WO2010103803A1 - 直線移動装置 - Google Patents

直線移動装置 Download PDF

Info

Publication number
WO2010103803A1
WO2010103803A1 PCT/JP2010/001651 JP2010001651W WO2010103803A1 WO 2010103803 A1 WO2010103803 A1 WO 2010103803A1 JP 2010001651 W JP2010001651 W JP 2010001651W WO 2010103803 A1 WO2010103803 A1 WO 2010103803A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
driven
main
pinion
linear
Prior art date
Application number
PCT/JP2010/001651
Other languages
English (en)
French (fr)
Inventor
内田豊一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/129,435 priority Critical patent/US8522636B2/en
Priority to EP10750560.4A priority patent/EP2407690B1/en
Priority to CN201080002611.XA priority patent/CN102149944B/zh
Priority to CA2744181A priority patent/CA2744181C/en
Publication of WO2010103803A1 publication Critical patent/WO2010103803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/12Arrangements for adjusting or for taking-up backlash not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/12Arrangements for adjusting or for taking-up backlash not provided for elsewhere
    • F16H2057/121Arrangements for adjusting or for taking-up backlash not provided for elsewhere using parallel torque paths and means to twist the two path against each other
    • F16H2057/122Arrangements for adjusting or for taking-up backlash not provided for elsewhere using parallel torque paths and means to twist the two path against each other by using two independent drive sources, e.g. electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/1876Reciprocating or oscillating to or from alternating rotary including inertia device
    • Y10T74/18768Reciprocating or oscillating to or from alternating rotary including inertia device with rack and pinion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/188Reciprocating or oscillating to or from alternating rotary including spur gear
    • Y10T74/18808Reciprocating or oscillating to or from alternating rotary including spur gear with rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19647Parallel axes or shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/1967Rack and pinion

Definitions

  • the present invention relates to a linear movement device that moves a carriage by converting rotational movement into linear movement.
  • a rack-and-pinion in which a rack and a pinion (or pinion gear) are meshed is known as a conversion device for rotary motion and linear motion.
  • the rack and pinion is used for a machine device that requires high efficiency, high accuracy, long life, and high driving force transmission, such as a transfer device, an industrial robot, a machine tool, and a precision machine.
  • Patent Document 1 proposes a rotary motion and linear motion conversion device 100 that avoids this. As shown in FIG. 11, the conversion device 100 includes a rack 105 having teeth 104 having a plurality of trochoidal curves and a pinion 107 having a plurality of rollers 106 meshing with the teeth 104. Conversion.
  • the tooth shape of the tooth 104 is provided so that the root of the tooth 104 is larger than the diameter of the roller 106 and forms a substantially arc shape so that the center locus of the roller 106 meshing with the rack 105 draws a trochoid curve.
  • the rack 105 and the pinion 107 are used with a preload applied. Furthermore, an approach is formed at the end of the tooth 104 that gradually moves away from the outer locus of the roller 106.
  • Patent Document 1 is expensive due to a problem of processing accuracy such as processing the tooth shape of the rack 105 into a trochoid curve.
  • processing accuracy such as processing the tooth shape of the rack 105 into a trochoid curve.
  • the present invention has been made based on such a problem, and an object of the present invention is to provide a linear movement device that can obtain high positional accuracy at the time of stopping without using an expensive gear.
  • the linear movement device of the present invention is provided with a pair of motors that are independently driven with respect to one rack for driving a gear.
  • a pinion is attached to each motor.
  • One of the pair of motors is a main motor, and the other is a driven motor.
  • the main motor and the driven motor are rotated and driven in the same direction, but when the motor is stopped, the driving motor is given a driving force whose rotation direction is opposite to that of the main motor.
  • the linear movement device of the present invention includes a linear rack provided with a plurality of teeth, a main drive pinion that meshes with the teeth of the rack, a driven pinion that meshes with the teeth of the rack at a position away from the main drive pinion, and the main drive pinion.
  • the linear movement device of the present invention is characterized in that when the moving carriage is stopped, the driven motor is rotationally driven in a direction opposite to the driving direction of the main motor during movement.
  • a motor that is rotationally driven in the opposite direction is defined as a driven motor.
  • the main motor and the driven motor can be driven from the time when the carriage starts to stop until it stops, but this is not limitative.
  • the present invention can stop the drive of the driven motor after the carriage has started moving and has reached a constant velocity motion.
  • the driven motor is rotationally driven in the direction opposite to the driving direction of the main motor during movement. By doing so, the control of the main motor and the driven motor can be simplified.
  • the linear movement device of the present invention when both the main motor and the driven motor are driven from the time when the carriage starts moving to the time when it stops, it is highly accurate to control the main motor and the driven motor by sliding mode control. It is preferable for positioning with a high holding force.
  • a hyperplane is given by the deviation position and speed to the final arrival position, so that positioning can be performed with an arbitrary control force.
  • the motor control force may be switched within a controllable range that does not oscillate.
  • the linear movement device of the present invention when both the main motor and the driven motor are driven from the time when the carriage starts moving to the time when it stops, it is highly accurate to control the main motor and the driven motor by sliding mode control. As described above, it is preferable to make a proper positioning. However, since the load on the motor increases when the sliding mode is operated in the entire area, the motor load is predicted based on the starting characteristics at the time of starting the motor (for example, the rise time when the motor is driven), and an appropriate hyperplane or the It is desirable to control the driving force of each motor by giving the inclination of the switching straight line.
  • the driven motor when the moving carriage is stopped, the driven motor can be rotationally driven in the direction opposite to the main motor that is moving. By doing so, lost motion due to backlash is reduced and positioning of the carriage with high accuracy becomes possible. Moreover, according to the linear movement device of the present invention, since it is possible to position the carriage with high accuracy while assuming backlash, a general-purpose involute spur gear or helical gear can be used for the pinion. The cost of the apparatus can be reduced. Furthermore, since the linear movement apparatus of the present invention includes two motors, high-accuracy positioning is possible while generating a large driving force.
  • FIG. 1 It is a perspective view of the linear movement apparatus in this embodiment. It is a front view of the linear movement apparatus in this embodiment. It is a side view of the linear movement apparatus in this embodiment. It is a control block diagram of the linear movement apparatus in this embodiment.
  • the position-velocity curve of the main motor and the driven motor when the moving carriage is moved from the position S to the position E is shown. It is the elements on larger scale of the rack and pinion of the linear movement apparatus in this embodiment.
  • the position-velocity curve of the main motor and the driven motor when the moving carriage is moved from the position S to the position E is shown.
  • the mathematical formula explaining sliding mode is shown.
  • Fig. 6 shows another mathematical formula explaining the sliding mode. It is a figure which shows the example of adaptive sliding mode control. It is a figure which shows the conversion apparatus of the rotational motion and linear motion which were disclosed by patent document 1.
  • the linear moving device 1 in the present embodiment has a basic configuration of a rack and pinion.
  • the linear moving device 1 is configured such that the moving carriage 20 linearly reciprocates on the stage 10 and can stop at an arbitrary position.
  • the stage 10 includes a rectangular substrate 11, a rack 13 that extends on the substrate 11 in a direction in which the movable carriage 20 reciprocates linearly, a rail 14 that extends parallel to the rack 13, and a linear encoder 15 that extends parallel to the rail 14.
  • the rack 13 is continuously provided with a plurality of teeth 13T in the longitudinal direction.
  • the teeth 13T of the rack 13 have a straight tooth shape.
  • the rail 14 is slidably fitted to the slider 27 of the moving carriage 20 and supports the load of the moving carriage 20 via the slider 27.
  • an optical linear encoder 15 can be used as the linear encoder 15.
  • the optical linear encoder 15 includes, for example, a glass scale 15a and a slider unit 15b that obtains position information by scanning the glass scale 15a. The obtained position information is sent to the controller 30 described later.
  • the glass scale 15a is laid in the linear encoder 15, and the slider unit 15b is integrated with the moving carriage 20 and scans on the glass scale 15a.
  • the linear encoder 15 is for recognizing the position of the mobile carriage 20, and a magnetic linear encoder can also be used.
  • a device capable of recognizing the position of the moving carriage 20 that moves linearly can be used in place of the linear encoder 15.
  • a rotary encoder that obtains position information using the rotational speeds of the main motor 22 and the driven motor 23, a laser displacement meter, an image processing method of a target mark, and the like that can recognize the position with necessary accuracy can be widely applied.
  • the movable carriage 20 includes a carriage lower plate 21, a main drive motor 22 that is mounted on the carriage lower plate 21, and fixed by an appropriate means, a driven motor 23, and a main drive pinion fixed to the output shaft 22 ⁇ / b> S of the main drive motor 22. 24 and a driven pinion 25 fixed to the output shaft 23S of the driven motor 23.
  • a direct drive servo motor DD motor
  • the main motor 22 and the driven motor 23 preferably have the same characteristics from the viewpoint of simplification of control.
  • Both the main drive pinion 24 and the follower pinion 25 are gears (involute gears) whose tooth shape is an involute curve, and mesh with the rack 13 of the stage 10.
  • a carriage upper plate 26 is placed on the upper surfaces of the main motor 22 and the driven motor 23, and the carriage upper plate 26 is fixed to both the main motor 22 and the driven motor 23. Thereby, the cart lower plate 21, the main drive motor 22, the driven motor 23, and the cart upper plate 26 are integrally configured.
  • a slider 27 is fixed to the lower surface of the carriage lower plate 21 at a position corresponding to the rail 14 of the stage 10.
  • the slider 27 has a fitting groove 27h extending in parallel with the moving direction of the movable carriage 20 on the lower surface, and the fitting groove 27h and the tip of the rail 14 are fitted.
  • the slider 27 is slidable along the rail 14 in a state where the slider 27 is fitted to the tip of the rail 14.
  • the linear moving device 1 described above includes a controller 30 that controls the operation of the moving carriage 20 (the main driving motor 22 and the driven motor 23).
  • the controller 30 obtains the position information of the moving carriage 20 from the linear encoder 15, and controls the rotational drive of the main motor 22 and the driven motor 23 provided on the movement carriage 20 based on the obtained position information, thereby moving the controller 30.
  • the movement and stop of the carriage 20 are controlled.
  • the controller 30 instructs the main motor 22 and the driven motor 23 to rotate in the same direction.
  • the main driving pinion 24 attached to the main driving motor 22 and the driven pinion 25 attached to the driven motor 23 rotate in the same direction, and the movable carriage 20 moves linearly while being guided by the rail 14.
  • the movable carriage 20 moves to the right when the main motor 22 and the driven motor 23 rotate clockwise, and moves to the left when the main motor 22 and the driven motor 23 rotate counterclockwise.
  • FIG. 5 shows position-velocity curves of the main motor 22 and the driven motor 23 when the moving carriage 20 is moved from the position S to the position E on the rail 14.
  • a solid line indicates that the main motor 22 and the driven motor 23 are driven
  • a dotted line indicates that the driven motor 23 is not driven.
  • the controller 30 is the main drive motor 22, to drive and control the driven motor 23.
  • the controller 30 recognizes the position of the moving carriage 20 based on the position information of the moving carriage 20 received from the linear encoder 15.
  • the controller 30 stops the driving of the driven motor 23 when the position reaches the position I 2 , and moves the moving carriage 20 by one main driving motor 22. This is because the moving carriage 20 can be moved at a constant speed Vc at a speed Vc with a small driving force compared to the beginning of movement.
  • the driven motor 23 shifts by the amount of backlash, and the driven pinion 25 meshes with the teeth 13T of the rack 13 on the surface opposite to that during driving, so that the driven motor 23 idles as the movable carriage 20 moves.
  • the controller 30 instructs the main motor 22 that is driving to decelerate so that the moving carriage 20 stops at the position E.
  • the position I 3 and the slope C E1 indicating the degree of deceleration are set based on the position I 1 reaching the speed Vc after the moving carriage 20 starts moving and the slope C S indicating the degree of acceleration.
  • the controller 30 instructs the driven motor 23 that has been idling but has stopped driving to apply a driving force that is reverse to that of the main driving motor 22.
  • the slope C E2 indicating the degree of acceleration is determined based on the position I 3, C E1, typically a C E2 ⁇ -C E1 for C E2. If rattling after stopping is allowed, it is also possible to perform final positioning by moving the driven motor 23 after roughly positioning by the main driving motor 22.
  • FIG. 6 shows the state of the main drive pinion 24 and the driven pinion 25 when a reverse rotation driving force is applied to the driven motor 23.
  • the driving pinion 24 is given a driving force D1 of forward rotation (clockwise arrow)
  • the driven pinion 25 is given a driving force D2 of reverse rotation (counterclockwise arrow). Therefore, the main drive pinion 24 (the main drive motor 22) receives a force F1 directed in the right direction in the figure from the rack 13, and the driven pinion 25 (the driven motor 23) receives a force F2 in the left direction in the figure from the rack 13.
  • the forces F1 and F2 are in opposite directions.
  • the linear moving device 1 can position the movable carriage 20 at the position E with high accuracy even when a general-purpose involute gear is used for the main drive pinion 24 and the driven pinion 25. Moreover, since the linear movement apparatus 1 includes the two motors 20 in the moving carriage 20, the driving force is large and positioning can be performed with high accuracy.
  • control is performed so that no driving force is applied to the driven motor 23 from the position I 2 to the position I 4 . Since this control is not accompanied by control of the driving force from the forward rotation to the reverse rotation with respect to the driven motor 23, there is an advantage that simple control is sufficient.
  • the present invention is not limited to the control shown in FIG.
  • a driving force can be applied to the driven motor 23 together with the main motor 22 over the entire process from the position S to the position E.
  • the control in this case is preferably based on the sliding mode for highly accurate positioning.
  • the sliding mode control will be described.
  • VSS Variable structure control
  • Equation (1) Considering the control structure of the DD motor, Equation (1) is given. Equations (1) to (9) are shown in FIG.
  • u is a motor control input and is given by Expression (2).
  • Expression (3) Expression (5) needs to be satisfied in order to satisfy Expression (4), which is the existence condition of the sliding mode control.
  • Equations (8) and (9) can be referred to as an adaptive sliding mode. Since the relationship between the load and the inclination c is approximated to a linear function, although an approximation error occurs, positioning can be performed without overshooting as shown in FIG. Moreover, positioning can be performed even with a position gain of 10 times, and high rigidity can be obtained. In this way, by appropriately selecting the inclination of the switching line, it is possible to perform control that is less susceptible to load fluctuations.
  • this invention is not limited to the said embodiment.
  • the main motor 22 and the driven motor 23 have the same characteristics, even if the main motor 22 and the driven motor 23 have different characteristics, the control considering the different characteristics is performed for each.
  • the effect of the present invention can be enjoyed.
  • a high-resolution encoder is used on the main motor 22 side
  • a speed reducer with a higher reduction ratio than the main motor 22 side is used on the driven motor 23 side
  • the configuration can be selected in various ways depending on the required positioning resolution and characteristics. Is possible.
  • the utilization form of the linear movement apparatus 1 is not limited, and can be widely applied to a conveyance apparatus, an industrial robot, a machine tool, a precision machine, and the like.
  • shafts can be comprised by overlapping the two linear moving apparatuses 1 so that the moving direction of each mobile trolley 20 may orthogonally cross.
  • the configuration of the above embodiment can be changed or deleted as appropriate without departing from the spirit of the present invention. For example, it is easy to use three or more motors and increase the number of motors using the driving force by the number of motors, and it is possible to achieve both driving force and accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

 本発明の直線移動装置1は、複数の歯13Tが設けられた直線状のラック13と、ラック13の歯13Tと噛み合う主動ピニオン24と、主動ピニオン24と離れた位置でラック13の歯13Tと噛み合う従動ピニオン25と、主動ピニオン24を回転駆動させる主動モータ22と、従動ピニオン25を回転駆動させる従動モータ23と、主動モータ22と従動モータ23が固定され、主動モータ22と従動モータ23の回転駆動に伴ってラック13に沿って移動する移動台車20と、を備え、移動している移動台車20を停止させる際に、移動中における主動モータ22の駆動方向と逆方向に従動モータ23を回転駆動させる。

Description

直線移動装置
 本発明は、回転運動を直線運動に変換することにより台車を移動させる直線移動装置に関する。
 回転運動と直線運動の変換装置として、ラックとピニオン(またはピニオンギア)とを噛合させたラック・アンド・ピニオンが知られている。ラック・アンド・ピニオンは、搬送装置、産業用ロボット、工作機械、精密機械など、高効率、高精度、長寿命、高駆動力伝達が要求される機械装置に使用される。
 ラック・アンド・ピニオンは通常、ラックの歯とピニオン歯の間にバックラッシュと称される隙間を設け、歯同士の食い込みを回避している。しかし、バックラッシュを設けると、ピニオンを停止させたとしてもバックラッシュの分だけ、慣性を持つピニオンは移動して停止時の位置精度が劣ることになる。
 特許文献1に、これを回避した回転運動と直線運動の変換装置100が提案されている。この変換装置100は、図11に示すように、複数のトロコイド曲線からなる歯型の歯104を備えるラック105と、歯104に噛み合う複数のローラ106を備えるピニオン107とで、回転運動と直線運動の変換を行うものである。ラック105に噛み合うローラ106の中心軌跡がトロコイド曲線を描くように、歯104の歯型は歯底がローラ106の径より大きく略弧状を描くように設けられている。また、ラック105とピニオン107は、予圧が加えられて用いられる。さらに、歯104の歯末には、ローラ106の外形軌跡より徐々に離れるアプローチが形成されている。
特開平10-184842号公報
 ところが、特許文献1は、ラック105の歯型をトロコイド曲線に加工する等、加工精度の問題から高コストになる。特に長距離搬送でコストの高いラックが長くなると加工精度と妥当なコストの両立が難しくなる。
 本発明は、このような課題に基づいてなされたもので、コストの高い形の歯車を用いなくても、停止時に高い位置精度を得ることができる直線移動装置を提供することを目的とする。
 かかる目的のもと、本発明の直線移動装置は、ギア駆動用の1つのラックに対して、独立して駆動される一対のモータを設ける。各モータには、ピニオンが取り付けられている。一対のモータのうち、一方を主動モータとし、他方を従動モータとする。そして、移動時には、主動モータと従動モータは同一方向に回転し駆動されるが、停止する際には従動モータには主動モータと回転方向が逆の駆動力を与える。そうすることにより、バックラッシュによるピニオンの移動(ロストモーション)を低減し高精度な位置決めが可能となる。
 すなわち本発明の直線移動装置は、複数の歯が設けられた直線状のラックと、ラックの歯に噛み合う主動ピニオンと、主動ピニオンと離れた位置でラックの歯に噛み合う従動ピニオンと、主動ピニオンを回転駆動させる主動モータと、従動ピニオンを回転駆動させる従動モータと、主動モータと従動モータが固定され、主動モータと従動モータの回転駆動に伴ってラックに沿って直線移動する台車と、を備える。そして本発明の直線移動装置は、移動している台車を停止させる際に、移動中における主動モータの駆動方向と逆方向に従動モータを回転駆動させることを特徴とする。なお、本発明において、2台のモータのうち、逆方向に回転駆動されるモータが従動モータと定義される。
 本発明の直線移動装置において、台車が移動を開始するときから停止するときまで主動モータと従動モータをともに駆動させることもできるが、これに限らない。つまり、本発明は、台車が移動を開始してから等速度運動に至った後には従動モータの駆動を停止させることができる。この場合も、台車を停止させる際には、移動中における主動モータの駆動方向と逆方向に従動モータを回転駆動させる。そうすることにより、主動モータ、従動モータの制御を簡易なものとすることができる。
 本発明の直線移動装置において、台車が移動を開始するときから停止するときまで主動モータと従動モータをともに駆動させる場合には、スライディングモード制御により主動モータと従動モータを制御することが、高精度で高保持力な位置決めをするために好ましい。スライディングモード制御では、最終的な到達位置までの偏差位置と速度で超平面を与えるので、任意の制御力で位置決めすることができる。この場合に、位置決め後の保持力を高めるには、発振しない程度の可制御範囲内でモータ制御力を切り替えればよい。
 本発明の直線移動装置において、台車が移動を開始するときから停止するときまで主動モータと従動モータをともに駆動させる場合には、スライディングモード制御により主動モータと従動モータを制御することが、高精度な位置決めをするために好ましいことは上述の通りである。しかし、全域でスライディングモードを働かせるとモータに対する負荷が大きくなるので、モータ起動時の起動特性(例えば、モータ駆動時の立ち上がり時間)でモータ負荷を予測し、モータ負荷に合わせた適切な超平面若しくは切り替え直線の傾きを与えることにより、各モータの駆動力を制御することが望ましい。
 本発明の直線移動装置によれば、移動している台車を停止させる際に、移動中の主動モータとは逆方向に従動モータを回転駆動させることができる。そうすることにより、バックラッシュによるロストモーションを低減し高精度な台車の位置決めが可能となる。しかも本発明の直線移動装置によれば、バックラッシュを前提としながらも高精度な台車の位置決めが可能であるから、汎用的なインボリュート平歯車やはすば歯車をピニオンに用いることができるので、装置のコストを低減できる。さらに本発明の直線移動装置は、2台のモータを備えているので、大駆動力を発生しながらも、高精度な位置決めが可能となる。
本実施形態における直線移動装置の斜視図である。 本実施形態における直線移動装置の正面図である。 本実施形態における直線移動装置の側面図である。 本実施形態における直線移動装置の制御ブロック図である。 本実施形態における直線移動装置において、位置Sから位置Eまで移動台車を移動させる際の主動モータおよび従動モータの位置-速度曲線を示す。 本実施形態における直線移動装置のラックおよびピニオンの部分拡大図である。 本実施形態における直線移動装置において、位置Sから位置Eまで移動台車を移動させる際の主動モータおよび従動モータの位置-速度曲線を示す。 スライディングモードを説明する数式を示す。 スライディングモードを説明する他の数式を示す。 適応スライディングモード制御の実例を示す図である。 特許文献1に開示された回転運動と直線運動の変換装置を示す図である。
 以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
 本実施の形態における直線移動装置1は、ラック・アンド・ピニオンを基本的な構成とするものである。
 直線移動装置1は、ステージ10上を移動台車20が直線往復運動し、かつ任意の位置で停止することができるようになっている。
 ステージ10は、矩形な基板11と、基板11上であって移動台車20が直線往復運動する方向に延びるラック13と、ラック13と平行に延びるレール14と、レール14と平行に延びるリニアエンコーダ15とを備えている。
 ラック13にはその長手方向に複数の歯13Tが連続して設けられている。ラック13の歯13Tは、歯型が直線である。
 レール14は、移動台車20のスライダ27と摺動自在に嵌合され、スライダ27を介して移動台車20の荷重を支持する。
 リニアエンコーダ15としては、光学式のリニアエンコーダ15を用いることができる。光学式のリニアエンコーダ15は、例えばガラススケール15aと、ガラススケール15aを走査して位置情報を得るスライダユニット15bを備える。得られた位置情報は、後述するコントローラ30に送られる。ガラススケール15aはリニアエンコーダ15内に敷設され、スライダユニット15bは移動台車20と一体化されガラススケール15a上を走査する。リニアエンコーダ15は、移動台車20の位置を認識するためのものであり、磁気式のリニアエンコーダを用いることもできる。また、直線的に移動する移動台車20の位置を認識できる機器をリニアエンコーダ15に替えて用いることができる。例えば、主動モータ22、従動モータ23の回転数を用いて位置情報を得るロータリエンコーダ、レーザ変位計、ターゲットマークの画像処理法など、必要な精度で位置を認識できるものを広く適用できる。
 移動台車20は、台車下板21と、台車下板21上に載せられ、かつ適宜の手段で固定される主動モータ22、従動モータ23と、主動モータ22の出力軸22Sに固定される主動ピニオン24と、従動モータ23の出力軸23Sに固定される従動ピニオン25とを備えている。主動モータ22及び従動モータ23としては、例えばダイレクトドライブ・サーボモータ(DDモータ)を使用できる。主動モータ22及び従動モータ23は、同じ特性を持つことが制御の簡易化の点から好ましい。主動ピニオン24及び従動ピニオン25はともに歯型がインボリュート曲線からなる歯車(インボリュート歯車)であり、ステージ10のラック13と噛み合う。
 主動モータ22、従動モータ23の上面には台車上板26が載せられるとともに、台車上板26は主動モータ22と従動モータ23の双方と固定される。これにより、台車下板21、主動モータ22、従動モータ23及び台車上板26が一体的に構成される。
 台車下板21の下面には、ステージ10のレール14に対応する位置にスライダ27が固定される。スライダ27は移動台車20の移動方向に平行に延びる嵌合溝27hを下面に備えており、この嵌合溝27hとレール14の先端部とが嵌合される。スライダ27は、レール14の先端部と嵌合された状態で、レール14に沿って摺動自在である。
