WO2010104002A1 - ピロリン系ニトロキシド重合体およびそれを用いた電池 - Google Patents

ピロリン系ニトロキシド重合体およびそれを用いた電池 Download PDF

Info

Publication number
WO2010104002A1
WO2010104002A1 PCT/JP2010/053617 JP2010053617W WO2010104002A1 WO 2010104002 A1 WO2010104002 A1 WO 2010104002A1 JP 2010053617 W JP2010053617 W JP 2010053617W WO 2010104002 A1 WO2010104002 A1 WO 2010104002A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrroline
active material
electrode active
electrode
polymer
Prior art date
Application number
PCT/JP2010/053617
Other languages
English (en)
French (fr)
Inventor
西出宏之
小柳津研一
川本健
藤本信貴
金原祐治
岩佐繁之
中原謙太郎
Original Assignee
学校法人早稲田大学
住友精化株式会社
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 住友精化株式会社, 日本電気株式会社 filed Critical 学校法人早稲田大学
Priority to CN2010800113508A priority Critical patent/CN102348727A/zh
Priority to JP2011503792A priority patent/JP5527667B2/ja
Priority to US13/255,439 priority patent/US20120095179A1/en
Publication of WO2010104002A1 publication Critical patent/WO2010104002A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen

Definitions

  • the present invention relates to a pyrroline-based nitroxide polymer, an electrode active material containing the polymer, and a battery using the electrode active material.
  • lithium ion secondary batteries are used in various electronic devices as high-capacity secondary batteries having high energy density and excellent stability.
  • Such a lithium ion secondary battery generally uses a lithium-containing transition metal oxide as a positive electrode as an active material and carbon as a negative electrode, and utilizes insertion and desorption reactions of lithium ions into these active materials. Charging and discharging.
  • Patent Document 1 discloses a secondary battery including a radical compound as an active material of at least one of a positive electrode and a negative electrode.
  • Patent Document 2 discloses an electricity storage device containing a nitroxyl compound in a positive electrode. This electricity storage device is said to be able to charge and discharge with a large current because of its fast electrode reaction.
  • the present invention is a pyrroline-based nitroxide polymer that can be used as an electrode material for a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, an electrode active material containing the polymer, and the It aims at providing the battery using an electrode active material.
  • the present invention relates to a general formula (1): It relates to a pyrroline nitroxide polymer obtained by polymerizing a pyrroline nitroxide compound represented by the formula:
  • the present invention also relates to an electrode active material containing the pyrroline nitroxide polymer. Furthermore, the present invention relates to a battery using the electrode active material. The present invention is described in detail below.
  • the pyrroline nitroxide polymer according to the present invention is obtained by polymerizing a pyrroline nitroxide compound having a vinyl group represented by the following general formula (1).
  • the pyrroline-based nitroxide compound represented by the general formula (1) is, for example, a method using 3-carbamoyl-2,2,5,5-tetramethylpyrroline-1-oxyl as shown in the following formula (2) ( CAN.J.CHEM., 64,1482-1490 (1986)).
  • 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl is hydrolyzed using an aqueous sodium hydroxide solution or the like to produce 3-carboxy-2,2,5,5-tetra Methylpyrrolin-1-oxyl is then reduced using 3-aluminum-2,2,2, and the like using lithium aluminum hydride-tert-butoxide in an inert gas atmosphere such as argon gas or nitrogen gas.
  • 5-vinyl-2,2,5,5-tetramethylpyrrolin-1-oxyl is produced by converting it to 5,5-tetramethylpyrroline-1-oxyl and then vinylating it with methyltriphosphonium bromide can do.
  • the pyrroline nitroxide polymer according to the present invention is obtained by polymerizing the pyrroline nitroxide compound.
  • the method for polymerizing the pyrroline nitroxide compound is not particularly limited, and examples thereof include a method of polymerizing using a bulk polymerization method, a solution polymerization method, and the like.
  • Examples of the polymerization method using the bulk polymerization method include using a reactor equipped with a stirrer, a thermometer, a gas introduction pipe for introducing an inert gas such as argon gas or nitrogen gas, and a cooling pipe.
  • a gas introduction pipe for introducing an inert gas such as argon gas or nitrogen gas
  • a cooling pipe for introducing an inert gas such as argon gas or nitrogen gas
  • a predetermined amount of a pyrroline-based nitroxide compound is charged, deoxygenated with an inert gas, and then a polymerization initiator is added with stirring.
  • Examples of the inert solvent used in the polymerization using the solution polymerization method include aromatic hydrocarbon solvents such as benzene, toluene and xylene; acyclic saturated solvents such as n-hexane, n-heptane and ligroin Hydrocarbon solvents; cyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane; and inert solvents such as ether solvents such as diethyl ether and tetrahydrofuran.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • acyclic saturated solvents such as n-hexane, n-heptane and ligroin Hydrocarbon solvents
  • cyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane
  • aromatic hydrocarbon solvents acyclic saturated hydrocarbon solvents and ether solvents are industrially easily available, inexpensive, and stable in quality of the obtained polymerization reaction product.
  • toluene, n-hexane and tetrahydrofuran are preferably used.
  • the amount of the inert solvent used in the polymerization using the solution polymerization method is not particularly limited. However, from the viewpoint of smoothly proceeding the reaction and obtaining an effect that is commensurate with the amount used, pyrroline is used.
  • the amount is preferably 1 to 200 parts by weight based on 100 parts by weight of the nitroxide compound.
  • the polymerization initiator is not particularly limited, and for example, polymerization can be performed using an anionic polymerization initiator.
  • anionic polymerization initiator include cyclopentadienyl titanium (IV) / methylaluminoxane, trichlorotitanium (III) / triethylaluminum, tetrachlorotitanium (IV) / triethylaluminum, trichlorovanadium (III) / triethylaluminum, Ziegler-Natta reagent such as dichlorocobalt (II) / pyridine / diethylaluminum chloride; tert-butoxypotassium; n-butylmagnesium bromide, isobutylmagnesium bromide, tert-butylmagnesium bromide, n-butylmagnesium chloride, isobutylmagnesium chloride, tert -Grignard
  • the Ziegler-Natta reagent is preferably used from the viewpoint of stabilizing the quality of the obtained polymerization reaction product, and in particular, the cyclopentadienyl titanium (IV) trichloride / methylaluminoxane initiator is preferably used. .
  • the amount of the polymerization initiator used varies depending on the type of polymerization initiator used and the reaction temperature, it is usually preferably 0.00005 to 10 parts by weight with respect to 100 parts by weight of the pyrroline nitroxide compound.
  • additives such as a chain transfer agent such as isopropyl alcohol and a polymerization terminator such as methanol may be added as necessary.
  • the reaction temperature varies depending on the type of polymerization initiator used, but is usually preferably ⁇ 100 to 100 ° C., more preferably ⁇ 20 to 80 ° C.
  • the reaction time varies depending on the reaction temperature, it cannot be generally stated, but it is usually 5 to 60 hours.
  • the pyrroline-based nitroxide polymer thus obtained can be isolated by, for example, mixing the reaction solution with a solvent such as an aliphatic hydrocarbon such as hexane, precipitating the polymerization reaction product, and then filtering. it can. Furthermore, it can be purified by removing and washing unreacted substances using methanol, hexane or the like, and removing, washing and drying the polymerization initiator residue using dilute hydrochloric acid, water or the like.
  • a solvent such as an aliphatic hydrocarbon such as hexane
  • the pyrroline nitroxide polymer according to the present invention may have a crosslinked structure.
  • the pyrroline-based nitroxide polymer having a crosslinked structure can be produced, for example, by adding a crosslinking agent when copolymerizing the pyrroline-based nitroxide compound and copolymerizing it.
  • the crosslinking agent is not particularly limited as long as it is a compound having a plurality of polymerizable unsaturated groups in the molecule, and examples thereof include (meth) acrylic acid polyfunctional compounds, allyl ether polyfunctional compounds, and vinyl polyfunctional compounds. Examples thereof include functional compounds.
  • Examples of the (meth) acrylic acid polyfunctional compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1 , 3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,7 -Heptanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, glycerin (Met
  • (meth) acrylic acid polyfunctional compounds are preferably used, and in particular, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate and 1,9-nonanediol di (meth) acrylate are preferably used.
  • these crosslinking agents may be used individually by 1 type, respectively, or may be used together 2 or more types.
  • “(meth) acryl” means “acryl” and “methacryl”.
  • the proportion of the crosslinking agent used is not particularly limited, but is preferably 0.00001 to 0.25 mol per mol of the pyrroline nitroxide compound, preferably 0.00005 to 0.1. A molar ratio is more preferable, and a 0.0001 to 0.05 molar ratio is even more preferable.
  • the number average molecular weight of the pyrroline-based nitroxide polymer according to the present invention is preferably 500 to 5000000, and more preferably 1000 to 1000000. If it is less than 500, the pyrroline-based nitroxide polymer will be dissolved in the electrolytic solution, and the capacity of the battery using the electrode active material containing the pyrroline-based nitroxide polymer may be reduced. , Handling may be difficult.
  • the said number average molecular weight means the standard polystyrene conversion value measured by the gel permeation chromatography method.
  • the electrode active material according to the present invention contains the pyrroline nitroxide polymer according to the present invention. Such an electrode active material is also one aspect of the present invention.
  • the battery according to the present invention uses the electrode active material according to the present invention. Such a battery is also one aspect of the present invention.
  • FIG. 1 shows an example of an embodiment of a battery according to the present invention.
  • the battery shown in FIG. 1 has a configuration in which a positive electrode 5 and a negative electrode 3 are stacked so as to face each other with a separator 4 containing an electrolyte, and a positive electrode current collector 6 is further stacked on the positive electrode 5.
  • These are externally covered with a stainless steel outer sheath 1 on the negative electrode side and a stainless steel outer sheath 1 on the positive electrode side, and an insulating packing 2 made of an insulating material such as a plastic resin is disposed between them for the purpose of preventing electrical contact therebetween.
  • solid electrolyte and gel electrolyte as electrolyte, it can replace with the separator 4 containing electrolyte, and can also be made into the form which interposes these electrolytes between electrodes.
  • the electrode active material according to the present invention can be used for the negative electrode 3, the positive electrode 5, or both electrodes in such a battery.
  • the battery according to the present invention uses the electrode active material according to the present invention as the electrode active material of the negative electrode 3, the positive electrode 5, or both electrodes.
  • the main members etc. which comprise a battery are demonstrated.
  • Electrode Active Material refers to a material that directly contributes to electrode reactions such as charge reaction and discharge reaction, and plays a central role in the battery system.
  • the electrode active material according to the present invention contains the pyrroline nitroxide polymer according to the present invention, and each of the pyrroline nitroxide polymer according to the present invention is used alone as the positive electrode and / or negative electrode active material. Alternatively, the electrode active material may be combined with other electrode active materials.
  • the pyrroline-based nitroxide polymer according to the present invention is used as an electrode active material for a positive electrode
  • examples of other electrode active materials include metal oxides, disulfide compounds, other stable radical compounds, and conductive polymers. .
  • the metal oxide examples include lithium manganate such as LiMnO 2 and Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), lithium manganate having a spinel structure, MnO 2 , LiCoO 2 , LiNiO 2 , or Li y V 2 O 5 (0 ⁇ y ⁇ 2), olivine-based material LiFePO 4 , materials obtained by substituting a part of Mn in the spinel structure with other transition metals, LiNi 0.5 Mn 1.5 O 4 , LiCr 0.
  • lithium manganate such as LiMnO 2 and Li x Mn 2 O 4 (0 ⁇ x ⁇ 2)
  • lithium manganate having a spinel structure MnO 2 , LiCoO 2 , LiNiO 2 , or Li y V 2 O 5 (0 ⁇ y ⁇ 2)
  • olivine-based material LiFePO 4 materials obtained by substituting a part of Mn in the spinel structure with other transition metals, LiNi 0.5 Mn 1.5 O 4 , LiC
  • disulfide compound examples include dithioglycol, 2,5-dimercapto-1,3,4-thiadiazole, S-triazine-2,4,6-trithiol and the like.
  • Examples of the other stable radical compound include poly (2,2,6,6-tetramethylpiperidinoxyl-4-yl methacrylate) and the like.
  • Examples of the conductive polymer include polyacetylene, polyphenylene, polyaniline, and polypyrrole.
  • lithium manganate and LiCoO 2 are preferably used.
  • These other electrode active materials may be used alone or in combination with the pyrroline nitroxide polymer, or may be used in combination of two or more.
  • electrode active material when used as an electrode active material for a negative electrode, other electrode active materials include graphite, amorphous carbon, metallic lithium and lithium alloy, lithium ion storage carbon, metallic sodium, and other stable radical compounds. And conductive polymers.
  • stable radical compounds include poly (2,2,6,6-tetramethylpiperidinoxyl-4-yl methacrylate) and the like.
  • metallic lithium or graphite it is preferable to combine with metallic lithium or graphite.
  • metallic lithium or graphite it does not specifically limit as these shapes, A thin-film thing, a bulk thing, the thing which hardened the powder, a fibrous thing, a flake-like thing, etc. may be sufficient.
  • These other electrode active materials may be used alone or in combination with the pyrroline nitroxide polymer, or may be used in combination of two or more.
  • the battery according to the present invention uses the electrode active material containing the pyrroline-based nitroxide polymer according to the present invention as the electrode active material of one of the positive electrode or the negative electrode, or both electrodes, but only for one electrode.
  • an electrode active material containing a pyrroline-based nitroxide polymer is used, a conventionally known electrode active material exemplified as the other electrode active material can be used as the electrode active material in the other electrode.
  • the electrode active material containing the pyrroline-based nitroxide polymer is preferably used as a positive electrode active material, and the pyrroline-based nitroxide polymer is combined with the other electrode active material. It is more preferable to use it alone. Moreover, it is preferable to use metallic lithium or graphite as the electrode active material of the negative electrode at this time.
  • Conductivity-imparting agent (auxiliary conductive material) and ion conduction auxiliary material When the electrode active material according to the present invention is used as an electrode active material for a positive electrode, for the purpose of reducing impedance and improving energy density and output characteristics, A conductivity-imparting agent (auxiliary conductive material) or an ion conduction auxiliary material may be mixed.
  • auxiliary conductive material examples include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as vapor grown carbon fiber (VGCF) and carbon nanotube, polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. Molecule.
  • ion conduction auxiliary material examples include polymer gel electrolytes and polymer solid electrolytes. Among these, carbon fibers are preferably used, and vapor-grown carbon fibers are more preferably used. By using carbon fiber, the tensile strength of the electrode is increased, and the electrode is less likely to crack or peel off.
  • These auxiliary conductive materials and ion conductive auxiliary materials may be used alone or in combination of two or more. When the auxiliary conductive material or the ion conductive auxiliary material is used, the mixing ratio in the electrode is preferably 10 to 80% by weight.
  • Binder In the electrode active material according to the present invention, a binder may be mixed in order to strengthen the connection between the constituent materials.
  • the binder include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide.
  • resin binders such as various polyurethanes. These binders may be used individually by 1 type, or may use 2 or more types together. When the binder is used, the mixing ratio in the electrode is preferably 5 to 30% by weight.
  • a thickener may be mixed.
  • the thickener include carboxymethyl cellulose, polyethylene oxide, polypropylene oxide, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide, hydroxyethyl polyacrylate, ammonium polyacrylate, sodium polyacrylate, and the like. Is mentioned. These thickeners may be used individually by 1 type, or may use 2 or more types together. When the thickener is used, the mixing ratio in the electrode is preferably 0.1 to 5% by weight.
  • Catalyst In the said electrode active material which concerns on this invention, in order to perform an electrode reaction more smoothly, you may mix the catalyst which assists an oxidation-reduction reaction.
  • the catalyst include conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene, basic compounds such as pyridine derivatives, pyrrolidone derivatives, benzimidazole derivatives, benzothiazole derivatives, and acridine derivatives, and metal ion complexes. . These catalysts may be used individually by 1 type, or may use 2 or more types together. When the catalyst is used, the mixing ratio in the electrode is preferably 10% by weight or less.
  • Examples of the current collector used in contact with the electrode active material according to the present invention include nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, foil, A metal flat plate or mesh shape can be used. Further, the current collector may have a catalytic effect, or the electrode active material and the current collector may be chemically bonded.
  • examples of the separator include porous films and nonwoven fabrics made of polyethylene, polypropylene, and the like.
  • the electrolyte performs charge carrier transport between the negative electrode and the positive electrode, and generally has an ionic conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at 20 ° C. It is preferable to have.
  • the electrolyte for example, an electrolytic solution in which an electrolyte salt is dissolved in a solvent can be used.
  • electrolyte salt examples include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li (CF 3 SO 2 ) Conventionally known materials such as 3 C and Li (C 2 F 5 SO 2 ) 3 C can be mentioned. These electrolyte salts may be used individually by 1 type, or may use 2 or more types together.
  • solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl.
  • organic solvents such as -2-pyrrolidone. These solvents may be used alone or in combination of two or more.
  • a solid electrolyte in which the electrolyte salt is contained in a polymer compound or a solid electrolyte in which the electrolyte solution is contained in a polymer compound to form a gel can be used.
  • the polymer compound include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • Polymers vinylidene fluoride-tetrafluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymers and other vinylidene fluoride polymers; acrylonitrile-methyl methacrylate copolymers, acrylonitrile-methyl Acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic acid copolymer, acryloni Lil - acrylonitrile polymers such as vinyl acetate copolymer; and polyethylene oxide, ethylene oxide - propylene oxide copolymer, polymer and the like of these acrylates body or methacrylate products thereof.
  • Battery shape The shape of the battery according to the present invention is not particularly limited, and conventionally known batteries can be used.
  • an electrode laminate or a wound body is sealed with a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film, etc.
  • Examples include molds and sheet molds.
  • the battery manufacturing method according to the present invention is not particularly limited, and a method appropriately selected according to the material can be used.
  • a solvent is added to the electrode active material, the conductivity-imparting agent, etc. according to the present invention to form a slurry, which is applied to the electrode current collector, and the electrode is produced by heating or volatilizing the solvent at room temperature.
  • the separators are stacked or wound, wrapped with an outer package, and injected with an electrolyte solution to be sealed.
  • Solvents for slurrying include ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether and dioxane; amine solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone; benzene, toluene and xylene Aromatic hydrocarbon solvents such as hexane, heptane, etc .; Halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, trichloroethane, carbon tetrachloride; Alkyl ketone solvents such as acetone and methyl ethyl ketone Alcoholic solvents such as methanol, ethanol and isopropyl alcohol; dimethyl sulfoxide, water and the like.
  • ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether and dioxane
  • the pyrroline nitroxide polymer itself may be used as a compound constituting the electrode active material, or a polymer that changes to the pyrroline nitroxide polymer by an electrode reaction may be used.
  • the polymer that changes to the pyrroline nitroxide polymer by such an electrode reaction include a lithium salt or sodium consisting of an anion obtained by reducing the pyrroline nitroxide polymer and an electrolyte cation such as lithium ion or sodium ion.
  • a conventionally known method can be used as the battery manufacturing method for other manufacturing conditions such as lead extraction from the electrode and outer packaging.
  • a pyrroline-based nitroxide polymer that can be used as an electrode material for a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, an electrode active material containing the polymer, and the A battery using an electrode active material can be provided.
  • the resulting 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-oxyl (1 g) was equipped with a stirrer, an argon gas inlet tube, and a thermometer, and was previously replaced with argon gas in a 4-mL volume of 4 necks.
  • the flask was charged and dissolved by adding a mixed solvent of 12 mL of benzene / 0.44 mL of pyridine. Next, it was cooled to 5 ° C. in an argon atmosphere, 0.44 mL of thionyl chloride / 2 mL of benzene was added and stirred for 1 hour, and then the solvent was distilled off, and 10 mL of THF was added and dissolved.
  • the obtained pyrroline-based nitroxide compound could be identified from the following physical properties.
  • NMR was measured by reducing the radical site with phenylhydrazine.
  • Molecular weight mass spectrometry by atmospheric pressure ionization method
  • the reaction solution was cooled to room temperature, added to 2000 mL of hexane, and then filtered to obtain a polymethacrylic acid imino compound.
  • the obtained polymethacrylic acid imino compound was washed with 500 mL of hexane and then dried under reduced pressure to obtain 69.5 g of a white powdery polymethacrylic acid imino compound.
  • 18 g of the resulting polymethacrylic acid imino compound and 180 g of chloroform were charged and dissolved in a 500 mL four-necked flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel.
  • Example 1 (Production of pyrroline nitroxide polymer) Into a 5 mL eggplant-shaped flask equipped with a stirrer and an argon gas introduction tube was charged 0.17 g (1 mmol) of the pyrroline nitroxide compound obtained in the same manner as in Production Example 1, and the argon gas was maintained at 25 ° C. To remove oxygen in the reaction system. Next, 0.13 mg (0.0006 mmol) of cyclopentadienyltitanium (IV) trichloride as a polymerization initiator and 11.25 mg (0.194 mmol) of methylaluminoxane were added, and the reaction was performed at 25 ° C. under an argon gas atmosphere.
  • IV cyclopentadienyltitanium
  • Example 2 (Production of pyrroline nitroxide polymer) Except for setting the polymerization temperature to 50 ° C., 0.03 g of light brown pyrroline nitroxide was obtained in the same manner as in Example 1 (yield 17%).
  • the number average molecular weight of the obtained pyrroline nitroxide polymer was measured and found to be 21,000.
  • the number average molecular weight is N, N-dimethyl containing LiCl (0.01 mol / L) and H 3 PO 4 (0.02 mol / L) using gel permeation chromatography (manufactured by Shimadzu Corporation). It was measured at 30 ° C. in formamide and calculated based on standard polystyrene.
  • Example 3 Redox characteristics of electrode containing pyrroline-based nitroxide polymer 0.01 g of the pyrroline nitroxide polymer obtained in Example 1, 0.08 g of vapor-grown carbon fiber as an auxiliary conductive material, and 0.01 g of polyvinylidene fluoride as a binder were weighed, and N-methylpyrrolidone was measured. It was added and kneaded using an agate mortar. A slurry-like mixture obtained by wet mixing for about 10 minutes was applied onto an ITO substrate and dried overnight at 60 ° C. in a vacuum.
  • a platinum coil was used as a counter electrode, Ag / AgCl as a reference electrode, and a 0.5 M (C 4 H 9 ) 4 NClO 4 acetonitrile solution as an electrolyte, and a potential sweep range of 0.5 to 1.0 V (vs.
  • a redox wave derived from the p-type redox of the nitroxide radical appeared at 0.75 V (vs. Ag / AgCl), and the redox wave was stable even after repeated sweeps. It was.
  • Example 4 Battery using electrode active material containing pyrroline-based nitroxide polymer 0.01 g of the pyrroline nitroxide polymer obtained in Example 1, 0.08 g of vapor-grown carbon fiber as an auxiliary conductive material, and 0.01 g of polyvinylidene fluoride as a binder were weighed, and N-methylpyrrolidone was measured. It was added and kneaded using an agate mortar. A slurry-like mixture obtained by wet mixing for about 10 minutes was applied on an aluminum foil and stretched, and then dried in a vacuum at 60 ° C. overnight. Thereafter, a coin electrode was molded by punching into a circle having a diameter of 12 mm.
  • the mass of this electrode was 13.0 mg.
  • the obtained electrode was immersed in an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode.
  • an ethylene carbonate / diethyl carbonate mixed solution (mixing volume ratio 1: 1) containing 1.0 mol / L LiPF 6 electrolyte salt was used.
  • the electrode impregnated with the electrolytic solution was placed on a stainless steel sheath (manufactured by Hosen Co., Ltd.) also serving as a positive electrode current collector, and a polypropylene porous film separator impregnated with the electrolytic solution was laminated thereon.
  • the lithium disk used as a negative electrode was laminated
  • a sealed coin-type battery using the pyrroline nitroxide polymer obtained in Example 1 as the positive electrode active material and metallic lithium as the negative electrode active material was produced.
  • the cyclic voltammogram of this coin-type battery in the potential sweep range of 3.2 to 4.2 V was measured.
  • a redox wave derived from the p-type redox of the nitroxide radical appeared at 3.65 V and was oxidized even after repeated sweeps. The reduction wave was stable.
  • Example 4 In Example 4, the same method as in Example 4 except that 0.01 g of the pyrroline nitroxide polymer obtained in Example 1 was changed to 0.01 g of the polymethacrylic acid nitroxide compound obtained in Production Example 2. A coin-type battery was created. About the obtained coin-type battery, the charge / discharge curve was measured by the same method as Example 4. The capacity per radical material determined from the charge / discharge curve was 54 mAh / g.
  • a pyrroline-based nitroxide polymer that can be used as an electrode material for a battery that can take out a large current and has little decrease in capacity even after repeated charge and discharge, and an electrode active material containing the polymer
  • a battery using the electrode active material can be provided.

Abstract

 本発明は、ピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供する。 本発明は、一般式(1): で表されるピロリン系ニトロキシド化合物を重合して得られるピロリン系ニトロキシド重合体である。

Description

ピロリン系ニトロキシド重合体およびそれを用いた電池
 本発明は、ピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池に関する。
 ノート型パソコンや携帯電話等の急速な市場拡大に伴い、これらに用いられるエネルギー密度の高い小型大容量二次電池への要求が高まっている。この要求に応えるために、リチウムイオン等のアルカリ金属イオンを荷電担体としてその電荷授受に伴う電気化学反応を利用した二次電池が開発されている。中でもリチウムイオン二次電池は、エネルギー密度が高く、安定性に優れた大容量二次電池として種々の電子機器に利用されている。このようなリチウムイオン二次電池は、一般に、活物質として正極にリチウム含有遷移金属酸化物を、負極に炭素を用いたものであり、これら活物質へのリチウムイオンの挿入、脱離反応を利用して充放電を行っている。
 近年、より大容量化を目的に、電極反応に直接寄与する電極活物質としてラジカル化合物を利用した二次電池が提案されている。特許文献1には、正極、負極の少なくとも一方の活物質としてラジカル化合物を含有することを特徴とする二次電池が公開されている。また、特許文献2には、ニトロキシル化合物を正極中に含有する蓄電デバイスが公開されている。この蓄電デバイスは、電極反応が速いため大電流で充放電ができるとされている。
特開2002-151084号公報 特開2002-304996号公報
 しかしながら、特許文献1に記載の正極、負極の少なくとも一方の活物質がラジカル化合物を含有することを特徴とする二次電池や、特許文献2に記載の安定ラジカルを含むニトロキシル化合物を用いた蓄電デバイスは、繰り返し充放電後の容量低下の面において改善の余地があった。
 本発明は、大きな電流を取り出すことができ、かつ、繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することを目的とする。
 本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000002
で表されるピロリン系ニトロキシド化合物を重合して得られるピロリン系ニトロキシド重合体に関する。
 また、本発明は、前記ピロリン系ニトロキシド重合体を含有する電極活物質に関する。
 さらに、本発明は、前記電極活物質を用いた電池に関する。
以下に本発明を詳細に説明する。
 本発明に係るピロリン系ニトロキシド重合体は、下記一般式(1)で表されるビニル基を有するピロリン系ニトロキシド化合物を重合して得られるものである。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)で表されるピロリン系ニトロキシド化合物は、例えば、下記式(2)に示すように、3-カルバモイル-2,2,5,5-テトラメチルピロリン-1-オキシルを用いる方法(CAN.J.CHEM.,64,1482-1490(1986))により製造することができる。具体的には、水酸化ナトリウム水溶液等を用いて3-カルバモイル-2,2,5,5-テトラメチルピロリン-1-オキシルを加水分解して3-カルボキシ-2,2,5,5-テトラメチルピロリン-1-オキシルとし、次に、アルゴンガスや窒素ガス等の不活性ガス雰囲気下、水素化リチウムアルミニウム-tert-ブトキシド等を用いてこれを還元することにより3-ホルミル-2,2,5,5-テトラメチルピロリン-1-オキシルとし、さらにメチルトリホスホニウムブロミド等を用いてこれをビニル化することにより3-ビニル-2,2,5,5-テトラメチルピロリン-1-オキシルを製造することができる。
Figure JPOXMLDOC01-appb-C000004
 本発明に係るピロリン系ニトロキシド重合体は、前記ピロリン系ニトロキシド化合物を重合して得られるものである。
 前記ピロリン系ニトロキシド化合物を重合する方法としては、特に限定されるものではなく、例えば、塊状重合法および溶液重合法等を用いて重合する方法を挙げることができる。
 前記塊状重合法を用いて重合する方法としては、例えば、撹拌機、温度計、アルゴンガスや窒素ガス等の不活性ガスを導入するためのガス導入管および冷却管を備えた反応器を用いて、所定量のピロリン系ニトロキシド化合物を仕込み、不活性ガスにより脱酸素した後、撹拌しながら重合開始剤を添加する方法が挙げられる。
 前記溶液重合法を用いて重合する方法としては、例えば、前記塊状重合法を用いて重合する場合において、所定量のピロリン系ニトロキシド化合物とともに不活性溶媒を仕込み、不活性ガスにより脱酸素した後、撹拌しながら重合開始剤を添加する方法が挙げられる。
 前記溶液重合法を用いて重合する場合に使用する不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、リグロイン等の非環式飽和炭化水素系溶媒;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の環式飽和炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒等の不活性溶媒が挙げられる。これらの中でも、工業的に入手が容易で、安価であり、得られる重合反応生成物の品質が安定する観点から、芳香族炭化水素系溶媒、非環式飽和炭化水素系溶媒およびエーテル系溶媒が好ましく、中でもトルエン、n-ヘキサンおよびテトラヒドロフランが好適に用いられる。
 前記溶液重合法を用いて重合する場合における前記不活性溶媒の使用量は、特に制限されるものではないが、反応を円滑に進行させる観点および使用量に見合うだけの効果を得る観点から、ピロリン系ニトロキシド化合物100重量部に対して1~200重量部であることが好ましい。
 前記重合開始剤としては特に限定されず、例えば、アニオン系重合開始剤を用いて重合することができる。アニオン系重合開始剤としては、例えば、シクロペンタジエニルチタニウム(IV)/メチルアルミノキサン、トリクロロチタニウム(III)/トリエチルアルミニウム、テトラクロロチタニウム(IV)/トリエチルアルミニウム、トリクロロバナジウム(III)/トリエチルアルミニウム、ジクロロコバルト(II)/ピリジン/ジエチルアルミニウムクロライド等のチーグラー・ナッタ試薬;tert-ブトキシカリウム;n-ブチルマグネシウムブロマイド、イソブチルマグネシウムブロマイド、tert-ブチルマグネシウムブロマイド、n-ブチルマグネシウムクロライド、イソブチルマグネシウムクロライド、tert-ブチルマグネシウムクロライド等のグリニャール試薬;n-ブチルリチウム、tert-ブチルリチウム、1,1-ジフェニルヘキシルリチウム等のアルキルリチウム;ジエチル亜鉛およびジエチル亜鉛/水系開始剤等が挙げられる。これらの中でも、得られる重合反応生成物の品質が安定する観点から、チーグラー・ナッタ試薬が好適に用いられ、特に、シクロペンタジエニルチタニウム(IV)トリクロリド/メチルアルミノキサン系開始剤が好適に用いられる。
 前記重合開始剤の使用量は、使用する重合開始剤の種類や反応温度により異なるが、通常、ピロリン系ニトロキシド化合物100重量部に対して0.00005~10重量部であることが好ましい。なお、前記重合反応において、必要に応じてイソプロピルアルコール等の連鎖移動剤やメタノール等の重合停止剤等の添加剤を適宜加えてもよい。
 反応温度としては、使用する重合開始剤の種類により異なるが、通常、-100~100℃が好ましく、-20~80℃がより好ましい。反応時間は前記反応温度により異なるため一概には言えないが、通常、5~60時間である。
 かくして得られたピロリン系ニトロキシド重合体は、例えば、反応液をヘキサン等の脂肪族炭化水素等の溶媒と混合し、当該重合反応生成物を沈澱させた後、ろ過することにより単離することができる。さらに、メタノール、ヘキサン等を用いて未反応物等を除去、洗浄し、また希塩酸、水等を用いて重合開始剤残渣を除去、洗浄し、乾燥することにより精製することができる。
 本発明に係るピロリン系ニトロキシド重合体は、架橋構造を有するものであってもよい。架橋構造を有するピロリン系ニトロキシド重合体は、例えば、前記ピロリン系ニトロキシド化合物を重合する際に架橋剤を添加して、これと共重合させることにより製造することができる。
 前記架橋剤としては、分子内に複数個の重合性不飽和基を有する化合物であれば特に限定されず、例えば、(メタ)アクリル酸系多官能化合物、アリルエーテル系多官能化合物およびビニル系多官能化合物等が挙げられる。(メタ)アクリル酸系多官能化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレートおよび2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート等が挙げられる。アリルエーテル系多官能化合物としては、例えば、ジエチレングリコールジアリルエーテルおよびジブチレングリコールジアリルエーテル等が挙げられる。ビニル系多官能化合物としては、例えば、ジビニルベンゼン等が挙げられる。これらの中でも、高い重合反応性を有する観点から、(メタ)アクリル酸系多官能化合物が好適に用いられ、特に、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレートおよび1,9-ノナンジオールジ(メタ)アクリレートが好適に用いられる。なお、これら架橋剤は、それぞれ1種単独で用いてもよいし、あるいは2種以上併用してもよい。なお、本明細書において、「(メタ)アクリ」とは、「アクリ」および「メタクリ」を意味する。
 前記架橋剤の使用割合は、特に限定されるものではないが、前記ピロリン系ニトロキシド化合物1モルに対して0.00001~0.25モルの割合であることが好ましく、0.00005~0.1モルの割合であることがより好ましく、0.0001~0.05モルの割合であることがさらに好ましい。
 本発明に係るピロリン系ニトロキシド重合体の数平均分子量は500~5000000であることが好ましく、1000~1000000であることがより好ましい。500未満であると、ピロリン系ニトロキシド重合体が電解液に溶解することになり、当該ピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池の容量が低下するおそれがあり、5000000を超えると、取り扱いが困難になるおそれがある。なお、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー法によって測定された標準ポリスチレン換算値のことをいう。
 本発明に係る電極活物質は、本発明に係るピロリン系ニトロキシド重合体を含有するものである。このような電極活物質もまた本発明の1つである。
 また、本発明に係る電池は、本発明に係る電極活物質を用いたものである。このような電池もまた本発明の1つである。
 図1に本発明に係る電池の実施形態の一例を示す。図1に示す電池は、正極5と負極3とを、電解質を含有するセパレータ4を介して対向するように重ね合わせ、さらに正極5に正極集電体6を重ね合わせた構成となっている。これらは負極側のステンレス外装1と正極側のステンレス外装1とで外装され、その間には、両者の電気的接触を防ぐ目的で、プラスチック樹脂等の絶縁性材料からなる絶縁パッキン2が配置される。なお、電解質として固体電解質やゲル電解質を用いる場合は、電解質を含有するセパレータ4に代えて、これらの電解質を電極間に介在させる形態にすることもできる。
 本発明に係る電極活物質は、このような電池において、負極3、正極5または両電極に用いることができる。また、本発明に係る電池は、負極3、正極5または両電極の電極活物質として、本発明に係る電極活物質を用いたものである。
 以下に、電池を構成する主な部材等に関して説明する。
(1)電極活物質
 本発明において「電極活物質」とは、充電反応および放電反応等の電極反応に直接寄与する物質のことをいい、電池システムの中心的役割を果たすものである。
 本発明に係る電極活物質は、本発明に係るピロリン系ニトロキシド重合体を含有するものであり、正極および/または負極の電極活物質として、本発明に係るピロリン系ニトロキシド重合体をそれぞれ単独で用いてもよいし、また、他の電極活物質と組み合わせて電極活物質としてもよい。
 本発明に係るピロリン系ニトロキシド重合体を正極の電極活物質に用いる場合、他の電極活物質としては、金属酸化物、ジスルフィド化合物、他の安定ラジカル化合物および導電性高分子等を挙げることができる。
 前記金属酸化物としては、例えば、LiMnO、LiMn(0<x<2)等のマンガン酸リチウムまたはスピネル構造を有するマンガン酸リチウム、MnO、LiCoO、LiNiO、あるいはLi(0<y<2)、オリビン系材料LiFePO、スピネル構造中のMnの一部を他の遷移金属で置換した材料LiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn0.5、LiNi0.33Mn0.33Co0.33、LiNi0.8Co0.2、LiN0.5Mn1.5-zTi(0<z<1.5)等が挙げられる。
 前記ジスルフィド化合物としては、ジチオグリコール、2,5-ジメルカプト-1,3,4-チアジアゾール、S-トリアジン-2,4,6-トリチオール等が挙げられる。
 前記他の安定ラジカル化合物としては、ポリ(2,2,6,6-テトラメチルピペリジノキシル-4-イル メタクリレート)等が挙げられる。
 前記導電性高分子としては、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等が挙げられる。
 これらの中では、マンガン酸リチウムおよびLiCoOが好適に用いられる。これら他の電極活物質は、1種単独を前記ピロリン系ニトロキシド重合体と組み合わせてもよいし、2種以上を組み合わせて使用してもよい。
 前記ピロリン系ニトロキシド重合体を負極の電極活物質に用いる場合、他の電極活物質としては、グラファイトや非晶質カーボン、金属リチウムやリチウム合金、リチウムイオン吸蔵炭素、金属ナトリウム、他の安定ラジカル化合物および導電性高分子等を挙げることができる。
 他の安定ラジカル化合物としては、ポリ(2,2,6,6-テトラメチルピペリジノキシル-4-イル メタクリレート)等が挙げられる。
 これらの中でも特に、金属リチウムまたはグラファイトと組み合わせることが好ましい。なお、これらの形状としては特に限定されず、薄膜状のもの、バルク状のもの、粉末を固めたもの、繊維状のもの、フレーク状のもの等であってもよい。これら他の電極活物質は、1種単独を前記ピロリン系ニトロキシド重合体と組み合わせてもよいし、2種以上を組み合わせて使用してもよい。
 本発明に係る電池は、正極もしくは負極の一方の電極、または両方の電極における電極活物質として、本発明に係るピロリン系ニトロキシド重合体を含有する電極活物質を用いるが、一方の電極にのみ前記ピロリン系ニトロキシド重合体を含有する電極活物質を用いる場合、もう一方の電極における電極活物質としては、前記他の電極活物質として例示した従来公知の電極活物質を用いることができる。
 本発明において、エネルギー密度の観点から、前記ピロリン系ニトロキシド重合体を含有する電極活物質は、正極の電極活物質として用いるのが好ましく、ピロリン系ニトロキシド重合体を前記他の電極活物質と組み合わせることなく単独で用いるのがより好ましい。また、このときの負極の電極活物質としては、金属リチウムまたはグラファイトを用いることが好ましい。
(2)導電付与剤(補助導電材)およびイオン伝導補助材
 本発明に係る電極活物質を正極の電極活物質として使用する場合、インピーダンスを低下させ、エネルギー密度、出力特性を向上させる目的で、導電付与剤(補助導電材)やイオン伝導補助材を混合させてもよい。
 前記補助導電材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
 また、前記イオン伝導補助材としては、高分子ゲル電解質、高分子固体電解質等が挙げられる。これらの中でも、炭素繊維が好適に用いられ、中でも気相成長炭素繊維がより好適に用いられる。炭素繊維を用いることにより、電極の引張り強度がより大きくなり、電極にひびが入ったり剥がれたりすることが少なくなる。これら補助導電材やイオン伝導補助材は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 前記補助導電材やイオン伝導補助材を用いる場合、電極中における混合割合としては、10~80重量%が好ましい。
(3)結着剤
 本発明に係る前記電極活物質では、各構成材料間の結びつきを強めるために、結着剤を混合させてもよい。
 前記結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダーが挙げられる。これら結着剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 前記結着剤を用いる場合、電極中の混合割合としては、5~30重量%が好ましい。
(4)増粘剤
 本発明に係る電極活物質を形成させるためのスラリーを作製しやすくするために、増粘剤を混合させてもよい。
 前記増粘剤としては、カルボキシメチルセルロース、ポリエチレンオキシド、ポリプロピレンオキシド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ヒドロキシエチル、ポリアクリル酸アンモニウム、ポリアクリル酸ソーダ等が挙げられる。これら増粘剤は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 前記増粘剤を用いる場合、電極中の混合割合としては、0.1~5重量%が好ましい。
(5)触媒
 本発明に係る前記電極活物質において、電極反応をより円滑に行うために、酸化還元反応を助ける触媒を混合させてもよい。
 前記触媒としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子、ピリジン誘導体、ピロリドン誘導体、ベンズイミダゾール誘導体、ベンゾチアゾール誘導体、アクリジン誘導体等の塩基性化合物、金属イオン錯体等が挙げられる。これら触媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 前記触媒を用いる場合、電極中の混合割合としては、10重量%以下が好ましい。
(6)集電体およびセパレータ
 本発明に係る電極活物質に接触させて用いられる集電体としては、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等が挙げられ、箔、金属平板、メッシュ状等の形状のものを用いることができる。また、集電体に触媒効果を持たせたり、電極活物質と集電体とを化学結合させたりしてもよい。
 一方、セパレータとしては、ポリエチレン、ポリプロピレン等からなる多孔質フィルムや不織布等を挙げることができる。
(7)電解質
 本発明に係る電池において、電解質は、負極と正極の両極間の荷電担体輸送を行うものであり、一般には20℃で10-5~10-1S/cmのイオン伝導性を有していることが好ましい。前記電解質としては、例えば、電解質塩を溶媒に溶解した電解液を用いることができる。
 前記電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、Li(CFSON、Li(CSON、Li(CFSOC、Li(CSOC等の従来公知の材料を挙げることができる。これら電解質塩は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 前記溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の有機溶媒を挙げることができる。これら溶媒は、1種単独で用いてもよいし、あるいは2種以上を併用してもよい。
 また、前記電解質として高分子化合物に前記電解質塩を含有させた固体電解質や高分子化合物に前記電解液を含ませてゲル状にした固体電解質を用いることもできる。
 前記高分子化合物としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体;アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアクリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリロニトリル系重合体;さらにポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体等が挙げられる。
(8)電池形状
 本発明に係る電池の形状は特に限定されず、従来公知のものを用いることができる。例えば、電極積層体、あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔等の金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止したもの等が挙げられ、円筒型、角型、コイン型、およびシート型等が挙げられる。
(9)電池の製造方法
 本発明に係る電池の製造方法としては特に限定されず、材料に応じて適宜選択した方法を用いることができる。例えば、本発明に係る電極活物質、導電付与剤等に溶媒を加えスラリー状にして電極集電体に塗布し、加熱もしくは常温で溶媒を揮発させることにより電極を作製し、さらにこの電極を対極、セパレータを挟んで積層または巻回して外装体で包み、電解液を注入して封止するといった方法である。スラリー化のための溶媒としては、テトラヒドロフラン、ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサン等のエーテル系溶媒;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等のアミン系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素系溶媒;アセトン、メチルエチルケトン等のアルキルケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ジメチルスルホキシド、水等が挙げられる。また、電極の作製法としては、電極活物質、導電付与剤等を乾式で混練した後、薄膜化し電極集電体上に積層する方法もある。
 本発明に係る電池の製造方法では、電極活物質を構成する化合物として前記ピロリン系ニトロキシド重合体そのものを用いる場合と、電極反応によって前記ピロリン系ニトロキシド重合体に変化する重合体を用いる場合とがある。このような電極反応によって前記ピロリン系ニトロキシド重合体に変化する重合体の例としては、前記ピロリン系ニトロキシド重合体を還元したアニオン体と、リチウムイオンやナトリウムイオンといった電解質カチオンとからなるリチウム塩やナトリウム塩、および、前記ピロリン系ニトロキシド重合体を酸化したカチオン体と、PF やBF といった電解質アニオンとからなる塩等が挙げられる。
 本発明に係る電池において、電極からのリードの取り出し、外装等のその他の製造条件は電池の製造方法として従来公知の方法を用いることができる。
 本発明によると、大きな電流を取り出すことができ、かつ繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することができる。
本発明に係る電池の実施形態の一例を示す概念図である。
 以下に、製造例、実施例により、本発明を具体的に説明するが、本発明はこれら製造例、実施例によってなんら限定されるものではない。
[製造例1](ピロリン系ニトロキシド化合物の製造)
 撹拌機、温度計、還流冷却管および流量計を備えた100mL容の4つ口フラスコに、3-カルバモイル-2,2,5,5-テトラメチルピロリン-1-オキシル1.17gおよび10wt%水酸化ナトリウム水溶液16.8mLを仕込み、懸濁させ、100℃にて2時間保持した。その後、適量の希塩酸を加えて中和し、黄色溶液を得た。これにジエチルエーテル50mLを加えて抽出した後、濃縮することにより、黄色結晶の3-カルボキシ-2,2,5,5-テトラメチルピロリン-1-オキシル1.12gを得た。
 得られた3-カルボキシ-2,2,5,5-テトラメチルピロリン-1-オキシルは、下記の物性を有することから同定することができた。
 IR(KBr):3300,2500,1707cm-1
 分子量(大気圧イオン化法による質量分析):184
 得られた3-カルボキシ-2,2,5,5-テトラメチルピロリン-1-オキシル1gを、撹拌機、アルゴンガス導入管および温度計を備え、あらかじめアルゴンガスで置換した100mL容の4つ口フラスコに仕込み、ベンゼン12mL/ピリジン0.44mLの混合溶媒を加えて溶解させた。次に、アルゴン雰囲気下、5℃に冷却し、塩化チオニル0.44mL/ベンゼン2mLを加え、1時間撹拌した後、溶媒を留去し、THF10mLを加えて溶解させた。その後、-78℃に冷却し、同温度で1mol/L水素化リチウムアルミニウム-tert-ブトキシドTHF溶液5.4mLを2時間かけて滴下した。次いで、酢酸エチル50mLを用いて抽出した後、濃縮することにより、黄色結晶の3-ホルミル-2,2,5,5-テトラメチルピロリン-1-オキシル0.44gを得た。
 得られた3-ホルミル-2,2,5,5-テトラメチルピロリン-1-オキシルは、下記の物性を有することから同定することができた。
 IR(KBr):2834,2736,1688cm-1
 分子量(大気圧イオン化法による質量分析):168
 次に、撹拌機、アルゴンガス導入管および温度計を備え、あらかじめアルゴンガスで置換した100mL容の4つ口フラスコに、0℃にて、メチルトリホスホニウムブロミド3.19g、炭酸カリウム1.36g、テトラヒドロフラン8.4mLを仕込み、溶解させ、30分間保持した。その後、3-ホルミル-2,2,5,5-テトラメチルピロリン-1-オキシル0.50g/テトラヒドロフラン2.3mLを加え、25℃にて48時間攪拌した後、ジエチルエーテル50mLを加えて抽出した後、濃縮することにより、橙色油状の前記一般式(1)で表されるピロリン系ニトロキシド化合物である3-ビニル-2,2,5,5-テトラメチルピロリン-1-オキシル0.23gを得た。
 得られたピロリン系ニトロキシド化合物は、下記の物性を有することから同定することができた。なお、NMRは、フェニルヒドラジンでラジカル部位を還元することにより測定した。
 H NMR(CDCl):6.16,5.60,5.41,5.11,1.39,1.25ppm
 13C NMR(CDCl):131.3,130.2,115.1,113.7,69.8,67.3,25.3,24.6ppm
 IR(KBr):2974,1635,1593cm-1
 分子量(大気圧イオン化法による質量分析):166
[製造例2]
 攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた500mL容の4つ口フラスコに、2,2,6,6-テトラメチル-4-ピペリジニルメタクリレート70.0g(311ミリモル)およびテトラヒドロフラン150mLを仕込み、均一溶液を得た。この溶液を25℃に保ちながら、窒素ガスを通じて反応系内の酸素を除去した後、重合開始剤としてα、α’-アゾビスイソブチロニトリル0.358g(2.2ミリモル)を加えて、攪拌下、50℃にて6時間反応させた。反応終了後、反応液を室温まで冷却し、ヘキサン2000mL中に加えた後、ろ過してポリメタクリル酸イミノ化合物を得た。得られたポリメタクリル酸イミノ化合物をヘキサン500mLで洗浄した後、減圧乾燥して白色粉体のポリメタクリル酸イミノ化合物69.5gを得た。
 次に、得られたポリメタクリル酸イミノ化合物18gおよびクロロホルム180gを攪拌機、温度計、還流冷却管および滴下ロートを備えた500mL容の4つ口フラスコに仕込んで溶解させた。そこへ、25℃で、タングステン酸ナトリウム2水和物0.24gを溶解させた60重量%過酸化水素水120gを5時間かけて滴下した。滴下終了後反応を10時間継続した。反応後1時間静置して有機相を分離し、クロロホルム相を留去した。残った固形分を粉砕し、得られた粉末を減圧乾燥させてポリメタクリル酸ニトロキシド化合物15.7gを得た。
[実施例1](ピロリン系ニトロキシド重合体の製造)
 撹拌機およびアルゴンガス導入管を備えた5mL容のナス型フラスコに、製造例1と同様にして得られたピロリン系ニトロキシド化合物0.17g(1ミリモル)を仕込み、25℃に保ちながら、アルゴンガスを通じて反応系内の酸素を除去した。次に、重合開始剤としてのシクロペンタジエニルチタニウム(IV)トリクロリド0.13mg(0.0006ミリモル)、メチルアルミノキサン11.25mg(0.194ミリモル)を加えて、アルゴンガス雰囲気下、25℃で撹拌下22時間重合反応させた後、適量のメタノールを添加して反応を停止させた。反応終了後、ヘキサン50mL中に加え、ろ過した後、ヘキサン10mLで洗浄し、減圧乾燥することにより薄茶色のピロリン系ニトロキシド重合体0.02gを得た(収率11%)。
 得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、26000であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(株式会社島津製作所製)を用いて、LiCl(0.01mol/L)、HPO(0.02mol/L)を含むN,N-ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
[実施例2](ピロリン系ニトロキシド重合体の製造)
 重合温度を50℃とする以外は、実施例1と同様にして、薄茶色のピロリン系ニトロキシド0.03gを得た(収率17%)。
 得られたピロリン系ニトロキシド重合体について、数平均分子量を測定したところ、21000であった。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(株式会社島津製作所製)を用いて、LiCl(0.01mol/L)、HPO(0.02mol/L)を含むN,N-ジメチルホルムアミド中30℃にて測定し、標準ポリスチレンを基準にして算出した。
[実施例3](ピロリン系ニトロキシド重合体を含有する電極の酸化還元特性)
 実施例1で得られたピロリン系ニトロキシド重合体0.01g、補助導電材として気相成長炭素繊維0.08gおよび結着剤としてのポリフッ化ビニリデン0.01gをそれぞれ量りとり、N-メチルピロリドンを添加し、メノウ乳鉢を用いて混練した。10分ほど湿式混合して得られたスラリー状の混合体をITO基板上に塗布し、真空中60℃で一晩乾燥した。
 この電極について、対極に白金コイル、参照極にAg/AgCl、電解液として0.5M(CNClOアセトニトリル溶液を用いて、電位掃引範囲0.5-1.0V(vs.Ag/AgCl)でのサイクリックボルタモグラムを測定したところ、0.75V(vs.Ag/AgCl)にニトロキシドラジカルのp型レドックス由来の酸化還元波が現れ、繰り返し掃引しても酸化還元波は安定していた。
[実施例4](ピロリン系ニトロキシド重合体を含有する電極活物質を用いた電池)
 実施例1で得られたピロリン系ニトロキシド重合体0.01g、補助導電材として気相成長炭素繊維0.08gおよび結着剤としてのポリフッ化ビニリデン0.01gをそれぞれ量りとり、N-メチルピロリドンを添加し、メノウ乳鉢を用いて混練した。10分ほど湿式混合して得られたスラリー状の混合体をアルミ箔上に塗布し延伸した後、真空中60℃で一晩乾燥した。その後、直径12mmの円形に打ち抜き、コイン電極を成型した。なお、この電極の質量は13.0mgであった。
 次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1.0mol/LのLiPF電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合体積比1:1)を用いた。電解液を含浸させた電極は、正極集電体を兼ねたステンレス外装(宝泉株式会社製)上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムセパレータを積層した。さらに負極となるリチウムディスクを積層し、周囲に絶縁パッキンを配置した状態で負極側ステンレス外装(宝泉株式会社製)を重ね合わせた。これを、かしめ機によって圧力を加えることで、正極活物質として実施例1で得られたピロリン系ニトロキシド重合体を、負極活物質として金属リチウムを用いた密閉型のコイン型電池を製造した。
 このコイン型電池について、電位掃引範囲3.2~4.2Vでのサイクリックボルタモグラムを測定したところ、3.65Vにニトロキシドラジカルのp型レドックス由来の酸化還元波が現れ、繰り返し掃引しても酸化還元波は安定していた。また、定電流0.1mA(電流密度150μA/cm)での充放電曲線を測定したところ、3.64Vにプラトー電位が現れ、500サイクル後も顕著な容量低下は見られず、安定な充放電挙動を示した。また、充放電曲線より求めたラジカル材料あたりの容量は140mAh/gであった。
[比較例1]
 実施例4において、実施例1で得られたピロリン系ニトロキシド重合体0.01gを、製造例2で得られたポリメタクリル酸ニトロキシド化合物0.01gに変更した以外は実施例4と同様の方法にて、コイン型電池を作成した。
 得られたコイン型電池について、実施例4と同様の方法にて充放電曲線を測定した。充放電曲線より求めたラジカル材料あたりの容量は、54mAh/gであった。
 本発明によれば、大きな電流を取り出すことができ、かつ、繰り返し充放電を行っても容量の低下が少ない電池の電極材料として用いられるピロリン系ニトロキシド重合体、当該重合体を含有する電極活物質および当該電極活物質を用いた電池を提供することができる。
1 ステンレス外装
2 絶縁パッキン
3 負極
4 セパレータ
5 正極
6 正極集電体
 
 
 

Claims (4)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表されるピロリン系ニトロキシド化合物を重合して得られるピロリン系ニトロキシド重合体。
  2.  数平均分子量が500~5000000であるピロリン系ニトロキシド重合体。
  3.  請求項1又は2に記載のピロリン系ニトロキシド重合体を含有する電極活物質。
  4.  請求項3に記載の電極活物質を用いた電池。
     
PCT/JP2010/053617 2009-03-12 2010-03-05 ピロリン系ニトロキシド重合体およびそれを用いた電池 WO2010104002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800113508A CN102348727A (zh) 2009-03-12 2010-03-05 吡咯啉系硝基氧聚合物和使用其的电池
JP2011503792A JP5527667B2 (ja) 2009-03-12 2010-03-05 ピロリン系ニトロキシド重合体およびそれを用いた電池
US13/255,439 US20120095179A1 (en) 2009-03-12 2010-03-05 Pyrroline-based nitroxide polymer and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-059233 2009-03-12
JP2009059233 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010104002A1 true WO2010104002A1 (ja) 2010-09-16

Family

ID=42728291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053617 WO2010104002A1 (ja) 2009-03-12 2010-03-05 ピロリン系ニトロキシド重合体およびそれを用いた電池

Country Status (4)

Country Link
US (1) US20120095179A1 (ja)
JP (1) JP5527667B2 (ja)
CN (1) CN102348727A (ja)
WO (1) WO2010104002A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133202A1 (ja) * 2011-03-31 2012-10-04 学校法人早稲田大学 ラジカル組成物およびそれを用いた電池
WO2012133204A1 (ja) * 2011-03-31 2012-10-04 学校法人早稲田大学 電池
JP2013213201A (ja) * 2012-03-08 2013-10-17 Waseda Univ ベンゾジチオフェンキノンポリマー、電荷貯蔵材料、電極活物質、電極、及び電池
DE102014003300A1 (de) 2014-03-07 2015-09-10 Evonik Degussa Gmbh Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
JP2016534521A (ja) * 2013-09-09 2016-11-04 ユニヴェルシテ・カトリック・ドゥ・ルーヴァン 非水電解質二次電池用ハイブリッド電極
EP3136410A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3135704A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3279223A1 (de) 2016-08-05 2018-02-07 Evonik Degussa GmbH Verwendung thianthrenhaltiger polymere als ladungsspeicher
WO2018024901A1 (de) 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verwendung thianthrenhaltiger polymere als ladungsspeicher
WO2018046387A1 (de) 2016-09-06 2018-03-15 Evonik Degussa Gmbh Verfahren zur verbesserten oxidation sekundärer amingruppen
DE102017005924A1 (de) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027744A1 (de) * 2000-06-05 2001-12-06 Bayer Ag Verfahren zur Herstellung von Polymeren durch kontrollierte "lebende" radikalische Polymerisation
JP2002117852A (ja) * 2000-10-05 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002151084A (ja) * 2000-02-25 2002-05-24 Nec Corp 二次電池
JP2002170568A (ja) * 2000-12-01 2002-06-14 Nec Corp 電 池
JP2002298850A (ja) * 2001-03-30 2002-10-11 Nec Corp 電 池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2003100360A (ja) * 2001-09-26 2003-04-04 Nec Corp 光電気化学デバイス
JP2003132891A (ja) * 2001-10-23 2003-05-09 Nec Corp 二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151084A (ja) * 2000-02-25 2002-05-24 Nec Corp 二次電池
DE10027744A1 (de) * 2000-06-05 2001-12-06 Bayer Ag Verfahren zur Herstellung von Polymeren durch kontrollierte "lebende" radikalische Polymerisation
JP2002117852A (ja) * 2000-10-05 2002-04-19 Nec Corp 二次電池およびその製造方法
JP2002170568A (ja) * 2000-12-01 2002-06-14 Nec Corp 電 池
JP2002298850A (ja) * 2001-03-30 2002-10-11 Nec Corp 電 池
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
JP2003100360A (ja) * 2001-09-26 2003-04-04 Nec Corp 光電気化学デバイス
JP2003132891A (ja) * 2001-10-23 2003-05-09 Nec Corp 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKI YAKUSHIJI ET AL.: "Ko Yoryo Denkyoku Katsubusshitsu o Mezashita Poly(3-Vinyl Fuhowa PROXYL) no Gosei to Denki Kagaku Tokusei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 89TH, no. 2, 13 March 2009 (2009-03-13), pages 838 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133204A1 (ja) * 2011-03-31 2012-10-04 学校法人早稲田大学 電池
WO2012133202A1 (ja) * 2011-03-31 2012-10-04 学校法人早稲田大学 ラジカル組成物およびそれを用いた電池
US9356292B2 (en) 2011-03-31 2016-05-31 Sumitomo Seika Chemicals Co., Ltd. Radical composition and battery using same
JP5969981B2 (ja) * 2011-03-31 2016-08-17 住友精化株式会社 ラジカル組成物およびそれを用いた電池
JP2013213201A (ja) * 2012-03-08 2013-10-17 Waseda Univ ベンゾジチオフェンキノンポリマー、電荷貯蔵材料、電極活物質、電極、及び電池
JP2016534521A (ja) * 2013-09-09 2016-11-04 ユニヴェルシテ・カトリック・ドゥ・ルーヴァン 非水電解質二次電池用ハイブリッド電極
US9890230B2 (en) 2014-03-07 2018-02-13 Evonik Degussa Gmbh Tetracyanoanthraquinodimethane polymers and use thereof
DE102014003300A1 (de) 2014-03-07 2015-09-10 Evonik Degussa Gmbh Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung
US10263280B2 (en) 2014-03-28 2019-04-16 Evonik Degussa Gmbh 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
EP3135704A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3136410A1 (de) 2015-08-26 2017-03-01 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
US10756348B2 (en) 2015-08-26 2020-08-25 Evonik Operations Gmbh Use of certain polymers as a charge store
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store
US10844145B2 (en) 2016-06-02 2020-11-24 Evonik Operations Gmbh Method for producing an electrode material
EP3279223A1 (de) 2016-08-05 2018-02-07 Evonik Degussa GmbH Verwendung thianthrenhaltiger polymere als ladungsspeicher
WO2018024901A1 (de) 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verwendung thianthrenhaltiger polymere als ladungsspeicher
US10608255B2 (en) 2016-08-05 2020-03-31 Evonik Operations Gmbh Use of thianthrene-containing polymers as a charge store
WO2018046387A1 (de) 2016-09-06 2018-03-15 Evonik Degussa Gmbh Verfahren zur verbesserten oxidation sekundärer amingruppen
US11001659B1 (en) 2016-09-06 2021-05-11 Evonik Operations Gmbh Method for the improved oxidation of secondary amine groups
DE102017005924A1 (de) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Verwendung benzotriazinyl-haltiger Polymere als Ladungsspeicher

Also Published As

Publication number Publication date
CN102348727A (zh) 2012-02-08
JP5527667B2 (ja) 2014-06-18
JPWO2010104002A1 (ja) 2012-09-13
US20120095179A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5527667B2 (ja) ピロリン系ニトロキシド重合体およびそれを用いた電池
JP5424402B2 (ja) ピロリン系ニトロキシド重合体およびそれを用いた電池
US8728662B2 (en) Process for producing polyradical compound and battery cell
JP5239160B2 (ja) ポリラジカル化合物の製造方法
JP5969981B2 (ja) ラジカル組成物およびそれを用いた電池
WO2012133204A1 (ja) 電池
JP5625151B2 (ja) ラジカルを有する化合物、重合体、およびその重合体を用いた蓄電デバイス
JP2012221575A (ja) ラジカル化合物、その製造方法及び二次電池
JP2008192452A (ja) ラジカルを有するポリマーを用いた二次電池
JP2002313344A (ja) 電極用バインダー並びにそれを用いて製造された電極及び電池
JP5176130B2 (ja) ポリラジカル化合物、電極活物質および電池
JP5176129B2 (ja) ポリラジカル化合物および電池
JP2009126869A (ja) ニトロキシド重合体およびそれを用いた電池
JP4110980B2 (ja) 二次電池
JP4154561B2 (ja) 二次電池
JP4737365B2 (ja) 電極活物質、電池および重合体
JP4752218B2 (ja) 電極活物質、電池およびポリラジカル化合物
JP4955233B2 (ja) 電極活物質、電池および重合体
JP4752217B2 (ja) 活物質、電池および重合体
JP5109670B2 (ja) 重合体
JP2010165491A (ja) 電極活物質、およびそれを用いた二次電池
JP2005228640A (ja) 二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011350.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011503792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13255439

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10750756

Country of ref document: EP

Kind code of ref document: A1