WO2010104113A1 - 多面体状遷移金属錯体、超微粒子内包遷移金属錯体およびその製造方法 - Google Patents
多面体状遷移金属錯体、超微粒子内包遷移金属錯体およびその製造方法 Download PDFInfo
- Publication number
- WO2010104113A1 WO2010104113A1 PCT/JP2010/054008 JP2010054008W WO2010104113A1 WO 2010104113 A1 WO2010104113 A1 WO 2010104113A1 JP 2010054008 W JP2010054008 W JP 2010054008W WO 2010104113 A1 WO2010104113 A1 WO 2010104113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transition metal
- group
- metal complex
- polyhedral
- complex
- Prior art date
Links
- 0 Cc1c(*)c(C)ccc1 Chemical compound Cc1c(*)c(C)ccc1 0.000 description 9
- LASMSJIVEJLPMZ-MTDSMIIYSA-N CC(OCC([C@H](C(C1OC(C)=O)OC(C)=O)OC(C)=O)O[C@H]1OCCOc(c(Br)ccc1)c1Br)=O Chemical compound CC(OCC([C@H](C(C1OC(C)=O)OC(C)=O)OC(C)=O)O[C@H]1OCCOc(c(Br)ccc1)c1Br)=O LASMSJIVEJLPMZ-MTDSMIIYSA-N 0.000 description 1
- ZSRITTXTOWZGRC-DAEIIAKJSA-N CC(OCC([C@H](C(C1OC(C)=O)OC(C)=O)OC(C)=O)O[C@H]1OCCOc(c(C#Cc1ccncc1)ccc1)c1C#Cc1ccncc1)=O Chemical compound CC(OCC([C@H](C(C1OC(C)=O)OC(C)=O)OC(C)=O)O[C@H]1OCCOc(c(C#Cc1ccncc1)ccc1)c1C#Cc1ccncc1)=O ZSRITTXTOWZGRC-DAEIIAKJSA-N 0.000 description 1
- BUBWQDWCQWDSDH-NIRCYYSTSA-N OCC([C@H](C(C1O)O)O)O[C@H]1OCCOc(c(C#Cc1ccncc1)ccc1)c1C#Cc1ccncc1 Chemical compound OCC([C@H](C(C1O)O)O)O[C@H]1OCCOc(c(C#Cc1ccncc1)ccc1)c1C#Cc1ccncc1 BUBWQDWCQWDSDH-NIRCYYSTSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/26—Acyclic or carbocyclic radicals, substituted by hetero rings
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G1/00—Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
- C01G1/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H23/00—Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/86—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/89—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
Definitions
- the present invention relates to a polyhedral transition metal complex formed from a transition metal atom and a bidentate organic ligand having a polyhydroxy compound via a linking group, and a metal in a hollow shell of the polyhedral transition metal complex.
- the present invention relates to an ultrafine particle-containing transition metal complex in which ultrafine particles of oxide are included, and a method for producing the same.
- Non-patent Document 1 Patent Documents 1 to 5).
- Non-Patent Document 2 discloses that polysaccharides serve as catalysts for polycondensation reactions (sol-gel polymerization) of silicon alkoxides such as tetra (2-hydroxyethoxy) silane (THEOS). Is described.
- silicon alkoxides such as tetra (2-hydroxyethoxy) silane (THEOS).
- TBEOS tetra (2-hydroxyethoxy) silane
- silica having a lotus-shaped structure can be obtained by a sol-gel reaction of tetraethoxysilane (TEOS) using a certain sugar compound as a template.
- TEOS tetraethoxysilane
- Metal oxide fine particles such as silica fine particles are used in various applications such as abrasives, coating agents, and catalyst carriers.
- a polyhedral transition metal complex capable of efficiently obtaining metal oxide fine particles having a diameter of several nanometers having a uniform size, and ultrafine particles of metal oxide are encapsulated in the hollow shell of the complex. It is an object of the present invention to provide an ultrafine particle-containing transition metal complex and a method for producing the same.
- the present inventors synthesized 2- [2,6-bis (4-pyridylethynyl) phenoxy) ethyl, 2,3,4,6-tetra-O-acetyl, -D-glucopyranoside, etc. We have succeeded in synthesizing polyhedral transition metal complexes with bidentate organic ligands.
- polyhedral transition metal complexes (i) to (viii) are provided.
- the bidentate organic ligand has a polyhydroxy compound group via a linking group, and the polyhydroxy compound group has a hollow shell.
- a polyhedral transition metal complex formed so as to be oriented inside.
- a polyhedral transition metal complex having a hollow shell wherein the hollow shell has n2 (n2 is 6, 12, 24, 30 or 60) transition metal atoms and 2 ( n2) a bidentate organic ligand, the bidentate organic ligand having a polyhydroxy compound group via a linking group, and a group of the polyhydroxy compound Is a polyhedral transition metal complex formed so as to be oriented inside the hollow shell.
- M n1 L 2 (n1) M represents a transition metal atom, n1 is an integer of 6 to 60, and M and L are the same. Or may be different from each other.
- M n2 L 2 (n2) M is a transition metal atom, n2 is 6, 12, 24, 30 or 60, and M and L are These may be the same or different from each other.
- the transition metal atom constituting the polyhedral transition metal complex is a kind selected from the group consisting of Ti, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Cd, Os, Ir, and Pt.
- R 1 and R 2 each independently represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, or a nitro group.
- m1 and m2 each independently represents an integer of 0 to 4.
- m1, m2 is 2 or more, R 1 each other, even R 2 together are each identical or may be different phases.
- A represents the following formulas (a-1) to (a-4)
- R 3 represents a substituent having a polyhydroxy compound bonded to the terminal.
- R 4 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, or a nitro group.
- m3 represents an integer of 0 to 3
- m4 represents an integer of 0 to 2. When m3 is 2 or more and m4 is 2, the plurality of R 4 may be the same or different.
- Q represents —Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group), —O—, —C ( ⁇ O) —, —S—, or —SO 2 —.
- Represents a group represented by G represents an ethynylene group or a p-phenylene group, and t represents an integer of 0 to 6. When t is 2 or more, the plurality of Gs may be the same or different.
- the bidentate organic ligand is represented by the formula (I-1)
- (Xii) The ultrafine particle-encapsulated transition metal complex according to (x) or (xi), wherein the value of (weight average molecular weight) / (number average molecular weight) of the metal oxide is 1 to 1.05 .
- (Xiii) A method for producing an ultrafine particle-containing transition metal complex according to any one of (x) to (xii), comprising a step of adding a predetermined amount of a metal alkoxide to a solvent solution of the polyhedral transition metal complex.
- a method for producing an ultrafine particle-containing transition metal complex comprising: (Xiv)
- the metal alkoxide has the formula: (R 5 ) a M 1 (OR 6 ) b (wherein M 1 represents a silicon atom, a titanium atom, a zirconium atom, an aluminum atom, or a boron atom, and R 5 represents carbon.
- R 1 represents an alkyl group having 1 to 6 carbon atoms
- R 6 represents an alkyl group having 1 to 6 carbon atoms which may be substituted with an alkoxy group having 1 to 6 carbon atoms
- a represents 0, 1 or 2
- a + b represents the valence of M 1 ).
- the method for producing an ultrafine particle encapsulated transition metal complex according to (xiii).
- the particle diameter is uniform on the nanometer scale.
- a polyhedral transition metal complex capable of efficiently forming metal oxide fine particles is provided.
- an ultrafine particle encapsulated polyhedral transition metal complex in which uniform metal oxide fine particles having a particle size of nanometer scale are encapsulated in a polyhedral structure.
- an ultrafine particle encapsulated polyhedral transition metal complex in which uniform metal oxide fine particles having a particle diameter of nanometer scale are encapsulated inside a polyhedral structure without requiring a difficult step is efficiently produced.
- the size (molecular weight) of the synthesized metal oxide fine particles can be controlled by changing the amount of the added metal alkoxide. Further, the size (molecular weight) of the synthesized metal oxide fine particles can also be controlled by the size of the bidentate ligand forming the polyhedral transition metal complex to be used.
- 1 is a 1 H-NMR spectrum (500 MHz, 300 K, DMSO-d 6 ) of a ligand, glucopyranoside (1) (upper), and a polyhedral complex (2a) (lower).
- FIG. 4 is a CSI-MS spectrum diagram of a polyhedral complex containing silica nanoparticles obtained by adding 72 equivalents of TMOS to the polyhedral complex (2a).
- FIG. 6 is a CSI-MS spectrum diagram of a polyhedral complex containing silica nanoparticles obtained by adding 96 equivalents of TMOS to the polyhedral complex (2a).
- FIG. 6 is a CSI-MS spectrum diagram of a polyhedral complex containing silica nanoparticles obtained by adding 192 equivalents of TMOS to the polyhedral complex (2a).
- FIG. 6 is an LDI-MS spectrum diagram of a silica nanoparticle inclusion complex obtained by adding 65, 85, 130, and 170 equivalents of TMOS to the polyhedral complex (2a), respectively.
- FIG. 3 is a 1 H-NMR spectrum (500 MHz, 300 K, DMSO-d 6 ) after reaction of the polyhedral complex (2a) and Ti (OiPr) 4 .
- 2 is a 1 H-NMR spectrum diagram of a silica nanoparticle inclusion complex formation process in Example 8.
- FIG. 3 is an LDI-MS spectrum diagram of a silica nanoparticle inclusion complex obtained by adding TMOS to a polyhedral complex (2b). It is a TEM (transmission electron microscope) observation figure and an EDS (energy dispersive X ray spectroscopy) spectrum figure of a silica nanoparticle inclusion complex.
- the polyhedral transition metal complex of the present invention is a polyhedral transition metal complex having a hollow shell, and there are n1 hollow shells (n1 is an integer of 6 to 60).
- the transition metal atom and 2 (n1) bidentate organic ligands, and the bidentate organic ligand has a polyhydroxy compound group via a linking group. And a group of the polyhydroxy compound is formed so as to be oriented inside the hollow shell.
- n1 is preferably n2 (n2 is 6, 12, 24, 30 or 60) because self-assembly easily proceeds. 12 is more preferable, and 12 is particularly preferable.
- the polyhedral transition metal complex of the present invention is formed by self-organization using a coordination bond between a transition metal ion and a bidentate organic ligand having a linking group having a polyhydroxy compound group at its terminal. It is. Since the coordinate bond has an appropriate binding force and the directionality is clearly defined, it is possible to spontaneously and quantitatively construct a molecular assembly whose structure is precisely controlled. In addition, since the coordination number and the bond angle can be controlled in accordance with the type of metal and the oxidation number, various coordination bond structures can be obtained.
- the polyhedral transition metal complex of the present invention includes a transition metal compound (M ′) and a bidentate organic ligand (L) having a linking group having a polyhydroxy compound group at the terminal (hereinafter simply referred to as “bidentate organic”).
- Ligand (L) ") and the formula: M n1 L 2n1 (where M is a transition metal atom) N1 and L are the same meaning as described above.)
- a transition metal compound (M ′) and a bidentate organic ligand (L) are used. More preferably, it is formed by self-organization so as to be oriented in the formula: M n2 L 2n2 (M, L and n2 have the same meaning as described above).
- M and L may be the same or different from each other, but are preferably the same.
- the size of the hollow shell of the polyhedral transition metal complex of the present invention is not particularly limited, but the diameter is preferably 3 to 15 nm.
- the size of the hollow shell of the polyhedral transition metal complex depends on the size (length) of the bidentate organic ligand (L) used.
- transition metal atom (M) which comprises the polyhedral transition metal complex of this invention
- platinum group atoms such as Ru, Rh, Pd, Os, Ir, Pt and the like are preferable because a planar four-coordinate complex can be easily formed.
- Pt is more preferable, and Pd is particularly preferable.
- the valence of the transition metal atom is usually 0 to 4, preferably 2 and the coordination number is usually 4 to 6, preferably 4.
- the bidentate organic ligand (L) forming the polyhedral transition metal complex of the present invention has a polyhydroxy compound group at the terminal, and the group of the polyhydroxy compound is oriented inside the hollow shell.
- the compound represented by the formula (I) shown below is preferred as long as it can form a polyhedral transition metal complex in a self-organized manner with a transition metal atom.
- the compound represented by the formula (I) has two arms having a pyridyl group at the end centered on A, and has a structure having a space between pyridyl groups at both ends while maintaining planarity. Have.
- R 1 and R 2 each independently represent a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, or a nitro group.
- m1 and m2 each independently represents an integer of 0 to 4.
- m1, m2 is 2 or more, R 1 each other, even R 2 together are each identical or may be different phases.
- A represents any of the groups of the compounds represented by the following formulas (a-1) to (a-4).
- R 3 represents a substituent having a polyhydroxy compound bonded to the terminal. Specifically, it is a group represented by the following formula: -DE.
- R 4 represents a halogen atom, an optionally substituted alkyl group, an optionally substituted alkoxyl group, a cyano group, or a nitro group.
- m3 represents an integer of 0 to 3
- m4 represents an integer of 0 to 2. When m3 is 2 or more and m4 is 2, the plurality of R 4 may be the same or different.
- Examples of the halogen atom for R 1 , R 2 and R 4 include a fluorine atom, a chlorine atom and a bromine atom.
- Examples of the alkyl group of the optionally substituted alkyl group of R 1 , R 2 , and R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, and an n-pentyl group.
- An alkyl group having 1 to 20 carbon atoms such as an n-hexyl group, an n-acetyl group, an n-nonyl group and an n-decyl group.
- examples of the substituent of the alkyl group which may be substituted for R 1 , R 2 and R 4 include a halogen atom, an alkoxyl group, and a phenyl group which may have a substituent.
- Examples of the alkoxyl group of the alkoxyl group which may be substituted for R 1 , R 2 and R 4 include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, t-butoxy group, pentyloxy group, hexyl Examples thereof include an alkoxyl group having 1 to 20 carbon atoms such as an oxy group.
- Examples of the substituent of the alkoxy group which may be substituted for R 1 , R 2 and R 4 include a halogen atom and a phenyl group which may have a substituent.
- Q represents —Nr1- (r1 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group), —O—, —C ( ⁇ O) —, —S—, or —SO 2 —.
- examples of the alkyl group for r1 include a methyl group and an ethyl group
- examples of the aryl group include a phenyl group and a p-methylphenyl group
- examples of the acyl group include an acetyl group and a benzoyl group.
- G represents an ethynylene group or a p-phenylene group
- t represents an integer of 0 to 6. When t is 2 or more, the plurality of Gs may be the same or different. Further, the p-phenylene group of G may have a substituent at an arbitrary position.
- the group represented by (G) t is not particularly limited, and examples thereof include the following formulas (b-1) to (b-8).
- * indicates a connecting position with A.
- groups represented by formulas (b-1) and (b-2) are preferable from the viewpoint of easily producing the polyhedral transition metal complex of the present invention.
- the bidentate organic ligand (L) used in the present invention is more preferably a compound represented by the following formula (I-1).
- D represents a linking group
- E represents a group of a polyhydroxy compound.
- the linking group for D include —O—, —C ( ⁇ O) —, a group represented by the formula: — (CH 2 ) s—, and groups composed of these combinations.
- a group represented by the formula: —O— (CH 2 ) s— is preferable from the viewpoint of availability.
- s represents an integer of 1 to 20, and preferably 1 to 10.
- a polyhydroxy compound is a compound having two or more hydroxyl groups in the molecule.
- glycols such as ethylene glycol, propylene glycol, and tetramethylene glycol
- glycerin compounds such as diglycerin, triglycerin, and polyglycerin having 4 or more glycerin units in the molecule
- inositol, lactose, saccharose, glucose, fructose, Saccharides such as xylitol, mannitol, maltitol, sorbitol, pentaerythritol; and derivatives of these compounds.
- Derivatives of these compounds include glycols, glycerin compounds, compounds in which some or all of the hydrogen atoms of the saccharide are substituted with alkyl groups, optionally substituted phenyl groups, and acyl groups. Can be mentioned. Among these, glucose and glucose derivatives are preferable as the polyhydroxy compound.
- the group of the polyhydroxy compound is not particularly limited as long as the hydrogen atom is removed from the polyhydroxy compound and bonded to the linking group.
- one of the hydroxyl groups (—OH) of the polyhydroxy compound becomes —O— and binds to a linking group can be mentioned.
- the bidentate organic ligand (L) can be produced by applying a known synthesis method.
- a compound represented by the following formula (I-2) is prepared by a method known in the literature (K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 4467; JF Nguefack, V. Bolitt, D. Sinou, Tetrahedron Lett., 1996, 31, 5527).
- G ′ is a group in which an ethynyl group (acetylene group) such as groups represented by the formulas (b-1), (b-2), (b-6), and (b-8) is bonded to A.
- (A-1) represents a compound represented by the formula: XAX.
- X represents a halogen atom such as a chlorine atom, a bromine atom, or an iodine atom.
- the compound represented by the formula (I-2) includes a base, a palladium catalyst such as Pd (PhCN) 2 Cl 2 / P (t-Bu) 3 , Pd (PPh 3 ) 4 in an appropriate solvent, and It can be obtained by reacting a compound represented by the formula (II) (or a salt thereof) with a compound represented by the formula (III) in the presence of a copper salt such as cuprous iodide.
- a palladium catalyst such as Pd (PhCN) 2 Cl 2 / P (t-Bu) 3
- Pd (PPh 3 ) 4 in an appropriate solvent
- It can be obtained by reacting a compound represented by the formula (II) (or a salt thereof) with a compound represented by the formula (III) in the presence of a copper salt such as cuprous iodide.
- the above reaction is an example of producing a compound having two identical groups by reacting two compounds (or salts thereof) represented by the formula (II) at a time.
- a compound having a different group can be obtained by reacting the corresponding compound represented by the formula (II) (or a salt thereof) stepwise under similar reaction conditions.
- Examples of the base used here include amines such as dimethylamine, diethylamine, diisopropylamine, triethylamine and diisopropylethylamine.
- the solvent used examples include ethers such as 1,4-dioxane, diisopropyl ether, tetrahydrofuran (THF), and 1,3-dimethoxyethane; amides such as dimethylformamide; sulfoxides such as dimethyl sulfoxide; nitriles such as acetonitrile; Etc.
- the reaction temperature is usually in the temperature range from 0 ° C. to the boiling point of the solvent, preferably 10 ° C. to 70 ° C., and the reaction time is usually several minutes to several tens of hours depending on the reaction scale and the like.
- the compound represented by the formula (II) (or a salt thereof) can be produced by a known method, but a commercially available product can be used as it is.
- the compound represented by the formula (III) can be synthesized, for example, by the following production method.
- L 1 and L 2 represent the leaving groups shown in the following table. Examples of combinations of L 1 and L 2 are shown below.
- the formula: -Y 1 -D'- represents the formula: -D-.
- R represents a hydrocarbon group such as a methyl group, an ethyl group, or a phenyl group.
- Y 1 is A compound represented by the formula (III-1) which is an oxygen atom can be obtained.
- Examples of the base used include inorganic bases such as sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, sodium hydride; triethylamine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU). ); Metal alkoxides such as potassium t-butoxide and sodium methoxide; and the like.
- inorganic bases such as sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, sodium hydride; triethylamine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU).
- DBU 1,8-diazabicyclo [5.4.0] -7-undecene
- Metal alkoxides such as potassium t-butoxide and sodium methoxide; and the like.
- This reaction is preferably performed in a solvent.
- the solvent to be used is not particularly limited as long as it is an inert solvent for the reaction.
- ethers such as diethyl ether, THF, 1,4-dioxane
- aromatic hydrocarbons such as benzene, toluene, xylene
- halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane
- acetonitrile etc.
- Nitriles Amides such as dimethylformamide (DMF); Sulfoxides such as dimethyl sulfoxide (DMSO); Aromatic amines such as pyridine;
- This reaction proceeds smoothly in the temperature range from ⁇ 15 ° C. to the boiling point of the solvent used.
- the reaction time is several minutes to 50 hours depending on the reaction scale and the like.
- the transition metal compound (M ′) used in the present invention is not particularly limited as long as it can form a polyhedral transition metal complex in a self-organizing manner with the bidentate organic ligand (L), but it is a divalent transition metal. Compounds are particularly preferred.
- transition metal compound (M ′) examples include transition metal halides, nitrates, hydrochlorides, sulfates, acetates, methanesulfonates, trifluoromethanesulfonates, p-toluenesulfonates, tetra Examples thereof include fluoroborate (BF 4 ).
- the transition metal compound (M ′) may have a neutral ligand such as ethylenediamine, acetonitrile, triphenylphosphine. Among these, nitrates and trifluoromethanesulfonates of transition metals are preferred because the desired polyhedral transition metal complex can be obtained efficiently.
- the use ratio of the transition metal compound (M ′) and the bidentate organic ligand (L) can be appropriately set according to the composition of the target polyhedral transition metal complex. For example, when it is desired to obtain the transition metal complex having the composition of the formula: M 12 L 24 as described above, 2 to 3 bidentate organic ligands (L) are added to 1 mol of the transition metal compound (M ′). What is necessary is just to make it react in the ratio of a mole.
- the reaction between the transition metal compound (M ′) and the bidentate organic ligand (L) can be carried out in a suitable solvent.
- Solvents used include nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide (DMSO); amides such as N, N-dimethylformamide; diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, etc.
- Ethers dichloromethane, chloroform, and other halogenated hydrocarbons; pentane, hexane, and other aliphatic hydrocarbons; benzene, toluene, and other aromatic hydrocarbons; methanol, ethanol, isopropyl alcohol, and other alcohols; acetone, Ketones such as methyl ethyl ketone; cellosolves such as ethyl cellosolve; water and the like. These solvents can be used alone or in combination of two or more.
- the reaction between the transition metal compound (M ′) and the bidentate organic ligand (L) proceeds smoothly in a temperature range from 0 ° C. to the boiling point of the solvent used.
- the reaction time is several minutes to several days.
- the desired polyhedral transition metal complex can be isolated by performing usual post-treatments such as filtration, column purification with an ion exchange resin, etc., distillation, recrystallization and the like.
- the target polyhedral transition metal complex can also be obtained by deprotecting the hydroxyl-protecting group by a known method.
- the counterion of the polyhedral transition metal complex obtained is usually an anion of the transition metal compound (M ′) used, but it improves crystallinity and stability of the polyhedral transition metal complex.
- Counter ions may be exchanged for the purpose. Examples of such counter ions include PF 6 ⁇ , ClO 4 ⁇ , SbF 4 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , SiF 6 2 ⁇ and the like.
- ultrafine particle encapsulated transition metal complex of the present invention is characterized in that ultrafine particles of metal oxide are encapsulated in the hollow shell of the polyhedral transition metal complex of the present invention described above.
- the metal oxide encapsulated inside the hollow shell of the polyhedral transition metal complex is not particularly limited.
- examples thereof include oxides such as silicon, titanium, zirconium, aluminum, boron, germanium, barium, calcium, indium, lanthanum, yttrium, niobium, and tungsten.
- oxides of silicon, titanium, zirconium, aluminum, and boron are preferable, and silicon and titanium are particularly preferable.
- the molecular weight of the metal oxide is usually 1000 Da to 35,000 Da, although it depends on the hollow size of the polyhedral transition metal complex used.
- the molecular weight distribution [(weight average molecular weight) / (number average molecular weight)] of the metal oxide is very narrow, usually 1 to 1.1, preferably 1 to 1.05, more preferably 1.005 to 1. .01.
- the ultrafine particle encapsulated polyhedral transition metal complex of the present invention is produced by adding a predetermined amount of metal alkoxide to the solvent solution of the polyhedral transition metal complex of the present invention. It has the process.
- the production method of the present invention utilizes the property that a polyhydroxy compound such as a saccharide serves as a reaction catalyst in a hydrolysis / polycondensation reaction of a metal alkoxide (see Non-Patent Documents 2 and 3).
- the metal alkoxide when a predetermined amount of metal alkoxide is added to the polyhedral transition metal complex solvent solution of the present invention, the metal alkoxide is attracted to the polyhydroxy compound group present in the internal space of the polyhedral transition metal complex, The polyhedral transition metal complex moves and collects in the internal space, where the metal alkoxide undergoes hydrolysis and polycondensation reaction to produce fine metal oxide.
- the solvent to be used is not particularly limited as long as it can dissolve the polyhedral transition metal complex and metal alkoxide of the present invention.
- a sulfur-containing solvent such as dimethyl sulfoxide, diethyl sulfoxide, sulfolane, carbon disulfide;
- Amide solvents such as N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide;
- ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane;
- halogenated hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride; nitrile solvents such as acetonitrile; and mixed solvents composed of two or more of these solvents.
- the metal alkoxide used is not particularly limited, and examples thereof include alkoxides of silicon, titanium, zirconium, aluminum, boron, germanium, barium, calcium, indium, lanthanum, yttrium, niobium, and tungsten.
- the metal alkoxide is preferably a compound represented by the formula (VI): (R 5 ) a M (OR 6 ) b .
- M represents a silicon atom, a titanium atom, a zirconium atom, an aluminum atom, or a boron atom, and a silicon atom or a titanium atom is particularly preferable.
- R 5 represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or an n-propyl group.
- R 6 represents a C 1-6 noalkyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group or a 2-hydroxyethyl group.
- a represents 0, 1 or 2
- b represents 2, 3 or 4
- a + b represents the valence of M.
- the compound represented by the formula (VI) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetrakis (2-hydroxyethoxy) silane, methyltrimethoxysilane, Silane alkoxides such as methyltriethoxysilane; Titanium alkoxides such as tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, tetraisopropoxy titanium, tetrabutoxy titanium; Zirconium alkoxides such as tetramethoxyzirconium, tetraethoxyzirconium, tetrapropoxyzirconium, tetraisopropoxyzirconium, tetrabutoxyzirconium; Aluminum alkoxides such as trimethoxyaluminum, triethoxya
- the amount of metal alkoxide added is usually 20 to 700 times mol, preferably 72 to 500 times mol, per mol of the polyhedral transition metal complex.
- a protonic acid may be added to the reaction system.
- a protonic acid By adding a protonic acid, the polycondensation reaction of the metal alkoxide may be promoted.
- the proton acid used include nitric acid, sulfuric acid, hydrochloric acid, acetic acid and the like.
- the addition amount is usually 0.01 to 1.0 mol with respect to 1 mol of the polyhedral transition metal complex.
- the molecular weight (size) of encapsulated metal oxide ultrafine particles can be controlled by changing the amount of metal alkoxide added.
- metal oxide fine particles having a larger molecular weight and particle diameter can be obtained.
- the size of the obtained metal oxide fine particles is the hollow space of the polyhedral transition metal complex to be used. It does not exceed the size.
- a metal formed using 2- [2,6-bis (4-pyridylethynyl) phenoxy] ethyl-D-glucopyranoside and Pd (NO 3 ) 2 is used as a polyhedral transition metal complex.
- TMOS tetramethoxysilane
- silica nanoparticles having Mw of 5270 can be obtained by using 65 equivalents of TMOS with respect to the polyhedral complex.
- the molecular weight (size) of the synthesized metal oxide fine particles can also be controlled by the size of the polyhedral transition metal complex used.
- 2- [2,6-bis (4-pyridylethynyl) phenoxy] ethyl ⁇ -D-glucopyranoside is used as a bidentate organic ligand forming a polyhedral transition metal complex
- the structure of the obtained ultrafine particle inclusion transition metal complex is as follows: 1 H-NMR, 13 C-NMR, IR spectrum, mass spectrum, visible light absorption spectrum, UV absorption spectrum, reflection spectrum, X-ray crystal structure analysis, elemental analysis, etc. This can be confirmed by known analytical means.
- the ultrafine particle encapsulated transition metal complex of the present invention can be efficiently produced by an extremely simple operation. Therefore, mass synthesis on a gram scale is also possible.
- Elemental analysis was performed using Yanaco MT-6.
- the MALDI-TOFMS spectrum was measured using a TOF mass spectrometer (Applied Biosystem Voyager DE-STR).
- AFM images were obtained using JEOL JSPM-5200.
- LDI-MS Laser desorption ionization mass spectrometry
- TEM observation was performed using JEOL JEM-2010HC.
- 29 Si-MAS-NMR spectrum was measured using Chemicals CMX-300.
- XRF fluorescence X-ray analysis
- EDS energy dispersive X-ray spectroscopy
- reaction solvent a dehydrating solvent for organic synthesis (water content of 0.005% or less) commercially available from TCI, Wako Pure Chemical Industries, and Sigma-Aldrich was used as it was. Reagents were used as they were without any purification.
- the reaction mixture was diluted with ethyl acetate (30 ml), washed successively with water (50 ml) twice, 5% ethylenediamine aqueous solution (40 ml), water (50 ml) twice and saturated brine (50 ml).
- the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
- the glucopyranoside (1) (105 mg, 0.20 mmol) obtained in (1) above was added to a dimethyl sulfoxide (DMSO) solution of Pd (NO 3 ) 2 (10 mM, 10 ml), and the mixture was stirred at 50 ° C. for 1 hour. Stir. It was confirmed by 1 H-NMR measurement that the polyhedral complex (2a) was quantitatively obtained.
- a white solid precipitated by adding ethyl acetate and diethyl ether to the reaction solution. The white solid was collected by filtration, washed with diethyl ether and vacuum dried to obtain the desired polyhedral complex (2a). Yield 85%.
- a structural diagram of the polyhedral complex (2a) is shown in FIG.
- FIG. 1 shows 1 H-NMR spectra (500 MHz, 300 K, DMSO-d 6 ) of the ligands glucopyranoside (1) (upper) and polyhedral complex (2a) (lower).
- Example 2 Synthesis of Silica Nanoparticle Encapsulation Complex After the DMSO solution (10 ml) of the polyhedral complex (2a) obtained in Example 1 was diluted with chloroform (90 ml), tetramethoxysilane (TMOS) was converted into a polyhedral form. 96 equivalents were added to the complex (2a), and the mixture was allowed to stand at room temperature for 10 days to conduct a condensation reaction.
- TMOS tetramethoxysilane
- FIG. 2 shows a signal derived from methanol appeared when TMOS was hydrolyzed, and at the same time, the signal of the polyhedral complex was noticeably broadened. As a result, it was suggested that silica nanoparticles were formed inside the polyhedral complex.
- FIG. 2 shows 30 minutes after addition of TEMOS, (b) shows 4 hours, (c) shows 24 hours, and (d) shows 1 H-NMR after 96 hours.
- silica nanoparticle inclusion complex was subjected to mass spectrometry using a cold spray ionization method (CSI-MS).
- CSI-MS cold spray ionization method
- FIG. 5 in the complex added with 72 equivalents of TMOS, a polyhedral complex containing about 6,000 Da of silica was observed.
- FIG. 6 7,000 Da of silica is included in the polyhedral complex when 96 equivalents of TMOS is added, and 11,200 Da of silica is added when 192 equivalents are added as shown in FIG. It was. That is, it was confirmed that silica nanoparticles were generated inside the polyhedral complex. It was also found that the molecular weight of the silica nanoparticles produced can be controlled by changing the amount of TMOS added.
- Examples 3 to 6 The DMSO (18.9 ml) solution of the polyhedral complex (2a) (14.6 ⁇ mol) obtained in Example 1 was diluted with water (75 ⁇ L) and chloroform (166 ml), and then TMOS was added to the polyhedral complex. Then, 65 equivalents (Example 3), 85 equivalents (Example 4), 130 equivalents (Example 5), 170 equivalents (Example 6) were added, and the mixture was allowed to stand at room temperature for 4 days to conduct a condensation reaction.
- FIG. 8A is an LDI-MS spectrum diagram of the silica nanoparticle inclusion complex obtained in Example 3, b is in Example 4, c is in Example 5, and d is in Example 6.
- FIG. 8A is an LDI-MS spectrum diagram of the silica nanoparticle inclusion complex obtained in Example 3, b is in Example 4, c is in Example 5, and d is in Example 6.
- the molecular weight of the generated silica nanoparticles can be controlled in the range of 5200 to 11100 Da by changing the amount of TMOS added.
- the polydispersity (M w / M n ) was 1.013 or less.
- Example 7 Synthesis of titanium oxide nanoparticle inclusion complex After diluting DMSO solution (70 ⁇ L) of polyhedral complex (2a) obtained in Example 1 with chloroform (0.63 ml), Ti (OiPr) 4 was complexed 72 equivalents or 96 equivalents were added to the mixture, and the mixture was allowed to stand at 4 ° C. for 1 day to conduct a condensation reaction. When the reaction was traced using 1 H-NMR, as shown in FIG. 9, it was confirmed that all the added precursors were hydrolyzed, and at the same time, the signal of the polyhedral complex was noticeably blocked. It was found that titanium oxide nanoparticles were formed inside the polyhedral complex.
- the glucopyranoside (2) obtained in (1) above (65.5 mg, 0.100 mmol) is added to a DMSO solution of Pd (BF 4 ) 2 (CH 3 CN) 4 (10 mM, 5.1 ml). , And stirred at 50 ° C. for 1 hour. It was confirmed by 1 H-NMR and CSI-MS measurements that the polyhedral complex (2b) was quantitatively obtained.
- IR (KBr, cm ⁇ 1 ) 2879, 2208, 1612, 1491, 1431, 1292, 1223, 1074, 1035, 821, 791, 698, 567.
- Example 9 Synthesis of Silica Nanoparticle Encapsulation Complex Polyhedral complex (2b) (4.17 ⁇ mol) obtained in Example 8 in DMSO solution (11.9 ml), water (67 ⁇ L), chloroform (35.7 ml) After diluting with nitric acid (2.0 ⁇ mol), 500 equivalents (311 ⁇ L, 2.09 mmol) of TMOS was added to the polyhedral complex (2b), and the mixture was allowed to stand at room temperature for 4 days to conduct a condensation reaction. .
- FIG. 10 shows a 1 H-NMR spectrum diagram
- FIG. 11 shows an LDI-MS spectrum diagram.
- a is the 1 H-NMR spectrum of the silica nanoparticle inclusion complex before the start of the condensation reaction
- b is 30 minutes after the start of the condensation reaction
- c is 4 hours later
- d is 1 day later
- e is 4 days later. is there.
- FIG. 10 shows that the 1 H-NMR signal of the polyhedral complex broadens as the TMOS in the silica nanoparticle inclusion complex is hydrolyzed and the condensation reaction proceeds.
- the size (molecular weight) of the generated silica nanoparticles can be controlled by the size of the polyhedral complex used.
- the polydispersity (M w / M n ) was 1.013 or less.
- FIG. 12a is a TEM observation diagram of the silica nanoparticle inclusion complex of Example 6
- b is an EDS (energy dispersive X-ray spectroscopy) spectrum diagram of the silica nanoparticle inclusion complex of Example 6, and c is obtained in Example 9.
- FIG. 11b It is the TEM observation figure of the silica nanoparticle inclusion complex.
- both Si and Pd atoms were observed (note that Cu is derived from the TEM sample grid).
- the average diameter of the encapsulated silica nanoparticles was 4.0 nm.
- the metal oxide fine particles encapsulated in the ultrafine particle-encapsulated transition metal complex of the present invention are ultrafine particles of a few nanometers having a uniform size, and are used in various applications such as abrasives, coating agents, and catalyst carriers. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
そこで、本発明は、均一な大きさからなる数ナノメートル径の金属酸化物微粒子を効率よく得ることができる多面体状遷移金属錯体、この錯体の中空の殻内に金属酸化物の超微粒子が内包されてなる超微粒子内包遷移金属錯体、及びその製造方法を提供することを課題とする。
(i)中空の殻を有する多面体状遷移金属錯体であって、前記中空の殻が、n1個(n1は、6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子とから形成されてなり、前記二座有機配位子が、連結基を介してポリヒドロキシ化合物の基を有するものであり、かつ、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように形成されている多面体状遷移金属錯体。
(ii)中空の殻を有する多面体状遷移金属錯体であって、前記中空の殻が、n2個(n2は、6、12、24、30又は60である。)の遷移金属原子と、2(n2)個の二座有機配位子とから形成されてなり、前記二座有機配位子が、連結基を介してポリヒドロキシ化合物の基を有するものであり、かつ、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように形成されている多面体状遷移金属錯体。
(iv)遷移金属化合物(M’)と、連結基を介してポリヒドロキシ化合物の基を有する二座有機配位子(L)とから、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように自己組織的に形成されてなる、式:Mn2L2(n2)(Mは遷移金属原子を表し、n2は、6、12、24、30又は60であり、M同士、L同士は、それぞれ同一であっても、相異なっていても良い。)で表される(ii)に記載の多面体状遷移金属錯体。
(vi)多面体状遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることを特徴とする(i)~(v)のいずれかに記載の多面体状遷移金属錯体。
(vii)前記二座有機配位子が、式(I)
m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R1同士、R2同士はそれぞれ同一であっても、相異なっていても良い。
Aは、下記式(a-1)~(a-4)
R4は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基又はニトロ基を表す。
m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のとき、複数個のR4は同一であっても、相異なっていても良い。
Qは、-Nr1-(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、-O-、-C(=O)-、-S-、又は-SO2-を表す。〕で表される基を示し、
Gは、エチニレン基又はp-フェニレン基を表し、tは0~6の整数を表す。tが2以上のとき、複数のG同士は同一であっても相異なっていてもよい。}
で示される化合物である、(i)~(vi)のいずれかに記載の多面体状遷移金属錯体。
(viii)前記二座有機配位子が、式(I-1)
(ix)前記二座有機配位子が、式(I-1a)、式(I-1b)
(x)(i)~(ix)に記載の多面体状遷移金属錯体の中空の殻内部に、金属酸化物の超微粒子が内包されていることを特徴とする超微粒子内包遷移金属錯体。
(xi)前記金属酸化物が、ケイ素、チタン、ジルコニウム、アルミニウム、またはホウ素の酸化物であることを特徴とする、(x)に記載の超微粒子内包遷移金属錯体。
(xiii)(x)~(xii)のいずれかに記載の超微粒子内包遷移金属錯体の製造方法であって、前記多面体状遷移金属錯体の溶媒溶液に、所定量の金属アルコキシドを添加する工程を有することを特徴とする超微粒子内包遷移金属錯体の製造方法。
(xiv)金属アルコキシドが、式:(R5)aM1(OR6)b(式中、M1はケイ素原子、チタン原子、ジルコニウム原子、アルミニウム原子、又はホウ素原子を表し、R5は炭素数1~6のアルキル基を表し、R6は炭素数1~6のアルコキシ基で置換されていてもよい炭素数1~6のアルキル基を表し、aは0、1又は2を表し、bは2、3又は4を表し、a+bはM1の原子価を表す。)で示される化合物である(xiii)に記載の超微粒子内包遷移金属錯体の製造方法。
(xvi)金属アルコキシドの添加量を変化させることにより、内包される金属酸化物超微粒子の分子量を制御することを特徴とする(xiii)~(xv)のいずれかに記載の超微粒子内包遷移金属錯体の製造方法。
本発明の第2によれば、多面体状構造内部に、粒子径がナノメートルスケールの均一な金属酸化物微粒子が内包された超微粒子内包多面体状遷移金属錯体が提供される。
本発明の第3によれば、困難なステップを要することなく、多面体状構造内部に、粒子径がナノメートルスケールの均一な金属酸化物微粒子が内包された超微粒子内包多面体状遷移金属錯体を効率よく製造することができる。
本発明の第3によれば、添加する金属アルコキシドの量を変えることによって、合成される金属酸化物微粒子の大きさ(分子量)を制御することができる。また、用いる多面体状遷移金属錯体を形成する二座配位子の大きさによっても、合成される金属酸化物微粒子の大きさ(分子量)を制御することができる。
1)多面体状遷移金属錯体
本発明の多面体状遷移金属錯体は、中空の殻を有する多面体状の遷移金属錯体であって、前記中空の殻が、n1個(n1は、6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子とから形成されてなり、前記二座有機配位子が、連結基を介してポリヒドロキシ化合物の基を有するものであり、かつ、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように形成されていることを特徴とする。
遷移金属原子の価数は、通常0~4価、好ましくは2価であり、配位数は、通常4~6、好ましくは4である。
式(I)で表される化合物は、Aを中心に、末端にピリジル基を有する二本の腕部を有し、平面性を保ちつつ、両端のピリジル基の間に空間をもった構造を有する。
m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R1同士、R2同士はそれぞれ同一であっても、相異なっていても良い。
Aは、下記式(a-1)~(a-4)で表される化合物の基のいずれかを表す。
m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のとき、複数個のR4は同一であっても、相異なっていても良い。
R1、R2、R4の、置換されていても良いアルキル基のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-アセチル基、n-ノニル基、n-デシル基などの炭素数1~20のアルキル基が挙げられる。
また、R1、R2、R4の、置換されていても良いアルキル基の置換基としては、ハロゲン原子、アルコキシル基、置換基を有していても良いフェニル基などが挙げられる。
また、R1、R2、R4の、置換されていても良いアルコキシル基の置換基としては、ハロゲン原子、置換基を有していても良いフェニル基などが挙げられる。
r1のアルキル基としては、メチル基、エチル基などが、アリール基としては、フェニル基、p-メチルフェニル基などが、アシル基としては、アセチル基、ベンゾイル基などがそれぞれ挙げられる。
Gは、エチニレン基又はp-フェニレン基を表し、tは0~6の整数を表す。tが2以上のとき、複数のG同士は同一であっても相異なっていてもよい。また、Gのp-フェニレン基は、任意の位置に置換基を有していてもよい。
Dの連結基としては、-O-、-C(=O)-、式:-(CH2)s-で表される基、及びこれらの組み合わせからなる基が挙げられる。なかでも、入手容易性の観点から、式:-O-(CH2)s-で表される基が好ましい。式中、sは1~20の整数を表し、1~10が好ましい。
ポリヒドロキシ化合物は、分子内に水酸基を2つ以上有する化合物である。例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコールなどのグリコール類;ジグリセリン、トリグリセリン、分子内に4以上のグリセリン単位を有するポリグリセリンなどのグリセリン系化合物;イノシトール、ラクトース、サッカロース、グルコース、フルクトース、キシリトール、マンニトール、マルチトール、ソルビトール、ペンタエリスリトールなどの糖類;及びこれらの化合物の誘導体;が挙げられる。
これらの中でも、ポリヒドロキシ化合物としては、グルコース及びグルコース誘導体が好ましい。
例えば、前記式(I)で表される化合物のうち、下記式(I-2)で表される化合物は、以下に示すように、文献公知の方法(K.Sonogashira,Y.Tohda,N.Hagihara,Tetrahedron Lett.,1975,4467;J.F.Nguefack,V.Bolitt,D.Sinou,Tetrahedron Lett.,1996,31,5527)に従い、製造することができる。
(A-1)は、式:X-A-Xで表される化合物を表す。
Xは塩素原子、臭素原子、ヨウ素原子などのハロゲン原子を表す。
反応温度は、通常、0℃から溶媒の沸点までの温度範囲、好ましくは10℃~70℃であり、反応時間は、反応規模等にもよるが、通常、数分から数十時間である。
”Metal-Catalyzed Cross-Coupling Reactions”,Armin de Meijere,Franois Diederich,Wiley-VCH
・上記カップリング反応を総説した論文:
”Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis”K.C.Nicolaou,Paul G.Bulger,David Sarlah,Angew.Chem.Int.Ed.,2005,44,4442-4489
・上記カップリング反応を使った配位子合成の論文:
”Fluorous Nanodroplets Structurally Confined in an Organopalladium Sphere”S.Sato,J.Iida,K.Suzuki,M.Kawano,T.Ozeki,and M.Fujita,Science.,2006,313,1273-1276.
・”24-Fold Endohedral Functionalization of a Self-assembled M12L24 Coordination Nanoball”M.Tominaga,K.Suzuki,T.Murase,and M.Fujita,J.Am.Chem.Soc.,2005,127,11950-11951.
用いる溶媒としては、アセトニトリルなどのニトリル類;ジメチルスルホキシド(DMSO)などのスルホキシド類;N,N-ジメチルホルムアミドなどのアミド類;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサンなどのエーテル類;ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類;ペンタン、ヘキサンなどの脂肪族炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;メタノール、エタノール、イソプロピルアルコールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;エチルセロソルブなどのセロソルブ類;水等が挙げられる。これらの溶媒は一種単独で、あるいは二種以上を組み合わせて用いることができる。
反応時間は、数分から数日間である。
反応終了後は、ろ過、イオン交換樹脂等によるカラム精製、蒸留、再結晶等の通常の後処理を行い、目的とする多面体状遷移金属錯体を単離することができる。
本発明の超微粒子内包遷移金属錯体は、上述した本発明の多面体状遷移金属錯体の中空の殻内部に、金属酸化物の超微粒子が内包されていることを特徴とする。
また前記金属酸化物の分子量分布〔(重量平均分子量)/(数平均分子量)〕は、きわめて狭く、通常、1~1.1、好ましくは1~1.05、より好ましくは1.005~1.01である。
本発明の超微粒子内包多面体状遷移金属錯体の製造方法は、本発明の多面体状遷移金属錯体の溶媒溶液に、所定量の金属アルコキシドを添加する工程を有することを特徴とする。
R5は、メチル基、エチル基、n-プロピル基などの炭素数1~6のアルキル基を表す。
R6は、メチル基、エチル基、n-プロピル基、n-ブチル基、2-ヒドロキシエチル基などの炭素数1~6のアルコキシ基で置換されていてもよい炭素数1~6ノアルキル基を表す。
aは0、1又は2を表し、bは2、3又は4を表し、a+bはMの原子価を表す。
テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタンなどのチタンアルコキシド類;
テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラブトキシジルコニウムなどのジルコニウムアルコキシド類;
トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリブトキシアルミニウムなどのアルミニウムアルコキシド類;
トリメトキシボラン、トリエトキシボラン、トリプロポキシボラン、トリイソプロポキシボラン、トリブトキシボランなどのホウ素アルコキシド類;などが挙げられる。
例えば、多面体状遷移金属錯体を形成する二座有機配位子として、2-[2,6-ビス(4-ピリジルエチニル)フェノキシ]エチル β-D-グルコピラノサイドを用いると、2-[2,6-ビス(4-ピリジルエチニル)フェノキシ]エチル-D-グルコピラノサイドを用いた場合よりも、形成される錯体の内部空間が広くなるため、多面体状錯体に対して500当量のTMOS用いることにより、Mw=31690のシリカナノ粒子を得ることができる。
(1)1H-NMRスペクトル及び13C-NMRスペクトルの測定
1H-NMRスペクトル及び13C-NMRスペクトルは、Bruker DRX 500NMR spectrometer、Bruker AV-500 NMR spectrometer、及びJEOL JNM-AL 300 NMR spectrometerにより測定した。
また、内部標準としてTMSを用い、化学シフトはδ値で表示し、次の省略形を用いた。s(一重線)、d(二重線)、t(三重線)、br(ブロード)。
コールドスプレーイオン化質量分析(CSI-MS)は、JEOL JMS-700Cを用いて行った。
(3)質量分析
レーザー脱離イオン化質量分析(LDI-MS)は、Applied Biosystem Voyager DE-STRを用いて行った。
(4)融点は、Yanaco MP-500Vを用いて測定した。
(6)MALDI-TOFMSスペクトルは、TOF mass spectrometer(Applied Biosystem Voyager DE-STR)を用いて測定した。
(7)AFM画像は、JEOL JSPM-5200を用いて得た。
レーザー脱離イオン化質量分析(LDI-MS)は、Applied Biosystem Voyager DE-STRを用いて行った。
(9)TEM観察(電子顕微鏡観察)は、JEOL JEM-2010HCを用いて行った。
(10)29Si-MAS-NMRスペクトル(固体NMR)は、Chemagnetics CMX-300を用いて測定した。
(12)EDS(エネルギー分散X線分光法)は、JEOL JEM-2010HCを用いて行った。
反応溶媒は、TCI社、和光純薬工業社、シグマ-アルドリッチ社で市販されている有機合成用脱水溶媒(水分0.005%以下)をそのまま使用した。
試薬類は、特に精製することなく、市販品をそのまま使用した。
(1)2-[2,6-ビス(4-ピリジルエチニル)フェノキシ]エチル・-D-グルコピラノサイド(1)の合成
反応混合物を酢酸エチル(100ml)で希釈し、水(100ml)で3回洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下に濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;n-ヘキサン:クロロホルム=2:1~1:2(体積比)により精製して、目的物を白色結晶として得た(収量1.18g、収率92%)。
1H-NMR(500MHz,CDCl3,27℃,δppm) 7.50(d,J=8.0Hz,2H),6.87(t,J=8.0Hz,1H),5.23(t,J=9.4Hz,1H),5.11(t,J=9.8Hz,1H),5.06(t,J=9.2Hz,1H),4.75(d,J=7.4Hz,1H),4.30-4.23(m,2H),4.21-4.16(m,2H),4.15-4.09(m,1H),4.09-4.04(m,1H),3.78-3.72(m,1H),2.08(s,3H),2.06(s,3H),2.03(s,3H),2.01(s,3H)
Found:C,41.92;H,4.01
1H-NMR(500MHz,CDCl3,27℃,δppm) 8.66(d,J=6.2Hz,4H),7.54(d,J=8.0Hz,2H),7.42(d,J=6.2Hz,4H),7.12(t,J=7.8Hz,1H),5.16(t,J=9.5Hz,1H),5.04(t,J=9.4Hz,1H),4.97(t,J=8.0Hz,1H),4.65(t,J=8.0Hz,1H),4.62-4.57(m,1H),4.47-4.43(m,1H),4.24-4.18(m,2H),4.09-4.02(m,2H),3.61-3.57(m,1H),2.02(s,3H),2.01(s,3H),1.99(s,3H),1.92(s,3H)
Found:C,64.28;H,5.12;N,4.18
2-[2,6-ビス(4-ピリジルエチニル)フェノキシ]エチル 2,3,4,6-テトラ-O-アセチル-・-D-グルコピラノサイド(600mg、0.895ミリモル)、及びナトリウムメトキシド(242mg、4.47ミリモル)メタノール(90ml)溶液を、室温で12時間攪拌した。反応混合物を炭酸水素ナトリウム水溶液で中和して、減圧下で濃縮した。残留物を水で洗浄した後、乾燥して、目的物を白色固体として391mg得た。収率87%。
1H-NMR(500MHz,DMSO-d6,27℃,δppm) 8.66(d,J=5.5Hz,4H),7.69(d,J=7.8Hz,2H),7.59(d,J=5.6Hz,4H),7.27(t,J=8.0Hz,1H),4.99-4.93(m,2H),4.92-4.88(m,1H),4.53-4.49(m,2H),4.49-4.43(m,1H),4.28(d,J=7.6Hz,1H),4.26-4.20(m,1H),3.99-3.94(m,1H),3.69-3.64(m,1H),3.47-3.42(m,1H),3.18-3.13(m,1H),3.13-3.06(m,2H),3.05-3.01(m,1H)
Found:C,64.34;H,5.50;N,5.31
多面体状錯体(2a)が定量的に得られたことを、1H-NMR測定により確認した。
反応液に、酢酸エチルとジエチルエーテルを加えることにより白色固体が沈殿した。白色固体をろ取し、ジエチルエーテルで洗浄して真空乾燥することにより目的とする多面体状錯体(2a)を得た。収率85%。多面体状錯体(2a)の構造図を図1に示す。
1H-NMR(500MHz,DMSO-d6,27℃,δppm) 9.24(br,96H),7.85(br,96H),7.68(br,48H),7.27(br,24H),4.97(br,72H),4.46(br,72H),4.32(br,24H),4.15(br,24H),3.93(br,24H),3.66(br,24H),3.25(br,24H),3.15(br,48H),3.02(br,24H)
実施例1で得られた多面体状錯体(2a)のDMSO溶液(10ml)をクロロホルム(90ml)で希釈した後、テトラメトキシシラン(TMOS)を、多面体状錯体(2a)に対して、96当量加え、10日間室温で静置して縮合反応を行った。
実施例1で得られた多面体状錯体(2a)(14.6μmol)のDMSO(18.9ml)溶液を、水(75μL)とクロロホルム(166ml)で希釈した後、TMOSを、多面体状錯体に対して、65当量(実施例3)、85当量(実施例4)、130当量(実施例5)、170当量(実施例6)加え、4日間室温で静置して縮合反応を行った。
TMOSがすべて加水分解された後、1H-NMR、DOSY-NMR、LDI-MS、CSI-MSで分析し、AFM(原子間力顕微鏡)で観察した。
Diffusion coefficient D=1.5×10-10m2s-1(DMSO-d6:CDCl3=1:9,300K)by 1H nuclei.
29Si-MAS-NMR(59.7MHz,MAS rate=3kHz):Q1:Q2:Q3:Q4=12:28:39:21(-82.4,-91.5,-100.4,-109.2ppm).
Diffusion coefficient D=1.5×10-10m2s-1(DMSO-d6:CDCl3=1:9,300K)by 1H nuclei.
29Si-MAS-NMR(59.7MHz,MAS rate=3kHz):Q1:Q2:Q3:Q4=8:29:41:22(-81.7,-91.5,-101.0,-109.9ppm).
Diffusion coefficient D=1.5×10-10m2s-1(DMSO-d6:CDCl3=1:9,300K)by 1H nuclei.
29Si-MAS-NMR(59.7MHz,MAS rate=3kHz):Q1:Q2:Q3:Q4=6:27:42:24(-82.4,-91.2,-100.7,-109.9ppm).
Diffusion coefficient D=1.4×10-10m2s-1(DMSO-d6:CDCl3=1:9,300K)by 1H nuclei.
29Si-MAS-NMR(59.7MHz,MAS rate=3kHz):Q2:Q3:Q4=18:43:39(-91.0,-100.5,-109.9ppm).
実施例1で得られた多面体状錯体(2a)のDMSO溶液(70μL)をクロロホルム(0.63ml)で希釈した後、Ti(OiPr)4を錯体に対して72当量又は96当量加え、4℃で1日静置して縮合反応を行った。1H-NMRを用いて反応を追跡したところ、図9に示すように、加えた前駆体は全て加水分解されたのと同時に、多面体状錯体のシグナルが顕著にブロ-ド化することが確認され、多面体状錯体の内部で酸化チタンナノ粒子が生成したことが分かった。
(1)2-[2,6-ビス(4-ピリジルフェニルエチニル)フェノキシ]エチル β-D-グルコピラノサイド(2)の合成
Found:C,69.26;H,5.21;N,3.39.
Found:C,69.42;H,5.73;N,3.86.
多面体状錯体(2b)が定量的に得られたことを、1H-NMR及びCSI-MS測定により確認した。
反応液に、酢酸エチルとジエチルエーテルを加えることにより白色固体が沈殿した。白色固体をろ取し、ジエチルエーテルで洗浄して真空乾燥することにより目的錯体を得た。収率85%。融点を測定したところ、250℃で分解した。
1H-NMR(500MHz,DMSO-d6,27℃,δppm) 9.31(br,96H),8.18(br,96H),7.96(br,96H),7.76(br,96H),7.61(br,48H),7.24(br,24H),4.95(br,48H),488(br,24H),4.51(br,48H),4.46(br,24H),4.30(d,J=7.6Hz,24H),4.25(br,24H),4.00(br,24H),3.66(br,24H),3.46(br,24H),3.18(br,24H),3.12(br,48H),3.05(br,24H).
Found:C,56.63;H,5.12;N,3.35.
実施例8で得られた多面体状錯体(2b)(4.17μmol)のDMSO溶液(11.9ml)を、水(67μL)、クロロホルム(35.7ml)、及び硝酸(2.0μmol)で希釈した後、TMOSを、多面体状錯体(2b)に対して500当量(311μL、2.09ミリモル)加え、室温で4日間静置して縮合反応を行った。
TMOSがすべて加水分解された後、1H-NMR、DOSY-NMR、LDI-MSで分析した。
図10より、シリカナノ粒子内包錯体内のTMOSが加水分解され縮合反応が進行するにつれ、多面体状錯体の1H-NMRシグナルはブロード化することがわかる。
29Si-MAS-NMR(59.7MHz,MAS rate=3kHz):Q2:Q3:Q4=7:50:43(-91.2,-100.4,-109.2ppm).
図12に、シリカナノ粒子内包錯体のTEM観察図を示す。
図12のaは、実施例6のシリカナノ粒子内包錯体のTEM観察図、bは実施例6のシリカナノ粒子内包錯体のEDS(エネルギー分散X線分光法)スペクトル図、cは実施例9で得られたシリカナノ粒子内包錯体のTEM観察図である。
図11bでは、Si原子とPd原子の両方が観察された(なお、CuはTEMサンプルグリッド由来のものである。)。
内包されたシリカナノ粒子の平均直径は4.0nmであった。
Claims (16)
- 中空の殻を有する多面体状遷移金属錯体であって、前記中空の殻が、n1個(n1は、6~60の整数を表す。)の遷移金属原子と、2(n1)個の二座有機配位子とから形成されてなり、前記二座有機配位子が、連結基を介してポリヒドロキシ化合物の基を有するものであり、かつ、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように形成されている多面体状遷移金属錯体。
- 中空の殻を有する多面体状遷移金属錯体であって、前記中空の殻がn2個(n2は、6、12、24、30または60である。)の遷移金属原子と、2(n2)個の二座有機配位子とから形成されてなり、前記二座有機配位子が、連結基を介してポリヒドロキシ化合物の基を有するものであり、かつ、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように形成されている多面体状遷移金属錯体。
- 遷移金属化合物(M’)と、連結基を介してポリヒドロキシ化合物の基を有する二座有機配位子(L)とから、前記ポリヒロドキシ化合物の基が中空の殻内部に配向するように自己組織的に形成されてなる、式:Mn1L2(n1)(Mは遷移金属原子を表し、n1は、6~60の整数であり、M同士、L同士は、それぞれ同一であっても、相異なっていても良い。)で表される化合物である請求項1に記載の多面体状遷移金属錯体。
- 遷移金属化合物(M’)と、連結基を介してポリヒドロキシ化合物の基を有する二座有機配位子(L)とから、前記ポリヒドロキシ化合物の基が中空の殻内部に配向するように自己組織的に形成されてなる、式:Mn2L2(n2)(Mは遷移金属原子を表し、n2は、6、12、24、30または60であり、M同士、L同士は、それぞれ同一であっても、相異なっていても良い。)で表される請求項2に記載の多面体状遷移金属錯体。
- 前記ポリヒドロキシ化合物がグルコースである請求項1~4のいずれかに記載の多面体状遷移金属錯体。
- 多面体状遷移金属錯体を構成する遷移金属原子が、Ti、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Cd、Os、Ir及びPtからなる群から選ばれる一種であることを特徴とする請求項1~5のいずれかに記載の多面体状遷移金属錯体。
- 前記二座有機配位子が、式(I)
m1、m2はそれぞれ独立して、0~4の整数を表す。m1、m2が2以上のとき、R1同士、R2同士はそれぞれ同一であっても、相異なっていても良い。
Aは、下記式(a-1)~(a-4)
R4は、ハロゲン原子、置換されていても良いアルキル基、置換されていても良いアルコキシル基、シアノ基またはニトロ基を表す。
m3は0~3の整数を表し、m4は0~2の整数を表す。m3が2以上、m4が2のとき、複数個のR4は同一であっても、相異なっていても良い。
Qは、-Nr1-(r1は、水素原子、アルキル基、アリール基若しくはアシル基を表す。)、-O-、-C(=O)-、-S-、または-SO2-を表す。〕で表される基を示し、
Gは、エチニレン基またはp-フェニレン基を表し、tは0~6の整数を表す。tが2以上のとき、複数のG同士は同一であっても相異なっていてもよい。}
で示される化合物である、請求項1~6のいずれかに記載の多面体状遷移金属錯体。 - 請求項1~9に記載の多面体状遷移金属錯体の中空の殻内部に、金属酸化物の超微粒子が内包されていることを特徴とする、超微粒子内包遷移金属錯体。
- 前記金属酸化物が、ケイ素、チタン、ジルコニウム、アルミニウム、またはホウ素の酸化物であることを特徴とする、請求項10に記載の超微粒子内包遷移金属錯体。
- 前記金属酸化物の(重量平均分子量)/(数平均分子量)の値が1~1.05であることを特徴とする請求項10または11に記載の超微粒子内包遷移金属錯体。
- 請求項10~12のいずれかに記載の超微粒子内包遷移金属錯体の製造方法であって、前記多面体状遷移金属錯体の溶媒溶液に、所定量の金属アルコキシドを添加する工程を有することを特徴とする超微粒子内包遷移金属錯体の製造方法。
- 金属アルコキシドが、式:(R5)aM1(OR6)b(式中、M1はケイ素原子、チタン原子、ジルコニウム原子、アルミニウム原子、またはホウ素原子を表し、R5は炭素数1~6のアルキル基を表し、R6は炭素数1~6のアルコキシ基で置換されていてもよい炭素数1~6のアルキル基を表し、aは0、1または2を表し、bは2、3または4を表し、a+bはM1の原子価を表す。)で示される化合物である請求項13に記載の超微粒子内包遷移金属錯体の製造方法。
- 金属アルコキシドを、多面体状遷移金属錯体1モルに対して、72~500倍モル添加することを特徴とする請求項13または14に記載の超微粒子内包遷移金属錯体の製造方法。
- 金属アルコキシドの添加量を変化させることにより、収容される金属酸化物超微粒子の分子量を制御することを特徴とする、請求項13~15のいずれかに記載の超微粒子内包遷移金属錯体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/255,739 US8791261B2 (en) | 2009-03-11 | 2010-03-10 | Polyhedraltransition metal complex, transition metal complex containing ultrafine particles therein, and process for producing same |
JP2011503842A JPWO2010104113A1 (ja) | 2009-03-11 | 2010-03-10 | 多面体状金属錯体、超微粒子内包遷移金属錯体およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009058194 | 2009-03-11 | ||
JP2009-058194 | 2009-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010104113A1 true WO2010104113A1 (ja) | 2010-09-16 |
Family
ID=42728402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054008 WO2010104113A1 (ja) | 2009-03-11 | 2010-03-10 | 多面体状遷移金属錯体、超微粒子内包遷移金属錯体およびその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8791261B2 (ja) |
JP (1) | JPWO2010104113A1 (ja) |
WO (1) | WO2010104113A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184855A (ja) * | 2012-03-08 | 2013-09-19 | Univ Of Tokyo | 遷移金属錯体内包シリカナノ粒子、遷移金属酸化物クラスター内包シリカナノ粒子、遷移金属クラスター内包シリカナノ粒子及びこれらの製造方法 |
JP2015193199A (ja) * | 2014-03-31 | 2015-11-05 | マツダ株式会社 | 透明性積層体およびその製造方法 |
JP2016160241A (ja) * | 2015-03-04 | 2016-09-05 | 国立大学法人 東京大学 | 細孔性高分子化合物、分離対象化合物の分離方法、単結晶、結晶構造解析用試料の作製方法、解析対象化合物の分子構造決定方法、及びキラル化合物の絶対配置の決定方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10068683B1 (en) | 2014-06-06 | 2018-09-04 | Southwire Company, Llc | Rare earth materials as coating compositions for conductors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086683A (ja) * | 1998-09-14 | 2000-03-28 | Japan Science & Technology Corp | 三次元かご状遷移金属錯体及びその製造法 |
JP2004155660A (ja) * | 2002-11-01 | 2004-06-03 | Japan Science & Technology Agency | 球状遷移金属錯体およびその製造方法 |
JP2006248819A (ja) * | 2005-03-09 | 2006-09-21 | Japan Science & Technology Agency | 金属酸化物ナノファイバー/多糖複合体 |
JP2007015947A (ja) * | 2005-07-05 | 2007-01-25 | Univ Of Tokyo | 球状遷移金属錯体およびその製造方法 |
JP2008214294A (ja) * | 2007-03-06 | 2008-09-18 | Univ Of Tokyo | 重合性球状遷移金属錯体及び重合性球状遷移金属錯体の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3584166B2 (ja) | 1998-09-14 | 2004-11-04 | 独立行政法人 科学技術振興機構 | 内部空間を有する金属錯体からなる内包剤 |
JP3650968B2 (ja) | 2001-08-14 | 2005-05-25 | 独立行政法人科学技術振興機構 | 三次元錯体の内部空孔での光化学反応によるシクロブタン誘導体の製造方法 |
JP4391164B2 (ja) | 2003-08-29 | 2009-12-24 | 本州化学工業株式会社 | 三次元かご状遷移金属錯体を用いる化学反応方法 |
JP2005255545A (ja) | 2004-03-09 | 2005-09-22 | Univ Of Tokyo | ラジカル分子を内包してなる金属錯体 |
-
2010
- 2010-03-10 JP JP2011503842A patent/JPWO2010104113A1/ja active Pending
- 2010-03-10 US US13/255,739 patent/US8791261B2/en not_active Expired - Fee Related
- 2010-03-10 WO PCT/JP2010/054008 patent/WO2010104113A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086683A (ja) * | 1998-09-14 | 2000-03-28 | Japan Science & Technology Corp | 三次元かご状遷移金属錯体及びその製造法 |
JP2004155660A (ja) * | 2002-11-01 | 2004-06-03 | Japan Science & Technology Agency | 球状遷移金属錯体およびその製造方法 |
JP2006248819A (ja) * | 2005-03-09 | 2006-09-21 | Japan Science & Technology Agency | 金属酸化物ナノファイバー/多糖複合体 |
JP2007015947A (ja) * | 2005-07-05 | 2007-01-25 | Univ Of Tokyo | 球状遷移金属錯体およびその製造方法 |
JP2008214294A (ja) * | 2007-03-06 | 2008-09-18 | Univ Of Tokyo | 重合性球状遷移金属錯体及び重合性球状遷移金属錯体の製造方法 |
Non-Patent Citations (5)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184855A (ja) * | 2012-03-08 | 2013-09-19 | Univ Of Tokyo | 遷移金属錯体内包シリカナノ粒子、遷移金属酸化物クラスター内包シリカナノ粒子、遷移金属クラスター内包シリカナノ粒子及びこれらの製造方法 |
JP2015193199A (ja) * | 2014-03-31 | 2015-11-05 | マツダ株式会社 | 透明性積層体およびその製造方法 |
JP2016160241A (ja) * | 2015-03-04 | 2016-09-05 | 国立大学法人 東京大学 | 細孔性高分子化合物、分離対象化合物の分離方法、単結晶、結晶構造解析用試料の作製方法、解析対象化合物の分子構造決定方法、及びキラル化合物の絶対配置の決定方法 |
WO2016140355A1 (ja) * | 2015-03-04 | 2016-09-09 | 国立大学法人東京大学 | 細孔性高分子化合物、分離対象化合物の分離方法、単結晶、結晶構造解析用試料の作製方法、解析対象化合物の分子構造決定方法、及びキラル化合物の絶対配置の決定方法 |
US10385086B2 (en) | 2015-03-04 | 2019-08-20 | The University Of Tokyo | Porous polymer compound, method of separating compound to be separated, single crystals, method of producing sample for crystal structure analysis, method of determining molecular structure of compound to be analyzed, and method of determining absolute configuration of chiral compound |
Also Published As
Publication number | Publication date |
---|---|
US20120095196A1 (en) | 2012-04-19 |
US8791261B2 (en) | 2014-07-29 |
JPWO2010104113A1 (ja) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI781996B (zh) | 合成mcl-1抑制劑之方法 | |
WO2010104113A1 (ja) | 多面体状遷移金属錯体、超微粒子内包遷移金属錯体およびその製造方法 | |
JP3985025B2 (ja) | 両親媒性化合物、可溶性カーボンナノチューブ複合体 | |
JP4940422B2 (ja) | 球状遷移金属錯体およびその製造方法 | |
CN114524948A (zh) | 一种具有多种配位构型的3d超分子材料及其制备方法与应用 | |
JP5091760B2 (ja) | フラーレン誘導体及びその製造方法 | |
CN112029107B (zh) | 一种基于三嗪类配体二维金属有机框架材料及其制备方法和应用 | |
CN104650358A (zh) | 卟啉基异核双金属聚合物及其制备方法和应用 | |
JP5995199B2 (ja) | 遷移金属錯体内包シリカナノ粒子、遷移金属酸化物クラスター内包シリカナノ粒子、遷移金属クラスター内包シリカナノ粒子及びこれらの製造方法 | |
CN111909090A (zh) | 一种含丰富炔基化合物及其制备方法与金属有机框架材料 | |
JP7079494B2 (ja) | 新規化合物とその合成方法 | |
CN113896680B (zh) | 一种pH响应型超分子纳米管单体分子及其制备方法与应用 | |
Lakouraj et al. | Synthesis of Nanocrystalline Polycalix [4] amides Containing Mesogenic Triazole Units and Investigations of Their Thermo Physical Properties and Heavy Metal Sorption Behavior. | |
KR101447338B1 (ko) | 유기 올리고실세스퀴옥산의 제조 방법 | |
CN106380579A (zh) | 一类基于偶氮苯的有机多孔聚合物及其制备方法和应用 | |
KR100907459B1 (ko) | 금속 나노입자가 고정화된 이온성 액체-실리카 지지체복합체 및 금속 나노입자의 고정화방법 | |
CN107597196B (zh) | 一种表面修饰二氧化钛的有机石墨烯纳米管的制备方法 | |
KR101091203B1 (ko) | 비키랄성 양이온 겔화제를 이용한 나선형 실리카 나노튜브 및 이의 제조방법 | |
JP4951962B2 (ja) | アミノフェノール化合物 | |
CN111454551A (zh) | 一种咪唑基钼酸盐离子液体在制备PLLA/ILs共混物中的应用 | |
CN103819479B (zh) | 一种含嘧啶基团刚性共轭大环化合物及其制备方法和应用 | |
WO2024158007A1 (ja) | 化合物及びその製造方法 | |
JP2008214294A (ja) | 重合性球状遷移金属錯体及び重合性球状遷移金属錯体の製造方法 | |
CN106496192B (zh) | 一种克里唑蒂尼或氘代克里唑蒂尼的制备方法 | |
JP5025970B2 (ja) | 中空の殻内部に含フッ素アルキル基を有する中空遷移金属錯体、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10750866 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011503842 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13255739 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10750866 Country of ref document: EP Kind code of ref document: A1 |