WO2010098167A1 - 太陽電池電極用ペースト組成物 - Google Patents

太陽電池電極用ペースト組成物 Download PDF

Info

Publication number
WO2010098167A1
WO2010098167A1 PCT/JP2010/051174 JP2010051174W WO2010098167A1 WO 2010098167 A1 WO2010098167 A1 WO 2010098167A1 JP 2010051174 W JP2010051174 W JP 2010051174W WO 2010098167 A1 WO2010098167 A1 WO 2010098167A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
mol
range
electrode
paste
Prior art date
Application number
PCT/JP2010/051174
Other languages
English (en)
French (fr)
Inventor
高啓 杉山
淳 長井
歩 村上
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to KR1020117022303A priority Critical patent/KR101674233B1/ko
Priority to DE112010000891T priority patent/DE112010000891T5/de
Priority to CN201080017522.2A priority patent/CN102405530B/zh
Priority to US13/203,359 priority patent/US8512601B2/en
Publication of WO2010098167A1 publication Critical patent/WO2010098167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a paste composition suitable for a solar cell electrode formed by a fire-through method.
  • a general silicon-based solar cell is provided with an antireflection film and a light-receiving surface electrode on an upper surface of a silicon substrate which is a p-type polycrystalline semiconductor via an n + layer, and on the lower surface via a p + layer. It has a structure provided with electrodes (hereinafter simply referred to as “electrodes” when they are not distinguished from each other).
  • the antireflection film is for reducing the surface reflectance while maintaining sufficient visible light transmittance, and is made of a thin film of silicon nitride, titanium dioxide, silicon dioxide or the like.
  • the light-receiving surface electrode of the solar cell is formed by a method called fire-through, for example.
  • this electrode forming method for example, after the antireflection film is provided on the entire surface of the n + layer, a conductive paste is applied on the antireflection film in an appropriate shape by using, for example, a screen printing method, and is fired. Apply.
  • the process is simplified as compared with the case where the antireflection film is partially removed and an electrode is formed on the removed portion, and the problem of misalignment between the removed portion and the electrode forming position does not occur. .
  • the conductive paste is mainly composed of, for example, silver powder, glass frit (a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material), an organic vehicle, and an organic solvent.
  • glass frit a piece of flaky or powdered glass that is crushed as necessary after melting and quenching the glass raw material
  • organic vehicle for example, an organic solvent.
  • the glass component in the conductive paste breaks the antireflection film, so that an ohmic contact is formed by the conductive component in the conductive paste and the n + layer (for example, Patent Documents). See 1).
  • a silver-containing paste containing 85 to 99 (wt%) silver and 1 to 15 (wt%) glass the glass is mixed with 15 to 75 (mol%) PbO and 5 to 50 (mol%) SiO. comprises 2, it is a composition that does not contain B 2 O 3 has been proposed (e.g., see Patent Document 4.).
  • This silver-containing paste is used for forming an electrode of a solar cell, and the ohmic contact is improved by using the glass having the above composition.
  • a thick film conductive composition in which silver powder, a zinc-containing additive, and a glass frit having a softening point in the range of 300 to 600 (° C.) are dispersed in an organic solvent has been proposed (for example, a patent (Ref. 5).
  • This thick film conductive composition is for forming a light-receiving surface electrode of a solar cell, and conductivity and solder adhesion are improved by adding zinc.
  • the firing temperature greatly affects the solar cell output. If the firing profile deviates from the optimum firing temperature for generating the light-receiving surface electrode from the electrode paste, the action of glass and silver breaking the antireflection film decreases, and as a result ohmic contact between the light-receiving surface electrode and the n + layer As a result, the solar cell output will be reduced.
  • the range of the optimum firing temperature is as small as about 10 (° C.) or less, it has been difficult to reliably obtain a high output solar cell. The same applies to various proposals for improving the ohmic contact as described above.
  • the optimum firing temperature is the temperature at which the maximum value of the fill factor is obtained.
  • each of the silicon substrate there are variations in the thickness of each of the silicon substrate, the antireflection film, and the n layer, etc., so that each optimum firing condition varies. It will be.
  • the maximum value of the fill factor is obtained in a sufficiently wide temperature range for each substrate, but the optimum firing temperature range for each lot that is determined by the overlapping range of the optimum firing temperature range of each substrate in the production lot is It was narrow due to the above variation.
  • the takt time of the solar cell manufacturing process is as short as about 3 seconds per sheet, it is impossible to optimize the firing conditions in consideration of the variation of each sheet.
  • the present invention has been made in the background of the above circumstances, and an object thereof is to provide a solar cell electrode paste composition having a wide optimum firing temperature range in a firing step of solar cell production.
  • the gist of the present invention is a paste composition for a solar cell electrode comprising conductive powder, glass frit, and a vehicle, wherein (a) the glass frit is an oxide. It is made of glass containing PbO 46 to 57 (mol%), B 2 O 3 1 to 7 (mol%), and SiO 2 38 to 53 (mol%) in terms of conversion.
  • the solar cell electrode paste composition has a glass frit constituting PbO 46 to 57 (mol%), B 2 O 3 1 to 7 (mol%), SiO 2 38 to 53 (mol). %),
  • the optimum firing temperature range of the solar cell that uses this to form the light-receiving surface electrode is widened.
  • the optimum firing temperature range for each production lot extends to about 30-40 (° C). Therefore, the fire-through property is improved and the ohmic contact is improved, so that the average output per production lot is improved.
  • PbO is a component that lowers the softening point of glass and is essential for enabling low-temperature firing.
  • PbO in order to obtain good fire-through properties, it is necessary that PbO is 46 (mol%) or more and 57 (mol%) or less.
  • the amount of PbO is more preferably 49 (mol%) or more, and further preferably 54 (mol%) or less. That is, the range of 49 to 54 (mol%) is more preferable.
  • B 2 O 3 is a glass-forming oxide (that is, a component that forms a glass skeleton), and is an essential component for lowering the softening point of glass.
  • B 2 O 3 in order to obtain good fire-through properties, B 2 O 3 needs to be 1 (mol%) or more and 7 (mol%) or less.
  • the amount of B 2 O 3 is more preferably 3 (mol%) or more, and further preferably 5 (mol%) or less. That is, the range of 3 to 5 (mol%) is more preferable.
  • SiO 2 is a glass forming oxide and is an essential component for increasing the chemical resistance of glass.
  • SiO 2 in order to obtain good fire-through properties, SiO 2 needs to be 38 (mol%) or more and 53 (mol%) or less.
  • the amount of SiO 2 is more preferably 43 (mol%) or more, and more preferably 48 (mol%) or less. That is, the range of 43 to 48 (mol%) is more preferable.
  • the glass constituting the electrode paste of the present invention may contain other various glass components and additives as long as the properties are not impaired.
  • Al, Zr, Na, Li, Ca, Zn, Mg, K, Ti, Ba, Sr, etc. may be contained. These may be included in a total range of 10 (mol%) or less, for example.
  • Patent Document 3 is composed of glass containing glass frit in the range of Bi 2 O 3 20 (mol%) or more, B 2 O 3 50 (mol%) or less, SiO 2 60 (mol%) or less.
  • a conductive paste is described.
  • the purpose of this conductive paste is to improve that lead-based glass has poor wettability and connection reliability cannot be obtained when lead terminals or the like are attached using lead-free solder.
  • proposals focusing on the composition of the glass frit constituting the conductive paste have been made in the past.
  • the conductive paste is completely different in purpose and composition from the electrode paste of the present invention. Is different.
  • the glass frit has an average particle diameter in the range of 0.5 to 3 ( ⁇ m).
  • the average particle size is 0.5 ( ⁇ m) or more, the dispersibility at the time of preparing the paste is further improved, and thus good printability is obtained.
  • the larger the average particle size of the glass frit the more difficult it is to melt the glass and the FF value tends to decrease, so to obtain a sufficiently high FF value, the average particle size should be 3 ( ⁇ m) or less. Is preferred.
  • the solar cell electrode paste composition includes the glass frit in a ratio within a range of 7 to 35 (vol%) with respect to the entire paste.
  • the antireflective film is suitably dissolved by the glass frit in the paste, so that a better ohmic contact can be obtained and the FF value can be further increased.
  • the glass frit is contained in an amount of 7 (vol%) or more, the solubility of the antireflection film becomes extremely high, so that the optimum firing temperature range is further widened.
  • it is 35 (vol%) or less, since an insulating layer is difficult to form, the high electroconductivity between an electrode and a board
  • the conductive powder is a silver powder.
  • the conductive powder copper powder, nickel powder or the like can be used, but silver powder is most preferable because high conductivity can be obtained.
  • the solar cell electrode paste composition contains 64 to 90 parts by weight of the silver powder and 5 to 20 parts by weight of the vehicle. By doing so, it is possible to obtain a conductive composition that can produce an electrode having good printability, high conductivity, and good solder wettability. If the silver powder is too small, high conductivity cannot be obtained, and if it is excessive, the fluidity is lowered and the printability is deteriorated. If the glass frit is too small, the adhesion to the substrate is insufficient. If the glass frit is excessive, the glass floats on the electrode surface after firing, resulting in poor solder wettability.
  • the silver powder is not particularly limited, and the basic effect of the present invention that the optimum firing temperature range can be expanded regardless of the shape of the powder, such as a spherical shape or a scale shape, can be enjoyed.
  • the printability is excellent and the filling rate of the silver powder in the coating film is increased. Therefore, in combination with the use of highly conductive silver, Compared with the case where silver powder of another shape such as a shape is used, the conductivity of the electrode generated from the coating film is increased. Therefore, the line width can be further reduced while ensuring the necessary conductivity. Therefore, if the conductive composition is applied to the light-receiving surface electrode to reduce the line width, the light-receiving area capable of absorbing solar energy can be further increased, and thus a solar cell with higher conversion efficiency can be obtained.
  • the conductive composition of the present invention can be suitably used for the light-receiving surface electrode because it can suitably control the diffusion of silver during the electrode formation by fire-through as described above.
  • it is not limited to the light receiving surface electrode, and can be used as a back surface electrode.
  • the back electrode is composed of an aluminum film covering the entire surface and a strip-like electrode overlapping therewith, but is also suitable as a constituent material of the strip-like electrode.
  • the glass frit can be synthesized from various raw materials that can be vitrified within the composition range, and examples thereof include oxides, carbonates, nitrates, etc.
  • the Si source include silicon dioxide SiO 2.
  • B source boron oxide B 2 O 3 can be used, and as the Pb source, red lead Pb 3 O 4 can be used.
  • composition includes other components such as Al and Zr in addition to the main components Si, B and Pb, for example, their oxides, hydroxides, carbonates, nitrates and the like may be used.
  • FIG. 3 It is a schematic diagram which shows the cross-sectional structure of the solar cell with which the paste composition for electrodes of one Example of this invention was applied for formation of a light-receiving surface electrode. It is a figure which shows an example of the light-receiving surface electrode pattern of the solar cell of FIG. It is the figure which represented the main component composition of the glass frit used by the Example and the comparative example to the triangular diagram. In the triangular diagram of FIG. 3, it is a figure which expands and shows the area
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a silicon-based solar cell 10 to which a conductive composition according to an embodiment of the present invention is applied.
  • a solar cell 10 is formed on a silicon substrate 12 which is, for example, a p-type polycrystalline semiconductor, an n + layer 14 and a p + layer 16 respectively formed on the upper and lower surfaces thereof, and the n + layer 14.
  • the antireflection film 18 and the light receiving surface electrode 20, and the back electrode 22 formed on the p + layer 16 are provided.
  • the n + layer 14 and the p + layer 16 are provided by forming layers having a high impurity concentration on the upper and lower surfaces of the silicon substrate 12, and the thickness dimension of the high concentration layer, that is, the layers 14 and 16 are formed.
  • the thickness dimension is, for example, about 0.5 ( ⁇ m).
  • the impurity contained in the n + layer 14 is, for example, phosphorus (P) that is an n-type dopant
  • the impurity contained in the p + layer 16 is, for example, boron (B) that is a p-type dopant.
  • the antireflection film 18 is a thin film made of, for example, silicon nitride Si 3 N 4 , and is provided with an optical thickness of, for example, about 1 ⁇ 4 of the visible light wavelength. It has a very low reflectivity of about 2%.
  • the light-receiving surface electrode 20 is made of, for example, a thick film conductor having a uniform thickness. As shown in FIG. 2, the light-receiving surface electrode 20 is a comb having a large number of thin line portions substantially on the entire surface of the light-receiving surface 24. Are provided in a planar shape.
  • the above thick film conductor is composed of thick film silver containing about 67 to 98 (wt%) Ag and about 2 to 33 (wt%) glass. The glass is an oxide equivalent value, and PbO This lead glass contains 46 to 57 (mol%), B 2 O 3 in a range of 1 to 7 (mol%), and SiO 2 in a ratio of 38 to 53 (mol%).
  • the thickness dimension of the conductor layer is, for example, in the range of 15 to 20 ( ⁇ m), for example, about 17 ( ⁇ m), and the width dimension of each thin wire portion is in the range of, for example, 80 to 130 ( ⁇ m). It is about 100 ( ⁇ m) and has sufficiently high conductivity.
  • the back electrode 22 is formed by applying a full-surface electrode 26 formed by applying a thick film material containing aluminum as a conductor component on the p + layer 16 over almost the entire surface, and a strip-like application on the full-surface electrode 26.
  • the band-shaped electrode 28 made of thick film silver is formed.
  • the belt-like electrode 28 is provided in order to make it possible to solder a conducting wire or the like to the back electrode 22.
  • the light-receiving surface electrode 20 is composed of thick film silver containing lead glass having the above-described composition in the range of 2 to 33 (wt%) as described above.
  • the firing margin is large as compared with a solar cell using various kinds of glass conventionally used.
  • the light-receiving surface electrode 20 as described above is formed by a well-known fire-through method using an electrode paste made of, for example, conductor powder, glass frit, vehicle, and solvent.
  • An example of the manufacturing method of the solar cell 10 including the formation of the light receiving surface electrode will be described below together with the manufacturing method of the conductive composition of the comparative example.
  • the glass frit is produced. Silicon dioxide SiO2 as Si source, boron oxide B 2 O 3 as B source, lead oxide Pb 3 O 4 as Pb source, aluminum oxide Al 2 O 3 as Al source, zirconium oxide ZrO 2 as Zr source, Table 1 shows sodium oxide Na 2 O as the Na source, lithium oxide Li 2 O as the Li source, calcium oxide CaO as the Ca source, zinc oxide ZnO as the Zn source, and magnesium oxide MgO as the Mg source. It was weighed and prepared so as to have the composition shown. This was put into a crucible and melted for about 30 minutes to 1 hour at a temperature in the range of 900 to 1100 (° C.) depending on the composition to be vitrified. The obtained glass is pulverized using an appropriate pulverizer such as a pot mill to obtain powder having an average particle size of 0.4 ( ⁇ m), 0.6 ( ⁇ m), 1.5 ( ⁇ m), 3.0 ( ⁇ m), 4.0 ( ⁇ m). It was.
  • the conductor powder for example, a commercially available spherical silver powder having an average particle diameter in the range of 1 to 3 ( ⁇ m), for example, about 2 ( ⁇ m) was prepared.
  • the vehicle is prepared by dissolving an organic binder in an organic solvent.
  • butyl carbitol acetate is used as the organic solvent
  • ethyl cellulose is used as the organic binder.
  • the ratio of ethyl cellulose in the vehicle is, for example, about 15 (wt%).
  • a solvent added separately from the vehicle is, for example, butyl carbitol acetate. That is, although not limited to this, the same solvent as that used for the vehicle may be used. This solvent is added for the purpose of adjusting the viscosity of the paste.
  • the paste materials above for example, the ratio of conductor powder 64 to 82 (wt%), glass frit 2 to 20 (wt%), vehicle 13 (wt%), solvent 3 (wt%) Then, after mixing using a stirrer or the like, for example, a dispersion treatment is performed using a three-roll mill. Thereby, the electrode paste is obtained.
  • the total amount of the conductor powder and the glass frit was 84 (wt%), and the total amount of the vehicle and the solvent was 16 (wt%).
  • Table 1 shows the composition of the glass frit in each of the examples and the comparative examples, the particle size, the added amount, and the characteristics of the solar cell 10 when the light-receiving surface electrode 20 is formed using each glass frit. This is a summary of the evaluation results.
  • the glass frit amount is expressed as a volume with respect to the entire paste.
  • the n + layer 14 and the p + are diffused or implanted into an appropriate silicon substrate by a well-known method such as a thermal diffusion method or ion plantation.
  • a silicon substrate 12 is produced.
  • a silicon nitride thin film is formed thereon by an appropriate method such as spin coating, and the antireflection film 18 is provided.
  • the electrode paste is screen-printed on the antireflection film 18 with the pattern shown in FIG. This is dried at, for example, 150 (° C.), and further baked at a temperature in the range of 760 to 900 (° C.) in a near infrared furnace.
  • the glass component in the electrode paste dissolves the antireflection film 18 in the firing process, and the electrode paste breaks the antireflection film 18, so that the conductor component in the electrode paste, that is, silver and the n + layer 14
  • ohmic contact between the silicon substrate 12 and the light receiving surface electrode 20 is obtained.
  • the light receiving surface electrode 20 is formed in this way.
  • the said back surface electrode 22 may be formed after the said process, it can also be formed by baking simultaneously with the light-receiving surface electrode 20.
  • FIG. When the back electrode 22 is formed, the entire surface electrode 26 made of a thick aluminum film is formed by applying, for example, an aluminum paste to the entire back surface of the silicon substrate 12 by screen printing or the like and performing a baking process. Further, the strip electrode 28 is formed by applying the electrode paste on the surface of the entire surface electrode 26 in a strip shape using a screen printing method or the like and performing a baking treatment. Thereby, the back electrode 22 which consists of the full surface electrode 26 which covers the whole back surface, and the strip
  • the characteristics shown in the rightmost column 2 of Table 1 described above are the firing temperature for each of the Examples and Comparative Examples in which the glass composition, particle size, and addition amount were variously changed.
  • the light-receiving surface electrode 20 is changed within the above range, the output of the obtained solar cell 10 is measured, the maximum value of the fill factor FF, and the FF value equal to or higher than 1% lower than the maximum value. This is the result of evaluating the temperature range in which the above is obtained, that is, the firing margin.
  • the output of the solar cell 10 was measured using a commercially available solar simulator.
  • the solar cell can be used if an FF value of 70 or more is obtained, but it is of course preferable that the FF value is higher.
  • FF values of 74 to 75 are obtained, and a sufficiently high output can be obtained.
  • a sufficiently wide firing margin of 30 to 40 (° C.) is obtained.
  • PbO is 46 to 57 (mol%)
  • B 2 O 3 is 1 to 7 (mol%)
  • SiO 2 is 38 to 53 (mol%).
  • the FF value is sufficiently high and the firing margin is sufficiently wide.
  • Al 2 O 3 is 3 (mol%) or less
  • ZrO 2 is 5 (mol%) or less
  • Na 2 O is 3 (mol%).
  • Li 2 O is 7 (mol%) or less
  • CaO is 2 (mol%) or less
  • ZnO is 1 (mol%) or less
  • MgO is contained in the range of 5 (mol%) or less. Special characteristics can be obtained.
  • the firing margin is a value that takes into account the influence of variations in substrate thickness within the production lot on the optimum firing temperature. That is, even when the thickness variation is taken into consideration, the temperature range in which “FF maximum value ⁇ 1%” is obtained is sufficiently wide as 30 to 40 (° C.).
  • Comparative Examples 12 to 15 the glass composition is included in the scope of the present invention, and the characteristics are slightly lower than those in Examples 1 to 22, but the glass compositions can be used for solar cells. Therefore, these can be added to the examples, but here they are classified as comparative examples. Comparative Examples 12 and 13 have the same composition as Example 10, but the amount of glass frit added is too small (5 (vol%)) or excessive (47 (vol%)), so the FF value is slightly lower. It stays at 70-71. However, this value satisfies the minimum requirements for solar cell applications, and the firing margin is sufficiently wide at 30 (° C.), and thus the present invention includes such a configuration.
  • Comparative Examples 14 and 15 the composition is the same as that of Example 4, but the particle size of the glass frit is too small (0.4 ( ⁇ m)) or too large (4.0 ( ⁇ m)).
  • the firing margin is limited to a narrow range of 15 to 20 ° C.
  • this FF value satisfies the minimum requirements for solar cell applications and can be said to be improved as compared with Comparative Examples 1 to 11 in which the firing margin is 10 (° C.) or less. Such a configuration is also included.
  • the glass composition constituting the glass frit is 46 to 57 (mol%) PbO and 1 to 7 (mol%) B 2 O 3 (preferably 3 (mol%) or more. ) If SiO 2 is in the range of 38 to 53 (mol%), an electrode paste having an FF value of 70 or more and a firing margin of 15 (° C.) or more can be obtained. Further, when the addition amount of the glass frit is in the range of 7 to 35 (vol%), a higher FF value can be obtained than in the case outside the range. If the particle size of the glass frit is in the range of 0.5 to 3.0 ( ⁇ m) (preferably 0.6 to 3.0 ( ⁇ m)), the firing margin can be expanded to 30 (° C.) or more.
  • FIG. 3 is a triangular diagram showing the composition ratios of the main components Pb, B, and Si of the glass frit used in Examples 1 to 10 and Comparative Examples 1 to 10 shown in Table 1, respectively.
  • FIG. 5 shows an enlarged region in which the compositions of other examples and comparative examples except comparative example 11 are distributed.
  • the other examples and comparative examples described above are compositions that are significantly different from those of Comparative Example 11, and the others are listed because they contain other components or have the same composition but different particle sizes or addition amounts. Was omitted.
  • the range surrounded by the alternate long and short dash line and shaded is the composition range of the main component of the present invention.
  • the compositions of Comparative Examples 1 to 15 are selected so as to be distributed around the periphery.
  • Comparative Examples 1 and 5 to 8 which are relatively close to the composition range of the examples, the maximum FF value is sufficiently high, but the firing margin becomes narrow to 5 to 10 (° C.).
  • FIG. 5 shows an enlarged view of the region in the vicinity of the embodiment shown in FIG.
  • Table 1 an FF value of 74 (%) or more and a firing margin of 30 (° C.) or more can be obtained within the range of the present embodiment, regardless of the glass frit having any composition.
  • a glass frit having a composition within the range surrounded by the two-dot chain line in FIG. 5 is used, a more preferable result is obtained with an FF value of 75 (%) and a firing margin of 40 (° C.).
  • PbO is in the range of 49 to 54 (mol%)
  • B 2 O 3 is in the range of 3 to 5 (mol%)
  • SiO 2 is in the range of 43 to 48 (mol%).
  • glass frit is used.
  • the electrode paste of the solar cell 10 has a glass frit constituting 46 to 57 (mol%) of PbO, 1 to 7 (mol%) of B 2 O 3 , SiO 2 Is made of glass in the range of 38 to 53 (mol%), the optimum firing temperature range of the solar cell 10 for forming the light-receiving surface electrode 20 by using this is widened.
  • the optimum firing temperature range for each production lot extends to about 30-40 (° C). Therefore, the fire-through property is improved and the ohmic contact is improved, so that the average output per production lot is improved.
  • the antireflection film 18 is made of a silicon nitride film.
  • the constituent material is not particularly limited, and various other materials such as titanium dioxide TiO 2 generally used for solar cells. Those consisting of can be used as well.
  • the present invention is applicable to any solar cell that can form a light-receiving surface electrode by a fire-through method.
  • the substrate material is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 太陽電池製造の焼成工程における最適焼成温度範囲が広い太陽電池電極用ペースト組成物を提供する。 太陽電池10の電極用ペーストは、これを構成するガラスフリットがPbOが46~57(mol%)、B2O3が1~7(mol%)、SiO2が38~53(mol%)の範囲内のガラスから成ることから、これを用いて受光面電極20を形成する太陽電池10の最適焼成温度範囲が広くなる。例えば、製造ロット毎の最適焼成温度範囲が30~40(℃)程度に広がる。そのため、ファイヤースルー性が向上してオーミックコンタクトが改善されるので、製造ロット当たりの平均出力が向上する。

Description

太陽電池電極用ペースト組成物
 本発明は、ファイヤースルー法で形成する太陽電池電極用に好適なペースト組成物に関する。
 例えば、一般的なシリコン系太陽電池は、p型多結晶半導体であるシリコン基板の上面にn+層を介して反射防止膜および受光面電極が備えられると共に、下面にp+層を介して裏面電極(以下、これらを区別しないときは単に「電極」という。)が備えられた構造を有している。上記反射防止膜は、十分な可視光透過率を保ちつつ表面反射率を低減するためのもので、窒化珪素、二酸化チタン、二酸化珪素等の薄膜から成る。
 上記の太陽電池の受光面電極は、例えば、ファイヤースルーと称される方法で形成される。この電極形成方法では、例えば、前記反射防止膜をn+層上の全面に設けた後、例えばスクリーン印刷法を用いてその反射防止膜上に導電性ペーストを適宜の形状で塗布し、焼成処理を施す。この方法によれば、反射防止膜を部分的に除去してその除去部分に電極を形成する場合に比較して工程が簡単になり、除去部分と電極形成位置との位置ずれの問題も生じない。上記導電性ペーストは、例えば、銀粉末と、ガラスフリット(ガラス原料を溶融し急冷した後に必要に応じて粉砕したフレーク状または粉末状のガラスのかけら)と、有機質ベヒクルと、有機溶媒とを主成分とするもので、焼成過程において、この導電性ペースト中のガラス成分が反射防止膜を破るので、導電性ペースト中の導体成分とn+層とによってオーミックコンタクトが形成される(例えば、特許文献1を参照。)。
 このような太陽電池の受光面電極形成において、ファイヤースルー性を向上させてオーミックコンタクトを改善し、延いては曲線因子(FF)やエネルギー変換効率を高める等の目的で、従来から種々の提案が為されている。例えば、導電性ペーストに燐などの5族元素を添加することによって、ガラスおよび銀の反射防止膜に対する酸化還元作用を促進し、ファイヤースルー性を向上させたものがある(例えば、前記特許文献1を参照。)。また、導電性ペーストに塩化物、臭化物、或いはフッ化物を添加することで、ガラスおよび銀が反射防止膜を破る作用をこれら添加物が補助してオーミックコンタクトを改善するものがある(例えば、特許文献2を参照。)。
 また、85~99(wt%)の銀および1~15(wt%)のガラスを含む銀含有ペーストにおいて、そのガラスを15~75(mol%)のPbOおよび5~50(mol%)のSiO2を含み、B2O3を含まない組成とすることが提案されている(例えば、特許文献4を参照。)。この銀含有ペーストは、太陽電池の電極形成に用いるものであって、上記組成のガラスを用いることによって、オーミックコンタクトが改善されるものとされている。
 また、銀粉末と、亜鉛含有添加剤と、軟化点が300~600(℃)の範囲内のガラスフリットとを有機溶媒中に分散した厚膜導電性組成物が提案されている(例えば、特許文献5を参照。)。この厚膜導電性組成物は太陽電池の受光面電極を形成するためのもので、亜鉛を添加することで導電性とはんだ接着性とが改善される。
 また、酸化亜鉛が40~70(wt%)、酸化鉛が1~10(wt%)の範囲内のガラスフリットと銀等の導電性材料とを含む太陽電池素子用導電性ペーストが提案されている(例えば、特許文献6を参照。)。このペーストによれば、電極表面を半田等で被覆することなく接着強度を確保できるので、信頼性の高い電極層を高い生産性で作製することができる。
特公平03-046985号公報 特許第3707715号公報 特開平11-329072号公報 特表2008-520094号公報 特開2006-302890号公報 特開2007-281023号公報
 ところで、上述したようなファイヤースルー法を利用した太陽電池製造においては、焼成温度が太陽電池出力に大きく影響する。電極用ペーストから受光面電極を生成するための最適焼成温度から焼成プロファイルが外れると、ガラスおよび銀が反射防止膜を破る作用が低下し、延いては受光面電極とn+層とのオーミックコンタクトが悪くなるため、太陽電池出力が低下することとなる。しかしながら、従来の電極用ペーストでは、最適焼成温度の範囲が例えば10(℃)以下程度と小さいので、高出力の太陽電池を確実に得ることは困難であった。これは、前述したようなオーミックコンタクトを改善するための種々の提案においても同様である。なお、ここで最適焼成温度は、曲線因子の最大値が得られる温度である。
 因みに、現状のシリコン系太陽電池の製造においては、シリコン基板、反射防止膜、n層の各々の厚さ寸法等、基板1枚1枚のばらつきがあるため、各々の最適焼成条件がこれによりばらつくこととなる。個々の基板では曲線因子の最大値が十分に広い温度範囲で得られるが、製造ロット内の個々の基板の最適焼成温度範囲の重なる範囲で定められることとなるロット毎の最適焼成温度範囲は、上記のばらつきに起因して狭くなっていた。なお、太陽電池製造工程のタクトタイムは1枚3秒程度と極めて短時間であるため、1枚1枚のばらつきを考慮して焼成条件を最適化することは不可能である。
 本発明は、以上の事情を背景として為されたもので、その目的は、太陽電池製造の焼成工程における最適焼成温度範囲が広い太陽電池電極用ペースト組成物を提供することにある。
 斯かる目的を達成するため、本発明の要旨とするところは、導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池電極用ペースト組成物であって、(a)前記ガラスフリットが酸化物換算でPbO 46~57(mol%)、B2O3 1~7(mol%)、SiO2 38~53(mol%)の範囲内の割合で含むガラスから成ることにある。
 このようにすれば、太陽電池電極用ペースト組成物は、これを構成するガラスフリットがPbO 46~57(mol%)、B2O3 1~7(mol%)、SiO2 38~53(mol%)の範囲内の割合で含むガラスから成ることから、これを用いて受光面電極を形成する太陽電池の最適焼成温度範囲が広くなる。例えば、製造ロット毎の最適焼成温度範囲が30~40(℃)程度に広がる。そのため、ファイヤースルー性が向上してオーミックコンタクトが改善されるので、製造ロット当たりの平均出力が向上する。
 なお、前記ガラスフリット組成において、PbOは、ガラスの軟化点を低下させる成分で、低温焼成を可能とするために必須である。本発明において、良好なファイヤースルー性を得るためには、PbOが46(mol%)以上且つ57(mol%)以下であることが必要である。PbO量は、49(mol%)以上が一層好ましく、54(mol%)以下が一層好ましい。すなわち、49~54(mol%)の範囲が更に好ましい。
 また、B2O3は、ガラス形成酸化物(すなわちガラスの骨格を作る成分)であり、ガラスの軟化点を低くするために必須の成分である。本発明において、良好なファイヤースルー性を得るためには、B2O3が1(mol%)以上且つ7(mol%)以下であることが必要である。B2O3量は、3(mol%)以上が一層好ましく、5(mol%)以下が一層好ましい。すなわち、3~5(mol%)の範囲が更に好ましい。
 また、SiO2は、ガラス形成酸化物であり、ガラスの耐化学性を高くするために必須の成分である。本発明において、良好なファイヤースルー性を得るためには、SiO2が38(mol%)以上且つ53(mol%)以下であることが必要である。SiO2量は、43(mol%)以上が一層好ましく、48(mol%)以下が一層好ましい。すなわち、43~48(mol%)の範囲が更に好ましい。
 なお、上記各成分は、ガラス中に如何なる形態で含まれているか必ずしも特定が困難であるが、これらの割合は何れも酸化物換算した値とした。
 また、本発明の電極用ペーストを構成する前記ガラスは、その特性を損なわない範囲で他の種々のガラス構成成分や添加物を含み得る。例えば、Al、Zr、Na、Li、Ca、Zn、Mg、K、Ti、Ba、Sr等が含まれていても差し支えない。これらは例えば合計10(mol%)以下の範囲で含まれ得る。
 因みに、前記特許文献3には、ガラスフリットをBi2O3 20(mol%)以上、B2O3 50(mol%)以下、SiO2 60(mol%)以下の範囲内で含むガラスで構成した導電性ペーストが記載されている。この導電性ペーストは、リード端子等を無鉛はんだを用いて取り付ける場合に鉛系ガラスでは濡れ性が悪く接続信頼性が得られないことの改善を目的としたものである。このように、本願発明と同様に導電性ペーストを構成するガラスフリットの組成に着目した提案が従来から為されているが、上記導電性ペーストは本願発明の電極用ペーストとは目的も組成も全く相違する。
 ここで、好適には、前記ガラスフリットは平均粒径が0.5~3(μm)の範囲内である。このようにすれば、一層印刷性が良好で一層高いFF値が得られる太陽電池電極用ペースト組成物が得られる。平均粒径が0.5(μm)以上であれば、ペースト調合時の分散性に一層優れ、延いては良好な印刷性が得られる。一方、ガラスフリットの平均粒径が大きくなるほどガラスが溶融し難くなってFF値が低下する傾向があるため、十分に高いFF値を得るためには平均粒径を3(μm)以下とすることが好ましい。
 また、好適には、前記太陽電池電極用ペースト組成物は、前記ガラスフリットをペースト全体に対して7~35(vol%)の範囲内の割合で含むものである。このようにすれば、ペースト中のガラスフリットによって反射防止膜が好適に溶解させられるので、一層良好なオーミックコンタクトが得られ延いてはFF値が一層高められる。ガラスフリットが7(vol%)以上含まれていると反射防止膜の溶解性が極めて高くなるので、最適焼成温度範囲が一層広くなる。また、35(vol%)以下であれば絶縁層が形成され難いので電極と基板との間の高い導電性が確保される。
 また、好適には、前記導電性粉末は銀粉末である。導電性粉末としては銅粉末やニッケル粉末等も用い得るが、銀粉末が高い導電性が得られるので最も好ましい。
 また、好適には、前記太陽電池電極用ペースト組成物は、前記銀粉末を64~90重量部、前記ベヒクルを5~20重量部の範囲内の割合で含むものである。このようにすれば、印刷性が良好であり、導電性が高く、半田濡れ良好な電極を作製し得る導電性組成物が得られる。銀粉末が過少では高い導電性が得られず、過剰では流動性が低くなって印刷性が悪くなる。また、ガラスフリットが過少では基板との密着力が不足し、過剰では焼成後にガラスが電極表面に浮いて半田濡れ性が悪くなる。
 なお、前記銀粉末は特に限定されず、球状や鱗片状等、どのような形状の粉末が用いられる場合にも最適焼成温度範囲が拡大するという本発明の基本的効果を享受し得る。但し、例えば、球状を成すものを用いた場合には、印刷性に優れると共に、塗布膜における銀粉末の充填率が高くなるため、導電性の高い銀が用いられることと相俟って、鱗片状等の他の形状の銀粉末が用いられる場合に比較して、その塗布膜から生成される電極の導電率が高くなる。そのため、必要な導電性を確保したまま線幅を一層細くすることが可能となる。したがって、この導電性組成物を受光面電極に適用して線幅を細くすれば、太陽エネルギーを吸収できる受光面積を一層大きくできるので、変換効率の一層高い太陽電池を得ることができる。
 また、本願発明の導電性組成物は、前述したようにファイヤースルーによる電極形成時の銀の拡散を好適に制御し得るものであるから、受光面電極に好適に用い得る。しかしながら、受光面電極に限られず、裏面電極としても用いることができる。例えば、裏面電極は全面を覆うアルミニウム膜とこれに重なる帯状等の電極とから構成されるが、その帯状電極の構成材料としても好適である。
 また、前記ガラスフリットは、前記組成範囲でガラス化可能な種々の原料から合成することができ、例えば、酸化物、炭酸塩、硝酸塩等が挙げられるが、例えば、Si源としては二酸化珪素SiO2を、B源としては酸化硼素B2O3を、Pb源としては鉛丹Pb3O4を用い得る。
 また、主要成分Si、B、Pbの他に、Al、Zr等の他の成分を含む組成とする場合には、例えばそれらの酸化物、水酸化物、炭酸塩、硝酸塩等を用いればよい。
本発明の一実施例の電極用ペースト組成物が受光面電極の形成に適用された太陽電池の断面構造を示す模式図である。 図1の太陽電池の受光面電極パターンの一例を示す図である。 実施例および比較例で用いたガラスフリットの主成分組成を三角ダイヤグラムに表した図である。 図3の三角ダイヤグラムにおいて、実施例および比較例が分布している領域を拡大して示す図である。 図3の三角ダイヤグラムの実施例が分布している領域を更に拡大して特に好適な範囲を示す図である。
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
 図1は、本発明の一実施例の導電性組成物が適用されたシリコン系太陽電池10の断面構造を模式的に示す図である。図1において、太陽電池10は、例えばp型多結晶半導体であるシリコン基板12と、その上下面にそれぞれ形成されたn+層14およびp+層16と、そのn+層14上に形成された反射防止膜18および受光面電極20と、そのp+層16上に形成された裏面電極22とを備えている。
 上記のn+層14およびp+層16は、シリコン基板12の上下面に不純物濃度の高い層を形成することで設けられたもので、その高濃度層の厚さ寸法すなわち層14,16の厚さ寸法は例えばそれぞれ0.5(μm)程度である。n+層14に含まれる不純物は、例えばn型のドーパントである燐(P)であり、p+層16に含まれる不純物は、例えばp型のドーパントである硼素(B)である。
 また、前記の反射防止膜18は、例えば、窒化珪素 Si3N4等から成る薄膜で、例えば可視光波長の1/4程度の光学的厚さで設けられることによって10(%)以下、例えば2(%)程度の極めて低い反射率に構成されている。
 また、前記の受光面電極20は、例えば一様な厚さ寸法の厚膜導体から成るもので、図2に示されるように、受光面24の略全面に、多数本の細線部を有する櫛状を成す平面形状で設けられている。上記の厚膜導体は、Agを67~98(wt%)程度およびガラスを2~33(wt%)程度を含む厚膜銀から成るもので、そのガラスは酸化物換算した値で、PbOを46~57(mol%)、B2O3を1~7(mol%)、SiO2を38~53(mol%)の範囲内の割合でそれぞれ含む鉛ガラスである。また、上記の導体層の厚さ寸法は例えば15~20(μm)の範囲内、例えば17(μm)程度で、細線部の各々の幅寸法は例えば80~130(μm)の範囲内、例えば100(μm)程度で、十分に高い導電性を備えている。
 また、前記の裏面電極22は、p+層16上にアルミニウムを導体成分とする厚膜材料を略全面に塗布して形成された全面電極26と、その全面電極26上に帯状に塗布して形成された厚膜銀から成る帯状電極28とから構成されている。この帯状電極28は、裏面電極22に導線等を半田付け可能にするために設けられたものである。
 以上のように構成された太陽電池10は、前述したように受光面電極20が前述した組成の鉛ガラスを2~33(wt%)の範囲で含む厚膜銀で構成されていることから、従来から用いられてきた種々のガラスが用いられた太陽電池に比較して、焼成マージンが大きい利点がある。
 上記のような受光面電極20は、例えば、導体粉末と、ガラスフリットと、ベヒクルと、溶剤とから成る電極用ペーストを用いて良く知られたファイヤースルー法によって形成されたものである。その受光面電極形成を含む太陽電池10の製造方法の一例を比較例の導電性組成物の製造方法と併せて以下に説明する。
 まず、上記ガラスフリットを作製する。Si源として二酸化珪素 SiO2を、B源として酸化硼素B2O3を、Pb源として鉛丹 Pb3O4を、Al源として酸化アルミニウム Al2O3を、Zr源として酸化ジルコニウム ZrO2を、Na源として酸化ナトリウム Na2Oを、Li源として酸化リチウムLi2Oを、Ca源として酸化カルシウム CaOを、Zn源として酸化亜鉛 ZnOを、Mg源として酸化マグネシウム MgOをそれぞれ用意し、表1に示す組成となるように秤量して調合した。これを坩堝に投入して組成に応じた900~1100(℃)の範囲内の温度で、30分~1時間程度溶融してガラス化させた。得られたガラスをポットミル等の適宜の粉砕装置を用いて粉砕し、平均粒径が0.4(μm)、0.6(μm)、1.5(μm)、3.0(μm)、4.0(μm)の粉末を得た。
Figure JPOXMLDOC01-appb-T000001
 また、前記導体粉末として、例えば、平均粒径が1~3(μm)の範囲内、例えば2(μm)程度の市販の球状の銀粉末を用意した。このような平均粒径が十分に小さい銀粉末を用いることにより、塗布膜における銀粉末の充填率を高め延いては導体の導電率を高めることができる。また、前記ベヒクルは、有機溶剤に有機結合剤を溶解させて調製したもので、有機溶剤としては、例えばブチルカルビトールアセテートが、有機結合剤としては、例えばエチルセルロースが用いられる。ベヒクル中のエチルセルロースの割合は例えば15(wt%)程度である。また、ベヒクルとは別に添加する溶剤は、例えばブチルカルビトールアセテートである。すなわち、これに限定されるものではないが、ベヒクルに用いたものと同じ溶剤でよい。この溶剤は、ペーストの粘度調整の目的で添加される。
 以上のペースト原料をそれぞれ用意して、例えば導体粉末を64~82(wt%)、ガラスフリットを2~20(wt%)、ベヒクルを13(wt%)、溶剤を3(wt%)の割合で秤量し、攪拌機等を用いて混合した後、例えば三本ロールミルで分散処理を行う。これにより、前記電極用ペーストが得られる。なお、本実施例においては、導体粉末とガラスフリットの合計量を84(wt%)、ベヒクルおよび溶剤の合計量を16(wt%)とした。なお、前記表1は、各実施例および比較例におけるガラスフリットの組成と、その粒径、添加量と、それぞれのガラスフリットを用いて前記受光面電極20を形成したときの太陽電池10の特性を評価した結果とをまとめたものである。なお、この表1において、ガラスフリット量は、ペースト全体に対する容積で表した。
 上記のようにして電極用ペーストを調製する一方、適宜のシリコン基板に例えば、熱拡散法やイオンプランテーション等の良く知られた方法で不純物を拡散し或いは注入して前記n+層14およびp+層16を形成することにより、前記シリコン基板12を作製する。次いで、これに例えばスピンコーティング等の適宜の方法で窒化珪素薄膜を形成し、前記反射防止膜18を設ける。
 次いで、上記の反射防止膜18上に前記図2に示すパターンで前記電極用ペーストをスクリーン印刷する。これを例えば150(℃)で乾燥し、更に、近赤外炉において760~900(℃)の範囲内の温度で焼成処理を施す。これにより、その焼成過程で電極用ペースト中のガラス成分が反射防止膜18を溶かし、その電極用ペーストが反射防止膜18を破るので、電極用ペースト中の導体成分すなわち銀とn+層14との電気的接続が得られ、前記図1に示されるようにシリコン基板12と受光面電極20とのオーミックコンタクトが得られる。受光面電極20は、このようにして形成される。
 なお、前記裏面電極22は、上記工程の後に形成してもよいが、受光面電極20と同時に焼成して形成することもできる。裏面電極22を形成するに際しては、上記シリコン基板12の裏面全面に、例えばアルミニウムペーストをスクリーン印刷法等で塗布し、焼成処理を施すことによってアルミニウム厚膜から成る前記全面電極26を形成する。更に、その全面電極26の表面に前記電極用ペーストをスクリーン印刷法等を用いて帯状に塗布して焼成処理を施すことによって、前記帯状電極28を形成する。これにより、裏面全面を覆う全面電極26と、その表面の一部に帯状に設けられた帯状電極28とから成る裏面電極22が形成され、前記の太陽電池10が得られる。上記工程において、同時焼成で製造する場合には、受光面電極20の焼成前に印刷処理を施すことになる。
 前記の表1の右端2欄に示す特性は、このようにして得られる太陽電池10において、ガラスの組成、粒径、および添加量を種々変更した実施例および比較例の各々について、焼成温度を前記範囲内で変化させて受光面電極20を形成し、得られた太陽電池10の出力を測定して、曲線因子FFの最大値と、その最大値よりも1%だけ低い値以上のFF値が得られる温度幅すなわち焼成マージンとを評価した結果である。なお、太陽電池10の出力は、市販のソーラーシミュレータを用いて測定した。
 太陽電池においては、70以上のFF値が得られていれば使用可能であるが、FF値が高いほど好ましいのはもちろんである。表1の実施例1~23では、74~75のFF値が得られており、十分に高い出力が得られる。また、実施例1~23では、30~40(℃)と十分に広い焼成マージンが得られている。
 すなわち、表1に示す評価結果によれば、PbOが46~57(mol%)、B2O3が1~7(mol%)、SiO2が38~53(mol%)の範囲内であれば、FF値が十分に高く、且つ焼成マージンが十分に広くなる。また、実施例11~18によれば、上記主要成分に加えて、更に、Al2O3が3(mol%)以下、ZrO2が5(mol%)以下、Na2Oが3(mol%)以下、Li2Oが7(mol%)以下、CaOが2(mol%)以下、ZnOが1(mol%)以下、MgOが5(mol%)以下の範囲で含まれていても、同様な特性を得ることができる。また、実施例4,21~23によれば、ガラスフリットの粒径が0.6~3.0(μm)の範囲内であれば、粒径に拘わらず高い特性が得られている。また、実施例10,19,20によれば、7~35(vol%)の範囲内の添加量であれば、添加量に拘わらず高い特性が得られている。なお、上記ガラス量は、ペースト全体に対して3~15(wt%)に相当する。
 上記焼成マージンは、本実施例においては、製造ロット内の基板厚みのばらつきの最適焼成温度への影響が考慮された値である。すなわち、厚みのばらつきを考慮しても、「FF最大値-1%」が得られる温度範囲が30~40(℃)と十分に広くなっている。
 これに対して、比較例1~11では、PbO、B2O3、SiO2の少なくとも一つが前記好ましい範囲から外れていることから、焼成マージンが得られず、或いは、FF値が低い結果となっている。なお、比較例2,3等、FF最大値が70を下回るものについては、太陽電池として十分な機能を有していないため、焼成マージンを評価していない。
 また、比較例12~15は、ガラス組成が本発明の範囲内に含まれるもので、実施例1~22に比較するとやや低い特性に留まったが、太陽電池用途に利用可能なものである。したがって、これらは実施例に加えることもできるが、ここでは比較例に分類した。比較例12,13は、組成が実施例10と同一であるが、ガラスフリットの添加量が過少(5(vol%))或いは過剰(47(vol%))であるため、FF値がやや低めの70~71に留まっている。しかし、この値は太陽電池用途としての最低限の要求は満たしているし、焼成マージンは30(℃)と十分に広いので、本願発明にはこのような構成も含まれる。また、比較例14,15は、組成が実施例4と同一であるが、ガラスフリットの粒径が小さすぎる(0.4(μm))或いは大きすぎる(4.0(μm))ため、FF最大値が71~72と低めで焼成マージンも15~20(℃)の狭い範囲に留まっている。しかし、このFF値は太陽電池用途としての最低限の要求は満たしているし、焼成マージンも10(℃)以下である比較例1~11に比べると改善されていると言えるので、本願発明にはこのような構成も含まれる。
 上記の実施例および比較例によれば、ガラスフリットを構成するガラス組成がPbOが46~57(mol%)、B2O3が1~7(mol%)(好ましくは3(mol%)以上)、SiO2が38~53(mol%)の範囲内であれば、70以上のFF値と、15(℃)以上の焼成マージンを有する電極用ペーストが得られる。また、ガラスフリットの添加量を7~35(vol%)の範囲内とすれば、範囲外の場合よりも高いFF値を得ることができる。また、ガラスフリットの粒径を0.5~3.0(μm)(好ましくは0.6~3.0(μm))の範囲内とすれば、焼成マージンを30(℃)以上に広げることができる。
 図3は、前記表1に示した実施例1~10および比較例1~10でそれぞれ用いたガラスフリットの主成分Pb、B、Siの構成比を三角ダイヤグラム上に表したもので、図4には、比較例11を除く他の実施例・比較例の組成が分布している領域を拡大して示す。なお、上記の他の実施例および比較例は、比較例11が著しく異なる組成であり、他のものは、他の成分を含むか組成が同一で粒径または添加量が異なるものであるので掲載を省略した。
 図4において、一点鎖線で囲まれ且つ斜線を施した範囲が本発明の主成分の組成範囲である。比較例1~15は、その周辺に分布するように組成が選ばれている。実施例の組成範囲の比較的近傍にある比較例1,5~8は、FF最大値は十分に高いが、焼成マージンが5~10(℃)と狭くなる。また、実施例の組成範囲からの外れ方の大きい比較例2~4,9,10は、FF最大値が70未満に著しく小さくなっている。更に外れ方の大きい比較例11も同様である。
 上記の図示結果から、実施例の組成範囲から外れると、まず焼成マージンが狭くなり、更に外れるとFF最大値が小さくなって、何れも本願発明の目的を達成できなくなることが判る。
 図5は、図4に一点鎖線で囲んで示した実施例の範囲内およびその近傍の領域を更に拡大して示したものである。前記表1に示されるように、本実施例の範囲内では何れの組成のガラスフリットを用いた場合にも、74(%)以上のFF値および30(℃)以上の焼成マージンが得られる。しかしながら、図5に二点鎖線で囲んで示した範囲内の組成のガラスフリットを用いれば、FF値が75(%)、焼成マージンが40(℃)と、更に好ましい結果が得られる。すなわち、表1に示した評価結果によれば、PbOが49~54(mol%)、B2O3が3~5(mol%)、SiO2が43~48(mol%)の範囲内のガラスフリットを用いることが最も好ましい。
 要するに、本実施例によれば、太陽電池10の電極用ペーストは、これを構成するガラスフリットがPbOが46~57(mol%)、B2O3が1~7(mol%)、SiO2が38~53(mol%)の範囲内のガラスから成ることから、これを用いて受光面電極20を形成する太陽電池10の最適焼成温度範囲が広くなる。例えば、製造ロット毎の最適焼成温度範囲が30~40(℃)程度に広がる。そのため、ファイヤースルー性が向上してオーミックコンタクトが改善されるので、製造ロット当たりの平均出力が向上する。
 以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。
 例えば、前記実施例においては、反射防止膜18が窒化珪素膜から成るものであったが、その構成材料は特に限定されず、一般に太陽電池に用いられる二酸化チタンTiO2等の他の種々の材料から成るものを同様に用い得る。
 また、実施例においては、本発明がシリコン系太陽電池10に適用された場合について説明したが、本発明は、ファイヤースルー法で受光面電極を形成することのできる太陽電池であれば適用対象の基板材料は特に限定されない。
10:太陽電池
12:シリコン基板
14:n+
16:p+
18:反射防止膜
20:受光面電極
22:裏面電極
24:受光面
26:全面電極
28:帯状電極

Claims (4)

  1.  導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池電極用ペースト組成物であって、
     前記ガラスフリットが酸化物換算でPbO 46~57(mol%)、B2O3 1~7(mol%)、SiO2 38~53(mol%)の範囲内の割合で含むガラスから成ることを特徴とする太陽電池電極用ペースト組成物。
  2.  前記ガラスフリットは平均粒径が0.5~3(μm)の範囲内である請求項1の太陽電池電極用ペースト組成物。
  3.  前記ガラスフリットをペースト全体に対して7~35(vol%)の範囲内の割合で含むものである請求項1または請求項2の太陽電池電極用ペースト組成物。
  4.  前記導電性粉末は銀粉末である請求項1乃至請求項3の何れか1項に記載の太陽電池電極用ペースト組成物。
PCT/JP2010/051174 2009-02-25 2010-01-28 太陽電池電極用ペースト組成物 WO2010098167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117022303A KR101674233B1 (ko) 2009-02-25 2010-01-28 태양 전지 전극용 페이스트 조성물
DE112010000891T DE112010000891T5 (de) 2009-02-25 2010-01-28 Pastenzusammensetzung für Solarzellenelektrode
CN201080017522.2A CN102405530B (zh) 2009-02-25 2010-01-28 太阳能电池电极用膏组合物
US13/203,359 US8512601B2 (en) 2009-02-25 2010-01-28 Paste composition for solar cell electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-043154 2009-02-25
JP2009043154A JP5059042B2 (ja) 2009-02-25 2009-02-25 太陽電池電極用ペースト組成物

Publications (1)

Publication Number Publication Date
WO2010098167A1 true WO2010098167A1 (ja) 2010-09-02

Family

ID=42665377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051174 WO2010098167A1 (ja) 2009-02-25 2010-01-28 太陽電池電極用ペースト組成物

Country Status (7)

Country Link
US (1) US8512601B2 (ja)
JP (1) JP5059042B2 (ja)
KR (1) KR101674233B1 (ja)
CN (1) CN102405530B (ja)
DE (1) DE112010000891T5 (ja)
TW (1) TWI492245B (ja)
WO (1) WO2010098167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018462A1 (ja) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142422A (ja) * 2010-12-28 2012-07-26 Noritake Co Ltd 太陽電池用導電性ペースト用ガラス
JP5820278B2 (ja) * 2012-01-10 2015-11-24 シャープ株式会社 太陽電池及び太陽電池の製造方法
JP2013243279A (ja) * 2012-05-22 2013-12-05 Namics Corp 太陽電池の電極形成用導電性ペースト
KR101600652B1 (ko) 2012-11-12 2016-03-07 제일모직주식회사 태양전지 전극용 페이스트 및 이로부터 제조된 전극
CN103021567A (zh) * 2012-12-04 2013-04-03 彩虹集团公司 一种硅基太阳能用正面电极银浆的制备方法
US20170291846A1 (en) * 2016-04-07 2017-10-12 Heraeus Precious Metals North America Conshohocken Llc Halogenide containing glasses in metallization pastes for silicon solar cells
JP6266079B2 (ja) * 2016-11-22 2018-01-24 ナミックス株式会社 太陽電池の電極形成用導電性ペースト及び太陽電池の製造方法
WO2019183931A1 (zh) * 2018-03-30 2019-10-03 深圳市首骋新材料科技有限公司 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636172A (en) * 1979-08-31 1981-04-09 Du Pont Thick film conductor composition
JPS5879837A (ja) * 1981-10-31 1983-05-13 Tdk Corp 磁器コンデンサ
JPH05506753A (ja) * 1991-03-07 1993-09-30 エイエスイー・アメリカス・インコーポレーテッド 接点を形成する方法及び装置
JP2003165744A (ja) * 2001-11-26 2003-06-10 Murata Mfg Co Ltd 導電性ペースト
JP2006093433A (ja) * 2004-09-24 2006-04-06 Sharp Corp 太陽電池の製造方法
JP2006302890A (ja) * 2005-04-14 2006-11-02 E I Du Pont De Nemours & Co 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP2008159917A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249676A (ja) 1985-08-29 1987-03-04 Sharp Corp 太陽電池
JPH0346985A (ja) 1989-07-12 1991-02-28 Hitachi Ltd エレベータの保守運転装置
US5358666A (en) * 1990-11-30 1994-10-25 Murata Manufacturing Co., Ltd. Ohmic electrode materials for semiconductor ceramics and semiconductor ceramics elements made thereof
US5363271A (en) * 1992-09-24 1994-11-08 E. I. Du Pont De Nemours And Company Thermal shock cracking resistant multilayer ceramic capacitor termination compositions
JP3810507B2 (ja) * 1997-03-11 2006-08-16 松下電器産業株式会社 感歪み抵抗体ペースト
JP3707715B2 (ja) 1998-01-30 2005-10-19 シャープ株式会社 導電性ペースト
JPH11329072A (ja) 1998-05-13 1999-11-30 Murata Mfg Co Ltd 導電ペースト及びそれを用いた太陽電池
KR100369565B1 (ko) * 1999-12-17 2003-01-29 대주정밀화학 주식회사 전기발열체용 저항 페이스트 조성물
US20060102228A1 (en) 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
JP4948876B2 (ja) 2006-04-03 2012-06-06 京セラ株式会社 太陽電池素子用導電性ペースト及びそれを用いた太陽電池素子の製造方法。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636172A (en) * 1979-08-31 1981-04-09 Du Pont Thick film conductor composition
JPS5879837A (ja) * 1981-10-31 1983-05-13 Tdk Corp 磁器コンデンサ
JPH05506753A (ja) * 1991-03-07 1993-09-30 エイエスイー・アメリカス・インコーポレーテッド 接点を形成する方法及び装置
JP2003165744A (ja) * 2001-11-26 2003-06-10 Murata Mfg Co Ltd 導電性ペースト
JP2006093433A (ja) * 2004-09-24 2006-04-06 Sharp Corp 太陽電池の製造方法
JP2006302890A (ja) * 2005-04-14 2006-11-02 E I Du Pont De Nemours & Co 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP2008159917A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018462A1 (ja) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物
WO2013018408A1 (ja) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物
CN103797584A (zh) * 2011-07-29 2014-05-14 株式会社则武 太阳能电池用导电性糊组合物
JPWO2013018462A1 (ja) * 2011-07-29 2015-03-05 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物および太陽電池
CN103797584B (zh) * 2011-07-29 2016-01-20 株式会社则武 太阳能电池用导电性糊组合物和太阳能电池
US9312045B2 (en) 2011-07-29 2016-04-12 Noritake Co., Limited Conductive paste composition for solar cells and solar cell
TWI562169B (ja) * 2011-07-29 2016-12-11 Noritake Co Ltd

Also Published As

Publication number Publication date
KR20110115620A (ko) 2011-10-21
KR101674233B1 (ko) 2016-11-08
JP5059042B2 (ja) 2012-10-24
CN102405530A (zh) 2012-04-04
US20110309312A1 (en) 2011-12-22
TW201035993A (en) 2010-10-01
DE112010000891T5 (de) 2012-06-14
TWI492245B (zh) 2015-07-11
US8512601B2 (en) 2013-08-20
CN102405530B (zh) 2014-08-27
JP2010199334A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5649290B2 (ja) 太陽電池電極用無鉛導電性組成物
JP5059042B2 (ja) 太陽電池電極用ペースト組成物
JP5856178B2 (ja) 太陽電池用無鉛導電性ペースト組成物
JP5137923B2 (ja) 太陽電池用電極ペースト組成物
JP5351100B2 (ja) 太陽電池用導電性ペースト組成物
JP5144857B2 (ja) 太陽電池用導電性ペースト組成物
JP5756447B2 (ja) 太陽電池用導電性ペースト組成物
JP6735046B2 (ja) 太陽電池電極形成用導電性ペースト
JP6027765B2 (ja) 太陽電池用無鉛導電性ペースト組成物
JP6027968B2 (ja) 太陽電池用導電性ペースト組成物、太陽電池、および、太陽電池の製造方法
JP2014084249A (ja) 電極形成用ガラスフリット、電極形成用導電ペーストおよび太陽電池
JP5279699B2 (ja) 太陽電池用導電性ペースト組成物
JP2012142422A (ja) 太陽電池用導電性ペースト用ガラス
JP2011035035A (ja) 太陽電池電極用導電性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017522.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203359

Country of ref document: US

Ref document number: 1120100008914

Country of ref document: DE

Ref document number: 112010000891

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117022303

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10746048

Country of ref document: EP

Kind code of ref document: A1