CN113896680B - 一种pH响应型超分子纳米管单体分子及其制备方法与应用 - Google Patents

一种pH响应型超分子纳米管单体分子及其制备方法与应用 Download PDF

Info

Publication number
CN113896680B
CN113896680B CN202111107852.7A CN202111107852A CN113896680B CN 113896680 B CN113896680 B CN 113896680B CN 202111107852 A CN202111107852 A CN 202111107852A CN 113896680 B CN113896680 B CN 113896680B
Authority
CN
China
Prior art keywords
nanotube
acid
reaction
solvent
supermolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111107852.7A
Other languages
English (en)
Other versions
CN113896680A (zh
Inventor
黄哲钢
许欣
黄利平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202111107852.7A priority Critical patent/CN113896680B/zh
Publication of CN113896680A publication Critical patent/CN113896680A/zh
Application granted granted Critical
Publication of CN113896680B publication Critical patent/CN113896680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/346Mannich type reactions, i.e. nucleophilic addition of C-H acidic compounds, their R3Si- or metal complex analogues to aldimines or ketimines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种pH响应型超分子纳米管单体分子及其制备方法与应用。pH响应型超分子纳米管单体分子的结构式如式Ⅰ所示,其在水中通过肩并肩自组装形成二维薄片,分子内具有pH响应单元,加酸后诱导分子构型翻转,形成有序的一维管状结构。该纳米管强酸下结构稳定,通过调节体系pH值,可实现薄片和纳米管的可逆组装,预防反应过程中孔道堵塞,提高催化剂的重复利用率。在弱酸条件下,利用纳米管中的局域强酸性环境进行曼尼希催化反应,催化剂量为底物量的5mol%,单次催化产率可达80%以上。单体分子自组装形成的pH响应型超分子纳米管可作为一种高效的酸催化剂,还可进一步应用于其它酸催化、酸降解等领域。
Figure DDA0003273020910000011

Description

一种pH响应型超分子纳米管单体分子及其制备方法与应用
技术领域
本发明涉及超分子组装技术领域,尤其涉及一种pH响应型超分子纳米管单体分子及其制备方法与应用。
背景技术
超分子自组装是指小分子通过非共价键相互作用自发有序地缔合成较大的聚集体。刚柔两亲分子同时具备刚性嵌段和柔性嵌段,通过共轭环间π-π堆积和刚柔嵌段的亲疏水作用,可在水溶液中形成结构稳定的组装体。研究者们为获得不同形貌和尺寸的组装体,对分子结构进行精确设计,譬如对刚性部分体积占比的调整、柔性链长短及其横截面积的调控,得到了超分子多孔薄片、实心纤维、囊泡、中空纳米管等形貌各异的稳定聚集体。具有疏水空腔的多孔材料是有机小分子的有效载体,通过在单体分子结构上引入催化活性单元或后续在孔道上负载催化位点等方法,超分子多孔材料可制备非均相催化剂,作为高效的催化反应平台。
目前,酸催化反应是药物合成和精细化学品制备的重要方法,但强酸具有强腐蚀性,对环境、人体有害。研究者们通过将强质子酸引入各种多孔材料中(如沸石、介孔硅、金属共价框架材料等)得到固体酸催化剂,有效降低了体系酸度。但是,这类硬孔材料在强酸处理下容易水解而缺乏长期稳定性,重复利用率低。并且随着催化反应的进行,固化的孔道易被积累的产物占据,限制催化持续进行和催化剂的回收再利用。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种pH响应型超分子纳米管单体分子。
本发明的另一目的在于提供上述pH响应型超分子纳米管单体分子的制备方法。
本发明的再一目的在于提供上述pH响应型超分子纳米管单体分子的应用。
本发明的目的通过下述技术方案实现:一种pH响应型超分子纳米管单体分子,其结构式如式Ⅰ所示:
Figure BDA0003273020890000021
所述pH响应型超分子纳米管单体分子为三嵌段两亲性分子,包括V型芳香碳嵌段、末端疏水烷基链段以及外围亲水柔性嵌段。
上述pH响应型超分子纳米管单体分子的制备方法,从2,6-二溴,4-硝基吡啶出发,通过亲核取代反应连接树枝状聚环氧乙烷四支链,得到中间体1,再通过两步Suzuki反应拓展两侧的芳香嵌段,分别得到中间体2和中间体3,通过碘代反应得到中间体4,最后通过Suzuki反应连接末端烷基链,分离纯化,即得pH响应型超分子纳米管单体分子。
优选地,所述制备方法具体包括以下步骤:
(1)亲核取代反应:将2,6-二溴,4-硝基吡啶和树枝状聚环氧乙烷四支链分散于溶剂中,加入NaH,混合,反应,得到中间产物1;
优选地,步骤(1)所述2,6-二溴,4-硝基吡啶和树枝状聚环氧乙烷四支链的摩尔比为1:1-1.2;更优选地,摩尔比为1:1。
优选地,步骤(1)所述NaH的用量为按其与2,6-二溴,4-硝基吡啶的摩尔比为5-6:1配比。
优选地,步骤(1)所述溶剂为四氢呋喃。
优选地,步骤(1)所述溶剂的用量为适量。
优选地,步骤(1)所述混合的方式为冰水浴中搅拌30-45min。
优选地,步骤(1)所述反应为90℃-92℃反应12-15h。
优选地,步骤(1)所述中间产物1进行下一步反应前进行纯化:加入去离子水至反应液变澄清,减压旋蒸去除溶剂,采用乙酸乙酯和二氯甲烷依次萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的乙酸乙酯和乙醇作为洗脱液进行硅胶柱层析。
(2)两步Suzuki反应:将步骤(1)所述中间产物1与4,溴-2-甲氧基苯硼酸分散于溶剂中,加入碳酸钾溶液,除氧后迅速加入四三苯基膦钯,反应,得到中间产物2;所述中间产物2与4-(三甲基硅烷)联苯硼酸分散于溶剂中,其余过程与第一步Suzuki反应相同,得到中间产物3;
优选地,步骤(2)所述中间产物1与4,溴-2-甲氧基苯硼酸的摩尔比为1:2-2.5;更优选地,摩尔比为1:2.5。
优选地,步骤(2)所述溶剂均为四氢呋喃。
优选地,步骤(2)所述溶剂和四三苯基膦钯的用量为适量。
优选地,步骤(2)所述碳酸钾溶液的用量为按照碳酸钾溶液与四氢呋喃溶剂的体积比为3:5配比。
优选地,步骤(2)所述碳酸钾溶液的浓度为2moL/L。
优选地,步骤(2)所述反应为90℃-92℃反应20-24h。
优选地,步骤(2)所述中间产物2进行下一步反应前进行纯化:旋蒸去除溶剂,采用乙酸乙酯和二氯甲烷依次萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的乙酸乙酯和乙醇作为洗脱液进行硅胶柱层析。
优选地,步骤(2)所述中间产物2与4-(三甲基硅烷)联苯硼酸的摩尔比为1:2-2.5;更优选地,摩尔比为1:2.2。
优选地,步骤(2)所述中间产物3采用硅胶柱层析时洗脱液替换为体积比为10:1的二氯甲烷和乙醇。
(3)碘化反应:将中间产物3和一氯化碘分散在溶剂中,反应,加入Na2S2O3溶液,室温搅拌至无色,得到中间产物4;
优选地,步骤(3)所述中间产物3和一氯化碘的摩尔比为1:5-9;更优选地,摩尔比为1:7。
优选地,步骤(3)所述溶剂为二氯甲烷。
优选地,步骤(3)所述反应是在氩气保护下-80--78℃反应4-6h。
优选地,步骤(3)所述Na2S2O3溶液的用量为按照Na2S2O3与一氯化碘的摩尔比为5-7:1配比。
优选地,步骤(3)所述中间产物4进行下一步反应前进行纯化:水相用二氯甲烷萃取,有机相浓缩,以体积比为10:1的二氯甲烷和乙醇作为洗脱液进行硅胶柱层析。
(4)Suzuki反应:将中间产物4和4-乙基苯硼酸分散于溶剂中,加入碳酸钾溶液,除氧后迅速加入四三苯基膦钯,反应,得到pH响应型超分子纳米管单体分子。
优选地,步骤(4)所述中间产物4和4-乙基苯硼酸的摩尔比为1:2-2.5;更优选地,摩尔比为1:2.2。
优选地,步骤(4)所述溶剂为四氢呋喃。
优选地,步骤(4)所述溶剂和四三苯基膦钯的用量为适量。
优选地,步骤(4)所述碳酸钾溶液的用量为按照碳酸钾溶液体积与四氢呋喃的体积比为2:3配比。
优选地,步骤(4)所述碳酸钾溶液的浓度为2mol/L。
优选地,步骤(4)所述反应为90-92℃反应20-24h。
优选地,步骤(4)所述pH响应型超分子纳米管单体分子进行纯化:旋蒸去除溶剂,水相用二氯甲烷萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的二氯甲烷和甲醇作为洗脱液进行硅胶柱层析。
具体合成路线如下:
Figure BDA0003273020890000051
上述pH响应型超分子纳米管单体分子在酸催化剂中的应用。
所述应用的方法为:将所述单体分子加入在酸性溶液中,使其自组装,形成作为酸催化剂的pH响应型超分子纳米管。
优选地,所述酸性溶液为对甲苯磺酸溶液。
优选地,所述酸性溶液的pH为4。
优选地,所述自组装过程中,采用超声的方式将单体分子充分混合。
与现有技术相比,本发明具有以下有益效果:
1、本发明单体分子的芳香刚环部分参与分子间的π-π堆积,末端烷基链增强疏水作用,有助于提高管状骨架的稳定性;V型芳香环中心为具有pH响应的甲氧基苯-吡啶-甲氧基苯三联体,可识别质子形成多重氢键,有助于氢离子的富集;外围的亲水柔性嵌段增加分子与溶剂的接触,提高材料在水中的溶解性和分散性,并且将疏水孔腔与外界隔离,保障了强酸下骨架的稳定性。
2、本发明的单体分子在水中通过肩并肩自组装形成二维薄片,分子内具有pH响应单元,加酸后诱导分子构型翻转,形成有序的一维管状结构。该纳米管强酸下结构稳定,通过调节体系pH值,可实现薄片和纳米管的可逆组装,预防反应过程中孔道堵塞,提高催化剂的重复利用率。在弱酸条件下,利用纳米管中的局域强酸性环境进行曼尼希催化反应,催化剂量为底物量的5mol%,单次催化产率可达80%以上。
3、本发明的单体分子自组装形成的pH响应型超分子纳米管可作为一种高效的酸催化剂,还可进一步应用于其它酸催化、酸降解等领域。
附图说明
图1是超分子纳米管单体分子的核磁共振氢谱图。
图2是超分子纳米管单体分子的飞行时间质谱图。
图3是超分子纳米管单体分子的光谱检测结果图;其中,(a)是紫外可见吸收光谱图,(b)是荧光光谱图。
图4是原子力显微镜图下的超分子纳米管水中组装体的照片。
图5是单体分子加酸的核磁滴定实验检测结果图;其中,(a)是加酸前后单体分子的构型转变,(b)从上至下两张图分别是加酸前后分子的核磁谱图及特征氢的位移变化曲线。
图6是原子力显微镜图下的超分子纳米管的照片。
图7是超分子纳米管在强酸下的稳定性检测结果图。
图8是高效液相色谱检测产率结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:超分子纳米管单体分子的制备
1、步骤S1:接枝亲水柔性嵌段的合成(树枝状聚环氧乙烷四支链合成参考文献:H.-J.Kim,J.-H.Lee,M.Lee,Stimuli-responsive gels from reversible coordinationpolymers.Angew.Chem.Int.Ed.2005,44,5810.doi:10.1002/anie.200501270)。
亲核取代反应:反应底物为2,6-二溴,4-硝基吡啶(2g,7.10mmol)和树枝状聚环氧乙烷四支链(7.8g,7.10mmol),摩尔比为1:1,加入100mL四氢呋喃作溶剂,冰水浴下加入NaH(0.85g,35.5mmoL),搅拌30分钟,随后撤去冰水浴并升温至90℃,反应12小时。停止反应时先降温至室温,随后加入去离子水至溶液变澄清,减压旋蒸去除四氢呋喃,水相用乙酸乙酯和二氯甲烷分别萃取一次,留有机相,用无水硫酸镁去除残留水分,浓缩后得到反应粗产物。采用硅胶柱层析法进行纯化,以体积比为10:1的乙酸乙酯和乙醇为流动相进行洗脱,得到中间产物1(3.02g,32%)。
2、步骤S2:刚性芳香碳嵌段的拓展
(1)两步Suzuki反应
将中间产物1(3.02g,2.27mmoL)与4,溴-2-甲氧基苯硼酸(1.31g,5.68mmoL)分散在50mL四氢呋喃中,底物摩尔比为1:2.5,加入2moL/L的碳酸钾水溶液30mL,除氧后迅速加入催化剂量(27mg,0.023mmol)的四三苯基膦钯,升温至90℃,反应20小时。停反应时先冷却至室温,旋蒸去除四氢呋喃,分别用乙酸乙酯和二氯甲烷各萃取一次,留有机相,用无水硫酸镁去除残留水分,浓缩后得到反应粗产物。采用硅胶柱层析法进行纯化,以体积比为10:1的乙酸乙酯和乙醇为流动相进行洗脱,得到中间产物2(1.58g,45%)。
中间产物2(1.58g,1.02mmol)再与4-(三甲基硅烷)联苯硼酸(0.61g,2.24mmol)分散在30mL四氢呋喃中,底物摩尔比为1:2.2,加入2mol/L的碳酸钾水溶液20mL,除氧后迅速加入催化剂量(12mg,0.01mmol)的四三苯基膦钯,升温至90℃,反应20小时。停反应时先冷却至室温,旋蒸去除四氢呋喃,分别用乙酸乙酯和二氯甲烷各萃取一次,留有机相,用无水硫酸镁去除残留水分,浓缩后得到反应粗产物。采用硅胶柱层析法进行纯化,以体积比为10:1的二氯甲烷:乙醇为流动相进行洗脱,得到中间产物3(1.42g,76%)。
(2)碘化反应
将中间产物3(1.42g,0.77mmol)分散在溶剂二氯甲烷中,降温至-78℃,加入1mol/L一氯化碘的二氯甲烷溶液(5.39mL,5.39mmol),底物摩尔比为1:7,氩气保护下低温反应4小时(二氯甲烷凝固点为-97℃,因此体系不会凝结,可以进行反应)。随后加入1mol/LNa2S2O3溶液(30mL,30mmol),升至室温,搅拌2小时至无色。停反应时先分离出有机相,水相用二氯甲烷萃取,留有机相,浓缩后采用硅胶柱层析法纯化,以体积比为10:1的二氯甲烷和乙醇为流动相进行洗脱,得到中间产物4(1.24g,83%)。
(3)Suzuki反应
将中间产物4(1.24g,0.64mmol)和4-乙基苯硼酸(0.21g,1.41mmol)分散在30mL已干燥处理过的四氢呋喃(THF)中,底物摩尔比为1:2.2,加入20mL浓度为2mol/L的碳酸钾水溶液。使用抽气泵对反应体系进行除氧,迅速加入催化剂量(7mg,0.006mmol)的四三苯基膦钯,再次除氧,最后升温至90℃,反应20小时。使用薄层色谱(TLC)点板跟踪反应进程,反应结束后先将体系冷却至室温,旋蒸去除四氢呋喃,水相用二氯甲烷萃取两次,留有机相,用无水硫酸镁去除残留水分,浓缩后得到反应粗产物。使用硅胶柱层析法对粗产物进行提纯,以体积比为10:1的二氯甲烷和甲醇混合溶剂进行洗脱,得到较纯的产物。再次经过高效液相色谱柱进行提纯,使用C18柱分离,以体积比为7:3的乙腈和甲醇混合溶剂为流动相,分离得到最终产物pH响应型超分子纳米管单体分子(0.79g,65%)。
pH响应型超分子纳米管单体分子的结构经核磁共振(1HNMR)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测试确认,具体数据如下:
1H NMR(400MHz,CDCl3,δppm)8.09(d,J=8.0Hz,2H),7.78–7.71(m,16H),7.61(d,J=8.0Hz,4H),7.47(s,2H),7.40(d,J=8.0Hz,2H),7.35(s,2H),7.31(d,J=8.0Hz,4H),4.21(d,J=4.0Hz,2H),4.03(s,6H),3.66–3.39(m,88H),2.77–2.72(q,J=16.0Hz,4H),2.48(dt,1H),2.12(dt,2H),1.34–1.29(m,6H),1.12(d,J=8.0Hz,12H).
MALDI-TOF mass:m/z calculated for C111H153NO25[M+H]+:1902.43;found[M+H]+:1902.04。
核磁共振氢谱如图1所示,飞行时间质谱如图2所示。
实施例2:单体分子的水中自组装
分别取实施例1制备的纳米管单体分子于两个干净螺口瓶中,分别加入水和四氢呋喃,都配制成质量分数为0.01wt%的溶液,均超声五分钟,随后使用紫外可见吸收光谱仪和荧光光谱仪进行测试。测试结果如图3所示,紫外光谱显示在四氢呋喃中单体分子最大吸收波长为323nm,水中最大吸收波长在338nm,相对于四氢呋喃溶液产生明显红移;荧光光谱结果表明,在四氢呋喃溶液中单体分子有很强的发射峰,在水中出现荧光猝灭。紫外红移和荧光猝灭说明水溶液中分子间π-π作用加强,共轭程度增加,单体分子聚集形成了组装体。进一步在原子力显微镜下观察,结果如图4所示,水中组装体为均匀的片层。
实施例3:超分子纳米管对pH的响应特性
(1)单体分子加酸的核磁滴定实验
由于该纳米管单体分子中2,6-联苯吡啶的邻位引入了甲氧基,甲氧基上的氧原子和吡啶环上的氮原子均是良好的质子受体,而吡啶和甲氧基苯衍生物之间存在可旋转的碳碳单键(CPy-Cph),在酸性条件下,可结合氢离子形成N…H…O多重氢键。为证实该分子能识别氢离子,进行了加酸的核磁滴定实验。
将实施例1制备的单体分子溶解于氘代丙酮中,逐滴加入三氟乙酸,并实时测定核磁氢谱,结果如图5所示。结果显示,随着环境中氢离子浓度增大,吡啶周围的氢原子化学位移整体都往低场移动,这是由于单体分子内部形成氢键,产生去屏蔽效应。选取几个特征氢观察化学位移变化,吡啶环上的H3py以及吡啶环间位上的Hm1、Hm2均符合去屏蔽效应的结果,而吡啶环邻位上的氢Ho却逐渐往高场移动,考虑到分子构象发生变化:邻位氢在甲氧基翻转后远离了质子中心,去屏蔽效应减弱,因此表现为化学位移减小。这一实验证实了纳米管单体分子对pH具有响应性,酸性条件下可通过形成多重氢键捕获外界氢离子。
(2)超分子纳米管的制备及在强酸下的稳定性
取实施例1制备的单体分子于洁净的螺口瓶中,加入去离子水至浓度为0.1mg/mL,随后加入2当量的对甲苯磺酸,超声5分钟,随后取20微升样品滴在云母片上,待溶剂挥发干后在原子力显微镜下观察,结果如图6所示。图像显示,在弱酸条件下单体分子自组装形成一维管状结构。将超分子纳米管浸泡在HCl水溶液中(pH=2),30℃下搅拌两周,在透射电镜下观察,结果如图7所示。图像显示,强酸下纳米管结构得以保持。这种良好的稳定性依赖于分子外围四分支亲水柔性链的包裹,它将内部疏水孔腔与外部强酸环境隔离开,防止强酸下结构坍塌。
(3)超分子纳米管的动态组装
利用超分子纳米管的pH响应特性,调节体系pH值,可以对组装体形貌进行动态调控:单体分子在水溶液中为薄片结构,加入对甲苯磺酸得到酸性纳米管,加碱中和酸后重新形成薄片,再次调至酸性条件可恢复纳米管结构。这种可逆组装有利于催化反应结束后及时释放产物,防止孔道堵塞,使催化剂得以回收再利用。
应用例1:超分子纳米管的催化性能研究
曼尼希催化反应是许多生物碱的合成方法,目前主要是使用强酸作为催化剂在有机溶剂中反应,由于亚胺反应中间体在水中容易水解,因此难以在水中进行反应。酸性纳米管在水中有良好分散性,且具有疏水性空腔。将其应用在曼尼希反应中,探究超分子纳米管的酸催化效果。将95μg实施例1制备的单体分子溶解于0.5mL水中,加入17.22μg对甲苯磺酸,超声5分钟,得到超分子纳米管。随后,加入均为1μmol的反应底物:苯甲醛(R1)、苯胺(R2)、苯乙酮(R3),催化体系中超分子纳米管的摩尔百分含量均为5mol%,产物命名为P1。室温下搅拌150min,旋蒸去溶剂,加入2mL乙腈溶解混合物,从中取20μL乙腈溶液,注入高效液相色谱仪,观察反应进程。结果如图8所示,根据HPLC谱峰面积,计算得出反应产率,为81.8%。因此,利用这种pH响应型的超分子纳米管,实现了弱酸条件下的高效曼尼希催化。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种pH响应型超分子纳米管,其特征在于,pH响应型超分子纳米管单体分子的结构式如式Ⅰ所示:
Figure QLYQS_1
式Ⅰ;
将所述pH响应型超分子纳米管单体分子加入酸性溶液中,使其自组装,形成作为酸催化剂的pH响应型超分子纳米管;所述酸性溶液为对甲苯磺酸溶液。
2.根据权利要求1所述pH响应型超分子纳米管,其特征在于,所述pH响应型超分子纳米管单体分子的制备方法具体包括以下步骤:
(1)亲核取代反应:将2,6-二溴-4-硝基吡啶和树枝状聚环氧乙烷四支链分散于溶剂中,加入NaH,混合,反应,得到中间产物1;
(2)两步Suzuki反应:将步骤(1)所述中间产物1与4-溴-2-甲氧基苯硼酸分散于溶剂中,加入碳酸钾溶液,除氧后迅速加入四三苯基膦钯,反应,得到中间产物2;所述中间产物2与4-(三甲基硅烷)联苯硼酸分散于溶剂中,其余过程与第一步Suzuki反应相同,得到中间产物3;
(3)碘化反应:将中间产物3和一氯化碘分散在溶剂中,反应,加入Na2S2O3溶液,室温搅拌至无色,得到中间产物4;
(4)Suzuki反应:将中间产物4和4-乙基苯硼酸分散于溶剂中,加入碳酸钾溶液,除氧后迅速加入四三苯基膦钯,反应,得到pH响应型超分子纳米管单体分子。
3.根据权利要求2所述pH响应型超分子纳米管,其特征在于,
步骤(1)所述溶剂为四氢呋喃;
步骤(2)所述溶剂均为四氢呋喃;
步骤(3)所述溶剂为二氯甲烷;
步骤(4)所述溶剂为四氢呋喃。
4.根据权利要求3所述pH响应型超分子纳米管,其特征在于,
步骤(1)所述2,6-二溴-4-硝基吡啶和树枝状聚环氧乙烷四支链的摩尔比为1:1-1.2;
步骤(1)所述NaH的用量为按其与2,6-二溴-4-硝基吡啶的摩尔比为5-6:1配比;
步骤(2)所述中间产物1与4-溴-2-甲氧基苯硼酸的摩尔比为1:2-2.5;
步骤(2)所述碳酸钾溶液的用量为按照碳酸钾溶液与四氢呋喃溶剂的体积比为3:5配比;
步骤(2)所述碳酸钾溶液的浓度为2 moL/L;
步骤(2)所述中间产物2与4-(三甲基硅烷)联苯硼酸的摩尔比为1:2-2.5;
步骤(3)所述中间产物3和一氯化碘的摩尔比为1:5-9;
步骤(3)所述Na2S2O3溶液的用量为按照Na2S2O3与一氯化碘的摩尔比为5-7:1配比;
步骤(4)所述中间产物4和4-乙基苯硼酸的摩尔比为1:2-2.5;
步骤(4)所述碳酸钾溶液的用量为按照碳酸钾溶液体积与四氢呋喃的体积比为2:3配比;
步骤(4)所述碳酸钾溶液的浓度为2 mol/L。
5.根据权利要求4所述pH响应型超分子纳米管,其特征在于,
步骤(1)所述2,6-二溴-4-硝基吡啶和树枝状聚环氧乙烷四支链的摩尔比为1:1;
步骤(2)所述中间产物1与4-溴-2-甲氧基苯硼酸的摩尔比为1:2.5;
步骤(2)所述中间产物2与4-(三甲基硅烷)联苯硼酸的摩尔比为1:2.2;
步骤(3)所述中间产物3和一氯化碘的摩尔比为1:7;
步骤(4)所述中间产物4和4-乙基苯硼酸的摩尔比为1:2.2。
6.根据权利要求2所述pH响应型超分子纳米管,其特征在于,
步骤(1)所述混合的方式为冰水浴中搅拌30-45min;
步骤(1)所述反应为90-92℃-反应12-15h;
步骤(2)所述反应为90-92℃反应20-24h;
步骤(3)所述反应是在氩气保护下-80 - -78℃反应4-6h;
步骤(4)所述反应为90-92℃反应20-24h。
7.根据权利要求2所述pH响应型超分子纳米管,其特征在于,
步骤(1)所述中间产物1进行下一步反应前进行纯化:加入去离子水至反应液变澄清,减压旋蒸去除溶剂,采用乙酸乙酯和二氯甲烷依次萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的乙酸乙酯和乙醇作为洗脱液进行硅胶柱层析;
步骤(2)所述中间产物2进行下一步反应前进行纯化:旋蒸去除溶剂,采用乙酸乙酯和二氯甲烷依次萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的乙酸乙酯和乙醇作为洗脱液进行硅胶柱层析;
步骤(2)所述中间产物3采用硅胶柱层析时洗脱液替换为体积比为10:1的二氯甲烷和乙醇;
步骤(3)所述中间产物4进行下一步反应前进行纯化:水相用二氯甲烷萃取,有机相浓缩,以体积比为10:1的二氯甲烷和乙醇作为洗脱液进行硅胶柱层析;
步骤(4)所述pH响应型超分子纳米管单体分子进行纯化:旋蒸去除溶剂,水相用二氯甲烷萃取,有机相采用无水硫酸镁去除残留水分,浓缩,以体积比为10:1的二氯甲烷和甲醇作为洗脱液进行硅胶柱层析。
8.根据权利要求1所述pH响应型超分子纳米管,其特征在于,
所述酸性溶液的pH为4;
所述自组装过程中,采用超声的方式将单体分子充分混合。
9.权利要求1所述pH响应型超分子纳米管作为曼尼希反应酸催化剂中的应用。
CN202111107852.7A 2021-09-22 2021-09-22 一种pH响应型超分子纳米管单体分子及其制备方法与应用 Active CN113896680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111107852.7A CN113896680B (zh) 2021-09-22 2021-09-22 一种pH响应型超分子纳米管单体分子及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111107852.7A CN113896680B (zh) 2021-09-22 2021-09-22 一种pH响应型超分子纳米管单体分子及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113896680A CN113896680A (zh) 2022-01-07
CN113896680B true CN113896680B (zh) 2023-06-30

Family

ID=79029071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111107852.7A Active CN113896680B (zh) 2021-09-22 2021-09-22 一种pH响应型超分子纳米管单体分子及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113896680B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116078440A (zh) * 2023-01-17 2023-05-09 中山大学 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN113896680A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Chiang et al. Efficient one-flask synthesis of water-soluble [60] fullerenols
JP3985025B2 (ja) 両親媒性化合物、可溶性カーボンナノチューブ複合体
CN113896680B (zh) 一种pH响应型超分子纳米管单体分子及其制备方法与应用
Wu et al. Rim-differentiated pillar [5] arenes
JP4005571B2 (ja) 両親媒性ヘキサペリヘキサベンゾコロネン誘導体
CN111808281B (zh) 一种一步合成聚吡唑囊泡的方法
CN109847800B (zh) 一种聚羧基型杂多酸聚离子液体及其制备方法和应用
CN115286543B (zh) 利用全氟烷基磺酸离子液体制备4,4′-二氯二苯砜的工艺
CN113354513A (zh) 一种α,α-二氘代苄醇类化合物、氘代药物及一种苯甲酸酯类化合物的还原氘化方法
JP4107715B2 (ja) イミダゾリウム系溶融塩型電解質の調製方法
JP5230956B2 (ja) 第4級アンモニウム塩を用いた疎水性巨大分子の可溶化方法
CN111349121A (zh) 羰基合钴配合物及其制备方法
CN110041264A (zh) 一种金刚烷基咪唑类离子液体及其制备方法
JP2010513496A5 (zh)
Gong et al. Synthesis of a chiral micelle-like dendrimer with phenylene dendrons and a 1, 1′-binaphthyl core
JP4873570B2 (ja) ポリ[2]カテナン化合物およびその単量体、ならびにそれらの製造方法
JP2004210773A (ja) フラーレン誘導体とその製造方法
CN110818863B (zh) 一种基于聚噻吩的两亲嵌段聚合物、其制备方法和电活性胶束
TWI535704B (zh) 具有酸催化活性的離子液體,及催化劑
KR20180094468A (ko) 신규한 화합물 및 이의 용도
US20220033410A1 (en) Synthesis of nanotubular molecules
CN113831510B (zh) 一种基于苯并硒二唑的共价有机框架及其制备方法与应用
JP4568517B2 (ja) デンドロン又はデンドリマーの製造方法
TW296381B (zh)
CN109456219B (zh) 一种稳定高效制备n-丙烯酰胺类化合物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant