WO2010113452A1 - 遺伝子型の識別方法 - Google Patents

遺伝子型の識別方法 Download PDF

Info

Publication number
WO2010113452A1
WO2010113452A1 PCT/JP2010/002200 JP2010002200W WO2010113452A1 WO 2010113452 A1 WO2010113452 A1 WO 2010113452A1 JP 2010002200 W JP2010002200 W JP 2010002200W WO 2010113452 A1 WO2010113452 A1 WO 2010113452A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
stranded nucleic
double
reaction
genotype
Prior art date
Application number
PCT/JP2010/002200
Other languages
English (en)
French (fr)
Inventor
山根明男
中山尚母
北野史朗
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201080014225.2A priority Critical patent/CN102369297B/zh
Priority to EP10758232.2A priority patent/EP2418289B1/en
Priority to JP2011507005A priority patent/JP5720564B2/ja
Publication of WO2010113452A1 publication Critical patent/WO2010113452A1/ja
Priority to US13/248,321 priority patent/US9523119B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels

Definitions

  • the present invention relates to a method for identifying genotypes such as gene polymorphisms and somatic mutations, and a kit used in the method. More specifically, the present invention relates to a method for determining the nucleotide sequence of a nucleic acid using competitive hybridization utilizing strand displacement reaction. The present invention relates to a method for improving the identification accuracy of a method for identifying a difference and a kit used in the method.
  • This application claims priority based on Japanese Patent Application No. 2009-084967 for which it applied to Japan on March 31, 2009, and uses the content here.
  • a certain SNP has three types of genotypes AA, AG, and GG.
  • A represents adenine and G represents a guanine base.
  • This SNP is an example in which the position of the genome may be adenine or guanine. Therefore, the test for identifying the genotype of the SNP will determine which of these three genotypes. That is, it may be determined whether A is 0 or 100, G is 0 or 100, or A and G are 50 and 50.
  • detection of germ cell mutations such as SNP can be said to be almost qualitative detection, and various methods that are relatively easy and simple have been put to practical use.
  • cancer cells mutations occur at the level of somatic cells, and the mutations are thought to trigger cancer and lead to abnormal growth. Accordingly, a specific gene mutation may be observed in a specific type of cancer cell, and it is also possible to detect a cancer cell using the mutation as an index.
  • cancer cells are rich in diversity, and it is not always easy to identify cancer cells with one type of mutation.
  • the most sensitive method is a method called “mutant-enriched PCR” in which only a normal gene is cleaved with a restriction enzyme and only a mutant gene that has not been cleaved is amplified.
  • a mutant gene that has not been cleaved is amplified.
  • Nonpatent literature 1. a method called “mutant-enriched PCR” in which only a normal gene is cleaved with a restriction enzyme and only a mutant gene that has not been cleaved is amplified.
  • This method is a method called “ARMS (amplification restitution structure system)” (for example, see Non-patent Document 3), “ASPCR (allele specific PCR)” (for example, see Non-Patent Document 4), or the like. is there.
  • This method is relatively sensitive, requires no operations other than the general PCR amplification reaction, can perform all of the reaction in a closed system, is very simple, and carries over PCR. It is an excellent method without contamination. However, if a normal gene is amplified with a single base identification error, the normal gene is amplified in the subsequent amplification reaction in the same manner as the amplification of the mutant gene.
  • Another method for detecting somatic cell gene mutation is a method in which a mutated gene and a normal gene are amplified simultaneously, and then the mutated gene and the normal gene are distinguished and detected.
  • a method for distinguishing and detecting the amplified mutant gene and the normal gene there are a method utilizing electrophoresis, various methods utilizing hybridization, and the like (for example, see Non-Patent Document 5).
  • a dideoxy sequencing method is known as a gold standard for detecting mutant genes.
  • the dideoxy sequencing method can detect mutant genes with relatively high sensitivity, but when mutant genes and normal genes coexist, the detection sensitivity of mutant genes is about 10%, which is very sensitive. It cannot be detected.
  • the pyro sequencing method can increase the detection sensitivity to about 5% and is superior to the dideoxy sequencing method (see, for example, Non-Patent Document 6).
  • a method has been developed in which a sequence containing a mutation is amplified by PCR, a melting curve of the double-stranded DNA of the product is obtained, and the ratio of the mutant gene is obtained from the difference between the melting curves of the mutant gene and the normal gene. Even with this method, it is said that mutant genes contained in normal genes can be detected up to about 5% (see, for example, Non-Patent Document 7).
  • PCR-PHFA method using a chain recombination reaction (strand displacement reaction) between two strands having the same base sequence was developed.
  • the PCR-PHFA method can distinguish each strand if the base sequence is exactly the same between the sample (double-stranded nucleic acid) whose genotype is to be identified and a standard double-stranded nucleic acid with a known sequence.
  • the strand recombination (strand substitution) occurs, but even if there is a difference in even one base, the strands having completely complementary base sequences preferentially form two strands, so the sample and standard
  • Non-Patent Document 8 It has been reported that by using this PCR-PHFA method, a mutated gene can be detected with high sensitivity of about 1% from an actual specimen (see, for example, Non-Patent Document 8).
  • the PCR-PHFA method is a method with high detection sensitivity and excellent reproducibility, but the operation is somewhat complicated (see, for example, Patent Document 1), and carry-over contamination is also a problem. Met. In order to solve these problems, several improved methods have been proposed.
  • Patent Document 2 discloses a method using fluorescence resonance energy transfer as an improved method of the PCR-PHFA method.
  • the PCR-PHFA method for accurately measuring a minute amount of mutant genes with high sensitivity, it is necessary to detect strand recombination between two double-stranded nucleic acids having the same sequence.
  • the nucleic acid is unlabeled, and a standard nucleic acid with a known sequence for causing strand recombination is labeled.
  • a fluorescent substance is bound and labeled near the 5 'end of one strand of a standard nucleic acid, and the vicinity of the 3' end of the other strand is labeled with another fluorescent substance.
  • the degree of strand recombination can be measured by measuring the degree of this fluorescence resonance energy transfer.
  • the sensitivity of identifying a base sequence in a strand displacement reaction is not sufficient, and it has been difficult to accurately detect and identify gene mutations, particularly somatic mutations.
  • the PCR-PHFA method using fluorescence resonance energy transfer described in Patent Document 2 is simple because it does not require complicated solid-liquid separation, and PCR-PHFA is performed in a closed reaction vessel. Although this is a good method capable of significantly reducing the risk of contamination, the identification sensitivity is still insufficient.
  • the present invention provides a method capable of improving the accuracy of identifying differences in base sequences in a genotype identification method using the PCR-PHFA method, and a kit suitable for the method. With the goal.
  • the sample double-stranded nucleic acid is generally prepared by using the polymerase chain reaction (PCR) in many cases, but conventionally, in order to simplify the operation,
  • the reaction solution is unpurified and mixed with a standard nucleic acid with a known sequence for causing strand recombination to perform a competitive strand displacement reaction.
  • PCR polymerase chain reaction
  • the present inventors have determined that when a genotype is identified using the PCR-PHFA method, the nucleic acid amplification reaction solution remains unpurified and is a reaction solution for competitive strand displacement reaction.
  • the present inventors have found that genotype discrimination sensitivity can be improved by inhibiting the elongation reaction by polymerase during competitive strand displacement reaction, and the present invention has been completed.
  • the present invention includes the following (1) to (10).
  • (1) A method for identifying a genotype in a gene mutation, which amplifies a region including a mutation site in a gene contained in a sample by a nucleic acid amplification reaction to obtain an amplification reaction solution containing a sample double-stranded nucleic acid
  • Competitive strand displacement by mixing the amplification step, a standard double-stranded nucleic acid whose mutation site is a specific genotype and labeled with a labeling substance, and the amplification reaction solution obtained in the nucleic acid amplification step Identifies the identity of the standard double-stranded nucleic acid and the sample double-stranded nucleic acid by performing a reaction and measuring the degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid
  • a genotype identification method wherein the competitive strand displacement reaction is performed under a condition in which an extension reaction by a polymerase is suppressed.
  • the 3 ′ end of one strand is a first labeling substance
  • the 5 ′ end of the other strand is a second labeling substance
  • Each of the first labeling substance and the second labeling substance is labeled with each other and is capable of energy transfer with each other, and the degree of energy change due to energy transfer between the first labeling substance and the second labeling substance is measured.
  • measuring the degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid in the identification step Genotype identification method.
  • At least one of the first labeling substance and the second labeling substance is a fluorescent substance
  • the competitive strand displacement reaction in the identification step includes the standard double-stranded nucleic acid and the sample double-stranded nucleic acid.
  • the reaction solution is measured by gradually lowering the temperature of the reaction solution from a high temperature, and the degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid is measured. Measured based on a ratio between the amount of change in fluorescence intensity due to a temperature drop and the amount of change in fluorescence intensity due to a temperature drop in a control reaction solution that does not contain the sample double-stranded nucleic acid but contains the standard double-stranded nucleic acid.
  • a nucleic acid amplification reagent for preparing a sample double-stranded nucleic acid one labeling substance is the 5 ′ end of one strand of a standard nucleic acid; the other labeling substance is a standard nucleic acid And a standard double-stranded nucleic acid introduced at the 3 ′ end of the other strand of the genotype identification kit.
  • the genotype identification method of the present invention has greatly improved genotype identification accuracy and sensitivity, and not only germ cell mutations such as SNPs but also somatic mutations that were difficult to identify by conventional SNP testing methods Can also be identified with high accuracy. Moreover, the genotype identification method of the present invention can be performed more easily by using the genotype identification kit of the present invention.
  • Example 1 It is a figure explaining how to obtain ⁇ F using the behavior of the fluorescence intensity of the donor labeling substance.
  • Example 2 it is the figure which showed the fluorescence change of FAM accompanying a temperature change.
  • Example 3 it is the figure which showed the fluorescence change of FAM accompanying a temperature change.
  • Example 3 it is the figure which showed the variation
  • Example 4 it is the figure which showed the variation
  • Example 5 it is the figure which plotted (DELTA) F obtained in each reaction with respect to EDTA density
  • Example 6 it is the figure which showed the obtained Index value for every genotype of labeled standard DNA, and the Index value calculated
  • Example 6 it is the figure which showed the obtained Index value for every genotype of labeled standard DNA, and is the Index value calculated
  • gene mutation means a difference in the base sequence of a gene existing between individuals of the same organism species, and the mutation site means a different site in the base sequence. Specifically, a difference in the base sequence is caused by substitution, deletion, or insertion of one or more bases in the base sequence. That is, in the present invention, gene mutation includes congenital mutation such as gene polymorphism such as SNP and microsatellite polymorphism in addition to acquired mutation such as somatic mutation.
  • the standard double-stranded nucleic acid means a double-stranded nucleic acid with a known base sequence that competitively replaces the double-stranded nucleic acid derived from the sample to be identified.
  • the standard double-stranded nucleic acid is a double-stranded nucleic acid that is a partial region including a mutation site of a target gene and that includes the same base sequence as the sequence whose mutation site is a specific genotype.
  • the method for identifying a genotype of the present invention comprises competitive strand displacement by inhibiting an elongation reaction by a polymerase that occurs during a competitive strand displacement reaction when identifying a genotype in a gene mutation using the PCR-PHFA method.
  • This is a method for improving the identification sensitivity and accuracy of a base sequence in a reaction. The reason why the sensitivity for identifying the base sequence can be improved by inhibiting the elongation reaction is not clear, but is presumed as follows.
  • a nucleic acid amplification reaction is performed using a nucleic acid in a sample as a template and an unlabeled primer, and the obtained amplification product is used for causing recombination of the strands without purification.
  • Mix with a labeled standard double-stranded nucleic acid with a known sequence perform a competitive strand displacement reaction, and determine the extent of the strand displacement reaction that occurred between the unlabeled nucleic acid from the sample and the labeled standard double-stranded nucleus. By measuring, it is identified whether the genotype of the gene in the sample is the same as that of the standard double-stranded nucleic acid.
  • the reaction solution for the nucleic acid amplification reaction contains reagents for performing a nucleic acid extension reaction, such as DNA polymerase and primer. At the same time, it will be mixed with the standard double-stranded nucleic acid.
  • Primers used in nucleic acid amplification reactions can also hybridize with standard double-stranded nucleic acids. For example, unpurified nucleic acid amplification products and standard double-stranded nucleic acids are mixed and heat denatured, and the temperature gradually decreases.
  • the primer is hybridized to the standard double-stranded nucleic acid when the temperature condition becomes a temperature suitable for the extension reaction by the polymerase, and a new extension product is generated.
  • this extension product has the same genotype as the unlabeled nucleic acid derived from the sample.
  • a polymerase elongation reaction occurs during a competitive strand displacement reaction, it only synthesizes unlabeled nucleic acid with the same genotype as the sample-derived unlabeled nucleic acid, which has little effect on the results. It is thought that it does not reach.
  • an extension reaction occurs during the competitive strand displacement reaction, which is not included in the sample.
  • An unlabeled nucleic acid having a genotype that has not been synthesized is newly synthesized and is present in the reaction solution. Since this unlabeled nucleic acid uses a standard double-stranded nucleic acid as a template, it has the same base sequence as the standard double-stranded nucleic acid, and is derived from a standard double-stranded nucleic acid that has become a single strand by denaturation. Nucleic acid strands will compete with each other returning to the original double strand.
  • FIG. 1 is a diagram schematically showing the influence on discrimination sensitivity when an elongation reaction by a polymerase occurs during a competitive strand displacement reaction.
  • indicates a fluorescent label
  • indicates a quencher label that quenches fluorescence emitted from the fluorescent label by energy transfer.
  • the genotype of the sample-derived double-stranded nucleic acid is changed to that of the labeled standard double-stranded nucleic acid (labeled standard DNA). Identify whether it is the same as the genotype. If no fluorescence emitted from the fluorescent label is detected from the reaction solution after the competitive strand displacement reaction, strand displacement does not occur and the labeled standard DNA returns to its original state. Different genotypes are identified. On the other hand, when fluorescence is detected, strand displacement has occurred and the labeled standard DNA has not been restored, that is, the sample is identified as having the same genotype as the labeled standard DNA.
  • the upper part (A) illustrates the case where the genotype of the gene contained in the sample is the same as the genotype of the labeled standard double-stranded nucleic acid (labeled standard DNA).
  • labeled standard DNA labeled standard DNA
  • the lower part (B) illustrates the case where the genotype of the gene contained in the sample is different from the genotype of the labeled standard double-stranded nucleic acid (labeled standard DNA).
  • labeled standard DNA double-stranded nucleic acid
  • “ ⁇ ” indicates a mutation site (a base different from the sample) in the labeled standard DNA.
  • the fundamental principle is to use strand displacement between a labeled standard double-stranded nucleic acid and a double-stranded nucleic acid derived from an unlabeled sample, and it is derived from the sample during the reaction.
  • the production of unlabeled nucleic acids that are not performed is undesirable from the viewpoint of accuracy.
  • fluorescence is detected from the reaction solution after the competitive strand displacement reaction, The sample is mistakenly identified as having the same genotype as the labeled standard DNA. In other words, an elongation reaction occurs during the competitive strand displacement reaction, thereby reducing the accuracy of genotype identification.
  • the present inventors have observed for the first time that an elongation reaction by a polymerase introduced from a reaction solution of a nucleic acid amplification reaction occurs, and as a result, the identification accuracy and sensitivity of the nucleic acid base sequence decrease. It is the knowledge that was issued. Based on this finding, the present invention improves discrimination accuracy and sensitivity by suppressing the elongation reaction by polymerase during competitive strand displacement reaction.
  • the genotype identification method of the present invention is a method of amplifying a region containing a mutation site in a gene contained in a sample by a nucleic acid amplification reaction to obtain an amplification reaction solution containing a sample double-stranded nucleic acid. And a standard double-stranded nucleic acid labeled with a labeling substance and the amplification reaction solution obtained in the nucleic acid amplification step are mixed, and a competitive strand displacement reaction is performed under conditions where the elongation reaction by the polymerase is suppressed.
  • a step of discriminating the identity between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid by measuring the degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid And have.
  • Examples of the sample used in the identification method of the present invention include pathogens such as bacteria and viruses, blood separated from living bodies such as humans, saliva, tissue lesions, and excreta such as manure. Furthermore, when performing a prenatal diagnosis, fetal cells existing in amniotic fluid or a part of a dividing egg cell in a test tube can be used as a specimen. In addition, these samples are concentrated as a sediment directly or if necessary by centrifugation, etc., and then subjected to cell destruction treatment such as enzyme treatment, heat treatment, surfactant treatment, ultrasonic treatment, or a combination thereof. Those previously applied can be used. In this case, the cell destruction treatment is performed for the purpose of revealing the nucleic acid derived from the target tissue.
  • the specific method of the cell destruction treatment may be performed according to a known method described in a literature such as PCR Protocols Academic Press, Inc. (PCR PROTOCOLS Academic Press® Inc., p14, p352 (1990)). it can.
  • the total amount of nucleic acid in the sample is preferably about 5 to 50 ng, but sufficient amplification is possible with 5 ng or less.
  • Mutation sites to be identified in the identification method of the present invention include cancer-related genes, genes related to genetic diseases, viral genes, bacterial genes, and genes showing polymorphisms called disease risk factors, etc. Is mentioned.
  • cancer-related genes include K-ras gene, N-ras gene, p53 gene, BRCA1 gene, BRCA2 gene, or APC gene.
  • genes related to genetic diseases include genes reported to be associated with various inborn errors of metabolism.
  • viral genes and bacterial genes include genes such as hepatitis C virus and hepatitis B virus.
  • genes showing polymorphism include genes having different nucleotide sequences depending on individuals, such as genes related to HLA (Human Leukocyte) Antigen) and blood types, which are not necessarily directly related to the cause of illness, etc. And genes that are considered to be related to the onset of diabetes and the like. Most of these genes exist on the host chromosome, but may be encoded by mitochondrial genes.
  • a region containing a mutation site in a gene contained in a sample is amplified by a nucleic acid amplification reaction to prepare a sample double-stranded nucleic acid.
  • the nucleic acid amplification reaction is not particularly limited as long as it can amplify a region containing a mutation site as a double-stranded nucleic acid.
  • the PCR method LCR (LigaseRChain Reaction) method, 3SR (Self-stained Sequence) It can be used by appropriately selecting from known nucleic acid amplification reactions such as the Replication method and the SDA (Strand Displacement Amplification) method (Manak, DNA Probes 2nd Edition p255-291, Stockton Press (1993)).
  • the PCR method is particularly suitable.
  • a sample double-stranded nucleic acid can be prepared by designing a primer so as to sandwich an amplification region including a mutation site and repeatedly performing a primer extension reaction using a polymerase.
  • Reagents such as dNTP and polymerase used in this extension reaction can be appropriately selected from reagents usually used for nucleic acid amplification.
  • polymerases include E. coli. coli DNA polymerase I, E. coli. Any DNA polymerase such as Klenow fragment of E. coli DNA polymerase I or T4 DNA polymerase can be used, and it is particularly preferable to use a thermostable DNA polymerase such as Taq DNA polymerase, Tth DNA polymerase, or Vent DNA polymerase.
  • the annealing temperature can be set to 50 to 60 ° C.
  • the specificity of target base sequence recognition by the primer can be increased, and a gene amplification reaction can be performed quickly and specifically (for details, refer to (See Kaihei 1-314965 and JP-A-1-252300).
  • reaction conditions for carrying out this elongation reaction Experimental Medicine Vol. 8 No. 9 (Yodosha, (1990)), PCR Technology Stockton Press (PCR Technology Stockton Press) ) (1989).
  • a sample double-stranded nucleic acid is an amplified region of a gene containing a mutation site so that a strand displacement reaction occurs with a standard double-stranded nucleic acid when the genotype is the same as that of a standard double-stranded nucleic acid. It is sufficient that both ends thereof are not necessarily equal to both ends of the standard double-stranded nucleic acid. For example, the difference in chain length between the sample double-stranded nucleic acid and the standard double-stranded nucleic acid may be about 10 bases or less at both ends.
  • the sample double-stranded nucleic acid is different from the standard double-stranded nucleic acid in the region in the gene containing the mutation site. It is preferably a double-stranded nucleic acid obtained by nucleic acid amplification of a completely identical region.
  • an identification step a standard double-stranded nucleic acid and the amplification reaction solution obtained in the nucleic acid amplification step are mixed, and a competitive strand displacement reaction is performed under the condition that the elongation reaction by polymerase is suppressed.
  • a competitive strand displacement reaction is performed under the condition that the elongation reaction by polymerase is suppressed.
  • the extension reaction inhibitor is not particularly limited as long as it is a compound that has an action of inhibiting the extension reaction without directly decomposing the polymerase, nucleotide triphosphate, or primer necessary for the extension reaction.
  • the extension reaction inhibitor can be appropriately selected from known compounds having an elongation reaction inhibitory action. Examples of such elongation reaction inhibitors include chelating agents and DNA synthesis inhibitors.
  • a polymerase widely used in PCR has an enzyme activity that is easily affected by an ion concentration, particularly a divalent ion concentration.
  • an ion concentration particularly a divalent ion concentration.
  • magnesium ion is a divalent metal ion essential for DNA polymerase to exert its activity.
  • the extension reaction can be effectively inhibited by adding a chelating agent at a concentration capable of suppressing the polymerase activity to the reaction solution of the competitive strand displacement reaction.
  • a chelating agent need only be added to the reaction solution for competitive strand displacement reaction, is simple, and is considered to have little influence on the subsequent PCR-PHFA reaction.
  • EDTA EDTA
  • CDTA EDTA
  • DTPA EDTA
  • the addition amount of the chelating agent can be experimentally determined in consideration of the type of chelating agent, the type of polymerase, and the like.
  • EDTA when used as the chelating agent, it is preferably added so that the EDTA concentration in the reaction solution for competitive strand displacement reaction is 15 mM or more.
  • a preferred EDTA concentration range is 15 mM to 100 mM, and a more preferred range is 25 mM to 50 mM.
  • the elongation reaction can also be inhibited by adding an enzyme inhibitor to the reaction solution of the competitive strand displacement reaction.
  • DNA synthesis inhibitors that inhibit the activity of DNA polymerase.
  • DNA synthesis inhibitors are roughly classified into two types: those that bind to DNA polymerase and inhibit its activity, and those that bind to DNA and inhibit synthesis.
  • the activity of the DNA polymerase can also be inhibited by adding a negative ion protein that binds to the DNA polymerase. That is, a negative ion protein that binds to a polymerase can also be used as an elongation reaction inhibitor.
  • thermostable DNA polymerases are used for PCR reactions, but these polymerases often lose their activity when treated at 95 ° C. or higher for 10 minutes or longer. Since the heat stability of the thermostable DNA polymerase varies depending on the enzyme, the temperature and time of the heat treatment can be appropriately set in consideration of the type of enzyme used in the nucleic acid amplification reaction.
  • Taq DNA polymerase which is widely used, has relatively low heat resistance among heat-resistant DNA polymerases, and when a sample obtained by PCR reaction using such an enzyme is used as a sample, heat treatment is relatively easy. It is possible to prevent a new extension reaction.
  • the heat treatment of the amplification reaction solution may be performed before the competitive strand displacement reaction, may be performed before mixing with the standard double-stranded nucleic acid, or may be performed after mixing. When it is performed after mixing, both the standard double-stranded nucleic acid and the sample double-stranded nucleic acid can be denatured by this heat treatment, so that a separate denaturation operation is not required.
  • a third method for preventing the extension reaction there is a method for decomposing or deactivating (denaturing) substances necessary for the extension reaction in the amplification reaction solution.
  • Specific examples include a method of subjecting the amplification reaction solution to a single-stranded nucleic acid degradation treatment or a nucleotide triphosphate degradation treatment.
  • the primer necessary for the extension reaction remains in the amplification reaction solution, and this primer hybridizes to the standard double-stranded nucleic acid to cause the extension reaction.
  • the extension reaction can be suppressed by subjecting the amplification reaction solution to single-stranded nucleic acid degradation treatment and degradation of this primer.
  • the single-stranded nucleic acid degradation treatment can be performed by adding a single-strand specific nuclease to the amplification reaction solution.
  • the amplification reaction solution also contains a sample double-stranded nucleic acid. However, since this is a double-stranded nucleic acid, only the primer is selectively decomposed by a single-strand-specific nuclease, and used as a primer. The function of can be lost.
  • the single-stranded nucleic acid degradation treatment may be performed before the competitive strand displacement reaction, may be performed before mixing with the standard double-stranded nucleic acid, or may be performed after mixing. This is because the standard double-stranded nucleic acid is not degraded by the single-strand specific nuclease. However, the single-strand specific nuclease activity in the reaction solution of the competitive strand displacement reaction needs to be inactivated before the denaturation treatment of the competitive strand displacement reaction. This is to prevent degradation of the sample double-stranded nucleic acid and standard double-stranded nucleic acid that have become single-stranded by denaturation treatment.
  • a single-strand-specific nuclease that is inactivated at a high temperature at which the double-stranded nucleic acid is denatured in the single-stranded nucleic acid degradation treatment.
  • nucleases include exonuclease I, exonuclease T, mung bean nuclease, and the like.
  • deoxytriphosphates that are substrates necessary for the extension reaction also remain. If these are decomposed into deoxymonophosphate, they lose their activity as substrates. Therefore, the elongation reaction can be suppressed by subjecting the amplification reaction solution to a nucleotide triphosphate decomposition treatment and deoxytriphosphate to deoxymonophosphate.
  • enzymes that convert deoxytriphosphate to deoxymonophosphate include apyrase.
  • the double-stranded nucleic acid generated by the nucleic acid amplification reaction is purified and then subjected to PCR-PHFA reaction.
  • purification takes time and is likely to cause contamination due to scattering of amplified products, which is not a method suitable for diagnosis.
  • a new extension reaction can be suppressed with a simpler operation.
  • Competitive strand recombination is a competitive reaction that occurs between a double-stranded nucleic acid having a homologous base sequence and a single-stranded nucleic acid, or between a double-stranded nucleic acid having a homologous base sequence and a double-stranded nucleic acid.
  • This is a nucleic acid strand substitution reaction (competitive hybridization), which can be performed by denaturing a standard double-stranded nucleic acid and a sample double-stranded nucleic acid, followed by annealing.
  • the double-stranded nucleic acid can be denatured by heating to 90 to 100 ° C., preferably 95 to 100 ° C. for a fixed time. Note that the timing of mixing the standard double-stranded nucleic acid and the sample double-stranded nucleic acid may be immediately before denaturation or after denaturation.
  • the salt concentration in the reaction solution When annealing the denatured standard double-stranded nucleic acid and the sample double-stranded nucleic acid, it is preferable to prepare the salt concentration in the reaction solution to be optimum.
  • the optimum salt concentration generally depends on the chain length. Generally, in hybridization, SSC (20 ⁇ SSC: 3M sodium chloride, 0.3M sodium citrate) or SSPE (20 ⁇ SSPE: 3.6M sodium chloride, 0.2M sodium phosphate, 2mM EDTA) is used. In the identification method of the present invention, these solutions can be diluted to a suitable concentration and used. Moreover, organic solvents, such as a dimethyl sulfoxide (DMSO) and a dimethylformamide (DMF), can also be added as needed.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • annealing is performed by gradually lowering the temperature of the reaction solution from a high temperature (generally a denaturation temperature, for example, any temperature in the range of 90 to 100 ° C.). And a competitive strand recombination reaction can be performed. Conditions such as the temperature drop rate of the reaction solution and the temperature of the reaction solution at the end of the reaction can be appropriately set according to the chain length and base sequence of the standard double-stranded nucleic acid and the sample double-stranded nucleic acid. The slower the temperature of the reaction solution decreases, the lower the probability that single strands having non-complementary base sequences will hybridize.
  • standard double-stranded nucleic acid is labeled with a labeling substance, and sample double-stranded nucleic acid is prepared as unlabeled.
  • the degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid can be measured using the label as an index.
  • one of the two nucleic acid strands constituting the standard double-stranded nucleic acid is labeled with a certain labeling substance, and the other strand is labeled with another labeling substance. In this case, when the strand displacement reaction has not occurred, the two kinds of labeling substances are all detected from the same molecule.
  • Non-radioactive labeling substances include fluorescent substances [for example, fluorescein derivatives (fluorescein isothiocyanate, etc.), rhodamine and derivatives thereof (tetramethylrhodamine isothiocyanate, etc.)], chemiluminescent substances (for example, Acridine, etc.).
  • the labeling substance can be indirectly detected by using a substance that specifically binds to the labeling substance. Examples of such a labeling substance include biotin, a ligand, a specific nucleic acid, or a protein hapten.
  • the avidin or streptavidin that specifically binds to this substance is specifically bound to the labeling substance, and in the case of a hapten, the antibody that specifically binds to this is the ligand.
  • the receptor is a specific nucleic acid or protein
  • a nucleic acid that specifically binds to the receptor a nucleic acid binding protein, a protein having an affinity for the specific protein, or the like can be used.
  • the hapten a compound having a 2,4-dinitrophenyl group or digoxigenin can be used, and biotin or a fluorescent substance can also be used as a hapten. Any of these labeling substances may be used alone or in combination of a plurality of kinds if necessary (see Japanese Patent Laid-Open Nos. 59-93099, 59-148798, and 59-204200). )).
  • one of the two kinds of labeling substances for labeling the standard double-stranded nucleic acid is a substance capable of binding to the solid phase carrier
  • by performing a commonly used solid-liquid separation operation The degree of strand displacement between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid can be measured.
  • one strand of a standard double-stranded nucleic acid is labeled with a labeling substance A
  • the other strand is labeled with a labeling substance B capable of binding to a solid phase carrier
  • the labeling substance B binds to the reaction solution after the strand displacement reaction. Contact with a possible solid support.
  • the labeling substance A in the double-stranded nucleic acid bound to the solid phase carrier is measured.
  • the ratio of the double-stranded nucleic acid labeled with the labeling substance A in the double-stranded nucleic acid bound to the solid phase carrier decreases.
  • two kinds of labeling substances capable of transferring energy to each other for example, a donor labeling substance that generates fluorescence by excitation and an acceptor labeling substance that absorbs the fluorescence
  • a donor labeling substance that generates fluorescence by excitation and an acceptor labeling substance that absorbs the fluorescence are used, and between these labeling substances.
  • the energy transfer between the labeling substances in the present invention means that at least two kinds of labeling substances, that is, a donor labeling substance that generates energy and an acceptor labeling substance that absorbs energy generated from the donor labeling substance are in proximity to each other. In some cases, it refers to the transfer of energy from a donor labeling substance to an acceptor labeling substance.
  • the acceptor labeling substance absorbs the fluorescence generated by exciting the donor labeling substance, and the fluorescence emitted by the acceptor labeling substance is measured.
  • quenching of the donor labeling substance caused by absorption of the fluorescence generated by exciting the donor labeling substance by the acceptor labeling substance can be measured (PCR Methods and applications 4,357-362 (1995), Nature Biotechnology 16, 49 -53 (1998)). Note that energy transfer may occur even if there is no overlap between the fluorescence wavelength of the donor labeling substance and the absorption wavelength of the acceptor labeling substance. Such energy transfer is also included in the present invention.
  • the 3 ′ end of one strand is labeled with the first labeling substance, and the 5 ′ end of the other strand is the first.
  • a labeling substance labeled with a second labeling substance capable of energy transfer with each other is used. Either the first labeling substance or the second labeling substance may be a donor labeling substance. In this standard double-stranded nucleic acid, energy transfer occurs because the first labeling substance and the second labeling substance are close to each other.
  • the first labeling substance and the second labeling substance are separated from each other. Does not occur, and the proportion of double-stranded nucleic acids in which energy transfer occurs in the reaction solution decreases. Therefore, by measuring the energy emitted from the first labeling substance or the second labeling substance (fluorescence intensity in the case of a fluorescent substance), the degree of energy change due to energy transfer is measured, and the standard double-stranded nucleic acid and The degree to which strand displacement has occurred between the sample double-stranded nucleic acid can be measured.
  • nucleic acid strands with the same genotype are more preferentially double-stranded. Form. For this reason, by measuring the degree of energy change due to energy transfer between the labeled substances, that is, the degree of energy transfer change caused or lost by the strand displacement reaction, by using an arbitrary detector. Whether the genotype of the mutation site of the gene contained in the sample is the same as the standard double-stranded nucleic acid, and the ratio of the same genotype as the standard double-stranded nucleic acid contained in the sample Can be detected.
  • the presence or absence of a gene having the same genotype as that of a standard double-stranded nucleic acid is measured by measuring a fluorescence spectrum of a specific wavelength with a spectrofluorometer, a fluorescence plate reader, or the like. And the ratio can be easily detected.
  • FIG. 2A and 2B show a standard double-stranded nucleic acid in which the 3 ′ end of one strand is labeled with a donor labeling substance and the 5 ′ end of the other strand is labeled with an acceptor labeling substance, and an unlabeled sample 2
  • the behavior of the fluorescence intensity of the donor labeling substance (Fig. 2A) and the behavior of the fluorescence intensity of the acceptor labeling substance (Fig. 2B) when the temperature is gradually lowered after mixing with the double-stranded nucleic acid is schematically shown.
  • FIG. In the figure, “match” is the behavior when the genotypes of the standard double-stranded nucleic acid and the sample double-stranded nucleic acid are the same, and “mismatch” is the behavior when the genotypes are different from each other.
  • the degree of strand recombination between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid is measured,
  • the identity between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid can be quickly and easily identified without requiring complicated work such as separation work.
  • the labeling substance that can be used as the first labeling substance or the second labeling substance is not particularly limited as long as it can transfer energy in the state of being close to each other, but among them, a fluorescent substance and a delayed fluorescent substance are preferable.
  • a chemiluminescent substance, a bioluminescent substance, etc. can also be used.
  • Examples of such a combination of labeling substances include fluorescein and its derivatives (eg, fluorescein isothiocyanate) and rhodamine and its derivatives (eg, tetramethylrhodamine isothiocyanate, tetramethylrhodamine-5- (and-6-) hexanoic acid).
  • Etc. a combination of fluorescein and dabsyl, and the like, and any combination can be selected from these (Nisotopic DNA Probe Techniques.Academic Press (1992)).
  • it may be a combination of molecules in which thermal energy is released when close to each other.
  • labeling substance combinations include Alexa Fluor (registered trademark) 488 (manufactured by Invitrogen), ATTO 488 (manufactured by ATTO-TEC GmbH), Alexa Fluor (registered trademark) 594 (manufactured by Invitrogen), and ROX ( Examples thereof include a combination of 1 selected from the group consisting of Carboxy-X-rhodamine) and BHQ (registered trademark, Black hole quencher) -1 or BHQ (registered trademark) -2.
  • a general method for introducing the label into the nucleic acid can be employed.
  • a method of directly introducing a labeling substance into a nucleic acid Biotechniques 24, 484-489 (1998)
  • a method of introducing a labeling substance binding mononucleotide by a DNA polymerase reaction or an RNA polymerase reaction (Science 238, 336-3341). (1987)
  • a method of introducing a PCR reaction using a primer into which a labeling substance has been introduced PCR Methods and Applications 2, 34-40 (1992)
  • the position where the labeling substance is introduced into the standard double-stranded nucleic acid needs to be a position where energy transfer occurs or disappears by the strand displacement reaction, that is, the 3 'end and / or the 5' end of the nucleic acid strand.
  • the 5 ′ end and the 3 ′ end indicate ranges within 30 bases from the 5 ′ end and 3 ′ end of the nucleic acid strand, respectively, but are closer if both labeling substances are close. Since energy transfer is likely to occur, it is preferably within 10 bases from each end, and most preferably 5 ′ end and 3 ′ end.
  • nucleic acid strand if a large number of labeling substances are introduced into the base portion that hybridizes with the complementary strand, substitution of about one base may not be detected, so it is preferable to introduce it only at the end portion of each nucleic acid strand.
  • one of two kinds of labeling substances is introduced into the 5 ′ end (3 ′ end) of one nucleic acid strand and the 3 ′ end (5 ′ end) of the other nucleic acid strand complementary thereto
  • both nucleic acid strands cause energy transfer or disappear by the strand displacement reaction without affecting the hybridization reaction.
  • an oligonucleotide having a labeling substance introduced at the 5 ′ end and an arbitrary nucleic acid strand are bound by ligase (Nucleic Acids Res. 25, 922-923 (1997)), or a method of performing a PCR reaction using a primer having a labeling substance introduced at the 5 ′ end (PCR Methods and Applications 2, 34-40 (1992)).
  • an oligonucleotide having a labeling substance introduced into the 3 ′ end and an arbitrary oligonucleotide can be used in the same manner as in the case of introducing a labeling substance into the 5 ′ end.
  • the nucleic acid chain is RNA instead of DNA, or the 3 ′ end of DNA is RNA, the sugar (ribose) part of the RNA at the end is selectively opened, and the resulting aldehyde group It can also be labeled using.
  • mononucleotide triphosphate having a labeling substance introduced therein can also be introduced into the 3 ′ end of the nucleic acid chain by the action of terminal deoxynucleotidyl transferase (Biotechniques 15, 486-496 (1993)).
  • a labeled nucleic acid can also be prepared by direct chemical synthesis (Nucleic® Acids® Res. 16, 2659-2669 (1988), Bioconjug. Chem. 3, 85-87 (1992)).
  • a standard double-stranded nucleic acid can be prepared by performing a nucleic acid amplification reaction using a nucleic acid whose mutation site is a desired genotype and a known base sequence as a template.
  • the nucleic acid amplification reaction can be appropriately selected from known nucleic acid amplification reactions as in the case of preparing a sample double-stranded nucleic acid.
  • the PCR method is particularly suitable.
  • the nucleic acid amplification reaction product is incorporated into a vector selected from a plasmid vector, a phage vector, or a chimeric vector of a plasmid and a phage, and introduced into any proliferative host such as bacteria such as E. coli and Bacillus subtilis or yeast. It can also be prepared in large quantities (gene cloning).
  • Standard double-stranded nucleic acid can also be prepared by, for example, known chemical synthesis.
  • the chemical synthesis method include triester method and phosphorous acid method.
  • a large amount of single-stranded DNA is prepared using an ordinary automatic synthesizer (APPLIED BIOSSYSTEMS 392, etc.) using a liquid phase method or a solid phase synthesis method using an insoluble carrier, and then annealed. By doing so, double-stranded DNA can be prepared.
  • Measurement of the degree of energy change due to energy transfer between labeling substances is generally performed by measuring the fluorescence emitted from the labeling substance.
  • This fluorescence measurement can measure a large number of specimens at the same time.
  • a so-called real-time PCR apparatus or the like that can perform temperature control is used.
  • the fluorescence measurement accuracy for each detection is not necessarily high, and the variation for each well often increases.
  • variation in the amount of the standard double-stranded nucleic acid to be added can be a factor that greatly affects the measurement accuracy. Therefore, when performing quantitative measurement, it is preferable to correct the variation between these measurements.
  • a method of correcting the variation between measurements by obtaining a ratio of fluorescence values of both a fluorescent substance serving as a donor and a fluorescent substance serving as an acceptor is performed. That is, it is a method of measuring both the fluorescence generated by exciting the donor and the fluorescence of the acceptor excited by the energy transfer from the donor and determining the ratio.
  • the present inventors in the genotype identification method of the present invention, when measuring the degree of energy change due to the energy transfer between the labeling substances, the fluorescence value of the donor labeling substance after the chain recombination reaction (end point) Whether or not the variation can be reduced by determining the ratio of the fluorescence value to the acceptor-labeled substance was examined, but as shown in Example 6 to be described later, this method could not perform sufficient variation correction. This is because the fluorescence value of the donor labeling substance after the strand recombination reaction is very small, and the fluorescence measurement in such a state is likely to vary greatly.
  • the fluorescence value of the donor labeling substance and the acceptor labeling substance It is considered that the ratio value with the fluorescence value causes a large variation.
  • the donor labeling substance has a small fluorescence value because the energy transfer occurs when the standard double-stranded nucleic acid after denaturation returns to the original double-stranded nucleic acid without causing the strand recombination reaction. This is because most of the fluorescence of the light becomes very weak light emission as a result of energy transfer to the acceptor labeling substance.
  • the present inventors have determined that the amount of change in fluorescence intensity due to a decrease in the temperature of the reaction solution, that is, the single strand due to denaturation in the reaction solution (sample reaction solution) containing the sample double-stranded nucleic acid.
  • the amount of change ⁇ F (fluorescence) between the fluorescence intensity in the state of 2 and the fluorescence intensity in the double-stranded nucleic acid state after annealing is compared with ⁇ F in the reaction solution (control reaction solution) in which no sample double-stranded nucleic acid exists.
  • ⁇ F may be a change amount of the donor labeling substance or a change amount of the acceptor labeling substance.
  • ⁇ F of the donor labeling substance can be obtained by the following formula (1).
  • ⁇ F of the acceptor labeling substance can be obtained by the following formula (2).
  • “F [start-point]” is the fluorescence intensity at the temperature at the start of the temperature drop of the reaction solution
  • F [end-point]” is the end of the temperature drop of the reaction solution. It means the fluorescence intensity at the temperature at the time.
  • ⁇ F can be obtained from the following formula (3) for both the donor labeling substance and the acceptor labeling substance.
  • F [max] means the highest fluorescence intensity in the temperature-dependent fluorescence behavior from the start to the end of the temperature drop of the reaction solution
  • F [min] It means the lowest fluorescence intensity in the temperature-dependent fluorescence behavior.
  • FIG. 3 is a diagram for explaining how to obtain ⁇ F using the behavior of the fluorescence intensity of the donor labeling substance.
  • “match” means that the standard double-stranded nucleic acid and the sample double-stranded nucleic acid have the same genotype
  • “mismatch” means that the genotypes are different from each other
  • “labeled standard DNA” means two samples. This is the behavior when no strand nucleic acid is contained (control reaction solution).
  • the fluorescence of the donor labeling substance after the strand recombination reaction is weak, and the acceptor in the single-stranded state Although the fluorescence of the labeling substance is weak, even in such a situation, the fluorescence value of the donor labeling substance in the single-stranded state before the competitive strand displacement reaction or the fluorescence of the acceptor labeling substance in the double-stranded state after the competitive strand displacement reaction It was found that the difference between the values was not as great as when the ratio of the fluorescence value of the donor labeling substance to the fluorescence value of the acceptor labeling substance was taken, and the variation between measurements could be corrected well.
  • the degree of fluorescence resonance energy transfer of only the labeled double-stranded nucleic acid that is, ⁇ F [control reaction solution] is assumed to be 100%, and the degree of recombination between the standard double-stranded nucleic acid and the sample double-stranded nucleic acid can be determined. it can.
  • ⁇ F control reaction solution
  • the index value was close to 100%, this indicates that strand recombination did not occur, and sample double strand
  • the genotype of the nucleic acid is identified as different from the standard double stranded nucleic acid.
  • the Index value when the Index value is close to 0%, it indicates that strand recombination has occurred, and the genotype of the sample double-stranded nucleic acid is identified as being the same as that of the standard double-stranded nucleic acid.
  • Patent Document 1 describes that a condition for lowering the temperature at a rate of 1 ° C. in a range of 98 ° C. to 58 ° C. for 3 to 10 minutes may be used as a guide. In this case, the reaction time is approximately 120 minutes to 400 minutes, which requires a very long time.
  • the present inventors considered that the strand displacement reaction occurs in the PCR-PHFA method at a certain temperature or higher, and it is important to make the temperature change slowly within that range.
  • the strand displacement reaction is measured by measuring the change in fluorescence intensity when the standard double-stranded nucleic acid is denatured and the temperature is gradually lowered. It is thought that the range where this occurs can be estimated.
  • the reaction time can be shortened without sacrificing discrimination accuracy by making the temperature drop rate of the reaction solution sufficiently slow in the temperature range where this strand displacement reaction occurs, and increasing the temperature drop rate in other temperature ranges. It becomes.
  • the range in which the strand displacement reaction occurs is near the inflection point of the fluorescence intensity change (the temperature at which the average change rate with respect to the temperature of the fluorescence intensity becomes maximum).
  • the inflection point of this fluorescence intensity change is the fluorescence at each temperature. It can be obtained by calculating the intensity change (dF / dT: F is a fluorescence value, T is time).
  • This inflection point generally corresponds to Tm used as a reference for the melting temperature of a double-stranded nucleic acid.
  • the Tm value is considered to vary depending on the length, base sequence, solution composition, etc. of the double-stranded nucleic acid.
  • the inflection point in the reaction solution of the competitive strand displacement reaction of the standard double-stranded nucleic acid to be used can be obtained, and the temperature change range can be set using the corresponding temperature as a guide. Further, the speed of temperature change can be increased within a range where the genotype can be sufficiently identified. The difficulty of identifying a genotype depends on the base sequence and is very difficult to predict. Therefore, it is necessary to speed up trial and error based on the identification of mutations.
  • the gene identification method of the present invention has very good genotype identification accuracy, and not only germ cell mutations such as SNP but also somatic mutations observed in cancer cells etc. with sufficient accuracy. It is possible to identify. Therefore, it is very useful in clinical examinations.
  • the genotype identification kit of the present invention identifies the genotype of a gene mutation contained in a sample or detects the proportion of a specific genotype included according to the genotype identification method of the present invention. 1 or more selected from the group consisting of an elongation reaction inhibitor, a single-stranded nucleolytic enzyme, and a nucleotide triphosphate decomposition, and a nucleic acid amplification for preparing a sample double-stranded nucleic acid And a reagent.
  • the kit further includes two kinds of labeling substances capable of transferring energy to each other, a reagent for introducing the labeling substance to the 3 ′ end of the nucleic acid chain, and a labeling substance at the 5 ′ end of the nucleic acid chain.
  • a cell destruction reagent for sample pretreatment a reagent for detecting the label of the labeling substance, and the like may be combined. In this way, by making a kit necessary for the genotype identification method of the present invention, a genotype can be identified more easily and in a short time.
  • Examples 1 to 6 the oncogene K-ras codon 12 or codon 13 gene mutation was used as a mutation site to be identified.
  • a labeled standard double-stranded nucleic acid (hereinafter referred to as “labeled standard DNA”) having a mutation site of each genotype was prepared according to a conventional oligonucleotide chemical synthesis method.
  • Each labeled standard DNA was FAM-labeled (Glen Research) on the 5 'end of one of the two strands, and Alexa-labeled (manufactured by Invitrogen) on the 3' end of the other strand.
  • Table 1 shows the sequences of chemically synthesized DNA strands for each genotype.
  • codons 12 and 13 are underlined, and mutation sites are shown in lower case.
  • Wild is a wild type
  • G12S is a genotype in which the first codon 12 is mutated from guanine to adenine
  • G12R is a genotype in which the first codon 12 is mutated from guanine to cytosine
  • G12C is the genotype in which the first codon 12 is mutated from guanine to thymine
  • G12D is the genotype in which the second codon 12 is mutated from guanine to adenine
  • G12A is the second genotype
  • G12V the genotype in which the second codon 12 was mutated from guanine to thymine
  • G13D the genotype in which the second codon 13 was mutated from guanine to adenine
  • “-FAM” described after the genotype is a DNA strand labeled with FAM at the 5 ′ end
  • “-Ale” is labeled with Alexa at the 3 ′ end.
  • the numbers in the right column indicate the corresponding sequence numbers in the sequence listing.
  • oligonucleotides such as primers were also prepared according to conventional oligonucleotide chemical synthesis.
  • PCR reaction was performed using T-gradient thermoblock (manufactured by Biometra), and PCR-PHFA was performed using ABI-7900 (manufactured by ABI). *
  • Example 1 The PCR reaction solution obtained by performing PCR without adding the template was directly added to the competitive strand displacement reaction, and the influence of the components of the introduced PCR reaction solution on the strand displacement reaction was examined.
  • the composition of the PCR reaction solution was 250 nM KF primer, 250 nM KR primer, 250 ⁇ M dNTP, 1 ⁇ PCR buffer, 2.5 units Taq DNA polymerase (Takara Taq Hot Start Version), and the total reaction solution was 100.5 ⁇ L.
  • This PCR reaction solution was treated at 95 ° C. for 3 minutes, and then subjected to 40 cycles of denaturation, annealing, and extension reaction of 95 ° C. (20 seconds) ⁇ 57 ° C. (30 seconds) ⁇ 72 ° C. (30 seconds).
  • Table 2 shows the base sequences of the used KF primer and KR primer. The numbers in the right column in the table indicate the corresponding SEQ ID numbers in the sequence listing.
  • the obtained PCR reaction solution (15 ⁇ L), 500 nM G12D-FAM (1 ⁇ L), 500 nM G12D-Alexa (1 ⁇ L), 2M NaCl (1 ⁇ L), H 2 O (2 ⁇ L) were mixed to obtain a PCR-PHFA reaction solution [ Labeled standard DNA + PCR template ( ⁇ )].
  • FIG. 4 shows the FAM fluorescence change with temperature change.
  • a labeled standard DNA consisting of G12D-FAM and G12D-Alexa having a genotype of G12D exhibits almost maximum fluorescence by dissociation of two strands by heat denaturation (90 ° C.), and then gradually decreases the temperature to 2 This strand returned to its original state, and fluorescence emission was minimized (FIG. 4, [labeled standard DNA only]).
  • the fluorescence change is measured in the same manner by adding a reaction solution obtained by performing PCR by adding all reagents except the template to this labeled standard DNA, the fluorescence change between the single-stranded state and the double-stranded state is as follows.
  • Example 2 In order to examine the influence of the PCR reaction solution on PCR-PHFA in more detail, the same primer and labeled DNA as in Example 1 were used, and the PCR reaction solution without the template and Taq DNA polymerase added, and the PCR reaction without the template and primer added. A liquid was prepared, and the fluorescence change accompanying the temperature change was measured in the same manner as in Example 1.
  • the composition of the PCR reaction solution to which no template and Taq DNA polymerase were added was 250 nM KF primer, 250 nM KR primer, 250 ⁇ M dNTP, 1 ⁇ PCR buffer, and the total reaction solution was 100.5 ⁇ L [labeled standard DNA + PCR template ( ⁇ ), Taq ( ⁇ )].
  • the composition of the PCR reaction solution to which no template or primer was added was 250 ⁇ M dNTP, 1 ⁇ PCR buffer, 2.5 units Taq DNA polymerase (Takara Taq Hot Start Version), and the total reaction solution was 100.5 ⁇ L [labeling Standard DNA + PCR template ( ⁇ ), primer ( ⁇ )].
  • These PCR reaction solutions were treated at 95 ° C. for 3 minutes, and subjected to 40 cycles of denaturation, annealing, and extension reaction of 95 ° C. (20 seconds) ⁇ 57 ° C. (30 seconds) ⁇ 72 ° C. (30 seconds).
  • a PCR-PHFA reaction solution was prepared in the same manner as in Example 1, and the change in fluorescence with respect to the temperature change was measured.
  • Fig. 5 shows the FAM fluorescence change with temperature change.
  • the amount of change ⁇ F in fluorescence intensity due to temperature drop in each reaction was determined. Specifically, based on the formula (1), a value obtained by subtracting the fluorescence value at 35 ° C. from the fluorescence value at 95 ° C. was defined as ⁇ F. Table 3 shows the obtained values. Also from this result, it was found that when a PCR reaction solution without adding a template was added, the change in fluorescence at high and low temperatures was clearly reduced.
  • Example 3 The PCR reaction solution to be added was heat-treated to deactivate the Taq polymerase, thereby inhibiting the nucleic acid extension reaction in the competitive strand displacement reaction.
  • a PCR reaction was performed on the PCR reaction solution having the same composition as in Example 1 under the same conditions. A part of the obtained PCR reaction solution was heat-treated at 99 ° C. for 15 minutes, and another part was heat-treated at 99 ° C. for 60 minutes.
  • a PCR-PHFA reaction solution was prepared in the same manner using the same labeled standard DNA as in Example 1 for these heat-treated and non-heated reaction solutions. Under the same temperature conditions, the fluorescence change accompanying the temperature change was measured. Further, in the same manner as in Example 1, a PCR-PHFA reaction solution as a control (only labeled standard DNA) to which no PCR reaction solution was added was prepared, and fluorescence changes were similarly measured.
  • FIG. 6 shows the FAM fluorescence change with temperature change.
  • heat treatment at 99 ° C. for 15 minutes [labeled standard DNA + PCR reaction solution, (99 ° C. for 15 minutes treatment)] and heat treatment at 99 ° C. for 60 minutes [labeled standard DNA + PCR reaction solution, (99 In the case of no treatment with heating, the change in fluorescence between the high temperature and the low temperature is larger than when not treated with heat (labeled standard DNA + PCR reaction solution, (untreated)), and nothing is added (labeled standard DNA only). It showed close behavior.
  • FIG. 7 shows ⁇ F in each reaction.
  • ⁇ F was larger in both cases of treatment at 99 ° C. for 15 minutes and treatment at 99 ° C. for 60 minutes, and no PCR reaction solution was added.
  • [labeled standard DNA only] it was close to the ⁇ F value. From these results, it was shown that the elongation reaction during the competitive strand displacement reaction was suppressed by the loss or decrease in the activity of Taq polymerase by the heat treatment.
  • Example 4 By adding EDTA to the PCR-PHFA reaction solution, the nucleic acid elongation reaction in the competitive strand displacement reaction was inhibited.
  • a PCR reaction was performed on the PCR reaction solution having the same composition as in Example 1 under the same conditions.
  • the obtained PCR reaction solution (15 ⁇ L), 500 nM G12D-FAM (1 ⁇ L), 500 nM G12D-Alexa (1 ⁇ L), 2 M NaCl (1 ⁇ L), H 2 O (2 ⁇ L) were mixed, and PCR-PHFA reaction without EDTA
  • the solution was labeled [labeled standard DNA + PCR template ( ⁇ )].
  • PCR reaction solution (15 ⁇ L), 500 nM G12D-FAM (1 ⁇ L), 500 nM G12D-Alexa (1 ⁇ L), 2 M NaCl (1 ⁇ L), 500 mM EDTA (0.6 ⁇ L), H 2 O (1.4 ⁇ L) are mixed.
  • PCR reaction solution 15 ⁇ L
  • 500 nM G12D-FAM 1 ⁇ L
  • 500 nM G12D-Alexa 1 ⁇ L
  • 2 M NaCl 1 ⁇ L
  • 500 mM EDTA 2 ⁇ L
  • PCR-PHFA reaction solution containing 50 mM EDTA [50 mM EDTA-added labeled standard DNA + PCR template ( ⁇ )].
  • FIG. 8 shows the FAM fluorescence change with temperature change.
  • ⁇ F was obtained by subtracting the fluorescence value at 35 ° C. from the fluorescence value at 95 ° C. of each reaction, and is shown in FIG. Compared to the case where EDTA was not added, ⁇ F was increased by adding EDTA, and it became clear that the value was close to the value when only labeled standard DNA was used.
  • Example 4 Taq polymerase activity was hardly suppressed even with 15 mM EDTA, so that the conventional EDTA concentration of about 1 mM has no effect on suppressing DNA polymerase activity, and the mismatch discrimination ability of PHFA is reduced.
  • EDTA is merely added for the purpose of protecting DNA from nucleases.
  • Genomic DNA extracted from a cancer cell-derived cultured cell SW403 was used as a sample containing a gene whose genotype is to be identified.
  • SW403 is a cell known to have a genotype in which the second guanine of codon 12 of the K-ras gene is mutated to thymine homogeneous (G12V).
  • G12V thymine homogeneous
  • PCR-PHFA reaction solutions were prepared by adding EDTA to various concentrations in addition to the labeled standard DNA of each genotype and the PCR reaction solution. Specifically, when using wild-type labeled standard DNA, first, 500 nM Wild-FAM (1 ⁇ L) and 500 nM Wild-Alexa (1 ⁇ L) were added to the tube and dried and solidified.
  • a PCR reaction solution (14 ⁇ L), 2M NaCl (1 ⁇ L), 500 mM EDTA (X ⁇ L), and H 2 O (5-X ⁇ L) were added thereto to obtain a PCR-PHFA reaction solution.
  • EDTA EDTA was not added
  • X 0, and 5 ⁇ L of H 2 O was added.
  • PCR-PHFA reaction solutions were similarly prepared for other genotypes.
  • FIG. 9 is a plot of ⁇ F obtained in each reaction versus EDTA concentration. Since the genotype of the sample (SW403) is different from any of the labeled standard DNA added, the larger the ⁇ F, the clearer the genotype can be identified. In all combinations of sample and labeled standard DNA, ⁇ F was maximized when the EDTA concentration was 25 mM or more, and it was found that an EDTA concentration of 25 mM or more was optimal for PCR-PHFA.
  • Genomic DNA extracted from cultured cells known to have a wild-type K-ras gene was used as a sample containing a gene to be identified by genotype. Further, as the labeled standard DNA, those having a genotype of wild type, G12A, G12C, G12D, G12R, G12V, G12S, and G13D were used. First, using the primers shown in Example 1, a PCR reaction solution was obtained in which a wild-type gene was amplified using genomic DNA extracted from cultured cells under the same conditions as in Example 1 as a template.
  • a PCR-PHFA reaction solution containing 25 mM EDTA was prepared by mixing the labeled standard DNA of each genotype and the PCR reaction solution.
  • a 25 mM EDTA-added control reaction solution in which an equal amount of water was added instead of the PCR reaction solution was prepared.
  • a competitive strand displacement reaction was performed on each of these 25 mM EDTA-added PCR-PHFA reaction solution and 25 mM EDTA-added control reaction solution under the same temperature conditions as in Example 1, and the change in fluorescence accompanying the change in temperature was measured. .
  • FIG. 10A is a diagram showing the obtained Index values.
  • “Wt” is wild type labeled standard DNA
  • “12A” is G12A labeled standard DNA
  • “12C” is G12C labeled standard DNA
  • “12D” is G12D labeled standard DNA
  • “12R” is G12R labeled standard DNA
  • “12V” indicates the result of the G12V labeled standard DNA
  • “12S” indicates the result of the G12S labeled standard DNA
  • “13D” indicates the result of the G13D labeled standard DNA.
  • the sample is wild-type, and it is expected that the index value decreases only with the wild-type labeled standard DNA, and the index value does not decrease with other mutant-type labeled standard DNA. However, the index values of G12V and G12D labeled standard DNA also decreased, and the difference from the wild-type index value that was a match was small.
  • FIG. 10B is a diagram showing the Index value obtained according to Equation (4).
  • “Wt”, “12D” and the like in the figure are the same as those in FIG.
  • the wild-type labeled standard DNA that is a match shows a low index value
  • the other mutant-type labeled standard DNAs all show a high index value. It is clearer than the conventional method that the sample is wild-type. It is clear that the variation can be remarkably improved.
  • the genotype identification method of the present invention is very excellent in genotype identification accuracy, and thus can be used in the field of clinical examination, particularly in the field of somatic mutation examination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本願発明は、試料に含まれる遺伝子中の変異部位を含む領域を核酸増幅反応により増幅し、試料2本鎖核酸を含有する増幅反応液を得る核酸増幅工程と、前記変異部位が特定の遺伝子型であり、かつ標識物質により標識されている標準2本鎖核酸と、前記核酸増幅工程で得られた増幅反応液とを混合して競合的鎖置換反応を行い、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することにより、前記標準2本鎖核酸と前記試料2本鎖核酸との同一性を識別する識別工程とを有し、かつ、前記競合的鎖置換反応が、ポリメラーゼによる伸長反応が抑制された条件で行われる、PCR-PHFA法を利用した遺伝子型の識別方法、並びに、当該方法により遺伝子型を識別するために用いられる遺伝子型識別用キットに関する。

Description

遺伝子型の識別方法
 本発明は、遺伝子多型や体細胞変異等の遺伝子型の識別方法及び当該方法に用いられるキットに関し、さらに詳述すると、鎖置換反応を利用したコンペティティブハイブリダイゼーションを用いて核酸の塩基配列の僅かな相違を識別する方法の識別精度を改善する方法、及び当該方法に用いられるキットに関する。
 本願は、2009年3月31日に日本に出願された特願2009-084967号に基づき優先権を主張し、その内容をここに援用する。
 ヒトゲノムの解読、特にSNP(Single Nucleotide Polymorphism)地図を作成する国際ハップマッププロジェクトにより、ヒトゲノムに関する情報は増加の一途をたどっている。さらに、得られたゲノム情報と個人の体質との関連を見出し、遺伝子レベルで個人の体質の違いを把握し、個人の特性に応じた病気の診断・治療・予防や薬剤の投与を可能とする「個人の遺伝情報に応じた医療」(オーダーメード医療)の実現をめざした研究が、世界全体で大規模に展開されている。ここでの遺伝子の違いは、個々人のゲノムの塩基配列上での違いを意味し、その主たる違いは一塩基の違い(SNP)である。また、最近では、短い塩基配列が繰り返される回数(コピー数)の違い(Copy Number Variation:CNV)も、ゲノム全体に広がっていることがわかり、このCNVの違いと病気との関連性も指摘されている。
 ここで、個人の遺伝子レベルでの違いを把握するためには、各個人の遺伝子型を調べる必要が生じてくる。たとえば、あるSNPでは、その遺伝子型はAA、AG、GGの3種類であることが分かっているとする。Aはアデニン、Gはグアニン塩基を示し、このSNPは、ゲノムのその位置がアデニンの場合とグアニンの場合がある一例である。従って、当該SNPの遺伝子型を識別するための検査は、この3種類の遺伝子型のいずれであるかを決定することになる。すなわち、Aについて0と100のいずれであるか、Gについて0と100のいずれであるか、又は、AとGが50と50であるかどうかを見ればよい。このように、SNP等の生殖細胞変異の検出は、ほぼ定性的な検出といってよく、その方法は比較的容易で簡便な各種方法が実用化されている。
 一方、がん細胞においては、体細胞のレベルで変異が生じ、その変異ががんの引き金となって異常な増殖につながると考えられている。従って、ある特定の種類のがん細胞では、特定の遺伝子の変異がみられることがあり、当該変異を指標にがん細胞の検出を行うことも可能である。但し、がん細胞は多様性に富み、一種類の変異でがん細胞を特定することは必ずしも容易ではない。
 また、最近の薬物療法においては、生体内の特定の分子(タンパク質等)を標的とした薬剤が開発され、副作用が少なく、効果が高いものが見出されてきている。これらは分子標的薬と呼ばれ、主にがん治療の領域で活発に開発されている。ごく最近、これら分子標的薬では、標的としている分子のシグナル伝達の下流のタンパク質に変異が生じている場合には当該薬剤の効果が発揮できないこと等が明らかになってきている。この場合、変異を生じているタンパク質をコードする遺伝子の変異を調べることにより、当該薬剤の効果を予測することが可能となってきており、SNP検出とは異なる新たなオーダーメード医療の領域が開けつつある。
 ここで述べた、がん細胞に特徴的な変異又は分子標的薬に抵抗性を示す変異は、そのほとんどが体細胞変異である。先に述べた生殖細胞変異の場合、どの細胞でも共通の変異が見られるのに対し、体細胞変異では変異を起こした細胞でのみ変異が見られ、変異を起こしていない細胞(通常は正常細胞)では変異は見られない。従って、通常、検体(検査の対象となる試料)中では、変異した細胞と正常細胞が混在する状況となっており、これらの細胞の存在比に応じて、変異した遺伝子と正常の遺伝子が存在することになる。つまり、試料の大部分が正常細胞であって一部変異細胞が含まれる場合、多くの正常な遺伝子中に存在するわずかな変異遺伝子を検出しなければならず、この点が生殖細胞における変異検出と異なる点で、体細胞の遺伝子変異検出をより困難にしている点である。
 体細胞の遺伝子変異検出法には大きく分けて二つの方法がある。一つは、遺伝子増幅の段階で正常な遺伝子と変異遺伝子を区別する方法であり、具体的には、変異遺伝子のみを特異的に増幅する方法である。
 たとえば、最も感度がよいとされている方法は、正常な遺伝子のみを制限酵素を用いて切断し、切断されていない変異遺伝子のみを増幅する“mutant-enriched PCR”と呼ばれている方法である(例えば、非特許文献1参照。)。この方法では、変異遺伝子を増幅する反応を繰り返すことにより、正常遺伝子10分子中の1分子の変異遺伝子を検出できるとされている(例えば、非特許文献2参照。)。この方法はこのように高感度という点では優れているが、操作はひじょうに煩雑で一般の診断に適用できる方法ではない。
 また、PCR等のプライマーの伸張反応において、一塩基の違いを区別して増幅する方法が開発されている。この方法は、“ARMS(amplification refractory mutation system)”(例えば、非特許文献3参照。)、“ASPCR(allele specific PCR)”(例えば、非特許文献4参照。)等と呼ばれている方法である。この方法は、比較的高感度であり、さらに一般的なPCRの増幅反応以外の操作を必要とせず、反応のすべてを閉鎖系で行うことができ、かつ非常に簡便であり、PCRのキャリーオーバーコンタミネーションのない優れた方法である。しかしながら、一度でも一塩基識別を誤って正常遺伝子を増幅した場合、以後の増幅反応において、変異遺伝子の増幅と同じように正常遺伝子も増幅されてしまうため、擬陽性の危険が高い方法とも言える。この方法を用いる場合、反応条件、すなわち反応温度や塩濃度等を厳密に制御する必要があり、また鋳型量も厳密に同じにする必要があり(例えば、非特許文献5参照。)、不特定多数の検体を検査する臨床検査や、高い精度が要求される上に簡便性も求められる診断方法には不向きである。
 体細胞の遺伝子変異を検出するもう一つの方法は、変異遺伝子と正常遺伝子を同時に増幅し、その後変異遺伝子と正常遺伝子を区別して検出する方法である。増幅された変異遺伝子と正常遺伝子を区別して検出する方法としては、電気泳動を利用する方法、ハイブリダイゼーションを利用する各種方法等がある(例えば、非特許文献5参照。)。しかしながら、ほとんどの方法において、多量の正常遺伝子に含まれる少量の変異遺伝子を精度よく検出することは困難である。例えば、変異遺伝子検出のゴールドスタンダードといわれている方法として、ジデオキシシークエンシング法がある。ジデオキシシークエンシング法は、変異遺伝子を比較的高感度で検出することが可能であるものの、変異遺伝子と正常遺伝子が混在する場合に、変異遺伝子の検出感度は10%程度であり、それほど高感度の検出はできない。その他、ピロシークエンシング法では、5%程度まで検出感度を高めることができ、ジデオキシシークエンシング法より優れていることが報告されている(例えば、非特許文献6参照。)。
 また、変異を含む配列をPCRにより増幅し、その生成物の2本鎖DNAの融解曲線を求め、変異遺伝子と正常遺伝子の融解曲線の違いから変異遺伝子の割合を求める方法が開発されている。この方法でも、正常遺伝子に含まれる変異遺伝子を5%程度まで検出できるとされている(例えば、非特許文献7参照。)。
 その他、同じ塩基配列をもつ2本鎖間での鎖の組み換え反応(鎖置換反応)を利用したPCR-PHFA法が開発された。PCR-PHFA法は、遺伝子型の識別対象であるサンプル(2本鎖核酸)と配列既知の標準2本鎖核酸との間で塩基配列がまったく同じであれば、それぞれの鎖を区別することができず、鎖の組換え(鎖置換)が起こるが、1塩基でも違いがあれば、完全に相補的な塩基配列を持つ鎖同士が優先的に2本鎖を形成するために、サンプルと標準2本鎖核酸との間で組換えが起こらないことを利用した変異検出法である。このPCR-PHFA法を用いることにより、実際の検体から1%程度という高感度で変異遺伝子を検出できることが報告されている(例えば、非特許文献8参照。)。このように、PCR-PHFA法は、検出感度が高く、再現性に優れた方法であるが、操作がやや煩雑であり(例えば、特許文献1参照。)、また、キャリーオーバーコンタミネーション等も問題であった。それらの問題を解決するために、幾つかの改良法が提案されている。
 例えば特許文献2には、PCR-PHFA法の改良法として、蛍光共鳴エネルギー移動を利用する方法が開示されている。微量の変異遺伝子を高感度で正確に測定するPCR-PHFA法においては、同じ配列をもつ二つの2本鎖核酸の間での鎖の組換えを検出する必要があるが、サンプルの2本鎖核酸は非標識とし、鎖の組換えを起こさせるための配列既知の標準核酸を標識する場合が多い。特許文献2記載の方法では、標準核酸の一方の鎖の5’末端付近に蛍光物質を結合させて標識し、他方の鎖の3’末端付近を別の蛍光物質で標識する。鎖置換反応が起こらず標準核酸が元の2本鎖の場合には、二つの異なる蛍光物質の間での蛍光共鳴エネルギー移動が観察される。これに対して、サンプルの2本鎖核酸との間での鎖置換反応が起こると、蛍光共鳴エネルギー移動は観察されなくなる。従って、この蛍光共鳴エネルギー移動の程度を測定することで鎖の組換えの程度を測定することができる。
 一方、近年の遺伝子検出技術の進展は著しく、微細加工技術と蛍光検出法を組み合わせた多数の遺伝子発現や変異を同時に検出する方法が開発されており、これらの技術と組み合わせることの可能な変異遺伝子の高感度検出が望まれるところである。さらに、閉鎖系の反応容器中でPCR-PHFAを行うことにより、チューブ内で行うよりもコンタミネーションの危険性は劇的に低減し、簡便で迅速な核酸検査への応用が可能である。
日本国特許第2982304号公報 特開2003-174882号公報
チェン(Chen)、外1名、アナリティカル・バイオケミストリー(Analytical biochemistry)、1991年、第195巻、第51~56ページ。 ジャコブソン(Jacobson)、外1名、オンコジーン(Oncogene)、1994年、第9巻、第553~563ページ。 ニュートン(Newton)、外7名、ヌクレイック・アシッズ・リサーチ(Nucleic acids research)、1989年、第17巻、第2503~2516ページ。 ウ(Wu)、外3名、プロシーディング・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッド・ステーツ・オブ・ジ・アメリカ(Proceedings of the National Academy of Sciences of the United States of America)、1989年、第86巻、第2757~2760ページ。 ノラウ(Nollau)、外1名、クリニカル・ケミストリー(Clincal Chemistry)、1997年、第43巻、第1114~1128ページ。 オギノ(Ogino)、外9名、ザ・ジャーナル・オブ・モレキュラー・ダイアグノスティックス(The Journal of Molecular Diagnostics)、2005年、第7巻、第413~421ページ。 クリプィ(Krypuy)、外4名、ビーエムシー・キャンサー(BMC Cancer)、2006年、第6巻、第295ページ。 タダ(Tada)、外7名、クリニカ・キミカ・アクタ(Clinica Chimica Acta)、2002年、第324巻、第105ページ。
 従来のPCR-PHFA法では、鎖置換反応における塩基配列の識別感度が十分ではなく、遺伝子変異、特に体細胞変異を精度よく検出・識別することが困難であった。例えば、特許文献2記載の蛍光共鳴エネルギー移動を利用したPCR-PHFA法は、煩雑な固液分離作業を必要としないため簡便であり、かつ閉鎖系の反応容器中でPCR-PHFAを行うため、コンタミネーションの危険も顕著に低減することが可能な良好な方法であるが、やはり、識別感度が十分ではない。
 本発明はこのような状況下、PCR-PHFA法を利用した遺伝子型の識別方法において、塩基配列の相違を識別する精度を改善させることができる方法、及び前記方法に好適なキットを提供することを目的とする。
 PCR-PHFA法においては、一般的に、サンプルの2本鎖核酸はポリメラーゼチェーン反応(PCR)を用いて調製したものを用いる場合が多いが、従来は、操作を簡便にするために、PCRの反応液を未精製のまま、鎖の組換えを起こさせるための配列既知の標準核酸と混合し、競合的鎖置換反応を行っている。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、遺伝子型の識別をPCR-PHFA法を用いて行う際に、核酸増幅反応液を未精製のまま競合的鎖置換反応の反応液に添加する場合に、競合的鎖置換反応中のポリメラーゼによる伸長反応を阻害することにより、遺伝子型の識別感度を改善できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記(1)~(10)を含む。
(1)遺伝子変異における遺伝子型を識別する方法であって、試料に含まれる遺伝子中の変異部位を含む領域を核酸増幅反応により増幅し、試料2本鎖核酸を含有する増幅反応液を得る核酸増幅工程と、前記変異部位が特定の遺伝子型であり、かつ標識物質により標識されている標準2本鎖核酸と、前記核酸増幅工程で得られた増幅反応液とを混合して競合的鎖置換反応を行い、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することにより、前記標準2本鎖核酸と前記試料2本鎖核酸との同一性を識別する識別工程と、を有し、かつ、前記競合的鎖置換反応が、ポリメラーゼによる伸長反応が抑制された条件で行われることを特徴とする遺伝子型の識別方法。
(2)前記競合的鎖置換反応が、伸長反応阻害剤の存在下で行われることを特徴とする前記(1)記載の遺伝子型の識別方法。
(3)前記伸長反応阻害剤がキレート剤であることを特徴とする前記(2)記載の遺伝子型の識別方法。
(4)前記伸長反応阻害剤がEDTAであり、前記競合的鎖置換反応の反応液中のEDTA濃度が15mM以上であることを特徴とする前記(3)記載の遺伝子型の識別方法。
(5)前記伸長反応阻害剤がDNA合成阻害剤であることを特徴とする前記(2)記載の遺伝子型の識別方法。
(6)競合的鎖置換反応前に、前記核酸増幅工程で得られた増幅反応液を熱処理することを特徴とする前記(1)記載の遺伝子型の識別方法。
(7)競合的鎖置換反応前に、前記核酸増幅工程で得られた増幅反応液に、1本鎖核酸分解処理又はヌクレオチド三リン酸分解処理を行うことを特徴とする前記(1)記載の遺伝子型の識別方法。
(8)前記標準2本鎖核酸を構成する2本の核酸鎖のうち、一方の鎖の3’端部が第1標識物質により、他方の鎖の5’端部が第2標識物質により、それぞれ標識されており、前記第1標識物質と前記第2標識物質は、互いにエネルギー移動可能な物質であり、前記第1標識物質及び前記第2標識物質間のエネルギー移動によるエネルギー変化の度合いを測定することにより、前記識別工程における標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することを特徴とする前記(1)~(7)のいずれか記載の遺伝子型の識別方法。
(9)前記第1標識物質及び前記第2標識物質の少なくとも一方が蛍光物質であり、前記識別工程における競合的鎖置換反応は、前記標準2本鎖核酸と前記試料2本鎖核酸とを含む反応液の温度を、高温から徐々に低下させることにより行うものであり、かつ、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度の測定を、前記反応液の温度低下による蛍光強度の変化量と、前記試料2本鎖核酸を含まず前記標準2本鎖核酸を含む対照反応液の温度低下による蛍光強度の変化量との比に基づき測定することを特徴とする前記(8)記載の遺伝子型の識別方法。
(10)前記(1)に記載の遺伝子型の識別方法により遺伝子型を識別するために用いられるキットであって、伸長反応阻害剤、1本鎖核酸分解酵素、及びヌクレオチド三リン酸分解酵素からなる群より選択される1以上と、試料2本鎖核酸を調製するための核酸増幅試薬と、一方の標識物質が標準核酸の一方の鎖の5’端部、もう一方の標識物質が標準核酸のもう一方の鎖の3’端部に導入された標準二本鎖核酸と、を具備することを特徴とする遺伝子型識別用キット。
 本発明の遺伝子型の識別方法は、遺伝子型の識別精度及び感度が大幅に改善されており、SNP等の生殖細胞変異のみならず、従来のSNP検査法では識別が困難であった体細胞変異も高精度に識別することができる。
 また、本発明の遺伝子型識別用キットを用いることにより、本発明の遺伝子型の識別方法をより簡便に行うことができる。
競合的鎖置換反応中にポリメラーゼによる伸長反応が生じた場合の識別感度への影響を模式的に示した図である。 ドナー標識物質とアクセプター標識物質により標識した標準2本鎖核酸と、非標識の試料2本鎖核酸とを混合し、変性後、徐々に温度を降下させた場合の、各標識物質の蛍光強度の挙動を模式的に示した図である。 ドナー標識物質とアクセプター標識物質により標識した標準2本鎖核酸と、非標識の試料2本鎖核酸とを混合し、変性後、徐々に温度を降下させた場合の、各標識物質の蛍光強度の挙動を模式的に示した図である。 ドナー標識物質の蛍光強度の挙動を用いて、ΔFの求め方を説明した図である。 実施例1において、温度変化にともなうFAMの蛍光変化を示した図である。 実施例2において、温度変化にともなうFAMの蛍光変化を示した図である。 実施例3において、温度変化にともなうFAMの蛍光変化を示した図である。 実施例3において、各反応における温度低下による蛍光強度の変化量ΔFを示した図である。 実施例4において、各反応における温度低下による蛍光強度の変化量ΔFを示した図である。 実施例5において、各反応において得られたΔFをEDTA濃度に対してプロットした図である。 実施例6において、得られたIndex値を標識標準DNAの遺伝子型ごとに示した図であり、35℃におけるアクセプター標識物質の蛍光値とドナー標識物質の蛍光値の比に基づいて求めたIndex値である。 実施例6において、得られたIndex値を標識標準DNAの遺伝子型ごとに示した図であり、後記式(4)に基づいて求めたIndex値である。
 本発明において遺伝子変異とは、同一生物種の個体間において存在する遺伝子の塩基配列の相違を意味し、変異部位とは、塩基配列中の相違する部位を意味する。具体的には、塩基配列中の1又は複数の塩基が置換・欠失・挿入されていることにより、塩基配列の相違は生じる。すなわち、本発明において遺伝子変異とは、体細胞変異等のように後天的な変異に加えて、SNPやマイクロサテライト多型等の遺伝子多型のような先天的な変異も含む。
 本発明の遺伝子型の識別方法において、標準2本鎖核酸とは、識別対象である試料由来の2本鎖核酸と競合的に鎖を置換させる塩基配列既知の2本鎖核酸を意味する。具体的には、標準2本鎖核酸は、対象の遺伝子の変異部位を含む部分領域であって、変異部位が特定の遺伝子型である配列と同一の塩基配列を含む2本鎖核酸である。この標準2本鎖核酸と試料由来の2本鎖核酸との間で鎖置換反応が起こった場合には、当該試料中に含まれている遺伝子は、標準2本鎖核酸と同一の遺伝子型であり、鎖置換反応が起こらなかった場合には、標準2本鎖核酸とは異なる遺伝子型であると識別することができる。
 本発明の遺伝子型の識別方法は、遺伝子変異における遺伝子型をPCR-PHFA法を用いて識別する際に、競合的鎖置換反応中に生じるポリメラーゼによる伸長反応を阻害することにより、競合的鎖置換反応における塩基配列の識別感度及び精度を改善させる方法である。伸長反応を阻害することにより、塩基配列の識別感度が改善できる理由は明らかではないが、下記のように推察される。
 従来のPCR-PHFA法では、試料中の核酸を鋳型として非標識のプライマーを用いて核酸増幅反応を行い、得られた増幅産物を、精製を行うことなく、鎖の組換えを起こさせるための配列既知の標識された標準2本鎖核酸と混合し、競合的鎖置換反応を行い、試料由来の非標識核酸と標識された標準2本鎖核との間に生じた鎖置換反応の程度を測定することにより、試料中の遺伝子の遺伝子型が、標準2本鎖核酸と同一か否かを識別している。ここで、核酸増幅反応の反応液中には、DNAポリメラーゼやプライマー等の核酸の伸長反応を行うための試薬が含まれているが、これらの試薬もその活性を維持したまま、核酸増幅産物と同時に標準2本鎖核酸と混合されることになる。核酸増幅反応に用いたプライマーは、標準2本鎖核酸ともハイブリダイズし得ることから、例えば、未精製の核酸増幅産物と標準2本鎖核酸とを混合して熱変性し、徐々に温度を下降させて競合的鎖置換反応を行うと、温度条件がポリメラーゼによる伸長反応に適した温度になった時点で、標準2本鎖核酸にプライマーがハイブリダイズして新たな伸長生成物が生じてしまう。
 試料に含まれていた遺伝子の遺伝子型と、標準2本鎖核酸の遺伝子型が同じ場合は、この伸長生成物は試料由来の非標識核酸と同じ遺伝子型となる。つまり、競合的鎖置換反応中にポリメラーゼによる伸長反応が起こったとしても、それは試料由来の非標識核酸と同じ遺伝子型をもつ非標識の核酸が合成されるに過ぎず、結果にはほとんど影響を及ぼさないと考えられる。これに対して、試料に含まれていた遺伝子の遺伝子型と、標準2本鎖核酸の遺伝子型が異なる場合には、競合的鎖置換反応中に伸長反応が生じることにより、試料には含まれていなかった遺伝子型をもつ非標識の核酸が新たに合成され、反応液中に存在することになる。この非標識の核酸は、標準2本鎖核酸を鋳型としていることから、標準2本鎖核酸とまったく同じ塩基配列を持つものであり、変性により1本鎖となった標準2本鎖核酸由来の核酸鎖同士が元の2本鎖に戻るのと競合してしまうことになる。
 図1は、競合的鎖置換反応中にポリメラーゼによる伸長反応が生じた場合の識別感度への影響を模式的に示した図である。なお、図中、「○」は蛍光標識を、「●」はエネルギー移動によりこの蛍光標識から発される蛍光を消光する消光剤標識を示す。
 図1に示す反応系では、蛍光標識から発される蛍光を検出することにより、試料由来の2本鎖核酸(サンプル)の遺伝子型が、標識された標準2本鎖核酸(標識標準DNA)の遺伝子型と同一であるか否かを識別する。競合的鎖置換反応後の反応液から、蛍光標識から発される蛍光が検出されなかった場合には、鎖置換が起こらず標識標準DNAが元に戻った、つまり、サンプルは標識標準DNAとは異なる遺伝子型であると識別される。一方、蛍光が検出された場合には、鎖置換が起こり、標識標準DNAが元に戻らなかった、つまり、サンプルは標識標準DNAと同じ遺伝子型であると識別される。
 図1中、上段(A)が、試料に含まれていた遺伝子の遺伝子型と、標識された標準2本鎖核酸(標識標準DNA)の遺伝子型が同じ場合を説明したものである。核酸増幅反応により得られた試料由来の2本鎖核酸(サンプル)が20個あり、これに、1個の標識標準DNAを混合して競合的鎖置換反応を行った場合、競合的鎖置換反応中に伸長反応が生じなかった場合には、競合的鎖置換反応後に標識標準DNAが元に戻る確率は1/21である。一方、競合的鎖置換反応中に伸長反応が生じ、1個の標識標準DNAと同じ塩基配列をもつ非標識の2本鎖核酸が産生されると、競合的鎖置換反応後に標識標準DNAが元に戻る確率は1/22となる。このように、伸長反応が生じることにより、標識標準DNAが元に戻る確率は低下するものの、遺伝子型の識別感度に大きな影響はない。
 図1中、下段(B)が、試料に含まれていた遺伝子の遺伝子型と、標識された標準2本鎖核酸(標識標準DNA)の遺伝子型が異なる場合を説明したものである。図中、「◆」が標識標準DNA中の変異部位(サンプルと異なる塩基)を示す。上段(A)と同様に、20個のサンプルに1個の標識標準DNAを混合して競合的鎖置換反応を行った場合、競合的鎖置換反応中に伸長反応が生じなかった場合には、標識標準DNAはサンプルとはハイブリダイズしないため、競合的鎖置換反応後に標識標準DNAが元に戻る確率は1である。一方、競合的鎖置換反応中に伸長反応が生じ、1個の標識標準DNAと同じ塩基配列をもつ非標識の2本鎖核酸が産生されると、この新たに産生された伸長産物は標識標準DNAと競合的にハイブリダイズするため、競合的鎖置換反応後に標識標準DNAが元に戻る確率は1/2と顕著に低下してしまう。その結果、競合的鎖置換反応の前(変性後)の1本鎖の状態の蛍光値と競合的鎖置換反応後の2本鎖状態の蛍光値との変化量が小さくなり、これが感度の低下につながる。
 また、PCR-PHFA法においては、標識した標準2本鎖核酸と、非標識の試料由来の2本鎖核酸との間の鎖置換を利用することが根本原理であり、反応中に試料に由来しない非標識の核酸が生成することは、精度からして好ましくないことである。例えば、図1の下段(B)に示すように、新たに産生された伸長産物と標識標準DNAとの間で鎖置換が起こると、競合的鎖置換反応後の反応液から蛍光が検出され、サンプルは標識標準DNAと同じ遺伝子型であると誤って識別されてしまう。つまり、競合的鎖置換反応中に伸長反応が生じることにより、遺伝子型の識別精度も低下することになる。
 競合的鎖置換反応中に、核酸増幅反応の反応液から持ち込まれたポリメラーゼによる伸長反応が起こり、この結果、核酸の塩基配列の識別精度及び感度が低下することは、本発明者らにより初めて見出された知見である。本発明はこの知見に基づき、競合的鎖置換反応中のポリメラーゼによる伸長反応を抑制することにより、識別精度及び感度を改善する。
 本発明の遺伝子型の識別方法は、具体的には、試料に含まれる遺伝子中の変異部位を含む領域を核酸増幅反応により増幅し、試料2本鎖核酸を含有する増幅反応液を得る核酸増幅工程と、標識物質により標識されている標準2本鎖核酸と前記核酸増幅工程で得られた増幅反応液とを混合して、ポリメラーゼによる伸長反応が抑制された条件で競合的鎖置換反応を行い、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することにより、前記標準2本鎖核酸と前記試料2本鎖核酸との同一性を識別する識別工程とを有する。
 本発明の識別方法に供される試料としては、例えば、細菌、ウィルス等の病原体、ヒト等の生体から分離された血液、唾液、組織病片等、或いは糞尿等の排泄物が挙げられる。更に、出生前診断を行う場合は、羊水中に存在する胎児の細胞や、試験管内での分裂卵細胞の一部を検体とすることもできる。また、これらの試料は直接、又は必要に応じて遠心分離操作等により沈渣として濃縮した後、例えば、酵素処理、熱処理、界面活性剤処理、超音波処理、或いはこれらの組み合わせ等による細胞破壊処理を予め施したものを使用することができる。この場合、上記細胞破壊処理は、目的とする組織由来の核酸を顕在化させる目的で行われる。なお、細胞破壊処理の具体的な方法は、PCRプロトコルス・アカデミック・プレス・インク(PCR PROTOCOLS Academic Press Inc.,p14、p352(1990))等の文献に記載された公知の方法に従って行うことができる。また、試料中の核酸は、トータル量で5~50ng程度であることが好ましいが、5ng以下でも充分増幅可能である。
 本発明の識別方法において識別対象とする変異部位としては、がん関連遺伝子、遺伝病に関連する遺伝子、ウィルス遺伝子、細菌遺伝子及び病気のリスクファクターと呼ばれる多型性を示す遺伝子等に存在するものが挙げられる。がん関連遺伝子としては、例えばK-ras遺伝子、N-ras遺伝子、p53遺伝子、BRCA1遺伝子、BRCA2遺伝子、又はAPC遺伝子等が挙げられる。遺伝病に関連する遺伝子としては、各種先天性代謝異常症等との関連が報告されている遺伝子等が挙げられる。ウィルス遺伝子、細菌遺伝子としては、例えばC型肝炎ウィルス、B型肝炎ウィルス等の遺伝子が挙げられる。多型性を示す遺伝子としては、例えば、HLA(Human Leukocyte Antigen)や血液型に関する遺伝子のように、病気等の原因とは必ずしも直接は関係のない、個体によって異なる塩基配列を持つ遺伝子や、高血圧、糖尿病等の発症に関係するとされている遺伝子等が挙げられる。これらの遺伝子は、その大部分が宿主の染色体上に存在するが、ミトコンドリア遺伝子にコードされている場合もある。
 本発明においては、まず、核酸増幅工程として、試料に含まれる遺伝子中の変異部位を含む領域を核酸増幅反応により増幅し、試料2本鎖核酸を調製する。核酸増幅反応としては、変異部位を含む領域を2本鎖核酸として増幅可能な反応であれば、特に限定されるものではなく、PCR法、LCR(Ligase Chain Reaction)法、3SR(Self-sustained Sequence Replication)法、SDA(Strand Displacement Amplification)法等の公知の核酸増幅反応の中から適宜選択して用いることができる(Manak,DNA Probes 2nd Edition p255~291,Stockton Press(1993))。本発明においては、特にPCR法が好適である。
 例えば、変異部位を含む増幅する領域を挟むようにプライマーを設計し、ポリメラーゼを用いたプライマーの伸長反応を繰り返し行うことにより、試料2本鎖核酸を調製することができる。この伸長反応に用いられるdNTP、ポリメラーゼ等の試薬は、核酸増幅を行う場合に通常用いられている試薬の中から、適宜選択して用いることができる。例えば、ポリメラーゼとしては、E.coliDNAポリメラーゼI、E.coliDNAポリメラーゼIのクレノウ断片、T4 DNAポリメラーゼ等の任意のDNAポリメラーゼを用いることができるが、特にTaq DNAポリメラーゼ、Tth DNAポリメラーゼ、Vent DNAポリメラーゼ等の熱安定性DNAポリメラーゼを用いることが好ましい。これによりサイクル毎に新たな酵素の添加の必要性がなくなり、自動的にサイクルを繰り返すことが可能になる。更にアニーリング温度を50~60℃に設定することが可能なため、プライマーによる標的塩基配列認識の特異性を高めることができ、迅速かつ特異的に遺伝子増幅反応を行うことができる(詳細については特開平1-314965号公報、特開平1-252300号公報参照)。また、この伸長反応を行う際の反応条件等の具体的な方法については、実験医学第8巻第9号(羊土社、(1990))、PCRテクノロジー・ストックトン・プレス(PCR Technology Stockton press)(1989)等の文献に記載された公知の方法に従い行うことができる。
 試料2本鎖核酸は、遺伝子型が標準2本鎖核酸と同一であった場合に、標準2本鎖核酸と鎖置換反応が起こるように、遺伝子中の変異部位を含む領域を増幅したものであればよく、その両末端は標準2本鎖核酸の両末端と必ずしも等しくなくてもよい。例えば、試料2本鎖核酸と標準2本鎖核酸の鎖長の違いは、両末端それぞれ10塩基以内程度であってもよい。本発明においては、変異部位が1塩基のみである場合の識別精度をより向上させることができるため、試料2本鎖核酸は、変異部位を含む遺伝子中の領域のうち、標準2本鎖核酸と完全に同一の領域を核酸増幅して得られた2本鎖核酸であることが好ましい。
 次いで、識別工程として、標準2本鎖核酸と前記核酸増幅工程で得られた増幅反応液とを混合して、ポリメラーゼによる伸長反応が抑制された条件で競合的鎖置換反応を行い、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することにより、標準2本鎖核酸と試料2本鎖核酸との同一性を識別する。
 伸長反応を防ぐ第1の方法として、競合的鎖置換反応の反応液に伸長反応阻害剤を添加する方法がある。競合的鎖置換反応の反応液に伸長反応阻害剤を添加することにより、その他の特段の作業を要することなく、競合的鎖置換反応中の伸長反応を阻害することができる。ここで、伸長反応阻害剤とは、伸長反応に必要なポリメラーゼ、ヌクレオチド三リン酸、又はプライマーを直接、分解させることなく、伸長反応を阻害する作用を有する化合物であれば特に限定されるものではなく、核酸増幅反応において用いたポリメラーゼの種類等を考慮して、伸長反応阻害作用を有する公知の化合物の中から適宜選択して用いることができる。このような伸長反応阻害剤としては、例えば、キレート剤やDNA合成阻害剤等が挙げられる。
 例えば、PCRにおいて汎用されているポリメラーゼは、その酵素活性がイオン濃度、特に2価イオン濃度に影響され易い。例えば、マグネシウムイオンはDNAポリメラーゼが活性を発揮するためには必須の二価の金属イオンである。このため、競合的鎖置換反応の反応液に、ポリメラーゼ活性を抑制可能な濃度のキレート剤を添加することにより、伸長反応を効果的に阻害することができる。なお、マグネシウムイオンを物理的に除く方法もあるが、操作が煩雑である。キレート剤は、単に競合的鎖置換反応の反応液に添加するだけでよく、簡便であり、また以降のPCR-PHFA反応に及ぼす影響も小さいと考えられる。
 キレート剤としてはEDTA、CDTA、DTPA等がある。キレート剤の添加量は、キレート剤の種類、ポリメラーゼの種類等を考慮して、実験的に求めることが可能である。例えば、キレート剤としてEDTAを使用した場合には、競合的鎖置換反応の反応液中のEDTA濃度が15mM以上となるように添加することが好ましい。好ましいEDTA濃度の範囲は、15mM~100mMであり、より好ましい範囲は25mM~50mMである。
 その他、競合的鎖置換反応の反応液に、酵素の阻害物質を添加することによっても、伸長反応を阻害することができる。一般的にDNAポリメラーゼの活性を阻害するものとしてはDNA合成阻害剤がある。DNA合成阻害剤は、DNAポリメラーゼに結合してその活性を阻害するものと、DNAに結合して合成阻害するものの2種類に大別される。本発明においては、DNAに結合するものを使用した場合には、PCR-PHFAの反応そのものを阻害する可能性がある。このため、DNAポリメラーゼに結合するDNA合成阻害剤を使うことが好ましい。また、DNAポリメラーゼと結合する負イオン性のタンパク質を添加することによってもDNAポリメラーゼの活性を阻害することもできる。すなわち、ポリメラーゼと結合する負イオン性のタンパク質も伸長反応阻害剤として用いることができる。
 伸長反応を防ぐ第2の方法として、核酸増幅反応後の増幅反応液を熱処理する方法がある。核酸増幅反応後の増幅反応液を熱処理することにより、増幅反応液に含まれているポリメラーゼを失活させることができる。一般的にはPCR反応には耐熱性のDNAポリメラーゼが用いられるが、これらのポリメラーゼは、95℃以上で10分間以上処理することにより活性を失う場合が多い。耐熱性DNAポリメラーゼの熱による安定性は酵素によって異なるため、熱処理の温度及び時間は、核酸増幅反応において用いた酵素の種類を考慮して、適宜設定することができる。たとえば、汎用されているTaq DNAポリメラーゼは、耐熱性DNAポリメラーゼの中では比較的耐熱性が低く、このような酵素を用いてPCR反応を行ったものを試料とする場合は、比較的容易に熱処理により新たな伸長反応を防ぐことが可能である。
 増幅反応液の熱処理は、競合的鎖置換反応前に行えばよく、標準2本鎖核酸との混合前に行ってもよく、混合後に行ってもよい。混合後に行う場合には、この熱処理により、標準2本鎖核酸及び試料2本鎖核酸の両方を変性することができるため、別途変性操作を行わなくてもよい。
 伸長反応を防ぐ第3の方法として、増幅反応液中の伸長反応に必要な物質等を分解又は失活(変性)させる方法がある。具体的には、増幅反応液を1本鎖核酸分解処理又はヌクレオチド三リン酸分解処理する方法が挙げられる。
 増幅反応液中には、伸長反応に必要なプライマーが残留しており、これが標準2本鎖核酸にハイブリダイズして伸長反応が引き起こされる。そこで、増幅反応液を1本鎖核酸分解処理し、このプライマーを分解することによって、伸長反応を抑制することができる。1本鎖核酸分解処理は、具体的には、増幅反応液に1本鎖特異的ヌクレアーゼを添加して酵素反応を行うことができる。なお、増幅反応液中には、試料2本鎖核酸も含まれているが、これは2本鎖核酸であるため、1本鎖特異的ヌクレアーゼにより、プライマーのみを選択的に分解し、プライマーとしての機能を失わせることができる。
 1本鎖核酸分解処理は、競合的鎖置換反応前に行えばよく、標準2本鎖核酸との混合前に行ってもよく、混合後に行ってもよい。標準2本鎖核酸も1本鎖特異的ヌクレアーゼによっては分解されないためである。但し、競合的鎖置換反応の変性処理前には、競合的鎖置換反応の反応液中の1本鎖特異的ヌクレアーゼ活性は失活している必要がある。変性処理により1本鎖となった試料2本鎖核酸及び標準2本鎖核酸の分解を防止するためである。このため、1本鎖核酸分解処理には、2本鎖核酸が変性する高温下では失活してしまうような1本鎖特異的ヌクレアーゼを用いることが好ましい。そのようなnucleaseとしては、エキソヌクレアーゼI、エキソヌクレアーゼT、マングビーンヌクレアーゼ等がある。
 また、増幅反応液中には、伸長反応に必要な基質である4種類のデオキシ三リン酸も残存している。これらはデオキシ一リン酸に分解されてしまうとその基質としての活性を失ってしまう。そこで、増幅反応液をヌクレオチド三リン酸分解処理し、デオキシ三リン酸をデオキシ一リン酸にまで分解することによって、伸長反応を抑制することができる。デオキシ三リン酸をデオキシ一リン酸に変換する酵素としては、アピラーゼ等がある。
 ポリメラーゼによる伸張反応を防ぐためには、核酸増幅反応により生成した2本鎖核酸を精製し、その後PCR-PHFA反応を行えばよいと考えられる。しかしながら、精製には手間がかかり、また増幅物の飛散による汚染の原因となりやすく診断の現場に適した方法とはいえない。本発明においては、前述する3つの方法のように、より簡単な操作で新たな伸長反応を抑制することができる。
 競合的鎖組み換え反応は、相同な塩基配列を持つ2本鎖核酸と1本鎖核酸との間、或いは相同な塩基配列を持つ2本鎖核酸と2本鎖核酸との間で起こる競合的な核酸鎖の置換反応(コンペティティブハイブリダイゼーション)であり、標準2本鎖核酸及び試料2本鎖核酸を変性した後、アニーリングすることにより行うことができる。
 標準2本鎖核酸及び試料2本鎖核酸を変性する方法としては、加熱による方法又はアルカリによる方法が好ましい。本発明においては、簡便であることから、加熱により変性させることが好ましい。具体的には、2本鎖核酸を、90~100℃、好ましくは95~100℃に一定時間加熱することにより、変性させることができる。なお、標準2本鎖核酸と試料2本鎖核酸とを混合する時期は、変性直前であってもよく、変性後であってもよい。
 変性させた標準2本鎖核酸及び試料2本鎖核酸をアニーリングさせる場合には、反応液中の塩濃度が最適になるように調製することが好ましい。最適な塩濃度は、一般的には鎖長に依存する。一般に、ハイブリダイゼーションにおいては、SSC(20×SSC:3M塩化ナトリウム、0.3Mクエン酸ナトリウム)やSSPE(20×SSPE:3.6M塩化ナトリウム、0.2Mリン酸ナトリウム、2mM EDTA)が使われており、本発明の識別方法においても、これらの溶液を好適な濃度に希釈して使用することができる。また、必要に応じてジメチルスルフォキシド(DMSO)、ジメチルフォルムアミド(DMF)等の有機溶媒を添加することもできる。
 加熱により変性させた場合には、反応液の温度を、高温(一般的には、変性温度であり、例えば、90~100℃の範囲のいずれかの温度)から徐々に下げることにより、アニーリングを行い、競合的鎖組み換え反応を行うことができる。反応液の降温速度や反応終了時点の反応液の温度等の条件は、標準2本鎖核酸及び試料2本鎖核酸の鎖長や塩基配列に応じて適宜設定することができる。反応液の温度低下がゆっくりであるほど、非相補的な塩基配列を有する1本鎖同士がハイブリダイズする確率を低減することができる。例えば、98~50℃の範囲で0.1℃/分~0.3℃/分の速度、より好ましくは98~70℃の範囲で0.1℃/分の速度で温度を下げることにより、精度よく競合的鎖組み換え反応を行うことができる。
 本発明においては、標準2本鎖核酸を標識物質により標識し、試料2本鎖核酸は非標識のものを調製する。標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度は、当該標識を指標として測定することができる。例えば、標準2本鎖核酸を構成する2本の核酸鎖のうち、一方の鎖をある標識物質で標識し、他方の鎖を別の標識物質で標識する。この場合、鎖置換反応が起こらなかった場合には、2種類の標識物質は全て同じ分子から検出される。一方、鎖置換反応が起こった場合には、2種類の標識物質のうちのいずれか一方のみ検出される分子が存在する。よって、反応液中の2本鎖核酸の各分子がいずれの標識物質で標識されているかを検出することにより、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することができる。
 標識物質としては、非放射性、放射性物質のどちらを用いてもよいが、好ましくは非放射性物質が用いられる。非放射性の標識物質としては、直接標識可能なものとして蛍光物質[例えばフルオレッセイン誘導体(フルオレッセインイソチオシアネート等)、ローダミン及びその誘導体(テトラメチルローダミンイソチオシアネート等)]、化学発光物質(例えばアクリジン等)等が挙げられる。また、標識物質と特異的に結合する物質を利用することにより、間接的に標識物質を検出することができる。このような標識物質としては、ビオチン、リガンド、特定の核酸あるいはタンパク質ハプテン等が挙げられる。そして、標識物質と特異的に結合する物質としては、ビオチンの場合にはこれに特異的に結合するアビジンあるいはストレプトアビジンが、ハプテンの場合はこれに特異的に結合する抗体が、リガンドの場合はレセプターが、特定の核酸あるいはタンパク質の場合はこれと特異的に結合する核酸、核酸結合タンパク質あるいは特定のタンパク質と親和性のあるタンパク質等が利用できる。 上記ハプテンとしては2,4-ジニトロフェニル基を有する化合物やジゴキシゲニンを使うことができ、更にはビオチンあるいは蛍光物質等もハプテンとして使用することができる。これらの標識物質は、いずれも単独又は必要があれば複数種の組み合わせで公知の手段(特開昭59-93099号公報、特開昭59-148798号公報、特開昭59-204200号公報参照。)により、導入することができる。
 また、標準2本鎖核酸を標識する2種類の標識物質のうち、いずれかの標識物質を固相担体に結合可能な物質とした場合には、汎用されている固液分離作業を行うことにより、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することができる。例えば、標準2本鎖核酸の一方の鎖を標識物質Aで標識し、他方の鎖を固相担体に結合可能な標識物質Bで標識し、鎖置換反応後の反応液を標識物質Bが結合可能な固相担体に接触させる。その後、当該固相担体に結合している2本鎖核酸中の標識物質Aを測定する。鎖置換反応が起こった場合には、固相担体に結合している2本鎖核酸中の標識物質Aにより標識されている2本鎖核酸の割合が減少する。
 特に、本発明においては、互いにエネルギー移動可能な2種類の標識物質(例えば、励起により蛍光を発生するドナー標識物質と、その蛍光を吸収するアクセプター標識物質)を用いて、これらの標識物質間のエネルギー移動によるエネルギー変化の度合いを指標として、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することが好ましい。
 本発明における標識物質間のエネルギー移動とは、エネルギーを発生するドナー標識物質とこのドナー標識物質から発生したエネルギーを吸収するアクセプター標識物質との少なくとも2種の標識物質が、互いに近接した状態にある場合に、ドナー標識物質からアクセプター標識物質へのエネルギーの移動をいう。例えば、2種の標識物質が蛍光物質である場合、ドナー標識物質を励起して生じる蛍光をアクセプター標識物質が吸収し、このアクセプター標識物質が発する蛍光を測定する。又はドナー標識物質を励起して生じる蛍光をアクセプター標識物質が吸収することにより起こるドナー標識物質の消光を測定することができる(PCR Methods and applications 4,357-362(1995)、Nature Biotechnology 16,49-53(1998))。なお、ドナー標識物質の蛍光波長とアクセプター標識物質の吸収波長に重なりがなくてもエネルギー移動が起こる場合があるが、このようなエネルギー移動も本発明に含まれる。
 具体的には、標準2本鎖核酸として、構成する2本の核酸鎖のうち、一方の鎖の3’端部を第1標識物質により標識し、他方の鎖の5’端部を第1標識物質と互いにエネルギー移動可能な第2標識物質により標識したものを用いる。第1標識物質と第2標識物質のいずれがドナー標識物質であってもよい。この標準2本鎖核酸は、第1標識物質と第2標識物質が近接した状態にあるため、エネルギー移動が生じる。一方、試料2本鎖核酸との間で競合的鎖置換反応が起こると、鎖の置換が起こった2本鎖核酸では、第1標識物質と第2標識物質とが離れているため、エネルギー移動が生じず、反応液中のエネルギー移動が生じた2本鎖核酸の割合が減少する。そこで、第1標識物質又は第2標識物質から発されるエネルギー(蛍光物質である場合には蛍光強度)を測定することにより、エネルギー移動によるエネルギー変化の度合いを測定し、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することができる。
 遺伝子型が異なる(変異部の塩基配列が相違する)核酸鎖同士に比べて、遺伝子型が同一の(完全に相補的な塩基配列を持つ)核酸鎖同士のほうがより優先的に2本鎖を形成する。このため、これに伴って標識物質間でのエネルギー移動によるエネルギー変化の度合、すなわち、鎖置き換え反応によって生じたり消失したりするエネルギー移動の変化の度合を任意の検出器を用いて測定することにより、試料中に含まれていた遺伝子の変異部位の遺伝子型が、標準2本鎖核酸と同一であるかどうかや、試料中に含まれていた標準2本鎖核酸と同一の遺伝子型の割合を検出することができる。例えば、検出に蛍光エネルギー移動を利用する場合には、分光蛍光光度計、蛍光プレートリーダーなどで特定波長の蛍光スペクトルを測定することにより、標準2本鎖核酸と同一の遺伝子型を持つ遺伝子の有無や割合を容易に検出することができる。
 図2A及び図2Bは、一方の鎖の3’端部をドナー標識物質により標識し、他方の鎖の5’端部をアクセプター標識物質により標識した標準2本鎖核酸と、非標識の試料2本鎖核酸とを混合し、変性後、徐々に温度を降下させた場合の、ドナー標識物質の蛍光強度の挙動(図2A)及びアクセプター標識物質の蛍光強度の挙動(図2B)を模式的に示した図である。図中、「マッチ」は、標準2本鎖核酸と試料2本鎖核酸の遺伝子型が同一である場合、「ミスマッチ」は、互いに遺伝子型が異なる場合の挙動である。
 このように、標識物質間のエネルギー移動によるエネルギー変化の度合いを測定することによって、標準2本鎖核酸と試料2本鎖核酸との間で鎖組み換えが生じた程度を測定することにより、固液分離作業等の煩雑な作業を要することなく、迅速かつ簡便に標準2本鎖核酸と試料2本鎖核酸との同一性を識別することができる。しかも、両標識物質を、互いに近接する3’端部と5’端部とに導入することにより、鎖の置き換えが生じた程度を正確かつ確実に捕えることができる上、標準2本鎖核酸又は試料2本鎖核酸が鎖の長い遺伝子断片であっても、常に良好な感度をもって正確かつ確実に相補鎖の置換の程度を測定し得、遺伝子型の同一性を正確かつ安定的に識別することができる。特に、従来の煩雑な固液の分離作業を必要としない簡易な方法であることから、自動化も可能となり、最前線の医療現場での要望に応えることができる。
 第1標識物質又は第2標識物質として用いることができる標識物質としては、互いに近接した状態でエネルギー移動可能なものであれば特に制限されないが、中でも蛍光物質、遅延蛍光物質が好ましく、場合によっては化学発光物質、生物発光物質等を用いることもできる。このような標識物質の組み合せとしては、フルオレセイン及びその誘導体(例えばフルオレセインイソチオシアネート等)とローダミン及びその誘導体(例えばテトラメチルローダミンイソチオシアネート、テトラメチルローダミン-5-(and-6-)ヘキサノイックアシッド等)との組み合わせ、フルオレセインとダブシルとの組み合わせ等が挙げられ、これらの中から任意の組み合わせを選択することができる(Nonisotopic DNA Probe Techniques.Academic Press(1992))。その他、近接させた場合に熱エネルギーの放出が生じる組み合わせの分子であってもよい。このような標識物質の組み合わせとしては、Alexa Fluor(登録商標)488(インビトロジェン社製)、ATTO 488(ATTO-TEC GmbH社製)、Alexa Fluor(登録商標)594(インビトロジェン社製)、及びROX(Carboxy-X-rhodamine)からなる群より選択される1とBHQ(登録商標、Black hole quencher)-1又はBHQ(登録商標)-2との組み合わせ等が挙げられる。
 標準2本鎖核酸に第1標識物質又は第2標識物質を導入する方法としては、一般的な核酸への標識導入方法を採用することができる。例えば、標識物質を核酸に直接化学的に導入する方法(Biotechniques 24,484-489(1998))、DNAポリメラーゼ反応あるいはRNAポリメラーゼ反応により標識物質結合モノヌクレオチドを導入する方法(Science 238,336-3341(1987))、標識物質を導入したプライマーを用いてPCR反応を行うことにより導入する方法(PCR Methods and Applications 2,34-40(1992))等が挙げられる。
 標準2本鎖核酸に標識物質を導入する位置は、鎖置き換え反応によりエネルギー移動が生じたり、消失する位置、すなわち、核酸鎖の3’端部及び/又は5’端部である必要がある。具体的には、本発明において、5’端部及び3’端部とは、核酸鎖の5’末端及び3’末端からそれぞれ30塩基以内の範囲を示すが、両方の標識物質が近ければ近いほどエネルギー移動を起こし易いため、好ましくはそれぞれの末端から10塩基以内であり、最も好ましくは5’末端及び3’末端である。ここで、標識物質を相補鎖とハイブリダイズする塩基部分に多数導入すると1塩基程度の置換が検出できなくなる可能性があるため、それぞれの核酸鎖の端部分のみに導入することが好ましい。例えば、2種の標識物質の一方を一方の核酸鎖の5’端部(3’端部)に導入すると共に、これと相補的な他方の核酸鎖の3’端部(5’端部)に他方の標識物質を導入することにより、ハイブリダイゼーション反応に影響を与えることなく、両核酸鎖は鎖置き換え反応により、エネルギー移動を生じたり、消失したりする。
 具体的には、5’端部に標識を有する核酸鎖を調製するには、5’端部に標識物質が導入されたオリゴヌクレオチドと任意の核酸鎖をリガーゼにより結合させる方法(Nucleic Acids Res.25,922-923(1997))、あるいは5’端部に標識物質が導入されたプライマーを用いてPCR反応を行う方法(PCR Methods and Applications 2,34-40(1992))等が挙げられる。 
 一方、3’端部に標識を有する核酸鎖を調製するには、上記5’端部に標識物質を導入する場合と同様に、3’端部に標識物質が導入されたオリゴヌクレオチドと任意の核酸鎖をリガーゼにより結合させる方法がある。なお、核酸鎖がDNAではなくRNAであったり、DNAの3’端部がRNAである場合には、その末端のRNAの糖(リボース)部を選択的に開環させて、生じたアルデヒド基を利用して標識することもできる。 
 さらに、標識物質を導入したモノヌクレオチド三リン酸を、ターミナルデオキシヌクレオチジルトランスフェラーゼの働きにより核酸鎖の3’端部に導入することもできる(Biotechniques 15,486-496(1993))。 
 標準2本鎖核酸が100塩基以下の比較的短い核酸鎖である場合には、直接化学合成により標識核酸を調製することもできる(Nucleic Acids Res.16,2659-2669(1988)、Bioconjug.Chem.3,85-87(1992))。
 なお、標準2本鎖核酸は、変異部位が所望の遺伝子型である塩基配列が既知の核酸を鋳型として核酸増幅反応を行うことにより調製することができる。この際の核酸増幅反応は、試料2本鎖核酸を調製する場合と同様に、公知の核酸増幅反応の中から適宜選択して用いることができる。本発明においては、特にPCR法が好適である。さらに、核酸増幅反応したものを、プラスミドベクター、ファージベクター、又はプラスミドとファージのキメラベクターから選ばれるベクターに組み込み、大腸菌、枯草菌等の細菌あるいは酵母等の増殖可能な任意の宿主に導入して大量に調製することもできる(遺伝子クローニング)。
 また、標準2本鎖核酸は、例えば、公知の化学合成によっても調製することができる。化学合成法としては、トリエステル法、亜リン酸法等が挙げられる。例えば、液相法又は不溶性の担体を使った固相合成法等を利用した通常の自動合成機(APPLIED BIOSYSTEMS社392等)を使用して1本鎖のDNAを大量に調製し、その後アニーリングを行うことにより2本鎖DNAを調製することができる。
 標識物質間のエネルギー移動によるエネルギー変化の度合いの測定は、一般的に、標識物質から発される蛍光を測定することにより行われるが、この蛍光測定は、多数の検体を同時に測定でき、しかも多彩な温度制御ができるいわゆるリアルタイムPCR装置等を使う場合が多い。しかしながら、このような装置では、検出ごとの蛍光測定精度は必ずしも高くなく、ウェルごとのバラツキが大きくなる場合が多い。また、添加する標準2本鎖核酸の添加量のバラツキも、測定精度に大きな影響を与える要因となり得る。従って、定量的な測定を行う場合には、それら測定間でのバラツキを補正することが好ましい。
 蛍光共鳴エネルギー移動を利用した検出法においては、一般的に、ドナーとなる蛍光物質とアクセプターとなる蛍光物質の両方の蛍光値の比を求めることにより、測定間のバラツキを補正する方法が行われている。すなわち、ドナーを励起して生じる蛍光と、ドナーからのエネルギー移動で励起されて発光したアクセプターの蛍光との両方を測定し、その比を求める方法である。そこで、本発明者らは、本発明の遺伝子型の識別方法において、標識物質間のエネルギー移動によるエネルギー変化の度合いを測定する際に、鎖組み換え反応後(エンドポイント)におけるドナー標識物質の蛍光値とアクセプター標識物質の蛍光値との比を求めることによりバラツキが低減できるかどうかを検討したが、後述する実施例6に示すように、この方法では十分なバラツキ補正を行うことはできなかった。これは、鎖組み換え反応後のドナー標識物質の蛍光値は非常に小さく、このような状態での蛍光測定はバラツキが非常に大きくなり易く、このため、ドナー標識物質の蛍光値とアクセプター標識物質の蛍光値との比の値は大きなバラツキを生じることになるためと考えられる。なお、ドナー標識物質の蛍光値が小さいのは、鎖組み換え反応が起こらずに、変性後の標準2本鎖核酸が元の2本鎖核酸に戻ったときには、エネルギー移動が生じるため、ドナー標識物質の蛍光はほとんどアクセプター標識物質にエネルギー移動される結果、非常に弱い発光となるためである。
 そこで、本発明者らは、さらに検討を重ねた結果、反応液の温度低下による蛍光強度の変化量、つまり、試料二本鎖核酸が存在する反応液(試料反応液)における変性による1本鎖の状態における蛍光強度と、アニーリング後の2本鎖核酸の状態における蛍光強度との変化量ΔF(フルオラセンス)を、試料2本鎖核酸が存在しない反応液(対照反応液)におけるΔFとで比較することにより、測定間のバラツキをよく補正できることを見出した。
 ΔFは、ドナー標識物質の変化量であってもよく、アクセプター標識物質の変化量であってもよい。ドナー標識物質のΔFは、具体的には、下記式(1)により求めることができる。同じくアクセプター標識物質のΔFは、下記式(2)により求めることができる。下記式(1)及び(2)中、「F[start-point]」は、反応液の温度降下開始時点の温度における蛍光強度、「F[end-point]」は、反応液の温度降下終了時点の温度における蛍光強度を意味する。
Figure JPOXMLDOC01-appb-M000001
 また、ΔFは、ドナー標識物質とアクセプター標識物質のいずれであっても、下記式(3)により求めることもできる。下記式(3)中、「F[max]」は、反応液の温度降下開始から終了までの温度依存的な蛍光挙動内で最も高い蛍光強度を意味し、「F[min]」は、同じく温度依存的な蛍光挙動内で最も低い蛍光強度を意味する。
Figure JPOXMLDOC01-appb-M000002
 図3は、ドナー標識物質の蛍光強度の挙動を用いて、ΔFの求め方を説明した図である。図中、「マッチ」は、標準2本鎖核酸と試料2本鎖核酸の遺伝子型が同一である場合、「ミスマッチ」は、互いに遺伝子型が異なる場合、「標識標準DNA」は、試料2本鎖核酸が含まれない場合(対照反応液)の挙動である。
 反応液の温度低下によるΔFと、対照反応液の温度低下によるΔFとの比較は、具体的には、下記式(4)で表されるIndex値(%)として求めることができる。
Figure JPOXMLDOC01-appb-M000003
 鎖組み換え反応が起こらずに、変性後の標準2本鎖核酸が元の2本鎖核酸に戻ったときには、鎖組み換え反応後のドナー標識物質の蛍光は弱く、また、1本鎖の状態におけるアクセプター標識物質の蛍光も弱いが、このような状況でも、競合的鎖置換反応前の1本鎖状態のドナー標識物質の蛍光値あるいは競合的鎖置換反応後の2本鎖状態のアクセプター標識物質の蛍光値との差のバラツキは、ドナー標識物質の蛍光値とアクセプター標識物質の蛍光値との比をとった場合ほど大きくなく、測定間のバラツキをよく補正できることがわかった。
 標識した2本鎖核酸のみの蛍光共鳴エネルギー移動の程度、つまりΔF[対照反応液]を100%とし、標準2本鎖核酸と試料2本鎖核酸の組み換えがどの程度起こっているかを求めることができる。標準2本鎖核酸と試料2本鎖核酸とを混合し、鎖組み換え反応を行った場合に、Index値が100%に近い場合には、鎖組み換えが起こらなかったことを示し、試料2本鎖核酸の遺伝子型は標準2本鎖核酸とは異なると識別される。一方、Index値が0%に近い場合には、鎖組み換えが起こったことを示し、試料2本鎖核酸の遺伝子型は標準2本鎖核酸と同一であると識別される。
 さらに本発明者らは、競合的鎖置換反応に要する反応時間の短縮化についても検討した。前述したように、PCR-PHFA法においては、試料2本鎖核酸と標準2本鎖核酸の混合物を高温で変性し、ゆっくりと温度を下げることが重要であるとされている(Oka,T.,Nucleic Acids Res.,1994,vol.22,p1541-1547参照。)。しかしながら、実際の検査においては迅速な検査が望まれ、反応時間の短縮は重要な課題である。例えば、特許文献1には、98℃~58℃までの範囲で3~10分間に1℃の速度で温度を下げる条件を目安とすればよいことが記載されている。この場合には、反応時間はおよそ120分間から400分間となり、非常に長時間を要することになる。
 本発明者らは、PCR-PHFA法において鎖置換反応が生じるのはある一定の温度以上の時であり、その範囲内でゆっくりとした温度変化をさせることが重要であると考えた。そして、標準2本鎖核酸をドナー標識物質及びアクセプター標識物質で標識した場合には、標準2本鎖核酸を変性させ徐々に温度を下げたときの蛍光強度変化を測定することにより、鎖置換反応が起こる範囲を推定することができると考えられる。この鎖置換反応が起こる温度範囲において、反応液の降温速度を十分にゆっくりにし、その他の温度範囲では降温速度を速くすることにより、識別精度を犠牲にすることなく反応時間を短縮することが可能となる。鎖置換反応が起こる範囲は、蛍光強度変化の変曲点(蛍光強度の温度に対する平均変化率が最大となる温度)付近であり、この蛍光強度変化の変曲点は、個々の温度での蛍光強度変化を算出することにより求めることができる(dF/dT:Fは蛍光値、Tは時間)。この変曲点は、一般に、2本鎖核酸の融解温度の基準として用いられるTmに相当する。Tm値は2本鎖核酸の長さ、塩基配列、溶液組成等によって異なると考えられている。本発明においては、使用する標準2本鎖核酸の競合的鎖置換反応の反応液中での変曲点を求め、それに対応する温度を目安として温度変化の範囲を設定することができる。また、温度変化の速度については、遺伝子型の識別が十分にできる範囲内で速めることが可能である。遺伝子型の識別の難易は塩基配列に依存し、予想は非常に困難であることから、変異の識別を目安に試行錯誤的に速める必要がある。
 本発明の遺伝子の識別方法は、遺伝子型の識別精度が非常に優れており、SNP等の生殖細胞変異のみならず、がん細胞等で観察されるような体細胞変異をも十分な精度で識別することが可能である。よって、臨床検査等においても非常に有用である。
 本発明の遺伝子型識別用キットは、本発明の遺伝子型の識別方法に従って、試料中に含まれている遺伝子変異の遺伝子型を識別したり、特定の遺伝子型が含まれている割合を検出するために用いられるキットであって、伸長反応阻害剤、1本鎖核酸分解酵素、及びヌクレオチド三リン酸分解からなる群より選択される1以上と、試料2本鎖核酸を調製するための核酸増幅試薬とを具備することを特徴とする。さらに、キットには、互いにエネルギー移動可能な2種類の標識物質と、核酸鎖の3’端部に標識物質を導入するための試薬と、核酸鎖の5’端部に標識物質を導入するための試薬を組み合わせることも好ましい。その他、試料前処理用の細胞破壊試薬や、標識物質の標識を検出するための試薬等を組み合わせても良い。このように、本発明の遺伝子型の識別方法に必要な試薬等をキット化することにより、より簡便かつ短時間で遺伝子型の識別を行うことができる。
 以下、実施例を示し、本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
 実施例1~6では、がん遺伝子であるK-rasのコドン12又はコドン13の遺伝子変異を識別対象の変異部位とした。また、変異部位が各遺伝子型である標識した標準2本鎖核酸(以下、「標識標準DNA」という。)は、常法のオリゴヌクレオチド化学合成法に従い調製した。各標識標準DNAは、2本鎖のうちの一方の鎖の5’末端はFAM標識(グレンリサーチ社)し、もう一方の鎖の3’末端はAlexa標識(インビトロジェン社製)した。表1に、化学合成したDNA鎖の配列を、遺伝子型ごとに示す。表1中、コドン12、13は下線で示し、変異部位は小文字で表した。また、「Wild」は野生型を、「G12S」はコドン12の1番目がグアニンからアデニンに変異した遺伝子型を、「G12R」はコドン12の1番目がグアニンからシトシンに変異した遺伝子型を、「G12C」はコドン12の1番目がグアニンからチミンに変異した遺伝子型を、「G12D」はコドン12の2番目がグアニンからアデニンに変異した遺伝子型を、「G12A」はコドン12の2番目がグアニンからシトシンに変異した遺伝子型を、「G12V」はコドン12の2番目がグアニンからチミンに変異した遺伝子型を、「G13D」はコドン13の2番目がグアニンからアデニンに変異した遺伝子型を、それぞれ意味する。さらに、遺伝子型の後に「-FAM」と記載されているものは、5’末端がFAM標識されたDNA鎖であり、「-Ale」と記載されているものは、3’末端がAlexa標識されたDNA鎖であることを意味する。右欄の数字は配列表中の対応する配列番号を示す。
Figure JPOXMLDOC01-appb-T000001
 その他、プライマー等の非標識オリゴヌクレオチドも常法のオリゴヌクレオチド化学合成に従い調製した。また、PCR反応は、T-gradient thermoblock(Biometra社製)を用いて行い、PCR-PHFAは、ABI-7900(ABI社製)を用いて行った。 
[実施例1]
 鋳型を添加せずにPCRを行って得られたPCR反応液をそのまま競合的鎖置換反応に添加し、持ち込まれたPCR反応液の成分が鎖置換反応に及ぼす影響を調べた。
 PCR反応液の組成は、250nM KFプライマー、250nM KRプライマー、250μM dNTP、1×PCRバッファー、2.5ユニット Taq DNAポリメラーゼ(Takara Taq Hot Start Version)とし、全体の反応液を100.5μLとした。このPCR反応液を、95℃3分間の処理後、95℃(20秒間)→57℃(30秒間)→72℃(30秒)の変性、アニーリング、伸長反応を、40サイクル行った。使用したKFプライマー及びKRプライマーの塩基配列を表2に示す。表中の右欄の数字は配列表中の対応する配列番号を示す。
Figure JPOXMLDOC01-appb-T000002
 得られたPCR反応液(15μL)、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、HO(2μL)を混合し、PCR-PHFA反応液とした〔標識標準DNA+PCR鋳型(-)〕。また、PCR反応液を加えないコントロールとして、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、10×PCRバッファー(2μL:100mM Tris-HCl(pH8.3),500mM KCl,15mM MgCl)、HO(15μL)を混合した〔標識標準DNAのみ〕。
 ABI-7900を用いて、これらのPCR-PHFA反応液の温度変化に伴う蛍光変化(蛍光強度変化)を測定した。温度条件は、95℃で5分間変性し、85℃から60℃の間で1℃の降温ごとに5分間ずつその温度を保持しながらゆっくり温度を下げ、最後は35℃まで温度を下げた。
 温度変化にともなうFAMの蛍光変化を図4に示した。G12D-FAMとG12D-Alexaからなる遺伝子型がG12Dの標識標準DNAは、熱変性(90℃)により2つの鎖が解離してほぼ最大の蛍光発光を示し、その後徐々に温度を下げることにより2本鎖が元にもどり蛍光発光は最小となった(図4、〔標識標準DNAのみ〕)。しかしながら、この標識標準DNAに、鋳型をのぞくすべての試薬を加えてPCRを行った反応液を加えて、同様にして蛍光変化を測定すると、1本鎖状態と2本鎖状態の蛍光変化が、何も加えない(標識標準DNAのみ)場合に比較して小さくなっていた(図4、〔標識標準DNA+PCR鋳型(-)〕)つまり、標識標準DNAのみで見られる高温から低温への温度変化に伴う蛍光変化は、PCR反応液を添加することで減少しており、PCR反応液の成分により、標識標準DNAが変性後元に戻る割合が低下することが確認された。これは、標識標準DNAと鋳型を加えてないPCR反応液を混合し温度を徐々に下げる段階で、PCR反応液に含まれるプライマーが標識標準DNAに結合し、伸長反応が起こって新たに非標識DNA鎖が生じ、この非標識DNAと標識DNAとからなる2本鎖が生じたことに原因があると考えられる。
[実施例2]
 PCR-PHFAに及ぼすPCR反応液の影響をさらに詳しく調べるため、実施例1と同じプライマー、標識DNAを用い、鋳型及びTaq DNAポリメラーゼを加えていないPCR反応液、鋳型及びプライマーを加えていないPCR反応液を調製し、実施例1と同様に温度変化に伴う蛍光変化を測定した。
 鋳型及びTaq DNAポリメラーゼを加えていないPCR反応液の組成は、250nM KFプライマー、250nM KRプライマー、250μM dNTP、1×PCRバッファーとし、全体の反応液を100.5μLとした〔標識標準DNA+PCR鋳型(-)、Taq(-)〕。鋳型及びプライマーを加えていないPCR反応液の組成は、250μM dNTP、1×PCRバッファー、2.5ユニット Taq DNAポリメラーゼ(Takara Taq Hot Start Version)とし、全体の反応液を100.5μLとした〔標識標準DNA+PCR鋳型(-)、プライマー(-)〕。これらのPCR反応液を、95℃3分間の処理後、95℃(20秒間)→57℃(30秒間)→72℃(30秒)の変性、アニーリング、伸長反応を、40サイクル行った。得られたPCR反応液を用いて、実施例1と同様に、PCR-PHFA反応液を調製して温度変化に対する蛍光変化を測定した。
 温度変化にともなうFAMの蛍光変化を図5に示した。この結果、Taq DNAポリメラーゼを加えていない場合〔標識標準DNA+PCR鋳型(-)、Taq(-)〕と、プライマーを加えていない場合〔標識標準DNA+PCR鋳型(-)、プライマー(-)〕のいずれにおいても、それぞれを加えた場合〔標識標準DNA+PCR鋳型(-)〕と比較して低温での蛍光の値が小さくなり、何も加えない場合〔標識標準DNAのみ〕に近い挙動を示すことが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
 蛍光測定のバラツキを補正するため、それぞれの反応における温度低下による蛍光強度の変化量ΔFを求めた。具体的には、前記式(1)に基づき、95℃における蛍光値から35℃における蛍光値を差し引いた値をΔFとした。求めた値を表3に示す。この結果からも、鋳型を加えないPCR反応液を加えた場合には明らかに高温と低温の蛍光変化が小さくなっていることが分かった。
[実施例3]
 添加するPCR反応液を加熱処理し、Taqポリメラーゼを失活させることにより、競合的鎖置換反応における核酸の伸長反応を阻害した。
 まず、実施例1と同じ組成のPCR反応液に対して、同じ条件でPCR反応を行った。得られたPCR反応液の一部を99℃で15分間加熱処理し、別の一部を99℃で60分間加熱処理した。これらの加熱処理した反応液と加熱未処理のものを、実施例1と同じ標識標準DNAを用いて、同様にPCR-PHFA反応液を調製し、同様の温度条件で、温度変化に伴う蛍光変化を測定した。また、実施例1と同様にして、PCR反応液を加えないコントロール〔標識標準DNAのみ〕のPCR-PHFA反応液を調製し、同様に蛍光変化を測定した。
 温度変化にともなうFAMの蛍光変化を図6に示した。この結果、99℃15分間の加熱処理を施した場合〔標識標準DNA+PCR反応液、(99℃15分間処理)〕と99℃60分間の加熱処理を施した場合〔標識標準DNA+PCR反応液、(99℃60分間処理)〕のいずれも、加熱未処理の場合〔標識標準DNA+PCR反応液、(未処理)〕よりも高温と低温の蛍光変化が大きく、何も加えない場合〔標識標準DNAのみ〕に近い挙動を示した。
 また、実施例2と同様にして、それぞれの反応の95℃における蛍光値から35℃における蛍光値を差し引き、ΔFを求めた。図7に各反応におけるΔFを示した。PCR反応液を未処理のまま標識標準DNAと反応させた場合と比較して、99℃15分間処理、99℃60分間処理のいずれの場合もΔFが大きくなっており、PCR反応液を加えなかった場合〔標識標準DNAのみ〕のΔF値に近づいていた。これらの結果から、熱処理によりTaqポリメラーゼの活性が失われるかあるいは低下したことにより、競合的鎖置換反応中の伸長反応が抑制されたことが示された。
[実施例4]
 PCR-PHFA反応液にEDTAを添加することにより、競合的鎖置換反応における核酸の伸長反応を阻害した。
 まず、実施例1と同じ組成のPCR反応液に対して、同じ条件でPCR反応を行った。
 得られたPCR反応液(15μL)、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、HO(2μL)を混合し、EDTAを含まないPCR-PHFA反応液とした〔標識標準DNA+PCR鋳型(-)〕。また、PCR反応液(15μL)、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、500mM EDTA(0.6μL)、HO(1.4μL)を混合し、15mM EDTAを含むPCR-PHFA反応液とした〔15mM EDTA添加標識標準DNA+PCR鋳型(-)〕。同様に、PCR反応液(15μL)、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、500mM EDTA(2μL)を混合し、50mM EDTAを含むPCR-PHFA反応液とした〔50mM EDTA添加標識標準DNA+PCR鋳型(-)〕。PCR反応液を加えないコントロールとして、500nM G12D-FAM(1μL)、500nM G12D-Alexa(1μL)、2M NaCl(1μL)、10×PCRバッファー(2μL:100mM Tris-HCl(pH8.3),500mM KCl,15mM MgCl)、HO(15μL)を混合した〔標識標準DNAのみ〕。実施例1と同様の温度条件で、これらのPCR-PHFA反応液の温度変化に伴う蛍光変化を測定した。
 温度変化にともなうFAMの蛍光変化を図8に示した。この結果、15mMのEDTAを添加した場合と50mMのEDTAを添加した場合のいずれも、EDTA無添加の場合よりも高温と低温の蛍光変化が大きく、標識標準DNAのみの場合に近い挙動を示した。
 また、実施例2と同様にして、それぞれの反応の95℃における蛍光値から35℃における蛍光値を差し引き、ΔFを求め、図8に記載した。EDTA未添加の場合と比較して、EDTAを添加することによりΔFが大きくなり、標識標準DNAのみの場合の値に近づいていることが明らかとなった。
 この結果、EDTA濃度が15mMではEDTA未添加の時とほぼ同様のΔF値を示し、ほとんど改善効果はないが、EDTA50mMではΔF値は大きくなり、EDTA添加によるミスマッチ識別能が劇的に改善された。本実施例から添加EDTA濃度依存的にTaqポリメラーゼの活性が抑制されていることが推測された。
 なお、特許文献2に記載されているPCR-PHFAの改良法においても、PCR-PHFA反応液中には1mMのEDTAが含まれている。しかしながら、実施例4ではEDTA15mMでもほとんどTaqポリメラーゼの活性を抑制できていないため、従来の1mM程度のEDTA濃度ではDNAポリメラーゼの活性を抑えるにはまったく効果がなく、PHFAのミスマッチ識別能が低下することが、実施例4の結果からも明らかである。特許文献2ではEDTAは、単にDNAをヌクレアーゼから保護する目的で添加されているに過ぎない。
[実施例5]
 PCR-PHFA法の反応液に、各種濃度のEDTAを添加し、遺伝子型の識別精度に対する効果を調べた。
 遺伝子型の識別対象である遺伝子を含む試料として、がん細胞由来の培養細胞SW403より抽出したゲノムDNAを使用した。なお、SW403は、K-ras遺伝子のコドン12の2番目のグアニンがチミンホモジニアスに変異している(G12V)遺伝子型であることがわかっている細胞である。
 また、標識標準DNAとして、遺伝子型が野生型、G12C、G12D、G12S、及びG12Aのものをそれぞれ用いた。
 まず、実施例1に示したプライマーを用い、実施例1と同じ条件でSW403のゲノムの遺伝子を増幅したPCR反応液を得た。
 次に、各遺伝子型の標識標準DNAとPCR反応液に加えて各種濃度となるようにEDTAを添加したPCR-PHFA反応液を調製した。具体的には、野生型標識標準DNAを用いる場合には、最初に、500nM Wild-FAM(1μL)及び500nM Wild-Alexa(1μL)をチューブに添加し、乾燥固化した。そこに、PCR反応液(14μL)、2M NaCl(1μL)、500mM EDTA(XμL)、HO(5-XμL)を加えてPCR-PHFA反応液とした。EDTA無添加の場合には、X=0であり、HOを5μL加えた。また、500mM EDTAを1、2、3、又は4μL加えて(X=1、2、3、又は4)、25mM EDTA添加、50mM EDTA添加、75mM EDTA添加又は100mM EDTA添加のPCR-PHFA反応液とした。他の遺伝子型についても同様にしてPCR-PHFA反応液を調製した。
 さらに、実施例1と同様の温度条件で競合的鎖置換反応を行い、これらのPCR-PHFA反応液の温度変化に伴う蛍光変化を測定した。また、実施例2と同様にして、それぞれの反応の95℃における蛍光値から35℃における蛍光値を差し引き、ΔFを求めた。図9は、各反応において得られたΔFをEDTA濃度に対してプロットした図である。サンプル(SW403)の遺伝子型は、添加されたいずれの標識標準DNAとも異なるため、ΔFが大きいほど遺伝子型の識別が明確にできていることを示す。サンプルと標識標準DNAのすべての組み合わせにおいて、EDTA濃度が25mM以上の場合にΔFが最大になっており、25mM以上のEDTA濃度がPCR-PHFAに最適であることがわかった。
[実施例6]
 本発明の遺伝子型の識別方法において、前記式(4)で表されるIndex値(%)を用いてバラツキ補正を行った。
 遺伝子型の識別対象である遺伝子を含む試料として、野生型のK-ras遺伝子を有することが分かっている培養細胞より抽出したゲノムDNAを使用した。また、標識標準DNAとして、遺伝子型が野生型、G12A、G12C、G12D、G12R、G12V、G12S、及びG13Dのものをそれぞれ用いた。
 まず、実施例1に示したプライマーを用い、実施例1と同じ条件で培養細胞より抽出したゲノムDNAを鋳型として野生型の遺伝子を増幅したPCR反応液を得た。
 次に、実施例5と同様にして、各遺伝子型の標識標準DNAとPCR反応液を混合した25mM EDTA添加PCR-PHFA反応液を調製した。また、各遺伝子型に対して、PCR反応液に代えて等量の水を添加した25mM EDTA添加対照反応液を調製した。
 さらに、これらの25mM EDTA添加PCR-PHFA反応液及び25mM EDTA添加対照反応液それぞれに対して、実施例1と同様の温度条件で競合的鎖置換反応を行い、温度変化に伴う蛍光変化を測定した。
 まず、従来法に従い、鎖置換反応が終了した35℃におけるアクセプター標識物質の蛍光値とドナー標識物質の蛍光値の比([アクセプター標識物質の蛍光値]/[ドナー標識物質の蛍光値])を求め、Index値とした。図10Aは得られたIndex値を示した図である。図中、「Wt」は野生型標識標準DNA、「12A」はG12A標識標準DNA、「12C」はG12C標識標準DNA、「12D」はG12D標識標準DNA、「12R」はG12R標識標準DNA、「12V」はG12V標識標準DNA、「12S」はG12S標識標準DNA、「13D」はG13D標識標準DNAの結果をそれぞれ示す。試料は野生型であり、野生型の標識標準DNAでのみIndex値が下がり、他の変異型標識標準DNAではIndex値が下がらないことが期待される。しかしながら、G12V及びG12Dの標識標準DNAでもIndex値が低下しており、マッチである野生型のIndex値との差が小さかった。
 一方、実施例2と同様にして、それぞれの反応の95℃における蛍光値から35℃における蛍光値を差し引き、ΔFを求め、前記式(4)に従ってIndex値を求めた。図10Bは式(4)に従って得られたIndex値を示した図である。図中の「Wt」、「12D」等は、図1と同じである。この結果、マッチである野生型の標識標準DNAでは低いIndex値を示し、そのほかの変異型の標識標準DNAではすべて高いIndex値を示しており、試料が野生型であることを従来法よりも明瞭に識別することができ、バラツキを顕著に改善し得ることが明らかである。
 本発明の遺伝子型の識別方法は、遺伝子型の識別精度が非常に優れているため、臨床検査等の分野、特に体細胞変異の検査等の分野において利用が可能である。

Claims (10)

  1.  遺伝子変異における遺伝子型を識別する方法であって、
     試料に含まれる遺伝子中の変異部位を含む領域を核酸増幅反応により増幅し、試料2本鎖核酸を含有する増幅反応液を得る核酸増幅工程と、
     前記変異部位が特定の遺伝子型であり、かつ標識物質により標識されている標準2本鎖核酸と、前記核酸増幅工程で得られた増幅反応液とを混合して競合的鎖置換反応を行い、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することにより、前記標準2本鎖核酸と前記試料2本鎖核酸との同一性を識別する識別工程と、
     を有し、かつ、前記競合的鎖置換反応が、ポリメラーゼによる伸長反応が抑制された条件で行われることを特徴とする遺伝子型の識別方法。
  2.  前記競合的鎖置換反応が、伸長反応阻害剤の存在下で行われることを特徴とする請求項1記載の遺伝子型の識別方法。
  3.  前記伸長反応阻害剤がキレート剤であることを特徴とする請求項2記載の遺伝子型の識別方法。
  4.  前記伸長反応阻害剤がEDTAであり、前記競合的鎖置換反応の反応液中のEDTA濃度が15mM以上であることを特徴とする請求項3記載の遺伝子型の識別方法。
  5.  前記伸長反応阻害剤がDNA合成阻害剤であることを特徴とする請求項2記載の遺伝子型の識別方法。
  6.  競合的鎖置換反応前に、前記核酸増幅工程で得られた増幅反応液を熱処理することを特徴とする請求項1記載の遺伝子型の識別方法。
  7.  競合的鎖置換反応前に、前記核酸増幅工程で得られた増幅反応液に、1本鎖核酸分解処理又はヌクレオチド三リン酸分解処理を行うことを特徴とする請求項1記載の遺伝子型の識別方法。
  8.  前記標準2本鎖核酸を構成する2本の核酸鎖のうち、一方の鎖の3’端部が第1標識物質により、他方の鎖の5’端部が第2標識物質により、それぞれ標識されており、
     前記第1標識物質と前記第2標識物質は、互いにエネルギー移動可能な物質であり、
     前記第1標識物質及び前記第2標識物質間のエネルギー移動によるエネルギー変化の度合いを測定することにより、前記識別工程における標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度を測定することを特徴とする請求項1~7のいずれか記載の遺伝子型の識別方法。
  9.  前記第1標識物質及び前記第2標識物質の少なくとも一方が蛍光物質であり、
    前記識別工程における競合的鎖置換反応は、前記標準2本鎖核酸と前記試料2本鎖核酸とを含む反応液の温度を、高温から徐々に低下させることにより行うものであり、
     かつ、標準2本鎖核酸と試料2本鎖核酸との間で鎖置換が生じた程度の測定を、前記反応液の温度低下による蛍光強度の変化量と、前記試料2本鎖核酸を含まず前記標準2本鎖核酸を含む対照反応液の温度低下による蛍光強度の変化量との比に基づき測定することを特徴とする請求項8記載の遺伝子型の識別方法。
  10.  請求項1に記載の遺伝子型の識別方法により遺伝子型を識別するために用いられるキットであって、
     伸長反応阻害剤、1本鎖核酸分解酵素、及びヌクレオチド三リン酸分解酵素からなる群より選択される1以上と、試料2本鎖核酸を調製するための核酸増幅試薬と、一方の標識物質が標準核酸の一方の鎖の5’端部、もう一方の標識物質が標準核酸のもう一方の鎖の3’端部に導入された標準二本鎖核酸と、を具備することを特徴とする遺伝子型識別用キット。
PCT/JP2010/002200 2009-03-31 2010-03-26 遺伝子型の識別方法 WO2010113452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080014225.2A CN102369297B (zh) 2009-03-31 2010-03-26 识别基因型的方法
EP10758232.2A EP2418289B1 (en) 2009-03-31 2010-03-26 Method of distinguishing genotypes
JP2011507005A JP5720564B2 (ja) 2009-03-31 2010-03-26 遺伝子型の識別方法
US13/248,321 US9523119B2 (en) 2009-03-31 2011-09-29 Method of distinguishing genotypes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009084967 2009-03-31
JP2009-084967 2009-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/248,321 Continuation US9523119B2 (en) 2009-03-31 2011-09-29 Method of distinguishing genotypes

Publications (1)

Publication Number Publication Date
WO2010113452A1 true WO2010113452A1 (ja) 2010-10-07

Family

ID=42827763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002200 WO2010113452A1 (ja) 2009-03-31 2010-03-26 遺伝子型の識別方法

Country Status (5)

Country Link
US (1) US9523119B2 (ja)
EP (1) EP2418289B1 (ja)
JP (1) JP5720564B2 (ja)
CN (1) CN102369297B (ja)
WO (1) WO2010113452A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3096342C (en) * 2012-06-08 2023-04-04 Ionian Technologies, Llc Nucleic acid amplifications
KR101997116B1 (ko) * 2016-10-14 2019-07-05 연세대학교 산학협력단 Kras 유전자에 상보적인 가이드 rna 및 이의 용도

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993099A (ja) 1983-10-31 1984-05-29 Wakunaga Seiyaku Kk オリゴヌクレオチド誘導体およびその製造法
JPS59148798A (ja) 1983-02-14 1984-08-25 Wakunaga Seiyaku Kk ビオチンヌクレオチド誘導体
JPS59204200A (ja) 1983-04-28 1984-11-19 Wakunaga Seiyaku Kk 2,4―ジニトロフェニルヌクレオチド誘導体
JPH01252300A (ja) 1987-12-25 1989-10-06 Wakunaga Pharmaceut Co Ltd 検体中の目的核酸の検出法
JPH01314965A (ja) 1988-06-16 1989-12-20 Wakunaga Pharmaceut Co Ltd 検体中の目的核酸の検出法
WO1995002068A1 (fr) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Methode de discrimination des acides nucleiques et necessaire d'essai a cette fin
JP2982304B2 (ja) 1993-07-09 1999-11-22 湧永製薬株式会社 核酸の識別方法及び核酸の識別用検査セット
WO2001012849A1 (fr) * 1999-08-12 2001-02-22 Wakunaga Pharmaceutical Co., Ltd. Procede de distinction d'acides nucleiques et kits pour l'analyse d'acides nucleiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948618A (en) * 1995-01-27 1999-09-07 Wakunaga Seiyaku Kabushiki Kaisha Primer for gene amplification, method for nucleic acid discrimination with the use of the same, and nucleic acid discrimination kit
ATE327253T1 (de) * 1999-04-09 2006-06-15 Heska Corp Proteine und nukleinsäuremoleküle des kopfes, des nervenkords, der tieferen darmabschnitte und des malpighi-gefässes des flohs und ihre verwendungen
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US6579680B2 (en) * 2000-02-28 2003-06-17 Corning Incorporated Method for label-free detection of hybridized DNA targets
US20100129796A1 (en) * 2008-11-24 2010-05-27 Micah Halpern Dye probe fluorescence resonance energy transfer genotyping

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148798A (ja) 1983-02-14 1984-08-25 Wakunaga Seiyaku Kk ビオチンヌクレオチド誘導体
JPS59204200A (ja) 1983-04-28 1984-11-19 Wakunaga Seiyaku Kk 2,4―ジニトロフェニルヌクレオチド誘導体
JPS5993099A (ja) 1983-10-31 1984-05-29 Wakunaga Seiyaku Kk オリゴヌクレオチド誘導体およびその製造法
JPH01252300A (ja) 1987-12-25 1989-10-06 Wakunaga Pharmaceut Co Ltd 検体中の目的核酸の検出法
JPH01314965A (ja) 1988-06-16 1989-12-20 Wakunaga Pharmaceut Co Ltd 検体中の目的核酸の検出法
WO1995002068A1 (fr) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Methode de discrimination des acides nucleiques et necessaire d'essai a cette fin
JP2982304B2 (ja) 1993-07-09 1999-11-22 湧永製薬株式会社 核酸の識別方法及び核酸の識別用検査セット
WO2001012849A1 (fr) * 1999-08-12 2001-02-22 Wakunaga Pharmaceutical Co., Ltd. Procede de distinction d'acides nucleiques et kits pour l'analyse d'acides nucleiques
JP2003174882A (ja) 1999-08-12 2003-06-24 Wakunaga Pharmaceut Co Ltd 核酸の識別方法及び核酸の検査キット

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Nonisotopic DNA Probe Techniques", 1992, ACADEMIC PRESS
"PCR PROTOCOLS", 1990, ACADEMIC PRESS INC., pages: 14,352
"PCR Technology", 1989, STOCKTON PRESS
BIOCONJUG. CHEM., vol. 3, 1992, pages 85 - 87
BIOTECHNIQUES, vol. 15, 1993, pages 486 - 496
BIOTECHNIQUES, vol. 24, 1998, pages 484 - 489
CHEN: "95", ANALYTICAL BIOCHEMISTRY, 1991, pages 51 - 56
JACOBSON, ONCOGENE, vol. 9, 1994, pages 553 - 563
KRYPUY, BMC CANCER, vol. 6, 2006, pages 295
MANAK: "DNA Probes 2nd Edition", 1993, STOCKTON PRESS, pages: 255 - 291
NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 49 - 53
NEWTON, NUCLEIC ACIDS RESEARCH, vol. 17, 1989, pages 2503 - 2516
NOLLAU, CLINCAL CHEMISTRY, vol. 43, pages 1114 - 1128
NUCLEIC ACIDS RES., vol. 16, 1988, pages 2659 - 2669
NUCLEIC ACIDS RES., vol. 25, 1997, pages 922 - 923
OGINO, THE JOURNAL OF MOLECULAR DIAGNOSTICS, vol. 7, 2005, pages 413 - 421
OKA T. ET AL.: "A simple method for detecting single base substitutions and its application to HLA-DPB1 typing", NUCLEIC ACIDS RES., vol. 22, no. 9, 11 May 1994 (1994-05-11), pages 1541 - 1547, XP010757948 *
OKA, T., NUCLEIC ACIDS RES., vol. 22, 1994, pages 1541 - 1547
PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 34 - 40
PCR METHODS AND APPLICATIONS, vol. 4, 1995, pages 357 - 362
SCIENCE, vol. 238, 1987, pages 336 - 3341
See also references of EP2418289A4 *
TADA, CLINICA CHIMICA ACTA, vol. 324, 2002, pages 105
WU, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 86, 1989, pages 2757 - 2760
YODOSHA CO.,LTD.: "Jikken Igaku", vol. 8, no. 9, - 1990

Also Published As

Publication number Publication date
US9523119B2 (en) 2016-12-20
JPWO2010113452A1 (ja) 2012-10-04
EP2418289B1 (en) 2015-01-14
EP2418289A4 (en) 2012-09-12
CN102369297A (zh) 2012-03-07
EP2418289A1 (en) 2012-02-15
CN102369297B (zh) 2016-07-06
US20120077193A1 (en) 2012-03-29
JP5720564B2 (ja) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5112592B2 (ja) ハイブリダイゼーション・ビーコン、並びに迅速に配列を検出および判別する方法
JP5509075B2 (ja) 核酸増幅のコントロールの検出方法およびその用途
JP5637850B2 (ja) 標的核酸配列の増幅方法、それを用いた変異の検出方法、および、それに用いる試薬
JP5224526B2 (ja) 遺伝子増幅用プライマーセット、それを含む遺伝子増幅用試薬およびその用途
JP6144623B2 (ja) 核酸測定用の核酸プローブ
WO2008018305A1 (en) Method of detecting variation and kit to be used therein
WO2011062258A1 (ja) Mthfr遺伝子増幅用プライマーセット、それを含むmthfr遺伝子増幅用試薬およびその用途
EP2450443B1 (en) Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
JP2003518951A (ja) 多型核酸配列の同時増幅およびリアルタイム検出のための方法
JP5720564B2 (ja) 遺伝子型の識別方法
JP5831093B2 (ja) C型慢性肝炎に対する治療効果を予測するためのプローブ
JP6205216B2 (ja) 変異検出用プローブ、変異検出方法、薬効判定方法及び変異検出用キット
JP5930825B2 (ja) Egfrエクソン19多型検出試験用試薬キット及びその用途
JPWO2011077990A1 (ja) c−kit遺伝子の多型検出用プローブおよびその用途
JP5843112B2 (ja) 標的塩基配列の識別方法
WO2018079579A1 (ja) 標的塩基配列を検出する方法、プローブを設計および製造する方法ならびにキット
JP5504676B2 (ja) 遺伝子型の識別方法
JP5860667B2 (ja) Egfrエクソン21l858r遺伝子多型検出用プライマーセット及びその用途
JP5568935B2 (ja) 標的塩基配列の識別方法
JP5635496B2 (ja) Egfr遺伝子多型検出用プローブおよびその用途
JP2013074824A (ja) Mdr1遺伝子の多型を検出するためのプローブ
JP2008136436A (ja) 1本鎖dna結合蛋白質を用いた核酸の変異検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014225.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507005

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758232

Country of ref document: EP