WO2010100728A1 - 磁気メモリ - Google Patents
磁気メモリ Download PDFInfo
- Publication number
- WO2010100728A1 WO2010100728A1 PCT/JP2009/054070 JP2009054070W WO2010100728A1 WO 2010100728 A1 WO2010100728 A1 WO 2010100728A1 JP 2009054070 W JP2009054070 W JP 2009054070W WO 2010100728 A1 WO2010100728 A1 WO 2010100728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ferromagnetic
- recording layer
- magnetic memory
- magnetization
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 126
- 230000005415 magnetization Effects 0.000 claims abstract description 151
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 128
- 230000008878 coupling Effects 0.000 claims abstract description 37
- 238000010168 coupling process Methods 0.000 claims abstract description 37
- 238000005859 coupling reaction Methods 0.000 claims abstract description 37
- 230000004888 barrier function Effects 0.000 claims abstract description 33
- 230000000694 effects Effects 0.000 claims abstract description 27
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910019236 CoFeB Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 298
- 239000000463 material Substances 0.000 description 18
- 230000005293 ferrimagnetic effect Effects 0.000 description 10
- 238000010884 ion-beam technique Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910015136 FeMn Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- -1 PdMn Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009812 interlayer coupling reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/105—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the present invention relates to a magnetic memory and a magnetic random access memory to which spin torque magnetization reversal is applied.
- MRAM magnetic random access memory
- DRAM dynamic random access memory
- a giant magnetoresistive (GMR) film used in a magnetic reproducing head is used. It has been theoretically shown that magnetization reversal is possible only by passing a certain current or more through the tunnel magnetoresistive (TMR) film. Thereafter, for example, in Physical Review, Letters, Vol. 84, No. 14, pp. 2149-2152 (2000), a diameter of 130 nm including a Co / Cu / Co multilayer film (GMR film) between two Cu electrodes.
- a bit line 1 includes a first ferromagnetic layer (recording layer) 2 whose magnetization direction changes, an intermediate layer 3, and a second ferromagnetic layer (fixed layer) 4 whose magnetization direction is fixed.
- the resistance effect element and the transistor 6 whose conduction is controlled by the gate electrode 5 are connected, and the other terminal of the transistor is connected to the source line 7.
- FIG. 1A when the magnetization of the fixed layer 4 and the recording layer 2 is changed from the antiparallel (high resistance) state to the parallel (low resistance) state, the current 8 is changed from the bit line 1 to the source line 7. Shed.
- the electrons 9 flow from the source line 7 to the bit line 1.
- the magnetizations of the fixed layer 4 and the free layer 2 are changed from the parallel (low resistance) state to the antiparallel (high resistance) state as shown in FIG. What is necessary is just to flow in the direction of the line 1. At this time, the electrons 9 flow from the bit line 1 to the source line 7.
- the recording layer 2 is composed of two ferromagnetic layers 21 and 23 sandwiching the nonmagnetic layer 22 and the magnetization directions are opposite to each other.
- a structure called a laminated ferrimagnetic structure has been proposed which is arranged in a direction and stabilizes with respect to an intruding magnetic field from the outside.
- the rewriting current for spin torque magnetization reversal is determined by the current density.
- the threshold current density J c0 is expressed by the formula ( It is known to be given in 1).
- the energy barrier that characterizes the thermal stability that is, the energy required for the magnetization reversal between two stable magnetization directions is given by equation (2).
- S is an area parallel to the film surface of the magnetoresistive element (TMR element).
- Japanese Patent Application Laid-Open No. 2005-294376 describes an MRAM using a laminated ferri recording layer.
- the MRAM using the laminated ferri recording layer is composed of two magnetic layers 21 and 23 in which the recording layer 2 is antiparallel coupled with the nonmagnetic layer 22 interposed therebetween.
- the value of the net magnetization M s ⁇ t having a vector action is effective for spin torque magnetization reversal. This has the advantage that J c0 can be reduced.
- M s ⁇ t in the formula (2) representing the thermal stability is the sum of the total magnetizations of the two magnetic layers 21 and 23, so that the volume of the magnetic layer 2 is increased, so that it is thermally stable.
- the laminated ferri-recording layer has a structure having both low J c0 and high E.
- these effects cannot be realized unless the magnetizations of the two magnetic layers 21 and 23 of the laminated ferri-recording layer 2 are antiparallel.
- the magnetization of the two magnetic layers 21 and 23 of the laminated ferri-recording layer 2 is properly caused by the leakage magnetic field from the fixed layer 4 and the interlayer coupling acting between the fixed layer 4 and the recording layer 2. In many cases, they are not antiparallel, and the angle between magnetizations varies depending on the TMR elements constituting the memory array.
- the magnetic memory of the present invention includes a magnetoresistive effect element in which a fixed layer, a nonmagnetic barrier layer, and a recording layer are sequentially stacked, and the recording layer includes a first ferromagnetic layer and a second ferromagnetic layer as a nonmagnetic layer.
- the laminated ferri structure is antiferromagnetically coupled through the structure.
- Information is recorded in the relationship between the magnetization direction of the first ferromagnetic layer disposed on the side close to the nonmagnetic barrier layer of the first and second ferromagnetic layers constituting the recording layer and the magnetization direction of the fixed layer (
- the magnetization direction of the recording layer is switched by a spin-polarized current that flows in a direction perpendicular to the film surface of the recording layer.
- the Boltzmann constant is k B
- the operating temperature of the magnetic memory is T
- the area parallel to the film surface of the magnetoresistive effect element is S
- the film thickness of the first ferromagnetic layer and the second ferromagnetic layer is thin.
- the thickness and saturation magnetization of the ferromagnetic layer are t, M s , the length of the short side of the recording layer is w
- the thermal stability index of the magnetic memory is ⁇
- the surface of the second ferromagnetic layer disposed on the side far from the nonmagnetic barrier layer, the surface opposite to the nonmagnetic barrier layer, or the fixed layer A structure having an average roughness Ra of 0.15 nm or less is formed on the lower surface substantially parallel to the magnetic easy axis direction of the recording layer.
- a third ferromagnetic layer is formed on the laminated ferri-recording layer via a nonmagnetic spacer layer.
- the magnetization direction of the third ferromagnetic layer is substantially antiparallel to the magnetization direction of the second ferromagnetic layer disposed on the side far from the nonmagnetic barrier layer of the two ferromagnetic layers constituting the laminated ferri recording layer. It is.
- the third ferromagnetic layer can be composed of an alloy of Co, Ni, and Fe.
- the magnetization of the pinned layer can be pinned by an exchange coupling force from an antiferromagnetic layer provided in contact with the pinned layer on the surface opposite to the recording layer.
- the fixed layer may have a laminated ferri structure.
- the fixed layer may be made of CoFeB
- the barrier layer may be made of MgO
- the ferromagnetic layer near the barrier layer of the recording layer may be made of CoFeB
- the ferromagnetic layer far from the barrier layer may be made of Co x Fe (1-x) .
- the range of x is 30 to 70%.
- a cap layer made of Ru or Ta may be formed on the recording layer in contact with the recording layer.
- a transistor for energizing the magnetoresistive effect element is connected to one end of the magnetoresistive effect element.
- One end of the transistor is electrically connected to the source line connected to the first write driver circuit, and the other end of the magnetoresistive element not connected to the transistor is amplified with the second write driver.
- a word line is connected to the bit line connected to the amplifier to control the resistance of the transistor, and the word line is connected to the third write driver.
- the easy magnetization axis of the recording layer is preferably set substantially perpendicular to the direction in which the bit line extends.
- first variable resistance element connected to one end of the bit line
- second variable resistance element connected to the other end of the bit line
- First voltage applying means and second voltage applying means used for changing the resistance of the second variable resistance element are provided, and the first voltage applying means and the second voltage application are provided during the write operation.
- the magnetization of the recording layer is reversed using a spin torque generated by passing a current between the means and a spin-polarized current between the bit line and the source line.
- the present invention it is possible to provide a magnetic random access memory for spin torque magnetization reversal application using a laminated ferri recording layer, which is thermally stable at the time of reading and has a reduced current at the time of writing.
- FIG. 1 It is a figure which shows the principle of a spin torque magnetization reversal, (a) is a figure which shows the magnetization reversal from an antiparallel state to a parallel state, (b) is a figure which shows the magnetization reversal from a parallel state to an antiparallel state.
- FIG. 3 is a diagram illustrating an example of a memory array circuit in the present invention.
- FIG. 3 is a schematic diagram of the energy of the laminated ferri recording layer of FIG.
- the shape of the TMR element is processed into a structure such as an ellipse or rectangle whose one side is longer than the other side as shown in the lower part of FIG. 3, but the long side direction at this time is the easy axis, that is, the direction of magnetization. Becomes a stable direction.
- the magnetizations of the two magnetic layers are both oriented in the easy axis direction and at an angle of 180 degrees to each other (points A and B in FIG. 3)
- the energy of the recording layer is minimized.
- the exchange coupling magnetic field is a magnetic field that attempts to keep the magnetization directions of the two ferromagnetic films 21 and 23 constituting the laminated ferri-recording layer 2 in antiparallel, and in order to increase the exchange coupling magnetic field, the ferromagnetic film 21 is used. , 23 needs to be set optimally.
- This film thickness varies depending on the material and composition of the ferromagnetic film, the material of the nonmagnetic layer, and the heat treatment temperature after film formation.
- Co x Fe y B z is used as the material of the ferromagnetic layers 21 and 23, and Ru is used as the material of the nonmagnetic layer 22.
- a CoFe alloy having z of approximately 20% can obtain a high TMR ratio when MgO is used as the material of the nonmagnetic barrier layer 3.
- FIG. 4 is a graph showing the relationship between the exchange coupling energy and the Ru film thickness when Co 20 Fe 60 B 20 is used as the ferromagnetic layers 21 and 23 and Ru is used as the nonmagnetic layer 22.
- the film thicknesses of the ferromagnetic films 21 and 23 are both 3 nm.
- the optimum Ru film thickness when the heat treatment temperature is 300 ° C. is 0.6 nm, and the optimum film thickness when the heat treatment temperature is 350 ° C. is 0.8 nm.
- FIG. 5 is a diagram showing the relationship between the exchange coupling coefficient and the film thickness of the nonmagnetic layer Ru when only the ferromagnetic film 23 is Co 50 Fe 50 .
- the film thicknesses of the ferromagnetic films 21 and 23 are both 3 nm. In this case, it can be seen that the value of the exchange coupling coefficient itself is large, and the optimum Ru film thickness when the heat treatment temperature is 350 ° C. is 0.7 nm.
- an exchange bias type TMR element as shown in FIG. 6 was fabricated and the characteristics were evaluated.
- an antiferromagnetic film 61 such as IrMn, PtMn, PdMn, FeMn, and IrCrMn is formed on a suitable underlayer 62.
- the fixed layer 4 having a laminated ferri structure is formed on the antiferromagnetic layer 61.
- 41 and 43 are ferromagnetic layers, and 42 is a nonmagnetic layer.
- the fixed layer 4 does not necessarily have a laminated ferrimagnetic structure, but if a laminated ferrimagnetic fixed layer is used, a leakage magnetic field from the laminated ferrimagnetic fixed layer is reduced, and an extra magnetic field application to the recording layer 2 can be reduced. The characteristics of spin torque magnetization reversal can be further improved.
- An MgO layer having a thickness of 1 nm is formed as a nonmagnetic barrier layer 3 on the laminated ferrimagnetic fixed layer 4, a laminated ferri recording layer 2 made of various materials is formed thereon, and finally a protective layer 63 is formed. .
- the TMR film was processed into a 100 nm ⁇ 200 nm rectangle by electron beam drawing and ion beam etching to obtain a measuring element.
- the magnetization of the ferromagnetic layer 21 faces the long side direction of the element.
- the magnetization of the other ferromagnetic layer 23 constituting the recording layer is easily affected by the leakage magnetic field from the fixed layer 4 and tends to be antiparallel to the magnetization of the fixed layer. Therefore, the magnetization angle of the ferromagnetic layer 21 and the ferromagnetic layer 23 is shifted from 180 degrees.
- the exchange coupling magnetic field H ex J ex / ( ⁇ 0 ⁇ M s ⁇ t) (where ⁇ 0 is the vacuum permeability, based on the anisotropic magnetic field H k of the ferromagnetic recording layers 21 and 23. It is important that M s is larger than the saturation magnetization of the ferromagnetic layers 21 and 23 and t is the thickness) so that q 1 to q 2 +180 can be realized in any state.
- the exchange coupling energy J ex required for a certain TMR element area S is E / k B required to guarantee non-volatility in a magnetic random access memory using spin torque magnetization reversal.
- ⁇ of T it can be written as:
- the magnetization of the end of the recording layer is slightly tilted from the easy axis due to the influence of the demagnetizing field H d as shown in FIG. Therefore, the spin torque magnetization reversal starts from this end, and spreads over the entire recording layer.
- the direction of magnetization is directed to the easy axis direction to the end. Therefore, the magnitude of the spin torque is small in all regions of the recording layer, and spin torque magnetization reversal hardly occurs.
- the electrical characteristics of the fabricated element were measured.
- the results are shown in Table 1.
- the numerical value in () of the film configuration is the film thickness, and the unit is nm.
- the positive direction of the current is the direction in which current flows from the fixed layer 4 to the recording layer 2.
- the magnetization direction of the ferromagnetic film 21 facing the fixed layer 4 via the nonmagnetic barrier layer 3 is The magnetization is reversed from the parallel direction to the antiparallel direction with respect to the magnetization direction of the fixed layer 4.
- the magnetization direction of the ferromagnetic film 21 facing the fixed layer 4 via the nonmagnetic barrier layer 3 is parallel to the magnetization direction of the fixed layer 4 from the antiparallel direction to the parallel direction.
- the magnetization is reversed.
- the value of J c0 shown in Table 1 is an arithmetic average of J c0 in the spin torque magnetization reversal of both the magnetization reversal from the parallel direction to the antiparallel direction and the magnetization reversal from the antiparallel direction to the parallel direction.
- the heat treatment temperature is 350 ° C. for all. At this time, the TMR ratio was almost 200% for all elements, and the sheet resistance RA was about 10 ⁇ m 2 .
- the materials are particularly limited to Co 20 Fe 60 B 20 / Ru / Co 20 Fe 60 B 20 and Co 20 Fe 60 B 20 / Ru / Co 50 Fe 50 .
- the material may be Co x Fe y B z
- the nonmagnetic film may be made of materials such as Ir, Os, and Cr in addition to Ru.
- the magnetic layer 21 on the MgO side of the recording layer is fixed to Co 20 Fe 60 B 20 from which a small J c0 is obtained, and the Ru film that maximizes the exchange coupling energy while changing the value of x and changing the Ru film thickness.
- FIG. 8 shows an example in which a texture is applied in the direction of easy axis of magnetization of the ferromagnetic layer 23 by an appropriate means, and a cap layer 81 made of a metal material is provided thereon.
- the direction of the periodic structure of the textured grooves is substantially perpendicular to the direction of the easy axis of magnetization of the ferromagnetic layer 23.
- the demagnetizing field due to this fine structure functions to prevent the magnetization from rotating in the direction perpendicular to the easy axis direction (that is, the hard axis direction), and the magnetic anisotropy increases.
- a material of the cap layer a material having a high melting point and low resistance such as Ru or Ta is desirable.
- the size of the texture irregularities can be evaluated by the average roughness Ra.
- Ra is an amount obtained by averaging the size of the unevenness measured by line scanning with an atomic force microscope by the length of the scanned line. In this example, Ra before applying the texture was about 0.08 nm.
- light ion beam etching is performed by making the beam incident obliquely from above the TMR element.
- FIG. 13 shows the relationship between Ra values and TMR characteristics. It can be seen that the TMR ratio decreases rapidly as Ra increases. When the roughness Ra is 0.15 nm or more, not only the ferromagnetic layer 23 is damaged, but also the ferromagnetic layer 21 and the nonmagnetic barrier layer 3 are damaged, and the characteristics of the TMR element are greatly deteriorated. Therefore, it is not preferable.
- the ferromagnetic film 23 has a strong magnetic anisotropy in a direction perpendicular to the texture groove. Therefore, even when affected by disturbance such as a leakage magnetic field from the fixed layer 4 or the like, the magnetization is always directed in a direction perpendicular to the direction of the periodic structure of the texture groove. Therefore, even if the magnetization of the fixed layer 4 is magnetized at an angle shifted from the long side direction of the element as shown in FIG. 7A, the magnetization of the ferromagnetic layer 23 is always directed to the easy axis direction. Further, by adjusting the texture period, there is an effect of increasing the exchange coupling energy between the recording layer 21 and the ferromagnetic layer 23.
- the magnetization directions of the ferromagnetic layer 23 and the ferromagnetic layer 21 satisfy q 1 to q 2 +180.
- the effect of directly directing the magnetization of the ferromagnetic layer 21 in the direction of the easy axis is small, but the magnetization direction of the ferromagnetic layer 21 is changed to a texture by appropriate exchange coupling energy.
- the direction of magnetization can be directed in the direction parallel to the long side of the TMR element, that is, the ferromagnetic layer 23 oriented in the direction of the easy axis of magnetization.
- the incident angle of the ion beam to the element can be made uniform by increasing the distance between the ion gun and the element.
- Making the direction of the long side of the element and the direction of the ion beam used for the etching process exactly parallel to each other is much more uniform than the direction of the long side of the TMR element and the in-plane distribution of the magnetic field that magnetizes the antiferromagnetic film. Easy. Thereby, a TMR element using a laminated ferri-recording layer with little in-plane variation of J c0 and E / k B T can be formed.
- the laminated ferri-recording layer having the same film configuration as in Table 1 that has been heat-treated at 350 ° C. will be described in detail.
- the structure of the portion other than the ferromagnetic layer 23 and the cap layer is the same as that of the first embodiment (FIG. 6).
- the angle between the ion beam and the substrate was set to 60 degrees, and the ion beam irradiation time was set to 100 seconds.
- the sample subjected to film formation and ion beam irradiation was processed into a rectangle of 100 nm ⁇ 200 nm, and the electrical characteristics were measured. Table 4 shows the characteristics.
- a material such as Ir, Os, or Cr in addition to Ru did not affect the nonmagnetic film.
- a texture is applied to the uppermost layer of the laminated ferri-free layer.
- q 1 to q 2 +180 can also be satisfied by applying a texture to the substrate 91 or the base film 92. effective. This effect can be realized even when the laminated ferri recording layer 2 is on the nonmagnetic barrier layer 3 as shown in FIG. 9, but the laminated ferri recording layer 101 is below the nonmagnetic barrier layer 3 as shown in FIG. In case it is more effective.
- Co 50 Fe 50 / Ru / Co 20 Fe 60 in which a ferromagnetic layer 1011, a nonmagnetic layer 1012, and a ferromagnetic layer 1013 are laminated on a textured base film 92.
- a laminated ferrimagnetic free layer 101 made of B 20 is formed.
- a nonmagnetic barrier layer 3 made of MgO is formed thereon, and a laminated ferri pin made of Co 20 Fe 60 B 20 / Ru / Co 50 Fe 50 in which a ferromagnetic layer 1021, a nonmagnetic layer 1022, and a ferromagnetic layer 1023 are laminated.
- a layer 102 is formed, and an antiferromagnetic layer 103 and a cap layer 104 made of, for example, IrMn are formed.
- heat treatment was performed at a heat treatment temperature of 350 ° C., processing into a rectangle of 100 nm ⁇ 200 nm and measuring electrical characteristics, an element having the same characteristics as the sample of FIG. 8 was obtained.
- Example 3 Next, a method of providing an additional magnetic layer on the TMR element and using the leakage magnetic field of the additional magnetic layer to set the two magnetization angles of the laminated ferrimagnetic free layer to q 1 to q 2 +180 will be described.
- 111 is a cap layer
- 112 is an additional magnetic layer
- 113 is a conductive intermediate layer
- 116 is a current flowing through the bit line 1
- 115 is a magnetic field generated by the current of the bit line 1
- 114 is an additional magnetic layer 112. Is a magnetic field generated by the magnetization of.
- the material of the additional magnetic layer 112 is preferably a soft magnetic material such as NiFe, but more widely an alloy of Co, Ni, and Fe. This is because, as will be described later, it is necessary to switch 180 degrees by switching the direction of the current 116 that flows the magnetization of the magnetic additional layer 112 to the bit line 1.
- a soft magnetic material such as NiFe, but more widely an alloy of Co, Ni, and Fe.
- the magnetization of the magnetic layer 21 on the nonmagnetic barrier layer 3 side of the laminated ferrimagnetic recording layer 2 and the magnetization of the magnetic layer 43 on the nonmagnetic barrier layer 3 side of the fixed layer 4 are changed from antiparallel to parallel.
- a write operation is shown. That is, the gate 5 of the transistor 6 is turned on, and a current 8 flows from the bit line 1 to the source line 7. At this time, a current flows through the bit line 1 in the direction of the arrow 116. Then, due to the spin torque magnetization reversal, the magnetization of the magnetic layer 21 becomes parallel to the magnetization of the magnetic layer 43 as shown in FIG.
- the magnetization 112 of the additional magnetic layer is caused by the magnetic field 115 generated by the current 116 flowing through the bit line. It is magnetized as shown in FIG. Even after the gate is turned off and the current is turned off, the magnetization direction of the additional magnetic layer 42 is maintained, and the magnetic field 114 is applied from the additional magnetic layer 42 to the easy axis direction of the laminated ferri-free layer. Due to this effect, even if the relationship of q 1 to q 2 +180 is not established due to a manufacturing error, the magnetization of the magnetic layer 23 is oriented in the easy axis direction due to the effect of the magnetic field 114.
- the direction of magnetization of the ferromagnetic layer 21 is directed in the direction of the easy axis of magnetization by appropriate exchange coupling energy. It can be directed in a direction antiparallel to the ferromagnetic layer 23.
- the magnetic layer is magnetized opposite to the magnetization direction of the additional magnetic layer 112 shown in FIG.
- the magnetization direction of the additional magnetic layer 112 is maintained, and the magnetic field 114 extends from the additional magnetic layer 112 to the easy axis direction of the laminated ferri-free layer 2 (however, the direction is opposite: counterclockwise). ) Is applied. With this effect, even if the relationship of q 1 to q 2 +180 does not hold due to manufacturing errors, the magnetization of the magnetic layer 23 is oriented in the easy axis direction due to the effect of the magnetic field 114.
- the direction of magnetization of the ferromagnetic layer 21 is directed in the direction of the easy axis of magnetization by appropriate exchange coupling energy. It can be directed in a direction antiparallel to the ferromagnetic layer 23 as in the second embodiment.
- the thicknesses of the additional magnetic layer 112 and the cap layer 111 are important parameters that affect the effect of directing the ferromagnetic layer 23 in the direction of the easy axis in this embodiment.
- an alloy of Co, Fe, and Ni is mainly used as the material of the additional magnetic layer 112.
- the film thickness is desirably 10 nm or more.
- a metal such as Cu, Mo, Ti, Ta, Zr, Nb, or an alloy thereof is used.
- the thickness of the cap layer 111 is such that the additional magnetic layer 112 and the ferromagnetic layer 23 do not cause antiferromagnetic coupling, specifically, at least 2 nm or more, and a sufficient magnetic field is applied to the additional magnetic layer 112. Is preferably 10 nm or less in order to be supplied to the ferromagnetic layer 23.
- 1 is a bit line
- 121 is a TMR element having the structure of any one of Embodiments 1 to 3 of the present invention
- 7 is a source line
- 6 is a cell selection transistor
- 122 is a word line
- 127 is one.
- Reference numerals 123 and 125 denote resistance change elements (transistors in this example) for controlling the magnitude of a current flowing through the bit line
- reference numerals 124 and 126 denote resistance control word lines for controlling the conduction state of the resistance change elements 123 and 125. is there.
- a write enable signal is sent to the write driver connected to the bit line 1 to which a current is to flow to boost the voltage, and then the voltage of the resistance control driver And a predetermined current is supplied to the bit line 1.
- a predetermined current is supplied to the bit line 1.
- either the write driver connected to the resistance change element 123 or the write driver connected to the resistance change element 125 is dropped to ground, and the current direction is controlled by adjusting the potential difference.
- a write enable signal is sent to the write driver connected to the word line, the write driver is boosted, and the transistor 6 is turned on.
- a current flows through the TMR element, and spin torque magnetization reversal is performed.
- the signal to the write driver is cut off and the transistor 6 is turned off.
- the transistor 6 is turned on and the current is turned on.
- the voltage difference applied to both ends of the resistance of the TMR element is amplified by a sense amplifier, and reading is performed. In this case, the current direction during reading is always in the direction from the source line 7 to the bit line 1.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
ここで、αはギルバートのダンピング定数、Msは記録層の飽和磁化、tは記録層の膜厚、gはスピントルクの効率、Hkは記録層の異方性磁界、Meffは膜面に垂直方向に働く反磁界の効果を差し引いた記録層の有効磁化、μ0は真空の透磁率である。
式(1)、式(2)からわかるように、Jc0,EともにMs・tに比例する量である。したがって熱安定性を確保するためにMs・tを増加させるとJc0も大きくなり、書き込みに要する消費電力が増える。他方、しきい電流を減らすためにMs・tを減少させるとEも減少し、熱安定性が損なわれる。すなわち、Jc0とEはトレードオフの関係にある。
あるいは、積層フェリ記録層を構成する二層の強磁性層のうち、非磁性障壁層から遠い側に配置された第2の強磁性層の非磁性障壁層と反対側の面、もしくは固定層より下面に、平均凹凸Raが0.15nm以下である構造を、記録層の磁気容易軸方向と略平行に形成する。
2 記録層
3 非磁性障壁層
4 固定層
5 ゲート電極
6 トランジスタ
7 ソース線
21 強磁性層
22 非磁性層
23 強磁性層
61 下地層
62 基板
63 保護膜
81 キャップ層
91 基板
92 下地層
102 積層フェリ固定層
101 積層フェリ記録層
103 反強磁性層
104 キャップ層
111 キャップ層
112 付加磁性層
113 金属中間層
121 TMR素子
122 ワード線
123,125 抵抗制御素子
124,126 抵抗制御素子制御用ワード線
127 メモリセル
1011 強磁性層
1012 非磁性層
1013 強磁性層
1021 強磁性層
1022 非磁性層
1023 強磁性層
交換結合磁界とは、積層フェリ記録層2を構成する二つの強磁性膜21,23の磁化の方向を反平行に保とうとする磁界であり、交換結合磁界を増加するためには強磁性膜21,23に挟まれた非磁性膜22の膜厚を最適に設定する必要がある。この膜厚は、強磁性膜の材料、組成、及び非磁性層の材料、及び膜形成後の熱処理温度によって変わってくる。以下では、強磁性層21,23の材料としてCoxFeyBzを用い、非磁性層22の材料としてRuを用いた場合を示す。特にzが略20%のCoFe合金は、非磁性障壁層3の材料としてMgOを用いたとき、高いTMR比が得られる。
一方、Jexの値が大きすぎると他の障害が生じる。Journal of Magnetism and Magnetic Materials, 159, L1-6 (1996)によれば、スピントルク磁化反転に寄与するスピントルクの大きさは、固定層側の強磁性層43の磁化と記録層側の強磁性層21の磁化のなす角度をθとするとsinθに比例する。したがって、固定層側の強磁性層43の磁化と記録層側の強磁性層21の磁化が互いに完全に平行、又は反平行である場合、スピントルク磁化反転は起こりえない。通常記録層が単層である場合、図14のように記録層の端部の磁化は、反磁界Hdの影響を受けて容易軸から少し傾いている。従って、この端部からスピントルク磁化反転が始まり、それが記録層全体に拡がっていく。ところが、積層フェリ記録層の場合、大きな交換結合力が働いている場合には、磁化の向きは端部まで容易軸方向を向く。したがって、スピントルクの大きさは記録層のすべての領域で小さく、スピントルク磁化反転が起こりにくい。磁化を傾ける反磁界の大きさは、Hd~(Ms/μ0)(w/t)(ここでwは記録層の短辺の長さ)と表されるので、交換結合エネルギーJexは、
Ms 2(t/w)>|Jex|
