CN116078440A - 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用 - Google Patents

一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN116078440A
CN116078440A CN202310087376.XA CN202310087376A CN116078440A CN 116078440 A CN116078440 A CN 116078440A CN 202310087376 A CN202310087376 A CN 202310087376A CN 116078440 A CN116078440 A CN 116078440A
Authority
CN
China
Prior art keywords
solvent
gel
porous photocatalytic
stirring
benzaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310087376.XA
Other languages
English (en)
Other versions
CN116078440B (zh
Inventor
黄哲钢
梁明韫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202310087376.XA priority Critical patent/CN116078440B/zh
Publication of CN116078440A publication Critical patent/CN116078440A/zh
Application granted granted Critical
Publication of CN116078440B publication Critical patent/CN116078440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用,涉及光催化降解的技术领域。多孔光催化凝胶包括体系溶剂和分散于体系溶剂的光敏剂分子,体系溶剂包括70vt%‑100vt%的丙酮溶剂和0‑30vt%的乙腈溶剂,光敏剂分子的化学结构式为:
Figure DDA0004069229910000011
本申请多孔光催化凝胶具有多孔结构,能够阻止光敏剂分子的聚集,同时有利于单线态氧的有效传递,提高孔洞中芳香族化合物的浓度,光降解效率提高,其自身具有极强的稳定性,在长时间光照下催化性能仍然维持,对于含醛基的毒性化合物苯甲醛表现出选择性降解,在污染物选择性降解领域有着广阔的应用前景。

Description

一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和 应用
技术领域
本发明涉及光催化降解的技术领域,尤其涉及一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用。
背景技术
化石燃料的长期使用使得能源逐渐枯竭,影响着社会的可持续发展。光催化氧化技术是利用自然光照射活化光敏性催化剂,将空气中的氧转化为单线态氧或活性自由基彻底氧化降解有机污染物的一种新兴绿色技术,在光动力治疗、有机污染物的降解等方面具有广阔的应用前景(Chem.Rev.2021,121,4100–4146)。芳香族化合物广泛存在于染料、药物、塑料和橡胶工业的废水中,可以通过生态循环系统进入地表水和地下水,对环境和人类造成极大的危害(Chemosphere 2022,296,134071)。
迄今为止,单线态氧作为活性物种光催化氧化芳香族有机物已经得到广泛研究。大环功能染料(卟啉和酞菁)、富勒烯衍生物等光敏剂已被用于芳香族化合物的降解,例如,So-Ryong Chae等人报道了一种光敏性羟基化-C60富勒烯聚集体的悬浮液,可用于降解2-氯苯酚,并指出较小的聚集体具有更快的单线态氧产生速率(Envi ron.Sci.Technol.2009,43,6208–6213)。Jaesang Lee等人进一步将C60氨基富勒烯固定在二氧化硅载体上,可以阻止C60的聚集,促进单线态氧的产生,进而促进4-氯苯酚的氧化降解(Environ.Sci.Technol.2011,45,10598–10604)。除此之外,在固体锚定载体(金属氧化物和硫化物、聚合物和碳质材料)上负载光敏性分子可以形成高度组织的杂化材料,有利于光敏性分子的分散,具有良好的光催化性能。例如Jing Xu等人采用原位静电法将四(4-羧基苯基)卟啉均匀地沉积在氧化g-C3N4纳米片表面构建异质结,四(4-羧基苯基)卟啉在复合材料中的良好分散性为光催化反应提供大量的反应位点,四(4-羧基苯基)卟啉复合材料对苯酚表现出更强的光降解活性,降解速率是四(4-羧基苯基)卟啉的2.5倍。
