WO2010107061A1 - 光伝送装置、運用波長数制限方法及びプログラム - Google Patents

光伝送装置、運用波長数制限方法及びプログラム Download PDF

Info

Publication number
WO2010107061A1
WO2010107061A1 PCT/JP2010/054553 JP2010054553W WO2010107061A1 WO 2010107061 A1 WO2010107061 A1 WO 2010107061A1 JP 2010054553 W JP2010054553 W JP 2010054553W WO 2010107061 A1 WO2010107061 A1 WO 2010107061A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelengths
wavelength
upper limit
optical
operating
Prior art date
Application number
PCT/JP2010/054553
Other languages
English (en)
French (fr)
Inventor
敏幸 深澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011504866A priority Critical patent/JP5299505B2/ja
Priority to US13/256,851 priority patent/US8676057B2/en
Publication of WO2010107061A1 publication Critical patent/WO2010107061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present invention relates to an optical transmission apparatus, an operating wavelength number limiting method, and a program that are used in an optical communication system that performs communication by wavelength division multiplexing.
  • OADM Optical Add Drop Multiplexer
  • WDM wavelength division multiplexing
  • This OADM device is used in, for example, a bidirectional ring transmission line and has a function of branching / inserting an optical signal in the transmission line as necessary. For this reason, in the OADM apparatus, the path type setting is set to either “through” (hereinafter referred to as THR) or ADD / DROP for each optical wavelength to be operated.
  • THR through
  • ADD / DROP ADD / DROP
  • the number of wavelengths that can be used simultaneously on a certain incoming line is limited for all edge nodes included in the wavelength multiplexing network by using a network management device or a relay device, and at the same time on a certain outgoing line.
  • a network management device or a relay device There is a type that limits the wavelength group that can be used so that the optical fiber does not burn out (see, for example, Patent Document 1).
  • an OADM device has no upper limit for the number of operating wavelengths to be set and operated, and can be set at any wavelength. Therefore, when viewed as the operation of the entire wavelength division multiplexing network in which the OADM device is arranged, the upper limit value of the operating wavelength as the hardware performance of the arranged OADM device exceeds the upper limit value of the preferable operating wavelength. There is a possibility that.
  • the number of wavelengths to be wavelength-multiplexed is designed as a wavelength multiplexing network. The condition will be exceeded. In this case, there is a risk of deterioration in transmission characteristics.
  • Patent Document 1 tries to avoid burning of the optical fiber by limiting the number of wavelengths as the whole wavelength multiplexing network. Therefore, no consideration has been given to optimizing the upper limit value of the number of operating wavelengths in accordance with the individual network environment connected to each OADM device.
  • Patent Document 1 requires a dedicated separate device such as a network management device and a relay device in addition to each OADM device, and the device cost is further required.
  • Patent Document 2 limits the number of lines that the gateway exchange allocates to the regulated passing call among the lines between traders. For this reason, it has not been considered to optimize the upper limit value of the number of operating wavelengths while allowing the operation of signals such as the operating wavelength in optical communication and the allocation of a line according to the wavelength to be freely changed.
  • An object of the present invention is to provide an optical transmission apparatus, an operating wavelength number limiting method, and a program that can appropriately limit the number of operating wavelengths according to the state of each network without incurring additional costs. To do.
  • an optical transmission apparatus of the present invention is connected to a transmission line of a network that performs optical communication by wavelength division multiplexing, and sets an optical signal of the transmission line in association with the wavelength of the optical signal.
  • An optical transmission device that transmits according to a specified path type, An upper limit storage unit that stores an upper limit of the number of operating wavelengths that is the number of wavelengths for which the path type is set; A receiving unit that receives a change request for requesting a change in the number of operating wavelengths; A license determination unit for determining the number of operating wavelengths, When the number of wavelengths when the operating wavelength number is changed in response to the received change request is less than or equal to the stored upper limit value, the license determining unit sets the changed wavelength number as a new operating wavelength number. To do.
  • the operating wavelength number limiting method of the present invention is connected to a transmission line of a network that performs optical communication by wavelength division multiplexing, and changes the optical signal of the transmission line to the wavelength of the optical signal.
  • An optical wavelength path selector that manages the path type of the wavelength for which the path type is set, and manages the power level of the optical signal of the wavelength for which the path type is set.
  • a method for limiting the number of operating wavelengths in an optical transmission device having an optical power level monitoring unit A process of accepting a change request for requesting a change in the number of operating wavelengths, which is the number of wavelengths for which the path type is set; When the number of wavelengths when the number of operating wavelengths is changed in response to the received change request is less than or equal to a predetermined upper limit value, a determination process for setting the changed number of wavelengths as a new number of operating wavelengths, Have.
  • the program of the present invention is connected to a transmission line of a network that performs optical communication by wavelength division multiplexing, and sets the optical signal of the transmission line in association with the wavelength of the optical signal.
  • An optical wavelength path selector that manages the path type of the wavelength for which the path type is set, and the optical power level monitor that manages the power level of the optical signal of the wavelength for which the path type is set
  • An optical transmission device having a A function of accepting a change request for requesting a change in the number of operating wavelengths, which is the number of wavelengths for which the path type is set; When the number of wavelengths when the number of operating wavelengths is changed in response to the received change request is less than or equal to a predetermined upper limit, a determination function that sets the changed number of wavelengths as a new number of operating wavelengths, make it happen.
  • the present invention is configured as described above, it is possible to appropriately limit the number of operating wavelengths according to the state of each network without incurring additional costs.
  • FIG. 1 is a block diagram showing a configuration of a first embodiment of a wavelength number setting system including an OADM device to which an optical transmission apparatus of the present invention is applied.
  • FIG. 3 is a flowchart for explaining the operation of the OADM device shown in FIG. 1.
  • the main feature of this embodiment is that the path type associated with the wavelength of the optical signal used in the OADM device is the number of wavelengths set to either thru (THR) or ADD / DROP.
  • the maximum value of the number of wavelengths is limited by using a license function.
  • THR is a setting for allowing an optical signal to pass through the OADM device as it is
  • ADD / DROP is a setting for once terminating the optical signal in the OADM device.
  • the license function restricts the function operation of the OADM device, and enables the use of the restricted function when the user inputs a previously issued license key (license information) from a terminal or the like. It is.
  • the number of operating wavelengths can be limited in this way, it becomes possible to set the upper limit value of the number of operating wavelengths for each OADM device, and the flexibility in setting the OADM device increases. Furthermore, a change in the upper limit value of the number of operating wavelengths may be provided as an extended function.
  • the number of operating wavelengths is equal to or greater than the upper limit of the number of operating wavelengths set by the license function. If this happens, an error will occur and a restriction will be imposed so that the change cannot be made.
  • the following two commands that manage wavelength path type settings are targeted for restriction. (1) If the number of wavelengths for which the path type of the optical power level monitoring unit is set exceeds the upper limit of the number of operating wavelengths set by the license function, an error message is returned so that the change cannot be made. To. (2) If the number of wavelengths for which the path type of the path selection device in the optical wavelength path selection unit is set is greater than the upper limit of the number of operating wavelengths set by the license function, an error message is returned and changed. Can not be performed.
  • FIG. 1 is a block diagram showing a configuration of a first embodiment of a wavelength number setting system including an OADM device to which an optical transmission apparatus of the present invention is applied.
  • the wavelength number setting system of this embodiment includes an OADM device 100 and a command transmission terminal 200 as shown in FIG.
  • the command transmission terminal 200 is connected to the OADM device 100 directly or via a network.
  • the command transmission terminal 200 receives an input of a request for adding a wavelength for setting a path type or a request for deleting a wavelength for which a path type is set from a user. Then, the command transmission terminal 200 is a change request for adding the path type setting to the wavelength or a change request for deleting the path type set to the wavelength, including the received request wavelength.
  • An operating wavelength number change command is transmitted to the OADM device 100.
  • the OADM device 100 includes a monitoring control unit 10, an optical wavelength path selection unit 20, and an optical power level monitoring unit 30.
  • the monitoring control unit 10 is a unit that manages information on the entire OADM device 100, and includes a CPU module 11, which is a reception unit, a license function unit 12, and an interface unit 13.
  • the CPU module 11 receives the operating wavelength number change command transmitted from the command transmission terminal 200, and calculates the total value of the number of wavelengths included in the received operating wavelength number change command and the operating wavelength number.
  • the calculated total value is referred to as the total number of operating wavelengths.
  • the license function unit 12 includes an upper limit storage unit 12-1, a license determination unit 12-2, and an upper limit setting unit 12-3.
  • the upper limit storage unit 12-1 stores in advance the upper limit value of the number of operating wavelengths set by the license function.
  • the license determination unit 12-2 compares the total number of operating wavelengths calculated by the CPU module 11 with the upper limit value of the operating wavelength number stored in the upper limit value storage unit 12-1. If the total number of operating wavelengths is larger than the upper limit value of the operating wavelengths as a result of the comparison, the license determining unit 12-2 transmits an execution failure error message to the command transmitting terminal 200 via the CPU module 11. On the other hand, if the total number of operating wavelengths is less than or equal to the upper limit of the number of operating wavelengths as a result of comparison, the license determining unit 12-2 sends setting information including the total number of operating wavelengths via the interface unit 13 Output to the route selection unit 20 and the optical power level monitoring unit.
  • the upper limit setting unit 12-3 will be described later.
  • the interface unit 13 mediates transmission / reception of information between the monitoring control unit 10, the optical wavelength path selection unit 20, and the optical power level monitoring unit 30.
  • the optical wavelength path selection unit 20 manages the path type of the wavelength for which the path type is set, and includes an interface unit 21 and a path selection device 22.
  • the interface unit 21 mediates transmission / reception of information between the optical wavelength path selection unit 20, the monitoring control unit 10 and the optical power level monitoring unit 30.
  • the route selection device 22 receives the setting information output from the monitoring control unit 10 via the interface unit 21. Then, the route selection device 22 sets a path type according to the received setting information.
  • the optical power level monitoring unit 30 manages the power level of an optical signal having a wavelength for which a path type is set, and includes an interface unit 31 and an optical power level monitoring monitor 32.
  • the interface unit 31 mediates transmission / reception of information between the optical power level monitoring unit 30, the monitoring control unit 10 and the optical wavelength path selection unit 20.
  • the optical power level monitoring monitor 32 receives the setting information output from the monitoring control unit 10 via the interface unit 31. Then, the optical power level monitoring monitor 32 monitors the transmission / reception power level of the optical signal having the wavelength for which the path type is set, according to the received setting information.
  • FIG. 2 is a flowchart for explaining the operation of the OADM apparatus 100 shown in FIG.
  • the user inputs to the command transmission terminal 200 a request for adding a wavelength for setting a path type or a request for deleting a wavelength for which a path type is set.
  • the command transmission terminal 200 that has received an input from the user transmits an operation wavelength number change command corresponding to the input request to the OADM device 100.
  • step S ⁇ b> 1 the CPU module 11 of the monitoring control unit 10 of the OADM device 100 receives the operating wavelength number change command transmitted from the command transmission terminal 200.
  • step S2 the CPU module 11 calculates the total number of operating wavelengths, which is the sum of the number of wavelengths included in the received operating wavelength number change command and the operating wavelength number.
  • step S3 the license determining unit 12-2 of the license function unit 12 determines the total number of operating wavelengths calculated by the CPU module 11 and the upper limit of the operating wavelength number stored in the upper limit value storage unit 12-1. Compare the value.
  • step S4 the license determination unit 12-2 sends an execution failure error message to the command via the CPU module 11. Transmit to terminal 200. That is, the number of operating wavelengths is not changed.
  • step S5 if the total number of operating wavelengths is equal to or less than the upper limit value of the number of operating wavelengths, in step S5, the license determining unit 12-2 passes the interface unit 13 through the optical wavelength path selecting unit 20 The setting information is output to the optical power level monitoring unit 30.
  • the path selection device 22 of the optical wavelength path selection unit 20 receives the setting information output from the monitoring control unit 10 via the interface unit 21.
  • the optical power level monitoring monitor 32 of the optical power level monitoring unit 30 receives the setting information output from the monitoring control unit 10 via the interface unit 31.
  • the optical wavelength path selection unit 20 sets the path type according to the received setting information. Further, the optical power level monitoring unit 30 monitors the power level of transmission / reception of an optical signal having a wavelength included in the received setting information. That is, the number of operating wavelengths is changed. [Specific Example 1] Next, the operation described above will be described using a specific example with reference to FIGS.
  • the number of operating wavelengths set in the OADM device 100 is 12, and the upper limit value of operating wavelengths stored in the upper limit storage unit 12-1 is 20. Suppose there is.
  • the user inputs to the command transmission terminal 200 a request for adding 10 wavelengths for setting the path type.
  • the command transmission terminal 200 that has received an input from the user includes an operation wavelength number change command that includes 10 wavelengths and requests to add and set a path type for the 10 wavelengths to the OADM device 100. Send.
  • step S ⁇ b> 1 the CPU module 11 of the monitoring control unit 10 of the OADM device 100 receives the operating wavelength number change command transmitted from the command transmission terminal 200.
  • step S2 the CPU module 11 calculates the total number of operating wavelengths, which is the sum of the number of wavelengths included in the received operating wavelength number change command and the operating wavelength number.
  • the number of wavelengths included in the received operation wavelength number change command is 10, and the number of operation wavelengths is 12. Therefore, the total number of operating wavelengths calculated by the CPU module 11 is 22.
  • the license determining unit 12-2 of the license function unit 12 determines the total number of operating wavelengths calculated by the CPU module 11 and the upper limit of the operating wavelength number stored in the upper limit value storage unit 12-1. Compare the value. Here, the total number of operating wavelengths is 22, and the upper limit of the number of operating wavelengths is 20. For this reason, the total number of operating wavelengths is larger than the upper limit of the number of operating wavelengths. Accordingly, in step S4, the license determination unit 12-2 transmits an execution failure error message to the command transmission terminal 200 via the CPU module 11. That is, the path type is not set for the 10 wavelengths for which the path type is newly set, and the number of operating wavelengths does not change from 12. [Specific Example 2] Next, as specific example 2, at a certain point during system operation, the number of operating wavelengths set in the OADM device 100 is 5, and the upper limit value of the operating wavelength number stored in the upper limit storage unit 12-1 is Consider the case of 20.
  • the user inputs to the command transmission terminal 200 a request for adding 10 wavelengths for setting the path type.
  • the command transmission terminal 200 that has received an input from the user includes an operation wavelength number change command that includes 10 wavelengths and requests to add and set a path type for the 10 wavelengths to the OADM device 100. Send.
  • step S ⁇ b> 1 the CPU module 11 of the monitoring control unit 10 of the OADM device 100 receives the operating wavelength number change command transmitted from the command transmission terminal 200.
  • step S2 the CPU module 11 calculates the total number of operating wavelengths, which is the sum of the number of wavelengths included in the received operating wavelength number change command and the operating wavelength number.
  • the number of wavelengths included in the received operating wavelength number change command is 10, and the operating wavelength number is 5. Therefore, the total number of operating wavelengths calculated by the CPU module 11 is 15.
  • step S3 the license determining unit 12-2 of the license function unit 12 determines the total number of operating wavelengths calculated by the CPU module 11 and the upper limit of the operating wavelength number stored in the upper limit value storage unit 12-1. Compare the value. Here, the total number of operating wavelengths is 15, and the upper limit of the number of operating wavelengths is 20. For this reason, the total number of operating wavelengths is equal to or less than the upper limit value of the number of operating wavelengths. Accordingly, in step S5, the license determination unit 12-2 outputs setting information including the total number of operating wavelengths to the optical wavelength path selection unit 20 and the optical power level monitoring unit 30 via the interface unit 13. That is, a path type is newly set for 5 wavelengths, and the number of operating wavelengths is 15.
  • the number of operating wavelengths can be changed for each apparatus, and the flexibility of apparatus setting can be increased.
  • Recent OADM devices have a function that allows remote setting of a path type that determines the path of an optical signal having a predetermined wavelength.
  • this embodiment by using this generally used remote setting function as it is, There is no need to newly install a separate program for setting input, and the number of operating wavelengths can be limited by a simple configuration and by remote control.
  • the above-described number of operating wavelengths is limited by using a commonly used license function. Therefore, there is no need to newly install another program for limiting the number of operating wavelengths, and the limitation of the number of operating wavelengths can be realized with a simple configuration.
  • the license function unit 12 since the license function unit 12 performs the above-described processing according to the input path type setting, the above-described effects can be obtained without requiring a separate device such as a central control device or a relay device. . For this reason, when a user such as a network administrator inputs a setting from the command transmission terminal 200, the number of operating wavelengths can be appropriately limited according to the state of the network to which the OADM device according to the present embodiment is connected.
  • a function for changing the upper limit value of the number of operating wavelengths stored in the upper limit value storage unit 12-1 can also be provided as, for example, a function extension.
  • the user inputs a request for changing the upper limit value of the number of operating wavelengths from the command transmission terminal 200.
  • the command transmission terminal 200 transmits to the OADM device 100 an upper limit value change command that includes a new upper limit value of the number of operating wavelengths and is an upper limit value change request for requesting a change of the upper limit value of the operating wavelength number.
  • the CPU module 11 of the monitoring control unit 10 of the OADM device 100 that has received the upper limit change command transmitted from the command transmission terminal 200 uses the new upper limit value included in the received upper limit change command as the upper limit value of the license function unit 12. Output to the setting unit 12-3.
  • the upper limit setting unit 12-3 that has received the new upper limit value output from the CPU module 11 has the received new upper limit value equal to or smaller than the number of wavelengths that is determined in advance according to the hardware performance of the OADM device 100.
  • the received new upper limit value is set as the upper limit value of the number of operating wavelengths determined as the license function.
  • the upper limit setting unit 12-3 stores the received new upper limit value in the upper limit storage unit 12-1 as the upper limit value of the number of operating wavelengths.
  • the upper limit value setting unit 12-3 sends an error message indicating the execution failure to the CPU module 11. To the command transmission terminal 200. That is, the upper limit value of the number of operating wavelengths stored in the upper limit value storage unit 12-1 is not changed.
  • the upper limit value of the number of operating wavelengths can be increased or decreased, for example, as a function expansion.
  • FIG. 3 is a block diagram showing a configuration of a second embodiment of a wavelength number setting system including an OADM device to which the optical transmission apparatus of the present invention is applied.
  • the setting information is output to the optical wavelength path selection unit 20 and the optical power level monitoring unit 30.
  • the license determination unit 12-2 when the total number of operating wavelengths is equal to or less than the upper limit value of the operating wavelengths, the license determination unit 12-2 performs total operation of the optical wavelength transmitting / receiving modules 50-1 to 50-n for transmitting / receiving optical signals. Set only the number of wavelengths.
  • the optical wavelength transmission / reception modules 50-1 to 50-n transmit and receive each wavelength of the WDM signal in the transmission path of the network to which the OADM device 150 is connected.
  • the path type is set by limiting the number of optical wavelength transmission / reception modules 50-1 to 50-n. It is possible to limit the number of operating wavelengths, which is the number of wavelengths.
  • the operation flow of the OADM device 150 in this embodiment is similar to the operation flow of the OADM device 100 described with reference to the flowchart of FIG. 2, but the target to be added differs depending on the command transmitted from the command transmission terminal 200. That is, the command transmitted from the command transmission terminal 200 to the OADM device 150 is a command for requesting addition or decrease of the optical wavelength transmission / reception module. Hereinafter, this command is referred to as a module number change command. As described above, one optical wavelength transmitting / receiving module 50-1 to 50-n is required for one wavelength. For this reason, the module number change command is substantially a change request for changing the number of operating wavelengths.
  • the module number change command transmitted from the command transmission terminal 200 is received by the CPU module 11 of the monitoring control unit 10 of the OADM device 150. Then, the CPU module 11 adds the set number of optical wavelength transmitting / receiving modules included in the received module number change command and the set number of optical wavelength transmitting / receiving modules set before the module number change command is transmitted. Calculate the value.
  • the calculated total value is referred to as the total number of modules.
  • the license determination unit 12-2 compares the total number of modules calculated by the CPU module 11 with the upper limit value of the number of operating wavelengths stored in the upper limit value storage unit 12-1. As a result of the comparison, if the total number of modules is larger than the upper limit value of the number of operating wavelengths, the license determination unit 12-2 transmits an error message indicating execution failure to the command transmission terminal 200 via the CPU module 11. On the other hand, if the total number of modules is equal to or less than the upper limit value of the number of operating wavelengths as a result of comparison, the number of optical wavelength transmitting / receiving modules is set by the number of total modules.
  • the same effects as those of the first embodiment described above can be obtained even with a configuration in which the set number of optical wavelength transmitting / receiving modules 50-1 to 50-n is limited.
  • the error message transmitted to the command transmission terminal 200 may be the same as the error message for other commands, or a dedicated error message indicating that the error message is larger than the upper limit of the number of operating wavelengths. Also good.
  • the present invention similarly applies to a configuration in which the monitoring control unit 10 is mounted outside the OADM devices 100 and 150, or a command input function by the command transmission terminal 200 is provided in the OADM devices 100 and 150. It is feasible.
  • the example of the OADM device has been described.
  • the present invention is applicable to various devices as long as the number of operating wavelengths is limited using a license function. The same can be applied.
  • the processing procedure for realizing the OADM device as the first and second embodiments described above on a recording medium as a program, the above-described functions according to the embodiments of the present invention are recorded from the recording medium.
  • the program supplied can be realized by causing the CPU of the computer constituting the apparatus to perform processing.
  • the present invention can be applied even when an information group including a program is supplied to the output device from the above recording medium or from an external recording medium via a network.
  • the program code itself read from the recording medium realizes the novel function of the present invention
  • the recording medium storing the program code and the signal read from the recording medium constitute the present invention. It will be.
  • recording medium for example, flexible disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD + RW, magnetic tape, non-volatile Sex memory cards, ROM, etc. may be used.
  • each function in each of the above-described embodiments can be realized in an optical transmission apparatus such as an OADM apparatus controlled by the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

 波長分割多重方式による光通信を行うネットワークの伝送路に接続され、その伝送路の光信号を、その光信号の波長に対応付けて設定されたパスタイプに従って伝送する光伝送装置であって、パスタイプが設定された波長の数である運用波長数の上限値を記憶する上限値記憶部と、運用波長数の変更を要求する変更要求を受け付ける受付部と、運用波長数を決定するライセンス判定部とを有し、ライセンス判定部は、受け付けた変更要求に応じて運用波長数を変更した場合の波長数が、記憶された上限値以下である場合、当該変更した波長数を新たな運用波長数とする。

Description

光伝送装置、運用波長数制限方法及びプログラム
 本発明は、波長分割多重方式により通信を行う光通信システムに用いられる光伝送装置、運用波長数制限方法及びプログラムに関する。
 近年の通信容量の増大に伴い、波長分割多重方式(WDM:Wavelength Division Multiplex)によって光伝送を行うOADM(Optical Add Drop Multiplexer)装置がバックボーンやメトロエリアの領域で導入されている。
 このOADM装置は、例えば双方向リング伝送路などに用いられ、伝送路における光信号を必要に応じて分岐/挿入させる機能を備える。このため、OADM装置では、運用する各光波長について、パスタイプ設定をスルー(以降、THRという)、ADD/DROPの何れかに設定する。
 また、本発明の関連技術として、ネットワーク管理装置や中継装置を用いて、波長多重ネットワークに含まれる全てのエッジノードについて、ある入回線において同時に使用できる波長数を制限すると共に、ある出回線において同時に使用できる波長群を制限し、光ファイバが焼損しないようにするものがある(例えば、特許文献1参照。)。
 また、異業者間の交換接続を行う関門交換機が、規制通過呼を検出すると、業者間回線の中の規制通過呼に使用する回線数または比率が予め定められた回線数または比率以内となるよう業者間回線への接続制御を行うものがある(例えば、特許文献2参照。)。
特開2004-208056号公報 特開2002-199109号公報
 しかしながら、OADM装置では一般的に、パスタイプを設定して運用する運用波長数に上限値がなく、どの波長でも設定が可能となっている。そのため、OADM装置を配置する波長多重ネットワーク全体の動作として捉えた場合に、好ましい運用波長数の上限値よりも、配置されるOADM装置のハードウェア性能としての運用波長数の上限値の方が上回ってしまう可能性がある。
 こうしてOADM装置の運用波長数の上限値が、波長多重ネットワーク全体として好ましい運用波長数の上限値よりもオーバースペックとなってしまうと、波長多重されて運用される波長数が波長多重ネットワークとしての設計条件をオーバーしてしまう。この場合、伝送特性的に劣化が生じてしまうおそれがある。
 また、上述した特許文献1のものは、波長多重ネットワーク全体として波長数を制限することで光ファイバの焼損を回避しようとするものである。そのため、各OADM装置に接続される個別のネットワーク環境に応じて運用波長数の上限値を最適化することについてまでは考慮されていない。
 また、上述した特許文献1のものは、各OADM装置に加えて、ネットワーク管理装置や中継装置といった専用の別装置を必要とし、その装置コストがさらに必要となる。
 また、上述した特許文献2のものは、関門交換機が、業者間回線の中で規制通過呼に割り当てる回線数を制限するものである。そのため、光通信における運用波長や、その波長による回線の割り当てといった信号の運用を自由に変更できるようにしつつ、運用波長数の上限値を最適化することについてまで考慮されたものではない。
 本発明は、追加のコストをかけることなく、各ネットワークの状態に応じて運用波長数を適切に制限することを可能にする光伝送装置、運用波長数制限方法及びプログラムを提供することを目的とする。
 上記目的を達成するために本発明の光伝送装置は、波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送する光伝送装置であって、
 前記パスタイプが設定された波長の数である運用波長数の上限値を記憶する上限値記憶部と、
 前記運用波長数の変更を要求する変更要求を受け付ける受付部と、
 前記運用波長数を決定するライセンス判定部と、を有し、
 前記ライセンス判定部は、前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、前記記憶された上限値以下である場合、当該変更した波長数を新たな運用波長数とする。
 また、上記目的を達成するために本発明の運用波長数制限方法は、波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送し、前記パスタイプが設定された波長のパスタイプを管理する光波長経路選択部と、前記パスタイプが設定された波長の光信号のパワーレベルを管理する光パワーレベル監視部とを有する光伝送装置における運用波長数制限方法であって、
 前記パスタイプが設定された波長の数である運用波長数の変更を要求する変更要求を受け付ける処理と、
 前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、予め決められた上限値以下である場合、当該変更した波長数を新たな運用波長数とする判定処理と、を有する。
 また、上記目的を達成するために本発明のプログラムは、波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送し、前記パスタイプが設定された波長のパスタイプを管理する光波長経路選択部と、前記パスタイプが設定された波長の光信号のパワーレベルを管理する光パワーレベル監視部とを有する光伝送装置に、
 前記パスタイプが設定された波長の数である運用波長数の変更を要求する変更要求を受け付ける機能と、
 前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、予め決められた上限値以下である場合、当該変更した波長数を新たな運用波長数とする判定機能と、を実現させる。
 本発明は以上説明したように構成されているので、追加のコストをかけることなく、各ネットワークの状態に応じて運用波長数を適切に制限することが可能となる。
本発明の光伝送装置を適用したOADM装置を含む波長数設定システムの第1の実施形態の構成を示すブロック図である。
図1に示したOADM装置の動作を説明するためのフローチャートである。
本発明の光伝送装置を適用したOADM装置を含む波長数設定システムの第2の実施形態の構成を示すブロック図である。
 本発明の光伝送装置、運用波長数制限方法及びプログラムを、OADM装置に適用した一実施形態について、図面を用いて詳細に説明する。
 まず、本実施形態の概略について説明する。
 本実施形態の主要な特徴は、OADM装置にて使用される光信号の波長に対応付けられたパスタイプが、スルー(THR)、ADD/DROPの何れかに設定される波長の数である運用波長数の最大値を、ライセンス機能を用いることによって制限することである。
 THRは、光信号がそのままOADM装置を通過する設定であり、ADD/DROPは、OADM装置で一度光信号を終端させる設定である。
 ライセンス機能とは、OADM装置の機能運用に制限をかけておき、予め発行されたライセンスキー(ライセンス情報)をユーザが端末等から入力することによって、制限されていた機能の使用を可能にするものである。
 本実施形態は、コマンドによって設定しようとする運用波長数が、ライセンス機能で制限した運用波長数の上限値を超えている場合、エラー応答を返し、運用波長数の設定を行えないようにするものである。
 このようにして運用波長数に制限をかけることができれば、OADM装置毎に運用波長数の上限値を設定することが可能になり、OADM装置を設定する際の柔軟性が増す。更に、運用波長数の上限値の変更を拡張機能として提供してもよい。
 このため、本実施形態では、ライセンスキーの未投入時に、ユーザが運用波長数の変更を要求するコマンドを送信した際、運用波長数が、ライセンス機能によって設定されている運用波長数の上限値以上となる場合にはエラーとし、変更を行えないように制限をかける。
 制限をかけるコマンドは、波長のパスタイプ設定を管理している以下の2つを対象とする。
(1)光パワーレベル監視部のパスタイプが設定されている波長数が、ライセンス機能によって設定された運用波長数の上限値よりも大きくなる場合には、エラーメッセージを返して変更を行えないようにする。
(2)光波長経路選択部の経路選択デバイスのパスタイプが設定されている波長数が、ライセンス機能によって設定された運用波長数の上限値よりも大きくなる場合には、エラーメッセージを返して変更を行えないようにする。
 図1は、本発明の光伝送装置を適用したOADM装置を含む波長数設定システムの第1の実施形態の構成を示すブロック図である。
 本実施形態の波長数設定システムは図1に示すように、OADM装置100と、コマンド送信端末200とを備えている。
 コマンド送信端末200は、直接またはネットワーク経由などにより、OADM装置100と接続されている。コマンド送信端末200は、パスタイプを設定する波長を追加するための要求、または、パスタイプが設定された波長を削除するための要求の入力をユーザから受け付ける。そして、コマンド送信端末200は、受け付けた要求の波長を含み、当該波長にパスタイプの設定を追加するための変更要求、または、当該波長に設定されたパスタイプを削除するための変更要求である運用波長数変更コマンドをOADM装置100へ送信する。
 OADM装置100は、監視制御部10と、光波長経路選択部20と、光パワーレベル監視部30とを備えている。
 監視制御部10は、OADM装置100全体の情報を管理する部であり、受付部であるCPUモジュール11と、ライセンス機能部12と、インタフェース部13とを備えている。
 CPUモジュール11は、コマンド送信端末200から送信された運用波長数変更コマンドを受信し、受信した運用波長数変更コマンドに含まれる波長の数と、運用波長数との合計値を算出する。なお、以降、算出された合計値のことを合計運用波長数という。
 ライセンス機能部12は、上限値記憶部12-1と、ライセンス判定部12-2と、上限値設定部12-3とを備えている。
 上限値記憶部12-1は、ライセンス機能によって設定された運用波長数の上限値を予め記憶している。
 ライセンス判定部12-2は、CPUモジュール11にて算出された合計運用波長数と、上限値記憶部12-1に記憶された運用波長数の上限値とを比較する。そして、比較の結果、合計運用波長数が運用波長数の上限値よりも大きな場合、ライセンス判定部12-2は、実行失敗のエラーメッセージをCPUモジュール11を介してコマンド送信端末200へ送信する。一方、比較の結果、合計運用波長数が運用波長数の上限値以下である場合には、ライセンス判定部12-2は、合計運用波長数を含む設定情報を、インタフェース部13を介して光波長経路選択部20及び光パワーレベル監視部へ出力する。なお、上限値設定部12-3については後述する。
 インタフェース部13は、監視制御部10と、光波長経路選択部20及び光パワーレベル監視部30との間の情報の送受信を仲介する。
 光波長経路選択部20は、パスタイプが設定された波長のパスタイプを管理しており、インタフェース部21と経路選択デバイス22とを備えている。
 インタフェース部21は、光波長経路選択部20と、監視制御部10及び光パワーレベル監視部30との間の情報の送受信を仲介する。
 経路選択デバイス22は、監視制御部10から出力された設定情報をインタフェース部21を介して受け付ける。そして、経路選択デバイス22は、受け付けた設定情報に応じてパスタイプを設定する。
 光パワーレベル監視部30は、パスタイプが設定された波長の光信号のパワーレベルを管理しており、インタフェース部31と、光パワーレベル監視モニタ32とを備えている。
 インタフェース部31は、光パワーレベル監視部30と、監視制御部10及び光波長経路選択部20との間の情報の送受信を仲介する。
 光パワーレベル監視モニタ32は、監視制御部10から出力された設定情報をインタフェース部31を介して受け付ける。そして、光パワーレベル監視モニタ32は、受け付けた設定情報に応じ、パスタイプが設定された波長の光信号の送受信のパワーレベルをモニタする。
 以下に、上記のように構成された波長数設定システムにおいてOADM装置100の動作について説明する。
 図2は、図1に示したOADM装置100の動作を説明するためのフローチャートである。
 まず、ユーザは、パスタイプを設定する波長を追加するための要求、または、パスタイプが設定された波長を削除するための要求をコマンド送信端末200へ入力する。
 ユーザからの入力を受け付けたコマンド送信端末200は、入力された要求に応じた運用波長数変更コマンドをOADM装置100へ送信する。
 次に、ステップS1において、OADM装置100の監視制御部10のCPUモジュール11は、コマンド送信端末200から送信された運用波長数変更コマンドを受信する。
 次に、ステップS2において、CPUモジュール11は、受信した運用波長数変更コマンドに含まれる波長の数と、運用波長数との合計値である合計運用波長数を算出する。
 次に、ステップS3において、ライセンス機能部12のライセンス判定部12-2は、CPUモジュール11にて算出された合計運用波長数と、上限値記憶部12-1に記憶された運用波長数の上限値とを比較する。
 ステップS3における比較の結果、合計運用波長数が、運用波長数の上限値よりも大きな場合、ステップS4において、ライセンス判定部12-2は、実行失敗のエラーメッセージをCPUモジュール11を介してコマンド送信端末200へ送信する。つまり、運用波長数は変更されない。
 一方、ステップS3における比較の結果、合計運用波長数が、運用波長数の上限値以下である場合、ステップS5において、ライセンス判定部12-2は、インタフェース部13を介して光波長経路選択部20及び光パワーレベル監視部30へ設定情報を出力する。
 そして、光波長経路選択部20の経路選択デバイス22は、監視制御部10から出力された設定情報をインタフェース部21を介して受け付ける。
 同様に、光パワーレベル監視部30の光パワーレベル監視モニタ32は、監視制御部10から出力された設定情報をインタフェース部31を介して受け付ける。
 これにより、光波長経路選択部20は、受け付けた設定情報に応じてパスタイプを設定する。また、光パワーレベル監視部30において、受け付けた設定情報に含まれる波長の光信号の送受信のパワーレベルをモニタする。つまり、運用波長数が変更されることとなる。
〔具体例1〕
 次に、上述した動作を具体例を用い、図1、図2を参照しながら説明する。
 この具体例1では、システム運用中のある時点において、OADM装置100に設定されている運用波長数が12であり、上限値記憶部12-1に記憶された運用波長数の上限値が20であるとする。
 まず、ユーザは、パスタイプを設定する波長の数を10個追加する要求をコマンド送信端末200へ入力する。
 ユーザからの入力を受け付けたコマンド送信端末200は、10個の波長を含み、当該10個の波長に対してパスタイプを追加して設定することを要求する運用波長数変更コマンドをOADM装置100へ送信する。
 次に、ステップS1において、OADM装置100の監視制御部10のCPUモジュール11は、コマンド送信端末200から送信された運用波長数変更コマンドを受信する。
 次に、ステップS2において、CPUモジュール11は、受信した運用波長数変更コマンドに含まれる波長の数と、運用波長数との合計値である合計運用波長数を算出する。ここでは、上述したように、受信した運用波長数変更コマンドに含まれる波長の数が10個であり、運用波長数が12である。そのため、CPUモジュール11にて算出される合計運用波長数は22となる。
 次に、ステップS3において、ライセンス機能部12のライセンス判定部12-2は、CPUモジュール11にて算出された合計運用波長数と、上限値記憶部12-1に記憶された運用波長数の上限値とを比較する。ここでは、合計運用波長数が22であり、運用波長数の上限値が20である。そのため、合計運用波長数は、運用波長数の上限値よりも大きい。従って、ステップS4において、ライセンス判定部12-2は、実行失敗のエラーメッセージをCPUモジュール11を介してコマンド送信端末200へ送信する。つまり、新たにパスタイプの設定を行おうとした10個の波長にはパスタイプは設定されず、運用波長数は12から変化しない。
〔具体例2〕
 次に、具体例2として、システム運用中のある時点において、OADM装置100に設定されている運用波長数が5であり、上限値記憶部12-1に記憶された運用波長数の上限値が20である場合を考える。
 まず、ユーザは、パスタイプを設定する波長の数を10個追加する要求をコマンド送信端末200へ入力する。
 ユーザからの入力を受け付けたコマンド送信端末200は、10個の波長を含み、当該10個の波長に対してパスタイプを追加して設定することを要求する運用波長数変更コマンドをOADM装置100へ送信する。
 次に、ステップS1において、OADM装置100の監視制御部10のCPUモジュール11は、コマンド送信端末200から送信された運用波長数変更コマンドを受信する。
 次に、ステップS2において、CPUモジュール11は、受信した運用波長数変更コマンドに含まれる波長の数と、運用波長数との合計値である合計運用波長数を算出する。ここでは、上述したように、受信した運用波長数変更コマンドに含まれる波長の数が10個であり、運用波長数が5である。そのため、CPUモジュール11にて算出される合計運用波長数は15となる。
 次に、ステップS3において、ライセンス機能部12のライセンス判定部12-2は、CPUモジュール11にて算出された合計運用波長数と、上限値記憶部12-1に記憶された運用波長数の上限値とを比較する。ここでは、合計運用波長数が15であり、運用波長数の上限値が20である。そのため、合計運用波長数は、運用波長数の上限値以下である。従って、ステップS5において、ライセンス判定部12-2は、合計運用波長数を含む設定情報を、インタフェース部13を介して光波長経路選択部20及び光パワーレベル監視部30へ出力する。つまり、新たに5個の波長にパスタイプが設定され、運用波長数は15となる。
 このように本実施形態においては、運用波長数に制限をかけることにより、装置毎に運用波長数を変えることが可能になり、装置設定の柔軟性を大きくすることができる。
 近年のOADM装置は、所定波長の光信号の経路を決めるパスタイプ設定を遠隔から行える機能を有している。
 本実施形態によれば、この一般的に用いられる遠隔設定機能をそのまま用いることで、
設定入力のために別なプログラムを新たに実装する必要がなく、簡単な構成で、かつ、遠隔操作によって運用波長数の制限を実現することができる。
 また、本実施形態では、一般的に用いられるライセンス機能を利用して、上述した運用波長数の制限を行う。そのため、運用波長数の制限のために別なプログラムを新たに実装する必要がなく、簡単な構成で運用波長数の制限を実現することができる。
 また、本実施形態では、入力されたパスタイプ設定により、ライセンス機能部12が上述した処理を行うため、中央制御装置や中継装置といった別装置を必要とせずに上述した各効果を得ることができる。このため、ネットワーク管理者などのユーザがコマンド送信端末200から設定入力を行うことで、本実施形態によるOADM装置が接続されるネットワークの状態に応じた運用波長数の適切な制限ができる。
 従って、追加のコストをかけることなく、各ネットワークの状態に応じて運用波長数を適切に制限することが可能となる。
 なお、本実施形態では、上限値記憶部12-1に記憶された運用波長数の上限値を変更する機能も、例えば機能拡張などとして提供することができる。
 この場合、まず、コマンド送信端末200からユーザが運用波長数の上限値を変更するための要求を入力する。そして、コマンド送信端末200は、運用波長数の新たな上限値を含み、運用波長数の上限値の変更を要求するための上限値変更要求である上限値変更コマンドをOADM装置100へ送信する。
 コマンド送信端末200から送信された上限値変更コマンドを受信したOADM装置100の監視制御部10のCPUモジュール11は、受信した上限値変更コマンドに含まれる新たな上限値をライセンス機能部12の上限値設定部12-3へ出力する。
 CPUモジュール11から出力された新たな上限値を受け付けた上限値設定部12-3は、受け付けた新たな上限値が、OADM装置100のハードウェア性能に応じて予め決められた波長数以下である場合、受け付けた新たな上限値を、ライセンス機能として決定される運用波長数の上限値とする。そして、上限値設定部12-3は、受け付けた新たな上限値を運用波長数の上限値として上限値記憶部12-1に記憶させる。一方、受け付けた新たな上限値が、OADM装置100のハードウェア性能に応じて予め決められた波長数よりも大きな場合、上限値設定部12-3は、実行失敗のエラーメッセージをCPUモジュール11を介してコマンド送信端末200へ送信する。つまり、上限値記憶部12-1に記憶された運用波長数の上限値は変更されない。
 このように、本実施形態においては、例えば機能拡張などとして、運用波長数の上限値を増減させることもできる。
 (第2の実施形態)
 図3は、本発明の光伝送装置を適用したOADM装置を含む波長数設定システムの第2の実施形態の構成を示すブロック図である。
 上述した第1の実施形態では、合計運用波長数が運用波長数の上限値以下である場合、光波長経路選択部20及び光パワーレベル監視部30へ設定情報が出力された。
 本実施形態では、合計運用波長数が運用波長数の上限値以下である場合、ライセンス判定部12-2は、光信号を送受信するための光波長送受信モジュール50-1~50-nを合計運用波長数の数だけ設定する。
 なお、ここでは、上述した第1の実施形態と同様のものについては説明を省略する。
 光波長送受信モジュール50-1~50-nは、OADM装置150が接続されるネットワークの伝送路におけるWDM信号の各波長を送受信する。
 光波長送受信モジュール50-1~50-nは、1波長につき1つ必要であるため、この光波長送受信モジュール50-1~50-nの設定数を制限することにより、パスタイプが設定される波長の数である運用波長数を制限することが可能となる。
 本実施形態におけるOADM装置150の動作フローは、図2のフローチャートを用いて説明したOADM装置100の動作フローと類似するが、コマンド送信端末200から送信されたコマンドによって追加される対象が異なる。すなわち、コマンド送信端末200からOADM装置150へ送信されるコマンドが、光波長送受信モジュールの追加または減少を要求するためのコマンドとなる。以降、このコマンドのことをモジュール数変更コマンドという。なお、上述したように、光波長送受信モジュール50-1~50-nは、1波長につき1つ必要である。そのため、モジュール数変更コマンドは実質上、運用波長数を変更するための変更要求となる。
 コマンド送信端末200から送信されたモジュール数変更コマンドは、OADM装置150の監視制御部10のCPUモジュール11にて受信される。そして、CPUモジュール11は、受信したモジュール数変更コマンドに含まれる光波長送受信モジュールの設定数と、当該モジュール数変更コマンドが送信される以前から設定されていた光波長送受信モジュールの設定数との合計値を算出する。なお、以降、算出された合計値のことを合計モジュール数という。
 ライセンス判定部12-2は、CPUモジュール11にて算出された合計モジュール数と、上限値記憶部12-1に記憶された運用波長数の上限値とを比較する。そして、比較の結果、合計モジュール数が運用波長数の上限値よりも大きな場合、ライセンス判定部12-2は、実行失敗のエラーメッセージをCPUモジュール11を介してコマンド送信端末200へ送信する。一方、比較の結果、合計モジュール数が運用波長数の上限値以下である場合には、合計モジュール数の数だけ光波長送受信モジュールを設定する。
 本実施形態によれば、光波長送受信モジュール50-1~50-nの設定数を制限する構成であっても、上述した第1の実施形態と同様の効果を得ることができる。
 なお、上述した第1及び第2の実施形態は、本発明の好適な実施形態であり、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々変形して実施することが可能である。
 例えば、コマンド送信端末200へ送信されるエラーメッセージは、他のコマンドに対するエラーメッセージと同様の内容であってもよいし、運用波長数の上限値よりも大きいことを示す専用のエラーメッセージであってもよい。
 また、上述した第1及び第2の実施形態における監視制御部10などの各機能部分は、単一の筐体内にあるか否かは特に問われるものではない。
 例えば、監視制御部10がOADM装置100,150の外部に装着される構成や、コマンド送信端末200によるコマンド入力機能がOADM装置100,150内に設けられる構成であっても、本発明は同様に実現可能である。
 また、上述した第1及び第2の実施形態では、OADM装置の例について説明したが、ライセンス機能を用いて運用波長数等の制限を実施する装置であれば、各種の装置にも本発明は同様に適用することができる。
 また、上述した第1及び第2の実施形態としてのOADM装置を実現するための処理手順をプログラムとして記録媒体に記録することにより、本発明の各実施形態による上述した各機能をその記録媒体から供給されるプログラムによって、装置を構成するコンピュータのCPUに処理を行わせて実現させることができる。
 この場合、上記の記録媒体により、あるいはネットワークを介して外部の記録媒体から、プログラムを含む情報群を出力装置に供給される場合でも本発明は適用されるものである。
 すなわち、記録媒体から読み出されたプログラムコード自体が本発明の新規な機能を実現することになり、そのプログラムコードを記憶した記録媒体および該記録媒体から読み出された信号は本発明を構成することになる。
 この記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW、磁気テープ、不揮発性のメモリーカード、ROM等を用いてよい。
 この本発明に係るプログラムによれば、当該プログラムによって制御されるOADM装置などの光伝送装置に、上述した各実施形態における各機能を実現させることができる。
 以上、実施例を参照して本願発明を説明したが、本願発明は上記実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年3月18日に出願された日本出願特願2009-066428を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (18)

  1.  波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送する光伝送装置であって、
     前記パスタイプが設定された波長の数である運用波長数の上限値を記憶する上限値記憶部と、
     前記運用波長数の変更を要求する変更要求を受け付ける受付部と、
     前記運用波長数を決定するライセンス判定部と、を有し、
     前記ライセンス判定部は、前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、前記記憶された上限値以下である場合、当該変更した波長数を新たな運用波長数とする光伝送装置。
  2.  請求項1に記載の光伝送装置において、
     前記変更要求には、前記パスタイプを新たに設定する波長の数が含まれ、
     前記ライセンス判定部は、前記運用波長数に、前記受け付けた変更要求に含まれる波長の数を追加した合計運用波長数が前記記憶された上限値以下である場合、当該合計運用波長数を新たな運用波長数とする光伝送装置。
  3.  請求項2に記載の光伝送装置において、
     前記パスタイプが設定された波長のパスタイプを管理する光波長経路選択部と、
     前記パスタイプが設定された波長の光信号のパワーレベルを管理する光パワーレベル監視部と、を有し、
     前記ライセンス判定部は、前記合計運用波長数が前記記憶された上限値以下である場合、前記光波長経路選択部及び前記光パワーレベル監視部へ当該合計運用波長数を含む情報を出力する光伝送装置。
  4.  請求項2に記載の光伝送装置において、
     前記ライセンス判定部は、前記合計運用波長数が前記記憶された上限値以下である場合、当該光伝送装置が接続された伝送路の光信号における1つの波長を送受信する光波長送受信モジュールを、当該合計運用波長数の数だけ設定する光伝送装置。
  5.  請求項1乃至4のいずれか1項に記載の光伝送装置において、
     前記受付部は、前記記憶された上限値の変更を要求する上限値変更要求を受け付け、
     前記受け付けた上限値変更要求に応じて当該上限値を変更した場合の波長数が、当該光伝送装置のハードウェア性能に応じて予め決められた波長数以下である場合、当該変更した波長数を新たな上限値として前記上限値記憶部に記憶させる上限値設定部を有する光伝送装置。
  6.  請求項1乃至5のいずれか1項に記載の光伝送装置において、
     前記パスタイプは、当該光伝送装置が接続された伝送路への光信号の挿入、分岐、またはスルーの何れかである光伝送装置。
  7.  波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送し、前記パスタイプが設定された波長のパスタイプを管理する光波長経路選択部と、前記パスタイプが設定された波長の光信号のパワーレベルを管理する光パワーレベル監視部とを有する光伝送装置における運用波長数制限方法であって、
     前記パスタイプが設定された波長の数である運用波長数の変更を要求する変更要求を受け付ける処理と、
     前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、予め決められた上限値以下である場合、当該変更した波長数を新たな運用波長数とする判定処理と、を有する運用波長数制限方法。
  8.  請求項7に記載の運用波長数制限方法において、
     前記変更要求には、前記パスタイプを新たに設定する波長の数が含まれ、
     前記判定処理は、前記運用波長数に、前記受け付けた変更要求に含まれる波長の数を追加した合計運用波長数が前記上限値以下である場合、当該合計運用波長数を新たな運用波長数とする処理である運用波長数制限方法。
  9.  請求項8に記載の運用波長数制限方法において、
     前記合計運用波長数が前記上限値以下である場合、前記光波長経路選択部及び前記光パワーレベル監視部へ当該合計運用波長数を含む情報を出力する処理をさらに有する運用波長数制限方法。
  10.  請求項8に記載の運用波長数制限方法において、
     前記合計運用波長数が前記上限値以下である場合、当該光伝送装置が接続された伝送路の光信号における1つの波長を送受信する光波長送受信モジュールを、当該合計運用波長数の数だけ設定する処理をさらに有する運用波長数制限方法。
  11.  請求項7乃至10のいずれか1項に記載の運用波長数制限方法において、
     前記上限値の変更を要求する上限値変更要求を受け付ける処理と、
     前記受け付けた上限値変更要求に応じて当該上限値を変更した場合の波長数が、当該光伝送装置のハードウェア性能に応じて予め決められた波長数以下である場合、当該変更した波長数を新たな上限値とする処理と、をさらに有する運用波長数制限方法。
  12.  請求項7乃至11のいずれか1項に記載の運用波長数制限方法において、
     前記パスタイプは、当該光伝送装置が接続された伝送路への光信号の挿入、分岐、またはスルーの何れかである運用波長数制限方法。
  13.  波長分割多重方式による光通信を行うネットワークの伝送路に接続され、該伝送路の光信号を、該光信号の波長に対応付けて設定されたパスタイプに従って伝送し、前記パスタイプが設定された波長のパスタイプを管理する光波長経路選択部と、前記パスタイプが設定された波長の光信号のパワーレベルを管理する光パワーレベル監視部とを有する光伝送装置に、
     前記パスタイプが設定された波長の数である運用波長数の変更を要求する変更要求を受け付ける機能と、
     前記受け付けた変更要求に応じて前記運用波長数を変更した場合の波長数が、予め決められた上限値以下である場合、当該変更した波長数を新たな運用波長数とする判定機能と、を実現させるためのプログラム。
  14.  請求項13に記載のプログラムにおいて、
     前記変更要求には、前記パスタイプを新たに設定する波長の数が含まれ、
     前記判定機能は、前記運用波長数に、前記受け付けた変更要求に含まれる波長の数を追加した合計運用波長数が前記上限値以下である場合、当該合計運用波長数を新たな運用波長数とする機能であるプログラム。
  15.  請求項14に記載のプログラムにおいて、
     前記光伝送装置に、
     前記合計運用波長数が前記上限値以下である場合、前記光波長経路選択部及び前記光パワーレベル監視部へ当該合計運用波長数を含む情報を出力する機能をさらに実現させるためのプログラム。
  16.  請求項14に記載のプログラムにおいて、
     前記光伝送装置に、
     前記合計運用波長数が前記上限値以下である場合、当該光伝送装置が接続された伝送路の光信号における1つの波長を送受信する光波長送受信モジュールを、当該合計運用波長数の数だけ設定する機能をさらに実現させるためのプログラム。
  17.  請求項13乃至16のいずれか1項に記載のプログラムにおいて、
     前記光伝送装置に、
     前記上限値の変更を要求する上限値変更要求を受け付ける機能と、
     前記受け付けた上限値変更要求に応じて当該上限値を変更した場合の波長数が、当該光伝送装置のハードウェア性能に応じて予め決められた波長数以下である場合、当該変更した波長数を新たな上限値とする機能と、をさらに実現させるためのプログラム。
  18.  請求項13乃至17のいずれか1項に記載のプログラムにおいて、
     前記パスタイプは、当該光伝送装置が接続された伝送路への光信号の挿入、分岐、またはスルーの何れかであるプログラム。
PCT/JP2010/054553 2009-03-18 2010-03-17 光伝送装置、運用波長数制限方法及びプログラム WO2010107061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011504866A JP5299505B2 (ja) 2009-03-18 2010-03-17 光伝送装置、運用波長数制限方法及びプログラム
US13/256,851 US8676057B2 (en) 2009-03-18 2010-03-17 Optical transmission device, operational wavelength number restricting method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009066428 2009-03-18
JP2009-066428 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010107061A1 true WO2010107061A1 (ja) 2010-09-23

Family

ID=42739721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054553 WO2010107061A1 (ja) 2009-03-18 2010-03-17 光伝送装置、運用波長数制限方法及びプログラム

Country Status (3)

Country Link
US (1) US8676057B2 (ja)
JP (1) JP5299505B2 (ja)
WO (1) WO2010107061A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072886A (ja) * 2014-09-30 2016-05-09 富士通株式会社 光増幅装置、光伝送装置、及び、光伝送システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067546A (ja) * 2004-07-30 2006-03-09 Fujitsu Ltd 光分岐挿入装置
JP2007274249A (ja) * 2006-03-31 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> 光パス経路選択方法、及び光パス経路選択装置、並びに、プログラム
JP2008259130A (ja) * 2007-04-09 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> 波長群ネットワークにおける波長選択方法及び装置及びプログラム
JP2009010679A (ja) * 2007-06-28 2009-01-15 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および光伝送システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639109B2 (ja) * 1998-04-02 2005-04-20 富士通株式会社 光伝送装置、光伝送システム及び光端局
US6466341B1 (en) * 1998-08-03 2002-10-15 Agere Systems Guardian Corp. Add/drop filter for a multi-wavelength lightwave system
US6535313B1 (en) * 1998-10-16 2003-03-18 Lucent Technologies Inc. Dynamically assignable optical signal access control apparatus
IL129031A (en) * 1999-03-17 2003-02-12 Handelman Doron Network control system for optical communication networks
JP2001268606A (ja) * 2000-03-21 2001-09-28 Fujitsu Ltd 光ノード装置及び信号の切替接続方法
JP2002199109A (ja) 2000-12-26 2002-07-12 Fujitsu Ltd 交換接続における業者間回線の確保方式
US6650809B2 (en) * 2001-02-06 2003-11-18 Metrophotonics Inc. Multiple band optical multiplexer and demultiplexer
US20030002104A1 (en) * 2001-06-29 2003-01-02 Caroli Carl A. Wavelength-selective add/drop arrangement for optical communication systems
JP3999012B2 (ja) * 2002-03-22 2007-10-31 富士通株式会社 波長可変光フィルタの制御方法および制御装置
DE10213133A1 (de) * 2002-03-23 2003-10-02 Marconi Comm Gmbh Optische Schaltstation
JP2004208056A (ja) 2002-12-25 2004-07-22 Nippon Telegr & Teleph Corp <Ntt> 波長分割多重ネットワーク、中継ノード、エッジノード、管理装置、波長分割多重ネットワークの波長割当方法及び波長分割多重ネットワーク管理方法
US20040190904A1 (en) * 2003-02-28 2004-09-30 Masaji Noguchi Wavelength selection module comprising variable wavelength selecting section for selecting a plurality of wavelengths
US7184666B1 (en) * 2003-10-01 2007-02-27 Ciena Corporation Reconfigurable optical add-drop multiplexer
JP4814494B2 (ja) * 2004-03-30 2011-11-16 株式会社日立製作所 光波長挿入分岐装置
JP5151691B2 (ja) * 2008-05-27 2013-02-27 富士通株式会社 伝送路種別特定装置および伝送路種別特定方法
CN102439993B (zh) * 2009-07-28 2014-08-20 华为技术有限公司 无色光交换设备及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067546A (ja) * 2004-07-30 2006-03-09 Fujitsu Ltd 光分岐挿入装置
JP2007274249A (ja) * 2006-03-31 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> 光パス経路選択方法、及び光パス経路選択装置、並びに、プログラム
JP2008259130A (ja) * 2007-04-09 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> 波長群ネットワークにおける波長選択方法及び装置及びプログラム
JP2009010679A (ja) * 2007-06-28 2009-01-15 Nippon Telegr & Teleph Corp <Ntt> 光送信装置および光伝送システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072886A (ja) * 2014-09-30 2016-05-09 富士通株式会社 光増幅装置、光伝送装置、及び、光伝送システム
US9391421B2 (en) 2014-09-30 2016-07-12 Fujitsu Limited Optical amplification apparatus, optical transmission apparatus, and optical transmission system

Also Published As

Publication number Publication date
JP5299505B2 (ja) 2013-09-25
JPWO2010107061A1 (ja) 2012-09-20
US20120008956A1 (en) 2012-01-12
US8676057B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
EP2395684A1 (en) Optical relay system and network control device
EP1807983A1 (en) Optical path routing in an optical communications network
US7415208B1 (en) Method and system for allocating bandwidth in an optical communication network
JP4662267B2 (ja) 全光ネットワークにおける波長サービス提供装置
US20100098434A1 (en) Method for determining value of chromatic dispersion compensation
CN102802043A (zh) 分布式监控系统及其视频点播方法及装置
JP5299505B2 (ja) 光伝送装置、運用波長数制限方法及びプログラム
US10116387B2 (en) Control device, optical transmission system, and method for controlling optical transmission system
JP2010512542A (ja) ファイバスパンの損失および分散の測定
JP2009188620A (ja) 光通信端末及び光lanシステム
CN104521159A (zh) 波长复用装置,故障发生位置识别方法和程序
JP2006262275A (ja) 送受信機、光伝送装置、ポート別切替方法、プログラム、記録媒体
US7551853B2 (en) Data communications apparatus
JPWO2019082557A1 (ja) リソース分配装置及びリソース分配方法
US20230361875A1 (en) Optical network, network management device, and network management method
US6937823B2 (en) Method for preventing lasing in an optical ring network
JP2006180417A (ja) 光伝送装置
US20080292318A1 (en) Optical transmission device,optical transmission method, and recording medium thereof
JP5796634B2 (ja) 波長パス制御システム、波長パス制御方法および波長パス制御用プログラム記憶媒体
JP5614253B2 (ja) 波長分散補償設計方法及び装置
JP5411170B2 (ja) 光スイッチシステム
JP5700565B2 (ja) 波長分割多重装置およびインタフェース盤
US20140164608A1 (en) Content transmission system
US20240204903A1 (en) Optical transmission device, optical transmission system, and optical transmission method
CN111800214B (zh) 设备控制方法、控制器、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753553

Country of ref document: EP

Kind code of ref document: A1