンモニアを2リットル/分で流しながら、基板21を約1分間加熱することにより、基板21の表面に付着している有機物等の汚れや水分を除去した。
【0066】
次に、基板21の温度を約1100℃に保持したままで、キャリアガスとして窒素ガスを約13リットル/分及び水素ガスを約3リットル/分で流しながら、アンモニアを約4リットル/分、TMGを約80μmol/分、で供給して、ノンドープのGaNからなる第1のn型クラッド層22を0.5μmの厚さで形成した。
【0067】
第1のn型クラッド層22を形成後、基板21の温度を約1100℃に保持したままで、キャリアガスとして窒素ガスを約15リットル/分及び水素ガスを約3リットル/分で流しながら、アンモニアを約2リットル/分、TMGを約40μmol/分、トリメチルアルミニウム(以下、TMAと略称する。)を約3μmol/分、で供給して、ノンドープのAl0.05Ga0.95Nからなる第2のn型クラッド層23を0.05μmの厚さで形成した。
【0068】
第2のn型クラッド層23を形成後、TMGとTMAの供給を止め、基板21の温度を約700℃にまで降下させ、この温度に維持して、キャリアガスとして窒ガスを約14リットル/分、アンモニアを約6リットル/分、TMGを約4μmol/分、トリメチルインジウム(以下、TMIと略称する。)を約1μmol/分、で供給して、ノンドープのIn0.15Ga0.85Nからなる単一量子井戸構造の発光層24を0.002μmの厚さで形成した。
【0069】
発光層24を成長後、TMIの供給を止め、キャリアガスとして窒素ガスを約14リットル/分で流しながら、アンモニアを6リットル/分、TMGを2μmol/分で供給して、基板21の温度を1050℃に向けて昇温させながら、アンドープのGaNからなる中間層25を0.004μmの厚さで成長させた。
【0070】
基板21の温度が1050℃に達したら、キャリアガスとして窒素ガスを14リットル/分及び水素ガスを4リットル/分で流しながら、アンモニアを2リットル/分、TMGを40μmol/分、TMAを3μmol/分、Cp2Mgを0.4μmol/分、で供給して、MgをドープしたAl0.05Ga0.95Nからなるp型クラッド層26を0.2μmの厚さで成長させた。このp型クラッド層26のMg濃度は約8×1019cm-3であった。
【0071】
p型クラッド層26を成長後、TMGとTMAとCp2Mgの供給を止め、雰囲気ガスとして、窒素ガスを約14リットル/分、水素ガスを約4リットル/分、アンモニアを約2リットル/分、で流しながら、基板21の温度を1050℃から950℃まで約0.5分で降下させた。
【0072】
この後、水素ガスの供給を停止して、雰囲気ガスとして、窒素ガスを約18リットル/分、アンモニアを約2リットル/分、で流しながら、基板21の温度を950℃から700℃まで約1.2分で降下させた。この時の基板21の温度が略800℃における冷却速度は約210℃/分であった。
【0073】
基板21の温度が700℃を下回ってから、アンモニアの供給を停止して、雰囲気ガスとして窒素ガスを約20リットル/分で流しながら、基板21の温度が100℃以下になるまで冷却した後、基板21を反応管から取り出した。
【0074】
得られた窒化物半導体層、特に、p型クラッド層26は、ドープされたMgを活性化させるためのポストアニーリングを行なわなくても、低抵抗で且つ良質なp型半導体層であった。
【0075】
このようにして形成した窒化物半導体からなる積層構造に対して、ポストアニールを施すことなく、その表面上にCVD法によりSiO2膜を堆積させた後、フォトリソグラフィとウェットエッチングにより略方形状にパターンニングしてエッチング用のSiO2マスクを形成させた。そして、反応性イオンエッチング法により、p型クラッド層26と中間層25と発光層24と第2のn型クラッド層23と第1のn型クラッド層22と基板21の一部を約1μmの深さで積層方向と逆の方向に向かって除去させて、基板21の表面を露出させた。そして、フォトリソグラフィーと蒸着法により、露出させた基板21の表面上の一部に、0.1μm厚のTiと0.5μm厚のAuを積層したn側電極28を蒸着形成させた。さらに、エッチング用のSiO2マスクをウェットエッチングにより除去させた後、フォトリソグラフィーと蒸着法により、p型クラッド層26の表面上のほぼ全面に、0.3μm厚のPtと0.5μm厚のAuとからなるp側電極27を蒸着形成させた。
【0076】
この後、基板21の裏面を研磨して100μm程度の厚さに調整し、スクライブによりチップ状に分離した。
【0077】
上述の結果、図6に示す窒化物半導体発光素子が得られた。
【0078】
この発光素子を、電極形成面側を下向きにして、正負一対の電極を有するSiダイオードの上にAuバンプにより接着させた。このとき、発光素子のp側電極27およびn側電極28が、それぞれSiダイオードの負電極および正電極と接続されるようして発光素子を搭載する。この後、発光素子を搭載させたSiダイオードを、Agペーストによりステム上に載置し、Siダイオードの正電極をステム上の電極にワイヤで結線し、その後樹脂モールドして発光ダイオードを作製した。この発光ダイオードを20mAの順方向電流で駆動したところ、ピーク発光波長470nmの青色で発光し、基板21の裏面側から均一な面発光が得られた。このときの発光出力は4mWであり、順方向動作電圧は3.4Vであった。
【0079】
以上説明したように、本実施例によると、p型窒化物半導体層形成工程において、p型クラッド層26として低抵抗で且つ高品質のp型半導体層を形成でき、さらに、冷却工程において、p型クラッド層26の低抵抗性を維持して冷却することができる。その結果、ポストアニーリング等の特別な処理を実施することなく、低電圧及び高出力で動作する窒化物半導体発光素子を実現できる。
【0080】
【発明の効果】
本発明に係るp型窒化物半導体の製造方法によると、基板上に低抵抗のp型窒化物半導体層を形成しておき、冷却工程における特定の基板温度範囲において、p型ドーパントの不活性化が生じにくい雰囲気の水素濃度と冷却時間の組合わせ、又は雰囲気の水素濃度と冷却速度の組合わせでp型窒化物半導体層を冷却するため、ポストアニーリング等の特別な処理を行なうことなく、低抵抗で結晶品質に優れるp型窒化物半導体を得ることができる。
【0081】
また、p型窒化物半導体の製造工程を簡略化できるので、p型窒化物半導体を用いた窒化物半導体素子の製造コストを低減できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るp型窒化物半導体を示す構成断面図
【図2】本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における正孔キャリア濃度に対する基板保持温度依存性を示すグラフ
【図3】本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における正孔キャリア濃度に対する略950℃から略700℃までの基板冷却時間依存性を示すグラフ
【図4】本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における雰囲気の水素濃度と略950℃から略700℃までの基板冷却時間の関係を示すグラフ
【図5】本発明の一実施の形態に係るp型窒化物半導体の製造方法の冷却工程における雰囲気の水素濃度と略800℃における基板冷却速度の関係を示すグラフ
【図6】本発明の他の実施の形態に係るp型窒化物半導体を示す構成断面図
【符号の説明】
11 基板
12 バッファ層
13 p型窒化物半導体層
21 基板
22 第1のn型クラッド層
23 第2のn型クラッド層
24 発光層
25 中間層
26 p型クラッド層
27 p側電極
28 n側電極

Claims (1)

  1. 基板の上に、該基板の温度を950℃以上に保持して、p型ドーパント源と窒素源とIII族源とを導入することにより、前記基板上に低抵抗のp型窒化物半導体層を形成するp型窒化物半導体層形成工程と、
    前記p型窒化物半導体層が形成された基板を水素ガスを含んだ雰囲気ガス中で冷却する冷却工程と、を備えるp型窒化物半導体の製造方法であって、
    前記冷却工程における前記基板の温度が950℃から700℃まで連続して降下する間において、p型窒化物半導体層が冷却後の正孔キャリア濃度が1×1016cm-3以上の低抵抗性を維持できる雰囲気の水素濃度と冷却時間の組合わせであって、前記雰囲気の水素濃度(容量%)をX軸、950℃から700℃までの冷却時間(分)をY軸とし、座標を(X、Y)として、点A(50、1.0)、点B(30、1.8)、点C(10、4.1)、点D(0、15)、点E(0、0.5)、及び点F(50、0.5)で表される各点によって囲まれた領域ABCDEF内でp型窒化物半導体層が形成された基板を冷却することを特徴とするp型窒化物半導体の製造方法。
JP2000212356A 1999-10-15 2000-07-13 p型窒化物半導体の製造方法 Expired - Fee Related JP4103309B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000212356A JP4103309B2 (ja) 2000-07-13 2000-07-13 p型窒化物半導体の製造方法
US09/680,943 US7056755B1 (en) 1999-10-15 2000-10-10 P-type nitride semiconductor and method of manufacturing the same
DE2001134181 DE10134181B4 (de) 2000-07-13 2001-07-13 Verfahren zur Herstellung eines p-leitenden Nitrid-Halbleiters
US11/395,128 US20060183260A1 (en) 1999-10-15 2006-04-03 P-type nitride semiconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000212356A JP4103309B2 (ja) 2000-07-13 2000-07-13 p型窒化物半導体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006013404A Division JP4720519B2 (ja) 2006-01-23 2006-01-23 p型窒化物半導体の製造方法

Publications (2)

Publication Number Publication Date
JP2002033279A JP2002033279A (ja) 2002-01-31
JP4103309B2 true JP4103309B2 (ja) 2008-06-18

Family

ID=18708289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000212356A Expired - Fee Related JP4103309B2 (ja) 1999-10-15 2000-07-13 p型窒化物半導体の製造方法

Country Status (2)

Country Link
JP (1) JP4103309B2 (ja)
DE (1) DE10134181B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268706B2 (en) 2009-04-08 2012-09-18 Panasonic Corporation Semiconductor device manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200711171A (en) * 2005-04-05 2007-03-16 Toshiba Kk Gallium nitride based semiconductor device and method of manufacturing same
JP2007042944A (ja) * 2005-08-04 2007-02-15 Rohm Co Ltd 窒化物半導体素子の製法
JP4841206B2 (ja) 2005-09-06 2011-12-21 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
JP4767020B2 (ja) * 2006-01-05 2011-09-07 パナソニック株式会社 窒化物系化合物半導体素子の製造方法
JP4416044B1 (ja) * 2008-10-07 2010-02-17 住友電気工業株式会社 p型窒化ガリウム系半導体を作製する方法、窒化物系半導体素子を作製する方法、及びエピタキシャルウエハを作製する方法
JP2009177219A (ja) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp GaN系半導体素子の製造方法
JP5316623B2 (ja) * 2011-11-07 2013-10-16 住友電気工業株式会社 Iii族窒化物半導体を成長する方法
JP6216524B2 (ja) * 2013-03-18 2017-10-18 トランスフォーム・ジャパン株式会社 半導体装置の製造方法及び半導体装置
DE102017120896A1 (de) * 2017-09-11 2019-03-14 Aixtron Se Verfahren zum Abscheiden einer C-dotierten AlN-Schicht auf einem Siliziumsubstrat und aus einer derartigen Schichtstruktur aufgebautes Halbleiter-Bauelement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19680872B4 (de) * 1995-08-31 2009-01-08 Kabushiki Kaisha Toshiba, Kawasaki Verfahren zur Herstellung eines Licht emittierenden Elements
JP3688843B2 (ja) * 1996-09-06 2005-08-31 株式会社東芝 窒化物系半導体素子の製造方法
US6051847A (en) * 1997-05-21 2000-04-18 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound-based semiconductor light emitting device and process for producing gallium nitride compound-based semiconductor thin film
US5891790A (en) * 1997-06-17 1999-04-06 The Regents Of The University Of California Method for the growth of P-type gallium nitride and its alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268706B2 (en) 2009-04-08 2012-09-18 Panasonic Corporation Semiconductor device manufacturing method
JPWO2010116424A1 (ja) * 2009-04-08 2012-10-11 パナソニック株式会社 半導体素子の製造方法

Also Published As

Publication number Publication date
DE10134181B4 (de) 2007-12-27
DE10134181A1 (de) 2002-02-28
JP2002033279A (ja) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3688843B2 (ja) 窒化物系半導体素子の製造方法
US8470627B2 (en) Method for manufacturing semiconductor light emitting device
JP5549338B2 (ja) 紫外光放射用窒素化合物半導体ledおよびその製造方法
JPH05183189A (ja) p型窒化ガリウム系化合物半導体の製造方法。
JP3761935B2 (ja) 化合物半導体装置
JP3325479B2 (ja) 化合物半導体素子及びその製造方法
JPH09293897A (ja) 半導体素子とその製造方法
US20060183260A1 (en) P-type nitride semiconductor and method of manufacturing the same
JP4724901B2 (ja) 窒化物半導体の製造方法
JP4641812B2 (ja) 窒化ガリウム系化合物半導体積層物およびその製造方法
JP2009021638A (ja) 窒化ガリウム系化合物半導体発光素子
US6365923B1 (en) Nitride semiconductor light-emitting element and process for production thereof
JP3561105B2 (ja) p型半導体膜および半導体素子
JP4103309B2 (ja) p型窒化物半導体の製造方法
JP5873260B2 (ja) Iii族窒化物積層体の製造方法
JP3361964B2 (ja) 半導体発光素子およびその製造方法
JPH0832113A (ja) p型GaN系半導体の製造方法
JP4720519B2 (ja) p型窒化物半導体の製造方法
JP3522610B2 (ja) p型窒化物半導体の製造方法
JP6453542B2 (ja) 半導体装置及びこれの製造方法
JP3722426B2 (ja) 化合物半導体装置
JP4705384B2 (ja) 窒化ガリウム系半導体素子
JP2005340762A (ja) Iii族窒化物半導体発光素子
JP3642199B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法
JP3857715B2 (ja) 化合物半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees