WO2010109627A1 - 冷凍空調装置の情報伝達システム - Google Patents

冷凍空調装置の情報伝達システム Download PDF

Info

Publication number
WO2010109627A1
WO2010109627A1 PCT/JP2009/056117 JP2009056117W WO2010109627A1 WO 2010109627 A1 WO2010109627 A1 WO 2010109627A1 JP 2009056117 W JP2009056117 W JP 2009056117W WO 2010109627 A1 WO2010109627 A1 WO 2010109627A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
controller
unit
heat source
information
Prior art date
Application number
PCT/JP2009/056117
Other languages
English (en)
French (fr)
Inventor
賢治 松井
▲高▼田 茂生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011505750A priority Critical patent/JP5258962B2/ja
Priority to US13/254,390 priority patent/US9121624B2/en
Priority to CN200980158369.2A priority patent/CN102365501B/zh
Priority to PCT/JP2009/056117 priority patent/WO2010109627A1/ja
Priority to EP09842241.3A priority patent/EP2413057B1/en
Publication of WO2010109627A1 publication Critical patent/WO2010109627A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control

Definitions

  • the present invention relates to a refrigeration air conditioner, and more particularly to an improvement in operation stability of a refrigeration air conditioner equipped with both a refrigerant circuit and a water circuit.
  • refrigeration air conditioners each having a water circuit and a refrigerant circuit
  • Patent Document 1 a so-called interlock circuit that does not operate a compressor when a water circuit pump drive signal is input to a heat source unit having a compressor and there is no input is widely implemented in hardware. It has been broken.
  • Japanese Patent Laid-Open No. 7-127894 Japanese Patent Laid-Open No. 7-127894
  • the heat source unit-first relay unit-second relay unit-indoor unit and the transmission line are multistage. Since they are connected, there is a problem that the hardware interlock becomes extremely complicated, including the problem of distance.
  • the communication medium is made common, the system becomes large, the communication protocol becomes complicated, and address arrangement and communication traffic become problems.
  • the present invention provides an information transmission system for a refrigeration air conditioner in which a heat source unit, a first relay unit, and a second relay unit are connected by a refrigerant pipe, and the second relay unit and an indoor unit are connected by a water pipe. It was made in order to solve such problems.
  • the main object of the present invention is to communicate information via a transmission line between the heat source unit and the first relay unit, between the first relay unit and the second relay unit, and only between the second relay unit and the indoor unit.
  • communication is performed between the heat source unit and the first relay unit, between the first relay unit and the second relay unit, only between the second relay unit and the indoor unit, and the operation sequence between the units can be communicated during start / stop.
  • a refrigeration air conditioner that does not require a complicated hardware interlock circuit and can suppress the stress of the refrigerant / water circuit.
  • communication between the heat source unit and the first relay unit, between the first relay unit and the second relay unit, and between the second relay unit and the indoor unit using different media and means is possible. Is to raise. Refrigeration and air-conditioning systems that can improve quality and reduce costs by using the optimal communication media and means for each, improve the freedom of address arrangement, and reduce communication traffic.
  • the information transmission system is obtained.
  • At least one refrigeration air conditioner heat source unit, one first relay unit, and at least one second relay unit are connected by a refrigerant pipe
  • This invention simplifies the information transmission procedure by performing information communication only between the heat source unit and the first relay unit, between the first relay unit and the second relay unit, and between the second relay unit and the indoor unit. Thus, it has the effect of ensuring the stability of the operation. Moreover, the interlock circuit on a complicated hardware is not required and the stress of a refrigerant circuit or a water circuit can be suppressed.
  • the degree of freedom in product configuration can be increased by using different media / means for communication between units. Further, by using the optimum medium / means for each, it is possible to improve the quality and reduce the cost, improve the freedom of address arrangement, and reduce the communication traffic.
  • FIG. 6 is a schematic configuration diagram illustrating an example of another information transmission system according to the second embodiment.
  • FIG. 6 is a schematic configuration diagram illustrating an example of still another information transmission system according to the second embodiment.
  • Heat source unit heat source side unit or outdoor unit
  • 2a to 2d indoor unit use side unit
  • 3a first relay unit 3b second relay unit, 3c second relay unit
  • 4a refrigerant pipe 4b refrigerant pipe
  • 4c Refrigerant piping 5a water piping, 5b water piping, 5c water piping, 5d water piping, 7 transmission line, 8 transmission line, 9a transmission line, 9b transmission line, 9c transmission line, 9d transmission line, 10 transmission line
  • 11 heat source unit Controller 21a-21d indoor unit controller, 22a-22d remote controller, 31a first relay controller, 31b second relay controller, 31c second relay controller.
  • FIG. 1 is a schematic configuration diagram showing an information transmission system of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • a heat source unit (heat source side unit or outdoor unit) 1 a first relay unit 3a, and second relay units 3b and 3c are connected by refrigerant pipes 4a to 4c to form one refrigerant circuit system. It is composed.
  • the second relay unit 3b and a plurality of indoor units (use side units) 2a, 2b are connected by water pipes 5a, 5b to form one water circuit system, and the second relay unit 3c and the plurality of indoor units ( Use side units) 2c, 2d are connected by water pipes 5c, 5d to form one water circuit system.
  • the heat source unit 1 includes a valve circuit such as a compressor and a four-way valve, an outdoor heat exchanger, and the like, and supplies heat necessary for the system on a refrigerant.
  • the first relay unit 3a includes a gas-liquid separator, a valve circuit, and the like, separates the conveyed refrigerant into three, high-pressure gas, medium-pressure liquid, and low-pressure gas, and supplies it as a heat source for cooling and heating.
  • the second relay units 3b and 3c include a refrigerant-water heat exchanger, a switching valve, a water pump, and the like, transmit necessary heat from the cooling refrigerant and the heating refrigerant to the water, and store the necessary amount of water. Circulate to the water circuit.
  • the indoor units 2a to 2d include an indoor heat exchanger, and exchange heat from the water circulating in the water circuit to the indoor air.
  • the heat source unit 1 is controlled by the heat source unit controller 11, and the first relay unit 3a is controlled by the first relay controller 31a.
  • the second relay units 3b and 3c are controlled by the second relay controllers 31b and 31c, respectively, and the indoor units 2a to 2d are controlled by the indoor unit controllers 21a to 21d, respectively.
  • the heat source unit controller 11 and the first relay controller 31a are directly connected by a transmission line 7 so as to be able to transmit information to each other.
  • the first relay controller 31a and the second relay controllers 31b and 31c are directly connected by a transmission line 8 so as to be able to transmit information to each other.
  • the second relay controllers 31b and 31c and the indoor unit controllers 21a to 21d are directly connected via the transmission line 10 so as to be able to transmit information to each other.
  • the indoor unit controllers 21a to 21d are directly connected to the remote controllers 22a to 22d, respectively, so as to be able to transmit information to each other via transmission lines 9a to 9d.
  • the above transmission line includes both wired and wireless concepts.
  • the heat source unit controller 11, the first relay controller 31a, the second relay controllers 31b and 31c, the indoor unit controllers 21a to 21d, and the remote controllers 22a to 22d are each assigned a unique address, and are manually set or automatically discriminated by the system. It is assumed that the address of the communication partner is known at startup.
  • FIG. 2 is a diagram showing a mode of communication processing between each unit of the refrigeration air conditioner of FIG.
  • the heat source unit controller 11 communicates only with the first relay controller 31a.
  • the first relay controller 31a transmits operation / stop command information of the first relay controller 31a to the heat source unit controller 11, and the heat source unit controller 11 transmits operation / stop state information of the heat source unit controller 11 to the first relay controller 31a.
  • the operation / stop command information may include information such as an operation mode such as heating / cooling (hereinafter the same).
  • these communications may be transmitted / received periodically, or may be transmitted / received during a change.
  • the heat source unit controller 11 transmits the operation enable / disable information of the heat source unit controller 11 to the first relay controller 31a.
  • the operation impossible information is set when the operation cannot be performed due to a decrease in the main power source of the heat source device, an abnormality in temperature, pressure sensor input value, or the like.
  • the first relay controller 31a communicates only with the heat source unit controller 11 and the second relay controllers 31b and 31c.
  • the second relay controllers 31b and 31c transmit the operation / stop command information of the second relay controllers 31a and 31b to the first relay controller 31a, and the first relay controller 31a receives the operation / stop state information of the first relay controller 31a. It transmits to the 2nd relay controllers 31b and 31c. Further, the first relay controller 31a transmits the operation enable / disable information of the first relay controller 31a to the second relay controllers 31b and 31c.
  • the inability to operate information is received from the heat source unit controller 11 when the main relay power of the first relay controller 31a is reduced, the temperature, the pressure sensor input value is abnormal, or the like. Includes cases.
  • the second relay controller 31b communicates only with the first relay controller 31a and the indoor unit controllers 21a and 21b.
  • the indoor unit controllers 21a and 21b transmit the operation / stop command information of the indoor unit controllers 21a and 21b to the second relay controller 31b, and the second relay controller 31b transmits the operation / stop state information of the second relay controller 31b to the room. It transmits to unit controller 21a, 21b.
  • the second relay controller 31b transmits the operation enable / disable information of the second relay controller 31b to the indoor unit controllers 21a and 21b.
  • the inoperability information of the second relay controller 31b when the main power supply of the second relay controller 31b is reduced, the temperature, the pressure sensor input value is abnormal, etc., the inoperability information is received from the first relay controller 31a. Including the case.
  • the second relay controller 31c communicates only with the first relay controller 31a and the indoor unit controllers 21c and 21d.
  • the indoor unit controller 21a communicates only with the second relay controller 31b and the remote controller 22a.
  • the remote controller 22a transmits setting information such as operation / stop of the remote controller 22a to the indoor unit controller 21a, and the indoor unit controller 21a transmits operation / stop information of the indoor unit controller 21a to the remote controller 22a.
  • the indoor unit controller 21a transmits the operation enable / disable information of the indoor unit controller 21a to the remote controller 22a.
  • the indoor unit controllers 21b, 21c, and 21d operate in the same manner.
  • FIG. 3 shows the operation of the heat source unit controller 11, the first relay controller 31a, the second relay controllers 31b and 31c, and the indoor unit controllers 21a to 21d at the time of change from stop to operation, It is a flowchart which shows the process of communication and operation
  • Step 100 to Step 113 are processing of the heat source unit controller 11
  • Step 120 to Step 132 are processing of the first relay controller 31a
  • Step 140 to Step 154 are processing of the second relay controllers 31b and 31c
  • Steps 160 to 172 show processing of the indoor unit controllers 21a to 21d, respectively.
  • the indoor unit controller 21a performs the processing from step 160 to step 172.
  • a new communication is received, and the received communication is analyzed.
  • the communication received here includes operation enable / disable information from the second relay controller 31b via the transmission line 10 connected to the second relay controller 31b, operation / stop state information of the second relay controller 31b, remote controller This is operation / stop command information from the remote controller 22a via the transmission line 9a connected to the terminal 22a.
  • step 162 whether or not the indoor unit 2a can be operated is determined from the operable / impossible information from the second relay controller 31b, the power state and temperature of the indoor unit 2a itself, the pressure sensor input value, and the like. Go to step 163.
  • the operable / impossible information from the second relay controller 31b includes a case where any of the second relay controller 31b, the first relay controller 31a, and the heat source unit controller 11 cannot be operated.
  • step 163 it is determined whether or not the change from the stop to the operation is performed. If the change is performed, the process proceeds to step 164.
  • the operation command is received from the remote controller 22a
  • the drivable information is received from the second relay controller 31b
  • the indoor unit 2a itself is also drivable.
  • the operation command and the operation state information are updated, and the process proceeds to step 165.
  • the operation command information and the operation state information of the indoor unit controller 21a are assumed to be operation.
  • step 165 the valve of the water circuit in the indoor unit 2a is operated, and the process proceeds to step 166.
  • step 166 it is determined whether or not a change from operation to stop is performed. If the change is to be made, the process proceeds to step 167. In this case, the process proceeds to step 171 because there is no change.
  • step 171 normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 172.
  • step 172 processing for newly transmitting communication is performed.
  • the operation command information and the operation state information of the indoor unit 2 a are changed from the stop to the operation, the operation information is transmitted to the second relay controller 31 b via the transmission line 10.
  • the indoor unit controller 21a If the indoor unit controller 21a cannot start operation, the indoor unit controller 21a returns impossible information to the remote controller 22a.
  • the remote controller 22a changes the display content to a stop display, a display in preparation, an error display, or the like. Further, in the case where the operation is impossible, the increase in the communication amount can be suppressed by not transmitting the operation information set by the remote controller 22a to the second relay controller 31b.
  • the second relay controller 31b performs the processing from step 140 to step 154.
  • step 141 the newly received communication is analyzed.
  • the communication received here includes information on the availability / impossibility of operation from the first relay controller 31a via the transmission line 8 connected to the first relay controller 31a, information on the operation / stop state of the first relay controller 31a, the indoor unit. This is operation / stop command information from the indoor unit controllers 21a and 21b via the transmission line 10 connected to the controller 21a.
  • step 142 the operation of the second relay unit 3b is determined from the operation enable / disable information from the first relay controller 31a, the power state and temperature of the second relay controller 31b itself, the pressure sensor input value, and the like. Judgment is made or not, and the process proceeds to step 143.
  • the operation enable / disable information from the first relay controller 31a includes a case where either the first relay controller 31a or the heat source unit controller 11 cannot be operated.
  • step 143 it is determined whether or not the change from the stop to the operation is performed. If the change is to be performed, the process proceeds to step 144.
  • step 144 the operation command information and the operation state information are updated, and the process proceeds to step 145.
  • the operation command information and the operation state information of the second relay controller 31b are assumed to be the operation.
  • step 145 the valve of the water circuit etc. in the 2nd relay unit 3b are operated, and a pump is started. Thereafter, the process proceeds to step 146.
  • step 146 the valve of the refrigerant circuit and the like in the second relay unit 3b are operated, and the process proceeds to step 147.
  • step 147 it is determined whether or not a change from operation to stop is performed. If the change is to be performed, the process proceeds to step 148. In this case, the process proceeds to step 153 on the assumption that there is no change. In step 153, normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 154. In step 154, processing for newly transmitting communication is performed. Here, since the operation command information and the operation state information of the second relay unit 3b are changed from the stop to the operation, the operation information is transmitted to the first relay controller 31a via the transmission line 8.
  • the first relay controller 31a performs the processing from step 120 to step 132.
  • step 121 the newly received communication is analyzed.
  • the communication received here includes operation enable / disable information from the heat source unit controller 11 via the transmission line 7 connected to the heat source unit controller 11, operation / stop state information of the heat source unit controller 11, and the second relay controller 31b. This is the operation / stop command information from the second relay controller 31b via the transmission line 8 connected to.
  • step 122 whether or not the first relay unit 3a can be operated is determined based on the operation enable / disable information from the heat source unit controller 11 and the power state and temperature of the first relay controller 31a itself, the pressure sensor input value, and the like.
  • step 123 it is determined whether or not the change from the stop to the operation is performed. If the change is to be performed, the process proceeds to step 124, and if not, the process proceeds to step 126.
  • the operation command is received from the second relay controller 31b, the operable information is received from the heat source unit controller 11, and the first relay unit 3a itself is operable, so the process proceeds to step 124. .
  • step 124 the operation command information and the operation state information are updated, and the process proceeds to step 125.
  • the operation command information and the operation state information of the first relay controller 31a are assumed to be the operation.
  • step 125 the refrigerant circuit valve and the like in the first relay unit 3a are operated, and the process proceeds to step 126.
  • step 126 it is determined whether or not a change from operation to stop is performed. If the change is to be made, the process proceeds to step 127. If not, the process proceeds to step 131. In this case, since there is no change, the routine proceeds to step 131.
  • step 131 normal processing such as sensor input acquisition and actuator control is performed, and the flow proceeds to step 132.
  • step 132 processing for newly transmitting communication is performed.
  • the operation command information and the operation state information of the first relay unit 3 a are changed from the stop to the operation, the operation information is transmitted to the heat source unit controller 11 via the transmission line 7.
  • step 101 the newly received communication is analyzed.
  • the communication received here is operation / stop command information from the second relay controller 31b via the transmission line 7 connected to the first relay controller 31a.
  • step 102 it is determined whether or not the heat source unit 1 can be operated from the power source state of the heat source unit controller 11 itself, the temperature, the pressure sensor input value, and the like, and the process proceeds to step 103.
  • step 103 it is determined whether or not the change from the stop to the operation is performed. If the change is to be made, the process proceeds to step 104.
  • step 104 the operation command information and the operation state information are updated, and the process proceeds to step 105.
  • the operation command information and the operation state information of the heat source unit controller 11 are defined as operation.
  • step 106 the compressor in the heat source unit 1 is activated, and the process proceeds to Step 107.
  • step 107 it is determined whether or not the change from the operation to the stop is performed. If the change is to be made, the process proceeds to step 108. In this case, since there is no change, the routine proceeds to step 112.
  • step 112 normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 113.
  • step 113 processing for newly transmitting communication is performed.
  • step 161 the indoor unit controller 21a performs analysis processing for the newly received communication. After performing the analysis process, in step 162, it is determined whether or not the indoor unit 2a can be operated, and the process proceeds to step 163. In step 163, it is determined whether or not the change from the stop to the operation is performed.
  • step 164 the process proceeds to step 164. In this case, the process proceeds to step 166.
  • step 166 it is determined whether or not a change from operation to stop is performed. If the change is to be made, the process proceeds to step 167. In this case, the process proceeds to step 167.
  • step 167 the operation command information is updated, and the process proceeds to step 168.
  • the operation command state of the indoor unit controller 21a is stopped.
  • step 168 it is determined whether or not the operation state of the second relay controller 31b is stopped. If it is stopped, the process proceeds to step 169, and if not, the process proceeds to step 171. In this case, since it is not a stop, the process proceeds to step 171.
  • step 171 normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 172.
  • step 172 processing for newly transmitting communication is performed.
  • the operation command information of the indoor unit 2 a is changed from operation to stop, the operation information is transmitted to the second relay controller 31 b via the transmission line 10.
  • the operation command information is stopped, but the operation state information remains in operation, so that the operation state of the second relay controller 31b is stopped while the operation state is changing from operation to stop. This process is repeated.
  • step 141 the second relay controller 31b performs an analysis process on the newly received communication.
  • step 142 it is determined whether or not the second relay unit 3b can be operated, and the process proceeds to step 143.
  • step 143 it is determined whether or not the change from the stop to the operation is performed. If the change is to be performed, the process proceeds to step 144. In this case, the process proceeds to step 147.
  • step 147 it is determined whether or not a change from operation to stop is performed. If the change is to be made, the process proceeds to step 148. Otherwise, the process proceeds to step 153. In this case, the process proceeds to step 148.
  • step 148 the operation command information is updated, and the process proceeds to step 149.
  • step 149 it is determined whether or not the operation state of the first relay controller 31a is stopped. If it is stopped, the process proceeds to step 150. If not, the process proceeds to step 153. In this case, since it is not a stop, it progresses to step 153.
  • step 153 normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 154.
  • step 154 processing for newly transmitting communication is performed.
  • the operation information of the second relay unit 3b is changed from operation to stop, the operation information is transmitted to the first relay controller 31a via the transmission line 8.
  • the operation command information is stopped, but the operation state information remains in operation, so that the operation state of the first relay controller 31a is stopped until the operation state of the first relay controller 31a is stopped. Repeat the process.
  • step 121 the first relay controller 31a performs analysis processing on the newly received communication.
  • step 122 it is determined whether or not the first relay unit 3a can be operated, and the process proceeds to step 123.
  • step 123 it is determined whether or not the change from the stop to the operation is performed. If the change is to be performed, the process proceeds to step 124. In this case, the process proceeds to step 126.
  • step 126 it is determined whether or not a change from operation to stop is performed. If the change is to be performed, the process proceeds to step 127. In this case, the process proceeds to step 127.
  • step 127 the operation command information is updated, and the process proceeds to step 128.
  • step 131 normal processing such as sensor input acquisition and actuator control is performed, and the flow proceeds to step 132.
  • step 132 processing for newly transmitting communication is performed.
  • the operation command information of the first relay unit 3 a since the operation command information of the first relay unit 3 a has changed from operation to stop, the operation information is transmitted to the heat source unit controller 11 via the transmission line 7.
  • this processing is performed until the operation state of the heat source unit controller 11 is stopped while the operation state is changed from operation to stop. repeat.
  • step 101 the heat source controller 11 performs an analysis process on the newly received communication.
  • step 102 it is determined whether or not the heat source unit 1 can be operated, and the process proceeds to step 103.
  • step 103 it is determined whether or not the change from the stop to the operation is performed. If the change is to be made, the process proceeds to step 104. In this case, the process proceeds to step 107.
  • step 107 it is determined whether or not the change from the operation to the stop is performed. If the change is to be made, the process proceeds to step 108. In this case, the process proceeds to step 108.
  • step 108 the operation command information is updated, and the process proceeds to step 109.
  • step 109 the compressor in the heat source unit 1 is stopped, and the process proceeds to step 110.
  • step 110 the refrigerant circuit valve and the like in the heat source unit 1 are operated, and the process proceeds to step 111.
  • step 111 the operating state information is updated, and the process proceeds to step 112.
  • step 112 normal processing such as sensor input acquisition and actuator control is performed, and the process proceeds to step 113.
  • step 113 processing for newly transmitting communication is performed.
  • the operation command information and the operation state information of the heat source unit 1 are changed from operation to stop, the operation information is transmitted to the first relay controller 31 a via the transmission line 7.
  • the first relay controller 31a determines that the heat source unit controller 11 is stopped in step 128, and proceeds to step 129.
  • step 129 the refrigerant circuit valve and the like in the first relay unit 3a are operated, and the process proceeds to step 130.
  • step 130 the operating state information is updated, and the process proceeds to step 131.
  • the operation state information of the first relay controller 31a is stopped.
  • step 132 the operating state information of the first relay controller 31a is transmitted to the second relay controller 31b.
  • the second relay controller 31b determines in step 149 that the first relay controller 31a is stopped, and proceeds to step 150.
  • step 150 the refrigerant circuit valve and the like in the second relay unit 3b are operated, and the process proceeds to step 151.
  • step 151 the pump of the water circuit in the second relay unit 3b is stopped, the valve of the water circuit is operated, and the process proceeds to step 152.
  • step 152 the operating state information is updated, and the process proceeds to step 153.
  • the operation state information of the second relay controller 31b is stopped.
  • step 154 the operation state information of the second relay controller 31b is transmitted to the indoor unit controller 21a.
  • the indoor unit controller 21a receives this communication (transmission)
  • the indoor unit controller 21a determines in step 168 that the second relay controller 31b is stopped, and proceeds to step 169.
  • step 169 the valve of the water circuit in the indoor unit 21a is operated, and the process proceeds to step 170.
  • step 170 the operating state information is updated, and the process proceeds to step 171.
  • the operation state information of the indoor unit controller 21a is stopped.
  • step 172 the operating state information of the indoor unit controller 21a is transmitted to the remote controller 22a.
  • the pump When the pump is not moving during the start-up of the compressor, the water temperature changes rapidly because water is not flowing, and accordingly the high pressure of the compressor rises rapidly or the low pressure drops sharply, It may lead to an abnormal stop.
  • the pump even when communication failure occurs due to temporary noise or traffic increase, the pump is always started before the compressor is started. The pump can be stopped after the machine is stopped. For this reason, the stability of information transmission can be ensured and hardware interlock can be eliminated.
  • the degree of freedom of product configuration can be increased by performing communication between the units using different media and means (including hardware and software). Furthermore, by using the optimum medium / means for each, it is possible to improve quality and reduce costs, improve the degree of freedom of address arrangement, and reduce communication traffic.
  • FIG. FIG. 4 shows the configuration of the information transmission device of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the refrigeration air conditioner shown in FIG. 4 includes a heat source main unit (outdoor main unit) 1a, heat source sub-units (outdoor sub-units) 1b and 1c, a first relay unit 3a, and second relay units 3b and 3c. , 4b, 4c, 4d, and 4e are connected to form one refrigerant circuit system. In addition, it is good also as a structure without a heat-source subunit.
  • the second relay unit 3b and a plurality of indoor units (use side units) 2a, 2b are connected by water pipes 5a, 5b to form one water circuit system, and the second relay unit 3c and the plurality of indoor units ( Use side units) 2c, 2d are connected by water pipes 5c, 5d to form one water circuit system.
  • the heat source units 1a, 1b, and 1c include a compressor, a valve circuit such as a four-way valve, an outdoor heat exchanger, and the like, and supply heat necessary for the system on a refrigerant.
  • the first relay unit 3a includes a gas-liquid separator, a valve circuit, and the like. The first relay unit 3a separates the conveyed refrigerant into high pressure gas, medium pressure liquid, and low pressure gas, and supplies them as heat sources for cooling and heating.
  • the second relay units 3b and 3c are provided with a refrigerant-water heat exchanger, a switching valve, a water pump, etc., transferring necessary heat from the cooling refrigerant and the heating refrigerant to the water, and storing the necessary amount of heat in the water circuit. Circulate water.
  • the indoor units 2a to 2d include an indoor heat exchanger, and exchange heat from the circulated water to the indoor air.
  • the heat source units 1a, 1b, and 1c are controlled by the heat source unit controllers 11a, 11b, and 11c, respectively, and the first relay unit 3a is controlled by the first relay controller 31a.
  • the second relay units 3b and 3c are controlled by the second relay controllers 31b and 31c, respectively.
  • the indoor units 2a to 2d are controlled by the indoor unit controllers 21a to 21d, respectively.
  • the heat source unit controllers 11a, 11b, and 11c and the first relay controller 31a are directly connected via the transmission line 7 so as to be able to transmit information to each other.
  • the first relay controller 31a and the second relay controllers 31b and 31c are directly connected by a transmission line 8 so as to be able to transmit information to each other.
  • the second relay controllers 31b and 31c and the indoor unit controllers 21a to 21d are directly connected via the transmission line 10 so as to be able to transmit information to each other.
  • the indoor unit controllers 21a to 21d are directly connected to the remote controllers 22a to 22d through the transmission lines 9a to 9d so as to be able to transmit information to each other.
  • FIG. 5 is a diagram showing an information transmission system (communication system) in the case where there are a plurality of systems of the refrigeration air conditioners shown in FIG.
  • a heat source unit main controller 11a of one refrigerant system and a heat source unit main controller 11d of another refrigerant system are connected by a transmission line 15, and a centralized controller 51 for centrally managing the refrigeration air conditioner is further connected to the transmission line 15. It is connected.
  • each refrigerant system (unit connected by refrigerant
  • the transmission lines 7, 8, 10, 12, 13, and 14 are generally composed of the same means / medium, and the transmission lines 9a to 9h are also the same means / medium. In some cases, it was connected with.
  • the advantage of the configuration in which all transmission lines are the same means / medium is that each controller only needs to have one transmission / reception circuit, and wiring work is easy.
  • the increase in communication traffic and the problem of occupation of the address space have occurred in such a system due to an increase in scale of the system and advancement of functions.
  • communication traffic since many controllers exist on the same bus, the communication traffic increases in proportion to the number of controllers. In order to communicate on the same bus, each controller needs to have a different self address.
  • FIG. 6 is a diagram showing an information transmission system (communication system) when there are a plurality of the refrigeration air conditioners shown in FIG. 4 as in FIG. 5.
  • the transmission lines 8 and 13 are connected to other transmission lines. It shows an example in the case of being configured by means / medium (including software and hardware) different from the above.
  • the communication bus on the heat source unit side and the communication bus on the indoor unit side can be separated. Thereby, the communication traffic of each communication bus can be greatly reduced.
  • the occupied address space is 9 on the heat source unit side and 20 on the indoor unit side.
  • the heat source unit main controllers 11a and 11d are provided with transmission lines 15 for connecting a plurality of refrigerant systems, and a centralized controller 51 is connected thereto, but the first relay controllers 31a and 31d or the second A transmission line and a centralized controller for connecting a plurality of refrigerant systems may be connected to the relay controllers 31b, 31c, 31e, 31f or the indoor unit controllers 21a to 21h.
  • the indoor unit controller it is not necessary to connect the transmission line to the outdoor heat source unit, so there is an advantage that the length of the transmission line for connecting a plurality of refrigerant systems is shortened.
  • the same advantage can be obtained when connecting to the first relay controller or the second relay controller.
  • the flexibility of address arrangement is further improved by connecting to the transmission line of the means / medium different from the indoor unit and heat source unit. There is an advantage that communication traffic can be reduced.
  • the second relay controller communicates with the first relay controller and with the indoor unit controller, by adopting different communication means and media (including software and hardware), the heat source unit controller-first
  • the transmission medium into two different transmission media: one relay controller-second relay controller and second relay controller-indoor unit controller.
  • This is a so-called gateway system. For example, if only the second relay controller performs transmission replacement, the system can be separated into two even if the above two transmission media are physically the same system. Is simple.
  • each controller has a unique address and communicates with other devices using dedicated communication means, the controller is a dedicated product, but each subsystem is dedicated to the controller only. It is also possible to adopt a general-purpose product for the structure part.
  • the indoor unit is an air-water heat exchanger, which is basically a combination of a heat exchanger and a blower, so there are few design restrictions and the controller and structure can be separated to expand the user's selection range. It is effective to leave
  • the information transmission system described in each of the above embodiments can be used for a refrigeration apparatus or an air conditioner that includes a refrigerant circuit on the heat source side and a water circuit that performs heat exchange with the refrigerant circuit on the use side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 1ないし複数台の冷凍空調装置の熱源ユニット1と、1台の第一中継ユニット3aと、1ないし複数台の第二中継ユニット3b,3cとが冷媒配管で接続され、第二中継ユニット3b,3cと1ないし複数台の室内ユニット2a~2dが水配管で接続された冷凍空調装置の情報伝達システムであって、通信は伝送線を介して、熱源ユニット1と第一中継ユニット間3a、第一中継ユニット3aと第二中継ユニット間3b,3c、第二中継ユニット3b,3cと室内ユニット2a~2d間のみでそれぞれ行う冷凍空調装置の情報伝達システム。

Description

冷凍空調装置の情報伝達システム
 この発明は、冷凍空調装置に関するものであり、特に冷媒回路と水回路の双方を備えた冷凍空調装置の運転の安定性の向上に関するものである。
 従来から、水回路と冷媒回路とを備えた冷凍装置や空調装置(以下、冷凍空調装置という)が存在している(例えば、特許文献1参照)。このような装置においては、圧縮機を有する熱源ユニットに、水回路のポンプ駆動信号を入力し、入力がないときには圧縮機を運転させない、いわゆるインターロック回路をハードウェア的に構成することが広く行われている。
特開平7-127894号公報
 しかし、熱源ユニット、第一中継ユニット、第二中継ユニット、室内ユニットを伝送線で接続した冷凍空調装置では、熱源ユニット-第一中継ユニット-第二中継ユニット-室内ユニットと、伝送線が多段に接続されるため、ハードウェア的なインターロックでは距離の問題も含めて、きわめて複雑になるという問題があった。
 また、冷媒回路と水回路の双方を持つシステムにおいて、通信媒体を共通化するとシステムが大型化し、通信プロトコルが複雑化し、またアドレス配置や通信トラフィックが課題となることが懸念される。
 この発明は、熱源ユニットと、第一中継ユニットと、第二中継ユニットとが冷媒配管で接続され、第二中継ユニットと室内ユニットが水配管で接続された冷凍空調装置の情報伝達システムにおいて、上記のような課題を解決するためになされたものである。
 この発明の主たる目的は、熱源ユニットと第一中継ユニット間、第一中継ユニットと第二中継ユニット間、第二中継ユニットと室内ユニット間のみで、伝送線を介して通信を行うことにより、情報伝達の安定性を確保することを可能とした冷凍空調装置の情報伝達システムを得るものである。
 併せて、熱源ユニットと第一中継ユニット間、第一中継ユニットと第二中継ユニット間、第二中継ユニットと室内ユニット間のみで通信を行い、起動/停止時に各ユニット間の動作順序を通信で規定することにより、複雑なハードウェア上のインターロック回路を必要とせず、冷媒・水回路のストレスを抑制することを可能とした、冷凍空調装置の情報伝達システムを得るものである。
 また、熱源ユニットと第一中継ユニット間、第一中継ユニットと第二中継ユニット間、第二中継ユニットと室内ユニット間で、異なる媒体・手段で通信を行うことを可能とし、製品構成の自由度を上げることである。さらに、それぞれに最適な通信の媒体・手段を使用することで品質の向上、コストの低減を実現し、アドレス配置の自由度を向上させ、通信トラフィックを削減することを可能とした、冷凍空調装置の情報伝達システムを得るものである。
 この発明に係る冷凍空調装置の情報伝達システムは、少なくとも1台の冷凍空調装置の熱源ユニットと、1台の第一中継ユニットと、少なくとも1台の第二中継ユニットとが冷媒配管で接続され、前記第二中継ユニットと少なくとも1台の室内ユニットが水配管で接続された冷凍空調装置の情報伝達システムであって、
 通信は伝送線を介して、前記熱源ユニットと前記第一中継ユニット間、前記第一中継ユニットと前記第二中継ユニット間、前記第二中継ユニットと前記室内ユニット間のみでそれぞれ行うようにしたものである。
 この発明は、情報の通信を、熱源ユニットと第一中継ユニット間、第一中継ユニットと第二中継ユニット間、第二中継ユニットと室内ユニット間のみで行うことにより、情報伝達の手順が簡素になり、動作の安定性を確保できるという効果を有する。また、複雑なハードウェア上のインターロック回路を必要とせず、冷媒回路や水回路のストレスを抑制することができる。
 また、ユニット間の通信を異なる媒体・手段にすることにより、製品構成の自由度を上げることができる。さらに、それぞれに最適な媒体・手段を使用することで品質の向上、コストの低減を実現でき、アドレス配置の自由度を向上させ、通信トラフィックを削減できるという効果を有する。
実施の形態1における冷凍空調装置の情報伝達システムを示す概略構成図。 実施の形態1における冷凍空調装置のユニット間での通信処理を示す図。 実施の形態1における冷凍空調装置の通信と動作の処理を示す流れ図。 実施の形態2における冷凍空調装置の情報伝達システムを示す概略構成図。 実施の形態2の別の情報伝達システムの例を示す概略構成図。 実施の形態2のさらに別の情報伝達システムの例を示す概略構成図。
符号の説明
 1 熱源ユニット(熱源側ユニット又は室外ユニット)、2a~2d 室内ユニット(利用側ユニット)、3a 第一中継ユニット、3b 第二中継ユニット、3c 第二中継ユニット、4a 冷媒配管、4b 冷媒配管、4c 冷媒配管、5a 水配管、5b 水配管、5c 水配管、5d 水配管、7 伝送線、8 伝送線、9a 伝送線、9b 伝送線、9c 伝送線、9d 伝送線、10 伝送線、11 熱源ユニットコントローラ、21a~21d 室内ユニットコントローラ、22a~22d リモートコントローラ、31a 第一中継コントローラ、31b 第二中継コントローラ、31c 第二中継コントローラ。
実施の形態1.
 図1はこの発明の実施の形態1における冷凍空調装置の情報伝達システムを示す概略構成図である。図1に示しように、熱源ユニット(熱源側ユニット又は室外ユニット)1、第一中継ユニット3a、第二中継ユニット3b,3cが、冷媒配管4a~4cで接続されて、ひとつの冷媒回路系を構成している。
 また、第二中継ユニット3bと複数の室内ユニット(利用側ユニット)2a,2bが水配管5a,5bで接続されて1つの水回路系を構成し、第二中継ユニット3cと複数の室内ユニット(利用側ユニット)2c,2dが水配管5c,5dで接続されて1つの水回路系を構成している。
 熱源ユニット1は、圧縮機、四方弁などの弁回路および室外側熱交換器などを備え、システムとして必要な熱を冷媒に乗せて供給する。
 第一中継ユニット3aは、気液分離器や弁回路などを備え、搬送された冷媒を高圧ガス、中圧液、低圧ガスの3つに分離し、冷房用、暖房用の熱源として供給する。
 第二中継ユニット3b,3cは、冷媒-水熱交換器、切換弁、水ポンプなどを備え、冷房用冷媒、暖房用冷媒から必要な熱を水に伝達し、必要な熱量を蓄えた水を水回路に循環させる。
 室内ユニット2a~2dは、室内側熱交換器を備え、水回路を循環する水から熱量を室内空気に熱交換伝達する。
 熱源ユニット1は、熱源ユニットコントローラ11で制御され、第一中継ユニット3aは第一中継コントローラ31aで制御される。また、第二中継ユニット3b,3cは第二中継コントローラ31b,31cでそれぞれ制御され、室内ユニット2a~2dは室内ユニットコントローラ21a~21dでそれぞれ制御される。
 熱源ユニットコントローラ11と第一中継コントローラ31aは、伝送線7で相互に情報伝達可能に直接接続されている。第一中継コントローラ31aと第二中継コントローラ31b,31cは伝送線8で相互に情報伝達可能に直接接続されている。第二中継コントローラ31b,31cと室内ユニットコントローラ21a~21dは伝送線10で相互に情報伝達可能に直接接続されている。さらに、室内ユニットコントローラ21a~21dはそれぞれリモートコントローラ22a~22dと、伝送線9a~9dで相互に情報伝達可能に直接接続されている。 なお、上記の伝送線は、有線、無線のいずれの概念も含むものとする。
 熱源ユニットコントローラ11、第一中継コントローラ31a、第二中継コントローラ31b,31c、室内ユニットコントローラ21a~21d、リモートコントローラ22a~22dは、各々ユニークなアドレスを付与され、手動設定または自動判別処理によって、システム起動時には通信相手のアドレスを把握していることとする。
 図2は図1の冷凍空調装置の各ユニット間の通信処理の態様を示した図である。熱源ユニットコントローラ11は、第一中継コントローラ31aとのみ通信を行う。第一中継コントローラ31aは、第一中継コントローラ31aの運転/停止指令情報を熱源ユニットコントローラ11に送信し、熱源ユニットコントローラ11は熱源ユニットコントローラ11の運転/停止状態情報を第一中継コントローラ31aに送信する。運転/停止指令情報には暖房/冷房等の運転モード等の情報も含まれる場合がある(以下同じ)。また、これらの通信は定期的に送受信される場合や、変化時に送受信される場合がある。
 また、熱源ユニットコントローラ11は、熱源ユニットコントローラ11の運転可能/不可能情報を第一中継コントローラ31aに送信する。運転不可能情報とは、熱源機の主電源の低下や温度、圧力センサ入力値の異常等により運転不可能な場合等に設定される。
 第一中継コントローラ31aは、熱源ユニットコントローラ11と、第二中継コントローラ31b,31cとのみ通信を行う。第二中継コントローラ31b,31cは、第二中継コントローラ31a,31bの運転/停止指令情報を第一中継コントローラ31aに送信し、第一中継コントローラ31aは第一中継コントローラ31aの運転/停止状態情報を第二中継コントローラ31b,31cに送信する。また、第一中継コントローラ31aは、第一中継コントローラ31aの運転可能/不可能情報を第二中継コントローラ31b,31cに送信する。第一中継コントローラ31aの運転不可能情報には、第一中継コントローラ31aの主電源低下や温度、圧力センサ入力値の異常等の場合と、熱源ユニットコントローラ11から運転不可能情報を受信している場合を含んでいる。
 第二中継コントローラ31bは、第一中継コントローラ31aと、室内ユニットコントローラ21a,21bとのみ通信を行う。室内ユニットコントローラ21a,21bは、室内ユニットコントローラ21a,21bの運転/停止指令情報を第二中継コントローラ31bに送信し、第二中継コントローラ31bは、第二中継コントローラ31bの運転/停止状態情報を室内ユニットコントローラ21a,21bに送信する。
 また、第二中継コントローラ31bは、第二中継コントローラ31bの運転可能/不可能情報を室内ユニットコントローラ21a,21bに送信する。第二中継コントローラ31bの運転不可能情報には、第二中継コントローラ31bの主電源低下や温度、圧力センサ入力値の異常等の場合と、第一中継コントローラ31aから運転不可能情報を受信している場合を含んでいる。
 同様にして、第二中継コントローラ31cは、第一中継コントローラ31aと、室内ユニットコントローラ21c,21dとのみ通信を行う。
 室内ユニットコントローラ21aは、第二中継コントローラ31bと、リモートコントローラ22aとのみ通信を行う。リモートコントローラ22aは、リモートコントローラ22aの運転/停止等の設定情報を室内ユニットコントローラ21aに送信し、室内ユニットコントローラ21aは室内ユニットコントローラ21aの運転/停止情報をリモートコントローラ22aに送信する。また、室内ユニットコントローラ21aは、室内ユニットコントローラ21aの運転可能/不可能情報をリモートコントローラ22aに送信する。なお、室内ユニットコントローラ21b,21c,21dも同様の態様で動作する。
 図3は熱源ユニットコントローラ11、第一中継コントローラ31a、第二中継コントローラ31b,31c、室内ユニットコントローラ21a~21dの動作のうち、停止から運転への変化時と、運転から停止への変化時の通信・動作の処理を示す流れ図である。図3において、ステップ100ないしステップ113は熱源ユニットコントローラ11の処理を、ステップ120ないしステップ132は第一中継コントローラ31aの処理を、ステップ140ないしステップ154は第二中継コントローラ31b,31cの処理を、ステップ160ないしステップ172は室内ユニットコントローラ21a~21dの処理をそれぞれ示す。
(1)圧縮機起動時の通信
図3を基に、冷凍空調装置の圧縮機起動時の通信内容について説明する。全ての室内ユニット2a~2dが停止している状態から、リモートコントローラ22aが操作され、冷凍空調装置が運転を開始する場合の通信について説明する。まず、操作者がリモートコントローラ22aを操作し、運転モード、設定温度、風向、風速等の設定を行う。リモートコントローラ22aは、設定された情報を、伝送線9aを介して室内ユニットコントローラ21aに送信する。
 室内ユニットコントローラ21aはステップ160からステップ172の処理を実施している。まず、ステップ161では、新たに通信を受信し、受信した通信の解析処理を行う。ここで受信する通信は、第二中継コントローラ31bと接続されている伝送線10を介する第二中継コントローラ31bからの運転可能/不可能情報、第二中継コントローラ31bの運転/停止状態情報、リモートコントローラ22aと接続されている伝送線9aを介するリモートコントローラ22aからの運転/停止指令情報である。
 解析処理実施後、ステップ162では、第二中継コントローラ31bからの運転可能/不可能情報と、室内ユニット2a自身の電源状態や温度、圧力センサ入力値等から、室内ユニット2aの運転可否を判断し、ステップ163に進む。第二中継コントローラ31bからの運転可能/不可能情報には、第二中継コントローラ31b、第一中継コントローラ31a、熱源ユニットコントローラ11のいずれかが運転できない場合を含んでいる。
 ステップ163では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ164に進み、行わない場合はステップ166に進む。この場合はリモートコントローラ22aから運転指令を受信しており、第二中継コントローラ31bから運転可能情報を受信しており、室内ユニット2a自身も運転可能な場合とするため、ステップ164に進む。
 ステップ164では、運転指令、運転状態情報の更新を行い、ステップ165に進む。ここでは室内ユニットコントローラ21aの運転指令情報、運転状態情報を運転とする。
 ステップ165では、室内ユニット2aにおける水回路の弁等を動作させ、ステップ166に進む。ステップ166では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ167に進み、行わない場合はステップ171に進む。この場合は変化しないためステップ171に進む。ステップ171では、センサ入力の取込やアクチュエータ制御等の通常の処理を行い、ステップ172に進む。ステップ172では、新たに通信を送信する処理を行う。ここでは室内ユニット2aの運転指令情報、運転状態情報が停止から運転に変化しているので、運転情報を、伝送線10を介して第二中継コントローラ31bに送信する。
 室内ユニットコントローラ21aは、運転開始が不可能であった場合は不可能情報をリモートコントローラ22aに返信する。リモートコントローラ22aは不可能情報を受信した場合、表示内容を停止表示、または準備中表示、またはエラー表示等に変更する。また、運転不可能な状態の場合は、リモートコントローラ22aで設定された運転情報を第二中継コントローラ31bには送信しないことにより、通信量の増加を抑制することができる。
 次に第二中継コントローラ31bの動作について説明する。第二中継コントローラ31bはステップ140からステップ154の処理を実施している。まず、ステップ141では、新たに受信した通信の解析処理を行う。ここで受信する通信は、第一中継コントローラ31aと接続されている伝送線8を介する第一中継コントローラ31aからの運転可能/不可能情報、第一中継コントローラ31aの運転/停止状態情報、室内ユニットコントローラ21aと接続されている伝送線10を介する室内ユニットコントローラ21a,21bからの運転/停止指令情報である。
 解析処理実施後、ステップ142では、第一中継コントローラ31aからの運転可能/不可能情報と、第二中継コントローラ31b自身の電源状態や温度、圧力センサ入力値等から、第二中継ユニット3bの運転可否を判断し、ステップ143に進む。第一中継コントローラ31aからの運転可能/不可能情報には、第一中継コントローラ31a、熱源ユニットコントローラ11のいずれかが運転できない場合を含んでいる。
 ステップ143では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ144に進み、行わない場合はステップ147に進む。この場合は室内ユニットコントローラ21aから運転指令を受信しており、第一中継コントローラ31aから運転可能情報を受信しており、第二中継ユニット3b自身も運転可能な場合とするため、ステップ144に進む。ステップ144では、運転指令情報、運転状態情報の更新を行い、ステップ145に進む。ここでは第二中継コントローラ31bの運転指令情報、運転状態情報を運転とする。
 ステップ145では、第二中継ユニット3bにおける水回路の弁等を動作させ、ポンプを起動させる。その後、ステップ146に進む。ステップ146では第二中継ユニット3bにおける冷媒回路の弁等を動作させ、ステップ147に進む。
 ステップ147では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ148に進み、行わない場合はステップ153に進む。この場合は変化しないものとしてステップ153に進む。ステップ153では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ154に進む。ステップ154では新たに通信を送信する処理を行う。ここでは第二中継ユニット3bの運転指令情報、運転状態情報が停止から運転に変化しているので、運転情報を、伝送線8を介して第一中継コントローラ31aに送信する。
 次に第一中継コントローラ31aの動作について説明する。第一中継コントローラ31aはステップ120からステップ132の処理を実施している。まず、ステップ121では、新たに受信した通信の解析処理を行う。ここで受信する通信は、熱源ユニットコントローラ11と接続されている伝送線7を介する熱源ユニットコントローラ11からの運転可能/不可能情報、熱源ユニットコントローラ11の運転/停止状態情報、第二中継コントローラ31bと接続されている伝送線8を介する第二中継コントローラ31bからの運転/停止指令情報である。
 解析処理実施後、ステップ122では、熱源ユニットコントローラ11からの運転可能/不可能情報と、第一中継コントローラ31a自身の電源状態や温度、圧力センサ入力値等から、第一中継ユニット3aの運転可否を判断し、ステップ123に進む。
 ステップ123では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ124に進み、行わない場合はステップ126に進む。この場合は第二中継コントローラ31bから運転指令を受信しており、熱源ユニットコントローラ11から運転可能情報を受信しており、第一中継ユニット3a自身も運転可能な場合とするため、ステップ124に進む。ステップ124では運転指令情報、運転状態情報の更新を行い、ステップ125に進む。ここでは第一中継コントローラ31aの運転指令情報、運転状態情報を運転とする。
 ステップ125では、第1中継ユニット3aにおける冷媒回路の弁等を動作させ、ステップ126に進む。ステップ126では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ127に進み、行わない場合はステップ131に進む。この場合は変化しないのでステップ131に進む。ステップ131では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ132に進む。ステップ132では新たに通信を送信する処理を行う。ここでは第一中継ユニット3aの運転指令情報、運転状態情報が停止から運転に変化しているので、運転情報を、伝送線7を介して熱源ユニットコントローラ11に送信する。
 次に熱源ユニットコントローラ11の動作について説明する。熱源ユニットコントローラ11はステップ100からステップ113の処理を実施している。まず、ステップ101では、新たに受信した通信の解析処理を行う。ここで受信する通信は、第一中継コントローラ31aと接続されている伝送線7を介する第二中継コントローラ31bからの運転/停止指令情報である。
 解析処理実施後、ステップ102では熱源ユニットコントローラ11自身の電源状態や温度、圧力センサ入力値等から、熱源ユニット1の運転可否を判断し、ステップ103に進む。
 ステップ103では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ104に進み、行わない場合はステップ107に進む。この場合は第一中継コントローラ31aから運転指令を受信しており、熱源ユニット1自身も運転可能な場合とするため、ステップ104に進む。ステップ104では運転指令情報、運転状態情報の更新を行い、ステップ105に進む。ここでは熱源ユニットコントローラ11の運転指令情報、運転状態情報を運転とする。
 ステップ105では、熱源ユニット1における冷媒回路の弁等を動作させ、ステップ106に進む。ステップ106では、熱源ユニット1における圧縮機を起動し、ステップ107に進む。ステップ107では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ108に進み、行わない場合はステップ112に進む。この場合は変化しないのでステップ112に進む。ステップ112では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ113に進む。ステップ113では新たに通信を送信する処理を行う。
(2)圧縮機停止時の通信
 次に、冷凍空調装置の圧縮機停止時の通信内容について説明する。室内ユニットのうちの室内ユニット2aのみが運転している状態から、リモートコントローラ22aが操作され、運転を停止する場合の通信について説明する。まず、操作者がリモートコントローラ22aを操作し、運転停止の操作を行う。リモートコントローラ22aは停止情報を、伝送線9aを介して室内ユニットコントローラ21aに送信し、表示を停止表示に変更する。
 室内ユニットコントローラ21aは、ステップ161にて、新たに受信した通信の解析処理を行う。解析処理実施後、ステップ162では室内ユニット2aの運転可否を判断し、ステップ163に進む。
 ステップ163では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ164に進み、行わない場合はステップ166に進む。この場合はステップ166に進む。ステップ166では、運転から停止への変化を行うかどうかを判定し、変更を行う場合はステップ167に進み、行わない場合はステップ171に進む。この場合はステップ167に進む。
 ステップ167では運転指令情報の更新を行い、ステップ168に進む。ここでは室内ユニットコントローラ21aの運転指令状態を停止とする。ステップ168では、第二中継コントローラ31bの運転状態が停止かどうかを判定し、停止の場合はステップ169に進み、停止でない場合はステップ171に進む。この場合は停止ではないのでステップ171に進む。ステップ171では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ172に進む。ステップ172では新たに通信を送信する処理を行う。ここでは室内ユニット2aの運転指令情報が運転から停止に変化しているので、運転情報を、伝送線10を介して第二中継コントローラ31bに送信する。
 室内ユニットコントローラ21aは、運転指令情報は停止であるが運転状態情報は運転のままであるので、運転から停止への変化中の状態のまま、第二中継コントローラ31bの運転状態が停止になるまでこの処理を繰り返す。
 次に第二中継コントローラ31bの動作について説明する。第二中継コントローラ31bは、ステップ141では新たに受信した通信の解析処理を行う。解析処理実施後、ステップ142では第二中継ユニット3bの運転可否を判断し、ステップ143に進む。ステップ143では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ144に進み、行わない場合はステップ147に進む。この場合はステップ147に進む。
 ステップ147では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ148に進み、行わない場合はステップ153に進む。この場合はステップ148に進む。この時、もし他の室内ユニット(この例では2b)が運転している状態であった場合には、室内ユニット2aが停止となっても第二中継コントローラ3bの運転情報は停止とはならないため、運転から停止への変化は行わない。
 ステップ148では運転指令情報の更新を行い、ステップ149に進む。ここでは第二中継コントローラ31bの運転指令情報を停止とする。ステップ149では、第一中継コントローラ31aの運転状態が停止かどうかを判定し、停止の場合はステップ150に進み、停止でない場合はステップ153に進む。この場合は停止ではないのでステップ153に進む。ステップ153では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ154に進む。ステップ154では新たに通信を送信する処理を行う。ここでは第二中継ユニット3bの運転指令情報が運転から停止に変化しているので、運転情報を、伝送線8を介して第一中継コントローラ31aに送信する。第二中継コントローラ31bは、運転指令情報は停止であるが運転状態情報は運転のままであるので、運転から停止への変化状態のまま、第一中継コントローラ31aの運転状態が停止になるまでこの処理を繰り返す。
 次に第一中継コントローラ31aの動作について説明する。第一中継コントローラ31aはステップ121では、新たに受信した通信の解析処理を行う。解析処理実施後、ステップ122では第一中継ユニット3aの運転可否を判断し、ステップ123に進む。ステップ123では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ124に進み、行わない場合はステップ126に進む。この場合はステップ126に進む。
 ステップ126では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ127に進み、行わない場合はステップ131に進む。この場合はステップ127に進む。この時、もし他の第二中継コントローラ(この例では31c)が運転状態であった場合には、第二中継コントローラ31bが停止となっても第一中継コントローラ31aの運転情報は停止とはならないため、運転から停止への変化は行わない。
 ステップ127では運転指令情報の更新を行い、ステップ128に進む。ここでは第一中継コントローラ31aの運転指令情報を停止とする。ステップ128では、熱源ユニットコントローラ11の運転状態が停止かどうかを判定し、停止の場合はステップ129に進み、停止でない場合はステップ131に進む。この場合は停止ではないのでステップ131に進む。ステップ131では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ132に進む。ステップ132では新たに通信を送信する処理を行う。ここでは第一中継ユニット3aの運転指令情報が運転から停止に変化しているので、運転情報を、伝送線7を介して熱源ユニットコントローラ11に送信する。第一中継コントローラ31aは、運転指令情報は停止であるが運転状態情報は運転のままであるので、運転から停止への変化状態のまま、熱源ユニットコントローラ11の運転状態が停止になるまでこの処理を繰り返す。
 次に、熱源コントローラ11の動作について説明する。熱源コントローラ11はステップ101では、新たに受信した通信の解析処理を行う。解析処理実施後、ステップ102では熱源ユニット1の運転可否を判断し、ステップ103に進む。ステップ103では、停止から運転への変化を行うかどうかを判定し、変化を行う場合はステップ104に進み、行わない場合はステップ107に進む。この場合はステップ107に進む。
 ステップ107では、運転から停止への変化を行うかどうかを判定し、変化を行う場合はステップ108に進み、行わない場合はステップ112に進む。この場合はステップ108に進む。ステップ108では運転指令情報の更新を行い、ステップ109に進む。ここでは熱源ユニットコントローラ11の運転指令情報を停止とする。ステップ109では、熱源ユニット1における圧縮機を停止させ、ステップ110に進む。ステップ110では、熱源ユニット1における冷媒回路の弁等を動作させ、ステップ111に進む。ステップ111では、運転状態情報の更新を行い、ステップ112に進む。ここでは熱源ユニットコントローラ11の運転状態情報を停止とする。ステップ112では、センサ入力の取込、アクチュエータ制御等の通常の処理を行い、ステップ113に進む。ステップ113では新たに通信を送信する処理を行う。ここでは熱源ユニット1の運転指令情報、運転状態情報が運転から停止に変化しているので、運転情報を、伝送線7を介して第一中継コントローラ31aに送信する。
 この通信(送信)を第一中継コントローラ31aが受信することにより、第一中継コントローラ31aはステップ128にて熱源ユニットコントローラ11が停止であると判断し、ステップ129に進む。ステップ129では第1中継ユニット3aにおける冷媒回路の弁等を動作させ、ステップ130に進む。ステップ130では、運転状態情報の更新を行い、ステップ131に進む。ここでは第一中継コントローラ31aの運転状態情報を停止とする。その後、ステップ132にて第一中継コントローラ31aの運転状態情報を第二中継コントローラ31bに送信する。
 この通信(送信)を第二中継コントローラ31bが受信することにより、第二中継コントローラ31bはステップ149にて第一中継コントローラ31aが停止であると判断し、ステップ150に進む。ステップ150では第二中継ユニット3bにおける冷媒回路の弁等を動作させ、ステップ151に進む。ステップ151では、第二中継ユニット3bにおける水回路のポンプ停止を行い、水回路の弁等を動作させ、ステップ152に進む。ステップ152では運転状態情報の更新を行い、ステップ153に進む。ここでは第二中継コントローラ31bの運転状態情報を停止とする。その後、ステップ154にて第二中継コントローラ31bの運転状態情報を室内ユニットコントローラ21aに送信する。
 この通信(送信)を室内ユニットコントローラ21aが受信することにより、室内ユニットコントローラ21aはステップ168にて第二中継コントローラ31bが停止であると判断し、ステップ169に進む。ステップ169では室内ユニット21aにおける水回路の弁等を動作させ、ステップ170に進む。ステップ170では運転状態情報の更新を行い、ステップ171に進む。ここでは室内ユニットコントローラ21aの運転状態情報を停止とする。その後、ステップ172にて室内ユニットコントローラ21aの運転状態情報をリモートコントローラ22aに送信する。
 圧縮機の起動中にポンプが動いていない場合には、水が流動していないために水温が急激に変化し、それに応じて圧縮機の高圧圧力が急激に上昇又は低圧が急激に低下し、異常停止に至る可能性がある。しかし、本発明の冷凍空調装置の情報伝達方法においては、一時的なノイズやトラフィック増加による通信の失敗が発生した場合にも、圧縮機の起動前には必ずポンプが起動しており、必ず圧縮機の停止後にポンプを停止させることが可能となる。このため、情報伝達の安定性を確保することができ、ハードウェア的なインターロックを不要とすることができる。また、各ユニット間の通信を異なる媒体・手段(ハードウェア及びソフトウェアを含む)で行うことにより、製品構成の自由度を上げることもできる。さらに、それぞれに最適な媒体・手段を使用することで、品質の向上、コストの低減を実現でき、アドレス配置の自由度を向上させ、通信トラフィックを削減することができる。
実施の形態2.
 図4はこの発明の実施の形態2における冷凍空調装置の情報伝達装置の構成を示している。図4に示した冷凍空調装置は、熱源メインユニット(室外メインユニット)1a、熱源サブユニット(室外サブユニット)1b,1c、第一中継ユニット3a、第二中継ユニット3b,3cが、冷媒配管4a,4b,4c,4d,4eで接続されてひとつの冷媒回路系を構成している。なお、熱源サブユニットがない構成としてもよい。
 また、第二中継ユニット3bと複数の室内ユニット(利用側ユニット)2a,2bが水配管5a,5bで接続されて1つの水回路系を構成し、第二中継ユニット3cと複数の室内ユニット(利用側ユニット)2c,2dが水配管5c,5dで接続されて1つの水回路系を構成している。
 熱源ユニット1a,1b,1cは圧縮機、四方弁等の弁回路および室外側熱交換器などを備え、システムとして必要な熱を冷媒に乗せて供給する。
第一中継ユニット3aは気液分離器や弁回路などを備え、搬送された冷媒を高圧ガス、中圧液、低圧ガスの3つに分離し、冷房用、暖房用の熱源として供給する。
 第二中継ユニット3b,3cは冷媒-水熱交換器、切換弁、水ポンプなどを備え、冷房用冷媒、暖房用冷媒から必要な熱を水に伝達し、水回路に必要な熱量を蓄えた水を循環する。
 室内ユニット2a~2dは室内側熱交換器を備え、循環された水から熱量を室内空気に熱交換伝達する。
 熱源ユニット1a,1b,1cは、熱源ユニットコントローラ11a,11b,11cでそれぞれ制御され、第一中継ユニット3aは第一中継コントローラ31aで制御される。第二中継ユニット3b,3cは第二中継コントローラ31b,31cでそれぞれ制御される。室内ユニット2a~2dは室内ユニットコントローラ21a~21dでそれぞれ制御される。熱源ユニットコントローラ11a,11b,11cと第一中継コントローラ31aは、伝送線7で相互に情報伝達可能に直接接続されている。第一中継コントローラ31aと第二中継コントローラ31b,31cは伝送線8で相互に情報伝達可能に直接接続されている。第二中継コントローラ31b,31cと室内ユニットコントローラ21a~21dは伝送線10で相互に情報伝達可能に直接接続されている。また、室内ユニットコントローラ21a~21dはそれぞれリモートコントローラ22a~22dと、伝送線9a~9dで相互に情報伝達可能に直接接続されている。
 図5は、図4に示す冷凍空調装置のシステムが複数存在する場合の情報伝達システム(通信システム)を示した図である。ある冷媒系統の熱源ユニットメインコントローラ11aと、別の冷媒系統の熱源ユニットメインコントローラ11dが伝送線15で接続されており、伝送線15にはさらに冷凍空調装置を集中管理するための集中コントローラ51が接続されている。 
 なお、それぞれの冷媒系統(冷媒配管,水配管で接続されたユニット)を一点鎖線の枠で示している。
 従来の冷凍空調装置では、伝送線7,8,10,12,13,14は全て同じ手段・媒体で構成される場合が一般的であり、さらに伝送線9a~9hもこれらと同じ手段・媒体で接続される場合もあった。
 このように全ての伝送線を同じ手段・媒体とする構成の利点としては、それぞれのコントローラが1つの送受信回路のみを装備すれば良いことや、配線工事が容易であることがある。しかし、近年ではシステムの大規模化や機能の高度化により、このようなシステムにおいて、通信トラフィックの増加や、アドレス空間の占有の問題が発生している。通信トラフィックに関しては、同一バス上に多くのコントローラが存在しているため、通信トラフィックがコントローラ台数に比例して増大する。また、同一バス上で通信を行うにはそれぞれのコントローラが異なる自己アドレスを保有する必要がある。例えば図5のシステムの場合には29個のアドレスが必要となるが、実際の冷凍空調装置では、一つの冷媒系統の室内機台数はもっと多いことが一般的である。そのため、実際に集中コントローラにて運転/停止や設定変更等を行う管理対象は室内機であるが、熱源ユニットや中継ユニットの個数が多いためにアドレス空間を占有し、接続台数が制限されるという問題が発生する。
 また、全ての伝送線を同じ手段・媒体とする伝送方式では、全てのコントローラが相互に通信可能である反面、複数の異なるコントローラから異なる指令を受けることも可能となるため、制御の競合やアンマッチを発生させないための通信プロトコルを構築する必要がある。
 図6は、図5と同様に図4に示す冷凍空調装置が複数存在する場合の情報伝達システム(通信システム)を示した図であるが、ここでは、伝送線8,13を他の伝送線とは異なる手段・媒体(ソフトウェア、ハードウェアを含む)で構成した場合の例を示したものである。このように構成した場合、熱源ユニット側の通信バスと、室内ユニット側の通信バスを分離することが可能となる。これによって、それぞれの通信バスの通信トラフィックを大きく削減することができる。さらに占有するアドレス空間も、この例では、熱源ユニット側が9個、室内ユニット側が20個となる。ここで、熱源ユニット側と室内ユニット側で同じアドレス設定を行っても、熱源ユニット側では第一中継コントローラ31aとの間で、室内ユニット側では第二中継コントローラ31b,31cとの間でそれぞれ通信を行うため、システムとしては問題なく識別可能である。よって、設定可能なアドレスが増加するのと等価となり、コントローラ台数の増加に対応することができ、アドレス配置の自由度を上げることができる。また、通信バスを分離することにより、通信可能なコントローラを限定することによって、制御アルゴリズムと通信プロトコルを簡略化できるという効果もある。
 なお、図6では熱源ユニットメインコントローラ11a,11dに、複数の冷媒系統を接続する伝送線15を配し、それに集中コントローラ51を接続しているが、第一中継コントローラ31a,31d、または第二中継コントローラ31b,31c,31e,31f、または室内ユニットコントローラ21a~21hに複数の冷媒系統を接続する伝送線と集中コントローラを接続しても良い。室内ユニットコントローラに接続する場合は、屋外の熱源ユニットまで伝送線を接続する必要がないため、複数の冷媒系統を接続する伝送線長が短くなるという利点がある。また、第一中継コントローラまたは第二中継コントローラに接続する場合も同じ利点があると同時に、室内ユニットや熱源ユニットと異なる手段・媒体の伝送線に接続することによって、さらにアドレス配置の自由度を向上させ、通信トラフィックを削減することができるという利点がある。
 図6については、第一中継コントローラと第二中継コントローラの間を他とは異なる通信媒体を使用するように記載した。しかし、第二中継コントローラが、第一中継コントローラと通信する場合と室内機コントローラと通信する場合に、異なる通信手段や媒体(ソフトウェア、ハードウェアを含む)を採用することにより、熱源ユニットコントローラ-第一中継コントローラ-第二中継コントローラと、第二中継コントローラ-室内ユニットコントローラ、の二つの異なる伝送媒体に分離する、ということも可能である。これはいわゆるゲートウェイ方式であり、例えば第二中継コントローラのみが伝送の読み替えを実施すれば、上記2つの伝送媒体が物理的には同じ方式であっても、システムとしては二つに分離できるので構成が簡便である。
 また、このように各コントローラが固有のアドレスを持ち、専用の通信手段で他機器との通信をすることでシステムを構築するので、コントローラは専用品となるが、各サブシステムは、コントローラのみ専用品とし、構造部分は汎用品を採用することも可能である。特に、室内機は空気-水熱交換器であり基本的に熱交換器と送風機の組合せになるので設計上の制約は少なく、利用者の選択範囲を広げる意味でコントローラ部と構造部を分離可能としておくことは有効である。
 上記各実施の形態で説明した情報伝達システムは、熱源側に冷媒回路を備え、利用側に前記冷媒回路と熱交換を行う水回路を備えた冷凍装置や空調装置に利用できる。

Claims (6)

  1.  少なくとも1台の冷凍空調装置の熱源ユニットと、1台の第一中継ユニットと、少なくとも1台の第二中継ユニットとが冷媒配管で接続され、前記第二中継ユニットと少なくとも1台の室内ユニットが水配管で接続された冷凍空調装置の情報伝達システムであって、
     通信は伝送線を介して、前記熱源ユニットと前記第一中継ユニット間、前記第一中継ユニットと前記第二中継ユニット間、前記第二中継ユニットと前記室内ユニット間のみでそれぞれ行うことを特徴とする、冷凍空調装置の情報伝達システム。
  2.  冷凍空調装置の起動/停止時に、各ユニット間の動作順序を通信プロトコルにより規定していることを特徴とする請求項1に記載の冷凍空調装置の情報伝達システム。
  3.  冷凍空調装置の起動時は、前記室内ユニット、前記第二中継ユニット、前記第一中継ユニット、前記熱源ユニットの順に起動動作が行われ、冷凍空調装置の停止時は、熱源ユニット、前記第一中継ユニット、前記第二中継ユニット、前記室内ユニットの順に停止動作が行われるようにしていることを特徴とする請求項2に記載の冷凍空調装置の情報伝達システム。
  4.  少なくとも前記第一中継ユニットと前記第二中継ユニットとの間における通信の手段又は媒体を、他のユニット間における通信の手段又は媒体と相違させていることを特徴とする請求項1~3のいずれか1項に記載の冷凍空調装置の情報伝達システム。
  5.  前記第二中継ユニットが、前記第一中継ユニットと通信する場合と前記室内ユニットと通信する場合とで、異なる通信手段又は媒体により通信を行うことを特徴とする請求項1~3のいずれか1項に記載の冷凍空調装置の情報伝達システム。
  6.  請求項1~5のいずれかに記載の冷凍空調装置を複数備えた冷凍空調装置の情報伝達システムであって、
     各冷凍空調装置の各熱源ユニットのコントローラ、各第一中継ユニットのコントローラ、各第二中継ユニットのコントローラ、又は各室内ユニットのコントローラをそれぞれ接続して集中管理する集中コントローラを備えたことを特徴とする冷凍空調装置の情報伝達システム。
PCT/JP2009/056117 2009-03-26 2009-03-26 冷凍空調装置の情報伝達システム WO2010109627A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011505750A JP5258962B2 (ja) 2009-03-26 2009-03-26 冷凍空調装置の情報伝達システム
US13/254,390 US9121624B2 (en) 2009-03-26 2009-03-26 Information transfer system for refrigeration air-conditioning apparatus
CN200980158369.2A CN102365501B (zh) 2009-03-26 2009-03-26 制冷空调装置的信息传递系统
PCT/JP2009/056117 WO2010109627A1 (ja) 2009-03-26 2009-03-26 冷凍空調装置の情報伝達システム
EP09842241.3A EP2413057B1 (en) 2009-03-26 2009-03-26 Refrigerating/air-conditioning device comprising an information conveyance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056117 WO2010109627A1 (ja) 2009-03-26 2009-03-26 冷凍空調装置の情報伝達システム

Publications (1)

Publication Number Publication Date
WO2010109627A1 true WO2010109627A1 (ja) 2010-09-30

Family

ID=42780336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056117 WO2010109627A1 (ja) 2009-03-26 2009-03-26 冷凍空調装置の情報伝達システム

Country Status (5)

Country Link
US (1) US9121624B2 (ja)
EP (1) EP2413057B1 (ja)
JP (1) JP5258962B2 (ja)
CN (1) CN102365501B (ja)
WO (1) WO2010109627A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682686A1 (en) * 2011-03-01 2014-01-08 Mitsubishi Electric Corporation Refrigeration and air-conditioning device
JP2015127627A (ja) * 2013-12-30 2015-07-09 ダイキン工業株式会社 空調システム
EP2665975A4 (en) * 2011-01-21 2018-07-11 LG Electronics Inc. Air conditioner and communication apparatus and method thereof
WO2019038827A1 (ja) * 2017-08-22 2019-02-28 三菱電機株式会社 空気調和システム、ハイドロユニットおよび伝送中継器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456861B (zh) * 2013-09-22 2017-02-01 深圳市深蓝电子股份有限公司 一种机房空调轮值系统及控制方法
JP6029775B2 (ja) * 2013-12-18 2016-11-24 三菱電機株式会社 空気調和装置およびリモコン給電方法
CN108375163B (zh) * 2016-11-10 2021-08-06 大金工业株式会社 空调系统及其控制方法
EP3875863B1 (en) * 2018-10-31 2024-02-07 Mitsubishi Electric Corporation Air conditioning system and method for setting control subject of air conditioning system
US20220333793A1 (en) * 2019-11-12 2022-10-20 Mitsubishi Electric Corporation OUTDOOR UNIT, AIR-CONDITIONING SYSTEM, AND RECORDING MEDIUM (as amended)
CN112797598B (zh) * 2020-12-30 2022-07-26 宁波奥克斯电气股份有限公司 多联式空调的室内机控制方法、装置及空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) * 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH07127894A (ja) 1993-11-05 1995-05-16 Noritz Corp 空気調和機の運転制御方法
JP2003322388A (ja) * 2002-05-02 2003-11-14 Toshiba Kyaria Kk 空気調和機
JP2009052769A (ja) * 2007-08-24 2009-03-12 Mitsubishi Electric Corp 空調システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215867B (en) * 1988-02-09 1992-09-02 Toshiba Kk Air conditioner system with control for optimum refrigerant temperature
JP3635665B2 (ja) * 1992-05-28 2005-04-06 三菱電機株式会社 空気調和装置
JP4274250B2 (ja) * 1996-03-28 2009-06-03 三菱電機株式会社 冷凍装置
JPH11344240A (ja) * 1998-06-02 1999-12-14 Hitachi Ltd 空気調和熱源装置
JP2000028208A (ja) * 1998-07-09 2000-01-28 Komatsu Ltd 冷凍装置の制御装置
EP1548377B1 (en) * 2003-12-24 2013-10-23 Sanyo Electric Co., Ltd. Refrigerating machine having refrigerant/water heat exchanger
JP4599910B2 (ja) * 2004-07-01 2010-12-15 ダイキン工業株式会社 給湯装置
KR100640857B1 (ko) * 2004-12-14 2006-11-02 엘지전자 주식회사 멀티 공기조화기의 제어방법
JP2007046810A (ja) * 2005-08-08 2007-02-22 Sanden Corp ブライン式冷却システム
CN101278156B (zh) * 2006-09-20 2011-04-20 三菱电机株式会社 空气调节系统
DE112007002526T5 (de) * 2006-10-23 2009-09-03 Thermo King Corp., Minneapolis Temperatursteuersystem mit Wärmetauschermodulen mit indirekter Expansionskühlung und innenliegender elektrischer Beheizung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) * 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH07127894A (ja) 1993-11-05 1995-05-16 Noritz Corp 空気調和機の運転制御方法
JP2003322388A (ja) * 2002-05-02 2003-11-14 Toshiba Kyaria Kk 空気調和機
JP2009052769A (ja) * 2007-08-24 2009-03-12 Mitsubishi Electric Corp 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413057A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665975A4 (en) * 2011-01-21 2018-07-11 LG Electronics Inc. Air conditioner and communication apparatus and method thereof
EP2682686A1 (en) * 2011-03-01 2014-01-08 Mitsubishi Electric Corporation Refrigeration and air-conditioning device
EP2682686A4 (en) * 2011-03-01 2014-08-13 Mitsubishi Electric Corp REFRIGERATION AND AIR CONDITIONING DEVICE
JP2015127627A (ja) * 2013-12-30 2015-07-09 ダイキン工業株式会社 空調システム
WO2019038827A1 (ja) * 2017-08-22 2019-02-28 三菱電機株式会社 空気調和システム、ハイドロユニットおよび伝送中継器

Also Published As

Publication number Publication date
EP2413057A4 (en) 2012-12-26
US20110308263A1 (en) 2011-12-22
EP2413057B1 (en) 2017-09-13
EP2413057A1 (en) 2012-02-01
CN102365501B (zh) 2014-01-22
CN102365501A (zh) 2012-02-29
US9121624B2 (en) 2015-09-01
JP5258962B2 (ja) 2013-08-07
JPWO2010109627A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5258962B2 (ja) 冷凍空調装置の情報伝達システム
JP5030640B2 (ja) 空気調和システム
WO2017138141A1 (ja) 空調制御システムおよびリモコン装置
EP3112766B1 (en) Controller of heat source equipment
KR20090082727A (ko) 설비기기 제어시스템 및 그 비상제어방법
JP4214198B2 (ja) 空気調和機
KR101844860B1 (ko) 공기조화기 및 그 제어방법
JP2013185739A (ja) 空気調和機
EP3327364B1 (en) Transmission relay and air-conditioning apparatus using same
JP4333995B2 (ja) 空気調和機
JP2001041534A (ja) 空気調和システム
CN113692518B (zh) 空调装置
JP4425655B2 (ja) 空気調和機の室外ユニットの制御方法および装置
JP2012013329A (ja) 空気調和装置
JP3984945B2 (ja) 空気調和装置システム
JPH10122629A (ja) 空気調和機
JP3754168B2 (ja) 空気調和システム
EP3952226A1 (en) Network system
KR20100026347A (ko) 공기조화기 및 그 데이터 갱신방법
EP3875863B1 (en) Air conditioning system and method for setting control subject of air conditioning system
JP7134352B2 (ja) リモートコントローラおよび空気調和システム
KR20100032201A (ko) 공기조화기 및 그 동작방법
KR102036114B1 (ko) 공기조화기 시스템
KR20120098196A (ko) 공기조화기 및 그 제어방법
EP3139294B1 (en) Device authentication apparatus, air conditioning system, and device authentication method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158369.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505750

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009842241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009842241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13254390

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE