WO2010106748A1 - 焼入れ性に優れたボロン添加鋼板および製造方法 - Google Patents

焼入れ性に優れたボロン添加鋼板および製造方法 Download PDF

Info

Publication number
WO2010106748A1
WO2010106748A1 PCT/JP2010/001474 JP2010001474W WO2010106748A1 WO 2010106748 A1 WO2010106748 A1 WO 2010106748A1 JP 2010001474 W JP2010001474 W JP 2010001474W WO 2010106748 A1 WO2010106748 A1 WO 2010106748A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
annealing
mass
cold rolling
Prior art date
Application number
PCT/JP2010/001474
Other languages
English (en)
French (fr)
Inventor
阿部雅之
竹田健悟
矢頭久斉
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020117021116A priority Critical patent/KR101382912B1/ko
Priority to CN2010800117388A priority patent/CN102348822A/zh
Priority to JP2010529158A priority patent/JP4782243B2/ja
Publication of WO2010106748A1 publication Critical patent/WO2010106748A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0087Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for chains, for chain links
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/24Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for saw blades
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a boron-added carbon steel sheet excellent in hardenability and a method for producing the same.
  • carbon steel plates are widely used as materials for automobile parts such as chains, gears, and clutches, general industrial machine parts, and tools such as saws and blades.
  • a carbon steel sheet After forming a carbon steel sheet into a product shape, it is cured by heat treatment such as quenching and tempering.
  • the carbon steel sheet with B added usually has a component composition containing a nitride-forming element that is more easily nitrided such as Ti.
  • the shape of the parts has also become complicated, and the carbon steel plate that is a material is required to have a workability that can withstand complicated and severe processing. In order to ensure workability, it is effective to soften the steel material.
  • it is difficult to soften by short-time annealing by continuous annealing, which is a high-productivity manufacturing process used in ordinary steel sheets. Therefore, carbon steel is often annealed in the form of a coil, which is referred to as long-term batch annealing or box annealing, in order to promote the spheroidization of carbides and the coarsening of the ferrite structure. Generally, this annealing requires a long time of 10 hours or more.
  • Patent Document 1 discloses that B-added steel is annealed in a hydrogen atmosphere having a nitrogen content of 10% by volume or less or in an Ar atmosphere.
  • conventional annealing equipment cannot be used, and remodeling of the annealing equipment or use of Ar or the like instead of N inevitably increases the annealing cost.
  • B has a strong affinity for oxygen, and in a process other than the annealing process (hot rolling process, winding process), it combines with oxygen in the heating atmosphere or oxygen in the atmosphere, and the de-B phenomenon occurs. is there. Furthermore, simultaneously with the de-B phenomenon, decarburization and oxidation of the quenching element occur, the component composition of the steel sheet surface layer portion changes, and an abnormal layer portion in which a structure called pearlite, sorbite or troostite is mixed is generated. Sometimes. When this abnormal layer portion occurs, there is a problem that the quality of parts cannot be obtained because the hardenability of the steel sheet is significantly biased.
  • the present invention aims to achieve both workability and hardenability in the carbon steel sheet, and in order to solve the problem, the addition of the hardenability improving element (B) by eliminating the hardenability defect in the surface layer portion. It aims at providing the optimization of the carbon steel plate and its manufacturing conditions which ensure an effect stably.
  • the present invention employs the following means in order to solve the above-described problems.
  • C 0.20% by mass to 0.45% by mass
  • Si 0.05% by mass to 0.8% by mass
  • Mn 0.5% by mass or more 2.0% by mass or less
  • P 0.001% by mass to 0.04% by mass
  • S 0.0001% by mass to 0.006% by mass
  • Al 0.005% by mass to 0.1% by mass
  • Ti 0.005% by mass to 0.2% by mass
  • B 0.001% by mass to 0.01% by mass
  • N 0.0001% by mass to 0.01% by mass.
  • a second aspect of the present invention is a heating step in which the slab is heated at 1200 ° C. or lower; a hot rolling step in which the slab is hot-rolled at a finish rolling temperature of 800 ° C. or higher and 940 ° C. or lower to obtain a steel plate. And a first cooling step of cooling the steel plate at a cooling rate of 20 ° C./second or higher until the steel plate reaches 650 ° C. or lower; following the first cooling step, the steel plate at a cooling rate of 20 ° C./second or lower. A second cooling step for cooling the steel plate; a winding step for winding the steel plate at 650 ° C. or lower and 400 ° C.
  • a pickling step for pickling the steel plate; and the steel plate at 95% hydrogen or higher and 400 A first annealing step of annealing at a temperature of 660 ° C. or higher and Ac1 of the carbon steel plate for 8 hours or longer in an atmosphere having a dew point of -20 ° C. or lower and a dew point of 400 ° C. or higher and ⁇ 40 ° C. or lower; Provided in (1) or (2) above A method for producing a boron-added steel sheet.
  • the boron-added steel sheet according to (3) may further include a first cold rolling process in which the steel sheet is cold-rolled at a rolling reduction rate of 5% or more after the pickling process. Good.
  • the carbon steel sheet in the first annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, Ac1-30 ° C.
  • the cooling rate up to 5 ° C./hour may be set.
  • a second cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the first annealing process; After the second cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a second annealing step.
  • the carbon steel sheet in the second annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, Ac1-30 ° C.
  • the cooling rate up to 5 ° C./hour may be set.
  • a third cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the second annealing process; After the third cold rolling step, the steel sheet is heated to 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step for annealing.
  • the carbon steel sheet is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, Ac1-30 ° C.
  • the cooling rate up to 5 ° C./hour may be set.
  • a third cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the second annealing process; After the third cold rolling step, the steel sheet is heated to 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step for annealing.
  • the carbon steel sheet in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, Ac1-30 ° C.
  • the cooling rate up to 5 ° C./hour may be set.
  • the carbon steel plate in the second annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • a third cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the second annealing process; After the third cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step.
  • the carbon steel sheet in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • a third cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more; After the third cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step.
  • the carbon steel plate in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • the carbon steel sheet in the first annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • a second cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the first annealing process; After the second cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a second annealing step.
  • the carbon steel sheet in the second annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • a third cold rolling process in which the steel sheet is cold-rolled at a rolling reduction of 5% or more after the second annealing process; After the third cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step.
  • the carbon steel sheet in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • the carbon steel sheet in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • the carbon steel plate in the second annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • a third cold rolling step of cold rolling the steel plate at a rolling reduction of 5% or more In the method for producing a carbon steel plate according to (26), after the second annealing step, a third cold rolling step of cold rolling the steel plate at a rolling reduction of 5% or more; After the third cold rolling step, the steel sheet is annealed at 660 ° C. or more in an atmosphere of 95% or more of hydrogen, a dew point up to 400 ° C. of ⁇ 20 ° C. or less, and a dew point of 400 ° C. or more and ⁇ 40 ° C. or less. And a third annealing step.
  • the carbon steel plate in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • the carbon steel sheet in the third annealing step, is annealed within a temperature range of Ac1 to Ac1 + 50 ° C., and after annealing, to Ac 1-30 ° C.
  • the cooling rate may be set to 5 ° C./hour or less.
  • the effect of improving the hardenability of B in the steel sheet can be stably secured, and an abnormal layer portion that is not a quenched structure such as pearlite, sorbite, or troostite is not generated. Therefore, excellent workability and hardenability are exhibited.
  • the configuration described in (2) above there are effects such as improvement in hardenability, toughness, temper softening resistance, etc. of the steel sheet, stabilization of mechanical properties of the steel sheet, and suppression of component fluctuations in the surface layer portion of the steel sheet. can get.
  • the methods described in (3) to (30) above the boron-added steel sheet described in (1) and (2) can be stably produced.
  • this steel material is low in cost and high in hardenability, and can be applied not only to automobile parts but also to general industrial machine parts, and has a great industrial value.
  • the present inventors diligently studied a method for solving the above problems. As a result, the inventors of the present invention have found that the poor quenching of the steel sheet surface layer part is not only due to the control in the annealing process described above, but in the consistent manufacturing process from the heating process of the hot rolling to the annealing process, It was clarified that the amount of the solid solution B fluctuated in, causing the hardenability to deteriorate.
  • the present inventors optimized the manufacturing conditions in each step, and in the region of the surface layer portion having a depth of 100 ⁇ m from the surface of the steel sheet. It is clear that when the average solid solution B is present at 10 ppm or more, the hardenability improvement effect of B can be stably secured, and an abnormal layer portion that is not a quenched structure such as pearlite, sorbite or troostite is not generated. did.
  • the boron-added steel sheet according to an embodiment of the present invention is, in mass%, C: 0.20 to 0.45%, Si: 0.05 to 0.8%, Mn: 0.5 to 2.0%, P: 0.001 to 0.04%, S: 0.0001 to 0.006% or less, Al: 0.005 to 0.10%, Ti: 0.005 to 0.2%, B: 0.0010 -0.01%, N: 0.0001-0.01%, with the balance containing iron and inevitable impurities.
  • an average solute B concentration in the surface layer portion from the surface to a depth of 100 ⁇ m in the plate thickness direction is 10 ppm or more.
  • C 0.20 to 0.45% C is an important element in securing the strength of the steel sheet. If it is less than 0.20%, the hardenability is lowered and the strength as a steel sheet for machine structure cannot be obtained, so the lower limit is specified to 0.20%. If it exceeds 0.45%, properties such as toughness and formability after quenching and weldability deteriorate, so the upper limit is defined as 0.45%. A preferable range is 0.20 to 0.40%.
  • Si acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.05%, the effect of addition cannot be obtained, so the lower limit is defined as 0.05%. If it exceeds 0.8%, the surface properties are deteriorated due to the scale wrinkles during hot rolling, so the upper limit is defined as 0.8%. A preferred range is 0.10 to 0.5%.
  • Mn acts as a deoxidizer and is an element effective for improving hardenability.
  • 0.5% or more is added in consideration of other elements contributing to hardenability to ensure hardenability. If it exceeds 2.0%, it promotes structural inhomogeneities such as pearlite bands due to segregation, and causes deterioration and variations in impact characteristics due to structural changes after quenching and tempering, so the upper limit is 2.0. %.
  • a preferred range is 0.5 to 1.5%.
  • P 0.001 to 0.04%
  • P is a harmful element from the viewpoint of toughness and workability in the steel of the present invention.
  • S 0.0001 to 0.006% or less S is preferable to lower the S content in order to promote the formation of non-metallic inclusions in the steel and to deteriorate the formability and toughness after heat treatment.
  • the upper limit is defined as 0.006%.
  • the lower limit is desirable, the lower limit is specified to be 0.0001% because a reduction from 0.0001% greatly increases the refining cost industrially. A more preferred range is 0.0001 to 0.003%.
  • Al acts as a deoxidizing agent and is an element effective for fixing N. If it is less than 0.005%, the effect of addition cannot be sufficiently obtained, so the lower limit is specified to be 0.005%. If it exceeds 0.1%, the effect of addition is saturated, surface flaws are likely to occur, nitrogen absorption during steel plate production is promoted, and nitride becomes stable and inhibits grain growth during quenching heat treatment. And cause deterioration of hardenability. Therefore, the Al content is set within the range of 0.005 to 0.10%. A more preferred range is 0.01 to 0.06%.
  • Ti acts as a deoxidizing agent and is an element effective for fixing N. Addition of 0.005% or more is necessary in relation to the amount of N. However, even if Ti is added in excess of 0.20%, the effect is saturated and not only the cost increases, but also the promotion of nitrogen absorption during the production process and the effective carbon amount due to the formation of carbides. This causes an increase in the amount of Ti-based precipitates due to reduction, etc., and inhibits the growth of austenite grains during quenching heat treatment, causing deterioration of quenchability. Therefore, the range is set to a range of 0.005 to 0.20%. It was. A more preferred range is 0.01 to 0.10%.
  • the above-mentioned Al and Ti are combined with N in the steel to form nitrides and suppress the formation of BN.
  • the heating process during hot rolling, hot rolling plate and cold rolling plate Promotes nitrogen absorption during annealing. Therefore, in the present invention, in addition to the above elements, it is desirable to reduce the total amount of Cr, which will be described later, which has high nitride forming ability.
  • the total content of Al, Ti, and Cr is preferably 0.4% or less.
  • B 0.0010 to 0.01% B has an effect of improving hardenability by adding a small amount, and is an extremely effective element for ensuring hardenability. If it is less than 0.0010%, there is no effect of addition, so the lower limit is defined as 0.0010%.
  • the surface layer part, particularly the solid solution B from the surface to a depth of 100 ⁇ m (surface layer 100 ⁇ m) is important, and the solid solution B to the depth of the surface layer 100 ⁇ m is 10 ppm or more. It is necessary. By ensuring the above, it is possible to prevent the generation of abnormal tissues such as pearlite, toastlite, and sorbite in the surface layer portion.
  • B is 0.0010% or more in the present invention.
  • the upper limit is defined as 0.01%.
  • a more preferred range is 0.001 to 0.005%.
  • N is an element that forms BN and inhibits the effect of improving the hardenability of B.
  • N is preferably as small as possible, but reducing it to less than 0.0001% leads to an increase in refining costs, so the lower limit is defined as 0.0001%. If it exceeds 0.01%, a large amount of elements for fixing N are required, and precipitates such as TiN to be produced inhibit mechanical properties such as toughness, so the upper limit is made 0.01%. Stipulate. A more preferred range is 0.0001 to 0.006%.
  • a required amount of one or more of Cr, Ni, Cu and Mo may be added.
  • Cr 0.03-0.35%
  • Cr is an element effective for improving hardenability.
  • Cr is an effective element that can be added from the viewpoint of hardenability of steel. If Cr is less than 0.03%, there is no effect of addition, so the lower limit is defined as 0.03%.
  • Addition exceeding 0.35% not only increases the cost, but also promotes nitrogen absorption during the production process, and the effective carbon amount by forming carbides, borides, and carbon borides, and the present invention. This leads to a decrease in the effective amount of B, which is a basic element, and also inhibits the grain growth of the austenite phase during quenching heat treatment through the stabilization of carbides, and causes deterioration in quenchability. Therefore, the range is set to 0.03 to 0.35%. Preferably, it is 0.05 to 0.35. Further, as described above, it is desirable that the total amount of Al, Ti and Cr added with Cr in addition to Al and Ti is also regulated to 0.40% or less.
  • Ni 0.01 to 1.0% Ni is an element effective for improving toughness and hardenability. If it is less than 0.01%, there is no effect of addition, so the lower limit is defined as 0.01%. If it exceeds 1.0%, the effect of addition is saturated and the cost is increased, so the upper limit is defined as 1.0%. A more preferred range is 0.02 to 0.5%.
  • Cu 0.05 to 0.5%
  • Cu is an element effective for ensuring hardenability. If it is less than 0.05%, the effect of addition is insufficient, so the lower limit is defined as 0.05%. If it exceeds 0.5%, wrinkles at the time of hot rolling are likely to occur, and the productivity is deteriorated, for example, the yield is lowered. Therefore, the upper limit is set to 0.5%. A more preferred range is 0.05 to 0.35%.
  • Mo 0.01 to 1.0% Mo is an element effective for improving hardenability and improving resistance to temper softening. If it is less than 0.01%, the effect of addition is small, so the lower limit is defined as 0.01%. If it exceeds 1.0%, the effect of addition is saturated and the cost increases, so the upper limit is defined as 1.0%. A more preferred range is 0.01 to 0.40%.
  • Nb 0.01 to 0.5%
  • Nb is an element that forms carbonitride and is effective in preventing abnormal grain growth, improving toughness, and improving temper softening resistance during heating before quenching. If it is less than 0.01%, the effect of addition is not sufficiently manifested, so the lower limit is defined as 0.01%. If it exceeds 0.5%, the effect of addition is saturated, and the quenching hardness due to increased cost and excessive carbide formation is reduced, so the upper limit is defined as 0.5%. A more preferred range is 0.01 to 0.20%.
  • V 0.01 to 0.5%
  • Nb is an element that forms carbonitride and is effective in preventing abnormal grain growth, improving toughness, and improving temper softening resistance during heating before quenching. If it is less than 0.01%, the effect of addition is small, so the lower limit is defined as 0.01%. If it exceeds 0.5%, the effect of addition will be saturated, and the quenching hardness will be lowered due to cost increase and excessive carbide formation, so the upper limit is specified to 0.5%. A more preferred range is 0.01 to 0.20%.
  • Ta 0.01 to 0.5%
  • Ta is an element that forms carbonitrides and is effective in preventing abnormal growth of crystal grains during heating before quenching, preventing coarsening of crystal grains, improving toughness, and improving temper softening resistance. . If it is less than 0.01%, the effect of addition is small, so the lower limit is defined as 0.01%. If it exceeds 0.5%, the effect of addition is saturated, and the quenching hardness due to increased cost and excessive carbide formation is reduced, so the upper limit is defined as 0.5%. A more preferred range is 0.01 to 0.30%.
  • W 0.01-0.5% W, like Nb, V, and Ta, forms carbonitrides and is an effective element for preventing abnormal grain growth during pre-quenching heating, preventing grain coarsening, improving toughness, and improving temper softening resistance. is there. If it is less than 0.01%, the effect of addition is small, so the lower limit is defined as 0.01%. If it exceeds 0.5%, the effect of addition is saturated, and the quenching hardness due to increased cost and excessive carbide formation is reduced, so the upper limit is defined as 0.5%. A more preferred range is 0.01 to 0.20%.
  • Sn 0.003-0.03%
  • Sn is an element that has a high tendency to segregate at the interface, the surface, and the like, and has a function of suppressing a surface layer reaction during a production process such as nitrogen absorption and decarburization. By adding it, even when the steel material is exposed to a high temperature atmosphere during heating or annealing in the hot rolling process, the reaction of elements such as nitrogen and carbon that tend to fluctuate components can be suppressed, and significant component fluctuations can be prevented. is there. If necessary, 0.003% to 0.03% may be added.
  • Sb 0.003 to 0.03%
  • Sb is an element that has a high tendency to segregate at the interface, surface, etc., and has the function of suppressing surface layer reactions during production processes such as nitrogen absorption and decarburization. By adding it, even when the steel material is exposed to a high temperature atmosphere during heating or annealing in the hot rolling process, the reaction of elements such as nitrogen and carbon that tend to fluctuate components can be suppressed, and significant component fluctuations can be prevented. is there. If necessary, 0.003% to 0.03% may be added.
  • the amount of oxygen (O) is not specified, but if the oxide aggregates and becomes coarse, the ductility decreases, so O is preferably 0.0040% or less. A smaller amount of O is preferable, but if it is less than 0.0001%, the cost increases industrially, so 0.0001 to 0.0040% is preferable.
  • elements such as Zn and Zr are mixed as unavoidable impurities.
  • mixing of the above elements is allowed within a range that does not impede its characteristics. it can. It should be noted that elements other than Zn, Zr, etc. can be allowed to enter as long as the properties of the steel sheet of the present invention are not impaired.
  • the steel plate of the present invention in order to prevent a quenched structure called pearlite, sorbite or troostite, which is likely to be generated in the surface layer when the steel plate is quenched, it is located at a position of 100 ⁇ m from the steel plate surface in the plate thickness direction.
  • the amount of B in the above portion is characterized by being 10 ppm or more in solid solution B which is not nitrided or oxidized. This point will be described below.
  • the heating by hot rolling is a high temperature atmosphere exceeding 1000 ° C.
  • the components of the surface layer fluctuate significantly due to decarburization of the surface layer, oxidation of B, nitrogen absorption, and the like.
  • the reason why the solute B is insufficient in the surface layer portion of the steel sheet is the oxidation of B and the generation of BN by nitrogen absorption in the heating process, and the formation of B by secondary scale generation and grain boundary oxidation in the winding process.
  • Oxidation affects, and in the annealing process, the B concentration in the surface layer portion varies greatly due to the oxidation of B and the nitridation of B due to the relationship with the dew point, so that the hardenability changes greatly.
  • a steel piece satisfying the component composition of the steel sheet of the present invention is inserted into a heating furnace directly or after cooling the steel piece and subjected to hot rolling at 1200 ° C. or less (S1). Then, finish rolling is performed at a temperature of 800 to 940 ° C. (S2). Subsequently, the steel sheet temperature is cooled to 650 ° C. or lower at a cooling rate of 20 ° C./second or higher (S3).
  • the cooling until the winding is slowly cooled at a cooling rate of 20 ° C./second or less (S4).
  • the steel sheet is wound at a winding temperature of 650 ° C. or lower and 400 ° C. or higher (S5).
  • S6 pickling this steel plate (S6), it anneals in the atmosphere containing 95% or more of hydrogen (S7).
  • the heating condition is 1200 ° C. or less for the steel piece (cold piece) to be subjected to hot rolling.
  • the surface layer of the slab becomes de-C, de-B, and BN precipitates due to nitrogen absorption during the heating process. Hardenability will deteriorate significantly.
  • it is important that the heating time is not long because the quenching characteristic of the product is lowered as the holding time is longer.
  • it is desirable to heat so that the retention time may be 60 minutes at 1200 ° C. and 90 minutes at 1100 ° C.
  • a particularly desirable heating temperature is preferably 1150 ° C. or less, and a holding time is preferably 40 minutes or less.
  • Hot rolling may be continuous hot rolling as well as normal hot rolling.
  • the finish rolling temperature end temperature of hot rolling
  • the finish rolling temperature is not only in terms of productivity, sheet thickness accuracy, and anisotropy improvement, but also in terms of surface flaws, in the finish lower than 800 ° C., flaws due to seizure frequently occur, and 940 If it is higher than ° C., the occurrence frequency of scale-induced wrinkles increases, resulting in a decrease in product yield and an increase in cost. Accordingly, hot rolling is performed at a finish rolling temperature of 800 to 940 ° C.
  • the steel sheet After hot finish rolling, the steel sheet is cooled to 650 ° C. or lower at a cooling rate of 20 ° C./second or higher. Subsequently, it is slowly cooled to a coiling temperature of 400 to 650 ° C. at a cooling rate of 20 ° C./second or less.
  • the reason for cooling to 650 ° C. after hot rolling at a cooling rate of 20 ° C./second or more is that if the cooling rate is slower than this, a pearlite band accompanying segregation or ferrite transformation is generated, and it is coarse even after annealing. This is because carbides easily exist and lead to deterioration of workability. From the viewpoint of preventing this, cooling is performed at 20 ° C./second or more. Further, the reason for slow cooling at a cooling rate of 20 ° C./second or less up to a coiling temperature of 400 to 650 ° C. is to promote uniform pearlite transformation or bainite transformation, and this temperature range is This is because, when rapidly cooled, the yield decreases greatly, such as wrinkles due to coil winding disorder resulting from overcooling ⁇ (austenite).
  • the reason for winding at a coiling temperature of 400 to 650 ° C. is that when it is less than 400 ° C., some martensitic transformation occurs, the strength of the steel sheet increases, handling becomes difficult, and the structure when cold-rolling is performed. This is because yield hunting is caused by non-uniform gauge hunting. On the other hand, when high temperature winding exceeding 650 ° C. is performed, a coarse pearlite structure is generated on the hot-rolled sheet, and the carbide of the product sheet is coarsened, so that workability is deteriorated.
  • the scale of the hot-rolled sheet becomes thick and the pickling property is deteriorated, and further, the progress of oxidation of the surface layer part and the grain boundary oxidation are also advanced, so that adverse effects such as a decrease in the solid solution B occur.
  • the hot-rolled steel sheet manufactured as described above is subjected to an annealing and cold-rolling process after pickling according to the product sheet thickness and the required softening level. is there.
  • the steel plate After winding the steel plate, the steel plate is pickled and annealed in an atmosphere containing 95% or more of hydrogen. This is to reduce the amount of nitrogen as much as possible to suppress the nitrogen absorption phenomenon that occurs during annealing even if the annealing time is long.
  • hydrogen may be replaced with another inert gas, for example, Ar.
  • the inside of the annealing furnace is temporarily replaced with nitrogen at room temperature to form a nitrogen atmosphere and then replaced with hydrogen.
  • the dew point should be -20 ° C or lower, and at higher temperatures and holding, the dew point should be -40 ° C or lower due to reduction of solid solution B due to oxidation of the surface layer and decarburization. This is important from the viewpoint of preventing fluctuations in the surface layer components.
  • the annealing at 660 ° C. or higher necessary for softening has a dew point of ⁇ 40 ° C. or lower.
  • the annealing is preferably performed at 660 ° C. or more for 8 hours or more. Thereby, the spheroidization of carbide progresses, and the grain growth of ferrite grains is promoted, so that the steel sheet is softened.
  • the temperature is 660 ° C. or lower and annealing is performed for less than 8 hours, carbide spheroidization and ferrite grain growth are not sufficient, and softening does not proceed. Therefore, processability cannot be ensured.
  • the upper limit of the annealing time varies depending on the steel type, it cannot be limited to a specific time. However, if the annealing time is too long, the softening proceeds but the cost increases. Therefore, the total annealing time exceeding 660 ° C.
  • the manufacturing method of the present invention can take various modes as described below.
  • a cold rolling process after pickling may be incorporated (S6-2).
  • the cold rolling process is used to efficiently perform softening in combination with the viewpoint of product thickness and annealing.
  • cold rolling with a reduction rate of 5% or more promotes the spheroidization of carbides and nucleation. Recrystallization without accompanying or recrystallization is relatively large in grain size, and coarsening due to grain growth is likely to occur, and softening is promoted.
  • the upper limit of the cold rolling reduction is not particularly defined, but if it exceeds 60%, the uniformity of the steel sheet structure by cold rolling further increases, but the recrystallized grains become finer during annealing, and annealing is performed for softening. Since it is necessary to make the time longer, a rolling reduction of 60% or less is preferable. However, the reduction ratio of cold rolling is determined from the viewpoint of cost and product homogenization.
  • the steel sheet after the annealing, may be cold-rolled again with a reduction rate of 5% or more and then annealed in an atmosphere containing hydrogen of 95% or more.
  • the structure After the above annealing, through a cold rolling-annealing process, the structure can be made uniform and the crystal grains can be coarsened, improving the workability, improving the beauty of the end face during shearing, Softening can be further promoted.
  • the steel sheet after the first annealing, may be cold-rolled again with a reduction rate of 5% or more, and then annealed in an atmosphere containing 95% hydrogen (S7). -2).
  • the steel sheet is annealed at a temperature of Ac1 to Ac1 + 50 ° C. in an atmosphere containing 95% or more of hydrogen, and after the annealing, 5 ° C. / Slowly cool to Ac1-30 ° C. at a cooling rate below the hour.
  • the reason for annealing at a temperature of Ac1 to Ac1 + 50 ° C. is to set the temperature range in which the ferrite phase and the austenite phase coexist so that carbides remain in the ferrite phase. This is because if the temperature is raised from the above and close to the austenite single phase, the pearlite transformation during cooling cannot be prevented and it may be hardened, and therefore, annealing is performed in the above temperature range.
  • the reason for slow cooling to Ac1-30 ° C at a cooling rate of 5 ° C / hour or less after annealing is to promote carbide spheroidization starting from the carbides present in the ferrite phase during the above annealing, and to promote the growth of ferrite grains This is to promote softening.
  • Ac1 indicates the temperature at which the austenite phase appears in the temperature raising process.
  • a sample is taken from a hot-rolled steel sheet, and the expansion curve when the temperature is raised at 0.3 ° C./s with a formaster tester is shown. The A1 transformation point was determined by measurement.
  • the present invention is applicable not only to steel plates but also to general steel products such as wire rods and steel bars, and steel plates are just one example.
  • the carbon steel sheet according to an embodiment of the present invention can be restated as follows, that is, by mass, C: 0.20 to 0.45%, Si: 0.05 to 0.8%, Mn: 0 0.5 to 2.0%, P: 0.001 to 0.04%, S: 0.0001 to 0.006%, Al: 0.005 to 0.10%, Ti: 0.005 to 0.20 %, B: 0.0010 to 0.01%, N: 0.0001 to 0.01%, with the balance being Fe and inevitable impurities, and in the surface layer portion from the surface to a depth of 100 ⁇ m in the plate thickness direction. It is a boron-added carbon steel sheet excellent in hardenability in which an average concentration of solute B is 10 ppm or more.
  • the boron-added carbon steel sheet is further, in mass%, Cr: 0.05 to 0.35%, Ni: 0.01 to 1.0%, Cu: 0.05 to 0.5%, and Mo: One or more of 0.01 to 1.0% may be contained.
  • the boron-added carbon steel sheet is further, in mass%, Nb: 0.01 to 0.5%, V: 0.01 to 0.5%, Ta: 0.01 to 0.5%, and W: One or more of 0.01 to 0.5% may be contained.
  • the boron-added carbon steel sheet is further one type of Sn: 0.003-0.03%, Sb: 0.003-0.03%, and As: 0.003-0.03% by mass%. Or you may contain 2 or more types.
  • a slab satisfying the above component composition is heated to 1200 ° C.
  • a boron-added carbon steel sheet having excellent hardenability may be manufactured by annealing in an atmosphere having a dew point of ⁇ 20 ° C. or lower and a dew point of 400 ° C. or higher of ⁇ 40 ° C. or lower.
  • the annealing may be performed at a temperature of 660 ° C. or more and a temperature of Ac1 or less of the boron-added carbon steel plate for 8 hours or more.
  • the boron-added carbon steel sheet may be cold-rolled with a reduction rate of 5% or more.
  • the boron-added carbon steel sheet is subjected to cold rolling with a reduction rate of 5% or more, and then a dew point of hydrogen of 95% or more and up to 400 ° C. is ⁇ 20 ° C. or less and 400 ° C. or more.
  • Re-annealing may be performed in an atmosphere of ⁇ 40 ° C. or lower.
  • the boron-added carbon steel sheet is cold-rolled again with a reduction rate of 5% or more, and then the dew point of hydrogen is 95% or more and up to 400 ° C. is ⁇ 20 ° C. or less, 400 ° C.
  • the above dew point may be annealed for the third time in an atmosphere of ⁇ 40 ° C. or lower.
  • the boron-added carbon steel plate is annealed within a temperature range of Ac1 to Ac1 + 50 ° C. of the steel plate, and after the annealing, at a cooling rate of 5 ° C./hour or less. , It may be cooled to a temperature of Ac1-30 ° C. or lower.
  • the conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 10 Steel pieces obtained by casting steel having the components shown in Tables 1 to 6 into a 50 kg steel ingot by vacuum melting were hot-rolled under the conditions shown in Tables 7 to 12.
  • the thickness of the hot-rolled sheet is 3 mm when cold rolling is not performed, and the thickness of the hot-rolled sheet is 3 mm when cold rolling is performed so that the thickness after cold rolling is 3 mm.
  • the hot-rolled sheet was pickled with hydrochloric acid and then annealed or cold-rolled to prepare a steel sheet for evaluation having a thickness of 3 mm.
  • Tables 7 to 12 Detailed manufacturing conditions and evaluation results are shown in Tables 7 to 12.
  • the sample was held at 880 ° C. for 1 minute in an Ar atmosphere and then quenched into oil at 60 ° C., and the structure of the steel sheet surface layer was observed with an optical microscope and a scanning electron microscope.
  • the component analysis sample is obtained by grinding a surface layer of 100 ⁇ m from a steel plate before quenching, collecting a sample for analysis, analyzing the amount of B in the surface layer of 100 ⁇ m, and analyzing the amount of B not combined with other elements. was determined as the average amount of dissolved B.
  • the average solid solution B amount in the above surface layer part is shown in the product characteristic column, and the microstructure observation result of the steel sheet surface layer part is shown in the post-quenching characteristic column.
  • structure observation “existence” was indicated as having an abnormal layer in the case where a pearlite structure or a structure not a quenched structure called sorbite or troostite was observed.
  • the solid solution B in the surface layer part is present in an average of 10 ppm or more, and an abnormal structure is observed in the surface layer part.
  • an abnormal structure such as pearlite, sorbite and troostite.
  • the present invention it is possible to prevent fluctuations in the components of the surface layer portion due to the nitrogen absorption phenomenon of the boron-added steel sheet, which is manifested in annealing, and not only good workability but also desired heat treatment after forming.
  • a steel plate having a ensured hardness can be obtained. Therefore, the steel sheet according to the present invention can be widely used not only in automobile parts but also in general industrial machine parts, and is industrially valuable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 本発明は、C:0.20質量%以上0.45質量%以下、Si:0.05質量%以上0.8質量%以下、Mn:0.5質量%以上2.0質量%以下、P:0.001質量%以上0.04質量%以下、S:0.0001質量%以上0.006質量%以下、Al:0.005質量%以上0.10質量%以下、Ti:0.005質量%以上0.20質量%以下、B:0.0010質量%以上0.01質量%以下、及びN:0.0001質量%以上0.01質量%以下の成分を含有するボロン添加鋼板であって、表層から板厚方向100μm深さまでの領域における固溶Bの平均濃度が10ppm以上であるボロン添加鋼板を提供する。

Description

焼入れ性に優れたボロン添加鋼板および製造方法
 本発明は、焼入れ性に優れたボロン添加炭素鋼板とその製造方法に関する。
 本願は、2009年3月16日に、日本に出願された特願2009-063603号に基づき優先権を主張し、その内容をここに援用する。
 従来、炭素鋼板は、チェーン、ギヤー、クラッチ等の自動車部品、一般産業機械部品、そして鋸、刃物等の工具の素材として広く用いられている。これらは、炭素鋼板を製品形状に成形した後、焼入れ焼戻し等の熱処理を施して硬化させている。
 そのため、炭素鋼板においては、優れた加工性の確保や、合金コストの低減の観点から、相対的に、C量や合金元素量を低減し、焼入れ性をボロン(B)添加で確保するB添加炭素鋼板が開発され、例えば特許文献1や特許文献2に開示されている。Bは低コストでありながら焼入れ性に優れており、高価な合金元素を削減する点で有効な元素である。
 しかし、Bは、窒素(N)との親和力が強く、鋼中のNや雰囲気中のNと結合し、BNを生成しやすい。そのため、鋼中の固溶Bが減少しないよう、B添加の炭素鋼板においては、通常、Ti等のより窒化し易い、窒化物形成元素を含有する成分組成とすることが多い。
 一方、前記部品形状も複雑化してきており、素材である炭素鋼板には、複雑でかつ過酷な加工に耐え得る加工性が要求されている。加工性を確保するためには、鋼材を軟質化させることが有効である。しかし、軟質化を進めるために、通常の鋼板で用いられるような高生産性な製造プロセスである連続焼鈍による短時間焼鈍での軟質化は難しい。従って、炭素鋼は炭化物の球状化やフェライト組織の粗大化を進めるために長時間のバッチ焼鈍や箱焼鈍といわれるようなコイルのままでの焼鈍が行われることが多い。一般的に、この焼鈍は10時間以上の長い時間を要する。
特開平05-331534号公報 特開2008-214707号公報
 通常、窒素を主体とする雰囲気で焼鈍すると、焼鈍時間にもよるが、焼鈍雰囲気中に存在するNが、鋼板中に浸透する“吸窒”という現象が発現する。そうすると、焼入れ性の観点から重要な元素であるBが、焼鈍中に鋼中のNと結合してBNを形成し、析出する。鋼板中にBNが生成すると、固溶Bが減少するため、Bによる焼入れ性向上効果を確保できなくなり、成形後の焼入れ時に、所望の硬度が得られないという問題が生じる。
 この問題に対し、特許文献1は、B添加鋼を、窒素含有量10体積%以下の水素雰囲気中や、Ar雰囲気中で焼鈍することを開示している。しかし、従来の焼鈍設備を使用することはできず、焼鈍設備の改造や、Nの代わりにAr等を使用するため、焼鈍コストが上昇することは避けられない。
 また、Bは、酸素との親和力も強く、焼鈍工程以外の工程(熱延工程、巻取工程)において、加熱雰囲気中にある酸素や大気中の酸素と結合し、脱B現象が生じることがある。さらに、脱B現象と同時に、脱炭や、焼入れ元素の酸化が起きて、鋼板表層部の成分組成が変化し、パーライト、ソルバイトやトルースタイトといわれるような組織が混在する異常層部が発生することがある。この異常層部が発生すると、鋼板の焼入れ性に著しい偏りが生じるため、部品品質が得られないという問題もある。
 そこで、本発明は、炭素鋼板において、加工性と焼入れ性とを両立させることを課題とし、その課題を解決するため、表層部の焼入れ性不良の解消により、焼入れ性向上元素(B)の添加効果を安定的に確保する炭素鋼板とその製造条件の最適化を提供することを目的とする。
 本発明は、上述の課題を解決するために以下の手段を採用した。
(1)本発明の第1の態様は、C:0.20質量%以上0.45質量%以下、Si:0.05質量%以上0.8質量%以下、Mn:0.5質量%以上2.0質量%以下、P:0.001質量%以上0.04質量%以下、S:0.0001質量%以上0.006質量%以下、Al:0.005質量%以上0.1質量%以下、Ti:0.005質量%以上0.2質量%以下、B:0.001質量%以上0.01質量%以下、及びN:0.0001質量%以上0.01質量%以下の成分を含有し、残部がFe及び不可避的不純物を含むボロン添加鋼板であって、表層から深さ100μmまでの領域における固溶Bの平均濃度が10ppm以上であるボロン添加鋼板である。
(2)上記(1)に記載のボロン添加鋼板では、Cr:0.05質量%以上0.35質量%以下、Ni:0.01質量%以上1.0質量%以下、Cu:0.05質量%以上0.5質量%以下、Mo:0.01質量%以上1.0質量%以下、Nb:0.01質量%以上0.5質量%以下、V:0.01質量%以上0.5質量%以下、Ta:0.01質量%以上0.5質量%以下、W:0.01質量%以上0.5質量%以下、Sn:0.003質量%以上0.03質量%以下、Sb:0.003質量%以上0.03質量%以下、及びAs:0.003質量%以上0.03質量%以下の1種又は2種以上の成分を更に含有してもよい。
(3)本発明の第2の態様は、スラブを1200℃以下で加熱する加熱工程と;800℃以上940℃以下の仕上げ圧延温度で前記スラブを熱間圧延して鋼板を得る熱間圧延工程と;前記鋼板が650℃以下になるまで冷却速度20℃/秒以上で前記鋼板を冷却する第1の冷却工程と;前記第1の冷却工程に続き、冷却速度20℃/秒以下で前記鋼板を冷却する第2の冷却工程と;650℃以下400℃以上で前記鋼板を巻き取る巻き取り工程と;前記鋼板を酸洗する酸洗工程と;前記鋼板を、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気において、660℃以上で前記炭素鋼板のAc1以下の温度で8時間以上焼鈍する第1の焼鈍工程と;を備える上記(1)又は(2)に記載のボロン添加鋼板の製造方法である。
(4)上記(3)に記載のボロン添加鋼板では、前記酸洗工程の後に、圧下率5%以上の圧延率で前記鋼板を冷間圧延する第1の冷間圧延工程を更に備えてもよい。
(5)上記(4)に記載のボロン添加鋼板の製造方法では、前記第1の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(6)上記(5)に記載のボロン添加鋼板の製造方法では、前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;を更に備えてもよい。
(7)上記(6)に記載のボロン添加鋼板の製造方法では、前記第2の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(8)上記(7)に記載のボロン添加鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(9)上記(8)に記載のボロン添加鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(10)上記(6)に記載のボロン添加鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(11)上記(10)に記載のボロン添加鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(12)上記(4)に記載のボロン添加鋼板の製造方法では、前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;を更に備えてもよい。
(13)上記(12)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(14)上記(13)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(15)上記(14)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(16)上記(12)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(17)上記(16)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(18)上記(3)に記載の炭素鋼板の製造方法では、前記第1の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(19)上記(18)に記載の炭素鋼板の製造方法では、前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;を更に備えてもよい。
(20)上記(19)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(21)上記(20)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(22)上記(21)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(23)上記(19)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(24)上記(23)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(25)上記(3)に記載の炭素鋼板の製造方法では、前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;を更に備えてもよい。
(26)上記(25)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(27)上記(26)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(28)上記(27)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
(29)上記(25)に記載の炭素鋼板の製造方法では、前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;を更に備えてもよい。
(30)上記(29)に記載の炭素鋼板の製造方法では、前記第3の焼鈍工程において、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定してもよい。
 上記(1)に記載の構成によれば、鋼板におけるBの焼入れ性向上効果を安定的に確保できるとともに、パーライト、ソルバイトやトルースタイトといわれるような焼入れ組織ではない異常層部が発生しなくなる。従って、優れた加工性と焼入れ性とが発揮される。
 上記(2)に記載の構成によれば、鋼板の焼入れ性、靭性、焼戻し軟化抵抗性等の向上や、鋼板の機械特性の安定化や、鋼板の表層部の成分変動の抑制等の効果が得られる。
 上記(3)~(30)に記載の方法によれば、上記(1)、(2)に記載のボロン添加鋼板を安定して製造することができる。
 以上のように、本発明によれば、ボロン添加炭素鋼の表層部の成分変動を防止し、成形加工後の焼入れ焼き戻しにて所望の硬度が確保できる鋼材を得ることができる。また、この鋼材は、低コストで焼入れ性が高く、自動車部品だけでなく、広く一般産業機械部品にも適用でき、工業的に価値の大きなものである。
鋼板表層部に存在する固溶Bと焼入れ性材の表層部における異常組織発生の関係を示す図である。 製造方法の一例を説明するためのフローチャートである。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、本発明者らは、鋼板表層部の焼入れ不良は、上記の焼鈍工程での制御だけが原因ではなく、熱間圧延の加熱工程から焼鈍工程までの一貫した製造プロセスにおいて、鋼板表層部において固溶B量が変動し、焼入れ性を劣化させることに原因があることを明らかにした。
 さらに、熱間圧延、焼鈍条件を含めた一貫プロセスでの検討を進めた結果、本発明者らは、各工程での製造条件を最適化し、鋼板の表面から深さ100μmの表層部の領域における平均固溶Bを10ppm以上存在させると、Bの焼入れ性向上効果を安定的に確保できるとともに、パーライト、ソルバイトやトルースタイトといわれるような焼入れ組織ではない異常層部が発生しなくなることを明らかにした。
 以下、本発明の好ましい実施形態について説明する。
 本発明の一実施形態に係るボロン添加鋼板は、質量%で、C:0.20~0.45%、Si:0.05~0.8%、Mn:0.5~2.0%、P:0.001~0.04%、S:0.0001~0.006%以下、Al:0.005~0.10%、Ti:0.005~0.2%、B:0.0010~0.01%、N:0.0001~0.01%を含有し、残部が鉄及び不可避的不純物を含有する。このボロン添加鋼板では、表面から板厚方向100μm深さまでの表層部における平均の固溶B濃度が10ppm以上存在する。まず、この鋼板(以下「本発明鋼板」ということがある。)の成分組成に係る限定理由について説明する。なお、含有量に関する「%」は、「質量%」を意味する。
 C:0.20~0.45%
 Cは、鋼板の強度を確保するうえで重要な元素である。0.20%未満では、焼入れ性が低下し、機械構造用鋼板としての強度が得られないので、下限を0.20%に規定する。0.45%を超えると、焼入れ後の靭性や成形性、また、溶接性等の特性が劣化するので、上限を0.45%に規定する。好ましい範囲は、0.20~0.40%である。
 Si:0.05~0.8%
 Siは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。0.05%未満では、添加効果が得られないので、下限を0.05%に規定する。0.8%を超えると、熱間圧延時のスケール疵に起因する表面性状の劣化を招くので、上限を0.8%に規定する。好ましい範囲は、0.10~0.5%である。
 Mn:0.5~2.0%
 Mnは、脱酸剤として作用し、また、焼入れ性の向上に有効な元素である。本発明では他の焼入れ性に寄与する元素との兼ね合いから0.5%以上の添加とし、焼入れ性を確保する。2.0%を超えると、偏析に起因するパーライトバンド等の組織的不均一を助長し、焼入れ、焼戻し後の組織変動に起因する衝撃特性の劣化やバラツキの原因となるため上限を2.0%に規定する。好ましい範囲は、0.5~1.5%である。
 P:0.001~0.04%
 Pは、本発明鋼では靭性や加工性の観点からは有害な元素であり、P含有量は低いほど望ましく、その上限を0.04%に規定する。また、下限は低いほど望ましいが、0.001%より低減することは、工業的にコストが大幅に増加するため、下限は、0.001%に規定する。さらに好ましい範囲は0.003~0.025%である。
 S:0.0001~0.006%以下
 Sは、鋼中に非金属介在物の生成を促進させ、成形加工性や熱処理後の靭性等を劣化させるために、S含有量は低いほど望ましく、その上限を0.006%に規定する。下限は低いほど望ましいが、0.0001%より低減することは、工業的に精錬コストが大幅に増加するため、下限は、0.0001%に規定する。さらに好ましい範囲は0.0001~0.003%である。
 Al:0.005~0.10%
 Alは、脱酸剤として作用し、また、Nの固定に有効な元素である。0.005%未満では、添加効果が十分に得られないので、下限を0.005%に規定する。0.1%を超えると、添加効果は飽和し、また、表面疵が発生し易くなり、また、鋼板製造時の吸窒を促進したり、窒化物が安定となり焼入れ熱処理時の粒成長を阻害し、焼入れ性を劣化させる原因となる。従って、その範囲を0.005~0.10%の範囲にAl含有量を定めた。さらに好ましい範囲は0.01~0.06%である。
 Ti:0.005~0.20%
 Tiは、脱酸剤として作用し、また、Nの固定にも有効な元素である。N量との関係から0.005%以上の添加が必要である。しかし、0.20%を超えてTiを添加してもその効果は飽和し、また、コストも増加するだけでなく、製造工程中の吸窒の促進、炭化物を形成することによる有効炭素量の低減等によるTi系析出物量の増加を招き、焼入れ熱処理時のオーステナイト粒の粒成長を阻害し、焼入れ性を劣化させる原因となるので、その範囲を0.005~0.20%の範囲に定めた。さらに好ましい範囲は0.01~0.10%である。
 上記のAl、Tiは鋼中のNと結びついて窒化物を形成してBNの形成を抑制するが、過剰に含有させると加熱、熱間圧延時の加熱工程や熱延板や冷延版の焼鈍時の吸窒そのものを促進させる。従って、本発明では上記元素に加えて窒化物形成能が高い後述のCrと合わせてその総量を低減することが望ましい。Al、Ti、Crの含有量は、合わせて0.4%以下であることが好ましい。
 B:0.0010~0.01%
 Bは、微量の添加で焼入性を向上させる効果があり、焼入れ性確保には非常に有効な元素である。0.0010%未満では、添加効果がないので、下限を0.0010%に規定する。本発明では、特に鋼板平均としてのB量の最適化だけではなく表層部、特に表面から100μm深さまで(表層100μm)の固溶Bが重要で、表層100μm深さまでの固溶Bが10ppm以上あることが必要である。上記を確保することで表層部にパーライトやトルーストライト、ソルバイトといった異常組織の生成を防止することができる。そのためには、後述する製造工程中の加熱や焼鈍工程の雰囲気の影響を抑制することが重要であり、これらを制御して、特性を確保する観点から、Bを本発明では0.0010%以上の添加とした。また、0.01%を超えると、鋳造性が低下し、また、B系化合物が生成して靭性が低下するので、上限を0.01%に規定する。より好ましい範囲は、0.001~0.005%である。
 N:0.0001~0.01%
 Nは、BNを形成し、Bの焼入れ性向上効果を阻害する元素である。Nは少ないほど好ましいが、0.0001%未満に低減するのは、精錬コストの増加を招くので、下限を0.0001%に規定する。0.01%を超えると、Nを固定する元素が多量に必要となるし、また、生成するTiN等の析出物が、靭性等の機械的特性を阻害するので、上限を0.01%に規定する。さらに好ましい範囲は0.0001~0.006%である。
 さらに、本発明鋼板の機械特性を強化するため、Cr、Ni、Cu及び、Moの1種又は2種以上を、所要量、添加してもよい。
 Cr:0.03~0.35%
 Crは、焼入れ性の向上に有効な元素である。Crは鋼の焼入れ性の観点から、添加できる有効な元素である。0.03%未満のCrでは、添加効果がないので、下限を0.03%に規定する。0.35%を超えて添加すると、コストも増加するだけでなく、製造工程中の吸窒を促進し、また、炭化物や硼化物、炭硼化物を形成することによる有効炭素量や、本発明の基本元素であるBの有効量の低下につながり、また、炭化物の安定化を通して焼入れ熱処理時のオーステナイト相の粒成長を阻害し、焼入れ性を劣化させる原因にもなる。従って、その範囲を0.03~0.35%の範囲に定めた。好ましくは、0.05~0.35である。また、上述したようにAl、Tiと合わせて、Crを加えたAl、Ti、Crの添加総量も0.40%以下に規制することが望ましい。
 Ni:0.01~1.0%
 Niは、靭性の向上や、焼入れ性の向上に有効な元素である。0.01%未満では、添加効果がないので、下限を0.01%に規定する。1.0%を超えると、添加効果は飽和するし、また、コスト増を招くので、上限を1.0%に規定する。さらに好ましい範囲は0.02~0.5%である。
 Cu:0.05~0.5%
 Cuは、焼入性の確保に有効な元素である。0.05%未満では、添加効果が不十分であるので、下限を0.05%に規定する。0.5%を超えると、熱延時の疵が発生しやすくなり歩留りを落とすなど製造性を劣化させるので上限を0.5%に規定する。さらに好ましい範囲は0.05~0.35%である。
 Mo:0.01~1.0%
 Moは、焼入れ性の向上と、焼戻し軟化抵抗性の向上に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%に規定する。1.0%を超えると、添加効果は飽和し、コストも増大するので、上限を1.0%に規定する。さらに好ましい範囲は0.01~0.40%である。
 また、さらに、本発明鋼板の機械特性を安定化させるため、Nb、V、Ta、及び、Wの1種又は2種以上を、所要量、添加してもよい。
 Nb:0.01~0.5%
 Nbは、炭窒化物を形成し、焼入れ前加熱時の結晶粒の異常粒成長防止や靭性改善、焼戻し軟化抵抗改善に有効な元素である。0.01%未満では、添加効果は充分に発現しないので、下限を0.01%に規定する。0.5%を超えると、添加効果が飽和し、また、コスト増や過剰な炭化物形成による焼入れ硬度を低下させることになるため、上限を0.5%に規定する。さらに好ましい範囲は0.01~0.20%である。
 V:0.01~0.5%
 Vは、Nbと同様に、炭窒化物を形成し、焼入れ前加熱時の結晶粒の異常粒成長防止や靭性改善、焼戻し軟化抵抗改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%に規定する。0.5%を超えると添加効果が飽和し、また、コスト増や過剰な炭化物形成による焼入れ硬度を低下させることになるため、上限を0.5%に規定する。さらに好ましい範囲は0.01~0.20%である。
 Ta:0.01~0.5%
 Taは、Nb、Vと同様に、炭窒化物を形成し、焼入れ前加熱時の結晶粒の異常粒成長防止や結晶粒の粗大化防止や靭性改善、焼戻し軟化抵抗改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%に規定する。0.5%を超えると、添加効果が飽和し、また、コスト増や過剰な炭化物形成による焼入れ硬度を低下させることになるため、上限を0.5%に規定する。さらに好ましい範囲は0.01~0.30%である。
 W:0.01~0.5%
 WはNb、V、Taと同様に、炭窒化物を形成し、焼入れ前加熱時の結晶粒の異常粒成長防止や結晶粒の粗大化防止や靭性改善、焼戻し軟化抵抗改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%に規定する。0.5%を超えると、添加効果が飽和し、また、コスト増や過剰な炭化物形成による焼入れ硬度を低下させることになるため、上限を0.5%に規定する。さらに好ましい範囲は0.01~0.20%である。
 さらにその上、鋼板表層部の成分変動を抑制するために、本発明においては、Sn、Sb、Asの1種又は2種以上を、所要量、添加してもよい。
 Sn:0.003~0.03%
 Snは、界面、表面等に偏析する傾向が高い元素であり、吸窒や脱炭等の製造工程中での表層反応を抑制する働きがある。その添加により、熱間圧延工程の加熱時や焼鈍時の高温雰囲気中に鋼材がさらされる状態でも、窒素や炭素等の成分変動しやすい元素の反応を抑制し、著しい成分変動を防止できる効果がある。必要に応じて0.003~0.03%添加するとよい。0.003%より少ないと、その効果が小さく、また、0.03%より多量に添加しても効果が飽和するだけでなく、靭性の低下、また、浸炭時間の長時間化を招くなど、コスト増につながる。そのため、0.003~0.03%添加することが望ましい。
 Sb:0.003~0.03%
 Sbは、Snと同様に、界面、表面等に偏析する傾向が高い元素であり、吸窒や脱炭等の製造工程中での表層反応を抑制する働きがある。その添加により、熱間圧延工程の加熱時や焼鈍時の高温雰囲気中に鋼材がさらされる状態でも、窒素や炭素等の成分変動しやすい元素の反応を抑制し、著しい成分変動を防止できる効果がある。必要に応じて0.003~0.03%添加するとよい。0.003%より少ないと、その効果が小さく、また、0.03%より多量に添加しても効果が飽和するだけでなく、靭性の低下、また、浸炭時間の長時間化を招くなど、コスト増につながる。そのため、0.003~0.03%添加することが望ましい。
 As:0.003~0.03%
 Asも、Sn、Sbと同様に、界面、表面等に偏析する傾向が高い元素であり、吸窒や脱炭等の製造工程中での表層反応を抑制する働きがある。その添加により、熱間圧延工程の加熱時や焼鈍時の高温雰囲気中に鋼材がさらされる状態でも、窒素や炭素等の成分変動しやすい元素の反応を抑制し、著しい成分変動を防止できる効果がある。必要に応じて0.003~0.03%添加するとよい。0.003%より少ないと、その効果が小さく、また、0.03%より多量に添加しても効果が飽和するだけでなく、靭性の低下、また、浸炭時間の長時間化を招くなど、コスト増につながる。そのため、0.003~0.03%添加することが望ましい。
 本発明鋼板において、酸素(O)量は規定していないが、酸化物が凝集して粗大化すると、延性が低下するので、Oは、0.0040%以下が好ましい。Oは、少ないほうが好ましいが、0.0001%未満にすることは、工業的にコストの増大を招くので、0.0001~0.0040%であることが好ましい。
 その他、溶製原料としてスクラップを用いた場合、Zn、Zr等の元素が、不可避的不純物として混入するが、本発明に係る鋼板においては、その特性を阻害しない範囲で、上記元素の混入を許容できる。なお、Zn、Zr等以外の元素でも、本発明鋼板の特性を阻害しない範囲で、混入を許容できる。
 本発明鋼板においては、前述したように、鋼板を焼入れした際に表層部に生成しやすいパーライト、ソルバイトやトルースタイトといわれるような焼入れ組織を防止するために、鋼板表面から板厚方向へ100μm位置までの部位(表層100μm部)のB量が、窒化や酸化していない固溶Bで10ppm以上存在することを特徴とする。以下の、この点について説明する。
 本発明者らの検討結果にから、鋼板表層部の焼入れ不良は、鋼板表層部において固溶B量が不足することに起因していることがわかった。そして、鋼板表層部において固溶B量は、加熱条件、巻取条件、酸洗条件、焼鈍条件の各工程での製造条件が密接に関係し、これらの一貫製造条件を最適化することが必要であることが判明した。
 特に、熱間圧延での加熱は、1000℃を超える高温雰囲気であるため、表層部の脱炭、Bの酸化、吸窒等により、表層部の成分が著しく変動する。このように鋼板表層部において、固溶Bが不足する理由は、加熱工程においてはBの酸化と、吸窒によるBN生成であり、巻取工程においては2次スケール生成や粒界酸化によるBの酸化が影響し、また、焼鈍工程においては露点との関係によるBの酸化、及びBの窒化により、それぞれ表層部のB濃度が大きく変動し、そのため焼入れ性が大きく変化する。
 上記を変動要因として0.22%C-0.15%Si-0.65%Mn-0.15%Cr-0.03%Ti-30ppmN-25ppmB系のボロン鋼の熱延条件、焼鈍条件等の製造条件を種々変化させ4mm厚の熱延鋼板を製造し、この鋼板をAr雰囲気にて880℃で1分保定後、60℃の油に焼入れしたサンプルの鋼板表層部の組織と、焼入れ熱処理する前の鋼板の表層100μm部の領域を研削により採取して分析した成分との関係を調査した。その結果を図1に示す。焼入れ前の表層100μm部の固溶Bと異常層の割合には良い相関関係が見られることがわかる。その結果から、表層100μm部で固溶Bが10ppm以上あると、異常層が表層部に見られなくなることが判明した。
 次に、本発明の好ましい実施形態に係る、表層から深さ100μmまでの領域に固溶Bを10ppm以上有する鋼板の製造方法について、図2のフローチャートを参照して説明する。
 まず、本発明鋼板の成分組成を満たす鋼片を、直接又は鋼片を冷却後に加熱炉に挿入し、1200℃以下で熱間圧延に供する(S1)。そして、800~940℃の温度で仕上圧延を行う(S2)。続いて、20℃/秒以上の冷却速度で、鋼板温度が650℃以下まで冷却する(S3)。更に引き続き、巻取までの冷却を20℃/秒以下の冷却速度で緩冷却する(S4)。そして、650℃以下400℃以上の巻取温度で鋼板を巻き取る(S5)。その後、この鋼板を酸洗した後(S6)、水素を95%以上含む雰囲気中で、焼鈍を施す(S7)。
 熱間圧延に供する鋼片(冷片)に対し、加熱条件は1200℃以下とする。1200℃を超えて加熱したり、均熱時間を60分以上の長時間にしたりすると、加熱工程でスラブの表層部の脱Cや脱B、吸窒によるBNの析出が顕著となり、鋼板表面の焼入れ性を著しく劣化させることになる。また、この際、保定時間も長時間となるほど製品の焼入れ特性を低下させるため、加熱時間は長時間にならないようにすることが重要である。具体的には、1200℃では保定時間として60分を、1100℃では90分を超えないように加熱することが望ましい。脱Cや脱B、吸窒を抑制する観点から、特に望ましい加熱温度は、1150℃以下が好ましく、保定時間は40分以下が好ましい。
 なお、鋼片を鋳造直後、又は、鋳造後冷却した鋼片を再加熱して熱間圧延に供するが、直接圧延した場合と、再加熱後圧延した場合において、鋼板特性に差は殆どない。
 熱間圧延は、通常の熱間圧延だけでなく、連続化熱間圧延であってもよい。仕上圧延温度(熱間圧延の終了温度)は、生産性や板厚精度、異方性改善の観点に加え、表面疵の観点でも800℃より低い仕上げでは焼き付きによる疵が多発し、また、940℃より高いとスケール起因の疵の発生頻度が高くなり、製品歩留まりが低下してコストを増大する。従って、800~940℃の仕上げ圧延温度で熱間圧延を行う。
 熱間の仕上圧延後、鋼板を20℃/秒以上の冷却速度で、650℃以下まで冷却する。続いて、20℃/秒以下の冷却速度で、巻取温度の400~650℃まで緩冷却する。
 熱間圧延後の650℃までの冷却速度を20℃/秒以上の冷却速度で冷却する理由は、これより冷却速度が遅いと偏析やフェライト変態に伴うパーライトバンドが生成し、焼鈍後も粗大な炭化物が存在しやすく加工性の劣化につながるためである。これを防止する観点から20℃/秒以上にて冷却する。また、その後、巻取温度である400~650℃までの冷却速度20℃/秒以下の冷却速度で緩冷却する理由は、均一なパーライト変態やベイナイト変態を進行させるためであり、この温度範囲を急冷すると過冷γ(オーステナイト)に起因するコイルの巻き形状乱れによる疵が発生するなど、歩留り低下が大きくなるからである。
 また、巻取温度400~650℃で巻き取る理由は、400℃未満であると、一部マルテンサイト変態を生じたり鋼板の強度が高くなり、ハンドリングが困難になったり、冷延する際の組織不均一からゲージハンチングを起こすなど歩留りの低下を引き起こすためである。一方、650℃を超えた高温巻取を実施すると、熱延板に粗大なパーライト組織が生成し、製品板の炭化物が粗大化することにより加工性が劣化する。また、熱延板のスケールも厚くなり酸洗性が低下するばかりでなく、表層部の酸化進行や粒界酸化も進展して、固溶Bが低下する等の悪影響が出るためである。
 また、上記により製造された熱延鋼板は、製品板厚や必要な軟質化レベルに応じて、酸洗後、焼鈍や冷延工程を実施するが、その際の製造条件としては下記が必要である。
 鋼板を巻き取った後、鋼板に酸洗を施し、水素を95%以上含む雰囲気中で焼鈍する。これは窒素量を極力低減することで、焼鈍時間が長くなっても、焼鈍中に生じる吸窒現象を抑制するためである。水素濃度は高い方が、N濃度が低い方が望ましく、水素100%であることが好ましい。また、水素は、他の不活性ガス、例えばArに置き換えてもよい。
 水素を主体とする焼鈍においては、安全性の観点から一旦常温で焼鈍炉内を窒素にて置換して窒素雰囲気とした後、水素に置換する。この際、水素に置換した後に昇温するのが窒化を防止する関連から望ましいが、窒素雰囲気から昇温しながら水素に置換してもよく、できるだけ低温で水素濃度95%以上とすることが必要である。昇温時、特に400℃までは、露点を-20℃以下とし、それ以上の温度及び保定時には露点を-40℃以下にすることが、表層部の酸化による固溶Bの低減や脱炭による表層部の成分変動を防止する観点から重要である。本発明では軟質化に必要な660℃以上での焼鈍は露点を-40℃以下とした。
 焼鈍は、660℃以上で8時間以上行うことが好ましい。これにより、炭化物の球状化が進み、また、フェライト粒の粒成長を促して、鋼板が軟質化される。660℃以下の温度や8時間未満の焼鈍では、炭化物の球状化やフェライト粒の成長も十分でなく、軟質化が進まない。そのため加工性を確保できない。焼鈍時間の上限については鋼種により異なるので、特定の時間に限定できないが、焼鈍時間が長すぎると軟質化は進むもののコストが増大するので、実用上、660℃を超える時間のトータルの焼鈍時間は200時間以下と考えられる。また、上限温度については、Ac1以下の温度で実施する。しかし、更に短時間でより軟質化を進めるために、設備的に高温や冷却制御が可能であれば、後述するAc1以上の高温焼鈍を適用することも可能である。
 本発明製造方法は、以下に説明するように、種々の態様をとることができる。
 例えば、酸洗後の冷延工程を取り入れてもよい(S6-2)。冷延工程は、製品板厚の観点や焼鈍と組み合わせて軟質化を効率的に実施するために用いられるが、特に圧下率5%以上の冷間圧延により、炭化物の球状化が促進、核生成を伴わない再結晶や再結晶完了時の粒径が比較的大きく粒成長による粗大化が起こりやすく軟質化が促進する。
 冷延圧下率の上限については特に定めないが、60%を超えると冷間圧延による鋼板組織の均一性が更に高まるが、焼鈍時の再結晶粒が微細になり、軟質化のためには焼鈍時間を長時間にすることが必要になるため60%以下の圧下率が好ましい。但し、冷延の圧下率はコストと製品均質化の観点から決定する。
 本発明製造方法においては、上記焼鈍の後、鋼板に再度圧下率5%以上の冷間圧延を施し、次いで、水素を95%以上含む雰囲気中で焼鈍を施してもよい。上記焼鈍の後、冷間圧延-焼鈍の工程を経ることにより、組織の均一化結晶粒の粗大化を図ることができ、加工性の向上、剪断時の端面の美麗さを向上させ、また、軟質化を更に進めることができる。
 本発明製造方法においては、上記第1の焼鈍の後、鋼板に、再度、圧下率5%以上の冷間圧延を施し、次いで、水素を95%含む雰囲気中で焼鈍を施してもよい(S7-2)。
 本発明製造方法においては、軟質化の観点からは上述の焼鈍工程を冷延と組み合わせ3度を超えて実施することも可能であり、その場合も上述した製造条件内で実施することが必要である(S7-X1、S7-X2)。
 前述したように、焼鈍設備が高温焼鈍やその後の冷却制御が可能であれば、水素を95%以上含む雰囲気中で、鋼板のAc1~Ac1+50℃の温度で焼鈍し、該焼鈍後、5℃/時間以下の冷却速度で、Ac1-30℃まで緩冷却する。
 Ac1~Ac1+50℃の温度で焼鈍する理由は、フェライト相とオーステナイト相を共存する温度範囲とし、フェライト相に炭化物を残存させるためである。上記より温度を上げてオーステナイト単相に近くなると、冷却時のパーライト変態を防止できず、硬質化させてしまう可能性があるためであり、そのため、上記温度範囲で焼鈍する。また、焼鈍後に5℃/時間以下の冷却速度で、Ac1-30℃まで緩冷却する理由は、上記焼鈍時にフェライト相に存在する炭化物を起点として炭化物の球状化を促進、フェライト粒の成長を進展させ、軟質化を進めるためである。この冷却速度より速い冷却速度では、冷却時にパーライト変態が生じて硬質化したり、フェライト相の粒成長が進まなかったりして、軟質化が得られないからである。
 ここにおけるAc1は昇温過程でオーステナイト相が出現する温度を示し、本発明では熱延鋼板からサンプルを採取し、フォーマスター試験機にて0.3℃/sで昇温した時の膨張曲線を測定し、A1変態点を求めた。また、文献等にはAc1を成分から求める簡便な方法もあり、一例として、William C.Leslie著のThe Physical Metallurgy of Steelには、Ac1(℃)=723-10.7×%Mn-16.9×%Ni+29.1×%Si+16.9×%Cr+290×%As+6.38×%Wが示されており、これらの経験式を用いることも可能である。
 言うまでもないが、本発明は、鋼板だけでなく、線材や棒鋼など、広く鉄鋼製品全般に適用できるものであり、鋼板はその一例に過ぎない。
 本発明の一実施形態に係る炭素鋼板は、以下のように換言できる、すなわち、質量%で、C:0.20~0.45%、Si:0.05~0.8%、Mn:0.5~2.0%、P:0.001~0.04%、S:0.0001~0.006%、Al:0.005~0.10%、Ti:0.005~0.20%、B:0.0010~0.01%、N:0.0001~0.01%を含有し、残部がFe及び不可避的不純物からなり、かつ表面から板厚方向100μm深さまでの表層部における固溶Bの平均濃度が10ppm以上存在する焼入れ性に優れたボロン添加炭素鋼板である。
 前記ボロン添加炭素鋼板が、さらに、質量%で、Cr:0.05~0.35%、Ni:0.01~1.0%、Cu:0.05~0.5%、及び、Mo:0.01~1.0%の1種又は2種以上を含有してもよい。
 前記ボロン添加炭素鋼板が、さらに、質量%で、Nb:0.01~0.5%、V:0.01~0.5%、Ta:0.01~0.5%、及び、W:0.01~0.5%の1種又は2種以上を含有してもよい。
 前記ボロン添加炭素鋼板が、さらに、質量%で、Sn:0.003~0.03%、Sb:0.003~0.03%、及び、As:0.003~0.03%の1種又は2種以上を含有してもよい。
 上述の成分組成を満たすスラブを、1200℃以下で加熱して熱間圧延に供し、800~940℃の温度で仕上圧延を終了し、次いで650℃までを冷却速度を20℃/秒以上で冷却し、その後巻取までの冷却速度を20℃/秒以下で冷却し、650℃以下400℃以上の巻取温度で巻き取り、その後、酸洗の後、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気にて焼鈍して、焼入れ性に優れたボロン添加炭素鋼板を製造してもよい。
 前記焼鈍を、660℃以上で前記ボロン添加炭素鋼板のAc1以下の温度で8時間以上行ってもよい。
 前記酸洗の後、前記焼鈍の前に、前記ボロン添加炭素鋼板に圧下率5%以上の冷間圧延を施してもよい。
 前記焼鈍の後、前記ボロン添加炭素鋼板に、圧下率5%以上の冷間圧延を施し、次いで、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気にて再度の焼鈍を施してもよい。
 前記再度の焼鈍の後、前記ボロン添加炭素鋼板に、再度、圧下率5%以上の冷間圧延を施し、次いで、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気にて3度目の焼鈍をしてもよい。
 前記焼鈍、前記再度の焼鈍、前記3度目の焼鈍において、前記ボロン添加炭素鋼板を、該鋼板のAc1~Ac1+50℃の温度範囲内で焼鈍し、該焼鈍後、5℃/時間以下の冷却速度で、Ac1-30℃の温度以下まで冷却してもよい。
 次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例)
表1~表6に示す成分を有する鋼を真空溶解にて50kgの鋼塊に鋳造して得られた鋼片を、表7~表12に記載の条件で熱間圧延した。熱間圧延は大気雰囲気にて加熱し、熱延板の厚みは冷延を実施しない場合は3mmとし、冷延を施す場合は冷延後の板厚が3mmになるように熱延板厚を設定した。熱延板は、塩酸により酸洗した後、焼鈍あるいは冷延を行って、3mm厚みの評価用の鋼板を作成した。詳細の製造条件及び評価結果を表7~表12に示す。その後、表7~表12の記載の条件で、焼鈍するもの、又は冷間圧延した後焼鈍するもの、さらに、1回目の焼鈍後冷間圧延と焼鈍をさらに実施したもの(2回焼鈍)、また、それを再々度繰り返したもの(3回焼鈍)を表7~表12に示すように、各処理条件に従って実施した。焼鈍の雰囲気については、常温で一旦、炉内を窒素で置換した後に所定の水素量になるまで水素を導入してから昇温した。また、露点の測定は薄膜酸化アルミニウム水分センサーによる露点計を用いて測定した。
 得られた各鋼板から、成分分析用のサンプルと焼入れ用サンプルを採取した。焼入れ実験はサンプルをAr雰囲気にて880℃で1分保定後、60℃の油に焼入れし、鋼板表層部の組織を光学顕微鏡、並びに走査型電子顕微鏡にて観察した。また、成分分析用のサンプルは、焼入れ前の鋼板から表層100μm部を研削し、分析用試料を採取して、この表層100μm部のB量について分析し、他の元素と化合していないB量を求め、平均の固溶B量とした。
 上記の表層部の平均の固溶B量を製品特性の欄に、また、焼入れ後特性の欄に鋼板表層部の組織観察結果を示す。組織観察として、パーライト組織やソルバイトやトルースタイトと言われる焼入れ組織でない組織が見られたものには異常層有りとして、「有」と表記した。
 表7~表12に示すように、本発明の成分範囲、並びに製造条件範囲を満足するものには、表層部の固溶Bは平均で10ppm以上存在し、表層部には異常な組織が見られず、良好な焼入れ組織を得ることができた。これに対し、成分が本発明の範囲を外れ、成分が本発明範囲内であっても製造条件が本発明の範囲を満足しなかった鋼板にはパーライト、ソルバイトやトルースタイトのような異常な組織がみられ、その部位での硬度が低下し、所望の特性が得られないこととなった。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 以上述べたように、本発明によれば、焼鈍において発現するボロン添加鋼板の吸窒現象等による表層部の成分変動を防止して、良好な加工性だけでなく、成形後の熱処理による所望の硬度を確保した鋼板を得ることができる。それ故、本発明に係る鋼板は、自動車部品だけでなく、広く一般産業機械部品において利用可能であり、工業的に価値が大きい。

Claims (30)

  1. C:   0.20質量%以上0.45質量%以下、
    Si: 0.05質量%以上0.8質量%以下、
    Mn: 0.5質量%以上2.0質量%以下、
    P:   0.001質量%以上0.04質量%以下、
    S:   0.0001質量%以上0.006質量%以下、
    Al: 0.005質量%以上0.1質量%以下、
    Ti: 0.005質量%以上0.2質量%以下、
    B:   0.001質量%以上0.01質量%以下、及び
    N:   0.0001質量%以上0.01質量%以下
    の成分を含有し、残部がFe及び不可避的不純物を含むボロン添加鋼板であって、
     表層から深さ100μmまでの領域における固溶Bの平均濃度が10ppm以上である;
     ことを特徴とするボロン添加鋼板。
  2. Cr: 0.05質量%以上0.35質量%以下、
    Ni: 0.01質量%以上1.0質量%以下、
    Cu: 0.05質量%以上0.5質量%以下、
    Mo: 0.01質量%以上1.0質量%以下、
    Nb: 0.01質量%以上0.5質量%以下、
    V:   0.01質量%以上0.5質量%以下、
    Ta: 0.01質量%以上0.5質量%以下、
    W:   0.01質量%以上0.5質量%以下、
    Sn: 0.003質量%以上0.03質量%以下、
    Sb: 0.003質量%以上0.03質量%以下、及び
    As: 0.003質量%以上0.03質量%以下
    の1種又は2種以上の成分を更に含有することを特徴とする請求項1に記載のボロン添加鋼板。
  3.  スラブを1200℃以下で加熱する加熱工程と;
     800℃以上940℃以下の仕上げ圧延温度で前記スラブを熱間圧延して鋼板を得る熱間圧延工程と;
     前記鋼板が650℃以下になるまで冷却速度20℃/秒以上で前記鋼板を冷却する第1の冷却工程と;
     前記第1の冷却工程に続き、冷却速度20℃/秒以下で前記鋼板を冷却する第2の冷却工程と;
     650℃以下400℃以上で前記鋼板を巻き取る巻き取り工程と;
     前記鋼板を酸洗する酸洗工程と;
     前記鋼板を、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気において、660℃以上で前記炭素鋼板のAc1以下の温度で8時間以上焼鈍する第1の焼鈍工程と;
     を備えることを特徴とする、請求項1又は2に記載のボロン添加鋼板の製造方法。
  4.  前記酸洗工程の後に、圧下率5%以上の圧延率で前記鋼板を冷間圧延する第1の冷間圧延工程
     を更に備えることを特徴とする請求項3に記載のボロン添加鋼板の製造方法。
  5.  前記第1の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項4に記載のボロン添加鋼板の製造方法。
  6.  前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;
     前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;
     を更に備えることを特徴とする請求項5に記載のボロン添加鋼板の製造方法。
  7.  前記第2の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項6に記載のボロン添加鋼板の製造方法。
  8.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項7に記載のボロン添加鋼板の製造方法。
  9.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項8に記載のボロン添加鋼板の製造方法。
  10.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項6に記載のボロン添加鋼板の製造方法。
  11.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項10に記載のボロン添加鋼板の製造方法。
  12.  前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;
     前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;
     を更に備えることを特徴とする請求項4に記載のボロン添加鋼板の製造方法。
  13.  前記第2の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項12に記載のボロン添加鋼板の製造方法。
  14.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項13に記載のボロン添加鋼板の製造方法。
  15.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項14に記載のボロン添加鋼板の製造方法。
  16.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項12に記載のボロン添加鋼板の製造方法。
  17.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項16に記載のボロン添加鋼板の製造方法。
  18.  前記第1の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項3に記載のボロン添加鋼板の製造方法。
  19.  前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;
     前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;
     を更に備えることを特徴とする請求項18に記載のボロン添加鋼板の製造方法。
  20.  前記第2の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項19に記載のボロン添加鋼板の製造方法。
  21.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項20に記載のボロン添加鋼板の製造方法。
  22.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項21に記載のボロン添加鋼板の製造方法。
  23.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項19に記載のボロン添加鋼板の製造方法。
  24.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項23に記載のボロン添加鋼板の製造方法。
  25.  前記第1の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第2の冷間圧延工程と;
     前記第2の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で前記鋼板を660℃以上で焼鈍する第2の焼鈍工程と;
     を更に備えることを特徴とする請求項3に記載のボロン添加鋼板の製造方法。
  26.  前記第2の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項25に記載のボロン添加鋼板の製造方法。
  27.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項26に記載のボロン添加鋼板の製造方法。
  28.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項27に記載のボロン添加鋼板の製造方法。
  29.  前記第2の焼鈍工程の後に、5%以上の圧下率で前記鋼板を冷間圧延する第3の冷間圧延工程と;
     前記第3の冷間圧延工程の後に、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で、前記鋼板を660℃以上で焼鈍する第3の焼鈍工程と;
     を更に備えることを特徴とする請求項25に記載のボロン添加鋼板の製造方法。
  30.  前記第3の焼鈍工程では、前記炭素鋼板を、Ac1~Ac1+50℃の温度範囲内で焼鈍し、焼鈍後、Ac1-30℃までの冷却速度を5℃/時間以下に設定することを特徴とする請求項29に記載のボロン添加鋼板の製造方法。
PCT/JP2010/001474 2009-03-16 2010-03-03 焼入れ性に優れたボロン添加鋼板および製造方法 WO2010106748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117021116A KR101382912B1 (ko) 2009-03-16 2010-03-03 켄칭성이 우수한 붕소 첨가 강판 및 제조 방법
CN2010800117388A CN102348822A (zh) 2009-03-16 2010-03-03 淬透性优良的加硼钢板及制造方法
JP2010529158A JP4782243B2 (ja) 2009-03-16 2010-03-03 焼入れ性に優れたボロン添加鋼板および製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-063603 2009-03-16
JP2009063603 2009-03-16

Publications (1)

Publication Number Publication Date
WO2010106748A1 true WO2010106748A1 (ja) 2010-09-23

Family

ID=42739416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001474 WO2010106748A1 (ja) 2009-03-16 2010-03-03 焼入れ性に優れたボロン添加鋼板および製造方法

Country Status (5)

Country Link
JP (1) JP4782243B2 (ja)
KR (1) KR101382912B1 (ja)
CN (1) CN102348822A (ja)
TW (1) TWI404808B (ja)
WO (1) WO2010106748A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
CN102337467A (zh) * 2011-10-25 2012-02-01 武汉钢铁(集团)公司 一种布氏硬度为470~520铲刀刃用钢及其生产方法
JP2012087382A (ja) * 2010-10-20 2012-05-10 Nippon Steel Corp 冷間鍛造後の急速加熱焼入れ性に優れた中炭素鋼板およびその焼入れ方法
JP2013060657A (ja) * 2011-08-19 2013-04-04 Jfe Steel Corp 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
WO2015146174A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
CN105483530A (zh) * 2015-11-30 2016-04-13 丹阳市宸兴环保设备有限公司 一种石油天然气输送管用热轧宽钢板材料
JP2016222969A (ja) * 2015-05-29 2016-12-28 Jfeスチール株式会社 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
WO2017002883A1 (ja) * 2015-06-30 2017-01-05 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
WO2020158356A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2020158357A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489497B2 (ja) * 2009-03-17 2014-05-14 日新製鋼株式会社 焼入性に優れたボロン鋼鋼板の製造方法
BR112015004191B1 (pt) * 2012-08-28 2020-03-24 Nippon Steel Corporation Chapa de aço
US9821407B2 (en) 2013-09-30 2017-11-21 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
CN103710618A (zh) * 2013-12-20 2014-04-09 马钢(集团)控股有限公司 硼钛复合微合金化余热处理钢筋用钢
CN104372253A (zh) * 2014-10-25 2015-02-25 河北钢铁股份有限公司唐山分公司 基于薄板坯流程的工业链条用钢及其生产方法
CN106834960B (zh) * 2017-01-24 2018-06-01 中天钢铁集团有限公司 一种汽车用含硼高级齿轮钢及其生产工艺
CN110284064B (zh) * 2019-07-18 2021-08-31 西华大学 一种高强度含硼钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188217A (ja) * 1989-12-18 1991-08-16 Sumitomo Metal Ind Ltd 高炭素薄鋼板の製造方法
JPH05331534A (ja) * 1992-05-29 1993-12-14 Nisshin Steel Co Ltd 含b鋼板の焼鈍方法
JPH10251757A (ja) * 1997-03-14 1998-09-22 Sumitomo Metal Ind Ltd 成形性にすぐれた高炭素薄鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933190B2 (ja) * 1980-12-05 1984-08-14 トヨタ自動車株式会社 低炭素ボロン鋼の熱処理方法
CA2001163A1 (en) * 1988-10-22 1990-04-22 Helmut Brandis Boron-containing steels and process for their annealing
JPH0598388A (ja) * 1991-10-04 1993-04-20 Sumitomo Metal Ind Ltd 高靱性高炭素薄鋼板およびその製造方法
JP3764627B2 (ja) * 2000-04-18 2006-04-12 新日本製鐵株式会社 浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼とその製造方法
JP3869754B2 (ja) * 2002-05-16 2007-01-17 新日本製鐵株式会社 バーリング加工時のバラツキが少ない浸炭焼入れ用鋼板及びその製造方法
JP7005970B2 (ja) * 2017-07-07 2022-01-24 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188217A (ja) * 1989-12-18 1991-08-16 Sumitomo Metal Ind Ltd 高炭素薄鋼板の製造方法
JPH05331534A (ja) * 1992-05-29 1993-12-14 Nisshin Steel Co Ltd 含b鋼板の焼鈍方法
JPH10251757A (ja) * 1997-03-14 1998-09-22 Sumitomo Metal Ind Ltd 成形性にすぐれた高炭素薄鋼板の製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
JP2012087382A (ja) * 2010-10-20 2012-05-10 Nippon Steel Corp 冷間鍛造後の急速加熱焼入れ性に優れた中炭素鋼板およびその焼入れ方法
JP2013060657A (ja) * 2011-08-19 2013-04-04 Jfe Steel Corp 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
CN102337467A (zh) * 2011-10-25 2012-02-01 武汉钢铁(集团)公司 一种布氏硬度为470~520铲刀刃用钢及其生产方法
JP6065120B2 (ja) * 2014-03-28 2017-01-25 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
EP3091097A4 (en) * 2014-03-28 2017-03-08 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same
US10844454B2 (en) 2014-03-28 2020-11-24 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for manufacturing the same
CN106133169A (zh) * 2014-03-28 2016-11-16 杰富意钢铁株式会社 高碳热轧钢板及其制造方法
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2015146174A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP6065121B2 (ja) * 2014-03-28 2017-01-25 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP2016222969A (ja) * 2015-05-29 2016-12-28 Jfeスチール株式会社 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
WO2017002883A1 (ja) * 2015-06-30 2017-01-05 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP6108046B1 (ja) * 2015-06-30 2017-04-05 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
US10724114B2 (en) 2015-06-30 2020-07-28 Nippon Steel Corporation High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
CN105483530A (zh) * 2015-11-30 2016-04-13 丹阳市宸兴环保设备有限公司 一种石油天然气输送管用热轧宽钢板材料
WO2020158356A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2020158357A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JPWO2020158356A1 (ja) * 2019-01-30 2021-02-18 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JPWO2020158357A1 (ja) * 2019-01-30 2021-02-18 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
KR20210105417A (ko) * 2019-01-30 2021-08-26 제이에프이 스틸 가부시키가이샤 고탄소 열연 강판 및 그 제조 방법
EP3901303A4 (en) * 2019-01-30 2021-11-03 JFE Steel Corporation HIGH CARBON HOT-ROLLED STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
KR102570145B1 (ko) 2019-01-30 2023-08-23 제이에프이 스틸 가부시키가이샤 고탄소 열연 강판 및 그 제조 방법

Also Published As

Publication number Publication date
TW201038751A (en) 2010-11-01
JPWO2010106748A1 (ja) 2012-09-20
TWI404808B (zh) 2013-08-11
CN102348822A (zh) 2012-02-08
KR20110115608A (ko) 2011-10-21
JP4782243B2 (ja) 2011-09-28
KR101382912B1 (ko) 2014-04-08

Similar Documents

Publication Publication Date Title
JP4782243B2 (ja) 焼入れ性に優れたボロン添加鋼板および製造方法
KR101122840B1 (ko) 침탄 켄칭성이 우수한 탄소 강판 및 그 제조 방법
JP5003785B2 (ja) 延性に優れた高張力鋼板およびその製造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
EP2801636A1 (en) High carbon hot-rolled steel sheet and method for producing same
CN108315637B (zh) 高碳热轧钢板及其制造方法
JP2009068057A (ja) 軟窒化処理用鋼板およびその製造方法
JP5655475B2 (ja) 深絞り性に優れた高強度冷延鋼板およびその製造方法
JP5630523B2 (ja) 窒化処理用鋼板およびその製造方法
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP2009215572A (ja) 降伏応力と伸びと伸びフランジ性に優れた高強度冷延鋼板
JP5521931B2 (ja) 高周波焼入れ性優れた軟質中炭素鋼板
WO2014002287A1 (ja) 軟窒化処理用鋼板およびその製造方法
JP5614330B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP5489497B2 (ja) 焼入性に優れたボロン鋼鋼板の製造方法
KR20210009606A (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
KR20210068090A (ko) 구멍 확장비가 높은 열연 어닐링된 강판 및 그 제조 방법
JPWO2019131099A1 (ja) 熱延鋼板およびその製造方法
JP5846113B2 (ja) 耐デント性に優れた高強度薄鋼板およびその製造方法
JP5534112B2 (ja) 冷間圧延の素材用の熱延鋼板およびその製造方法
KR20170059528A (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법
JP5163431B2 (ja) 強度変動の小さい高強度冷延鋼板の製造方法
US20230287549A1 (en) Austenitic stainless steel with improved deep drawing
KR20190022127A (ko) 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법
JP5515949B2 (ja) 板厚方向の材質均一性に優れた低炭素鋼材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011738.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010529158

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117021116

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753245

Country of ref document: EP

Kind code of ref document: A1