 以上の直線移動装置1は、図4に示すように、移動台車20(主動モータ22、従動モータ23)の動作を制御するコントローラ30を備えている。
 コントローラ30は、リニアエンコーダ15から移動台車20の位置情報を入手し、入手した位置情報に基づいて、移動台車20に設けられた主動モータ22、従動モータ23の回転駆動を制御することにより、移動台車20の移動、停止を制御する。
 移動台車20を移動させるには、コントローラ30より、主動モータ22、従動モータ23に対して同方向に回転するように指示する。そうすると、主動モータ22に取り付けられている主動ピニオン24、従動モータ23に取り付けられている従動ピニオン25が同方向に回転し、移動台車20はレール14に案内されながら直線運動する。なお、移動台車20は、主動モータ22、従動モータ23が時計回りに回転すると右向きに移動し、主動モータ22、従動モータ23が反時計回りに回転すると左向きに移動する。
 図5は、レール14上の位置Sから位置Eまで移動台車20を移動させる際の主動モータ22、従動モータ23の位置-速度曲線を示す。図5において、実線は主動モータ22および従動モータ23が駆動されていることを示し、点線は従動モータ23が駆動されていないことを示している。
 コントローラ30が駆動指示を発すると、主動モータ22および従動モータ23は同時に回転(この回転方向を正回転とする)を開始し、それに伴って移動台車20は移動を始める。移動当初には大きな駆動力が必要なため、主動モータ22および従動モータ23、つまり2台のモータを駆動させる。
 移動台車20が速度Vcに達して位置Iに到達したならば、以後は速度Vcで移動台車20が等速度運動するように、コントローラ30は主動モータ22、従動モータ23を駆動制御する。コントローラ30は、リニアエンコーダ15から受信する移動台車20の位置情報に基づいて移動台車20の位置を認識する。コントローラ30は、従動モータ23については位置Iに達したならば駆動を停止させ、移動台車20を1台の主動モータ22で移動させる。移動当初と比べると小さな駆動力で移動台車20を速度Vcで等速度運動させることができるからである。従動モータ23は、駆動力が無くなるとバックラッシュ分ずれ、従動ピニオン25がラック13の歯13Tと駆動時とは反対側の面で噛み合っているので、移動台車20の移動に伴って空転する。
 移動台車20が位置Iに達したならば、コントローラ30は、位置Eで移動台車20が停止するように、駆動している主動モータ22に対して減速を指示する。位置I、減速の度合いを示す傾きCE1は、移動台車20が移動を開始してから速度Vcに達する位置I、加速の度合いを示す傾きCに基づいて設定される。
 移動台車20が位置Iに達したならば、コントローラ30は、空転しているが駆動は停止されている従動モータ23に対して主動モータ22とは逆回転の駆動力を与えるよう指示する。このときの位置I、加速の度合いを示す傾きCE2は、位置I、CE1に基づいて定められるが、CE2については典型的にはCE2≦-CE1である。もし停止後のガタツキを許せば、主動モータ22でラフに位置決めした後、従動モータ23を動かし最終位置決めを行なうことも可能である。
 従動モータ23に逆回転の駆動力を与えたときの、主動ピニオン24および従動ピニオン25の状態を図6に示している。
 主動ピニオン24は正回転(時計周りの矢印)の駆動力D1が与えられ、従動ピニオン25は逆回転(反時計周りの矢印)の駆動力D2が与えられている。よって、主動ピニオン24(主動モータ22)は、ラック13より図中右向きの力F1を受け、従動ピニオン25(従動モータ23)は、ラック13より図中左向きの力F2を受ける。力F1と力F2は逆向きである。
 ここで主動ピニオン24だけを考えると、主動モータ22の駆動力を停止して主動ピニオン24の回転を止めたとしても、主動ピニオン24とラック13の間にバックラッシュが設けられているので、バックラッシュの分だけ移動台車20は慣性により動いてしまい、位置Eに高精度に位置決めすることができない。これは、従動モータ23を主動モータ22とともに正回転させていても同じである。
 これに対して、本実施形態による移動台車20の場合、主動ピニオン24とラック13の間、さらに従動ピニオン25とラック13の間にバックラッシュが設けられていても、主動ピニオン24と従動ピニオン25は逆向きの力を受けることにより、停止後に移動台車20が動くことがない。したがって、直線移動装置1は、汎用的なインボリュート歯車を主動ピニオン24および従動ピニオン25に用いても、移動台車20を位置Eに高精度に位置決めすることができる。しかも、直線移動装置1は、移動台車20が2台のモータを備えているので、駆動力が大きく、かつ高精度な位置決めを行うことができる。
 以上では、位置Iから位置Iまで従動モータ23に駆動力を与えないように制御している。この制御は、従動モータ23に対して正回転から逆回転への駆動力の制御を伴わないので、制御が簡易なもので足りる利点がある。もっとも本発明は、図5に示す形態の制御に限定されない。例えば、図7に示すように、位置Sから位置Eまでの全工程にわたって主動モータ22とともに従動モータ23に駆動力を与えることもできる。この場合の制御は、スライディングモードによることが高精度な位置決めを行なう上で好ましい。以下、スライディングモード制御について説明する。
 パラメータの変動に対してロバストである可変構造制御(Variable Structure System:VSS)は、制御構造を不連続に切り替えることによって希望する特性を得ることができる。このVSS理論に基づいてスライディングモード制御を行うことができ、その特徴として、制御系が簡易にもかかわらず、制御対象の特性の変化に対して、ロバストであるとともに低次元化の手法であることが掲げられる。このスライディングモード制御を主動モータ22、従動モータ23の位置決めに応用することにより、負荷の変動に対してロバストでかつオーバーシュートの少ない高精度な位置決め制御ができる。
 DDモータの制御構造を考えると、式(1)が与えられる。なお、式(1)~式(9)は図8に示す。
 式(1)におけるuは、モータの制御入力で、式(2)で与えられる。超平面を式(3)で表わすと、スライディングモード制御の存在条件である式(4)を満たすためには、式(5)を満たす必要がある。ここで、式(6)を式(5)に導入すると、超平面s=0に到達する条件とスライディングモードの存在条件を同時に満足させることができる。
 DDモータに対しては速度入力をするので、制御としては式(7)に従って位置の比例制御を行えばよい。
 ここで、本発明者等の検討によれば、切り替え直線sの傾きcを適切に設定すればオーバーシュートが少なく、かつ残留振動の少ない位置決めができる。ここでは傾きcと負荷との関係を簡単に一次関数に近似し、負荷同定によりcを決定する。負荷と傾きcとの関係を式(8)、(9)のようにする。式(8)、(9)は、適応スライディングモードと呼ぶことができる。負荷と傾きcとの関係を一次関数に近似したため、近似誤差は生ずるものの、図10に例を示すようにオーバーシュートすることなく位置決めできる。しかも位置ゲインは10倍でも位置決めができ、高い剛性を持たせることができる。このように切り替え直線の傾きを適切に選ぶことによって、負荷変動に対して、より影響されにくい制御を行うことができる。
 適応スライディングモードにおいて、サーボドライバがPI制御系(PI制御:比例動作と積分動作を組み合わせた制御方法)の場合、慣性モーメントをI、粘性係数η、DCゲインをGDC、ACゲインをGAC、入力速度をVINとすると、式(10)となる。なお、式(10)以降は図9に示してある。
 モータの回転角をωとおき、ωについて一回微分すると、式(11)が得られる。
 ここで、式(12)とおくと、式(13)が得られる。
 この式(13)をラプラス変換してω(t)について求めると、式(14)となる。なお、L-1はラプラス変換を示す。
 式(14)の解のうち、式(15)の場合で、速度が目標速度の1/2になる時間を求めてみると、式(16)の通りである。
 式(16)を解き近似すると、式(17)が得られる。つまり入力速度の1/2になる時間は慣性モーメントIに比例するといえる。よって、式(8)、式(9)で示すとおり、モータ立ち上がり時間を測定し、その時間に応じて慣性負荷を予測し、最適な超平面の切り替え直線条件を与えることは簡単な方法であるが最適制御を行なう上では重要であるといえる。
 以上、本発明を実施形態に基づいて説明したが、本発明は上記実施形態に限定されない。例えば、主動モータ22と従動モータ23は同特性を有することとしているが、主動モータ22と従動モータ23が異なる特性を有していても、異なる特性を考慮した制御を各々に対して行なうことにより、本発明の効果を享受することができる。例えば主動モータ22側には高分解能のエンコーダを用いたり、従動モータ23側には主動モータ22側より高減速比の減速機を用いたり、その構成は必要な位置決め分解能や特性でいろいろ選択することが可能である。またその逆で従動モータ23側に減速機を用いないモータでのダイレクトドライブ方式を採用することも可能である。
 直線移動装置1の利用形態は限定されず、搬送装置、産業用ロボット、工作機械、精密機械等に広く適用できる。その際、2つの直線移動装置1を、各々の移動台車20の移動方向を直交するように重ねて、直交する2軸に移動可能な装置を構成することができる。
 その他、本発明の趣旨を逸脱しない限り、上記実施形態の構成を適宜変更し、または削除できる。例えばモータを3台以上使用し、駆動力を使用しているモータの台数分倍増することも容易であり、駆動力と精度を両立することが可能である。
1…直線移動装置
 10…ステージ、13…ラック、13T…歯、15…リニアエンコーダ
 20…移動台車、22…主動モータ、23…従動モータ
 24…主動ピニオン、25…従動ピニオン
 30…コントローラ

Claims (7)

  1.  複数の歯が設けられた直線状のラックと、
     前記ラックと噛み合う主動ピニオンと、
     前記主動ピニオンと離れた位置で前記ラックと噛み合う従動ピニオンと、
     前記主動ピニオンを回転駆動させる主動モータと、
     前記従動ピニオンを回転駆動させる従動モータと、
     前記主動モータと前記従動モータが固定され、前記主動モータと前記従動モータの回転駆動に伴って前記ラックに沿って直線移動する台車と、を備え、
     移動している前記台車を停止させる際に、移動中における前記主動モータの駆動方向と逆方向に前記従動モータを回転駆動させることを特徴とする直線移動装置。
  2.  前記台車が移動を開始してから等速度運動に至った後には前記従動モータの駆動が停止される請求項1に記載の直線移動装置。
  3.  前記主動モータおよび前記従動モータは、スライディングモード制御により駆動力が制御される請求項1に記載の直線移動装置。
  4.  前記主動モータおよび前記従動モータは、その駆動時の立ち上がり時間に基づき前記各モータに接続されているモータ負荷を予測し、スライディングモード制御で条件判別するための超平面若しくは切り替え直線の傾きを与えることにより駆動力が制御される請求項3に記載の直線移動装置。
  5.  前記主動ピニオンおよび前記従動ピニオンは、インボリュート平歯車である請求項1に記載の直線移動装置。
  6.  前記直線移動装置は、
     前記ラックと平行に延びるレールと、
     前記レールと平行に延び、前記台車の位置を認識するためのリニアエンコーダと、
    をさらに備える請求項1に記載の直線移動装置。
  7.  前記直線移動装置はコントローラをさらに備え、
     前記コントローラは、前記リニアエンコーダから入手した前記台車の位置情報に基づき、前記主動モータおよび前記従動モータの移動および停止を制御する請求項6に記載の直線移動装置。
PCT/JP2010/001651 2009-03-09 2010-03-09 直線移動装置 WO2010103803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/129,435 US8522636B2 (en) 2009-03-09 2010-03-09 Rectilinear motion device
EP10750560.4A EP2407690B1 (en) 2009-03-09 2010-03-09 Rectilinear motion device
CN201080002611.XA CN102149944B (zh) 2009-03-09 2010-03-09 直线移动装置
CA2744181A CA2744181C (en) 2009-03-09 2010-03-09 Rectilinear motion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009055289A JP5371494B2 (ja) 2009-03-09 2009-03-09 直線移動装置
JP2009-055289 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103803A1 true WO2010103803A1 (ja) 2010-09-16

Family

ID=42728099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001651 WO2010103803A1 (ja) 2009-03-09 2010-03-09 直線移動装置

Country Status (6)

Country Link
US (1) US8522636B2 (ja)
EP (1) EP2407690B1 (ja)
JP (1) JP5371494B2 (ja)
CN (1) CN102149944B (ja)
CA (1) CA2744181C (ja)
WO (1) WO2010103803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111775136A (zh) * 2020-07-29 2020-10-16 广东电网有限责任公司东莞供电局 一种电力巡检机器人的安全支座

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150626A1 (ja) * 2011-05-02 2012-11-08 Hasegawa Shigeru 動力装置
CN102374283B (zh) * 2011-11-11 2013-12-11 中国重型机械研究院有限公司 操作机行走无隙传动系统
US8925411B2 (en) * 2012-08-30 2015-01-06 Hewlett-Packard Development Company, L.P. Rack with a rack tip
DE102012022798A1 (de) * 2012-11-21 2014-05-22 Maxon Motor Ag Linearantrieb
US9016812B2 (en) * 2013-06-04 2015-04-28 General Electric Company Translatable support mechanism
CN103727195A (zh) * 2013-12-07 2014-04-16 四川成焊宝玛焊接装备工程有限公司 用于滑移机构的驱动装置
DE102014100444B4 (de) * 2014-01-16 2017-06-29 MAQUET GmbH Vorrichtung zum linearen Verschieben einer Patientenlagerfläche und Verfahren zur Montage einer derartigen Vorrichtung
CN104384164B (zh) * 2014-09-13 2017-05-17 中山市保山塑胶工业有限公司 一种除尘系统用移动装置
CN107429540A (zh) 2014-12-22 2017-12-01 维米尔制造公司 可定位支架组件
JP6429029B2 (ja) * 2015-12-01 2018-11-28 株式会社ダイフク ラックギヤ駆動可能な搬送装置
CN105666276A (zh) * 2016-04-05 2016-06-15 唐山宇洁科技有限公司 一种三轴数控石材圆底弧磨边机
CN105840751A (zh) * 2016-04-27 2016-08-10 太仓宝达齿条有限公司 新型齿轮齿条
US10156035B2 (en) * 2017-03-15 2018-12-18 Card-Monroe Corp. Shift mechanism for a tufting machine
JP6227184B1 (ja) * 2017-07-04 2017-11-08 明 杉山 フレキシブル複数テーブル装置
CN108163783B (zh) * 2017-11-13 2020-03-17 武汉船用机械有限责任公司 齿轮齿条升降装置
EP3788278A1 (en) * 2018-04-30 2021-03-10 Nexen Group, Inc. Rotary to linear torque transmission device
JP2020169081A (ja) * 2019-04-02 2020-10-15 Necエンベデッドプロダクツ株式会社 搬送装置及び搬送方法
JP7424806B2 (ja) * 2019-11-26 2024-01-30 ニデックプレシジョン株式会社 駆動装置
CN110977610B (zh) * 2019-12-26 2021-07-02 西京学院 一种高速加工过程中急速变向加速度补偿系统和方法
EP4189455A1 (en) * 2020-07-27 2023-06-07 Ohb Digital Connect Gmbh Electro-mechanical linear drive unit for precise positioning e.g. of a large reflector used in radio astronomy or of a communication antenna
CN116816887B (zh) * 2023-03-20 2024-09-17 博泰智能装备(广东)有限公司 一种齿轮齿条传动结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249312A (ja) * 1993-02-24 1994-09-06 Teijin Seiki Co Ltd 直線運動機構
JPH09257106A (ja) * 1996-03-26 1997-09-30 Shibaura Eng Works Co Ltd 回転テーブルの駆動装置
JPH10184842A (ja) 1996-12-25 1998-07-14 Kamo Seiko Kk 回転運動と直線運動の変換装置
JP2000055170A (ja) * 1998-07-31 2000-02-22 Miyake Seiki:Kk ラック及びラック歯車装置
JP2002021964A (ja) * 2000-07-10 2002-01-23 Denso Corp 直線移動装置
JP2002078383A (ja) * 2000-08-25 2002-03-15 Yaskawa Electric Corp ラックピニオン駆動方法
JP2004355632A (ja) * 2003-05-29 2004-12-16 Sodick Co Ltd スライディングモード制御器を有するモーションコントローラ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902875A (en) * 1957-01-07 1959-09-08 Detroit Broach & Machine Compa Means for reciprocating elements of machine tools and the like
US3310998A (en) * 1964-06-24 1967-03-28 Wayne A Harmening Scheme for preloading power gear trains
US3512425A (en) * 1967-09-06 1970-05-19 Mitsubishi Electric Corp Antibacklash drive system
US3850043A (en) * 1974-01-11 1974-11-26 J Tarbox Roller band apparatus
JPS54142483A (en) 1978-04-27 1979-11-06 Fuji Photo Film Co Ltd X y transfering mechanism
JPS55166558A (en) * 1979-06-15 1980-12-25 Fuji Photo Film Co Ltd Xy direction shifter
US4712408A (en) * 1985-09-23 1987-12-15 Anderson-Cook, Inc. Coarse pitch spline rolling
EP0424430B1 (en) * 1988-07-08 1993-03-03 Mytronic Ab A device for a rapid positioning of a heavy carriage
US5267478A (en) * 1988-07-08 1993-12-07 Mytronic Ab Device for a rapid positioning of a heavy carriage
US4989472A (en) * 1989-01-12 1991-02-05 Accuratio Systems, Inc. Reversible anti-backlash power transmission
DE69102392T2 (de) * 1990-10-23 1995-02-16 Teijin Seiki Co Ltd Mechanismus zum Umwandeln einer Rotationsbewegung in eine Längsbewegung.
JPH05216504A (ja) * 1992-02-06 1993-08-27 Fanuc Ltd バネ系を含む制御対象に対する適応的スライディングモード制御方式
JPH05263338A (ja) * 1992-03-12 1993-10-12 Silver Seiko Ltd 横編機のラッキング装置とその基準位置決め方法
US5546826A (en) * 1994-01-13 1996-08-20 Yanagisawa; Ken Drive system
JP3459315B2 (ja) * 1994-07-11 2003-10-20 日本トムソン株式会社 ボールねじを具備した駆動装置及び該駆動装置を含むxy駆動装置
GB9416305D0 (en) 1994-08-12 1994-10-05 Alliedsignal Ltd Driving arrangement
JPH09119496A (ja) * 1995-10-24 1997-05-06 Teijin Seiki Co Ltd 直進運動装置
US5830094A (en) * 1995-11-03 1998-11-03 Brown & Sharpe Manufacturing Company Transmission for converting rotary motion into linear motion
US5836205A (en) * 1997-02-13 1998-11-17 Steven M. Meyer Linear actuator mechanism
JPH10228317A (ja) * 1997-02-14 1998-08-25 Namu:Kk 位置決め装置
JP2001208156A (ja) * 2000-01-21 2001-08-03 Amada Co Ltd バックラッシュレス・ラック・アンド・ピニオン機構
JP2001343058A (ja) * 2000-03-30 2001-12-14 Thk Co Ltd 幅広構造の駆動装置
JP2003001542A (ja) * 2001-06-22 2003-01-08 Kitamura Mach Co Ltd Nc工作機械
US7077621B2 (en) * 2004-03-03 2006-07-18 Seagate Technology Llc Dual powered actuator system
US8322242B2 (en) * 2009-09-29 2012-12-04 Hamilton Sundstrand Corporation Velocity summing linear actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249312A (ja) * 1993-02-24 1994-09-06 Teijin Seiki Co Ltd 直線運動機構
JPH09257106A (ja) * 1996-03-26 1997-09-30 Shibaura Eng Works Co Ltd 回転テーブルの駆動装置
JPH10184842A (ja) 1996-12-25 1998-07-14 Kamo Seiko Kk 回転運動と直線運動の変換装置
JP2000055170A (ja) * 1998-07-31 2000-02-22 Miyake Seiki:Kk ラック及びラック歯車装置
JP2002021964A (ja) * 2000-07-10 2002-01-23 Denso Corp 直線移動装置
JP2002078383A (ja) * 2000-08-25 2002-03-15 Yaskawa Electric Corp ラックピニオン駆動方法
JP2004355632A (ja) * 2003-05-29 2004-12-16 Sodick Co Ltd スライディングモード制御器を有するモーションコントローラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407690A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111775136A (zh) * 2020-07-29 2020-10-16 广东电网有限责任公司东莞供电局 一种电力巡检机器人的安全支座
CN111775136B (zh) * 2020-07-29 2021-05-14 广东电网有限责任公司东莞供电局 一种电力巡检机器人的安全支座

Also Published As

Publication number Publication date
US20110239795A1 (en) 2011-10-06
EP2407690A1 (en) 2012-01-18
EP2407690B1 (en) 2018-08-22
EP2407690A4 (en) 2012-08-01
US8522636B2 (en) 2013-09-03
JP2010209975A (ja) 2010-09-24
CA2744181A1 (en) 2010-09-16
JP5371494B2 (ja) 2013-12-18
CN102149944A (zh) 2011-08-10
CA2744181C (en) 2013-06-04
CN102149944B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5371494B2 (ja) 直線移動装置
CN201405354Y (zh) 玻璃生产线水平堆垛机械手
CN102577096B (zh) 伺服控制装置
CN202592957U (zh) 一种高速无轴传动印刷送纸控制系统
CN111953240A (zh) 一种基于最优控制的双电机消隙方法及系统
KR20110109998A (ko) 서보 제어 방법 및 서보 제어 장치
CN101587327B (zh) 工业控制平台上的通用运动控制系统和控制方法
JP6185374B2 (ja) 制御装置及び制御方法
US8294406B2 (en) Parallel kinematics micro-positioning system
GB2132157A (en) Improvements in or relating to workpiece transfer mechanisms
CN101714843B (zh) 龙门架型xy定位装置
JP5222956B2 (ja) スクリュープレス用二重加力ラム駆動装置
JP6756568B2 (ja) 制御装置、駆動システム、制御方法及びプログラム
CN101008435A (zh) 用于位姿调整的多自由度运动平台
JP4665001B2 (ja) テレスコピック構造
CN203024744U (zh) 数控重载旋转平台
JP6514034B2 (ja) 位置制御装置
JP2010209993A (ja) バックラッシュ除去制御装置
JP7015508B2 (ja) ロボットハンド装置
JP2019095021A (ja) 駆動装置、制御方法およびプログラム
JP2638662B2 (ja) 直線移動型産業用ロボットのバックラッシュ調整装置
JP4782637B2 (ja) プレス加工装置
CN114337366A (zh) 自消除步态累积误差的压电电机以及驱动方法
JP2002021964A (ja) 直線移動装置
JP4471921B2 (ja) 機械制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002611.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2744181

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010750560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13129435

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE