WO2010104083A1 - クロスフローファン及びこれを備えた空気調和機 - Google Patents

クロスフローファン及びこれを備えた空気調和機 Download PDF

Info

Publication number
WO2010104083A1
WO2010104083A1 PCT/JP2010/053915 JP2010053915W WO2010104083A1 WO 2010104083 A1 WO2010104083 A1 WO 2010104083A1 JP 2010053915 W JP2010053915 W JP 2010053915W WO 2010104083 A1 WO2010104083 A1 WO 2010104083A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
dimple
edge
dimples
outer peripheral
Prior art date
Application number
PCT/JP2010/053915
Other languages
English (en)
French (fr)
Inventor
弘宣 寺岡
志明 鄭
透 岩田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/255,196 priority Critical patent/US9046110B2/en
Priority to ES10750836T priority patent/ES2746502T3/es
Priority to KR1020117020939A priority patent/KR101313420B1/ko
Priority to CN201080010935.8A priority patent/CN102341601B/zh
Priority to AU2010222097A priority patent/AU2010222097B2/en
Priority to EP10750836.8A priority patent/EP2407671B1/en
Publication of WO2010104083A1 publication Critical patent/WO2010104083A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening

Definitions

  • the present invention relates to a cross flow fan and an air conditioner including the same.
  • a wall-mounted air conditioner has a cross flow fan as a blower.
  • the cross flow fan 104 is a cross-flow fan (cross-flow fan).
  • air passes through the impeller 141 so as to cross a plane perpendicular to the rotation center axis Z of the impeller 141.
  • the impeller 141 is formed by a plurality of wings (blades) 142.
  • the impeller 141 rotates in the direction indicated by the arrow Z1 in the drawing. Thereby, the air cooled or heated in the air conditioner passes through the impeller 141 and is then blown out into the room where the air conditioner is installed.
  • Patent Document 1 discloses a blade including a plurality of notches provided at a predetermined interval on an outer peripheral edge portion in order to reduce fan noise.
  • the blade 242 constituting the impeller 241 includes an outer peripheral edge 243 and an inner peripheral edge 244.
  • the outer peripheral side edge 243 is provided on the rotary centrifugal side of the impeller 241.
  • the inner peripheral edge 244 is provided on the rotation center side of the impeller 241.
  • a plurality of notches 245 are formed in the outer peripheral edge 243 at a predetermined interval.
  • the blade 242 is a portion that is provided between the cut portion 246 that is a portion cut at the outer peripheral side edge portion 243 and the cut portion 246 and is a portion that is not cut at the outer peripheral side edge portion 243.
  • a basic shape portion 247 is provided between the cut portion 246 that is a portion cut at the outer peripheral side edge portion 243 and the cut portion 246 and is a portion that is not cut at the outer peripheral side edge portion 243.
  • An object of the present invention is to provide a crossflow fan capable of effectively reducing drive power and an air conditioner equipped with the crossflow fan.
  • a crossflow fan including a rotating impeller formed by curved wings.
  • the blade includes an outer peripheral side edge provided on the rotational centrifugal side of the impeller and an inner peripheral side edge provided on the rotational center side of the impeller, and at least one of the outer peripheral side edge and the inner peripheral side edge.
  • a plurality of notches are formed on the edge of the blade at predetermined intervals, and the suction surface of the blade at the edge where the notch is formed is configured to prevent gas flowing into the blade from being separated from the blade.
  • a turbulent boundary layer control structure for transitioning the boundary layer from laminar flow to turbulent flow is formed.
  • a plurality of notches are provided at predetermined intervals on at least one of the outer peripheral side edge and the inner peripheral side edge. For this reason, noise can be reduced with a simple shape.
  • a turbulent boundary layer control structure e.g., transition from a laminar flow to a turbulent flow
  • Dimples, grooves, rough surfaces, etc. are formed. For this reason, the boundary layer on the suction surface of the blade can be changed from laminar flow to turbulent flow.
  • a plurality of notches are formed at predetermined intervals in the edge of the wing.
  • a turbulent boundary layer control structure such as a dimple or an irregular rough surface can prevent a gas having a flow that has collapsed two-dimensionality (that is, a three-dimensional flow) from being separated from the blade.
  • the pressure resistance acting on the blade can be reduced, and the driving power of the cross flow fan can be effectively reduced as compared with the case where the turbulent boundary layer control structure is not formed.
  • the turbulent boundary layer control structure is preferably a dimple.
  • the turbulent boundary layer control structure for transitioning the boundary layer from laminar flow to turbulent flow is a dimple.
  • the boundary layer is changed from laminar flow to turbulent flow, and a secondary flow is generated in the dimple, whereby the shear force generated at the bottom of the boundary layer can be reduced. Therefore, it is possible to effectively suppress the gas flowing into the wing from being separated from the wing.
  • the dimple is composed of one of a plurality of dimples, and each dimple is located in the vicinity of the edge where the notch is formed, along the direction in which gas flows on the suction surface of the blade.
  • the depth of the first dimple away from the one edge where the dimple is formed is the depth of the second dimple closer to the one edge than the first dimple. It is preferable to be smaller than this.
  • the dimple is composed of one of a plurality of dimples, and each dimple is located in the vicinity of the edge where the notch is formed, along the direction in which gas flows on the suction surface of the blade.
  • the plurality of dimples formed are preferably shallower from one edge where the dimples are formed toward the other edge.
  • the plurality of dimples that become shallower from one edge to the other edge may be several dimples constituting a plurality of dimples close to one edge, and the one edge All the dimples constituting a plurality of adjacent dimples may be used.
  • the blade has a basic shape which is a cut portion that is a cut portion at at least one of the outer peripheral side edge portion and the inner peripheral side edge portion, and a non-cut portion.
  • the blade thickness of the cut portion is preferably smaller than the blade thickness of the basic shape portion adjacent to the cut portion.
  • the blade thickness of the cut portion is smaller than the blade thickness of the basic shape portion adjacent to the cut portion. For this reason, compared with the case where the blade thickness of a notch part and the blade thickness of a basic shape part are the same, the area of the end surface of the edge part in a notch part can be made small. As a result, it is possible to reduce the collision loss when the gas flows into the blade. Therefore, the driving power of the cross flow fan can be more effectively reduced.
  • the blade has a basic shape which is a cut portion that is a cut portion at at least one of the outer peripheral side edge portion and the inner peripheral side edge portion, and a non-cut portion.
  • the turbulent boundary layer control structure is preferably formed in the basic shape portion.
  • a flow boundary layer control structure can be easily formed. That is, the depth of a dimple or the like that is a turbulent boundary layer control structure can be easily secured.
  • an air conditioner including the cross flow fan is provided. According to this configuration, since the cross flow fan is provided, it is possible to reduce noise with a simple shape and to effectively reduce the driving power of the cross flow fan.
  • Sectional drawing which shows schematic structure of the air conditioner provided with the crossflow fan which concerns on embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along line S2-S2 shown in FIGS.
  • Sectional drawing which shows the metal mold
  • the schematic cross section which shows the metal mold
  • Sectional drawing which shows the cross section of the metal mold
  • blade which concerns on a reference example, Comprising: Sectional drawing for demonstrating the secondary gas flow in a dimple.
  • FIG. 21 is a cross-sectional view taken along line S3-S3 of FIG. Sectional drawing for demonstrating the flow of the air in the blade
  • the figure for demonstrating a crossflow fan. The perspective view which shows the impeller with which the conventional crossflow fan is provided.
  • An arrow A in the figure indicates an axial direction parallel to the rotation center axis of the impeller.
  • An arrow S in the figure indicates a rotating centrifugal side that is away from the rotation center of the impeller in a direction perpendicular to the axial direction.
  • An arrow U in the figure indicates a rotation center side that is in a direction approaching the rotation center of the impeller in a direction perpendicular to the axial direction.
  • the air conditioner 1 is a wall-mounted indoor unit.
  • the air conditioner 1 includes a casing 2 that is a casing, a heat exchanger 3 disposed in the casing 2, and a crossflow fan 4 disposed on the downstream side of the heat exchanger 3.
  • An air inlet 21 for sucking air into the casing 2 is provided on the upper surface and the front surface of the casing 2, respectively. Further, an air outlet 22 is provided between the front surface and the lower surface of the casing 2 in order to blow air out of the casing 2.
  • the air outlet 22 is provided with a vertical blade 23 and a horizontal blade 24. The vertical blades 23 and the horizontal blades 24 are used to adjust the direction of air blown from the air outlet 22.
  • the guide unit 25 guides the air blown by the cross flow fan 4 forward.
  • the backflow preventing tongue 26 prevents the air blown by the crossflow fan 4 from flowing back.
  • the guide part 25 and the backflow prevention tongue part 26 are formed integrally with the casing 2.
  • the heat exchanger 3 includes a front heat exchange part 3 a and a rear heat exchange part 3 b.
  • the front heat exchanging part 3 a is arranged in the casing 2 from the front part to the upper part of the cross flow fan 4.
  • the rear heat exchange part 3 b is arranged in the casing 2 from the rear part to the upper part of the cross flow fan 4.
  • the air flowing in from the air inlet 21 is cooled or heated by passing through the heat exchanger 3 to become conditioned air, and is sent out from the air outlet 22 into the room by the crossflow fan 4.
  • the cross flow fan 4 drives an impeller 41 having blades (blades) 42, a casing 2 that forms a flow path of air blown by the cross flow fan 4, and the impeller 41 (cross flow fan 4). It is comprised with the electric motor. When electric power is supplied to the electric motor, the cross flow fan 4 is driven by the electric motor.
  • the impeller 41 of the crossflow fan 4 is composed of a plurality of blades 42, a support plate 4a that supports the blades 42, and a rotating shaft 4b.
  • the support plate 4 a is connected to the end of the blade 42 in the axial direction A.
  • the rotating shaft 4b is connected to the support plate 4a and to the output shaft of the electric motor.
  • Each blade 42 is provided at an end of the support plate 4a on the rotary centrifugal side.
  • Each blade 42 is provided along the rotational direction of the impeller 41.
  • the plurality of support plates 4a are arranged in parallel with each other so that the axis of each support plate 4a coincides with the axial direction A.
  • Each blade 42 is disposed between adjacent support plates 4 a so as to abut each other along the axial direction A.
  • the support plate 4a directly connected to the rotating shaft 4b is formed in a flat plate shape.
  • the support plate 4a provided between the blades 42 adjacent to each other in the axial direction A is formed in an annular shape.
  • One support plate 4a and the blades 42 connected thereto are made of resin, and are formed by injection molding using a mold as shown in FIG.
  • the wing 42 is curved along an arc.
  • the blade 42 has a pressure surface (pressure surface) 4p and a suction surface 4q.
  • the positive pressure surface 4p faces the rotation direction that receives a relatively large pressure when the impeller 41 is rotated from the stationary state.
  • the negative pressure surface 4q faces in the counter-rotating direction that receives a relatively small pressure when the impeller 41 is rotated from the stationary state.
  • the blade 42 includes an outer peripheral side edge 43 provided on the rotary centrifugal side of the impeller 41 and an inner peripheral side edge 44 provided on the rotational center side of the impeller 41.
  • the outer peripheral side edge 43 of the blade 42 is curved in the rotational direction of the impeller 41.
  • a plurality of notches 45 are formed in the outer peripheral side edge portion 43 at predetermined intervals.
  • the blade 42 includes a cut portion 46 that is a portion cut at the outer peripheral side edge portion 43 and a basic shape portion 47 that is a portion that is not cut at the outer peripheral side edge portion 43.
  • the cut portions 46 and the basic shape portions 47 are alternately provided in the axial direction A.
  • the predetermined interval at which the plurality of notches 45 are provided may be constant or may be different depending on the position of the notches 45 on the wing 42.
  • the interval between the notches 45 provided at the end of the blade 42 may be larger than the interval between the notches 45 provided at the center of the blade 42.
  • the notch 45 has a triangular shape, but may have a rectangular shape.
  • the sizes of the notches 45 may all be the same, or may differ depending on the position in the axial direction A.
  • the cutout 45 provided at the end of the wing 42 may be smaller than the cutout 45 provided in the center of the wing 42. With this configuration, it is possible to secure a pressure area where the blade 42 receives pressure from the air.
  • the cross flow fan 4 includes the rotating impeller 41 formed by the curved blades 42.
  • a plurality of notches 45 are formed in the outer peripheral side edge portion 43 of the wing 42 at predetermined intervals.
  • a plurality of notches 45 are formed at predetermined intervals in the outer peripheral side edge 43 of the blade 42, and the turbulent boundary layer control structure is formed on the suction surface 4 q in the outer peripheral side edge 43. It is characterized by being formed.
  • the turbulent boundary layer control structure is for preventing air flowing into the blade 42 from being separated from the blade 42.
  • the turbulent boundary layer control structure is a structure (dimple, groove, rough surface, etc.) that transitions the boundary layer at the suction surface 4q of the blade 42 from laminar flow to turbulent flow.
  • the pressure resistance acting on the blade 42 can be reduced by the turbulent boundary layer control structure. Thereby, the drive electric power of the crossflow fan 4 can be reduced compared with the case where the turbulent boundary layer control structure is not formed.
  • a plurality of dimples 48 as a turbulent boundary layer control structure are formed on the suction surface 4q of the blade 42 at the outer peripheral edge 43.
  • the dimple 48 is a small depression having a predetermined depth and a concave spherical bottom surface.
  • the dimple 48 has a direction in which air flows on the suction surface 4q of the blade 42 (see arrow X in FIG. 8), that is, a direction in which air flows from the outer peripheral edge 43 into the blade 42 (hereinafter referred to as “inflow direction X”). It is formed along the line.
  • the direction in which air flows on the suction surface 4q of the blade 42 is a direction substantially perpendicular to the axial direction A. More specifically, as shown in FIG.
  • each row of the dimples 48a, 48b, and 48c is disposed along the axial direction A (that is, the longitudinal direction of the blade 42).
  • the dimple 48a is provided in the dimples 48a, 48b, and 48c closest to the outer peripheral side edge portion 43.
  • the dimple 48c is provided on the downstream side of the dimple 48a in the inflow direction X. That is, the dimple 48 includes a dimple 48a provided on the rotary centrifugal side and a dimple 48c provided on the rotational center side.
  • the dimple 48b is provided between the row of dimples 48a and the row of dimples 48c.
  • the dimples 48b are arranged so as to be shifted by a half pitch in the axial direction A with respect to the dimples 48a and 48c. Therefore, one dimple 48b is disposed between two adjacent dimples 48c.
  • the dimples 48c (first dimples) farthest from the outer peripheral edge 43 of the blade 42 are dimples 48a and 48b (second dimples) closer to the outer peripheral edge 43 than the dimple 48c. It is formed shallower than (dimple). That is, the depths of the dimples 48 a and 48 c become smaller from the outer peripheral side edge 43 to the inner peripheral side edge 44 of the blade 42. The diameters of the dimples 48a, 48b, and 48c are all the same. “Dimple depth” means the maximum depth of a dimple.
  • the dimple 48 that becomes shallower from the outer peripheral side edge 43 toward the inner peripheral side edge 44 may be any number of dimples that constitute a plurality of dimples 48 that are close to the outer peripheral side edge 43.
  • the dimple 48a has the same depth as the dimple 48b, and the depth of the dimple 48c farthest from the outer peripheral edge 43 is greater than the dimple 48a, which is closer to the outer peripheral edge 43 than the dimple 48c. It is smaller than the depth of 48b.
  • the wings 42 on which the dimples 48 are formed can be formed using the mold 5 shown in FIG.
  • the mold 5 includes a mold 51 that forms a part of the positive pressure surface 4p and the negative pressure surface 4q, a mold 52 that forms a part of the negative pressure surface 4q including the notch 45 and the dimple 48, and a support plate 4a. And a mold 54 (see FIG. 10).
  • the plurality of molds 52 are disposed so as to surround the mold 51.
  • the mold 52 is provided with a protrusion 53 for forming the dimple 48.
  • Molten resin is injected into the space formed by the mold 51 and the mold 52.
  • the blades 42 including the dimples 48 are formed.
  • each mold 52 is moved in the radial direction. Thereby, the metal mold
  • FIG. 10 is a schematic cross-sectional view showing a cross section of the mold 5, and is a cross-sectional view along the longitudinal direction (axial direction A) of the blades 42.
  • a one-dot chain line in FIG. 10 indicates the rotation center axis of the impeller 41.
  • the support plate 4 a including the plurality of blades 42 and the end portions of the blades 42 is formed by injection molding. Therefore, since the support plate 4a as a support member and the plurality of blades 42 are integrally formed, the manufacturing process of the impeller 41 is simplified.
  • the depths of the dimples 48 a and 48 c decrease from the outer peripheral side edge 43 to the inner peripheral side edge 44 of the blade 42. That is, the dimple 48c is formed shallower than the dimples 48a and 48b that are closer to the outer peripheral side edge 43 than the dimple 48c. For this reason, a plurality of dimples 48 (dimples 48a, 48b, 48c) along the inflow direction X can be easily formed using the mold 5. That is, when a plurality of blades 42 are formed using one mold 52, the blades 42 are curved when the mold 52 is removed after the blades 42 are formed. The protrusion 53 formed on the mold 52 may interfere with the wing 42.
  • the dimples 48 c provided on the rotation center side of the impeller 41 are formed shallower than the dimples 48 a and 48 b provided on the rotation centrifugal side of the impeller 41.
  • FIG. 11 is an enlarged view of a portion S2 indicated by a one-dot chain line in FIG.
  • the dimple 48 for suppressing separation of air (gas) flowing into the blade 42 is formed on the suction surface 4q of the blade 42 at the outer peripheral edge 43. For this reason, the boundary layer on the suction surface 4q of the blade 42 is changed from laminar flow to turbulent flow, and a secondary air flow (see arrow X2 in FIG. 13) is generated in the dimple 48. it can. Thereby, the shear force generated at the bottom of the boundary layer can be reduced to suppress the development of the boundary layer. Therefore, the dimple 48 causes the air flow X in the air suction portion N of the cross flow fan 4 to flow along the negative pressure surface 4q, as shown in FIG. Therefore, the separation of air as shown by the broken line in FIG. 12 can be suppressed.
  • the depth of the dimple 48c formed on the suction surface 4q of the blade 42 is smaller than the depth of the dimples 48a and 48b. For this reason, as shown in FIG.13 and FIG.14, compared with the case where the dimple 348 has the same depth, the flow of secondary air is suppressed.
  • a plurality of dimples having the same shape are formed on the suction surface 304 q of the blade 342 near the outer peripheral edge 343 along the direction in which air flows into the blade 342 (see arrow X in the figure). 348 is formed. That is, in the blade 342 shown in FIGS. 13 and 14, the plurality of dimples 348 have the same diameter and depth, and the secondary air flow is indicated by the arrow X2.
  • a secondary air flow is generated in the dimples 348 provided on the upstream side and the downstream side. Due to the loss due to such a secondary air flow, the driving power of the cross flow fan may not be effectively reduced.
  • the secondary flow of air in the dimple 48c provided on the downstream side is suppressed.
  • the dimple 48c has a smaller effect of suppressing the development of the boundary layer than the dimples 48a and 48b provided on the upstream side of the dimple 48c. For this reason, the effect of suppressing gas separation by the plurality of dimples 48 is maintained. Therefore, the driving power of the cross flow fan 4 can be effectively reduced.
  • FIG. 15 is an air flow-motor input characteristic diagram relating to the crossflow fan 4 including the impeller 41 formed by the blades 42 and the crossflow fan including the impeller 241 formed from the conventional blades 242.
  • the solid line in FIG. 15 shows the air flow-motor input characteristic line of the crossflow fan 4 of the present invention.
  • the alternate long and short dash line in FIG. 15 indicates the air flow-motor input characteristic line of the conventional cross flow fan.
  • the horizontal axis in FIG. 15 indicates the air volume, and one scale on the horizontal axis is 0.5 m 3 / min.
  • the vertical axis in FIG. 15 indicates the motor input, and one scale on the vertical axis is 5 W.
  • the turbulent boundary layer control structure is constituted by dimples 48.
  • the dimple 48 is adopted as the turbulent boundary layer control structure, the boundary layer is changed from the laminar flow to the turbulent flow, and a secondary flow is generated in the dimple 48 to generate at the bottom of the boundary layer. Shear force can be reduced. Accordingly, it is possible to further suppress the gas flowing into the blade 42 from being separated from the blade 42.
  • the air flowing into the impeller 41 that is, the blades 42 enters the notches 45. It becomes easy to flow in, and the two-dimensionality of the flow of air flowing into the wing 42 is broken.
  • the air of the flow in which the two-dimensionality is broken (that is, the three-dimensional flow) is blown by the dimple 48 having a cross section that changes along the axial direction and the direction orthogonal to the axis. It is possible to effectively suppress peeling from the surface.
  • the air flowing into the wing 42 is compared with the case where the dimple 48 is formed on the wing on which the notch 45 is not formed. Can be prevented from peeling off from the blade 42.
  • the motor input can be further reduced and the driving power of the cross flow fan 4 can be effectively obtained as compared with the case where the dimples are formed on the blade 42 not provided with the notch 45. Can be reduced.
  • FIG. 16 is an air flow-motor input characteristic diagram relating to a cross flow fan including an impeller formed by blades in which notches 45 are not formed.
  • the dashed-dotted line in FIG. 16 shows the air flow-motor input characteristic line of the cross flow fan in which the dimple 48 is not formed on the blade.
  • a solid line in FIG. 16 indicates a cross flow fan air volume-motor input characteristic line in which the dimple 48 is formed on the blade.
  • FIG. 17 is an air flow-motor input characteristic diagram relating to a crossflow fan including an impeller formed by a blade having a notch 45 formed therein.
  • the dashed line in FIG. 17 represents the air flow-motor input characteristic line of the cross flow fan in which the dimple 48 is not formed on the blade.
  • FIG. 17 shows the air flow-motor input characteristic line of the cross flow fan in which the dimple 48 is formed on the blade.
  • the horizontal axis in FIGS. 16 and 17 indicates the air volume, and one scale on the horizontal axis is 0.2 m 3 / min.
  • the vertical axis in FIGS. 16 and 17 represents the motor input, and one scale on the vertical axis is 2 W.
  • a plurality of notches 45 are formed on the outer peripheral side edge portion 43 of the blade 42 at predetermined intervals.
  • the negative pressure surface 4q of the blade 42 at the outer peripheral edge 43 has a turbulent boundary that causes the boundary layer to transition from laminar flow to turbulent flow in order to prevent gas flowing into the blade 42 from being separated from the blade 42.
  • a dimple 48 as a layer control structure is formed. According to this configuration, since the plurality of notches 45 are provided in the outer peripheral side edge 43 with a predetermined interval, noise can be reduced with a simple shape.
  • a dimple 48 is formed on the negative pressure surface 4q of the blade 42 at the outer peripheral edge 43 to suppress separation of the gas flowing into the blade 42.
  • the boundary layer on the suction surface 4q of the blade 42 can be changed from laminar flow to turbulent flow, and the air flowing into the blade 42 can be prevented from being separated from the blade 42.
  • the air flowing into the blades 42 is effectively suppressed from being separated from the blades 42. can do.
  • the pressure resistance acting on the blades 42 can be reduced, and the driving power of the cross flow fan 4 can be effectively reduced as compared with the case where the dimples 48 are not provided.
  • the dimple 48 is a turbulent boundary layer control structure for transitioning the boundary layer from laminar flow to turbulent flow. For this reason, compared with the case where the groove
  • the plurality of dimples 48 become shallower from the outer peripheral side edge 43 where the dimples 48 are formed toward the inner peripheral side edge 44. That is, the dimple 48c farthest from the outer peripheral edge 43 of the blade 42 is formed shallower than the dimple 48a closer to the outer peripheral edge 43 than the dimple 48c.
  • the effect of suppressing the development of the boundary layer is small, and in the dimple 48 c that is separated from the outer peripheral edge 43, it is caused by the secondary air flow. Loss can be suppressed.
  • the effect of suppressing the development of the boundary layer is suppressed as compared with the dimple 48a adjacent to the outer peripheral side edge portion 43. For this reason, the effect of suppressing air separation by the plurality of dimples 48 is maintained. Therefore, the driving power of the cross flow fan 4 can be effectively reduced as compared with the case where the depths of the plurality of dimples 48 are the same.
  • the depth of the dimple 48c provided on the rotation center side is smaller than the depth of the dimple 48a provided on the rotation centrifugal side. According to this configuration, when removing the mold 5 from the blade 42, the projection 53 provided on the mold 52 for forming the dimple 48 c on the rotation center side can be prevented from interfering with the blade 42. As a result, the mold 5 for forming the blades 42 can be easily removed. Therefore, a plurality of dimples 48 can be easily formed along the direction in which air flows on the suction surface 4q of the blade 42.
  • the air conditioner 1 includes a cross flow fan 4 that can obtain the effects (1) to (4). Therefore, according to the air conditioner 1 of the present embodiment, the same effects as (1) to (4) can be obtained. Further, a plurality of blades 42 provided along the rotation direction and a support plate 4a as a support member provided with an end portion of the blades 42 are integrally formed. For this reason, according to the manufacturing method of the wing
  • the blade 42 has a blade thickness T 1 of the cut portion 46 that is smaller than a blade thickness T 2 of the basic shape portion 47 adjacent to the cut portion 46. It is a feature.
  • the dimple 48 is not formed in the cut portion 46 but is formed only in the basic shape portion 47.
  • a depression 49 is formed in the suction surface 4q of the cut portion 46. Accordingly, as shown in FIG. 21, the blade thickness T ⁇ b> 1 of the cut portion 46 is smaller than the blade thickness T ⁇ b> 2 of the basic shape portion 47 adjacent to the cut portion 46. In this case, the pressure applied to the airflow can be increased as compared with the case where the depression is formed in the positive pressure surface 4p.
  • FIG. 23 shows an air flow-motor input characteristic line relating to the crossflow fan 4 including the impeller 41 formed by the blades 42 of the present embodiment and the crossflow fan including the impeller 241 formed from the conventional blades 242.
  • FIG. 23 shows the air flow-motor input characteristic line of the crossflow fan 4 of the present invention.
  • the dashed-dotted line in FIG. 23 shows the air flow-motor input characteristic line of the conventional cross flow fan.
  • the blade thickness T1 at the notch 46 decreases as it goes toward the notch 45 (outer peripheral edge 43) along the direction parallel to the chord. That is, the blade thickness T1 becomes smaller toward the upstream side of the air on the suction surface 4q of the blade 42. For this reason, the cross-sectional shape of the blade
  • the following effects can be obtained in addition to the effects (1) to (4).
  • the blade thickness T1 of the cut portion 46 is smaller than the blade thickness T2 of the basic shape portion 47 adjacent to the cut portion 46. For this reason, compared with the case where the blade thickness T1 of the notch 46 and the blade thickness T2 of the basic shape portion 47 are the same, the area of the end face 4r in the outer peripheral edge 43 can be reduced. As a result, collision loss when air flows into the impeller 41 can be reduced. Therefore, the driving power of the cross flow fan 4 can be more effectively reduced.
  • the dimple 48 is formed in the basic shape portion 47. For this reason, when forming the blade 42 whose blade thickness T1 of the cut portion 46 is smaller than the blade thickness T2 of the basic shape portion 47 adjacent to the cut portion 46, it is easy to form the dimple 48 having a desired depth. can do. That is, the depth of the dimple 48 can be easily ensured.
  • the air conditioner 1 includes the cross flow fan 4 according to the present embodiment. Therefore, according to the air conditioner 1 of the present embodiment, the same effects as (5) and (6) can be obtained in addition to the effects (1) to (4).
  • the present invention is not limited to the above embodiment, and various designs can be changed based on the spirit of the present invention, and they are not excluded from the scope of the present invention. For example, you may change the said embodiment as follows.
  • the depth of the dimple 48b may be smaller than the depth of the dimple 48a and larger than the depth of the dimple 48c. That is, the plurality of dimples 48 that become shallower from the outer peripheral side edge 43 toward the inner peripheral side edge 44 may be all the dimples 48 a, 48 b, and 48 c constituting the plurality of dimples 48.
  • the dimple 48 is formed as the turbulent boundary layer control structure on the suction surface 4q of the blade 42.
  • the turbulent boundary layer control is performed by a groove or a rough surface (both not shown).
  • a structure may be configured.
  • the notch 45 is formed in the outer peripheral side edge 43 of the blade 42, but a notch similar to the notch 45 may be formed in the inner peripheral side edge 44 of the blade 42. That is, a cutout may be formed in either one of the outer peripheral side edge 43 and the inner peripheral side edge 44, or a cutout may be formed in both the outer peripheral side edge 43 and the inner peripheral side edge 44. Also good. When notches are formed in both the outer peripheral side edge portion 43 and the inner peripheral side edge portion 44, noise can be further reduced. Further, when a notch is provided in the inner peripheral side edge 44, the blade thickness may be changed as in the second embodiment.
  • a notch is formed in the inner peripheral edge 44 of the blade 42, and further, a turbulent boundary layer control structure is formed on the suction surface 4q of the blade 42 in the inner peripheral edge 44.
  • a turbulent boundary layer control structure is formed on the suction surface 4q of the blade 42 in the inner peripheral edge 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 クロスフローファンは、湾曲した翼42により形成された回転する羽根車を備える。翼42は、羽根車の回転遠心側に近接する外周側縁部43と、羽根車の回転中心側に近接する内周側縁部44とを備えている。外周側縁部43には、複数の切り欠き45が所定の間隔を空けて形成されている。外周側縁部43の近傍において翼42の負圧面4qには、翼42に流入する気体が翼42から剥離することを抑制するため、境界層を層流から乱流へ遷移させるディンプル48が形成されている。

Description

クロスフローファン及びこれを備えた空気調和機
 本願発明は、クロスフローファン及びこれを備えた空気調和機に関する。
 一般に、壁掛け型の空気調和機は、送風機としてクロスフローファンを備えている。図24に示すように、クロスフローファン104は、横流送風機(貫流送風機)である。クロスフローファン104では、空気が、羽根車141の回転中心軸Zに垂直な面上を横断するように羽根車141内を通り抜ける。羽根車141は、複数の翼(羽根)142により形成されている。羽根車141は、図中の矢印Z1で示す方向へ回転する。これにより、空気調和機内において冷却あるいは加熱された空気は、羽根車141を通り抜けてから、空気調和機が設置された室内へ吹き出される。特許文献1には、ファンの騒音を低減するため、外周側縁部に所定の間隔を空けて設けられた複数の切り欠きを備える翼が開示されている。
 具体的には、図25及び図26に示すように、羽根車241を構成する翼242は、外周側縁部243及び内周側縁部244を備えている。外周側縁部243は、羽根車241の回転遠心側に設けられている。内周側縁部244は、羽根車241の回転中心側に設けられている。外周側縁部243には、複数の切り欠き245が、所定の間隔を空けて形成されている。これにより、翼242は、外周側縁部243において切り込まれた部分である切込部246と、切込部246間に設けられ、かつ外周側縁部243において切り込まれていない部分である基本形状部247とを有する。
 近年、クロスフローファンの省エネルギー化が求められている。しかしながら、特許文献1に記載されるように翼に切り欠きを形成した場合、簡単な形状により騒音を低減できるものの、羽根車を回転させるのに要する電動モータの電力、即ち、クロスフローファンの駆動電力を十分に低減することができない。
特開2006-125390号公報
 本発明の目的は、駆動電力を効果的に低減することができるクロスフローファン及びこれを備えた空気調和機を提供することにある。
 上記の課題を解決するために、本発明の第一の態様によれば、湾曲した翼により形成された回転する羽根車を備えるクロスフローファンが提供される。翼は、羽根車の回転遠心側に設けられる外周側縁部と、羽根車の回転中心側に設けられる内周側縁部とを備え、外周側縁部及び内周側縁部のうち少なくとも一方の縁部には、複数の切り欠きが所定の間隔を空けて形成され、切り欠きが形成された縁部における翼の負圧面には、翼に流入する気体を翼から剥離させないようにするために、境界層を層流から乱流へ遷移させる乱流境界層制御構造が形成されている。
 同構成によれば、外周側縁部及び内周側縁部のうち少なくとも一方の縁部には複数の切り欠きが所定の間隔を空けて設けられている。このため、簡単な形状で騒音を低減することができる。また、切り欠きが形成された縁部における翼の負圧面には、翼に流入する気体の剥離を抑制するため、境界層を層流から乱流へ遷移させる乱流境界層制御構造(例えば、ディンプル、溝、粗面等)が形成されている。このため、翼の負圧面における境界層を層流から乱流へと遷移させることができる。特に、本発明によれば、翼の縁部に複数の切り欠きが所定の間隔を空けて形成されている。このため、翼に流入する気体が切り欠きに流入しやすくなり、翼の負圧面における気体の流れの二次元性が崩れる。従って、ディンプルや不規則な粗面等の乱流境界層制御構造により、二次元性が崩れた流れ(即ち、三次元性の流れ)の気体を翼から剥離させないようにすることができる。その結果、翼に作用する圧力抵抗を小さくすることができ、乱流境界層制御構造が形成されていない場合に比べて、クロスフローファンの駆動電力を効果的に低減することができる。
 上記のクロスフローファンであって、乱流境界層制御構造はディンプルであることが好ましい。
 同構成によれば、境界層を層流から乱流へ遷移させる乱流境界層制御構造はディンプルである。このため、気体が流れる方向に沿って延びる溝を乱流境界層制御構造とする場合に比べて、翼に流入する気体の剥離をより効果的に抑制することができる。即ち、境界層を層流から乱流へ遷移させるとともに、ディンプル内に二次的な流れを発生させることにより、境界層底部に発生する剪断力を減少させることができる。従って、翼に流入する気体が翼から剥離することを効果的に抑制することができる。
 上記のクロスフローファンにおいて、ディンプルは、複数のディンプルのうちの一つからなり、各ディンプルは、切り欠きが形成された縁部の近傍において、翼の負圧面において気体が流れる方向に沿ってそれぞれ形成され、複数のディンプルのうち、ディンプルが形成された一方の縁部から離れている第1のディンプルの深さは、第1のディンプルよりも一方の縁部に近接する第2のディンプルの深さに比べて小さいことが好ましい。
 同構成によれば、境界層の発達を抑制する効果が小さい下流側のディンプル(即ち、縁部から離れているディンプル)内において、二次的な気体の流れによる損失を抑制することができる。従って、複数のディンプルの深さが同じである場合に比べて、クロスフローファンの駆動電力を効果的に低減することができる。
 上記のクロスフローファンにおいて、ディンプルは、複数のディンプルのうちの一つからなり、各ディンプルは、切り欠きが形成された縁部の近傍において、翼の負圧面において気体が流れる方向に沿ってそれぞれ形成され、複数のディンプルは、ディンプルが形成された一方の縁部から他方の縁部に向かうにつれて浅くなることが好ましい。
 同構成によれば、縁部から離れている境界層の発達を抑制する効果が小さいディンプル内において、二次的な気体の流れによる損失を抑制することができる。従って、複数のディンプルの深さが同じである場合に比べて、クロスフローファンの駆動電力を効果的に低減することができる。なお、一方の縁部から他方の縁部に向かうにつれて浅くなる複数のディンプルは、一方の縁部に近接する複数のディンプルを構成する幾つかのディンプルであってもよく、上記一方の縁部に近接する複数のディンプルを構成する全てのディンプルであってもよい。
 上記のクロスフローファンにおいて、翼は、外周側縁部及び内周側縁部のうち少なくとも一方の縁部において切り込まれた部分である切込部と、切り込まれていない部分である基本形状部とを有し、切込部の翼厚は、切込部に隣接する基本形状部の翼厚に比べて小さいことが好ましい。
 同構成によれば、切込部の翼厚は、切込部に隣接する基本形状部の翼厚に比べて小さくなっている。このため、切込部の翼厚と基本形状部の翼厚とが同じ場合に比べて、切込部における縁部の端面の面積を小さくすることができる。その結果、気体が翼に流入する際の衝突損失を低減することができる。よって、クロスフローファンの駆動電力をより効果的に低減することができる。
 上記のクロスフローファンにおいて、翼は、外周側縁部及び内周側縁部のうち少なくとも一方の縁部において切り込まれた部分である切込部と、切り込まれていない部分である基本形状部とを有し、乱流境界層制御構造は、基本形状部に形成されていることが好ましい。
 同構成によれば、切込部に隣接する基本形状部の翼厚に比べて切込部の翼厚が小さくなるように翼を形成する場合、所望の深さを有するディンプルや溝等の乱流境界層制御構造を容易に形成することができる。即ち、乱流境界層制御構造であるディンプル等の深さを容易に確保することができる。
 上記の課題を解決するために、本発明の第二の態様によれば、上記のクロスフローファンを備える空気調和機が提供される。
 同構成によれば、上記のクロスフローファンを備えるため、簡単な形状で騒音を低減することができ、さらに、クロスフローファンの駆動電力を効果的に低減することができる。
本発明の実施形態に係るクロスフローファンを備えた空気調和機の概略構成を示す断面図。 本発明の実施形態に係るクロスフローファンを示す斜視図。 本発明の第1の実施形態に係る羽根車を示す斜視図。 第1の実施形態に係る翼(羽根)を示す斜視図。 第1の実施形態に係る翼の負圧面を示す図。 第1の実施形態に係る翼の正圧面を示す図。 図5及び図6に示すS1-S1線に沿った断面図。 図5及び図6に示すS2-S2線に沿った断面図。 本発明の実施形態に係る翼を成形するための金型を示す断面図。 本発明の実施形態に係る翼を成形するための金型を示す模式断面図。 本発明の実施形態に係る翼を成形するための金型及び成形された翼の断面を示す断面図。 本発明の実施形態に係るディンプルの作用を説明するための断面図。 本発明の実施形態に係る翼の断面図であって、ディンプル内の二次的な気体の流れを説明するための断面図。 参考例に係る翼の断面図であって、ディンプル内の二次的な気体の流れを説明するための断面図。 本発明の第1の実施形態に係るクロスフローファンの効果を説明するためのグラフ。 切り欠きが形成されていない翼にディンプルが形成されている場合の効果を説明するためのグラフ。 切り欠きが形成されている翼にディンプルが形成されている場合の効果を説明するためのグラフ。 本発明の第2の実施形態に係る羽根車を示す斜視図。 第2の実施形態に係る翼(羽根)を示す斜視図。 第2の実施形態に係る翼の負圧面を示す図。 図20のS3-S3線に沿った断面図。 本発明の第2の実施形態に係る翼における空気の流れを説明するための断面図。 本発明の第2の実施形態に係るクロスフローファンの効果を説明するためのグラフ。 クロスフローファンを説明するための図。 従来のクロスフローファンが備える羽根車を示す斜視図。 従来の翼(羽根)を示す斜視図。
 以下、本発明の実施形態について、図面を参照しながら説明する。図中の矢印Aは、羽根車の回転中心軸に平行な軸方向を示す。図中の矢印Sは、軸方向に垂直な方向において羽根車の回転中心から遠ざかる向きである回転遠心側を示す。図中の矢印Uは、軸方向に垂直な方向において羽根車の回転中心に近づく向きである回転中心側を示す。
 (第1の実施形態)
 図1に示すように、空気調和機1は、壁掛け型室内ユニットである。空気調和機1は、筐体であるケーシング2、ケーシング2内に配置された熱交換器3、及び熱交換器3の下流側に配置されたクロスフローファン4により構成されている。
 ケーシング2の上面及び前面には、ケーシング2内に空気を吸い込むための空気吸込口21がそれぞれ設けられている。また、ケーシング2の前面と下面との間には、ケーシング2外へ空気を吹き出すため空気吹出口22が設けられている。空気吹出口22には、垂直羽根23及び水平羽根24が設けられている。垂直羽根23及び水平羽根24は、空気吹出口22から吹き出される空気の方向を調整するために用いられる。
 ケーシング2内には、ガイド部25及び逆流防止用舌部26が設けられている。ガイド部25は、クロスフローファン4によって送風された空気を前方へ案内する。逆流防止用舌部26は、クロスフローファン4によって送風された空気が逆流することを防止する。ガイド部25及び逆流防止用舌部26は、ケーシング2に一体形成されている
 熱交換器3は、前側熱交換部3a及び後側熱交換部3bを備えている。前側熱交換部3aは、ケーシング2内においてクロスフローファン4の前部から上方にかけて配置されている。後側熱交換部3bは、ケーシング2内においてクロスフローファン4の後部から上方にかけて配置されている。空気吸込口21から流入した空気は、熱交換器3を通過することにより冷却あるいは加熱されて調和空気となり、クロスフローファン4により空気吹出口22から室内へ送り出される。
 クロスフローファン4は、翼(羽根)42を備えた羽根車41と、クロスフローファン4によって送風される空気の流路を形成するケーシング2と、羽根車41(クロスフローファン4)を駆動する電動モータとにより構成されている。電動モータに電力が供給されると、電動モータによりクロスフローファン4が駆動される。
 図2及び図3に示すように、クロスフローファン4の羽根車41は、複数の翼42、翼42を支持する支持板4a、及び回転軸4bにより構成されている。支持板4aは、軸方向Aにおける翼42の端部に接続されている。回転軸4bは、支持板4aに接続されるとともに、電動モータの出力軸に接続されている。各翼42は、支持板4aにおける回転遠心側の端部にそれぞれ設けられている。各翼42は、羽根車41の回転方向に沿ってそれぞれ設けられている。さらに、複数の支持板4aは、各支持板4aの軸線を軸方向Aに一致させると共に互いに並行に配置されている。各翼42は、隣接する支持板4a間に配置されることにより、軸方向Aに沿って端部同士を突き合わせるようにしてそれぞれ配置されている。図2に示すように、回転軸4bに直接的に接続された支持板4aは平板状に形成されている。軸方向Aに隣接する翼42間に設けられた支持板4aは環状に形成されている。1つの支持板4a及びこれに接続される翼42は樹脂からなり、図3に示すように、金型を用いて射出成形により形成される。
 図4乃至図8に示すように、翼42は、円弧に沿って湾曲している。翼42は、正圧面(圧力面)4p、及び負圧面4qを有している。正圧面4pは、羽根車41を静止状態から回転させる際に相対的に大きな圧力を受ける回転方向に面する。負圧面4qは、羽根車41を静止状態から回転させる際に相対的に小さな圧力を受ける反回転方向に面する。翼42は、羽根車41の回転遠心側に設けられる外周側縁部43と、羽根車41の回転中心側に設けられる内周側縁部44とを備えている。翼42の外周側縁部43は、羽根車41の回転方向に湾曲している。
 外周側縁部43には、複数の切り欠き45が、所定の間隔を空けて形成されている。翼42は、外周側縁部43において切り込まれた部分である切込部46と、外周側縁部43において切り込まれていない部分である基本形状部47とを有する。切込部46及び基本形状部47は、軸方向Aにおいて交互に設けられている。複数の切り欠き45が設けられる所定の間隔は一定であってもよく、翼42上の切り欠き45の位置に応じて異なっていてもよい。例えば、翼42の端部に設けられた切り欠き45間の間隔を、翼42の中央に設けられた切り欠き45間の間隔より大きくしてもよい。この構成にすれば、騒音を低減しつつ、翼42が空気から圧力を受ける圧力面積を確保することができる。
 切り欠き45は、図4等に示すように、三角形状であるが、四角形状であってもよい。切り欠き45の大きさは、全て同じであってもよく、軸方向Aの位置に応じて異なっていてもよい。例えば、翼42の端部に設けられた切り欠き45は、翼42の中央に設けられた切り欠き45よりも小さくてもよい。この構成にすれば、翼42が空気から圧力を受ける圧力面積を確保することができる。
 以上のように、クロスフローファン4は、湾曲した翼42により形成された回転する羽根車41を備えている。翼42の外周側縁部43には、複数の切り欠き45が所定の間隔を空けて形成されている。この構成にすれば、クロスフローファン4の空気の吹き出し部M(図1参照)において発生する後流渦を低減することができる。また、外周側縁部43を鋸歯状にする構成よりも簡単な形状で、騒音を低減することもできる。
 本実施形態は、翼42の外周側縁部43に複数の切り欠き45が所定の間隔を空けて形成されていることに加え、外周側縁部43における負圧面4qに乱流境界層制御構造が形成されていることを特徴としている。乱流境界層制御構造は、翼42に流入する空気を翼42から剥離させないようにするためのものである。乱流境界層制御構造は、翼42の負圧面4qにおける境界層を層流から乱流へ遷移させる構造(ディンプル、溝、粗面等)である。乱流境界層制御構造により、翼42に作用する圧力抵抗を小さくすることができる。これにより、乱流境界層制御構造が形成されていない場合よりも、クロスフローファン4の駆動電力を低減することができる。
 外周側縁部43における翼42の負圧面4qには、乱流境界層制御構造としての複数のディンプル48が形成されている。ディンプル48は、図8等に示すように、所定の深さを有するとともに凹球面状の底面を有する小さな窪みである。ディンプル48は、翼42の負圧面4qにおいて空気が流れる方向(図8中の矢印X参照)、即ち、空気が外周側縁部43から翼42に流入する方向(以下、「流入方向X」と称す)に沿って形成されている。翼42の負圧面4qにおいて空気が流れる方向は、軸方向Aに略垂直な方向である。より具体的には、図5等に示すように、翼42の負圧面4qには、3列のディンプル48a,48b,48cが形成されている。ディンプル48a,48b,48cの各列は、軸方向A(即ち、翼42の長手方向)に沿ってそれぞれ配置されている。ディンプル48aは、ディンプル48a,48b,48cのうち外周側縁部43の最も近くに設けられている。ディンプル48cは、流入方向Xにおいてディンプル48aの下流側に設けられている。即ち、ディンプル48には、回転遠心側に設けられたディンプル48aと、回転中心側に設けられたディンプル48cとが含まれている。ディンプル48bは、ディンプル48aの列とディンプル48cの列との間に設けられている。ディンプル48bは、ディンプル48a,48cに対し軸方向Aに半ピッチだけずれて配置されている。このため、隣接する2つのディンプル48cの間には、1つのディンプル48bが配置されている。
 図8に示すように、翼42の外周側縁部43から最も離れているディンプル48c(第1のディンプル)は、ディンプル48cよりも外周側縁部43に近接するディンプル48a,48b(第2のディンプル)に比べて浅く形成されている。即ち、ディンプル48a,48cの深さは、翼42の外周側縁部43から内周側縁部44に向かうにつれて小さくなる。ディンプル48a,48b,48cの径は全て同じである。「ディンプルの深さ」は、ディンプルの最大深さを意味する。
 上記の場合において、幾つかのディンプル48は同じ深さであってもよい。即ち、外周側縁部43から内周側縁部44に向かうにつれて浅くなるディンプル48は、外周側縁部43に近接する複数のディンプル48を構成する幾つかのディンプルであればよい。本実施形態において、ディンプル48aはディンプル48bと同じ深さを有し、外周側縁部43から最も離れているディンプル48cの深さは、ディンプル48cよりも外周側縁部43に近接するディンプル48a,48bの深さよりも小さい。
 以上のように、流入方向Xにおいて下流側に設けられたディンプル48cの深さは、上流側に設けられたディンプル48a,48bの深さよりも小さい。
 ディンプル48が形成された翼42は、図9に示す金型5を用いて形成することができる。金型5は、正圧面4pと負圧面4qの一部を形成する金型51と、切り欠き45及びディンプル48を含む負圧面4qの一部を形成する金型52と、支持板4aを形成するための金型54(図10参照)とを含む。複数の金型52は、金型51を囲むようにして配設される。金型52には、ディンプル48を形成するための突起53が設けられている。金型51と金型52とにより形成される空間に溶融樹脂が射出される。この溶融樹脂を硬化することにより、ディンプル48を含む翼42が形成される。翼42を形成した後、各金型52を径方向に移動させる。これにより、金型52が引き抜かれて、金型5が開放される。
 図10は、金型5の断面を示す模式断面図であって、翼42の長手方向(軸方向A)に沿った断面図である。図10中の一点鎖線は、羽根車41の回転中心軸を示す。翼42を形成した後、金型52は引き抜かれる。また、翼42の端部を覆う金型52及び金型54も、軸方向A1,A2にそれぞれ移動させられて引き抜かれる。具体的には、金型52に囲まれると共に翼42の一方の端部を覆う金型51は、軸方向A1に移動させられて引き抜かれる。また、翼42の他方の端部を覆う金型54は、軸方向A2に移動させられて引き抜かれる。こうして金型51,52,54が引き抜かれることにより、複数の翼42及び翼42を備える羽根車41が形成される。即ち、射出成形により、複数の翼42とともに、翼42の端部を備える支持板4aが形成される。従って、支持部材である支持板4aと複数の翼42とが一体形成されるため、羽根車41の製造工程が簡略化される。
 ディンプル48a,48cの深さは、翼42の外周側縁部43から内周側縁部44に向かうにつれて小さくなる。即ち、ディンプル48cは、ディンプル48cよりも外周側縁部43に近接するディンプル48a,48bに比べて浅く形成されている。このため、金型5を用いて、流入方向Xに沿った複数のディンプル48(ディンプル48a,48b,48c)を容易に形成することができる。即ち、1つの金型52を用いて複数の翼42を形成する場合、翼42を形成した後に金型52を外すときに、翼42が湾曲していることから、ディンプル48を形成するため金型52に形成された突起53が翼42に干渉するおそれがある。この場合、翼42に傷を付けずに金型52を径方向に移動させることが難しく、翼42から金型5を外すことは困難である。そこで、本実施形態では、羽根車41の回転中心側に設けられたディンプル48cが、羽根車41の回転遠心側に設けられたディンプル48a,48bに比べて浅く形成されている。これにより、金型52を径方向に移動させて翼42から金型5を外す際に、外周側縁部43から最も離れているディンプル48cを形成するための金型52の突起53を、翼42に対し干渉させないようにすることができる。即ち、図11に示すように、金型51と金型52との間の空間に樹脂を射出して翼42を形成する場合であっても、翼42に傷を付けずに金型52を径方向に移動させることができる。図11は、図9中の一点鎖線で示す部分S2の拡大図である。
 以上のように、外周側縁部43における翼42の負圧面4qには、翼42に流入する空気(気体)の剥離を抑制するためのディンプル48が形成されている。このため、翼42の負圧面4qにおける境界層を層流から乱流へと遷移させることともに、ディンプル48内に二次的な空気の流れ(図13中の矢印X2参照)を発生させることもできる。これにより、境界層の底部に発生する剪断力を減少させて境界層の発達を抑制することができる。よって、ディンプル48により、図12に示すように、クロスフローファン4の空気の吸い込み部Nにおける空気流Xが負圧面4qを沿って流れるようになる。従って、図12の破線で示すような空気の剥離を抑制することができる。
 また、翼42の負圧面4qに形成されたディンプル48cの深さは、ディンプル48a,48bの深さに比べて小さい。このため、図13及び図14に示すように、ディンプル348が同じ深さを有している場合に比べて、二次的な空気の流れが抑制される。
 図14に示すように、外周側縁部343近傍における翼342の負圧面304qには、空気が翼342に流入する方向(図中の矢印X参照)に沿って、同じ形状をなす複数のディンプル348が形成されている。即ち、図13及び図14に示す翼342では、複数のディンプル348が同じ径及び深さを有しており、空気の二次的な流れは矢印X2で示されている。
 図14に示すように、上流側及び下流側に設けられたディンプル348内において、二次的な空気の流れが発生する。このような二次的な空気の流れによる損失が原因となって、クロスフローファンの駆動電力を効果的に低減できないことがある。これに対して、図13に示すように、本実施形態に係る翼42によれば、下流側に設けられたディンプル48c内における空気の二次的な流れが抑制される。ディンプル48cでは、ディンプル48cの上流側に設けられたディンプル48a,48bに比べて、境界層の発達を抑制する効果が小さく抑えられている。このため、複数のディンプル48による気体の剥離を抑制する効果が維持される。従って、クロスフローファン4の駆動電力を効果的に低減できる。
 本実施形態に係る翼42によれば、図15に示すように、クロスフローファン4を駆動するための電動モータの入力を、従来の電動モータの入力に比べて低減させることができる。図15は、翼42により形成された羽根車41を備えるクロスフローファン4と、従来の翼242により形成された羽根車241を備えるクロスフローファンとに係る風量-モータ入力特性線図である。図15中の実線は、本発明のクロスフローファン4の風量-モータ入力特性線を示す。図15中の一点鎖線は、従来のクロスフローファンの風量-モータ入力特性線を示す。図15の横軸は風量を示し、横軸の1目盛りが0.5m/minである。図15の縦軸はモータ入力を示し、縦軸の1目盛りが5Wである。
 また、乱流境界層制御構造は、ディンプル48により構成されている。このため、気体が流れる方向に沿って延びる溝を乱流境界層制御構造とする場合に比べて、翼42に流入する気体の剥離をより効果的に抑制することができる。即ち、乱流境界層制御構造としてディンプル48を採用すれば、境界層を層流から乱流へ遷移させるとともに、ディンプル48内に二次的な流れを発生させることにより、境界層底部に発生する剪断力を減少させることができる。従って、翼42に流入する気体が翼42から剥離することをより抑制することができる。
 特に、本発明によれば、外周側縁部43に複数の切り欠き45が所定の間隔を空けて形成されているため、羽根車41(即ち、翼42)に流入する空気が切り欠き45に流入しやすくなり、翼42に流入する空気の流れの二次元性が崩れる。その点、本発明によれば、軸方向及び軸と直交する方向に沿って変化する断面を有するディンプル48によって、二次元性が崩れた流れ(即ち、三次元性の流れ)の空気が翼42から剥離することを効果的に抑制することができる。
 即ち、切り欠き45が形成された翼42にディンプル48が形成されている場合は、切り欠き45が形成されていない翼にディンプル48が形成されている場合に比べて、翼42に流入する空気が翼42から剥離することを抑制することができる。その結果、図16及び図17に示すように、切り欠き45が設けられていない翼42にディンプルが形成された場合に比べて、モータ入力をより低減でき、クロスフローファン4の駆動電力を効果的に低減できる。
 図16は、切り欠き45が形成されていない翼により形成された羽根車を備えるクロスフローファンに係る風量-モータ入力特性線図である。図16中の一点鎖線は、翼にディンプル48が形成されていないクロスフローファンの風量-モータ入力特性線を示す。図16中の実線は、翼にディンプル48が形成されているクロスフローファン風量-モータ入力特性線を示す。図17は、切り欠き45が形成されている翼により形成された羽根車を備えるクロスフローファンに係る風量-モータ入力特性線図である。図17中の一点鎖線は、翼にディンプル48が形成されていないクロスフローファンの風量-モータ入力特性線を示す。図17中の実線は、翼にディンプル48が形成されているクロスフローファンの風量-モータ入力特性線を示す。図16及び図17の横軸は風量を示し、横軸の1目盛りが0.2m/minである。図16及び図17の縦軸はモータ入力を示し、縦軸の1目盛りが2Wである。
 本実施形態によれば、以下のような効果を得ることができる。
 (1)翼42の外周側縁部43には、複数の切り欠き45が所定の間隔を空けて形成されている。また、外周側縁部43における翼42の負圧面4qには、翼42に流入する気体が翼42から剥離することを抑制するために、境界層を層流から乱流へ遷移させる乱流境界層制御構造としてのディンプル48が形成されている。この構成によれば、外周側縁部43には複数の切り欠き45が所定の間隔を空けて設けられているため、簡単な形状で騒音を低減することができる。また、外周側縁部43における翼42の負圧面4qには、翼42に流入する気体の剥離を抑制するためのディンプル48が形成されている。このため、翼42の負圧面4qにおける境界層を層流から乱流へ遷移させることができ、翼42に流入する空気が翼42から剥離することを抑制することができる。特に、本発明によれば、外周側縁部43に複数の切り欠き45が所定の間隔を空けて形成されているため、翼42に流入する空気が翼42から剥離することを効果的に抑制することができる。その結果、翼42に作用する圧力抵抗を小さくすることができ、ディンプル48が設けられていない場合に比べて、クロスフローファン4の駆動電力を効果的に低減することができる。
 (2)境界層を層流から乱流へ遷移させる乱流境界層制御構造がディンプル48である。このため、気体が流れる方向に沿って延びる溝を乱流境界層制御構造とする場合に比べて、翼42に流入する気体の剥離をより効果的に抑制することができる。即ち、境界層を層流から乱流へ遷移させるとともに、ディンプル48内に二次的な流れを発生させることにより、境界層底部に発生する剪断力を減少させることができる。従って、翼42に流入する空気が翼42から剥離することをより効果的に抑制することができる。
 (3)複数のディンプル48は、ディンプル48が形成された外周側縁部43から内周側縁部44に向かうにつれて浅くなる。即ち、翼42の外周側縁部43から最も離れているディンプル48cは、ディンプル48cよりも外周側縁部43に近接するディンプル48aに比べて浅く形成されている。このように複数のディンプル48の深さを異ならせることにより、境界層の発達を抑制する効果が小さく、かつ外周側縁部43から離れているディンプル48c内において、二次的な空気の流れによる損失を抑制することができる。また、ディンプル48cでは、外周側縁部43に近接するディンプル48aに比べて、境界層の発達を抑制する効果が小さく抑えられている。このため、複数のディンプル48による空気の剥離を抑制する効果が維持される。従って、複数のディンプル48の深さが同じである場合に比べて、クロスフローファン4の駆動電力を効果的に低減することができる。
 (4)複数のディンプル48のうち、回転中心側に設けられたディンプル48cの深さは、回転遠心側に設けられたディンプル48aの深さに比べて小さい。この構成によれば、翼42から金型5を外す際に、回転中心側のディンプル48cを形成するため金型52に設けられる突起53を、翼42に対し干渉させないようにすることができる。その結果、翼42を成形するための金型5を容易に取り外すことができる。よって、翼42の負圧面4qにおいて空気が流れる方向に沿って、複数のディンプル48を容易に形成することができる。
 また、空気調和機1は、(1)~(4)の効果を得ることができるクロスフローファン4を備えている。このため、本実施形態の空気調和機1によれば、(1)~(4)と同様の効果を得ることができる。また、回転方向に沿って設けられる複数の翼42と、翼42の端部を備える支持部材としての支持板4aとが一体形成されている。このため、本実施形態に係る翼42の製造方法によれば、羽根車41の製造工程を簡略化することができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。本実施形態に係る空気調和機の全体構成やクロスフローファンの構成等については、第1の実施形態と同様であるため、その詳細な説明を省略する。
 本実施形態において、図18乃至図21に示すように、翼42は、切込部46の翼厚T1がこの切込部46に隣接する基本形状部47の翼厚T2に比べて小さいことを特徴としている。ディンプル48は、切込部46には形成されておらず、基本形状部47のみに形成されている。切込部46における負圧面4qには、窪み49が形成されている。これにより、図21に示すように、切込部46の翼厚T1が、切込部46に隣接する基本形状部47の翼厚T2に比べて小さくなっている。この場合、正圧面4pに窪みを形成する場合に比べて、空気流に与える圧力を大きくすることができる。
 この構成によれば、翼42の外周側縁部43における端面4rの面積を小さくすることができる。従って、図22に示すクロスフローファン4の空気の吸い込み部Nにおいて、空気流Xによる切込部46に対する衝突損失を低減させることができる。その結果、図23に示すように、クロスフローファン4を駆動するための電動モータの入力を、従来の電動モータの入力よりも低くすることができる。図23は、本実施形態の翼42により形成された羽根車41を備えるクロスフローファン4と、従来の翼242により形成された羽根車241を備えるクロスフローファンとに係る風量-モータ入力特性線図である。図23中の実線は、本発明のクロスフローファン4の風量-モータ入力特性線を示す。図23中の一点鎖線は、従来のクロスフローファンの風量-モータ入力特性線を示す。
 切込部46における翼厚T1は、図21に示すように、翼弦に平行な方向に沿って切り欠き45(外周側縁部43)に向かうにつれて小さくなる。即ち、翼厚T1は、翼42の負圧面4qにおける空気の上流側に向かうにつれて小さくなる。このため、軸方向Aに垂直な翼42の断面形状を滑らかな曲面により形成することができる。また、切込部46における翼厚T1は、軸方向Aにおける切り欠き45の中央に向かうにつれて小さくなる。このため、切込部46と基本形状部47との間には段差が形成されない。
 本実施形態のクロスフローファン4によれば、上記(1)~(4)の効果に加えて、以下のような効果を得ることができる。
 (5)切込部46の翼厚T1は、切込部46に隣接する基本形状部47の翼厚T2に比べて小さくなっている。このため、切込部46の翼厚T1と基本形状部47の翼厚T2が同じ場合に比べて、外周側縁部43における端面4rの面積を小さくすることができる。その結果、空気が羽根車41に流入する際の衝突損失を低減することができる。よって、クロスフローファン4の駆動電力をより効果的に低減することができる。
 (6)ディンプル48は、基本形状部47に形成されている。このため、切込部46の翼厚T1が切込部46に隣接する基本形状部47の翼厚T2に比べて小さい翼42を形成する場合、所望の深さを有するディンプル48を形成し易くすることができる。即ち、ディンプル48の深さを容易に確保することができる。
 また、空気調和機1は、本実施形態に係るクロスフローファン4を備えている。このため、本実施形態の空気調和機1によれば、(1)~(4)の効果に加えて、(5),(6)と同様の効果を得ることができる。
 本発明は、上記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々の設計を変更可能であり、それらを本発明の範囲から除外するものではない。例えば、上記実施形態を以下のように変更してもよい。
 ・上記実施形態において、ディンプル48bの深さを、ディンプル48aの深さに比べて小さく、かつ、ディンプル48cの深さに比べて大きくしてもよい。即ち、外周側縁部43から内周側縁部44に向かうにつれて浅くなる複数のディンプル48は、複数のディンプル48を構成する全てのディンプル48a,48b,48cであってもよい。
 ・上記実施形態において、翼42の負圧面4qに乱流境界層制御構造としてディンプル48を形成したが、これに代えて、溝や粗面(いずれも不図示)等により、乱流境界層制御構造を構成してもよい。
 ・上記実施形態において、翼42の外周側縁部43に切り欠き45を形成したが、翼42の内周側縁部44に、切り欠き45と同様の切り欠きを形成してもよい。即ち、外周側縁部43及び内周側縁部44のうちいずれか一方に切り欠きを形成してもよく、外周側縁部43及び内周側縁部44の双方に切り欠きを形成してもよい。外周側縁部43及び内周側縁部44の双方に切り欠きを形成した場合、騒音をより一層低減することができる。また、内周側縁部44に切り欠きを設けた場合、第2の実施形態のように翼厚を変化させてもよい。
 ・上記実施形態において、翼42の内周側縁部44に切り欠きを形成し、更に、その内周側縁部44における翼42の負圧面4qに乱流境界層制御構造を形成してもよい。また、内周側縁部44における翼42の負圧面4qに複数のディンプルを空気の流れに沿ってそれぞれ形成した場合、内周側縁部44に近接するディンプルを、内周側縁部44から外周側縁部43に向かうにつれて浅くすることが好ましい。この構成によれば、上記実施形態に準じた効果を得ることができる。

Claims (7)

  1. 湾曲した翼により形成された回転する羽根車を備えるクロスフローファンにおいて、
     前記翼は、前記羽根車の回転遠心側に設けられる外周側縁部と、前記羽根車の回転中心側に設けられる内周側縁部とを備え、前記外周側縁部及び前記内周側縁部のうち少なくとも一方の縁部には複数の切り欠きが所定の間隔を空けて形成され、
     前記切り欠きが形成された前記縁部における前記翼の負圧面には、前記翼に流入する気体を前記翼から剥離させないようにするため、境界層を層流から乱流へ遷移させる乱流境界層制御構造が形成されていることを特徴とするクロスフローファン。
  2. 前記乱流境界層制御構造はディンプルであることを特徴とする請求項1に記載のクロスフローファン。
  3. 前記ディンプルは、複数のディンプルのうちの一つからなり、前記各ディンプルは、前記切り欠きが形成された前記縁部の近傍において、前記翼の負圧面において前記気体が流れる方向に沿ってそれぞれ形成され、
     前記複数のディンプルのうち、前記ディンプルが形成された一方の縁部から離れている第1のディンプルの深さは、第1のディンプルよりも前記一方の縁部に近接する第2のディンプルの深さに比べて小さいことを特徴とする請求項2に記載のクロスフローファン。
  4. 前記ディンプルは、複数のディンプルのうちの一つからなり、前記各ディンプルは、前記切り欠きが形成された前記縁部の近傍において、前記翼の負圧面において前記気体が流れる方向に沿ってそれぞれ形成され、
     前記複数のディンプルは、前記ディンプルが形成された一方の縁部から他方の縁部に向かうにつれて浅くなることを特徴とする請求項2に記載のクロスフローファン。
  5. 前記翼は、前記外周側縁部及び前記内周側縁部のうち少なくとも一方の縁部において切り込まれた部分である切込部と、切り込まれていない部分である基本形状部とを有し、
     前記切込部の翼厚は、前記切込部に隣接する前記基本形状部の翼厚に比べて小さいことを特徴とする請求項1乃至請求項4のいずれか一項に記載のクロスフローファン。
  6. 前記翼は、前記外周側縁部及び前記内周側縁部のうち少なくとも一方の縁部において切り込まれた部分である切込部と、切り込まれていない部分である基本形状部とを有し、
     前記乱流境界層制御構造は、前記基本形状部に形成されていることを特徴とする請求項1乃至請求項5のいずれか一項に記載のクロスフローファン。
  7. 請求項1乃至請求項6のいずれか一項に記載のクロスフローファンを備えることを特徴とする空気調和機。
PCT/JP2010/053915 2009-03-10 2010-03-09 クロスフローファン及びこれを備えた空気調和機 WO2010104083A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/255,196 US9046110B2 (en) 2009-03-10 2010-03-09 Crossflow fan and air conditioner provided with same
ES10750836T ES2746502T3 (es) 2009-03-10 2010-03-09 Ventilador de flujo cruzado y acondicionador de aire proporcionado con el mismo
KR1020117020939A KR101313420B1 (ko) 2009-03-10 2010-03-09 크로스플로우 팬 및 이를 구비한 공기 조화기
CN201080010935.8A CN102341601B (zh) 2009-03-10 2010-03-09 横流风扇和具有该横流风扇的空调机
AU2010222097A AU2010222097B2 (en) 2009-03-10 2010-03-09 Crossflow fan and air conditioner provided with same
EP10750836.8A EP2407671B1 (en) 2009-03-10 2010-03-09 Crossflow fan and air conditioner provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-056970 2009-03-10
JP2009056970 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010104083A1 true WO2010104083A1 (ja) 2010-09-16

Family

ID=42728372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053915 WO2010104083A1 (ja) 2009-03-10 2010-03-09 クロスフローファン及びこれを備えた空気調和機

Country Status (8)

Country Link
US (1) US9046110B2 (ja)
EP (1) EP2407671B1 (ja)
JP (1) JP4725678B2 (ja)
KR (1) KR101313420B1 (ja)
CN (1) CN102341601B (ja)
AU (1) AU2010222097B2 (ja)
ES (1) ES2746502T3 (ja)
WO (1) WO2010104083A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403355A (zh) * 2011-03-02 2013-11-20 夏普株式会社 贯流风扇、成型用模具和流体输送装置
CN105895913A (zh) * 2016-05-04 2016-08-24 北京化工大学 一种制备二维材料的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4371171B2 (ja) * 2008-05-09 2009-11-25 ダイキン工業株式会社 クロスフローファン及びこれを備えた空気調和機
TWI410564B (zh) * 2010-12-29 2013-10-01 Delta Electronics Inc 風扇及其葉輪
CN102162464A (zh) * 2011-05-05 2011-08-24 广东志高空调有限公司 一种带小凹坑的锯齿形叶片的贯流风轮
CN102619783A (zh) * 2012-04-18 2012-08-01 广东志高空调有限公司 一种离心风机的叶片结构
CN104603466A (zh) * 2012-09-04 2015-05-06 大金工业株式会社 横流风扇
JP5590088B2 (ja) * 2012-09-28 2014-09-17 ダイキン工業株式会社 クロスフローファン
AR093034A1 (es) 2012-10-16 2015-05-13 Inst Nac De Tecnologia Agropecuaria Organo activo de maquinaria agricola que interactua con el suelo, con topografia superficial modificada
US9297714B2 (en) 2013-03-05 2016-03-29 Rosemount Aerospace Inc. Air data probes
US9341533B2 (en) 2013-03-05 2016-05-17 Rosemount Aerospace Inc. Air data probes
KR101494835B1 (ko) * 2013-06-11 2015-02-23 시스템벤트 주식회사 실내 공기 확산장치
US9981756B2 (en) * 2013-10-15 2018-05-29 Rosemount Aerospace Inc. Total air temperature sensors
CA2891064C (en) * 2014-05-20 2023-04-18 Charles Jae Doolittle Air data probes
KR102289384B1 (ko) * 2014-12-18 2021-08-13 삼성전자주식회사 원심팬 어셈블리
MX2017012325A (es) 2015-04-08 2017-12-20 Horton Inc Caracteristicas de superficie de aspa de ventilador.
CN104852453A (zh) * 2015-05-20 2015-08-19 徐伯琴 直流变频风扇
JP6634704B2 (ja) * 2015-05-29 2020-01-22 ダイキン工業株式会社 クロスフローファン及びこれを用いた空気調和機
CN105257592B (zh) * 2015-09-25 2017-08-25 宁波朗迪叶轮机械有限公司 用于空调上的注塑离心风叶
KR102351938B1 (ko) * 2015-10-22 2022-01-18 한온시스템 주식회사 축류팬
GB2556110B (en) * 2016-11-21 2020-04-01 Dyson Technology Ltd Compressor blade surface patterning
CN107781212A (zh) * 2017-10-18 2018-03-09 高歌飞行科技(成都)有限公司 一种对旋流体负压泡、升力体及风扇
CN107781213A (zh) * 2017-10-19 2018-03-09 卧龙电气集团股份有限公司 一种循环风机及其扇叶结构
CN214533560U (zh) * 2021-04-16 2021-10-29 深圳市和生创新技术有限公司 一种暖风机
JP7515899B2 (ja) * 2021-06-22 2024-07-16 MEi株式会社 クロスフローファン
USD1018828S1 (en) 2023-08-22 2024-03-19 Xiaoyan LUO Fan blade

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210094A (ja) * 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd クロスフローファン
JPH05332294A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd 軸流ファン
JPH08240197A (ja) * 1995-03-03 1996-09-17 Daikin Ind Ltd 軸流ファン
JP2006125390A (ja) 2004-09-30 2006-05-18 Daikin Ind Ltd 送風機の羽根車およびそれを用いた空気調和機
JP2007010259A (ja) * 2005-07-01 2007-01-18 Hitachi Appliances Inc 空気調和機
JP2007292053A (ja) * 2006-03-31 2007-11-08 Daikin Ind Ltd 多翼ファン
JP2008223760A (ja) * 2007-02-13 2008-09-25 Daikin Ind Ltd 送風機の羽根車

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210093A (ja) * 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd クロスフローファン
JP3500292B2 (ja) * 1998-01-30 2004-02-23 日本電産コパル株式会社 軸流ファン
JP2001234888A (ja) * 2000-02-25 2001-08-31 Mitsubishi Heavy Ind Ltd 送風機
JP4432474B2 (ja) * 2003-11-27 2010-03-17 ダイキン工業株式会社 遠心送風機の羽根車及びそれを備えた遠心送風機
WO2006078083A2 (en) * 2005-01-24 2006-07-27 Lg Electronics Inc. Air conditioner
IES86162B2 (en) * 2012-08-09 2013-03-27 New World Energy Entpr Ltd Aerofoil blades

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210094A (ja) * 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd クロスフローファン
JPH05332294A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd 軸流ファン
JPH08240197A (ja) * 1995-03-03 1996-09-17 Daikin Ind Ltd 軸流ファン
JP2006125390A (ja) 2004-09-30 2006-05-18 Daikin Ind Ltd 送風機の羽根車およびそれを用いた空気調和機
JP2007010259A (ja) * 2005-07-01 2007-01-18 Hitachi Appliances Inc 空気調和機
JP2007292053A (ja) * 2006-03-31 2007-11-08 Daikin Ind Ltd 多翼ファン
JP2008223760A (ja) * 2007-02-13 2008-09-25 Daikin Ind Ltd 送風機の羽根車

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403355A (zh) * 2011-03-02 2013-11-20 夏普株式会社 贯流风扇、成型用模具和流体输送装置
TWI513908B (zh) * 2011-03-02 2015-12-21 Sharp Kk Cross flow fan, forming mold and fluid feeding device
CN103403355B (zh) * 2011-03-02 2016-08-24 夏普株式会社 贯流风扇、成型用模具和流体输送装置
CN105895913A (zh) * 2016-05-04 2016-08-24 北京化工大学 一种制备二维材料的方法

Also Published As

Publication number Publication date
ES2746502T3 (es) 2020-03-06
KR20110116211A (ko) 2011-10-25
US20110318189A1 (en) 2011-12-29
JP2010236540A (ja) 2010-10-21
JP4725678B2 (ja) 2011-07-13
EP2407671B1 (en) 2019-06-26
KR101313420B1 (ko) 2013-10-01
CN102341601B (zh) 2014-07-23
EP2407671A1 (en) 2012-01-18
AU2010222097B2 (en) 2012-10-11
AU2010222097A1 (en) 2011-09-29
CN102341601A (zh) 2012-02-01
EP2407671A4 (en) 2017-09-13
US9046110B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
WO2010104083A1 (ja) クロスフローファン及びこれを備えた空気調和機
JP4433093B2 (ja) クロスフローファン及びこれを備えた空気調和機
JP4879318B2 (ja) 遠心ファン、空気調和機
JP4993792B2 (ja) ファン、成型用金型および流体送り装置
WO2012002080A1 (ja) ファン、成型用金型および流体送り装置
JP5182163B2 (ja) クロスフローファン及びこれを備えた空気調和機
WO2007114090A1 (ja) 多翼ファン
WO2011114375A1 (ja) 貫流ファン及び空気調和機
JP2008002379A (ja) 遠心ファン
JPWO2010100944A1 (ja) 空気調和機
JP4832498B2 (ja) 貫流ファン及び空気調和機
JP2010236437A (ja) クロスフローファン、及びこのクロスフローファンを備えた空気調和機
JP2007154685A (ja) ターボファンおよびそれを用いた空気調和機
JP5179638B2 (ja) ファン、成型用金型および流体送り装置
JP5893385B2 (ja) ファン、成型用金型および流体送り装置
JP4775867B1 (ja) ファン、成型用金型および流体送り装置
JP4957774B2 (ja) クロスフローファン及びこれを備えた空気調和機
JP2009228665A (ja) 送風機及び該送風機を備えた空気調和機
JP5361944B2 (ja) 貫流ファン及び空気調和機
JP4906011B2 (ja) ファン、成型用金型および流体送り装置
JP2005194900A (ja) 静翼装置、この静翼装置の製造方法、及びこの静翼装置を有する電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010935.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010222097

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117020939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13255196

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010750836

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010222097

Country of ref document: AU

Date of ref document: 20100309

Kind code of ref document: A