尽管利用光敏性分子的结构及形态学调控有效促进了单线态氧的产生,实现了系列芳香族有机物的降解,但针对惰性有机物的选择性降解是难以实现的,主要与氧化降解机理相关。单线态氧是一种亲电氧化剂,可以与多电子体系的芳香性化合物形成过氧化物,因而含有给电子基团的化合物具有优异的反应活性,而带有吸电子基团羰基的惰性芳香性分子作为靶向性污染物难以得到有效降解。
发明内容
本发明提供了一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用,该多孔光催化凝胶可以快速识别并催化降解含羰基的苯甲醛,呈现极强的产氧活性和光降解稳定性。
为了解决上述技术问题,本发明目的之一提供了一种高效吸附降解苯甲醛的多孔光催化凝胶,所述多孔光催化凝胶包括体系溶剂和分散于体系溶剂的光敏剂分子,所述体系溶剂包括70vt%-100vt%的丙酮溶剂和0-30vt%的乙腈溶剂,所述光敏剂分子的化学结构式为:
Figure BDA0004069229890000021
通过采用上述方案,本申请中光敏剂分子具有光敏性的催化嵌段和造孔嵌段,其一端连接酰胺质子给体,在分子两侧引入具有刚性自组装功能的吡啶结构,如图1所示,在乙腈溶剂中诱导氢键自组装形成二维薄片结构,随后丙酮溶剂分子通过氢键的主、客体作用溶胀光敏剂分子,触发二维薄片的侧滑,形成有序排列的矩形多孔结构,构建了多维、多级次层层组装的凝胶催化剂,多孔光催化凝胶作为质子给体可以快速识别含羰基的苯甲醛,多孔框架便于溶剂的交换,从而提高催化剂孔中苯甲醛的浓度,加快对苯甲醛等芳香族化合物的降解速率,且自身具有极强的产氧活性和光降解稳定性。
作为优选方案,所述体系溶剂为100vt%的丙酮溶剂。
作为优选方案,所述多孔光催化凝胶中光敏剂分子的浓度为1.5-4mg/mL。
作为优选方案,所述光敏剂分子的分子量为856.07g/mo l。
为了解决上述技术问题,本发明目的之二提供了一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,包括以下步骤:当丙酮占体系溶剂小于100vt%时,将光敏剂分子分散在乙腈溶剂中,超声处理形成氢键驱动自组装的无孔凝胶前驱体,随后与丙酮溶剂混合制备出多孔光催化凝胶;当丙酮占体系溶剂100vt%时,将光敏剂分子分散在丙酮溶剂中超声处理。
作为优选方案,所述超声时间为5mi n-30mi n。
作为优选方案,所述光敏剂分子包括以下制备步骤:
(1)将二噻吩基-吡咯并吡咯二酮溶于溶剂a中,依次加入叔丁醇钾、溴代异辛烷,搅拌反应,旋蒸除去溶剂a后纯化处理,得到中间体A;
(2)将中间体A、碳酸铯溶于溶剂a中,在氩气保护下加入N-Boc-溴乙胺,搅拌反应,旋蒸除去溶剂a后纯化处理,得到中间体B;
(3)将中间体B溶于溶剂b中,加入三氟乙酸,在冰水浴中搅拌反应,旋蒸除去溶剂b后纯化处理,得到噻吩取代吡咯并吡咯二酮光催化单元;
(4)将均苯三甲酸、3-(2-氨基乙基)吡啶溶于溶剂a中,依次加入N,N-二异丙基乙胺、苯并三氮唑四甲基脲六氟磷酸盐,在冰水浴中搅拌反应,旋蒸除去溶剂a后纯化处理,得中间体C;
(5)将中间体C、噻吩取代吡咯并吡咯二酮光催化单元溶于溶剂a中,依次加入N,N-二异丙基乙胺、苯并三氮唑四甲基脲六氟磷酸盐,在冰水浴中搅拌反应,旋蒸除去溶剂a后纯化处理,得到光敏剂分子。
作为优选方案,所述溶剂a为N,N-二甲基甲酰胺;所述溶剂b为二氯甲烷。
作为优选方案,在步骤(1)中,所述二噻吩基-吡咯并吡咯二酮、叔丁醇钾与溴代异辛烷的摩尔比为1:(2-3):(1-2);在步骤(2)中,所述中间体A与N-Boc-溴乙胺的摩尔比为1:(1-2);在步骤(3)中,所述中间体B和三氟乙酸的摩尔比为1:(300-700);在步骤(4)中,所述均苯三甲酸、3-(2-氨基乙基)吡啶、N,N-二异丙基乙胺和苯并三氮唑四甲基脲六氟磷酸盐的摩尔比为1:(2-3):(2-3):(2-3);在步骤(5)中,所述中间体C与噻吩取代吡咯并吡咯二酮光催化单元、N,N-二异丙基乙胺和苯并三氮唑四甲基脲六氟磷酸盐的摩尔比为1:(1-2):(1-2):(1-2)。
作为优选方案,在步骤(1)中,搅拌反应时间为5-8小时;在步骤(2)中,搅拌反应时间为12-24小时;在步骤(3)中,搅拌反应时间为2-3小时;在步骤(4)中,搅拌反应时间为3-5小时;在步骤(5)中,搅拌反应时间为3-5小时。
作为优选方案,在步骤(1)-(5)中中,纯化均采用柱层析法,所述柱层析法的洗脱剂为甲醇和/或二氯甲烷,柱层析的填料为硅胶或中性氧化铝。
为了解决上述技术问题,本发明目的之三提供了一种高效吸附降解苯甲醛的多孔光催化凝胶在芳香族化合物降解领域中的应用。
作为优选方案,所述芳香族化合物为硝基苯、溴苯、苯甲醛、苯、苯甲醇、苯胺中的一种或多种。
作为优选方案,将多孔光催化凝胶分散在含有芳香族化合物的水中,向体系中通入氧气,在太阳光照下搅拌反应降解芳香族化合物。
相比于现有技术,本发明实施例具有如下有益效果:
(1)本申请所述多孔光催化凝胶具有多孔结构,能够阻止光敏剂分子的聚集,同时有利于单线态氧的有效传递,提高光催化剂的降解性能。
(2)本申请所述的多孔光催化凝胶具有极强的稳定性,在长时间光照下,其催化性能仍然维持,具有实际应用价值。
(3)本申请基于超分子识别和组装策略制备的多孔光催化凝胶,对于含醛基的毒性化合物苯甲醛表现出选择性降解,在污染物选择性降解领域有着广阔的应用前景。
附图说明
图1:为本发明实施例中无孔凝胶前驱体结构加丙酮后形成多孔光催化凝胶结构的示意图;
图2:为本发明实施例一中一种高效吸附降解苯甲醛的多孔光催化凝胶中光敏剂分子的核磁共振氢谱、碳谱结果;
图3:为本发明实施例一中一种高效吸附降解苯甲醛的多孔光催化凝胶中光敏剂分子的电喷雾电离质谱结果;
图4:为本发明实施例一中一种高效吸附降解苯甲醛的多孔光催化凝胶的TEM(下)和XRD(上)图像;
图5:为本发明实施一中无孔凝胶前驱体添加不同体系溶剂比例的丙酮后的体系粘度统计结果;
图6:为本发明实施例一和对比例一中产物的消耗单线态氧探针的所需时间(注:Ge l-实施例一;ACN-对比例一);
图7:为本发明实施例一和对比例一中产物光照1-4h后消耗单线态氧探针的效率(注:Ge l-实施例一;ACN-对比例一);
图8:为本发明实施例一中一种高效吸附降解苯甲醛的多孔光催化凝胶对不同芳香族化合物的转化率。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
一种高效吸附降解苯甲醛的多孔光催化凝胶,包括以下制备步骤:
(1)取二噻吩基-吡咯并吡咯二酮(分子量300.36g/mo l,15mmo l)均匀分散在200mL N,N-二甲基甲酰胺中,加入叔丁醇钾(37.5mmo l),搅拌10分钟后加入溴代异辛烷(22.5mmo l),继续搅拌7小时后停止反应,旋蒸除去溶剂N,N-二甲基甲酰胺,通过柱层析法进行提纯,洗脱剂为二氯甲烷,得到紫红色的中间体A(分子量412.57g/mo l,6.8mmo l,产率为46%);
(2)将所得中间体A溶解在100mL N,N-二甲基甲酰胺中,加入碳酸铯(17.09mmol),氩气置换体系中气体,搅拌15分钟后加入N-Boc-溴乙胺(10.25mmo l),继续搅拌24小时后停止反应,旋蒸除去溶剂N,N-二甲基甲酰胺,通过柱层析法进行提纯,洗脱剂为二氯甲烷,得到中间体B(分子量555.75g/mo l,2.31mmo l,产率34%);
(3)将所得中间体B溶解在180mL二氯甲烷中,冰浴搅拌的条件下滴加三氟乙酸(60mL,0.81mo l),在冰水浴中搅拌3小时停止反应,旋蒸除去三氟乙酸和溶剂二氯甲烷,通过柱层析法进行提纯,以二氯甲烷和甲醇体积比为5:1的混合溶剂作为洗脱剂,选用中性氧化铝为填料,得到噻吩取代吡咯并吡咯二酮光催化单元(分子量455.64g/mo l,1.18mmo l,产率51%);
(4)取均苯三甲酸(分子量210.14g/mo l,4.76mmo l)、3-(2-氨基乙基)吡啶(9.52mmo l)均匀分散在120mL N,N-二甲基甲酰胺中,加入N,N-二异丙基乙胺(9.52mmol),搅拌20分钟后,加入苯并三氮唑四甲基脲六氟磷酸盐(9.52mmo l),继续搅拌3小时后停止反应,旋蒸除去溶剂N,N-二甲基甲酰胺,通过柱层析法进行提纯,以二氯甲烷和甲醇体积比为5:1的混合溶剂作为洗脱剂,得到中间体C(分子量418.45g/mo l,1.43mmo l,产率30%);
(5)将所得中间体C(分子量418.45g/mo l,1.19mmo l)、噻吩取代吡咯并吡咯二酮光催化单元(分子量455.64g/mo l,1.19mmo l)分散在50mL N,N-二甲基甲酰胺中,加入N,N-二异丙基乙胺(1.19mmo l),搅拌20分钟后,加入苯并三氮唑四甲基脲六氟磷酸盐(1.19mmo l),继续搅拌3小时后停止反应,旋蒸除去溶剂N,N-二甲基甲酰胺,通过柱层析法进行提纯,以二氯甲烷和甲醇体积比为10:1的混合溶剂作为洗脱剂,得到产物光敏剂分子(分子量856.07g/mo l,0.74mmo l,产率62%),其核磁共振氢谱、碳谱如图2所示,电喷雾电离质谱如图3所示;
(6)将光敏剂分子(分子量856.07g/mo l,3μmo l)分散在乙腈中超声10mi n,光敏剂分子在氢键作用下自组装形成无孔凝胶前驱体,再加入丙酮,丙酮占体系溶剂中体积分数为70vt%-100vt%,在本实施例中,丙酮占体系溶剂中体积分数为100vt%,光敏剂直接分散在丙酮溶剂中超声10mi n,光敏剂最终分散浓度为2.5mg/mL,体系呈现凝胶状态,制备出多孔光催化凝胶,TEM和XRD图像如图4所示,显示多孔光催化凝胶具有六方孔结构。
实施例二
一种高效吸附降解苯甲醛的多孔光催化凝胶,其制备步骤中各步骤及各步骤使用的试剂、工艺参数均与实施例一相同,不同的地方在于,在步骤(6)中,丙酮占体系溶剂中体积分数为70vt%。
实施例三
一种高效吸附降解苯甲醛的多孔光催化凝胶,其制备步骤中各步骤及各步骤使用的试剂、工艺参数均与实施例一相同,不同的地方在于,在步骤(6)中,丙酮占体系溶剂中体积分数为50vt%。
对比例一
一种高效吸附降解苯甲醛的多孔光催化凝胶,其制备步骤中各步骤及各步骤使用的试剂、工艺参数均与实施例一相同,不同的地方在于,在步骤(6)中,无孔凝胶前驱体未加入丙酮。
性能检测试验
1、将实施例1步骤(6)中获得的无孔凝胶前驱体添加不同比例的丙酮,采用乌氏粘度计检测样品的粘度,分析丙酮在体系溶剂中的占比与体系粘度变化的影响,丙酮占体系溶剂的体积分数分别为20vt%、30vt%、50vt%、70vt%、100vt%。体系粘度随丙酮在体系溶剂占比变化的结果如图5所示,随着丙酮在体系溶剂占比的增加,凝胶的体系粘度逐渐增大,在丙酮占比70vt%-100vt%时,凝胶的体系粘度增长大幅提高。
2、对实施例1制得的多孔光催化凝胶和对比例1的无孔凝胶前驱体各自产氧性能和稳定性进行测试,将实施例或对比例的产物(含光敏剂分子0.29mg,0.34μmo l)分散在167μL水中,加入单线态氧探针9,10-蒽二基-双(亚甲基)二丙二酸(0.05mg,0.12μmo l),在AM1.5G模拟太阳光照下测定,用单线态氧探针的消耗速率来表示光催化凝胶生成活性氧的速率;将连续光照后多孔光催化凝胶降解单线态氧探针的速率与光照前的初始值对比,来测定多孔光催化凝胶和无孔凝胶前驱体的稳定性,结果如下表1和图6-7所示。
表1-实施例和对比例中产物消耗单线态氧探针的时间和4h后的效率
Figure BDA0004069229890000081
如图6所示,与对比例1的无孔凝胶前驱体不同,实施例1的多孔光催化凝胶消耗所有单线态氧探针的速度更快,用时13分钟,表明多孔光催化凝胶的多孔结构能够阻止光敏剂分子的聚集,提高单线态氧的生成速率。将连续光照后多孔光催化凝胶降解单线态氧探针的速率与光照前的初始值对比,来测定多孔光催化凝胶和无孔凝胶前驱体的稳定性,结果如图7所示,经过4小时光照后,多孔光催化凝胶的催化效率仍有90.4%,而无孔凝胶前驱体仅剩有40%,表明本发明所述的多孔光催化凝胶具有较强的稳定性,在长时间光照下,其催化性能仍然得以维持。
3、以6种芳香族化合物为底物,分别为硝基苯、溴苯、苯甲醛、苯、苯甲醇、苯胺,对实施例或对比例制得的多孔光催化凝胶的降解效果进行分析,具体的操作方法以苯甲醛为例进行详细说明。将实施例或对比例的产物(含光敏剂分子2.5mg,3μmo l)分散在500μL水中,加入苯甲醛(21.22mg,0.2mmo l),向体系中通入氧气(流速60mL/mi n),在AM1.5G模拟太阳光照下搅拌反应3小时,取样后注入高效液相色谱,高效液相色谱的分离条件为:C8色谱柱(Nuc i fera,250mm×4.6mm);流动相:乙腈/甲醇=6/4(v/v,HPLC级);流速:0.5m l/mi n,分析反应物的转化率,所得反应体系的转化率在表2和图8中呈现。
表2-实施例和对比例中产物对芳香族化合物的转化率
Figure BDA0004069229890000091
如图8所示,实施例1中多孔光催化凝胶降解给电子基团(-H、-CH2OH、-NH2)芳香族化合物快于吸电子基团(-NO2、-Br、-CHO)芳香族化合物,但是多孔光催化凝胶对于含醛基的苯甲醛表现出选择性,也具有较好的降解效果。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高效吸附降解苯甲醛的多孔光催化凝胶,其特征在于,所述多孔光催化凝胶包括体系溶剂和分散于体系溶剂的光敏剂分子,所述体系溶剂包括70vt%-100vt%的丙酮溶剂和0-30vt%的乙腈溶剂,所述光敏剂分子的化学结构式为:
Figure FDA0004069229880000011
2.如权利要求1所述的一种高效吸附降解苯甲醛的多孔光催化凝胶,其特征在于,所述体系溶剂为100vt%的丙酮溶剂。
3.如权利要求1所述的一种高效吸附降解苯甲醛的多孔光催化凝胶,其特征在于,所述多孔光催化凝胶中光敏剂分子的浓度为1.5-4mg/mL。
4.一种基于如权利要求1-3任一所述的高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,包括以下步骤:当丙酮占体系溶剂小于100vt%时,将光敏剂分子分散在乙腈溶剂中,超声处理形成氢键驱动自组装的无孔凝胶前驱体,随后与丙酮溶剂混合制备出多孔光催化凝胶;当丙酮占体系溶剂100vt%时,将光敏剂分子分散在丙酮溶剂中超声处理。