を満足する必要がある。こうして、前掲の式(3)が交換結合エネルギーJexが満たすべき値の範囲として導かれる。
積層フェリ記録層の上部強磁性層23にテクスチャーをつけた実施例について説明する。図8はその例であり、強磁性層23の磁化容易軸方向に適当な手段でテクスチャーがつけられており、その上に金属材料からなるキャップ層81が設けられている。テクスチャーの溝の周期構造の方向は、強磁性層23の磁化容易軸方向と略垂直である。
次に、TMR素子の上に付加磁性層を設け、付加磁性層の漏洩磁界を利用して積層フェリ自由層の二つの磁化角度をq1~q2+180とする方法について説明する。
次に、図12を用いて本発明のメモリ回路の一例を説明する。図12において、1はビット線、121は本発明の実施例1から3のいずれかの構造を有するTMR素子であり、7はソース線、6はセル選択トランジスタ、122はワード線、127は一つのメモリセルを表す。123と125はビット線に流す電流の大きさを制御する抵抗変化素子(この例の場合はトランジスタ)、124と126は抵抗変化素子123と125の伝導状態を制御する抵抗制御用のワード線である。
Claims (12)
- 固定層と非磁性障壁層と記録層とが順次積層された磁気抵抗効果素子を備え、
前記記録層は第1の強磁性層と、非磁性層と、第2の強磁性層とを有し、前記第1の強磁性層と前記第2の強磁性層が前記非磁性層を介して反強磁性結合しており、
前記第1と第2の強磁性層のうち前記非磁性障壁層側に配置された前記第1の強磁性層の磁化方向と前記固定層の磁化方向の関係によって情報を記録し、
前記記録層の磁化方向を、前記記録層の膜面に垂直な方向に通電するスピン偏極した電流でスイッチングする磁気メモリにおいて、
ボルツマン定数をkB、当該磁気メモリの動作温度をT、前記磁気抵抗効果素子の膜面に平行な面積をS、前記第1の強磁性層と第2の強磁性層のうち膜厚が薄い方の強磁性層の膜厚及び飽和磁化をそれぞれt,Ms、前記記録層の短辺の長さをw、当該磁気メモリの熱安定性指数をΔ、前記第1の強磁性層と前記第2の強磁性層の間に働く交換結合エネルギーをJexとするとき、次式を満足することを特徴とする磁気メモリ。
Ms 2(t/w)>|Jex|>(2kBTΔ)/S - 固定層と非磁性障壁層と記録層とが順次積層された磁気抵抗効果素子を備え、
前記記録層は第1の強磁性層と、非磁性層と、第2の強磁性層とを有し、前記第1の強磁性層と前記第2の強磁性層が前記非磁性層を介して反強磁性結合しており、
前記第1と第2の強磁性層のうち前記非磁性障壁層側に配置された前記第1の強磁性層の磁化方向と前記固定層の磁化方向の関係によって情報を記録し、
前記記録層の磁化方向を、前記記録層の膜面に垂直な方向に通電するスピン偏極した電流でスイッチングする磁気メモリにおいて、
前記第2の強磁性層の前記非磁性障壁層と反対側の面、もしくは前記固定層より下面に、平均凹凸Raが0.15nm以下である構造が、前記記録層の磁気容易軸方向と略平行に形成されていることを特徴とする磁気メモリ。 - 固定層と非磁性障壁層と記録層とが順次積層された磁気抵抗効果素子を備え、
前記記録層は第1の強磁性層と、非磁性層と、第2の強磁性層とを有し、前記第1の強磁性層と前記第2の強磁性層が前記非磁性層を介して反強磁性結合しており、
前記第1と第2の強磁性層のうち前記非磁性障壁層側に配置された前記第1の強磁性層の磁化方向と前記固定層の磁化方向の関係によって情報を記録し、
前記記録層の磁化方向を、前記記録層の膜面に垂直な方向に通電するスピン偏極した電流でスイッチングする磁気メモリにおいて、
前記記録層の上に非磁性のスペーサ層を介して第3の強磁性層が形成され、前記第3の強磁性層の磁化方向は、前記第2の強磁性層の磁化方向と略反平行であることを特徴とする磁気メモリ。 - 請求項1~3のいずれか1項記載の磁気メモリにおいて、前記固定層の前記記録層と反対側の面に接して反強磁性層が形成されていることを特徴とする磁気メモリ。
- 請求項4記載の磁気メモリにおいて、前記固定層は、非磁性の中間層を挟んだ2層の強磁性層で構成され、前記2層の強磁性層が非磁性層を介した反強磁性結合していることを特徴とする磁気メモリ。
- 請求項1~5のいずれか1項記載の磁気メモリにおいて、前記固定層はCoFeB、前記非磁性障壁層はMgO、前記第1の強磁性層はCoFeB、前記第2の強磁性層はCoxFe(1-x)からなり、xの範囲が0.3から0.7であることを特徴とする磁気メモリ。
- 請求項2記載の磁気メモリにおいて、前記記録層の上に、前記記録層と接してRu又はTaからなる層が形成されていることを特徴とする磁気メモリ。
- 請求項3記載の磁気メモリにおいて、前記第3の強磁性層は、Co,Ni,Feの合金で構成されていることを特徴とする磁気メモリ。
- 請求項1~8のいずれか1項記載の磁気メモリにおいて、前記磁気抵抗効果素子の一端に、前記磁気抵抗効果素子に通電するためのトランジスタが接続されていることを特徴とする磁気メモリ。
- 請求項9記載の磁気メモリにおいて、前記トランジスタの一端が第一の書込みドライバー回路に接続されたソース線に接続され、前記磁気抵抗効果素子の前記トランジスタに接続されていない側の一端が、第二の書込みドライバーと読出し信号を増幅するアンプに接続されたビット線に接続され、前記トランジスタの抵抗を制御するワード線を備え、前記ワード線が第三の書込みドライバーに接続されていることを特徴とする磁気メモリ。
- 請求項10記載の磁気メモリにおいて、前記記録層の磁化容易軸が、前記ビット線が延伸している方向と略垂直であることを特徴とする磁気メモリ。
- 請求項10記載の磁気メモリにおいて、
前記ビット線の一端に接続された第一の可変抵抗素子と、
前記ビット線の他端に接続された第二の可変抵抗素子と、
前記第一の可変抵抗素子の抵抗を変化せしめるために用いられる第一の電圧印加手段と、
前記第二の可変抵抗素子の抵抗を変化せしめるために用いられる第二の電圧印加手段と、を備え、
書込み動作時には、前記第一の電圧印加手段と前記第二の電圧印加手段との間に電流を流し、前記ビット線と前記ソース線との間にスピン偏極した電流を流すことで生じるスピントルクを用いて前記記録層の磁化を反転させることを特徴とする磁気メモリ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09841093.9A EP2405504B1 (en) | 2009-03-04 | 2009-03-04 | Magnetic memory |
JP2011502534A JP5318191B2 (ja) | 2009-03-04 | 2009-03-04 | 磁気メモリ |
KR1020117018689A KR101322544B1 (ko) | 2009-03-04 | 2009-03-04 | 자기 메모리 |
US13/147,820 US8957486B2 (en) | 2009-03-04 | 2009-03-04 | Magnetic memory |
PCT/JP2009/054070 WO2010100728A1 (ja) | 2009-03-04 | 2009-03-04 | 磁気メモリ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/054070 WO2010100728A1 (ja) | 2009-03-04 | 2009-03-04 | 磁気メモリ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010100728A1 true WO2010100728A1 (ja) | 2010-09-10 |
Family
ID=42709306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054070 WO2010100728A1 (ja) | 2009-03-04 | 2009-03-04 | 磁気メモリ |
Country Status (5)
Country | Link |
---|---|
US (1) | US8957486B2 (ja) |
EP (1) | EP2405504B1 (ja) |
JP (1) | JP5318191B2 (ja) |
KR (1) | KR101322544B1 (ja) |
WO (1) | WO2010100728A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146984A (ja) * | 2011-01-13 | 2012-08-02 | Crocus Technology Sa | 分極層を備える磁気トンネル接合 |
JP2013045800A (ja) * | 2011-08-22 | 2013-03-04 | Hitachi Ltd | トンネル磁気抵抗効果素子、非局所スピン注入素子、及びそれを用いた磁気ヘッド |
TWI728365B (zh) * | 2018-06-21 | 2021-05-21 | 新加坡商格羅方德半導體私人有限公司 | 具有改良密封環之mram裝置及其製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8988923B2 (en) * | 2012-09-11 | 2015-03-24 | The Regents Of The University Of California | Nonvolatile magneto-electric random access memory circuit with burst writing and back-to-back reads |
US9577179B2 (en) | 2013-02-07 | 2017-02-21 | International Business Machines Corporation | Electrostatically controlled magnetic logic device |
KR20170012791A (ko) | 2015-07-24 | 2017-02-03 | 에스케이하이닉스 주식회사 | 전자 장치의 제조 방법 |
JP6139623B2 (ja) * | 2015-09-15 | 2017-05-31 | 株式会社東芝 | 不揮発性半導体メモリ |
EP3382768B1 (en) * | 2015-11-27 | 2020-12-30 | TDK Corporation | Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory |
US10170691B2 (en) * | 2016-01-28 | 2019-01-01 | SK Hynix Inc. | Electronic device and method for fabricating the same |
US10439130B2 (en) * | 2016-10-27 | 2019-10-08 | Tdk Corporation | Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element |
TWI767971B (zh) * | 2017-01-03 | 2022-06-21 | 日商東京威力科創股份有限公司 | 工作件磁化系統及其操作方法 |
US10622048B2 (en) * | 2018-02-28 | 2020-04-14 | Tdk Corporation | Method for stabilizing spin element and method for manufacturing spin element |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734605A (en) | 1996-09-10 | 1998-03-31 | Motorola, Inc. | Multi-layer magnetic tunneling junction memory cells |
JP2004193595A (ja) * | 2002-11-26 | 2004-07-08 | Toshiba Corp | 磁気セル及び磁気メモリ |
JP2005294376A (ja) | 2004-03-31 | 2005-10-20 | Toshiba Corp | 磁気記録素子及び磁気メモリ |
JP2007142393A (ja) * | 2005-11-17 | 2007-06-07 | Hitachi Global Storage Technologies Netherlands Bv | 磁気抵抗センサ、及びその改良された交換バイアス構造体用の斜角でエッチングされた下層 |
JP2007150265A (ja) * | 2005-10-28 | 2007-06-14 | Toshiba Corp | 磁気抵抗効果素子および磁気記憶装置 |
JP2007281247A (ja) * | 2006-04-07 | 2007-10-25 | Toshiba Corp | スピンメモリ |
JP2007317734A (ja) | 2006-05-23 | 2007-12-06 | Sony Corp | 記憶素子及びメモリ |
JP2008198900A (ja) * | 2007-02-15 | 2008-08-28 | Toshiba Corp | 磁気記憶素子及び磁気記憶装置 |
JP2008311321A (ja) * | 2007-06-13 | 2008-12-25 | Hitachi Ltd | スピン蓄積磁化反転型のメモリ素子及びスピンram |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6767655B2 (en) | 2000-08-21 | 2004-07-27 | Matsushita Electric Industrial Co., Ltd. | Magneto-resistive element |
CN101114694A (zh) | 2002-11-26 | 2008-01-30 | 株式会社东芝 | 磁单元和磁存储器 |
JP4766835B2 (ja) * | 2003-12-05 | 2011-09-07 | 公秀 松山 | 静磁気結合を利用した磁性ランダムアクセスメモリセル |
JP5077802B2 (ja) * | 2005-02-16 | 2012-11-21 | 日本電気株式会社 | 積層強磁性構造体、及び、mtj素子 |
JP2007012696A (ja) * | 2005-06-28 | 2007-01-18 | Tdk Corp | 磁気メモリ |
US20070096229A1 (en) | 2005-10-28 | 2007-05-03 | Masatoshi Yoshikawa | Magnetoresistive element and magnetic memory device |
JP2007294737A (ja) * | 2006-04-26 | 2007-11-08 | Hitachi Ltd | トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ |
JP4380693B2 (ja) * | 2006-12-12 | 2009-12-09 | ソニー株式会社 | 記憶素子、メモリ |
JP2008252018A (ja) | 2007-03-30 | 2008-10-16 | Toshiba Corp | 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ |
US7982275B2 (en) * | 2007-08-22 | 2011-07-19 | Grandis Inc. | Magnetic element having low saturation magnetization |
JP5742142B2 (ja) * | 2010-09-08 | 2015-07-01 | ソニー株式会社 | 記憶素子、メモリ装置 |
-
2009
- 2009-03-04 EP EP09841093.9A patent/EP2405504B1/en not_active Not-in-force
- 2009-03-04 US US13/147,820 patent/US8957486B2/en not_active Expired - Fee Related
- 2009-03-04 JP JP2011502534A patent/JP5318191B2/ja not_active Expired - Fee Related
- 2009-03-04 WO PCT/JP2009/054070 patent/WO2010100728A1/ja active Application Filing
- 2009-03-04 KR KR1020117018689A patent/KR101322544B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734605A (en) | 1996-09-10 | 1998-03-31 | Motorola, Inc. | Multi-layer magnetic tunneling junction memory cells |
JP2004193595A (ja) * | 2002-11-26 | 2004-07-08 | Toshiba Corp | 磁気セル及び磁気メモリ |
JP2005294376A (ja) | 2004-03-31 | 2005-10-20 | Toshiba Corp | 磁気記録素子及び磁気メモリ |
JP2007150265A (ja) * | 2005-10-28 | 2007-06-14 | Toshiba Corp | 磁気抵抗効果素子および磁気記憶装置 |
JP2007142393A (ja) * | 2005-11-17 | 2007-06-07 | Hitachi Global Storage Technologies Netherlands Bv | 磁気抵抗センサ、及びその改良された交換バイアス構造体用の斜角でエッチングされた下層 |
JP2007281247A (ja) * | 2006-04-07 | 2007-10-25 | Toshiba Corp | スピンメモリ |
JP2007317734A (ja) | 2006-05-23 | 2007-12-06 | Sony Corp | 記憶素子及びメモリ |
JP2008198900A (ja) * | 2007-02-15 | 2008-08-28 | Toshiba Corp | 磁気記憶素子及び磁気記憶装置 |
JP2008311321A (ja) * | 2007-06-13 | 2008-12-25 | Hitachi Ltd | スピン蓄積磁化反転型のメモリ素子及びスピンram |
Non-Patent Citations (6)
Title |
---|
APPLIED PHYSICS LETTERS, vol. 84, 2004, pages 2118 - 2120 |
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 159, 1996, pages LI-6 |
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 159, 1996, pages LL-6 |
PHYSICAL REVIEW B, vol. 62, no. 1, pages 570 - 578 |
PHYSICAL REVIEW LETTERS, vol. 84, no. 14, 2000, pages 2149 - 2152 |
See also references of EP2405504A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146984A (ja) * | 2011-01-13 | 2012-08-02 | Crocus Technology Sa | 分極層を備える磁気トンネル接合 |
JP2013045800A (ja) * | 2011-08-22 | 2013-03-04 | Hitachi Ltd | トンネル磁気抵抗効果素子、非局所スピン注入素子、及びそれを用いた磁気ヘッド |
TWI728365B (zh) * | 2018-06-21 | 2021-05-21 | 新加坡商格羅方德半導體私人有限公司 | 具有改良密封環之mram裝置及其製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110112428A (ko) | 2011-10-12 |
EP2405504B1 (en) | 2014-12-17 |
JPWO2010100728A1 (ja) | 2012-09-06 |
US20120012955A1 (en) | 2012-01-19 |
EP2405504A4 (en) | 2014-01-15 |
JP5318191B2 (ja) | 2013-10-16 |
US8957486B2 (en) | 2015-02-17 |
EP2405504A1 (en) | 2012-01-11 |
KR101322544B1 (ko) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5318191B2 (ja) | 磁気メモリ | |
JP5460606B2 (ja) | 分離cppアシスト書込を行うスピン注入mramデバイス | |
JP5623507B2 (ja) | スピントルクの切換を補助する層を有する、スピントルクの切換を持つ磁気積層体 | |
JP4371781B2 (ja) | 磁気セル及び磁気メモリ | |
US7348589B2 (en) | Low power consumption magnetic memory and magnetic information recording device | |
US6730949B2 (en) | Magnetoresistance effect device | |
JP3863536B2 (ja) | 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法 | |
US20080180859A1 (en) | Magnetoresistive element and magnetic memory | |
JP2007103471A (ja) | 記憶素子及びメモリ | |
KR20120046085A (ko) | 수직 이방성 및 향상층을 갖는 자기 터널 접합 셀들 | |
JP2009252878A (ja) | 磁気記憶装置 | |
WO2010007893A1 (ja) | 磁気ランダムアクセスメモリ及びその初期化方法 | |
JP2014072393A (ja) | 記憶素子、記憶装置、磁気ヘッド | |
TWI422083B (zh) | Magnetic memory lattice and magnetic random access memory | |
JP2006295001A (ja) | 記憶素子及びメモリ | |
JP4187021B2 (ja) | 記憶素子及びメモリ | |
JP7347799B2 (ja) | 磁気抵抗効果素子及び磁気メモリ | |
JP2004087870A (ja) | 磁気抵抗効果素子および磁気メモリ装置 | |
JP2007053143A (ja) | 記憶素子、メモリ | |
US20110291209A1 (en) | Magnetic memory device | |
TWI447725B (zh) | Magnetic memory | |
JP2008060583A (ja) | 電流誘導スイッチングを利用した磁気メモリ素子 | |
JP2002353418A (ja) | 磁気抵抗効果素子および磁気メモリ装置 | |
JP2009146995A (ja) | 磁気記憶装置 | |
JP2002280642A (ja) | 磁気抵抗効果素子、磁気記憶装置、携帯端末装置、磁気抵抗効果ヘッド、磁気再生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09841093 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011502534 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009841093 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13147820 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117018689 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |