WO2010109899A1 - 芳香族炭化水素の製造方法 - Google Patents

芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2010109899A1
WO2010109899A1 PCT/JP2010/002172 JP2010002172W WO2010109899A1 WO 2010109899 A1 WO2010109899 A1 WO 2010109899A1 JP 2010002172 W JP2010002172 W JP 2010002172W WO 2010109899 A1 WO2010109899 A1 WO 2010109899A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed reactor
fluidized bed
reforming catalyst
heating
oil
Prior art date
Application number
PCT/JP2010/002172
Other languages
English (en)
French (fr)
Inventor
南英喜
杉宜重
福井敦
南雲篤郎
柳川真一朗
早坂和章
Original Assignee
千代田化工建設株式会社
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 新日本石油株式会社 filed Critical 千代田化工建設株式会社
Priority to JP2010515150A priority Critical patent/JP5461395B2/ja
Priority to KR1020117024048A priority patent/KR101727338B1/ko
Priority to US13/138,763 priority patent/US20120012504A1/en
Priority to BRPI1014751A priority patent/BRPI1014751A2/pt
Priority to EP10755701A priority patent/EP2412786A4/en
Priority to CN201080013690.4A priority patent/CN102365349B/zh
Publication of WO2010109899A1 publication Critical patent/WO2010109899A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/048Zincosilicates, Aluminozincosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/10Catalytic reforming with moving catalysts
    • C10G35/14Catalytic reforming with moving catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for producing aromatic hydrocarbons.
  • the present invention relates to a method for producing aromatic hydrocarbons by catalytic reforming reaction using a fluidized bed reactor.
  • a method for producing aromatic hydrocarbons such as BTX (benzene, toluene, xylene, etc.) by catalytically reforming light naphtha, heavy naphtha, etc. obtained from fluid catalytic cracking (hereinafter referred to as FCC) equipment is well known. It has been. In general, these production methods employ a fixed bed or moving bed method using a granular reforming catalyst. Generally, since the reforming reaction involves an endothermic reaction, a heat supply method for compensating for the reaction heat and a temperature control method related thereto are problems.
  • the reforming catalyst extracted from the fluidized bed reactor is transferred to the regenerator, and the regenerator
  • the coke adhering to the reforming catalyst is burned to regenerate the reforming catalyst.
  • the regenerated reforming catalyst is transferred to a fluidized bed reactor.
  • the amount of coke adhering to the reforming catalyst in the fluidized bed reactor is not sufficient, and even if the coke is burned in the regenerator, the heat required for the reforming reaction (endothermic reaction) of the raw material in the fluidized bed reactor. Can't get. Therefore, it is necessary to heat the raw material before being supplied to the fluidized bed reactor to the reaction temperature or higher in advance by a heating furnace.
  • the present invention relates to a method for producing aromatic hydrocarbons efficiently and stably in a method for producing aromatic hydrocarbons using LCO, naphtha, etc. distilled from an FCC unit and straight-run gas oil as raw materials. provide.
  • the method for producing aromatic hydrocarbons of the present invention comprises a flow of one or more feedstocks selected from the group consisting of LCO distilled from an FCC unit, hydrotreated LCO and naphtha, and straight-run gas oil.
  • a method for producing an aromatic hydrocarbon by contacting with a reforming catalyst in a bed reactor, Transferring the reforming catalyst extracted from the fluidized bed reactor to a heating tank; Heating the reforming catalyst to a temperature equal to or higher than the reaction temperature in the fluidized bed reactor in a heating tank; Transferring the heated reforming catalyst to the fluidized bed reactor after the heating step.
  • the heating to the reforming catalyst in the heating tank is preferably performed by burning the heating fuel supplied to the heating tank from the outside in the presence of the oxygen-containing gas.
  • the fuel for heating may be a liquid fuel or a gaseous fuel, and the bottom oil of the product oil obtained by the production method of the present invention is preferable.
  • the amount of fuel for heating, for example, distillation tower bottom oil, supplied to the heating tank is preferably 0.005 to 0.08 tons per ton of feed oil supplied to the fluidized bed reactor.
  • the amount of the reforming catalyst withdrawn from the fluidized bed reactor is preferably 5 to 30 tons per ton of feedstock supplied to the fluidized bed reactor.
  • the pressure in the fluidized bed reactor is preferably 0.1 to 1.5 MPaG.
  • the reaction temperature in the fluidized bed reactor is preferably 350 to 700 ° C.
  • the contact time between the feedstock and the reforming catalyst in the fluidized bed reactor is preferably 5 to 300 seconds.
  • the method for producing aromatic hydrocarbons of the present invention in the method for producing aromatic hydrocarbons using LCO, naphtha, etc. distilled from the FCC unit, and straight-run gas oil as raw materials, the method is efficient and stable. Can produce aromatic hydrocarbons.
  • FIG. 1 is a schematic configuration diagram showing an example of a fluid catalytic reforming apparatus used in the method for producing aromatic hydrocarbons of the present invention.
  • the fluid catalytic reformer 10 includes a fluidized bed reactor 12, a heating tank 14, a catalyst riser 16, an inclined pipe 18, an inclined pipe 20, a feed pipe 22, a discharge pipe 24, and a fuel pipe 26.
  • the oxygen-containing gas pipe 28 and the exhaust pipe 30 are provided.
  • the end of the catalyst riser 16 is connected to the fluidized bed reactor 12.
  • the inclined pipe 18 has a proximal end connected to the fluidized bed reactor 12 and a distal end connected to the heating bath 14.
  • the inclined pipe 20 has a proximal end connected to the heating tank 14 and a distal end connected to the proximal end of the catalyst riser 16.
  • the end of the feed pipe 22 is connected to the base end of the catalyst riser 16.
  • the discharge pipe 24 is connected to the fluidized bed reactor 12 at the base end.
  • the end of the fuel pipe 26 is connected to the heating tank 14.
  • the end of the oxygen-containing gas pipe 28 is connected to the heating bath 14.
  • the base end of the exhaust pipe 30 is connected to the heating bath 14.
  • the fluidized bed reactor 12 is for obtaining a product oil containing a large amount of BTX by bringing the raw material oil into contact with the reforming catalyst in a fluidized bed state.
  • the fluidized bed reactor 12 includes a supply port, a discharge port, a cyclone, and a discharge port.
  • the steam of raw material oil and the reforming catalyst transferred through the catalyst riser 16 are introduced into the interior.
  • the reforming catalyst is extracted to the inclined pipe 18.
  • the steam of the product oil and the reforming catalyst are separated.
  • steam of the product oil separated by the cyclone is discharged to the discharge pipe 24.
  • the heating tank 14 is used not only for heat generated by combustion of coke adhered to the reforming catalyst, but also for actively heating the reforming catalyst with energy supplied from the outside, that is, a heating apparatus itself having a large size. It is.
  • the heating tank 14 includes three supply ports, a discharge port, and an exhaust port.
  • the reforming catalyst transferred through the inclined pipe 18 is introduced into the interior.
  • the reforming catalyst is extracted to the inclined pipe 20.
  • the fuel for heating supplied from the outside through the fuel pipe 26 is introduced into the inside.
  • the oxygen-containing gas supplied through the oxygen-containing gas pipe 28 is introduced into the inside.
  • the exhaust port the combustion gas generated by the combustion is exhausted to the exhaust pipe 30.
  • the catalyst riser 16 is in the form of a pipe extending in the vertical direction, a supply port for introducing the reforming catalyst transferred through the inclined pipe 20, and a liquid feedstock supplied through the feed pipe 22. And a supply port for introducing the inside.
  • Production of aromatic hydrocarbons using the fluid catalytic reformer 10 of FIG. 1 is performed, for example, as follows.
  • the raw material oil heated in advance by a preheater (not shown) provided in the middle of the feed pipe 22 is continuously introduced from the feed pipe 22 into the catalyst riser 16.
  • the reforming catalyst heated in the heating tank 14 is continuously introduced from the inclined pipe 20 to the catalyst riser 16, and vaporized raw material vapor rising the catalyst riser 16 is used as a transfer medium.
  • the reforming catalyst continuously introduced from the catalyst riser 16 into the fluidized bed reactor 12 together with the raw material vapor becomes a fluidized bed state by the raw material vapor.
  • the steam of the raw oil and the reforming catalyst come into contact with each other, and the steam of the product oil containing a large amount of BTX is obtained.
  • the product oil vapor and the reforming catalyst are separated by a cyclone, and the product oil vapor is continuously discharged to the discharge pipe 24.
  • the discharged product oil vapor is transferred to a subsequent distillation column (not shown) or the like through the discharge pipe 24.
  • a part of the reforming catalyst that has been partially deactivated due to the coke adhering to the steam of the feedstock is continuously extracted from the fluidized bed reactor 12 to the inclined pipe 18.
  • the reforming catalyst continuously introduced into the heating tank 14 from the inclined pipe 18 uses the fuel for heating supplied from the outside through the fuel pipe 26 and the oxygen-containing gas supplied through the oxygen-containing gas pipe 28. Is continuously heated above the reaction temperature in the fluidized bed reactor 12. That is, the reforming catalyst is heated by the combustion heat generated by the combustion of the fuel for heating and the oxygen-containing gas. Further, since the coke adhering to the reforming catalyst is burned at the time of heating, the reforming catalyst is also regenerated. The combustion gas generated by the combustion is continuously exhausted to the exhaust pipe 30. The heated reforming catalyst is continuously extracted from the heating tank 14 to the inclined pipe 20, and is again introduced from the inclined pipe 20 into the catalyst riser 16. In this manner, the reforming catalyst is constantly circulated between the fluidized bed reactor 12 and the heating tank 14.
  • the raw material oil one or more selected from the group consisting of LCO distilled from the FCC apparatus, hydrogenated LCO, and naphtha is used.
  • the amount of coke that adheres to the reforming catalyst when the raw material oil and the reforming catalyst come into contact with each other is not necessarily large. Therefore, the production method of the present invention is effective for producing a product oil containing aromatic hydrocarbons efficiently and stably from these feedstock oils.
  • the reforming catalyst contains crystalline aluminosilicate.
  • the content of the crystalline aluminosilicate in the reforming catalyst is not particularly limited, but is preferably 10% by mass to 95% by mass, more preferably 20% by mass to 80% by mass, and more preferably 25% by mass to 70% by mass. % Or less is more preferable.
  • MFI Zerolite Socony Mobil-five
  • MEL Zerolite Socony Mobil-eleven
  • TON Theta-one
  • MTT Zerolite Socony Mobil-
  • MRE Zerolite Socony Mobil-48
  • FER Ferrierite
  • AEL Alluminophosphate-eleven
  • EUO Eddinburgh University-one
  • MFI type and / or MEL type crystal structures Is more preferable.
  • Crystalline aluminosilicates such as MFI type and MEL type
  • the Structure Commission of the International Zeolite Association belonging to the published kind of known zeolite structure type by (Atlas of Zeolite Structure Types, W.M.Meiyer and D.H.Olson (1978) .Distributed by Polycrystal Book Service, Pittsburgh, PA, USA).
  • crystalline aluminosilicate those containing gallium and / or zinc are preferable. By containing gallium and / or zinc, BTX can be produced more efficiently, and at the same time, by-products of non-aromatic hydrocarbons having 3 to 6 carbon atoms can be greatly suppressed.
  • crystalline aluminosilicates containing gallium and / or zinc gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), zinc is incorporated in the lattice skeleton of crystalline aluminosilicate.
  • Gallium-supporting crystalline aluminosilicate and / or zinc-supporting crystalline aluminosilicate is a material in which gallium and / or zinc is supported on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source and zinc source used at this time are not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, zinc salts such as gallium oxide, zinc nitrate and zinc chloride, and zinc oxide.
  • the crystalline aluminogallosilicate and / or the crystalline aluminodine silicate has a structure in which the SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures have a tetrahedral coordination in the skeleton.
  • Crystalline aluminogallosilicate and / or crystalline aluminodine silicate is a gel crystallization by hydrothermal synthesis, a method of inserting gallium and / or zinc into the lattice skeleton of crystalline aluminosilicate, or crystalline gallosilicate and / or It can be obtained by inserting aluminum into the lattice skeleton of crystalline zinc silicate.
  • the fuel for heating is a fuel other than coke attached to the reforming catalyst and supplied from the outside (so-called torch oil), for example, the bottom of the distillation column of the product oil obtained by the production method of the present invention. Oil etc. are mentioned.
  • the heating fuel is preferably a distillation column bottom oil having a relatively large ratio of carbon atoms to hydrogen atoms (C / H) from the viewpoint of avoiding the problem of deterioration of the reforming catalyst due to water vapor.
  • the oxygen-containing gas include air, pure oxygen, and the like, and air is preferable from an economical viewpoint.
  • the heating of the reforming catalyst is not limited to the combustion of the fuel for heating, and the heating may be performed using an indirect heating means such as a heater.
  • an indirect heating means such as a heater.
  • heating by combustion of fuel for heating is preferable.
  • the heating temperature of the raw material oil by the preheater is such that the heat required for the reforming reaction in the fluidized bed reactor 12 is supplied by the heated reforming catalyst.
  • the reaction temperature may be lower than that.
  • the heating temperature of the raw material oil is preferably 150 ° C. or higher and 450 ° C. or lower, and more preferably 180 ° C. or higher and 350 ° C. or lower.
  • the lower limit is preferably 0.1 MPaG, more preferably 0.2 MPaG.
  • the upper limit is preferably 1.5 MPaG, more preferably 1.0 MPaG, and more preferably 0.5 MPaG. If the pressure is 0.1 MPaG or more, BTX can be produced efficiently. If the pressure is 1.5 MPaG or less, the amount of light gas by-produced by decomposition can be suppressed.
  • the lower limit of the reaction temperature in the fluidized bed reactor 12 is preferably 350 ° C, more preferably 450 ° C, still more preferably 500 ° C, and still more preferably 520 ° C.
  • 700 degreeC is preferable and 600 degreeC is more preferable. If the reaction temperature is 350 ° C. or higher, the activity of the reforming catalyst is sufficient. If reaction temperature is 700 degrees C or less, an excessive decomposition reaction will be suppressed.
  • the lower limit of the contact time between the raw material oil and the reforming catalyst in the fluidized bed reactor 12 is preferably 5 seconds, more preferably 10 seconds, and more preferably 15 seconds.
  • the upper limit is preferably 300 seconds, more preferably 150 seconds, and even more preferably 100 seconds or less. If the contact time is 5 seconds or longer, the reforming reaction proceeds sufficiently. If the contact time is 300 seconds or less, the amount of light gas by-produced by decomposition can be suppressed.
  • the amount (circulation amount) of the reforming catalyst withdrawn from the fluidized bed reactor 12 is preferably 5 to 30 tons per ton of feedstock supplied to the fluidized bed reactor 12, and this is also related to the overall heat balance. It can be decided.
  • the pressure in the heating tank 14 is preferably higher than the pressure in the fluidized bed reactor 12 in that the heated reforming catalyst is transferred to the fluidized bed reactor 12.
  • the temperature in the heating tank 14 is higher than the reaction temperature in the fluidized bed reactor 12 because the heat required for the reforming reaction in the fluidized bed reactor 12 is supplied by the heated reforming catalyst. is there.
  • the lower limit of the temperature in the heating bath 14 is preferably 500 ° C., and more preferably 600 ° C.
  • the upper limit is preferably 800 ° C., more preferably 700 ° C.
  • the amount of fuel for heating (in the case of distillation tower bottom oil) supplied to the heating tank 14 is preferably 0.005 tons and 0.08 tons or less per ton of feedstock supplied to the fluidized bed reactor 12. 0.02 tons and 0.08 tons are more preferable.
  • the amount of fuel for heating is determined by the amount of coke produced and the overall heat balance.
  • the reforming catalyst extracted from the fluidized bed reactor is transferred to a heating tank and heated to a temperature higher than the reaction temperature in the fluidized bed reactor. After heating, the heated reforming catalyst is transferred to the fluidized bed reactor. Therefore, the reforming in the fluidized bed reactor is efficiently and stably performed not only by the heat generated by the combustion of coke adhered to the reforming catalyst but also by the reforming catalyst positively heated by the energy supplied from the outside. Heat necessary for the quality reaction (endothermic reaction) can be sufficiently supplemented. Therefore, despite using raw material oil (LCO or the like) that does not have enough coke to adhere to the reforming catalyst when it comes into contact with the reforming catalyst, the BTX can be efficiently and stably used. Can be manufactured.
  • LCO raw material oil
  • Example 1 Using the fluidized catalytic reformer 10 having the configuration shown in FIG. 1, BTX was produced under the following operating conditions, and the production amount of BTX and the like were obtained by calculation based on this data.
  • Heating temperature of raw material oil by a preheater (not shown): 200 ° C, Feed rate of raw material oil (steam) to the catalyst riser 16: 1 ton / hr, Pressure in fluidized bed reactor 12: 0.3 MPaG, Reaction temperature in fluidized bed reactor 12: 560 ° C. Contact time between feedstock and reforming catalyst in fluidized bed reactor 12: 18 seconds, Pressure in the heating bath 14: 0.35 MPaG, Temperature in the heating tank 14: 650 ° C.
  • LCO was used as the raw material oil.
  • heating fuel to fuel (torch oil)
  • the bottom oil of the product oil was used.
  • the reforming catalyst a reforming catalyst containing MFI type zeolite (particle size: about 0.3 ⁇ m) in which gallium was incorporated in the lattice skeleton was used.
  • the present invention is useful for the production of aromatic hydrocarbons using LCO, naphtha, etc. distilled from an FCC unit as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 この芳香族炭化水素の製造方法は、FCC装置から留出するLCO、該LCOを水素化処理したものおよびナフサ、ならびに直留軽油からなる群から選ばれる1種以上の原料油を、流動床反応器内の改質触媒と接触させて芳香族炭化水素を製造する方法であって、流動床反応器内から抜き出された改質触媒を熱付け槽に移送し、流動床反応器内の反応温度以上に熱付けした後、熱付けされた改質触媒を流動床反応器に移送する芳香族炭化水素の製造方法。

Description

芳香族炭化水素の製造方法
 本発明は、芳香族炭化水素の製造方法に関する。特に、流動床反応器を用いた接触改質反応により芳香族炭化水素を製造する方法に関する。
 本願は、2009年3月27日に、日本に出願された特願2009-078602号に基づき優先権を主張し、その内容をここに援用する。
 流動接触分解(以下、FCCと記す。)装置から得られる軽質ナフサ、重質ナフサ等を接触改質し、BTX(ベンゼン、トルエン、キシレン等)等の芳香族炭化水素を製造する方法はよく知られている。一般に、これらの製造方式としては、粒状の改質触媒を用いた固定床または移動床による方式が採用されている。
 一般に、改質反応は吸熱反応を伴うため、その反応熱を補うための熱供給の方法およびそれに関連する温度制御の手法が課題となっている。また、原料が軽質ナフサの場合はともかく、重質ナフサ、とりわけ分解軽油(ライトサイクルオイル。以下、LCOと記す。)や軽油となったときは、反応操作の進行に伴うコークの発生が著しく、改質触媒の再生の頻度も著しくなる。
 これらの課題に対処するために、従来の固定床や移動床方式に代え、流動床接触改質方法を用いる方式が提案されている(例えば、特許文献1等)。
 流動床方式を採用することで、反応床の改質触媒と原料とを完全混合に近い状態に維持することができ、反応温度を均一に保つことが容易になる。同時に、原料が重質化した場合のコーク劣化した改質触媒を適宜流動床反応器から抜き出すことで、再生を円滑に行うことができる。すなわち、原料との接触によって改質触媒にコークが付着し、改質触媒が不活性化するため、流動床反応器内から抜き出された改質触媒を再生器に移送し、該再生器内にて改質触媒に付着したコークを燃焼させて改質触媒を再生する。その後、再生された改質触媒を流動床反応器に移送することが行われる。
 しかし、流動床反応器において改質触媒に付着するコーク量が十分ではなく、再生器内にてコークを燃焼させても、流動床反応器における原料の改質反応(吸熱反応)に必要な熱を得ることはできない。そのため、流動床反応器に供給する前の原料を、加熱炉によってあらかじめ反応温度以上にまで加熱する必要がある。
 しかし、加熱炉による原料の加熱では、気液混相状態から完全気相となる露点の原料が加熱炉内に存在する。一般的に加熱炉内に露点の原料が存在した場合、露点の原料近傍の加熱炉管に不純物が堆積する。そして、この堆積した不純物に起因する局部加熱が原因で、加熱炉管が損傷する可能性があり、望ましい手段ではない。また、改質反応が急激に進行する等によって流動床反応器内の温度が急激に低下した場合に、不足する熱を迅速に供給できない。そのため、流動床方式では、効率的に、かつ安定してBTXを含む生成油を製造することに対応すべき課題がある。
特表平3-503656号公報
 本発明は、FCC装置から留出するLCO、ナフサ等、ならびに直留軽油を原料にして芳香族炭化水素を製造する方法において、効率的に、かつ安定して芳香族炭化水素を製造できる方法を提供する。
 本発明の芳香族炭化水素の製造方法は、FCC装置から留出するLCO、該LCOを水素化処理したものおよびナフサ、ならびに直留軽油からなる群から選ばれる1種以上の原料油を、流動床反応器内の改質触媒と接触させて芳香族炭化水素を製造する方法であって、
 前記流動床反応器内から抜き出された改質触媒を熱付け槽に移送する工程と、
 前記改質触媒を、熱付け槽で前記流動床反応器内の反応温度以上に熱付けする工程と、
 熱付け工程後に、熱付けされた前記改質触媒を前記流動床反応器に移送する工程とを有する。
 前記熱付け槽における改質触媒への熱付けは、外部から前記熱付け槽に供給された熱付け用燃料を酸素含有ガスの存在下に燃焼させることによって行われることが好ましい。
 熱付け用燃料は、液体燃料または気体燃料であればよく、本発明の製造方法で得られた生成油の蒸留塔底油が好ましい。
 前記熱付け槽への熱付け用燃料、例えば蒸留塔底油の供給量は、前記流動床反応器に供給される原料油1トンあたり0.005~0.08トンであることが好ましい。
 前記流動床反応器内から抜き出される改質触媒の量は、前記流動床反応器に供給される原料油1トンあたり5~30トンであることが好ましい。
 前記流動床反応器内の圧力は、0.1~1.5MPaGであることが好ましい。
 前記流動床反応器内の反応温度は、350~700℃であることが好ましい。
 前記流動床反応器内における原料油と改質触媒との接触時間は、5~300秒であることが好ましい。
 本発明の芳香族炭化水素の製造方法によれば、FCC装置から留出するLCO、ナフサ等、ならびに直留軽油を原料にして芳香族炭化水素を製造する方法において、効率的に、かつ安定して芳香族炭化水素を製造できる。
本発明の芳香族炭化水素の製造方法に用いる流動接触改質装置の一例を示す概略構成図である。
 図1は、本発明の芳香族炭化水素の製造方法に用いる流動接触改質装置の一例を示す概略構成図である。流動接触改質装置10は、流動床反応器12と、熱付け槽14と、触媒ライザ16と、傾斜パイプ18と、傾斜パイプ20と、フィードパイプ22と、排出パイプ24と、燃料パイプ26と、酸素含有ガスパイプ28と、排気パイプ30とを備える。触媒ライザ16は、その末端が流動床反応器12に接続される。傾斜パイプ18は、基端が流動床反応器12に接続され、末端が熱付け槽14に接続される。傾斜パイプ20は、基端が熱付け槽14に接続され、末端が触媒ライザ16の基端に接続される。フィードパイプ22は、末端が触媒ライザ16の基端に接続される。排出パイプ24は、基端が流動床反応器12に接続される。燃料パイプ26は、末端が熱付け槽14に接続される。酸素含有ガスパイプ28は、末端が熱付け槽14に接続される。排気パイプ30は、基端が熱付け槽14に接続される。
 流動床反応器12は、原料油を流動床状態にある改質触媒と接触させてBTXを多く含む生成油を得るためのものである。流動床反応器12は、供給口と、抜出口と、サイクロンと、排出口とを備える。供給口では、触媒ライザ16を通って移送された原料油の蒸気および改質触媒を内部に導入する。抜出口では、改質触媒を傾斜パイプ18へ抜き出す。サイクロンでは、生成油の蒸気と改質触媒とを分離する。排出口では、サイクロンで分離された生成油の蒸気を排出パイプ24へ排出する。
 熱付け槽14は、改質触媒に付着したコークの燃焼による熱のみならず、外部から供給されたエネルギーによって改質触媒に積極的に熱付けするためのもの、すなわちこれ自体が大きな加熱装置そのものである。熱付け槽14は、3つの供給口と、抜出口と、排気口とを備える。第1の供給口では、傾斜パイプ18を通って移送された改質触媒を内部に導入する。抜出口では、改質触媒を傾斜パイプ20へ抜き出す。第2の供給口では、燃料パイプ26を通って外部から供給された熱付け用燃料を内部に導入する。第3の供給口では、酸素含有ガスパイプ28を通って供給された酸素含有ガスを内部に導入する。排気口では、燃焼によって発生した燃焼ガスを排気パイプ30へ排気する。
 触媒ライザ16は、垂直方向に延びるパイプ状のものであり、傾斜パイプ20を通って移送された改質触媒を内部に導入する供給口と、フィードパイプ22を通って供給された液状の原料油を内部に導入する供給口とを備える。
 図1の流動接触改質装置10を用いた芳香族炭化水素の製造は、例えば、以下のように行われる。
 フィードパイプ22の途中に設けられた予熱器(図示略)によってあらかじめ加熱された原料油は、フィードパイプ22から触媒ライザ16に連続的に導入される。これと同時に、熱付け槽14にて熱付けされた改質触媒は、傾斜パイプ20から触媒ライザ16に連続的に導入され、触媒ライザ16を上昇する気化された原料油の蒸気を移送媒体として、流動床反応器12へ移送される。
 触媒ライザ16から流動床反応器12に原料油の蒸気とともに連続的に導入された改質触媒は、原料油の蒸気によって流動床状態となる。流動床状態にて原料油の蒸気と改質触媒とが接触し、BTXを多く含む生成油の蒸気が得られる。生成油の蒸気と改質触媒とは、サイクロンによって分離され、生成油の蒸気は、排出パイプ24へ連続的に排出される。排出された生成油の蒸気は、排出パイプ24を通って後段の蒸留塔(図示略)等へ移送される。原料油の蒸気との接触によってコークが付着し、部分的に不活性化した改質触媒の一部は、流動床反応器12から傾斜パイプ18へ連続的に抜き出される。
 傾斜パイプ18から熱付け槽14に連続的に導入された改質触媒は、燃料パイプ26を通って外部から供給された熱付け用燃料を、酸素含有ガスパイプ28を通って供給された酸素含有ガスの存在下に燃焼させることによって、流動床反応器12内の反応温度以上に連続的に熱付けされる。即ち、熱付け用燃料と酸素含有ガスの燃焼によって発生した燃焼熱によって、改質触媒は、熱付される。また、熱付け時には、改質触媒に付着したコークも燃焼するため、改質触媒の再生も行われる。燃焼によって発生した燃焼ガスは、排気パイプ30へ連続的に排気される。熱付けされた改質触媒は、熱付け槽14から傾斜パイプ20へ連続的に抜き出され、傾斜パイプ20から触媒ライザ16に再び導入される。このように、改質触媒は、流動床反応器12と熱付け槽14との間を絶えず循環している。
 原料油としては、FCC装置から留出する、LCO、該LCOを水素化処理したもの、およびナフサからなる群から選ばれる1種以上を用いる。これら原料油を用いた場合、該原料油と改質触媒とが接触した際に改質触媒に付着するコーク量は必ずしも多くない。よって、これら原料油から芳香族炭化水素を含む生成油を効率的に、かつ安定して製造するためには、本発明の製造方法が有効となる。
 改質触媒は、結晶性アルミノシリケートを含むものである。
 改質触媒における結晶性アルミノシリケートの含有量は、特に限定されないが、10質量%以上且つ95質量%以下が好ましく、20質量%以上且つ80質量%以下がより好ましく、25質量%以上且つ70質量%以下がさらに好ましい。
 結晶性アルミノシリケートとしては、特に限定されないが、例えば、中孔径ゼオライトであるMFI(Zeolite Socony Mobil-five)、MEL(Zeolite Socony Mobil-eleven)、TON(Theta-one)、MTT(Zeolite Socony Mobil-twenty-three)、MRE(Zeolite Socony Mobil-48)、FER(Ferrierite)、AEL(Aluminophosphate-eleven)、EUO(Edinburgh University-one)タイプのゼオライトが好ましく、MFIタイプおよび/またはMELタイプの結晶構造体がより好ましい。MFIタイプ、MELタイプ等の結晶性アルミノシリケートは、
The Structure Commission of the International Zeolite Associationにより公表された種類の公知ゼオライト構造型に属する(Atlas of Zeolite Structure Types,W.M.Meiyer and D.H.Olson (1978).Distributed by Polycrystal Book Service,Pittsburgh,PA,USA)。
 結晶性アルミノシリケートとしては、ガリウムおよび/または亜鉛を含むものが好ましい。ガリウムおよび/または亜鉛を含むことにより、より効率的にBTXを製造できると同時に、炭素数3~6の非芳香族炭化水素の副生を大幅に抑制できる。
 ガリウムおよび/または亜鉛を含む結晶性アルミノシリケートとしては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートにガリウムを担持したもの(ガリウム担持結晶性アルミノシリケート)、結晶性アルミノシリケートに亜鉛を担持したもの(亜鉛担持結晶性アルミノシリケート)、それらを少なくとも1種以上含んだものが挙げられる。
 ガリウム担持結晶性アルミノシリケートおよび/または亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムおよび/または亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。この際に用いるガリウム源および亜鉛源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
 結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートは、SiO、AlOおよびGaO/ZnO構造が骨格中において四面体配位をとる構造のものである。結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートは、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムおよび/または亜鉛を挿入する方法、または結晶性ガロシリケートおよび/または結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法で得ることができる。
 熱付け用燃料としては、改質触媒に付着したコーク以外の燃料であって、外部から供給された燃料(いわゆるトーチオイル)、例えば、本発明の製造方法で得られた生成油の蒸留塔底油等が挙げられる。熱付け用燃料は、特に改質触媒の水蒸気による劣化の問題を回避するという点から、水素原子に対する炭素原子の比率(C/H)が比較的大きい蒸留塔底油が好ましい。
 酸素含有ガスとしては、空気、純酸素等が挙げられ、経済的な観点から、空気が好ましい。
 なお、改質触媒への熱付けは、熱付け用燃料の燃焼に限定はされず、ヒータ等の間接的な加熱手段等を用いて熱付けを行ってもよい。ただし、熱付けの効率や改質触媒劣化の抑制の点から、熱付け用燃料の燃焼による熱付けが好ましい。
 予熱器(図示略)による原料油の加熱温度は、流動床反応器12内での改質反応に必要な熱が熱付けされた改質触媒によって供給される点から、流動床反応器12内の反応温度未満であればよい。原料油の加熱温度は、例えば、150℃以上且つ450℃以下が好ましく、180℃以上且つ350℃以下がより好ましい。
 流動床反応器12内の圧力は、目標とする反応収率にもよるが、下限としては0.1MPaGが好ましく、さらに好ましくは0.2MPaGが望ましい。一方上限としては1.5MPaGが好ましく、さらに好ましくは1.0MPaGであり、0.5MPaGがより好ましい。圧力が0.1MPaG以上であれば、BTXを効率的に製造できる。圧力が1.5MPaG以下であれば、分解によって副生する軽質ガスの量を抑制できる。
 流動床反応器12内の反応温度は、下限としては350℃が好ましく、より好ましくは450℃であり、さらに好ましくは500℃であり、さらにより好ましくは520℃が望ましい。一方上限としては700℃が好ましく、600℃がより好ましい。反応温度が350℃以上であれば、改質触媒の活性が十分となる。反応温度が700℃以下であれば、過度の分解反応が抑制される。
 流動床反応器12内における原料油と改質触媒と接触時間は、下限としては5秒が好ましく、さらに10秒が好ましく、より好ましくは15秒が望ましい。一方上限としては300秒が好ましく、150秒がより好ましく、100秒以下がさらに好ましい。接触時間が5秒以上であれば、改質反応が十分に進行する。接触時間が300秒以下であれば、分解によって副生する軽質ガスの量を抑制できる。
 流動床反応器12内から抜き出される改質触媒の量(循環量)は、流動床反応器12に供給される原料油1トンあたり5~30トンが好ましく、これは全体の熱バランスとも関連し決められるものである。
 熱付け槽14内の圧力は、熱付けされた改質触媒を流動床反応器12へ移送する点から、流動床反応器12内の圧力よりも高いことが好ましい。
 熱付け槽14内の温度は、流動床反応器12内での改質反応に必要な熱は熱付けされた改質触媒によって供給される点から、流動床反応器12内の反応温度以上である。熱付け槽14内の温度は、例えば、下限としては500℃が好ましく、さらに600℃が望ましい。一方上限としては800℃が好ましく、700℃がより望ましい。
 熱付け槽14への熱付け用燃料(蒸留塔底油の場合)の供給量は、流動床反応器12に供給される原料油1トンあたり0.005トン以上且つ0.08トン以下が好ましく、0.02トン以上且つ0.08トン以下がより好ましい。熱付け用燃料の供給量は、コーク生成量と全体の熱バランスから決まる。
 以上説明した本発明の芳香族炭化水素の製造方法にあっては、流動床反応器内から抜き出された改質触媒を熱付け槽に移送し、流動床反応器内の反応温度以上に熱付けした後、熱付けされた改質触媒を流動床反応器に移送している。従って、改質触媒に付着したコークの燃焼による熱のみならず、外部から供給されたエネルギーによって積極的に熱付けされた改質触媒によって効率よく、かつ安定的に流動床反応器内での改質反応(吸熱反応)に必要な熱を十分に補うことができる。そのため、改質触媒と接触した際に改質触媒に付着するコーク量が十分ではないような原料油(LCO等)を原料に用いているにもかかわらず、効率的に、かつ安定してBTXを製造できる。
 以下、実施例を示す。
〔実施例1〕
 図1に示す構成の流動接触改質装置10を用い、下記の運転条件にてBTXの製造を行い、このデータをもとにBTXの製造量等を計算で求めた。
(運転条件)
 予熱器(図示略)による原料油の加熱温度:200℃、
 触媒ライザ16への原料油(蒸気)の供給量:1トン/hr、
 流動床反応器12内の圧力:0.3MPaG、
 流動床反応器12内の反応温度:560℃、
 流動床反応器12内における原料油と改質触媒と接触時間:18秒、
 熱付け槽14内の圧力:0.35MPaG、
 熱付け槽14内の温度:650℃、
 熱付け槽14への熱付け用燃料の供給量:0.025トン/原料油1トン、
 熱付け槽14への空気の供給量:0.80トン/原料油1トン、
 改質触媒の循環量:17.6トン/原料油1トン。
 なお、原料油としては、LCOを用いた。
 熱付け用燃料(トーチオイル)としては、生成油の蒸留塔底油を用いた。
 改質触媒としては、格子骨格内にガリウムが組み込まれたMFIタイプのゼオライト(粒子寸法:約0.3μm)を含む改質触媒を用いた。
 運転中、熱付け槽14で熱付けされた改質触媒によって効率よく熱を流動床反応器12に供給でき、流動床反応器12内の温度が大きく変動することはなく、安定して生成油を得ることができた。
 生成油に含まれるBTXの量は、43質量%であった。
 本発明は、FCC装置から留出したLCO、ナフサ等を原料にした芳香族炭化水素の製造に有用である。
 12 流動床反応器
 14 熱付け槽

Claims (8)

  1.  流動接触分解装置から留出する分解軽油、該分解軽油を水素化処理したものおよびナフサ、ならびに直留軽油からなる群から選ばれる1種以上の原料油を、流動床反応器内の改質触媒と接触させて芳香族炭化水素を製造する方法であって、
     前記流動床反応器内から抜き出された改質触媒を熱付け槽に移送する工程と、
     前記改質触媒を、熱付け槽で前記流動床反応器内の反応温度以上に熱付けする工程と、
     熱付け工程後に、熱付けされた前記改質触媒を前記流動床反応器に移送する工程とを有する芳香族炭化水素の製造方法。
  2.  前記熱付け槽における改質触媒への熱付けが、外部から前記熱付け槽に供給された熱付け用燃料を酸素含有ガスの存在下に燃焼させることによって行われる、請求項1に記載の芳香族炭化水素の製造方法。
  3.  前記熱付け用燃料が、生成油の蒸留塔底油である、請求項2に記載の芳香族炭化水素の製造方法。
  4.  前記熱付け槽への蒸留塔底油の供給量が、前記流動床反応器に供給される原料油1トンあたり0.005~0.08トンである、請求項3に記載の芳香族炭化水素の製造方法。
  5.  前記流動床反応器内から抜き出される改質触媒の量が、前記流動床反応器に供給される原料油1トンあたり5~30トンである、請求項1~4のいずれかに記載の芳香族炭化水素の製造方法。
  6.  前記流動床反応器内の圧力が、0.1~1.5MPaGである、請求項1~5のいずれかに記載の芳香族炭化水素の製造方法。
  7.  前記流動床反応器内の反応温度が、350~700℃である、請求項1~6のいずれかに記載の芳香族炭化水素の製造方法。
  8.  前記流動床反応器内における原料油と改質触媒と接触時間が、5~300秒である、請求項1~7のいずれかに記載の芳香族炭化水素の製造方法。
     
PCT/JP2010/002172 2009-03-27 2010-03-26 芳香族炭化水素の製造方法 WO2010109899A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010515150A JP5461395B2 (ja) 2009-03-27 2010-03-26 芳香族炭化水素の製造方法
KR1020117024048A KR101727338B1 (ko) 2009-03-27 2010-03-26 방향족 탄화수소의 제조 방법
US13/138,763 US20120012504A1 (en) 2009-03-27 2010-03-26 Method for producing aromatic hydrocarbons
BRPI1014751A BRPI1014751A2 (pt) 2009-03-27 2010-03-26 método para a produção de hidrocarbonetos aromáticos
EP10755701A EP2412786A4 (en) 2009-03-27 2010-03-26 PROCESS FOR PRODUCING AROMATIC HYDROCARBON
CN201080013690.4A CN102365349B (zh) 2009-03-27 2010-03-26 芳香族烃的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009078602 2009-03-27
JP2009-078602 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109899A1 true WO2010109899A1 (ja) 2010-09-30

Family

ID=42780596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002172 WO2010109899A1 (ja) 2009-03-27 2010-03-26 芳香族炭化水素の製造方法

Country Status (8)

Country Link
US (1) US20120012504A1 (ja)
EP (1) EP2412786A4 (ja)
JP (1) JP5461395B2 (ja)
KR (1) KR101727338B1 (ja)
CN (1) CN102365349B (ja)
BR (1) BRPI1014751A2 (ja)
MY (1) MY160726A (ja)
WO (1) WO2010109899A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133168A1 (ja) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP2012201796A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012201795A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012206955A (ja) * 2011-03-29 2012-10-25 Chiyoda Kako Kensetsu Kk 芳香族炭化水素の製造方法および芳香族炭化水素の製造プラント
WO2012161261A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
WO2012161281A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
WO2012161272A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
JP2012241174A (ja) * 2011-05-24 2012-12-10 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012241173A (ja) * 2011-05-24 2012-12-10 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012246357A (ja) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp A重油組成物およびその製造方法
US9382173B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method of producing single-ring aromatic hydrocarbons
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557431B (zh) * 2013-10-28 2016-09-07 中国石油化工股份有限公司 原料多样化的对二甲苯生产方法
US9434894B2 (en) 2014-06-19 2016-09-06 Uop Llc Process for converting FCC naphtha into aromatics
US9669373B2 (en) * 2014-12-12 2017-06-06 Uop Llc Apparatus and process for heating catalyst from a reactor
CN106588537A (zh) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 轻循环油生产c6-c8芳烃的方法
WO2021019327A1 (en) * 2019-07-31 2021-02-04 Sabic Global Technologies B.V. High-density fluidized bed systems heat balance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503656A (ja) 1988-04-11 1991-08-15 モービル・オイル・コーポレーション アルカンおよびアルケンのハイオクタンガソリンへの転化
WO2008008527A2 (en) * 2006-07-13 2008-01-17 Saudi Arabian Oil Company Ancillary cracking of paraffinic naptha in conjunction with fcc unit operations
JP2009078602A (ja) 2007-09-25 2009-04-16 Honda Motor Co Ltd ブレーキシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL70269C (ja) * 1939-01-30 1949-12-15
US2322863A (en) * 1939-09-13 1943-06-29 Standard Oil Co Dehydroaromatization and hydroforming
US2414373A (en) * 1944-04-12 1947-01-14 Universal Oil Prod Co Conversion of fluid reactants
US2741581A (en) * 1951-12-01 1956-04-10 Standard Oil Co Fluid hydroforming with catalyst recycle
US2883335A (en) * 1953-07-01 1959-04-21 Kellogg M W Co Hydrocarbon conversion system
BE531363A (ja) * 1953-08-31
US3602701A (en) * 1968-09-23 1971-08-31 Universal Oil Prod Co Process control method
US4392989A (en) * 1981-05-11 1983-07-12 Mobil Oil Corporation Zinc-gallium zeolite
US4738829A (en) * 1984-05-08 1988-04-19 Chevron Research Company Apparatus for spent catalyst treating for fluidized catalytic cracking systems
US5030338A (en) * 1988-11-09 1991-07-09 Mobil Oil Corp. Conversion process using direct heating
EP0378482B1 (fr) * 1989-01-13 1995-04-12 Institut Français du Pétrole Procédé de régénération d'un catalyseur de production d'hydrocarbures aromatiques ou de réformage
US6383366B1 (en) 1998-02-13 2002-05-07 Exxon Research And Engineering Company Wax hydroisomerization process
US6187987B1 (en) 1998-07-30 2001-02-13 Exxon Mobil Corporation Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
CN1660724A (zh) * 2004-12-30 2005-08-31 李湘平 液化气芳构化生产三苯工艺
US7692052B2 (en) * 2006-12-29 2010-04-06 Uop Llc Multi-zone process for the production of xylene compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503656A (ja) 1988-04-11 1991-08-15 モービル・オイル・コーポレーション アルカンおよびアルケンのハイオクタンガソリンへの転化
WO2008008527A2 (en) * 2006-07-13 2008-01-17 Saudi Arabian Oil Company Ancillary cracking of paraffinic naptha in conjunction with fcc unit operations
JP2009078602A (ja) 2007-09-25 2009-04-16 Honda Motor Co Ltd ブレーキシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412786A4
W.M. MEIYERD.H. OLSON: "Atlas of Zeolite Structure Types", POLYCRYSTAL BOOK SERVICE, 1978

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
WO2012133168A1 (ja) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP2012201796A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012201797A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012201795A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
US9382173B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method of producing single-ring aromatic hydrocarbons
US9233892B2 (en) 2011-03-25 2016-01-12 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP2012206955A (ja) * 2011-03-29 2012-10-25 Chiyoda Kako Kensetsu Kk 芳香族炭化水素の製造方法および芳香族炭化水素の製造プラント
EP2716738A4 (en) * 2011-05-24 2014-11-12 Jx Nippon Oil & Energy Corp PROCESS FOR PRODUCING MONOCYCLIC AROMATIC HYDROCARBON AND SYSTEM FOR MANUFACTURING MONOCYCLIC AROMATIC HYDROCARBON
KR101536852B1 (ko) * 2011-05-24 2015-07-14 제이엑스 닛코닛세키에너지주식회사 단환 방향족 탄화수소의 제조 방법
WO2012161261A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
CN103649277A (zh) * 2011-05-24 2014-03-19 吉坤日矿日石能源株式会社 单环芳香族烃的制造方法
EP2716739A1 (en) * 2011-05-24 2014-04-09 JX Nippon Oil & Energy Corporation Monocyclic aromatic hydrocarbon production method and monocyclic aromatic hydrocarbon production plant
EP2716738A1 (en) * 2011-05-24 2014-04-09 JX Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon and plant for producing monocyclic aromatic hydrocarbon
JP2012241174A (ja) * 2011-05-24 2012-12-10 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
EP2716739A4 (en) * 2011-05-24 2014-12-10 Jx Nippon Oil & Energy Corp METHOD FOR PRODUCING MONOCYCLIC AROMATIC HYDROCARBONS AND APPARATUS FOR PREPARING MONOCYCLIC AROMATIC HYDROCARBONS
JP5723000B2 (ja) * 2011-05-24 2015-05-27 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
JP2012241173A (ja) * 2011-05-24 2012-12-10 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
KR101545073B1 (ko) 2011-05-24 2015-08-17 제이엑스 닛코닛세키에너지주식회사 단환 방향족 탄화수소의 제조 방법 및 단환 방향족 탄화수소의 제조 플랜트
CN103649277B (zh) * 2011-05-24 2015-09-09 吉坤日矿日石能源株式会社 单环芳香族烃的制造方法
WO2012161272A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
JP5851498B2 (ja) * 2011-05-24 2016-02-03 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法および単環芳香族炭化水素の製造プラント
US9255042B2 (en) 2011-05-24 2016-02-09 Jx Nippon Oil & Energy Corporation Producing method of monocyclic aromatic hydrocarbons and monocyclic aromatic hydrocarbon production plant
WO2012161281A1 (ja) 2011-05-24 2012-11-29 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9388096B2 (en) 2011-05-24 2016-07-12 Jx Nippon Oil & Energy Corporation Producing method of monocyclic aromatic hydrocarbons and monocyclic aromatic hydrocarbon production plant
US9828309B2 (en) 2011-05-24 2017-11-28 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP2012246357A (ja) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp A重油組成物およびその製造方法
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon

Also Published As

Publication number Publication date
CN102365349A (zh) 2012-02-29
JP5461395B2 (ja) 2014-04-02
CN102365349B (zh) 2015-01-07
EP2412786A1 (en) 2012-02-01
KR101727338B1 (ko) 2017-04-14
KR20120013949A (ko) 2012-02-15
US20120012504A1 (en) 2012-01-19
EP2412786A4 (en) 2012-10-17
MY160726A (en) 2017-03-15
BRPI1014751A2 (pt) 2019-04-02
JPWO2010109899A1 (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5461395B2 (ja) 芳香族炭化水素の製造方法
CN103732725B (zh) 单环芳香族烃的制造方法及单环芳香族烃的制造设备
JP5692962B2 (ja) 低級オレフィンの収率を増大させるための接触変換方法
KR101821451B1 (ko) 저가 탄화수소 흐름을 경질 올레핀으로 촉매 전환하는 공정
TW585904B (en) Two stage fluid catalytic cracking process for selectively producing C2 to C4 olefins
JP5339845B2 (ja) 流動接触分解方法
CN101001938B (zh) 由烃原料制备中间馏分产品和低级烯烃的方法和设备
WO2012133138A1 (ja) 単環芳香族炭化水素の製造方法
JPH03207794A (ja) 流動床触媒反応器で計質オレフィン燃料ガスの品質を改良する方法および触媒の再生方法
JP4837114B2 (ja) 芳香族炭化水素の製造方法および芳香族炭化水素の製造プラント
JP5466450B2 (ja) 連続式流動接触芳香族製造プラントの運転方法
JP5654923B2 (ja) 芳香族炭化水素の製造方法および芳香族炭化水素の製造プラント
JP7362368B2 (ja) キシレンの製造方法
JP5789414B2 (ja) 触媒再生方法および触媒再生装置
CN105980527B (zh) 重油的流化催化裂化法
RU2186089C1 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
JP5437131B2 (ja) 連続式流動接触芳香族製造プラントの運転方法
JP5399705B2 (ja) 流動接触分解方法
RU2152977C1 (ru) Способ переработки углеводородного сырья на основе алифатических углеводородов
WO2024111562A1 (ja) 熱交換器型炭化水素合成用反応器
CN113710775B (zh) 用于使氢的回收最大化的整合方法
JPH10168463A (ja) 油の流動接触分解方法
JP5690623B2 (ja) 単環芳香族炭化水素の製造方法
WO2017137866A1 (en) Methods and systems for generating light olefins using a cyclic reactor configuration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013690.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010515150

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7617/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117024048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010755701

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014751

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014751

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110926