5.如权利要求4所述的一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,所述光敏剂分子包括以下制备步骤:
(1)将二噻吩基-吡咯并吡咯二酮溶于溶剂a中,依次加入叔丁醇钾、溴代异辛烷,搅拌反应,旋蒸除去溶剂a后纯化处理,得到中间体A;
(2)将中间体A、碳酸铯溶于溶剂a中,在氩气保护下加入N-Boc-溴乙胺,搅拌反应,旋蒸除去溶剂a后纯化处理,得到中间体B;
(3)将中间体B溶于溶剂b中,加入三氟乙酸,在冰水浴中搅拌反应,旋蒸除去溶剂b后纯化处理,得到噻吩取代吡咯并吡咯二酮光催化单元;
(4)将均苯三甲酸、3-(2-氨基乙基)吡啶溶于溶剂a中,依次加入N,N-二异丙基乙胺、苯并三氮唑四甲基脲六氟磷酸盐,在冰水浴中搅拌反应,旋蒸除去溶剂a后纯化处理,得中间体C;
(5)将中间体C、噻吩取代吡咯并吡咯二酮光催化单元溶于溶剂a中,依次加入N,N-二异丙基乙胺、苯并三氮唑四甲基脲六氟磷酸盐,在冰水浴中搅拌反应,旋蒸除去溶剂a后纯化处理,得到光敏剂分子。
6.如权利要求5所述的一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,所述溶剂a为N,N-二甲基甲酰胺;所述溶剂b为二氯甲烷。
7.如权利要求5所述的一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,在步骤(1)中,所述二噻吩基-吡咯并吡咯二酮、叔丁醇钾与溴代异辛烷的摩尔比为1:(2-3):(1-2);在步骤(2)中,所述中间体A与N-Boc-溴乙胺的摩尔比为1:(1-2);在步骤(3)中,所述中间体B和三氟乙酸的摩尔比为1:(300-700);在步骤(4)中,所述均苯三甲酸、3-(2-氨基乙基)吡啶、N,N-二异丙基乙胺和苯并三氮唑四甲基脲六氟磷酸盐的摩尔比为1:(2-3):(2-3):(2-3);在步骤(5)中,所述中间体C与噻吩取代吡咯并吡咯二酮光催化单元、N,N-二异丙基乙胺和苯并三氮唑四甲基脲六氟磷酸盐的摩尔比为1:(1-2):(1-2):(1-2)。
8.如权利要求5所述的一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,在步骤(1)中,搅拌反应时间为5-8小时;在步骤(2)中,搅拌反应时间为12-24小时;在步骤(3)中,搅拌反应时间为2-3小时;在步骤(4)中,搅拌反应时间为3-5小时;在步骤(5)中,搅拌反应时间为3-5小时。
9.如权利要求5所述的一种高效吸附降解苯甲醛的多孔光催化凝胶的制备方法,其特征在于,在步骤(1)-(5)中,纯化均采用柱层析法,所述柱层析法的洗脱剂为甲醇和/或二氯甲烷,柱层析的填料为硅胶或中性氧化铝。
10.一种基于如权利要求1-3任一所述的高效吸附降解苯甲醛的多孔光催化凝胶在芳香族化合物降解领域中的应用。
CN202310087376.XA 2023-01-17 2023-01-17 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用 Active CN116078440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310087376.XA CN116078440B (zh) 2023-01-17 2023-01-17 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310087376.XA CN116078440B (zh) 2023-01-17 2023-01-17 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116078440A true CN116078440A (zh) 2023-05-09
CN116078440B CN116078440B (zh) 2024-08-23

Family

ID=86210073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310087376.XA Active CN116078440B (zh) 2023-01-17 2023-01-17 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116078440B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116786161A (zh) * 2023-06-21 2023-09-22 中国石油大学(华东) 一种苝酰亚胺/硫化锌铟复合材料双功能型光催化制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079786A1 (en) * 2013-09-17 2015-03-19 Lam Research Corporation Method and solution for cleaning metal residue
CN106317263A (zh) * 2016-08-23 2017-01-11 浙江理工大学 一种医用光固化水凝胶中可见光引发体系及其光固化方法
CN106582881A (zh) * 2016-12-06 2017-04-26 河南理工大学 具有广谱催化性能的表面嫁接芳醇的氢氧化铌可见光催化剂及其制备和应用
CN109364880A (zh) * 2018-10-30 2019-02-22 西北师范大学 一种具有循环解析功能的超分子有机框架材料及在去除水体中有机染料的应用
CN111569948A (zh) * 2020-06-24 2020-08-25 严文忠 一种用于可见光光解水制氢的水凝胶材料的制备方法及其应用
CN113896680A (zh) * 2021-09-22 2022-01-07 中山大学 一种pH响应型超分子纳米管单体分子及其制备方法与应用
CN114797979A (zh) * 2022-05-16 2022-07-29 中山大学 一种多孔光催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150079786A1 (en) * 2013-09-17 2015-03-19 Lam Research Corporation Method and solution for cleaning metal residue
CN106317263A (zh) * 2016-08-23 2017-01-11 浙江理工大学 一种医用光固化水凝胶中可见光引发体系及其光固化方法
CN106582881A (zh) * 2016-12-06 2017-04-26 河南理工大学 具有广谱催化性能的表面嫁接芳醇的氢氧化铌可见光催化剂及其制备和应用
CN109364880A (zh) * 2018-10-30 2019-02-22 西北师范大学 一种具有循环解析功能的超分子有机框架材料及在去除水体中有机染料的应用
CN111569948A (zh) * 2020-06-24 2020-08-25 严文忠 一种用于可见光光解水制氢的水凝胶材料的制备方法及其应用
CN113896680A (zh) * 2021-09-22 2022-01-07 中山大学 一种pH响应型超分子纳米管单体分子及其制备方法与应用
CN114797979A (zh) * 2022-05-16 2022-07-29 中山大学 一种多孔光催化剂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116786161A (zh) * 2023-06-21 2023-09-22 中国石油大学(华东) 一种苝酰亚胺/硫化锌铟复合材料双功能型光催化制备方法

Also Published As

Publication number Publication date
CN116078440B (zh) 2024-08-23

Similar Documents

Publication Publication Date Title
Yu et al. A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (VI) in strongly acidic solution
Yu et al. Enhanced adsorption and visible-light photocatalytic degradation of toluene by CQDs/UiO-66 MOG with hierarchical pores
Zhi et al. Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis
Li et al. Quinone-modified NH2-MIL-101 (Fe) composite as a redox mediator for improved degradation of bisphenol A
Xing et al. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines
Elewa et al. Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water
Wang et al. Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO2 reduction
He et al. Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes
Mahyari et al. Iron (III) porphyrin supported on S and N co-doped graphene quantum dot as an efficient photocatalyst for aerobic oxidation of alcohols under visible light irradiation
Wang et al. Photocatalytic selective amines oxidation coupled with H2O2 production over hyper-cross-linked polymers
Ku et al. One-step construction of mesoporous cyano and sulfur co-modified carbon nitride for photocatalytic valorization of lignin to functionalized aromatics
Liu et al. Biorefinery-assisted ultra-high hydrogen evolution via metal-free black phosphorus sensitized carbon nitride photocatalysis
CN116078440B (zh) 一种高效吸附降解苯甲醛的多孔光催化凝胶及其制备方法和应用
Zhou et al. Enhanced solvent-free selective oxidation of cyclohexene to 1, 2-cyclohexanediol by polyaniline@ halloysite nanotubes
Wu et al. Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst
Wu et al. Poly (dibenzothiophene-S, S-dioxide)-Fe2O3 heterojunction for photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol
Feng et al. A CMP-based [FeFe]-hydrogenase dual-functional biomimetic system for photocatalytic hydrogen evolution coupled with degradation of tetracycline
CN114733543B (zh) 一种硼修饰的氮化碳材料及其制备方法和应用
Xue et al. Chemical conversion of imine-into quinoline-linked covalent organic frameworks for photocatalytic oxidation
Sun et al. A Minireview: The Mechanism of H2O2 Photoproduction by Graphitic Carbon Nitride
Zhang et al. Preparation of Pd@ CuBi2O4 photocatalysts and their performance for selective oxidation of benzyl alcohol under visible light illumination
Zhang et al. Red light photocatalysis of conjugated microporous polymers based on fused thiophenes for selective oxidation of amines
Nie et al. Enhanced Photocatalytic Activity of Hyper‐Cross‐Linked Polymers Toward Amines Oxidation Coupled with H2O2 Generation through Extending Monomer's Conjugation Degree
Yang et al. Porous organic framework materials for photocatalytic H2O2 production
Zhou et al. Highly selective regeneration of 1, 4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@ polyaniline under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant