WO2010095678A1 - 含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物 - Google Patents

含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物 Download PDF

Info

Publication number
WO2010095678A1
WO2010095678A1 PCT/JP2010/052425 JP2010052425W WO2010095678A1 WO 2010095678 A1 WO2010095678 A1 WO 2010095678A1 JP 2010052425 W JP2010052425 W JP 2010052425W WO 2010095678 A1 WO2010095678 A1 WO 2010095678A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
general formula
carbon atoms
represented
Prior art date
Application number
PCT/JP2010/052425
Other languages
English (en)
French (fr)
Inventor
芳美 磯野
成塚 智
七井 秀寿
山中 一広
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US13/201,766 priority Critical patent/US8809451B2/en
Priority to CN2010800087363A priority patent/CN102325824B/zh
Priority to KR1020117021657A priority patent/KR101290226B1/ko
Priority to EP10743804.6A priority patent/EP2395040A4/en
Publication of WO2010095678A1 publication Critical patent/WO2010095678A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/52Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen
    • C07C57/58Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • C08G63/6824Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6826Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles

Definitions

  • the present invention relates to a novel fluorine-containing dicarboxylic acid derivative and a novel polymer compound using the same.
  • Polyester, polyamide, polyimide, and polybenzoxazole have been developed as highly reliable organic polymers.
  • Their cores include polyamides such as nylon and Kevlar (registered trademark), polyarylates used for liquid crystalline polymers, polyimides such as Kapton (registered trademark), and polysylates represented by Zylon (registered trademark).
  • Many different polymers such as benzoxazole have been put into practical use.
  • polyester there are a method of polycondensation of dicarboxylic acid and diol in the presence of a condensing agent, or a method of derivatizing dicarboxylic acid into acid chloride or ester and polycondensing with diol. Be taken.
  • polyamide a method of polycondensation of dicarboxylic acid and diamine in the presence of a condensing agent, or a method of derivatizing dicarboxylic acid into carboxylic acid chloride or ester and polycondensing with diamine is employed.
  • polyimide a method of dehydrating and ring-closing after polymerization of diamine and tetracarboxylic dianhydride is used.
  • polybenzoxazole a method of polycondensation of dicarboxylic acid and bisaminophenol in the presence of a condensing agent, or a method of derivatizing dicarboxylic acid into acid chloride or ester and polycondensation with bisaminophenol is employed.
  • aromatic polyesters, aromatic polyamides and derivatives thereof are attracting attention in the printed circuit board, semiconductor field, and display field because of their high reliability and excellent dimensional stability.
  • aromatic polyesters, aromatic polyamides and derivatives thereof are attracting attention in the printed circuit board, semiconductor field, and display field because of their high reliability and excellent dimensional stability.
  • electrical characteristics such as lower dielectric constant There is a need for improvements.
  • Fluorine-containing aromatic polymer compounds are highly reliable for the properties of fluororesins such as water repellency, oil repellency, low water absorption, corrosion resistance, transparency, photosensitivity, low refractive index, and low dielectric properties. It has been developed or put into practical use in a wide range of material fields, mainly in the field of advanced materials. Attempts have been made to introduce fluorine into diamine, which is a monomer of condensed polymer, and diamines, dihydroxy monomers, and hexafluoroisopropenyl groups in which hydrogen atoms of the benzene ring are substituted with fluorine atoms or trifluoromethyl groups.
  • a fluorine-containing aromatic polymer compound derived from a bishydroxyamine monomer having a central atomic group and aromatic hydroxyamine on both sides thereof has been put into practical use.
  • Patent Document 1 a fluorinated aromatic polyamide that achieves both visible light transparency and dimensional stability is obtained by directly introducing a trifluoromethyl group into an aromatic ring having a rigid base. This generally enables a polymerization process that requires a reaction in sulfuric acid to be polymerized in an organic solvent by the effect of introducing fluorine.
  • the mother character is rigid, in order to obtain a flexible film, heating at a high temperature of 280 ° C. or higher is required, and the application is limited.
  • Patent Document 2 realizes both light transparency and high heat resistance in the 850 nm band by substituting all the hydrogen atoms of rigid wholly aromatic polyester with fluorine atoms or trifluoromethyl groups. Since the mother character is rigid, a high polymerization temperature of 300 ° C. or higher is required to increase the degree of polymerization.
  • Non-Patent Document 1 discloses a dicarboxylic acid monomer in which a fluorinated methylene group is bonded to the ortho position of a fully fluorinated benzene ring, but derivatization to a polymer compound is described. Absent.
  • Non-Patent Document 2 discloses bis (2-ethoxycarbonyl-1,1,2,2-tetrafluoroethyl) benzene, but there is no description of a polymer using the same.
  • an object of the present invention is to provide a polycondensation polymer compound having a sufficiently low dielectric constant as a semiconductor protective film and capable of forming a film at a relatively low temperature of 250 ° C. or lower.
  • the present inventors have obtained a novel fluorinated dicarboxylic acid or fluorinated dicarboxylic acid derivative bonded to an aromatic ring via a fluorinated methylene group, and those The inventors have arrived at the invention of a novel polymer compound obtained using In polyesters and polyamides obtained by condensation polymerization from phthalic acid derivatives disclosed in Patent Documents 1 and 2, curing (polymerization) is performed at 250 ° C. because two carboxyl groups are directly substituted on the aromatic ring.
  • the fluorine-containing dicarboxylic acid according to the present invention has a low dielectric constant and flexibility when heated at 250 ° C.
  • a polymer compound having a heterocycle obtained by cyclizing a part of the structure of the polyester or polyamide of the present invention also exhibits characteristics of being excellent in low dielectric constant and flexibility.
  • a fluorinated dicarboxylic acid derivative represented by the general formula (M-1) or an acid anhydride of the fluorinated dicarboxylic acid is reacted with 2 to 4 reactive groups which respond to the reactivity of these carbonyl group sites.
  • a and A ′ are each independently a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, or a substituent having 6 to 10 carbon atoms. And may form an active ester group together with the CO group (carbonyl group) in the formula.
  • each Ar 1 is an aromatic ring optionally having a substituent
  • the hydrogen atom on the aromatic ring is a fluorine atom, chlorine atom, hydroxyl group, amino group, nitro group, cyano group, hydroxy group A carbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein the hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), 1 to 6 carbon atoms A linear, branched or cyclic alkoxy group, a linear, branched or cyclic alkoxycarbonyl group having 1 to 6 carbon atoms, or a monovalent group consisting of an optionally substituted aromatic ring May be substituted.
  • Y 1 is a single bond, CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , O, S, C (CH 3 ) 2 , C (CF 3 ) 2 , SO 2 , CO, NH, COO (ester) , A divalent group in which one or more kinds selected from a CONH group or two or more same or different groups selected from these groups are bonded, and p represents an integer of 0 to 3. Two dangling bonds are bonded to different carbon atoms of the same or different aromatic rings.
  • each Ar 2 is an aromatic ring which may have a substituent, and the hydrogen atom on the aromatic ring is a fluorine atom, chlorine atom, hydroxyl group, amino group, nitro group, cyano group, hydroxy group A carbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein the hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), 1 to 6 carbon atoms A linear, branched or cyclic alkoxy group, a linear, branched or cyclic alkoxycarbonyl group having 1 to 6 carbon atoms, or a monovalent group consisting of an optionally substituted aromatic ring May be substituted.
  • Y 2 is each independently a single bond, CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , O, S, C (CH 3 ) 2 , C (CF 3 ) 2 , SO 2 , CO, NH, COO (Ester), one type selected from CONH groups, or a divalent group in which two or more types selected from these groups are bonded.
  • Q has the same meaning as Q in formula (M-1).
  • R 2 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and a heterocyclic ring, and may contain a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom or a nitrogen atom, A part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group, and a part of the carbon atoms are an oxygen atom, a sulfur atom, a nitrogen atom, It may be substituted with a carbonyl group or a sulfonyl group.
  • m is a positive integer.
  • R 3 is a tetravalent organic group containing one or more selected from an alicyclic ring, an aromatic ring, and a heterocyclic ring, and may contain a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom, or a nitrogen atom.
  • a part of hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group, and a part of carbon atoms may be an oxygen atom, a sulfur atom or a nitrogen atom.
  • a carbonyl group and a sulfonyl group may be substituted.
  • m is a positive integer.
  • Q has the same meaning as Q in formula (M-1).
  • R 3 has the same meaning as R 3 in the general formula (4).
  • R 4 is a tetravalent organic group containing one or more selected from an alicyclic ring, an aromatic ring, and a heterocyclic ring, and may contain a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom, or a nitrogen atom.
  • a part of hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group, and a part of carbon atoms may be an oxygen atom, a sulfur atom or a nitrogen atom.
  • a carbonyl group and a sulfonyl group may be substituted.
  • m is a positive integer.
  • Q has the same meaning as Q in formula (M-1).
  • R 4 has the same meaning as R 4 in the general formula (5).
  • Q has the same meaning as Q in formula (M-1).
  • R 1 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and a heterocyclic ring, and may contain a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom or a nitrogen atom, A part of the hydrogen atoms may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group, and a part of the carbon atoms are an oxygen atom, a sulfur atom, a nitrogen atom, It may be substituted with a carbonyl group or a sulfonyl group.
  • m is a positive integer.
  • Q is a divalent organic group having an aromatic ring which may have a substituent
  • the hydrogen atom on the aromatic ring is a fluorine atom, chlorine atom, hydroxyl group, amino group, nitro group, cyano group Group, a hydroxycarbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein the hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), carbon number 1 to 6 linear, branched or cyclic alkoxy groups, 1 to 6 carbon linear, branched or cyclic alkoxycarbonyl groups, or an aromatic ring optionally having a substituent.
  • D and D ′ are each independently a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, or a substituent having 6 to 10 carbon atoms. Or can form an active ester group with a CO group (carbonyl group) in the formula.
  • the fluorine-containing polymer compound such as polyester and polyamide of the present invention is required to have a sufficient degree of polymerization by heating at a temperature of 250 ° C. or less, which is strongly demanded as the semiconductor chip itself has low heat resistance. And the resulting film has high flexibility and can be used as a protective film having excellent electrical properties (low dielectric constant).
  • a polymer compound having a heterocycle obtained by ring-closing the polyester or polyamide of the present invention also exhibits the characteristics of excellent low dielectric constant and flexibility, and can be used as a protective film.
  • fluorine-containing dicarboxylic acids and derivatives thereof are extremely useful for the production of such fluorine-containing polymer compounds.
  • fluorinated dicarboxylic acid derivative includes a fluorinated dicarboxylic acid.
  • the fluorine-containing dicarboxylic acid derivative of the present invention is represented by the following general formula (M-1) or general formula (M-2).
  • -CF 2 COA, -CF 2 COA ' , - CF 2 COD and -CF 2 COD' is attached to the same or different aromatic ring carbons.
  • —CF 2 COD and —CF 2 COD ′ in the formula are not bonded to adjacent carbon atoms of the same aromatic ring. When adjacent to each other in this way, it is difficult to obtain a polymer lacking in polymerizability.
  • Q is a divalent organic group having an aromatic ring which may have a substituent.
  • a divalent organic group is an organic group obtained by removing two hydrogen atoms from a compound having one or more aromatic rings.
  • the aromatic ring is a monocyclic or condensed ring having 4 to 20 carbon atoms.
  • the linking group Y between the aromatic rings is a single bond, CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , O, S, C (CH 3 ) 2 , C (CF 3 ) 2 , SO 2 , CO, NH, COO (ester), a linking group composed of a divalent group in which two or more of the same or different groups selected from these groups or selected from these groups are bonded, You may couple
  • aromatic ring examples include a benzene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, phenanthrene ring, chrysene ring, triphenylene ring, tetraphen ring, pyrene ring, picene ring, pentaphen ring, perylene ring, pyrrole ring, Examples include a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isoxazole ring, an isothiazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, and a pyridazine ring. Of these, a benzene ring, naphthalene, and a pyridine ring are
  • the hydrogen atom on the aromatic ring is a fluorine atom, a chlorine atom, a hydroxyl group, an amino group, a nitro group, a cyano group, a hydroxycarbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein A hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), a straight chain having 1 to 6 carbon atoms, a branched or cyclic alkoxyl group, a straight chain having 1 to 6 carbon atoms, It may be substituted with a branched or cyclic alkoxycarbonyl group.
  • examples of the linear, branched or cyclic alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, Examples include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the hydrogen atom on the alkyl group substituted with a hydroxyl group include, for example, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 3-hydroxy-n-propyl group, 4-hydroxy-n- Examples thereof include a butyl group, a 5-hydroxy-n-pentyl group, a 6-hydroxy-n-hexyl group, a hydroxycyclopentyl group, and a hydroxycyclohexyl group.
  • Examples of the hydrogen atom on the alkyl group substituted with a fluorine atom include, for example, a monofluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, 2,2,2-trifluoroethyl group, penta Examples include a fluoroethyl group, a heptafluoro-n-propyl group, a heptafluoroisopropyl group, and a nonafluoro-n-butyl group.
  • the hydrogen atom on the alkyl group is substituted with a hydroxyl group and a fluorine atom, such as difluorohydroxymethyl group, 2-hydroxy-1,1,2,2-tetrafluoroethyl group, 1,1-difluoro-2 -Hydroxyethyl group, 2,2,2-trifluoro-1-hydroxy-1- (trifluoromethyl) ethyl group and the like.
  • a fluorine atom such as difluorohydroxymethyl group, 2-hydroxy-1,1,2,2-tetrafluoroethyl group, 1,1-difluoro-2 -Hydroxyethyl group, 2,2,2-trifluoro-1-hydroxy-1- (trifluoromethyl) ethyl group and the like.
  • Examples of the linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, Examples thereof include a tert-butoxy group, an n-pentoxy group, an isopentoxy group, a sec-pentoxy group, a tert-pentoxy group, an n-hexoxy group, an isohexoxy group, a cyclopentoxy group, and a cyclohexoxy group.
  • Examples of the straight, branched or cyclic alkoxycarbonyl group having 1 to 6 carbon atoms include, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, an n-butoxycarbonyl group, and isobutoxy.
  • each Ar 1 is an aromatic ring optionally having a substituent
  • the hydrogen atom on the aromatic ring is a fluorine atom, chlorine atom, hydroxyl group, amino group, nitro group, cyano group, hydroxy group A carbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein the hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), 1 to 6 carbon atoms A linear, branched or cyclic alkoxy group, a linear, branched or cyclic alkoxycarbonyl group having 1 to 6 carbon atoms, or a monovalent group consisting of an optionally substituted aromatic ring May be substituted.
  • Y 1 is a single bond, CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , O, S, C (CH 3 ) 2 , C (CF 3 ) 2 , SO 2 , CO, NH, COO (ester) , A divalent group in which one or more kinds selected from a CONH group or two or more same or different groups selected from these groups are bonded, and p represents an integer of 0 to 3. Two dangling bonds are bonded to different carbon atoms of the same or different aromatic rings.
  • the structure of the aromatic ring as a divalent organic group when p is 0 can be illustrated more specifically as follows.
  • the dotted line indicates the substitution position of —CF 2 COA or —CF 2 COA ′ or —CF 2 COD or —CF 2 COD ′.
  • the two difluoromethylene groups in the formula do not bind to the carbon atoms of the adjacent aromatic rings, in other words, the adjacent carbon atoms simultaneously serve as the starting point of the dotted line. Excluding structure.
  • the amino group in the structure of the aromatic ring Q which may have the above substituent may be an amino group protected by a protecting group.
  • protecting groups for protecting amino groups include tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, allyloxycarbonyl group, phthaloyl Group, p-toluenesulfonyl group, 2-nitrobenzenesulfonyl group and the like.
  • each Ar 2 is an aromatic ring which may have a substituent
  • the hydrogen atom on the aromatic ring is a fluorine atom, chlorine atom, hydroxyl group, amino group, nitro group, cyano group, hydroxy group A carbonyl group, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms (wherein the hydrogen atom on the alkyl group may be substituted with a hydroxyl group or a fluorine atom), 1 to 6 carbon atoms
  • Y 2 is each independently a single bond, CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , O, S, C (CH 3 ) 2 , C (CF 3 ) 2 , SO 2 , CO, NH, COO (Ester), one type selected from CONH groups, or a divalent group in which two or more types selected from these groups are bonded.
  • the structure of the divalent organic group Q having an aromatic ring is not limited to the structure exemplified above. Of the structures exemplified above, those shown below are particularly preferred.
  • a and A ⁇ are each independently, D and D ⁇ are each independently a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, A linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, an aryloxy group which may have a substituent having 6 to 10 carbon atoms, and an active ester group together with a CO group (carbonyl group) in the formula May be formed.
  • linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec- Examples thereof include a butoxy group, a tert-butoxy group, an n-pentoxy group, an isopentoxy group, a sec-pentoxy group, a tert-pentoxy group, an n-hexoxy group, an isohexoxy group, a cyclopentoxy group, and a cyclohexoxy group. Of these, a methoxy group and an ethoxy group are preferable.
  • aryloxy group which may have a substituent having 6 to 10 carbon atoms include, for example, phenoxy group, o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, p-hydroxyphenoxy group, p-nitrophenoxy group, A polychlorophenoxy group, 1-naphthoxy group, benzyloxy group, pyridyloxy group and the like can be mentioned. Of these, p-nitrophenoxy group is preferred.
  • examples of A and A ′ and D and D ′ include a succinimidoxy group and an o-phthalimidoxy group that form an active ester group together with a carbonyl group (CO).
  • hydroxyl group, chlorine atom, succinimidoxy group and ethoxy group are particularly preferable as A and A 'and D and D'.
  • examples of the acid anhydride of the fluorine-containing dicarboxylic acid represented by the general formula (M-1) include AOCF 2 C— and AOCF 2 C— in the adjacent ring carbons. In the case where they are bonded to each other, those derived from acid anhydrides can be mentioned.
  • polycondensation polymer compounds obtained from Q having various substituents hydroxyl group, carboxyl group, alkoxy group, hexafluoroisopropanol group, amino group, etc. function as a crosslinking site and are complementary crosslinking agents in three dimensions. It can bridge
  • the amino group protected with a nitro group and a protecting group can be modified or deprotected and similarly three-dimensionally crosslinked.
  • fluorine-containing dicarboxylic acid The fluorine-containing dicarboxylic acid according to the present invention is represented by the following general formula (M-3).
  • Q is synonymous with Q in the general formula (M-1), and the specific structure can again be the same as that in the general formula (M-1).
  • a dihalogenoaryl compound preferably a diiodoaryl compound
  • a halogenodifluoroacetate ester preferably ethyl bromodifluoroacetate
  • reaction formula [1] A general reaction formula is shown below (reaction formula [1]).
  • X 1 , X 2 , X 3 and X 4 are each independently a halogen atom
  • R is a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, and a substitution having 6 to 10 carbon atoms
  • the amount of the halogenodifluoroacetate used to act on the dihalogenoaryl compound is not particularly limited, but is usually 1.8 to 3 mol, preferably 1 mol per mol of the dihalogenoaryl compound. 1.9 to 2.2 mol, more preferably substantially 2 mol.
  • the amount is less than 1.8 mol, the dihalogenoaryl compound is not consumed in the reaction, and when the amount is 3 mol or more, the side reaction takes precedence and the yield of the desired bis (alkoxycarbonyldifluoromethyl) aryl compound decreases. .
  • the amount of copper used to act on the dihalogenoaryl compound is not particularly limited, but is usually 1 to 20 mol, preferably 2 to 15 mol, per 1 mol of the dihalogenoaryl compound. More preferably, it is 3 mol to 10 mol.
  • As the shape of the copper used a powdery one is preferable and a coarse one is not preferable.
  • the reaction is preferably performed in a solvent.
  • a solvent it is preferable to use a polar solvent such as acetonitrile, N, N-dimethylformamide, N, N-dimethylimidazolidinone, dimethyl sulfoxide, sulfolane, more preferably N, N-dimethylformamide or dimethyl sulfoxide. It is. These solvents may be used alone or in combination of two or more.
  • the reaction temperature is usually in the range of room temperature to 100 ° C., preferably 40 to 80 ° C., and more preferably 50 to 60 ° C.
  • the reaction time depends on the reaction temperature, it is usually several minutes to 100 hours, preferably 30 minutes to 50 hours, and more preferably 1 to 20 hours. ), And using an analytical instrument such as gas chromatography, the end point of the reaction is preferably the time when the raw dihalogenoaryl compound is consumed.
  • a bis (alkoxycarbonyldifluoromethyl) aryl compound can be obtained by ordinary means such as extraction and recrystallization. If necessary, it can be purified by column chromatography, distillation, recrystallization or the like.
  • the hydrolysis reaction is carried out in the presence of a base catalyst, and the base includes one or more alkali metal hydroxides, bicarbonates, carbonates, ammonia, and amines.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate and the like.
  • alkali metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate and potassium carbonate are preferred, and are alkali metal hydroxides.
  • Sodium hydroxide and potassium hydroxide are particularly preferred.
  • the molar ratio of the base to the bis (alkoxycarbonyldifluoromethyl) aryl compound is usually 0.01 to 10, preferably 1.0 to 5, and more preferably 1 to 3.
  • This reaction is usually performed in the presence of water.
  • the molar ratio of water with respect to the bis (alkoxycarbonyldifluoromethyl) aryl compound is usually 1 or more and there is no upper limit. However, if too much water is used, the efficiency is lowered, so 100 or less is preferable, and more preferably 50 It is as follows.
  • organic solvent used in combination is not particularly limited, but an organic solvent obtained by the reaction and capable of extracting the bis (hydroxycarbonyldifluoromethyl) aryl compound from the aqueous layer, for example, esters such as ethyl acetate and n-butyl acetate; diethyl ether Preferred are organic solvents that are not miscible with water, such as ethers such as methylene chloride and alkyl halides such as chloroform.
  • the use ratio of the organic solvent is usually 5 parts by mass or more, preferably 10 parts by mass or more, and more preferably 20 to 90 parts by mass with respect to 100 parts by mass in total of water and the organic solvent.
  • the reaction temperature is usually from 0 to 100 ° C., preferably from 5 to 80 ° C.
  • the reaction time is usually from 10 minutes to 16 hours, preferably from 30 minutes to 6 hours, but a nuclear magnetic resonance apparatus (NMR)
  • NMR nuclear magnetic resonance apparatus
  • a bis (hydroxycarbonyldifluoromethyl) aryl compound can be obtained by ordinary means such as extraction and recrystallization. If necessary, it can be purified by column chromatography, distillation, recrystallization or the like.
  • Chlorination is achieved by bringing the resulting bis (hydroxycarbonyldifluoromethyl) aryl compound into contact with a chlorinating agent in the absence of a solvent or in the presence of a solvent and heating.
  • chlorinating agent used examples include general-purpose chlorinating agents such as thionyl chloride, sulfuryl chloride, phosgene, oxalyl chloride, phosphoryl chloride, phosphorus trichloride, phosphorus pentachloride, dichlorotriphenylphosphorane, and dibromotriphenylphosphorane.
  • general-purpose chlorinating agents such as thionyl chloride, sulfuryl chloride, phosgene, oxalyl chloride, phosphoryl chloride, phosphorus trichloride, phosphorus pentachloride, dichlorotriphenylphosphorane, and dibromotriphenylphosphorane.
  • Thionyl chloride, phosphoryl chloride, and oxalyl chloride are particularly inexpensive and highly reactive. Therefore, chlorination using these reagents is particularly preferable.
  • the amount of the chlorinating agent used is 1.6 to 20 mol per mol of the bis (hydroxycarbonyldifluoromethyl) aryl compound, and 2 to 10 mol is particularly preferred.
  • the solvent can be used without particular limitation as long as it is inert under the conditions of chlorination.
  • benzene, toluene, xylene, methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride and the like can be used.
  • the chlorinating agent also serves as a solvent, so that it is not necessary to use a solvent.
  • the reaction temperature for chlorination is 25 to 200 ° C., more preferably 30 to 120 ° C., and the reaction time is usually 10 minutes to 16 hours, preferably 30 minutes to 6 hours. It is preferable to use an analytical instrument such as (NMR) or gas chromatography and use the point of time when the bis (hydroxycarbonyldifluoromethyl) aryl compound as a raw material is consumed as the end point of the reaction.
  • an analytical instrument such as (NMR) or gas chromatography
  • a bis (hydroxycarbonyldifluoromethyl) aryl compound can be obtained by ordinary means such as extraction and recrystallization. If necessary, it can be purified by column chromatography, distillation, recrystallization or the like.
  • the fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) or the acid anhydride of the fluorine-containing dicarboxylic acid responds to the reactivity of these carbonyl group sites. It is a polymer compound obtained by polycondensation with a polyfunctional compound having one reactive group. Q, A and A ′ in the formula are the same as described above.
  • Examples of the reactive group that responds to the reactivity of the carbonyl group site of the polyfunctional compound include a hydroxyl group and its activated group, an amino group and its activated group, and the like.
  • the polyfunctional compound requires at least two reactive groups, and may have a plurality of types of reactive groups, but preferably two of them are the same reactive group.
  • This fluorine-containing dicarboxylic acid derivative is a compound having two —CF 2 CO— groups.
  • three or more functional groups including this —CF 2 CO— group are added. Can have at the same time.
  • these functional groups are effectively used, but it is preferable to preferentially use the reactivity of the —CF 2 CO— group.
  • m means the number of repeating monomer units (degree of polymerization), preferably 5 to 10,000, preferably 10 to 1,000. Further preferred.
  • the polymer of the present invention is a mixture of polymers having a certain degree of polymerization degree, but in terms of the weight average molecular weight of the polymer, it is generally preferably from 1,000 to 5,000,000, particularly preferably from 2,000 to 200,000. The degree of polymerization and molecular weight can be set to desired values by appropriately adjusting the conditions of the polymerization method described later.
  • the fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) or the acid anhydride of the fluorine-containing dicarboxylic acid according to the present invention is contacted with the diol represented by the following general formula (2) within a predetermined temperature range. By making it, it can superpose
  • Q, A and A ′ are the same as described above.
  • Diols can also be used as actives having groups activated for reaction with carboxyl groups to increase reactivity.
  • the activator include alkali metal (lithium, sodium, potassium) salts (dialkoxide) of diol.
  • R 1 is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring and a heterocyclic ring, and contains a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom or a nitrogen atom.
  • a part of the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group, and a part of the carbon atom may be an oxygen atom, a sulfur atom, It may be substituted with a nitrogen atom, a carbonyl group, or a sulfonyl group.
  • m is a positive integer.
  • the method for producing the polyester of the present invention is not particularly limited, and a known method can be used. That is, the fluorine-containing dicarboxylic acid represented by the general formula (M-3) is directly dehydrated and condensed with the diol represented by the general formula (2) in the presence of a condensing agent, thereby being represented by the general formula (6). Can be produced.
  • a and A ⁇ are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a straight chain having 1 to 6 carbon atoms.
  • a linear, branched or cyclic alkoxy group, an aryloxy group which may have a substituent of 6 to 10 carbon atoms, and an acid anhydride of a fluorine-containing dicarboxylic acid derivative are represented by the general formula (2)
  • a polymer represented by the general formula (6) can be produced by reacting with a diol.
  • a polymer dissolution accelerator that is, a metal salt such as lithium bromide or lithium chloride, a dehydrating agent such as sulfuric acid, phosphoric acid or phosphorus pentoxide, or an acid acceptor such as amine can be used.
  • the reaction may be carried out in an organic solvent at a temperature of -20 to 80 ° C.
  • a fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) (where A and A ′ are a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or an acid of the fluorine-containing dicarboxylic acid
  • M-1 a fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1)
  • a and A ′ are a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • the ratio of the total number of moles of the fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) used in the polymerization or the acid anhydride of the fluorine-containing dicarboxylic acid to the total number of moles of the diol is 0.5 to 1 Is generally in the range of .5, and more preferably in the range of 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this ratio is to 1, the larger the molecular weight of the resulting polymer.
  • the organic solvent that can be used is not particularly limited as long as both components of the raw material are dissolved, but N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2- Amido solvents such as pyrrolidone, aromatic solvents such as benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, halogen solvents such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, Examples include lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, and ⁇ -methyl- ⁇ -butyrolactone.
  • polyamide refers to “polyamide diol type polymer compound”, “highly fluorinated polyamide” described later, “polybenzoxazole” obtained by ring closure from these, “heterocyclic type polymer compound” May be included.
  • the fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) or the acid anhydride of the fluorine-containing dicarboxylic acid according to the present invention is brought into contact with the diamine represented by the general formula (3) within a predetermined temperature range. It can superpose
  • Q, A and A ′ are the same as described above.
  • Q has an amino group
  • it can be used as it is when subjected to polycondensation, but it is preferable to use it after protecting the amino group with the above-mentioned protecting group.
  • diamine represented by the general formula (3) will be described.
  • Diamines can also be used as actives having groups activated for reaction with carboxyl groups to increase reactivity.
  • both amino groups of the diamine are trialkylsilylamino groups (the alkyl group is selected from a methyl group, an ethyl group, a propyl group, and an i-propyl group, and the three may be the same or different. And the like.).
  • R 2 in the general formula (3) and the general formula (7) is a divalent organic group containing one or more selected from an alicyclic ring, an aromatic ring, and a heterocyclic ring, and includes a fluorine atom, a chlorine atom, an oxygen atom, A sulfur atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group, or a cyano group. A part thereof may be substituted with an oxygen atom, a sulfur atom, a nitrogen atom, a carbonyl group or a sulfonyl group.
  • m is a positive integer.
  • diamine represented by the general formula (3) 1,4-diaminocyclohexane, 3,5-diaminobenzotrifluoride, 2,5-diaminobenzotrifluoride, 3,3 '-Bistrifluoromethyl-4,4'-diaminobiphenyl, 3,3'-bistrifluoromethyl-5,5'-diaminobiphenyl, bis (trifluoromethyl) -4,4'-diaminodiphenyl, bis (fluorinated Alkyl) -4,4′-diaminodiphenyl, dichloro-4,4′-diaminodiphenyl, dibromo-4,4′-diaminodiphenyl, bis (fluorinated alkoxy) -4,4′-diaminodiphenyl, diphenyl-4, 4'-diaminodiphenyl, 4,4'-bis (4-ami
  • the production method of the polyamide of the present invention can be used without any particular limitation to known methods. That is, the fluorine-containing dicarboxylic acid represented by the general formula (M-3) is subjected to direct dehydration condensation with the diamine represented by the general formula (3) in the presence of a condensing agent, whereby the heavy compound represented by the general formula (7) is represented. Coalescence can be manufactured.
  • a and A ′ are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a straight chain having 1 to 6 carbon atoms.
  • a linear, branched or cyclic alkoxy group, an aryloxy group which may have a substituent having 6 to 10 carbon atoms, and an acid anhydride of a fluorine-containing dicarboxylic acid derivative are represented by the general formula (3).
  • a polymer represented by the general formula (7) can be produced by reacting with diamine.
  • a polymer dissolution accelerator that is, a metal salt such as lithium bromide or lithium chloride, a dehydrating agent such as sulfuric acid, phosphoric acid or phosphorus pentoxide, or an acid acceptor such as amine can be used.
  • the reaction may be carried out in an organic solvent at a temperature of -20 to 80 ° C.
  • a polymer dissolution accelerator is used, polymerization can be performed even when A and A 'of the fluorine-containing dicarboxylic acid derivative are a hydroxyl group or an alkoxy group.
  • a fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1) (where A and A ′ are a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) or an acid of the fluorine-containing dicarboxylic acid
  • M-1 a fluorine-containing dicarboxylic acid derivative represented by the general formula (M-1)
  • a and A ′ are a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • the ratio of the total number of moles of the fluorine-containing dicarboxylic acid derivative represented by formula (M-1) used in the polymerization or the acid anhydride of the fluorine-containing dicarboxylic acid to the total number of moles of the diamine is 0.5 to 1. Is generally in the range of .5, and more preferably in the range of 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer this ratio is to 1, the larger the molecular weight of the resulting polymer.
  • the organic solvent that can be used is not particularly limited as long as both components of the raw material are dissolved, but N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2- Amido solvents such as pyrrolidone, aromatic solvents such as benzene, anisole, diphenyl ether, nitrobenzene, benzonitrile, halogen solvents such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, Examples include lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, and ⁇ -methyl- ⁇ -butyrolactone.
  • Q has an amino group
  • it can be used as it is when subjected to polycondensation, but it is preferable to use it after protecting the amino group with the above-mentioned protecting group.
  • R 3 in the general formula (4) and the general formula (8) is a tetravalent organic group containing one or more selected from an alicyclic ring, an aromatic ring, and a heterocyclic ring, and includes a fluorine atom, a chlorine atom, an oxygen atom, A sulfur atom or a nitrogen atom may be contained, and a part of the hydrogen atom may be substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group, or a cyano group. A part thereof may be substituted with an oxygen atom, a sulfur atom, a nitrogen atom, a carbonyl group, or a sulfonyl group.
  • m is a positive integer.
  • diaminodiol represented by the general formula (4) examples include 2,4-diamino-1,5-cyclohexanediol, 2,4-diamino-1,5-benzenediol, 3 , 3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-diamino-4,4′-dihydroxybiphenyl, bis (3-amino-4-hydroxyphenyl) ketone, bis (3-amino-4- Hydroxyphenyl) sulfide, bis (3-amino-4-hydroxyphenyl) ether, bis (3-hydroxy-4-aminophenyl) sulfone, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2, 2-bis (3-hydroxy-4-aminophenyl) propane, bis (3-hydroxy-4-aminophenyl) methane, 2,2-bis 3-amino-4-hydroxyphenyl) hexafluoropropan
  • a known method can be used as the method for producing the polyamide diol type polymer compound of the present invention without any particular limitation. That is, the fluorine-containing dicarboxylic acid represented by the general formula (M-3) is subjected to direct dehydration condensation with the diaminodiol represented by the general formula (4) in the presence of the condensing agent, thereby obtaining the general formula (8). A polymer can be produced.
  • a and A ′ are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a straight chain having 1 to 6 carbon atoms.
  • a linear, branched or cyclic alkoxy group, an aryloxy group having a substituent of 6 to 10 carbon atoms, and an acid anhydride of a fluorine-containing dicarboxylic acid derivative are represented by the general formula (4)
  • a polymer represented by the general formula (8) can be produced by reacting with diaminodiol.
  • a polymer dissolution accelerator that is, a metal salt such as lithium bromide or lithium chloride, a dehydrating agent such as phosphoric acid or phosphorus pentoxide, or an acid acceptor such as amine can be used.
  • the method and conditions for this polymerization reaction are not particularly limited. Since the elementary reaction of the polymerization is an amide formation reaction, the same method and solvent species as the polyamide production represented by the general formula (7) described above can be used.
  • the polyamide phenol resin (polyamide diol type polymer compound) obtained by the above method can be derived into a polybenzoxazole resin represented by the general formula (9) by further dehydrating and ring-closing.
  • R 3 in the general formula (9) are the same as R 3 in the general formula (4).
  • a known method can be used for the dehydration ring-closing reaction without particular limitation.
  • the cyclization reaction can be performed by various methods that promote dehydration conditions such as heat, acid catalyst, and base catalyst.
  • the treatment can be carried out at a temperature of 80 to 400 ° C., but a temperature range of 150 to 350 ° C. is particularly preferred.
  • the heating time is about 10 minutes to 10 hours, but is usually about 30 minutes to 2 hours.
  • the ring closure temperature is 150 ° C. or lower, the ring closure rate is low, and thus the film strength of polybenzoxazole is impaired, and when it is 350 ° C. or higher, the film is colored or brittle.
  • the acid catalyst p-toluenesulfonic acid, methanesulfonic acid and the like can be used, and as the base catalyst, triethylamine, pyridine and the like can be used.
  • the polybenzoxazole after ring closure is soluble in an organic solvent, it can be chemically ring-closed in an organic solution using a dehydrating reagent such as acetic anhydride and an organic base such as pyridine and triethylamine.
  • the ring After applying the highly fluorinated polyamide resin represented by the general formula (10) to various articles, the ring can be closed.
  • resin modification accompanied by a large change in physical properties such as improvement in heat resistance, change in solubility, reduction in refractive index and dielectric constant, and expression of water and oil repellency can be performed.
  • R 4 in the general formula (5) and the general formula (10) is a tetravalent organic group containing one or more selected from an alicyclic ring, an aromatic ring, a condensed polycyclic aromatic ring, and a heterocyclic ring, and is a fluorine atom May contain a chlorine atom, an oxygen atom, a sulfur atom or a nitrogen atom, and a part of the hydrogen atom is substituted with a fluorine atom, a chlorine atom, an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxyl group or a cyano group.
  • some of the carbon atoms may be substituted with an oxygen atom, a sulfur atom, a nitrogen atom, a carbonyl group, or a sulfonyl group.
  • m is a positive integer.
  • diaminodiol substituted with the hexafluoroisopropanol moiety represented by the general formula (5) include the following compounds, but the present invention is not limited thereto. is not.
  • the polymerization reaction method and conditions of the “highly fluorinated polyamide” of the present invention are not particularly limited. Since the elementary reaction of the polymerization is an amide formation reaction, the same method, conditions and solvent types as those for producing the polyamide resin represented by the general formula (7) can be used.
  • the highly fluorinated polyamide resin represented by the general formula (10) obtained by the above method is further derived by dehydration and ring closure into a “heterocyclic polymer compound” represented by the general formula (11). can do.
  • the R 4 in the general formula (11) is synonymous with R 4 in the general formula (5).
  • the conditions for the dehydration ring closure reaction are not particularly limited, but cyclization can be performed by various methods that promote dehydration conditions such as heat, acid catalyst, and base catalyst.
  • a known method can be used for the dehydration ring-closing reaction without particular limitation.
  • the cyclization reaction can be performed by various methods that promote dehydration conditions such as heat, acid catalyst, and base catalyst.
  • the treatment can be carried out at a temperature of 80 to 400 ° C., but a temperature range of 150 to 350 ° C. is particularly preferred, and the ring can be substantially closed at about 250 ° C.
  • the ring closing temperature is 150 ° C. or lower, the resulting film strength is impaired because the ring closing rate is low, and when it is 350 ° C. or higher, the film is colored or brittle.
  • the acid catalyst p-toluenesulfonic acid, methanesulfonic acid and the like can be used, and as the base catalyst, triethylamine, pyridine and the like can be used.
  • the base catalyst triethylamine, pyridine and the like can be used.
  • the "heterocyclic polymer” after ring closure is soluble in an organic solvent, it should be chemically closed in an organic solution using a dehydrating reagent such as acetic anhydride and an organic base such as pyridine or triethylamine. Is also possible.
  • the heterocycle of the “heterocyclic polymer compound” represented by the general formula (11) can be formed by dehydration and ring closure under milder conditions than the oxazole ring represented by the general formula (9).
  • heterocyclic polymer represented by the general formula (11) contains a heterocycle containing a trifluoromethyl group, it is more than the polybenzoxazole represented by the general formula (9). Furthermore, it exhibits low dielectric constant, low water absorption, and high transparency.
  • polyester and polyamide of the present invention can be used in a varnish state dissolved in an organic solvent, or in a powder state, a film state, or a solid state.
  • additives such as an oxidation stabilizer, a filler, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer may be mixed in the obtained fluoropolymer as necessary. Absent. When using in varnish, apply it on a substrate such as glass, silicon wafer, metal, metal oxide, ceramics, resin, etc.
  • the film is usually heated to increase the degree of polymerization to obtain a film (coating film) having desired characteristics. In this case, it can be carried out at a temperature of about 150 to 350 ° C., but is preferably carried out at 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the polyamide represented by the general formula (8) or the general formula (10) is ring-closed by this heating to form a polybenzoxazole represented by the general formula (9) or a “heterocycle” represented by the general formula (11).
  • Type polymer compound ”.
  • organic solvent used here examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone.
  • lactones such as ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, concentrated sulfuric acid and the like.
  • Example 2 Synthesis of ⁇ , ⁇ 4 , ⁇ , ⁇ 4 tetrafluoro-1,4-benzenediacetic acid
  • a 250 mL glass flask was added 15 g of the diester obtained in Example 1 (purity 74%, 34 mmol), 40 mL of water, and 9.6 g of a 48% aqueous sodium hydroxide solution (115 mmol / 3.3 equivalents), and 18 hours at room temperature. After stirring, the completion of the reaction was confirmed by 19 F NMR. Then, it wash
  • Example 4 Synthesis of ⁇ , ⁇ 3 , ⁇ , ⁇ 3 tetrafluoro-1,3-benzenediacetic acid
  • 21 g of the diester obtained in Example 3 purity 52%, 34 mmol
  • 40 mL of water and 9.6 g of a 48% aqueous sodium hydroxide solution (115 mmol / 3.3 equivalents)
  • 18 hours at room temperature After stirring, the completion of the reaction was confirmed by 19 F NMR. Then, it wash
  • Example 5 Synthesis of ⁇ , ⁇ 4 , ⁇ , ⁇ 4 tetrafluoro-1,4-benzenediacetyl chloride To a 250 mL glass flask equipped with a condenser, 49 g (purity 90%, 167 mmol / 1.0 equivalent) of dicarboxylic acid obtained in the same manner as in Examples 1 and 2 and 50 mL of acetonitrile were added, and 50 g (420 mmol) of thionyl chloride was added thereto. /2.5 equivalents) was added dropwise and stirred at room temperature for 18 hours.
  • Example 8 Synthesis of 5-methoxy- ⁇ , ⁇ 4 , ⁇ , ⁇ 4 tetrafluoro-1,3-benzenediacetic acid To a 250 mL glass flask was added 15 g of the diester obtained in Example 7 (purity 75%, 32 mmol), 40 mL of water, and 10.0 g of a 48% aqueous sodium hydroxide solution (120 mmol / 3.8 equivalents), and 18 hours at room temperature. After stirring, the completion of the reaction was confirmed by 19 F NMR.
  • Example 12 Synthesis of 2,2 '-(diphenyl-4,4'-diyl) bis (2,2-difluoroacetyl chloride) To a 250 mL glass flask equipped with a condenser, 43 g (purity 80%, 100 mmol / 1.0 equivalent) of dicarboxylic acid prepared in the same manner as in Examples 11 and 12 and 80 mL of acetonitrile were added, and 30 g of thionyl chloride (250 mmol / 2) was added thereto. 0.5 equivalent) was added dropwise and stirred at room temperature for 24 hours.
  • reaction was carried out at 100 ° C. for 17 hours at a carbon monoxide pressure of 2 MPa.
  • 50 mL of 2N hydrochloric acid was added to the reaction solution.
  • the organic layer was separated by extraction with 50 mL of isopropyl ether.
  • 60 mL of a 7% aqueous sodium hydroxide solution was added, and the aqueous layer was separated.
  • the aqueous layer was washed with 30 mL of heptane, and 60 mL of 6N hydrochloric acid was added.
  • the precipitated solid was isolated by filtration and washed with 50 mL of heptane.
  • Carboxylic acid chloride 1 Preparation of [5- [2,2,2-trifluoro-1-hydroxy-1- (trifluoromethyl) ethyl] -1,3-benzenedicarboxylic acid chloride 50 mL of glass To the flask, 3.5 g (10.5 mmol) of 5- [2,2,2-trifluoro-1-hydroxy-1- (trifluoromethyl) ethyl] -1,3-benzenedicarboxylic acid obtained in Reference Example 5 was added. ) And 20 ml thionyl chloride. Then, it was made to react at 70 degreeC for 5 hours, stirring.
  • Polymer 1 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape.
  • DMF N, N-dimethylformamide
  • the film thickness was about 10 ⁇ m, the film thickness was measured using a HP-4284A Precision LCR meter manufactured by Hewlett-Packard at a frequency of 100 kHz in accordance with JIS-K6911, and the relative dielectric constant was calculated according to the following formula (hereinafter referred to as “the dielectric constant”). The same).
  • the physical properties of the film are shown in Table 1.
  • Relative permittivity (capacitance measurement value ⁇ film thickness) / (vacuum permittivity ⁇ measurement area)
  • Example 14 Synthesis of Polymer 2 3.03 g (10.0 mmol) of the acid chloride ( ⁇ , ⁇ 3 , ⁇ , ⁇ 3 tetrafluoro-1,3-benzenediacetyl chloride) obtained in Example 6 and 2. By using 28 g (10.0 mmol) and 20.0 g of N-methyl-2-pyrrolidone (NMP), 3.99 g (yield 87%) of polymer 2 was obtained in the same manner as in Example 10. It was. The results of specific viscosity measurement of the obtained polymer 2 are shown in Table 1.
  • Polymer 2 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 15 Synthesis of Polymer 3 3.33 g (10.0 mmol) of the acid chloride (5-methoxy- ⁇ , ⁇ 3 , ⁇ , ⁇ 3 tetrafluoro-1,3-benzenediacetyl chloride) obtained in Example 9 in terms of pure component, bisphenol 4.21 g (86% yield) of A was obtained in the same manner as in Example 10 using 2.28 g (10.0 mmol) of A and 20.0 g of N-methyl-2-pyrrolidone (NMP). Polymer 3 was obtained. The results of measuring the specific viscosity of the obtained polymer 3 are shown in Table 1.
  • Polymer 3 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 16 Synthesis of Polymer 4 3.03 g (10.0 mmol) of the acid chloride obtained in Example 5 in terms of pure content, 3.36 g (10.0 mmol) of diol 1, and 20.30 g of N-methyl-2-pyrrolidone (NMP). Using 0 g, 4.64 g (yield 82%) of polymer 4 was obtained in the same manner as in Example 10. Table 1 shows the results of measurement of the specific viscosity of the obtained polymer 4.
  • Polymer 3 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 17 Synthesis of Polymer 5 3.03 g (10.0 mmol) of the acid chloride obtained in Example 6 in terms of pure content, 3.36 g (10.0 mmol) of diol 1, and 20.30 g of N-methyl-2-pyrrolidone (NMP). Using 0 g, 4.81 g (yield 85%) of polymer 5 was obtained in the same manner as in Example 10. The results of measuring the specific viscosity of the obtained polymer 5 are shown in Table 1.
  • Polymer 5 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 18 Synthesis of polymer 6 3.03 g (10.0 mmol) of the acid chloride obtained in Example 5 in terms of pure component, 2.26 g (10.0 mmol) of diamine 1, and 20.20 g of N-methyl-2-pyrrolidone (NMP). Using 0 g, 4.24 g (yield 93%) of polymer 6 was obtained in the same manner as in Example 10. The results of measuring the specific viscosity of the obtained polymer 6 are shown in Table 1.
  • Polymer 6 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 19 Synthesis of Polymer 7 3.03 g (10.0 mmol) of the acid chloride obtained in Example 6 in terms of pure amount, 2.26 g (10.0 mmol) of diamine 1, and 20.20 g of N-methyl-2-pyrrolidone (NMP). In the same manner as in Example 10, 4.154 g (yield 91%) of polymer 7 was obtained using 0 g. The results of measuring the specific viscosity of the obtained polymer 7 are shown in Table 1.
  • Polymer 7 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 20 Synthesis of polymer 8 3.03 g (10.0 mmol) of the acid chloride obtained in Example 5 in terms of pure content, 3.34 g (10.0 mmol) of diamine 2, and 20.35 N-methyl-2-pyrrolidone (NMP). In the same manner as in Example 10, 4.81 g (yield 85%) of polymer 8 was obtained using 0 g. Table 1 shows the results of measurement of the specific viscosity of the obtained polymer 8.
  • Polymer 8 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 21 Synthesis of polymer 9 3.03 g (10.0 mmol) of the acid chloride obtained in Example 6 in terms of pure content, 3.34 g (10.0 mmol) of diamine 2 and 20.20 N-methyl-2-pyrrolidone (NMP). Using 0 g, 4.47 g (yield 79%) of polymer 9 was obtained in the same manner as in Example 10. The results of measuring the specific viscosity of the obtained polymer 9 are shown in Table 1.
  • Polymer 9 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 22 Synthesis of polymer 10 3.03 g (10.0 mmol) of the acid chloride obtained in Example 5 in terms of pure content, 3.20 g (10.0 mmol) of diamine 3 and 20.20 g of N-methyl-2-pyrrolidone (NMP). Using 0 g, 4.52 g (yield 82%) of polymer 10 was obtained in the same manner as in Example 10. Table 1 shows the results of measurement of the specific viscosity of the obtained polymer 10.
  • Polymer 10 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 23 Synthesis of polymer 11 3.03 g (10.0 mmol) of the acid chloride obtained in Example 6 in terms of pure content, 3.66 g (10.0 mmol) of diaminodiphenol 1, and N-methyl-2-pyrrolidone (NMP) Using 20.0 g, 5.07 g (yield 85%) of polymer 11 was obtained in the same manner as in Example 10. Table 1 shows the results of measurement of specific viscosity of the obtained polymer 11.
  • Example 24 Synthesis of polymer 12 Polymer 11 (1.00 g) obtained in Example 20 and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. From the infrared absorption spectrum (IR) analysis, it was confirmed that the structure of the obtained film was polymer 12. Table 1 shows the physical properties (dielectric constant) of the obtained film. Similarly, when heat treatment was further performed at 300 ° C. for 1 hour, and the same observation and measurement were performed, a flexible transparent film having a retained shape was obtained, and the relative dielectric constant was not subjected to additional heat treatment. It did not change.
  • DMF N-dimethylformamide
  • Example 25 Synthesis of polymer 13 3.03 g (10.0 mmol) of the acid chloride obtained in Example 5 in terms of pure content, 5.30 g (10.0 mmol) of diaminodiol 1 synthesized according to the method described in JP-A-2007-119503, Then, 6.01 g (yield 79%) of polymer 13 was obtained in the same manner as in Example 10 using 20.0 g of N-methyl-2-pyrrolidone (NMP). The results of measuring the specific viscosity of the obtained polymer 13 are shown in Table 1.
  • Example 26 Synthesis of Polymer 14 Polymer 13 (1.00 g) obtained in Example 22 and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. From the IR analysis, it was confirmed that the structure of the obtained film was polymer 14. Table 1 shows the physical properties (dielectric constant) of the obtained film. Similarly, when heat treatment was further performed at 300 ° C. for 1 hour, and the same observation and measurement were performed, a flexible transparent film having a retained shape was obtained, and the relative dielectric constant was not subjected to additional heat treatment. It did not change.
  • DMF N-dimethylformamide
  • Example 27 Synthesis of Polymer 15 Bisphenol A (2.28 g, 10.0 mmol) and N-methyl-2-pyrrolidone (NMP) (20.0 g) were placed in a 100 ml three-necked flask equipped with a stirrer, and the mixture was stirred under a nitrogen atmosphere under ice cooling. To this, 0.20 g (1.0 mmol) of terephthalic acid chloride and 2.73 g (9.0 mmol) of the acid chloride obtained in Example 5 were slowly added over a period of 10 minutes or more.
  • NMP N-methyl-2-pyrrolidone
  • Polymer 1 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 28 Synthesis of polymer 22 2.79 g (10.0 mmol) of 2,2 ′-(diphenyl-4,4′-diyl) bis (2,2-difluoroacetyl chloride) obtained in Example 12 in terms of pure content and 3 of diol 1
  • Example 13 using 5.36 g (10.0 mmol) and 20.0 g of N-methyl-2-pyrrolidone (NMP), 5.78 g (yield 90%) of polymer 22 was obtained. Obtained.
  • Table 1 shows the results of measurement of specific viscosity of the obtained polymer 22.
  • Polymer 22 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 29 Synthesis of polymer 23 2.79 g (10.0 mmol) of 2,2 ′-(diphenyl-4,4′-diyl) bis (2,2-difluoroacetyl chloride) obtained in Example 12 in terms of pure content and 3 of diamine 2 .34 g (10.0 mmol) and 20.0 g N-methyl-2-pyrrolidone (NMP) were used in the same manner as in Example 10 to obtain 5.64 g (88% yield) of polymer 23. Obtained. Table 1 shows the results of measurement of specific viscosity of the obtained polymer 23.
  • Polymer 23 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. Table 1 shows the physical properties of the obtained film.
  • Example 30 Synthesis of Polymer 24 2.79 g (10.0 mmol) of 2,2 ′-(diphenyl-4,4′-diyl) bis (2,2-difluoroacetyl chloride) obtained in Example 12 was converted into pure diol diphenol 1 5.72 g (yield 85%) of polymer in the same manner as in Example 10 using 3.66 g (10.0 mmol) and 20.0 g N-methyl-2-pyrrolidone (NMP) 24 was obtained. The results of measuring the specific viscosity of the obtained polymer 24 are shown in Table 1.
  • Example 31 Synthesis of polymer 25
  • the obtained polymer 24 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution.
  • the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere.
  • the film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. From the infrared absorption spectrum (IR) analysis, it was confirmed that the structure of the obtained film was polymer 25.
  • Table 1 shows the physical properties of the obtained film.
  • Example 32 Synthesis of polymer 26 2.79 g (10.0 mmol) of 2,2 ′-(diphenyl-4,4′-diyl) bis (2,2-difluoroacetyl chloride) obtained in Example 12 in terms of pure component, In the same manner as Example 10 using 5.30 g (10.0 mmol) and 30.0 g N-methyl-2-pyrrolidone (NMP), 6.85 g (82% yield) of polymer 26 Got. The results of measuring the specific viscosity of the obtained polymer 26 are shown in Table 1.
  • Example 33 Synthesis of polymer 27
  • the obtained polymer 26 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution.
  • the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere.
  • the film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. From the infrared absorption spectrum (IR) analysis, it was confirmed that the structure of the obtained film was polymer 27.
  • Table 1 shows the physical properties of the obtained film.
  • Example 10 Synthesis of polymer 16
  • Polymer 16 was obtained in the same manner as in Example 10 except that 2.0 g (10.0 mmol) of terephthalic acid chloride was used instead of the acid chloride obtained in Example 5.
  • the results of specific viscosity measurement of the obtained polymer 16 are shown in Table 1.
  • Polymer 16 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After filtering the obtained solution, the filtrate was spin-coated on a glass substrate, and was heat-treated in a nitrogen atmosphere at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour. The degree of polymerization was low and many cracks occurred.
  • DMF N, N-dimethylformamide
  • Example 15 Synthesis of polymer 17 In Example 15, Polymer 17 was obtained in the same manner as in Example 15 except that 2.0 g (10.0 mmol) of terephthalic acid chloride was used instead of the acid chloride obtained in Example 5. Table 1 shows the results of measurement of specific viscosity of the obtained polymer 17.
  • Polymer 17 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After filtering the obtained solution, the filtrate was spin-coated on a glass substrate, and was heat-treated in a nitrogen atmosphere at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour. The degree of polymerization was low and many cracks occurred.
  • DMF N, N-dimethylformamide
  • Structure 18-1 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece created on the glass substrate was peeled off to obtain a flexible transparent film having a retained shape. From the IR analysis, it was confirmed that the obtained film was a mixed polymer of the structure 18-1 and the structure 18-2 (polymer 18). Moreover, many cracks generate
  • DMF N, N-dimethylformamide
  • Polymer 19 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. Although the film piece created on the glass substrate was peeled off, a transparent film with poor flexibility was obtained. From the IR analysis, the structure of the obtained film was confirmed to be polymer 20. Table 1 shows the physical properties of the obtained film.
  • Polymer 21 (1.00 g) and N, N-dimethylformamide (DMF) (4.00 g) were mixed to prepare a uniform solution. After the obtained solution was filtered, the filtrate was spin-coated on a glass substrate, and heat-treated at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 250 ° C. for 1 hour in a nitrogen atmosphere. The film piece prepared on the glass substrate had many cracks because of the low degree of polymerization.
  • DMF N, N-dimethylformamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyamides (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明によれば、一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物を、これらのカルボニル基部位の反応性に応答する2~4個の反応性基を有する多官能性化合物と重縮合させて得られる高分子化合物が提供される。 【化134】 [式中、Qは置換基を有していてもよい芳香環を有する二価の有機基であって、A、A’は有機基を表す。] この高分子は、半導体の保護膜として十分に低誘電率であり、且つ、250℃以下という比較的低温でフィルム形成可能であるという特徴を有する。

Description

含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物
 本発明は、新規な含フッ素ジカルボン酸誘導体およびそれを用いた新規な高分子化合物に関する。
 高度の信頼性を有する有機高分子としてポリエステル、ポリアミド、ポリイミド、ポリベンゾオキサゾールが開発され、電子デバイス分野、自動車や航空宇宙用途などのエンジニアリングプラスチック分野、太陽光発電や燃料電池等の環境分野、医療材料分野、光学材料分野などにおいて大きな市場を形成している。それらの中心として、ナイロン、ケブラー(登録商標)などに代表されるポリアミド、液晶性高分子に用いられるポリアリレート、カプトン(登録商標)に代表されるポリイミド、ザイロン(登録商標)に代表されるポリベンゾオキサゾールなどの多種多様な高分子が数多く実用化されている。
 重合における単量体の組み合わせは、ポリエステルの場合は、ジカルボン酸とジオールを縮合剤の存在下で重縮合させる方法、もしくはジカルボン酸を酸クロライドまたはエステルなどに誘導化し、ジオールと重縮合させる方法がとられる。ポリアミドの場合、ジカルボン酸とジアミンを縮合剤の存在下で重縮合させる方法、もしくはジカルボン酸をカルボン酸クロリドまたはエステルなどに誘導化し、ジアミンと重縮合させる方法がとられる。ポリイミドの場合は、ジアミンとテトラカルボン酸二無水物を重合後、脱水閉環させる方法がとられる。ポリベンゾオキサゾールの場合は、ジカルボン酸とビスアミノフェノールを縮合剤の存在下で重縮合させる方法、もしくはジカルボン酸を酸クロリドまたはエステルなどに誘導化し、ビスアミノフェノールと重縮合させる方法がとられる。
 中でも芳香族ポリエステルや芳香族ポリアミドおよびそれらの誘導体は高い信頼性に加え優れた寸法安定性から、プリント基板や半導体分野さらにはディスプレイ分野で注目されている。その一方、これらの用途において高密度化や薄膜化等を達成するためのパターンの微細化に対する要求はとどまるところがなく、より低い吸水性等信頼性に加え、例えば、より低い誘電率などの電気特性について改良が求められている。
 芳香族高分子化合物の含フッ素化は、フッ素樹脂の持つ撥水性、撥油性、低吸水性、耐腐食性、透明性、感光性、低屈折率性、低誘電性などの特性をその高い信頼性を犠牲にせずに向上させることから、先端材料分野を中心として幅広い材料分野で開発または実用化されている。縮合系高分子の単量体であるジアミン中にフッ素を導入する試みがなされ、ベンゼン環の水素原子をフッ素原子やトリフルオロメチル基に置換したジアミンやジヒドロキシ単量体、ヘキサフルオロイソプロペニル基を中心原子団とし、その両サイドに芳香族ヒドロキシアミンを有したビスヒドロキシアミン単量体などから誘導された含フッ素芳香族高分子化合物が実用化されている。
 特許文献1では、剛直な母格の芳香族環に直接トリフルオロメチル基を導入することで、可視光の透明性と寸法安定性の両立を達成した含フッ素芳香族ポリアミドを得ている。これは一般的には硫酸中での反応を必要とする重合工程を、フッ素導入の効果で有機溶媒中での重合を可能としている。しかし母格が剛直であるためフレキシブルなフィルムを得るには280℃以上の高い温度での加熱を必要とし、用途が限定される。
 また特許文献2では剛直な全芳香族ポリエステルの水素原子を全てフッ素原子またはトリフルオロメチル基へ置換することで850nm帯での光透明性と高耐熱性の両立を実現しているが、これも母格が剛直であるため、重合度を高めるには300℃以上の高い重合温度を必要とする。
 非特許文献1では全フッ素化されたベンゼン環のオルト位にフッ素化されたメチレン基を介在して結合したジカルボン酸単量体が開示されているが、高分子化合物への誘導は記載されていない。また、非特許文献2には、ビス(2-エトキシカルボニル-1,1,2,2-テトラフルオロエチル)ベンゼンが開示されているが、やはりそれを用いたポリマーについて記載はない。
国際公開第2004/039863号 特開平5-112635号公報
Journal of Fluorine Chemistry,8(1976)11-22 Journal of Fluorine Chemistry 125 (2004) 763-765
 特許文献1と特許文献2に開示された含フッ素芳香族高分子化合物は非常に高い信頼性を有しているが、上述のように硬化温度が高くなる傾向にある。その一方で、非常に高い信頼性を必要とする半導体チップの保護膜においても、チップ自体の耐熱性が250℃以下とされていることが多く、現実には250℃以下で硬化する高信頼性の高分子化合物からなるフィルムが求められている。
 そこで、本発明は、半導体の保護膜として十分に低誘電率であり、且つ、250℃以下という比較的低温でフィルム形成可能な重縮合系の高分子化合物を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、フッ素化されたメチレン基を介在して芳香環に結合した新規な含フッ素ジカルボン酸または含フッ素ジカルボン酸誘導体、およびそれらを用いて得られる新規高分子化合物の発明に至った。特許文献1および特許文献2で開示されているフタル酸誘導体から縮重合して得られるポリエステルやポリアミドなどでは二つのカルボキシル基が直接芳香環上に置換していることから硬化(重合)を250℃を超える温度で行うのに対し、本発明に係る含フッ素ジカルボン酸はカルボキシル基がジフルオロメチレン基を介して芳香環に結合していることから250℃以下の加熱で低誘電率とフレキシブル性とに優れるフィルム(被膜)が得られたものである。併せて、本発明のポリエステルやポリアミドの一部の構造を閉環させて得られるヘテロ環を有する高分子化合物も低誘電率とフレキシブル性とに優れるという特性を示すことを見出した。
 すなわち、本発明の特徴は以下の通りである。
 [1]一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物を、これらのカルボニル基部位の反応性に応答する2~4個の反応性基を有する多官能性化合物と重縮合させて得られる高分子化合物。
Figure JPOXMLDOC01-appb-C000016
式中、Qは置換基を有していてもよい芳香環を有する二価の有機基であって、-CF2COA及び-CF2COA’は芳香環炭素と結合し、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。AおよびA’はそれぞれ独立に、ヒドロキシル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であり、式中のCO基(カルボニル基)と共に活性エステル基を形成していてもよい。
 [2]二価の有機基Qが、下記一般式(a)で表される二価の有機基であることを特徴とする、[1]の高分子化合物。
Figure JPOXMLDOC01-appb-C000017
式中、Ar1はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y1は単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基であって、pは0~3の整数を表す。二個の未結合手は、同一または異なる芳香環の異なる炭素原子に結合している。
 [3]二価の有機基Qが、下記一般式(b)で表される二価の有機基であることを特徴とする、[1]の高分子化合物。
Figure JPOXMLDOC01-appb-C000018
式中、Ar2はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y2はそれぞれ独立に単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基である。
 [4]二価の有機基Qが、下記式で表される二価の有機基のいずれかであることを特徴とする、[1]~[3]のいずれかの高分子化合物。
Figure JPOXMLDOC01-appb-C000019
 [5]多官能性化合物を一般式(3)で表されるジアミンとして重縮合させて得られる一般式(7)で表される[1]~[4]のいずれかの高分子化合物。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
式中、Qは一般式(M-1)におけるQと同義である。R2は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 [6]多官能性化合物を一般式(4)で表されるジアミノジオールとして重縮合させて得られる一般式(8)で表される[1]~[4]のいずれかの高分子化合物。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
式中、Qは一般式(M-1)におけるQと同義である。R3は脂環、芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子、又は窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 [7][6]の一般式(8)で表される高分子化合物を脱水閉環することで得られる、下記一般式(9)で表される高分子化合物。
Figure JPOXMLDOC01-appb-C000024
式中、Qは一般式(M-1)におけるQと同義である。R3は一般式(4)におけるR3と同義である。
 [8]多官能性化合物を一般式(5)で表されるヘキサフルオロイソプロパノール部位が置換したジアミノジオールとして重縮合させて得られる一般式(10)で表される[1]~[4]のいずれかの高分子化合物。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
式中、Qは一般式(M-1)におけるQと同義である。R4は脂環、芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子、又は窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 [9][8]の一般式(10)で表される高分子化合物を脱水閉環することで得られる、下記一般式(11)で表される高分子化合物。
Figure JPOXMLDOC01-appb-C000027
式中、Qは一般式(M-1)におけるQと同義である。R4は一般式(5)におけるR4と同義である。
 [10]多官能性化合物を一般式(2)で表されるジオールとして重縮合させて得られる一般式(6)で表される[1]~[4]のいずれかの高分子化合物。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
式中、Qは一般式(M-1)におけるQと同義である。R1は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 [11]一般式(M-2)で表される含フッ素ジカルボン酸誘導体。
Figure JPOXMLDOC01-appb-C000030
式中、Qは置換基を有していてもよい芳香環を有する二価の有機基であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。但し、式中の2個のジフルオロメチレン基は互いに隣接する芳香環の炭素原子には結合しない。DおよびD’はそれぞれ独立に、ヒドロキシル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であり、または式中のCO基(カルボニル基)と共に活性エステル基を形成することができる。
 本発明のポリエステル、ポリアミドなどの含フッ素高分子化合物は、半導体チップ自体の耐熱性が下がる中で強く求められている低温硬化性、とりわけ250℃以下の加熱で十分な重合度が得られるという要求を満たし、且つ、得られるフィルムのフレキシブル性が高く、また、電気特性(低誘電率)に優れる保護膜として使用できる。また、本発明のポリエステルやポリアミドを閉環させて得られるヘテロ環を有する高分子化合物も低誘電率とフレキシブル性とに優れるという特性を示し、保護膜として使用できる。さらに、含フッ素ジカルボン酸およびその誘導体はこのような含フッ素高分子化合物の製造に極めて有用である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
 [含フッ素ジカルボン酸誘導体]
 本明細書において、「含フッ素ジカルボン酸誘導体」には、含フッ素ジカルボン酸を含むものとする。
 本発明の含フッ素ジカルボン酸誘導体は下記一般式(M-1)または一般式(M-2)で表される。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 -CF2COA、-CF2COA’、-CF2CODおよび-CF2COD’は同一または異なる芳香環炭素に結合している。但し、式中の-CF2CODおよび-CF2COD’は互いに同一の芳香環の隣接する炭素原子には結合しない。この様に隣接する場合、重合性に欠け重合体を得ることが困難である。
 また、Qは、置換基を有していてもよい芳香環を有する二価の有機基である。このような二価の有機基は、1個または2個以上の芳香環を有する化合物から2個の水素原子が離脱して得られる有機基である。芳香環は炭素数4~20の単環または縮合環である。芳香環間の連結基Yは、単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基からなる連結基であって、芳香環間は複数のこれらの連結基により結合していてもよい。
 芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、フェナントレン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ピセン環、ペンタフェン環、ペリレン環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環等が挙げられる。これらのうち、ベンゼン環、ナフタレン間、ピリジン環が特に好ましい。
 該芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基で置換されていてもよい。
 ここで、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 上記アルキル基上の水素原子がヒドロキシル基と置換したものとしては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、3-ヒドロキシ-n-プロピル基、4-ヒドロキシ-n-ブチル基、5-ヒドロキシ-n-ペンチル基、6-ヒドロキシ-n-ヘキシル基、ヒドロキシシクロペンチル基、ヒドロキシシクロヘキシル基等が挙げられる。
 上記アルキル基上の水素原子がフッ素原子と置換したものとしては、例えば、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロ-n-プロピル基、ヘプタフルオロイソプロピル基、ノナフルオロ-n-ブチル基等が挙げられる。
 さらに上記アルキル基上の水素原子がヒドロキシル基とフッ素原子で置換したものとしては、ジフルオロヒドロキシメチル基、2-ヒドロキシ-1,1,2,2-テトラフルオロエチル基、1,1-ジフルオロ-2-ヒドロキシエチル基、2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル基等が挙げられる。
 炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、 イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、sec-ペントキシ基、tert-ペントキシ基、n-ヘキソキシ基、イソヘキソキシ基、シクロペントキシ基、シクロヘキソキシ基等が挙げられる。
 炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、 イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペントキシカルボニル基、イソペントキシカルボニル基、sec-ペントキシカルボニル基、tert-ペントキシカルボニル基、n-ヘキソキシカルボニル基、イソヘキソキシカルボニル基、シクロペントキシカルボニル基、シクロヘキソキシカルボニル基等が挙げられる。
 置換基を有していてもよい芳香環を有する二価の有機基Qとしては、前記芳香環をAr1とし、連結基YをY1として下記一般式(a)で表される二価の有機基で例示できる。
Figure JPOXMLDOC01-appb-C000033
式中、Ar1はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y1は単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基であって、pは0~3の整数を表す。二個の未結合手は、同一または異なる芳香環の異なる炭素原子に結合している。
 従って、一般式(a)において、pが0である場合の二価の有機基としての芳香環の構造は、より具体的には下記のように例示することができる。本明細書において、点線は-CF2COAもしくは-CF2COA’または-CF2CODもしくは-CF2COD’の置換位置を示す。但し、一般式(M-2)の場合、式中の2個のジフルオロメチレン基は互いに隣接する芳香環の炭素原子には結合せず、言い換えると、隣接する炭素原子が同時に点線の起点となる構造を除く。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 上記の置換基を有していてもよい芳香環Qの構造でのアミノ基は、保護基によって保護されたアミノ基であってもよい。アミノ基を保護するための保護基としては、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基、フタロイル基、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基等が例示できる。
 次いで、一般式(a)において、pが1である場合の二価の有機基の構造は、より具体的には下記のように例示することができる。
Figure JPOXMLDOC01-appb-C000055
 一般式(a)において、pが2である場合の二価の有機基の構造は、より具体的には下記のように例示することができる。
Figure JPOXMLDOC01-appb-C000056
 置換基を有していてもよい芳香環を有する二価の有機基Qとしては、前記芳香環をAr2とし、連結基YをY2として下記一般式(b)で表される二価の有機基で例示できる。
Figure JPOXMLDOC01-appb-C000057
式中、Ar2はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y2はそれぞれ独立に単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基である。
 具体的には下記のように例示することができる。
Figure JPOXMLDOC01-appb-C000058
芳香環を有する二価の有機基Qの構造は、上で例示した構造に限定されない。上で例示した構造の中で、以下に示す構造のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000059
 一般式(M-1)及び一般式(M-2)において、AおよびA≡はそれぞれ独立に、DおよびD≡はそれぞれ独立に、ヒドロキシル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であり、式中のCO基(カルボニル基)と共に活性エステル基を形成していてもよい。
 ここで、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、sec-ペントキシ基、tert-ペントキシ基、n-ヘキソキシ基、イソヘキソキシ基、シクロペントキシ基、シクロヘキソキシ基などを挙げることができる。これらのうちメトキシ基、エトキシ基が好ましい。
 炭素数6~10の置換基を有することもあるアリールオキシ基としては、例えばフェノキシ基、o-トリルオキシ基、m-トリルオキシ基、p-トリルオキシ基、p-ヒドロキシフェノキシ基、p-ニトロフェノキシ基、ポリクロロフェノキシ基、1-ナフトキシ基、ベンジルオキシ基、ピリジルオキシ基などを挙げることができる。これらのうち、p-ニトロフェノキシ基が好ましい。
 また、AおよびA’並びにDおよびD’としては、カルボニル基(CO)と共に活性エステル基を形成するスクシンイミドキシ基、o-フタルイミドキシ基などを挙げることができる。
 これらの中で、AおよびA’並びにDおよびD’として特に好ましいものとして、ヒドロキシル基、塩素原子、スクシンイミドキシ基およびエトキシ基が挙げられる。
 また、一般式(M-1)で表される含フッ素ジカルボン酸(AとA’が共にヒドロキシル基)の酸無水物としては、AOCF2C-およびAOCF2C-が隣接する環炭素にぞれぞれ結合している場合に、これを酸無水物へ誘導したものが挙げられる。
Figure JPOXMLDOC01-appb-C000060
 各種の置換基を有するQから得られる重縮合系の高分子化合物のうち、ヒドロキシル基、カルボキシル基、アルコキシ基、ヘキサフルオロイソプロパノール基、アミノ基などは架橋部位として機能し相補する架橋剤で三次元架橋させることができ、樹脂特性を改良を図ることができる。また、ニトロ基および保護基で保護されたアミノ基は変性し、または脱保護して同様に三次元架橋させることができる。
 [含フッ素ジカルボン酸]
 本発明にかかる含フッ素ジカルボン酸は、下記一般式(M-3)で表される。
Figure JPOXMLDOC01-appb-C000061
ここでQは一般式(M-1)におけるQと同義であり、具体的な構造は上述した一般式(M-1)と同じものを再び挙げることができる。
 これらの新規な含フッ素ジカルボン酸誘導体の合成方法については、Journal of Fluorine Chemistry,2004年,第125巻,509頁~515頁等を参考にすることができる。すなわち、最初にジハロゲノアリール化合物、好ましくはジヨードアリール化合物を出発原料に用い、銅の存在下、ハロゲノジフルオロ酢酸エステル、好ましくはブロモジフルオロ酢酸エチルと作用させ、ビス(アルコキシカルボニルジフルオロメチル)アリール化合物を得、次いでこれを加水分解してカルボン酸へと変換し、必要に応じてこれをハロゲン化して酸ハロゲン化物を得るものである。
 一般的な反応式を以下に示す(反応式[1])。
Figure JPOXMLDOC01-appb-C000062
式中、X1、X2、X3およびX4はそれぞれ独立にハロゲン原子であり、Rは炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基、炭素数6~10の置換基を有することもあるアリール基である。
 まず、ビス(アルコキシカルボニルジフルオロメチル)アリール化合物を得る工程について説明する。銅を用いてアルコキシカルボニルジフルオロメチルアリール化合物を得る方法としては、これまで公知となっている方法のいずれも採用することができ、特に制限は無いが、下記の方法が例示できる。
 ジハロゲノアリール化合物に対して作用させる、ハロゲノジフルオロ酢酸エステルの使用量は、特に制限するものではないが、通常、ジハロゲノアリール化合物1モルに対して、1.8~3モルであり、好ましくは、1.9~2.2モルであり、より好ましくは、実質上2モルである。1.8モルより少ないと、反応においてジハロゲノアリール化合物が消費しきらず、また、3モル以上であると、副反応が優先し、目的とするビス(アルコキシカルボニルジフルオロメチル)アリール化合物の収量が下がる。
 ジハロゲノアリール化合物に対して作用させる、銅の使用量は、特に制限するものではないが、通常、ジハロゲノアリール化合物1モルに対して、1~20モルであり、好ましくは、2~15モルであり、より好ましくは、3モル~10モルである。使用される銅の形状としては、粉末状のものが好ましく、粒度の粗いものは好ましくない。また、使用される銅は、公知の方法によって活性化するのが好ましい。具体的には、使用前に、塩酸水溶液等で処理することが好ましい。
 反応は、溶媒中で行うことが好ましい。かかる溶媒としては、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルイミダゾリジノン、ジメチルスルホキシド、スルホラン等の極性溶媒を使用することが好ましく、より好ましくはN,N-ジメチルホルムアミドもしくはジメチルスルホキシドである。これらの溶媒は単独で使用してもよく、あるいは、2種類以上を併用しても差し支えない。
 反応温度は、通常、室温~100℃の範囲であり、好ましくは、40~80℃であり、より好ましくは、50~60℃である。
 反応時間は反応温度にも依存するが、通常、数分~100時間であり、好ましくは、30分~50時間であり、より好ましくは、1~20時間であるが、核磁気共鳴装置(NMR)、ガスクロマトグラフィーなどの分析機器を使用し,原料であるジハロゲノアリール化合物が消費された時点を反応の終点とすることが好ましい。
 反応終了後、抽出、再結晶等の通常の手段により、ビス(アルコキシカルボニルジフルオロメチル)アリール化合物を得ることができる。また、必要によりカラムクロマトグラフィー、蒸留、再結晶等により精製することもできる。
 次いで、得られたビス(アルコキシカルボニルジフルオロメチル)アリール化合物を加水分解する方法について述べる。加水分解する方法としては、これまで公知となっている方法のいずれも採用することができ、特に制限は無いが、下記の方法が例示できる。
 一般に加水分解反応は塩基触媒の存在下で実施されるが、塩基としては、1種以上のアルカリ金属の水酸化物、重炭酸塩、炭酸塩やアンモニア、アミンが含まれる。アルカリ金属化合物では、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムなどが例示される。アミンでは、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、シクロヘキシルアミン、ベンジルアミン、モルホリン、ピロール、ピロリジン、ピリジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N,N-ジメチルアミノエタノール、N,N-ジエチルアミノエタノール、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、1,2-プロピレンジアミン、ジプロピレントリアミン、トリプロピレンテトラミンやこれらの四級水酸化アンモニウム塩などが示される。
 上で例示した塩基のうち、アルカリ金属化合物である、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウムが好ましく、アルカリ金属の水酸化物である、水酸化ナトリウム、水酸化カリウムが特に好ましい。
 ビス(アルコキシカルボニルジフルオロメチル)アリール化合物に対する塩基のモル比は、通常、0.01~10、好ましくは1.0~5であり、さらに好ましくは1~3である。
 この反応は、通常、水の存在下で行われる。ビス(アルコキシカルボニルジフルオロメチル)アリール化合物に対する水のモル比は、通常、1以上であり、上限は無いが、あまりに多量の水を使用すると効率が悪くなるので、100以下が好ましく、更に好ましくは50以下である。
 また必要に応じて、水と有機溶媒とを併用することができる。併用する有機溶媒に特に制限は無いが、反応で得られる、ビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物を水層から抽出できる有機溶媒、例えば、酢酸エチル、酢酸n-ブチル等のエステル類;ジエチルエーテル等のエーテル類;塩化メチレン、クロロホルム等のハロゲン化アルキル類等の、水と混合しない有機溶剤が好ましい。
 この場合の有機溶媒の使用割合は、水と有機溶媒との合計100質量部に対して、通常、5質量部以上、好ましくは10質量部以上、さらに好ましくは20~90質量部である。
 反応温度は、通常、0~100℃、好ましくは5~80℃であり、反応時間は、通常、10分~16時間、好ましくは30分~6時間であるが、核磁気共鳴装置(NMR)、ガスクロマトグラフィーなどの分析機器を使用し,原料であるビス(アルコキシカルボニルジフルオロメチル)アリール化合物が消費された時点を反応の終点とすることが好ましい。
 反応終了後、抽出、再結晶等の通常の手段により、ビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物を得ることができる。また、必要によりカラムクロマトグラフィー、蒸留、再結晶等により精製することもできる。
 次いで、得られたビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物をハロゲン化する方法について述べる。ハロゲン化する方法としては、これまで公知となっている方法のいずれも採用することができ、特に制限は無いが、下記の塩素化方法が例示できる。
 塩素化は、得られたビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物を、無溶媒下もしくは溶媒の存在下で塩素化剤と接触させ、加熱することにより達せられる。
 用いる塩素化剤として、塩化チオニル、塩化スルフリル、ホスゲン、塩化オキザリル、塩化ホスホリル、三塩化リン、五塩化リン、ジクロロトリフェニルホスホラン、ジブロモトリフェニルホスホラン等の汎用の塩素化剤が挙げられる。塩化チオニル、塩化ホスホリル、塩化オキザリルは特に安価であり、反応性も高いので、これらの試薬を用いて塩素化することが特に好ましい。
 用いる塩素化剤の量はビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物1モルに対し1.6~20モルであり、2~10モル用いることが特に好ましい。
 溶媒は塩素化の条件下で不活性なものならば特に制限なく用いることができ、例えばベンゼン、トルエン、キシレン、塩化メチレン、1,2-ジクロロエタン、クロロホルム、四塩化炭素などを使用できる。塩素化剤として塩化チオニルのような液体を用いる場合にはこの塩素化剤が溶媒の役割も兼ねるため、敢えて溶媒を使用しなくてもよい。
 塩素化の反応温度は25~200℃であり、より好ましくは30~120℃であり、反応時間は、通常、10分~16時間、好ましくは30分~6時間であるが、核磁気共鳴装置(NMR)、ガスクロマトグラフィーなどの分析機器を使用し,原料であるビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物が消費された時点を反応の終点とすることが好ましい。
 反応終了後、抽出、再結晶等の通常の手段により、ビス(ヒドロキシカルボニルジフルオロメチル)アリール化合物を得ることができる。また、必要によりカラムクロマトグラフィー、蒸留、再結晶等により精製することもできる。
 本発明の含フッ素ジカルボン酸誘導体の具体的な合成例を挙げると以下のようになる(反応式[2]・実施例1参照)。
Figure JPOXMLDOC01-appb-C000063
 [含フッ素ジカルボン酸誘導体から得られる高分子化合物]
 本発明の高分子化合物は、一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物を、これらのカルボニル基部位の反応性に応答する2~4個の反応性基を有する多官能性化合物と重縮合させて得られる高分子化合物である。
Figure JPOXMLDOC01-appb-C000064
式中のQ、A、A’は前記と同じである。
 多官能性化合物が有するカルボニル基部位の反応性に応答する反応性基としては、ヒドロキシル基およびその活性化された基、アミノ基とその活性化された基などが挙げられる。多官能性化合物は少なくとも2個の反応性基が必要であり、複数の種類の反応性基を有することもできるが、そのうちの二個が同一の反応性基であるのが好ましい。
 次に、この含フッ素ジカルボン酸誘導体を重合させ、高分子を製造する方法について説明する。この含フッ素ジカルボン酸誘導体は、-CF2CO-基を二つ有する化合物であり、場合によっては前記Qについて説明したようにこの-CF2CO-基を含めて、3つ以上の官能基を同時に有することができる。高分子化合物を製造する場合、これらの官能基を有効に利用することになるが、-CF2CO-基の反応性を優先的に利用することが好ましい。
 尚、本発明の高分子化合物[式(6)~(11)]におけるm(正の整数)は、モノマーユニットの繰り返し数(重合度)を意味し、5~10000が好ましく、10~1000がさらに好ましい。また、本発明の重合体は、重合度に一定の幅のある重合体の混合物であるが、重合体重量平均分子量でいうと、概ね1000~5000000が好ましく、2000~200000の範囲が特に好ましい。重合度、分子量は、後述の重合方法の条件を適宜調節することによって、所望の値に設定することができる。
 [ポリエステル]
 本発明にかかる一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物を、下記一般式(2)で表されるジオールと所定の温度範囲で接触させることで、下記一般式(6)で表されるポリエステルへと、重合することができる。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
式中、Q、A、A’は前記と同じである。
 一般式(2)で表されるジオールについて説明する。ジオールは反応性を高めるためカルボキシル基との反応に対して活性化された基を有する活性体として使用することもできる。活性体としては、ジオールのアルカリ金属(リチウム、ナトリウム、カリウム)塩(ジアルコキシド)などが挙げられる。
 式中、R1は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 具体的に例示するならば、1,4-シクロヘキサンジオール、1,3-アダマンタンジオール、カテコール、1,3-ベンゼンジオール、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、2,2’-メチレンジフェノール、4,4’-メチレンジフェノール、エチレングリコール、プロピレングリコール、2,2-ビス(4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-ブタン、3,3-ビス(4-ヒドロキシフェニル)-ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、3,3-ビス(4-ヒドロキシフェニル)-ヘキサン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)-プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノンなどの化合を好適に挙げられるが、本発明はこれらに限定されるものではない。
 本発明のポリエステルの製造の方法は、特に限定することなく公知の方法を使用できる。すなわち一般式(M-3)で表される含フッ素ジカルボン酸を、縮合剤の存在下、一般式(2)で表されるジオールと直接脱水縮合させることで、一般式(6)で表される高分子化合物が製造できる。
 また、一般式(M-1)で表される含フッ素ジカルボン酸誘導体のうち、AおよびA≡がそれぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であるもの、含フッ素ジカルボン酸誘導体の酸無水物を、一般式(2)で表されるジオールと反応させることで一般式(6)に示す重合体が製造できる。この場合、高分子溶解促進剤即ちリチウムブロマイドやリチウムクロライドの如き金属塩類や、硫酸、リン酸、五酸化リンなどの脱水剤、またはアミンなどの受酸剤を使用することも可能である。
 前記含フッ素ジカルボン酸またはその誘導体などと前記ジオールを150~350℃、好ましくは200~300℃で相互に溶解(溶融)させて無溶媒で反応させる方法、また有機溶媒中高温(150~350℃、好ましくは200~300℃)で反応させる方法、さらに、一般式(M-1)で表される含フッ素ジカルボン酸誘導体(AおよびA’がフッ素原子、塩素原子、臭素原子、ヨウ素原子であるもの。)を前記ジオールである場合に-20~80℃の温度で有機溶媒中にて反応する方法が挙げられる。高分子溶解促進剤を使用する場合には、含フッ素ジカルボン酸誘導体のAおよびA’がヒドロキシル基やアルコキシ基である場合には-20~80℃の温度で有機溶媒中にて反応する方法をとり得る。
 有機溶媒中、一般式(M-1)で表される含フッ素ジカルボン酸誘導体(AおよびA’がフッ素原子、塩素原子、臭素原子、ヨウ素原子であるもの。)もしくは該含フッ素ジカルボン酸の酸無水物と、一般式(2)で表されるジオールを混合し、重縮合反応させる方法が最も簡単である。重合に用いる一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物の総モル数と、該ジオールの総モル数の比は、0.5~1.5の範囲にあることが一般的であり、更に0.8~1.2の範囲にあることが好ましい。通常の重縮合反応と同様に、この比が1に近いほど、得られる重合体の分子量は大きくすることができる。
 使用できる有機溶媒としては原料の両成分が溶解すれば特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン等のアミド系溶媒、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン等のハロゲン系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等のラクトン類などを例示することができる。このような有機溶媒とともに、酸受容体、例えば、ピリジン、トリエチルアミンなどを共存させて反応を行うことが効果的である。特に上記のアミド系溶媒を用いるとこれらの溶媒自身が酸受容体となり高重合度のポリエステル樹脂を得ることができる。
 [ポリアミド]
 本明細書において、「ポリアミド」は後述する「ポリアミドジオール型高分子化合物」、「高度にフッ素化されたポリアミド」、これらから閉環して得られる「ポリベンゾオキサゾール」、「ヘテロ環型高分子化合物」を包含することがある。
 本発明にかかる一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物は、一般式(3)で表されるジアミンと所定の温度範囲で接触させ一般式(7)で表されるポリアミドへと、重合することができる。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
式中、Q、A、A’は前記と同じである。
 ここで、Qがアミノ基を有する場合、重縮合に供する際、そのまま使用することも可能であるが、アミノ基を前記の保護基により保護してから使用することが好ましい。
 一般式(3)で表されるジアミンについて説明する。ジアミンは反応性を高めるためカルボキシル基との反応に対して活性化された基を有する活性体として使用することもできる。活性体としては、ジアミンの両アミノ基がトリアルキルシリルアミノ基(アルキル基はメチル基、エチル基、プロピル基、i-プロピル基から選ばれ、3個が同一であってもそれぞれ異なっていてもよい。)である化合物などが挙げられる。
 一般式(3)および一般式(7)におけるR2は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 ここで、一般式(3)で表されるジアミンを具体的に例示するならば、1,4-ジアミノシクロヘキサン、3,5-ジアミノベンゾトリフルオリド、2,5-ジアミノベンゾトリフルオリド、3,3’-ビストリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ビストリフルオロメチル-5,5’-ジアミノビフェニル、ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル、ビス(フッ素化アルキル)-4,4’-ジアミノジフェニル、ジクロロ-4,4’-ジアミノジフェニル、ジブロモ-4,4’-ジアミノジフェニル、ビス(フッ素化アルコキシ)-4,4’-ジアミノジフェニル、ジフェニル-4,4’-ジアミノジフェニル、4,4’-ビス(4-アミノテトラフルオロフェノキシ)テトラフルオロベンゼン、4,4’-ビス(4-アミノテトラフルオロフェノキシ)オクタフルオロビフェニル、4,4’-ビナフチルアミン、o-、m-、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノジュレン、ジメチル-4,4’-ジアミノジフェニル、ジアルキル-4,4’-ジアミノジフェニル、ジメトキシ-4,4’-ジアミノジフェニル、ジエトキシ-4,4’-ジアミノジフェニル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(3-アミノ-5-トリフルオロメチルフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)オクタフルオロビフェニル、4,4’-ジアミノベンズアニリド、2,6-ジアミノナフタレン、2,3-ジアミノナフタレン、2,7-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,3-ジアミノピリジン、2,4-ジアミノピリジンなどの化合物を好適に挙げられるが、本発明はこれらに限定されるものではない。
 この場合、本発明のポリアミドの製造方法は公知の方法を特に限定することなく使用できる。すなわち一般式(M-3)で表される含フッ素ジカルボン酸を、縮合剤の存在下、一般式(3)で表されるジアミンと直接脱水縮合させることで、一般式(7)に示す重合体が製造できる。
 また、一般式(M-1)で表される含フッ素ジカルボン酸誘導体のうち、AおよびA’がそれぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であるもの、含フッ素ジカルボン酸誘導体の酸無水物を、一般式(3)で表されるジアミンと反応させることで一般式(7)に示す重合体が製造できる。この場合、高分子溶解促進剤即ちリチウムブロマイドやリチウムクロライドの如き金属塩類や、硫酸、リン酸、五酸化リンなどの脱水剤、またはアミンなどの受酸剤を使用することも可能である。
 前記含フッ素ジカルボン酸またはその誘導体などと前記ジアミンを150~400℃、好ましくは200~350℃で相互に溶解(溶融)させて無溶媒で反応させる方法、また有機溶媒中高温(150~400℃、好ましくは200~350℃)で反応させる方法、さらに、一般式(M-1)で表される含フッ素ジカルボン酸誘導体(AおよびA’がフッ素原子、塩素原子、臭素原子、ヨウ素原子であるもの。)が前記ジアミンである場合に-20~80℃の温度で有機溶媒中にて反応する方法が挙げられる。高分子溶解促進剤を使用する場合には、含フッ素ジカルボン酸誘導体のAおよびA’がヒドロキシル基やアルコキシ基である場合にも重合できる。
 有機溶媒中、一般式(M-1)で表される含フッ素ジカルボン酸誘導体(AおよびA’がフッ素原子、塩素原子、臭素原子、ヨウ素原子であるもの。)もしくは該含フッ素ジカルボン酸の酸無水物と、一般式(3)で表されるジアミンを混合し、重縮合反応させる方法が最も簡単である。重合に用いる一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物の総モル数と、該ジアミンの総モル数の比は、0.5~1.5の範囲にあることが一般的であり、更に0.8~1.2の範囲にあることが好ましい。通常の重縮合反応と同様に、この比が1に近いほど、得られる重合体の分子量を大きくすることができる。
 使用できる有機溶媒としては原料の両成分が溶解すれば特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン等のアミド系溶媒、ベンゼン、アニソール、ジフェニルエーテル、ニトロベンゼン、ベンゾニトリル等の芳香族系溶媒、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン等のハロゲン系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等のラクトン類などを例示することができる。このような有機溶媒とともに、酸受容体、例えば、ピリジン、トリエチルアミンなどを共存させて反応を行うことが効果的である。特に上記のアミド系溶媒を用いるとこれらの溶媒自身が酸受容体となり高重合度のポリアミド樹脂を得ることができる。
 [ポリアミドジオール型高分子化合物]
 一般式(M-1)で表される含フッ素ジカルボン酸誘導体は、一般式(4)で表されるジアミノジオールと所定の温度範囲で接触させ、一般式(8)で表される「ポリアミドジオール型高分子化合物」へと重合することができる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
 ここで、Qがアミノ基を有しているものに関しては、重縮合に供する際、そのまま使用することも可能であるが、アミノ基を前記の保護基により保護してから使用することが好ましい。
 一般式(4)および一般式(8)におけるR3は脂環、芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 ここで、一般式(4)で表されるジアミノジオールを具体的に例示するならば、2,4-ジアミノ-1,5-シクロヘキサンジオール、2,4-ジアミノ-1,5-ベンゼンジオール、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)ケトン、ビス(3-アミノ-4-ヒドロキシフェニル)スルフィド、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-ヒドロキシ-4-アミノフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、ビス(3-ヒドロキシ-4-アミノフェニル)メタン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)ジフルオロメタン、2,6-ジアミノ-1,5-ナフタレンジオール、1,5-ジアミノ-2,6-ナフタレンジオール、2,6-ジアミノ-3,5-ピリジンジオールなどの化合物を好適に挙げられるが、本発明はこれらに限定されるものではない。
 この場合、本発明のポリアミドジオール型高分子化合物の製造方法は公知の方法を特に限定することなく使用できる。すなわち一般式(M-3)で表される含フッ素ジカルボン酸を、縮合剤の存在下、一般式(4)で表されるジアミノジオールと直接脱水縮合させることで、一般式(8)に示す重合体が製造できる。
 また、一般式(M-1)で表される含フッ素ジカルボン酸誘導体のうち、AおよびA’がそれぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であるもの、含フッ素ジカルボン酸誘導体の酸無水物を、一般式(4)で表されるジアミノジオールと反応させることで一般式(8)に示す重合体が製造できる。この場合、高分子溶解促進剤即ちリチウムブロマイドやリチウムクロライドの如き金属塩類や、リン酸、五酸化リンなどの脱水剤、またはアミンなどの受酸剤を使用することも可能である。
 この重合反応の方法、条件については特に制限されない。重合の素反応がアミド形成反応であることから、前述した一般式(7)で表されるポリアミド生成と同様の方法、および溶媒種を用いることができる。
 上記方法により得られたポリアミドフェノール樹脂(ポリアミドジオール型高分子化合物)は、さらに脱水閉環させることにより、一般式(9)で表されるポリベンゾオキサゾール樹脂に誘導することができる。
Figure JPOXMLDOC01-appb-C000073
一般式(9)におけるR3は一般式(4)におけるR3と同義である。
 脱水閉環反応は特に限定することなく公知の方法を使用できる。環化反応は、熱、酸触媒、塩基触媒など脱水条件を促進する種々の方法で行うことができる。加熱閉環を行う場合、80~400℃の温度で処理可能であるが、特に150~350℃の温度範囲が好ましい。加熱時間は、10分~10時間程度であるが、通常30分~2時間程度で行う。閉環温度が150℃以下の場合は閉環率が低いためポリベンゾオキサゾールのフィルム強度が損なわれるため好ましくなく、350℃以上の場合はフィルムが着色したり脆くなったりするので問題がある。酸触媒としてp-トルエンスルホン酸、メタンスルホン酸などを、塩基触媒としてトリエチルアミン、ピリジンなどを用いることができる。また、閉環後のポリベンゾオキサゾールが有機溶媒に可溶であれば、無水酢酸などの脱水試薬とピリジン、トリエチルアミンなどの有機塩基を用いて有機溶液中で化学的に閉環することも可能である。
 一般式(10)で表される高度にフッ素化したポリアミド樹脂を各種物品へ塗布後、閉環することができる。環化(脱水閉環)させた場合、耐熱性の向上、溶解性変化、屈折率や誘電率の低下、撥水撥油性の発現など、大きな物性面の変化を伴う樹脂変性を行うことができる。
 [高度にフッ素化されたポリアミド]
 一般式(M-1)で表される、本発明の含フッ素ジカルボン酸は、一般式(5)で表されるヘキサフルオロイソプロパノール部位が置換したジアミノジオールと所定の温度範囲で接触させ、一般式(10)で表される「高度にフッ素化されたポリアミド」へと重合することができる。
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
 一般式(5)および一般式(10)におけるR4は脂環、芳香環、縮合多環式芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。
 ここで、一般式(5)で表されるヘキサフルオロイソプロパノール部位が置換したジアミノジオールを具体的に例示するならば、下記の化合物などを好適に挙げられるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 本発明の「高度にフッ素化されたポリアミド」の重合反応の方法、条件については特に制限されない。重合の素反応がアミド形成反応であることから、前述した一般式(7)で表されるポリアミド樹脂生成と同様の方法、条件および溶媒種を用いることができる。
 上記方法により得られた一般式(10)で表される高度にフッ素化したポリアミド樹脂は、さらに脱水閉環させることにより、一般式(11)で表される「ヘテロ環型高分子化合物」に誘導することができる。
Figure JPOXMLDOC01-appb-C000078
一般式(11)におけるR4は一般式(5)におけるR4と同義である。
 脱水閉環反応の条件には、特に制限はないが、環化は、熱、酸触媒、塩基触媒など脱水条件を促進する種々の方法で行うことができる。
 脱水閉環反応は特に限定することなく公知の方法を使用できる。環化反応は、熱、酸触媒、塩基触媒など脱水条件を促進する種々の方法で行うことができる。加熱閉環を行う場合、80~400℃の温度で処理可能であるが、特に150~350℃の温度範囲が好ましく、約250℃で実質的に閉環することができる。閉環温度が150℃以下の場合は閉環率が低いため得られたフィルム強度が損なわれるため好ましくなく、350℃以上の場合はフィルムが着色したり脆くなったりするので問題がある。酸触媒としてp-トルエンスルホン酸、メタンスルホン酸などを、塩基触媒としてトリエチルアミン、ピリジンなどを用いることができる。また、閉環後の「ヘテロ環型高分子化合物」が有機溶媒に可溶であれば、無水酢酸などの脱水試薬とピリジン、トリエチルアミンなどの有機塩基を用いて有機溶液中で化学的に閉環することも可能である。一般式(11)で表される「ヘテロ環型高分子化合物」のヘテロ環は、一般式(9)で表されるオキサゾール環よりもさらに温和な条件で脱水閉環により形成することができる。
 一般式(10)で表される高度にフッ素化したポリアミド樹脂を各種溶媒に溶解した溶液を各種物品へ塗布後、80~400℃の温度で処理可能であるが、特に150~350℃の温度範囲が好ましく、約250℃で実質的に閉環して一般式(11)で表される「ヘテロ環型高分子化合物」とすることができる。環化(脱水閉環)させた場合、耐熱性の向上、溶解性変化、屈折率や誘電率の低下、撥水撥油性の発現など、大きな物性面の変化を伴う樹脂変性を行うことができる。
 一般式(11)で表される「ヘテロ環型高分子化合物」は、トリフルオロメチル基を含有するヘテロ環を含有しているために、一般式(9)で表されるポリベンゾオキサゾールよりも、さらに、低誘電率、低吸水性、高透明性を示す。
 本発明の高分子化合物である含フッ素重合体の使用方法の例を挙げる。本発明のポリエステル、ポリアミドは有機溶媒に溶解したワニス状態、または粉末状態、フィルム状態、固体状態で使用に供することが可能である。その際、得られた含フッ素重合体中には必要に応じて酸化安定剤、フィラー、シランカップリング剤、感光剤、光重合開始剤および増感剤等の添加物が混合されていても差し支えない。ワニスで使用する場合は、ガラス、シリコンウエーハ、金属、金属酸化物、セラミックス、樹脂などの基材上にスピンコート、スプレーコート、フローコート、含浸コート、ハケ塗りなど通常用いられる方法で塗布することができる。塗布した後、通常過熱して重合度を上げ所望の特性を有するフィルム(被膜)とする。この場合、150~350℃程度の温度で行うことができるが、300℃以下、さらには250℃以下で行うのが好ましい。一般式(8)または一般式(10)で表されるポリアミドは、この加熱によりそれぞれ閉環して一般式(9)で表されるポリベンゾオキサゾールまたは一般式(11)で表される「ヘテロ環型高分子化合物」に変換することができる。
 この際使用する有機溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン等のアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等のラクトン類、濃硫酸などを例示することができる。
 以下、実施例により本発明を詳細に説明するが、本発明は下記の実施例に限定されるものではない。
 [実施例1]1,4-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,4-ジエチルエステルの合成
Figure JPOXMLDOC01-appb-C000079
 コンデンサーを備えた1Lのガラスフラスコに、1,4-ジヨードベンゼン50g(152mmol/1.0当量)、金属銅粉末44g(692mmol/4.6当量)とジメチルスルホキシド(DMSO)(脱水)250mLを加え、そこにブロモ-ジフルオロ酢酸エチル83g(408mmol/2.6当量)を滴下し、55℃で8時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、水、クロロホルムを加え、析出した不溶物を濾別した。得られた濾液を分液し、有機層を希塩酸、水、飽和食塩水で順次洗浄し、乾燥後減圧濃縮を行い、黄色油状物として1,4-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,4-ジエチルエステル54g(収率82%、純度74%)を得た。
[1,4-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,4-ジエチルエステルの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.69(s,4H),4.29(q,J=7.1Hz,4H;C-CH2CH3のCH2),1.29(t,J=7.1Hz,6H;C-CH2CH3のCH3).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-104.68(s,4F)。
 [実施例2]α,α4,β,β4テトラフルオロ-1,4-ベンゼンジ酢酸の合成
Figure JPOXMLDOC01-appb-C000080
 250MLのガラスフラスコに、実施例1で得られたジエステル15g(純度74%、34mmol)、水40mL、48%水酸化ナトリウム水溶液9.6g(115mmol/3.3当量)を加え、室温で18時間撹拌した後、19F NMRにて反応終了を確認した。その後、ジイソプロピルエーテル40mLにて2回洗浄を行い、1mol/L塩酸60mL(60mmol/1.8当量)を滴下した。pH1を確認後、室温にて1時間撹拌し、ジイソプロピルエーテル100mLを加え、分液した。水層をジイソプロピルエーテル100mLにて2回抽出を行った後、有機層を合わせ、減圧濃縮し、淡黄色固体としてα,α4,β,β4テトラフルオロ-1,4-ベンゼンジ酢酸8.2g(収率70%、純度90%)を得た。
[α,α4,β,β4テトラフルオロ-1,4-ベンゼンジ酢酸の物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=7.75(s,4H).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-102.54(s,4F)。
 [実施例3]1,3-ベンゼンジ酢酸α,α3,β,β3テトラフルオロ-1,3-ジエチルエステルの合成
Figure JPOXMLDOC01-appb-C000081
 コンデンサーを備えた1Lのガラスフラスコに、1,3‐ジヨードベンゼン50g(152mmol/1.0当量)、金属銅粉末43g(677mmol/4.5当量)とジメチルスルホキシド(DMSO)(脱水)250mLを加え、そこにブロモ-ジフルオロ酢酸エチル70g(345mmol/2.3当量)を滴下し、55℃で8時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、水、クロロホルムを加え、析出した不溶物を濾別した。得られた濾液を分液し、有機層を希塩酸、水、飽和食塩水で順次洗浄し、乾燥後減圧濃縮を行い、黄色油状物として1,3-ベンゼンジ酢酸α,α3,β,β3テトラフルオロ-1,3-ジエチルエステル49g(収率51%、純度52%)を得た。
[1,3-ベンゼンジ酢酸α,α3,β,β3テトラフルオロ-1,3-ジエチルエステルの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.85(s,1H),7.73(d,J=7.8Hz,2H),7.55(t,J=7.1Hz,1H),4.29(q,J=7.1Hz,4H;C-CH2CH3のCH2),1.30(t,J=7.1Hz,6H;C-CH2CH3のCH3).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-104.35(s,4F)。
 [実施例4]α,α3,β,β3テトラフルオロ-1,3-ベンゼンジ酢酸の合成
Figure JPOXMLDOC01-appb-C000082
 250MLのガラスフラスコに、実施例3で得られたジエステル21g(純度52%、34mmol)、水40mL、48%水酸化ナトリウム水溶液9.6g(115mmol/3.3当量)を加え、室温で18時間撹拌した後、19F NMRにて反応終了を確認した。その後、ジイソプロピルエーテル40mLにて2回洗浄を行い、1mol/L塩酸60mL(60mmol/1.8当量)を滴下した。pH1を確認後、室温にて1時間撹拌し、ジイソプロピルエーテル100mLを加え、分液した。水層をジイソプロピルエーテル10mLにて2回抽出を行った後、有機層を合わせ、減圧濃縮し、淡黄色固体としてα,α3,β,β3テトラフルオロ-1,3-ベンゼンジ酢酸4.5g(収率47%、純度95%)を得た。
[α,α3,β,β3テトラフルオロ-1,3-ベンゼンジ酢酸の物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=7.85‐7.65(m,4H).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-102.30(s,4F)。
 [実施例5]α,α4,β,β4テトラフルオロ-1,4-ベンゼンジアセチルクロリドの合成
Figure JPOXMLDOC01-appb-C000083
 コンデンサーを備えた250MLのガラスフラスコに、実施例1および2と同様にして得られたジカルボン酸49g(純度90%、167mmol/1.0当量)とアセトニトリル50mLを加え、そこに塩化チオニル50g(420mmol/2.5当量)を滴下し、室温で18時間攪拌した。19F NMRにて反応終了を確認した後、減圧濃縮を行い、黄色油状物としてα,α4,β,β4テトラフルオロ-1,4-ベンゼンジアセチルクロリド47g(収率85%、純度90%)を得た。
[α,α4,β,β4テトラフルオロ-1,4-ベンゼンジアセチルクロリドの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.76(s,4H).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-101.32(s,4F)。
 [実施例6]α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリドの合成
Figure JPOXMLDOC01-appb-C000084
 コンデンサーを備えた250MLのガラスフラスコに、実施例3および4と同様にして得られたジカルボン酸32g(純度93%、113mmol/1.0当量)とアセトニトリル50mLを加え、そこに塩化チオニル30g(252mmol/2.2当量)を滴下し、室温で18時間拌した。19F NMRにて反応終了を確認した後、減圧濃縮を行い、黄色油状物としてα,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリド34g(収率81%、純度73%)を得た。
[α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリドの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.86(s,1H),7.81(d,J=7.8Hz,2H),7.67(t,J=7.1Hz,1H).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-101.10(s,4F)。
 [実施例7]5-メトキシ-1,3-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,3-ジエチルエステルの合成
Figure JPOXMLDOC01-appb-C000085
 コンデンサーを備えた1Lのガラスフラスコに、1,3-ジヨード-5-メトキシベンゼン50g(139mmol/1.0当量)、金属銅粉末44g(692mmol/5.0当量)とジメチルスルホキシド(DMSO)(脱水)250mLを加え、そこにブロモ-ジフルオロ酢酸エチル71g(350mmol/2.5当量)を滴下し、55℃で7時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、水、クロロホルムを加え、析出した不溶物を濾別した。得られた濾液を分液し、有機層を希塩酸、水、飽和食塩水で順次洗浄し、乾燥後減圧濃縮を行い、黄色油状物として5-メトキシ-1,3-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,4-ジエチルエステル52g(収率80%、純度75%)を得た。
[5-メトキシ-1,3-ベンゼンジ酢酸α,α4,β,β4テトラフルオロ-1,4-ジエチルエステルの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=6.37(s,2H),6.44(s,1H),4.13(q,J=7.0Hz,4H;C-CH2CH3のCH2),3.73(s,3H;O-CH3のCH3),1.30(t,J=7.0Hz,6H;C-CH2CH3のCH3).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-104.30(s,4F)。
 [実施例8]5-メトキシ-α,α4,β,β4テトラフルオロ-1,3-ベンゼンジ酢酸の合成
Figure JPOXMLDOC01-appb-C000086
 250MLのガラスフラスコに、実施例7で得られたジエステル15g(純度75%、32mmol)、水40mL、48%水酸化ナトリウム水溶液10.0g(120mmol/3.8当量)を加え、室温で18時間撹拌した後、19F NMRにて反応終了を確認した。その後、ジイソプロピルエーテル40mLにて2回洗浄を行い、1mol/L塩酸60mL(60mmol/1.9当量)を滴下した。pH1を確認後、室温にて1時間撹拌し、ジイソプロピルエーテル100mLを加え、分液した。水層をジイソプロピルエーテル100mLにて2回抽出を行った後、有機層を合わせ、減圧濃縮し、淡黄色固体として5-メトキシ-α,α4,β,β4テトラフルオロ-1,4-ベンゼンジ酢酸8.1g(収率75%、純度88%)を得た。
[5-メトキシ-α,α4,β,β4テトラフルオロ-1,4-ベンゼンジ酢酸の物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=12.30(s,1H;OH),6.42(s,2H),6.46(s,1H),3.77(s,3H;O-CH3のCH3).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-103.50(s,4F)。
 [実施例9]5-メトキシ-α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリドの合成
Figure JPOXMLDOC01-appb-C000087
 コンデンサーを備えた250MLのガラスフラスコに、実施例7および8と同様にしてジカルボン酸30g(89.1mmol/1.0当量)とアセトニトリル50mLを加え、そこに塩化チオニル30g(純度89%、252mmol/2.8当量)を滴下し、室温で18時間拌した。19F NMRにて反応終了を確認した後、減圧濃縮を行い、黄色油状物として5-メトキシ-α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリド31g(収率78%、純度75%)を得た。
[5-メトキシ-α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリドの物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=6.41(s,2H),6.45(s,1H),3.76(s,3H;O-CH3のCH3).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-102.30(s,4F)。
 [実施例10]2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)ジエチルエステルの合成
Figure JPOXMLDOC01-appb-C000088
 コンデンサーを備えた100mLのガラスフラスコに、4,4’-ジヨードビフェニル5.0g(12.3mmol/1.0当量)、金属銅粉末3.5g(55.1mmol/4.5当量)とジメチルスルホキシド(DMSO)(脱水)50mLを加え、そこにブロモ-ジフルオロ酢酸エチル5.5g(27.1mmol/2.2当量)を滴下し、55℃で7時間攪拌した。ガスクロマトグラフィーにより反応終了を確認した後、水、クロロホルムを加え、析出した不溶物を濾別した。得られた濾液を分液し、有機層を希塩酸、水、飽和食塩水で順次洗浄し、乾燥後減圧濃縮を行い、黄色固体として2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)ジエチルエステル3.1g(収率43%、純度68%)を得た。
[2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)ジエチルエステルの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.60(d,J=8.5Hz,4H),7.56(d,J=8.5Hz,4H),4.22(q,J=7.1Hz,4H;C-CH2CH3のCH2),1.22(t,J=7.1Hz,6H;C-CH2CH3のCH3).
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-104.15(s,4F)。
 [実施例11]2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)の合成
Figure JPOXMLDOC01-appb-C000089
 50mLのガラスフラスコに、実施例1で得られたジエステル2.3g(純度68%、3.9mmol)、水5mL、48%水酸化ナトリウム水溶液0.65g(11.7mmol/3.0当量)を加え、室温で4.5時間撹拌した後、19F NMRにて反応終了を確認した。その後、ジイソプロピルエーテル40mLにて2回洗浄を行い、1mol/L塩酸10mL(50mmol/2.6当量)を滴下した。pH1を確認後、室温にて1時間撹拌し、ジイソプロピルエーテル50mLを加え、有機層を分液した。水層をジイソプロピルエーテル50mLにて2回抽出を行った後、有機層を合わせ、減圧濃縮し、淡黄色固体として2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)1.5g(収率86%、純度80%)を得た。
[2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロ酢酸)の物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=7.89(d,J=8.5Hz,4H),7.69(d,J=8.5Hz,4H).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-102.12(s,4F)。
 [実施例12]2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)の合成
Figure JPOXMLDOC01-appb-C000090
 コンデンサーを備えた250mLのガラスフラスコに、実施例11および12と同様に調製したジカルボン酸43g(純度80%、100mmol/1.0当量)とアセトニトリル80mLを加え、そこに塩化チオニル30g(250mmol/2.5当量)を滴下し、室温で24時間攪拌した。19F NMRにて反応終了を確認した後、減圧濃縮を行い、黄色油状物として2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)33g(収率79%、純度91%)を得た。
[2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)の物性]
1H NMR(測定溶媒:重ジメチルスルホキシド,基準物質:テトラメチルシラン);δ=7.75(d,J=8.5Hz,4H),7.57(d,J=8.5Hz,4H).
19F NMR(測定溶媒:重ジメチルスルホキシド,基準物質:トリクロロフルオロメタン);δ=-100.92(s,4F)。
 [参考例1]1,2-ベンゼンジ酢酸α,α2,β,β2テトラフルオロ-1,2-ジエチルエステルの合成
Figure JPOXMLDOC01-appb-C000091
 1,2-ジヨードベンゼン25g(76mmol/1.0当量)、金属銅粉末23g(362mmol/4.8当量)、ジメチルスルホキシド(DMSO)(脱水)250mL、そしてブロモ-ジフルオロ酢酸エチル42g(204mmol/2.7当量)を使用し、実施例1と同様にして1,2-ベンゼンジ酢酸 α,α2,β,β2テトラフルオロ-1,2-ジエチルエステルを、黄色油状物として26g(収率80%、純度75%)得た。
 [参考例2]α,α2,β,β2テトラフルオロ-1,2-ベンゼンジ酢酸の合成
Figure JPOXMLDOC01-appb-C000092
 参考例1で得られたジエステル20g(純度75%、47mmol)、水50mL、そして48%水酸化ナトリウム水溶液13g(155mmol/3.3当量)を使用し、実施例2と同様にしてα,α2,β,β2テトラフルオロ-1,2-ベンゼンジ酢酸を、淡黄色固体として11g(収率75%、純度87%)得た。
 [参考例3]α,α2,β,β2テトラフルオロ-1,2-ベンゼンジアセチルクロリドの合成
Figure JPOXMLDOC01-appb-C000093
 参考例2で得られたジカルボン酸10g(純度87%、33mmol/1.0当量)、アセトニトリル20mL、そして塩化チオニル12g(100mmol/3.0当量)を使用し、実施例5と同様にしてα,α2,β,β2テトラフルオロ-1,2-ベンゼンジアセチルクロリドを、淡黄色固体として9g(収率84%、純度93%)得た。
 [参考例4]1-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-3,5-ジブロモベンゼンの製造
Figure JPOXMLDOC01-appb-C000094
 窒素雰囲気下、500mLのガラスフラスコに1,3,5-トリブロモベンゼン30.0g(95.0mmol)、ジエチルエーテル400mLを投入した後、-78℃に冷却した。-78℃にて1.6Mノルマルブチルリチウムヘキサン溶液60ml(96.0mmol)を1時間かけて滴下し、続いて、-78℃にて熟成を1時間行なった。ガスクロマトグラフィーにてリチオ化を確認した後、ヘキサフルオロアセトン16.6g(100.0mmol)を-78℃にて吹込み、1時間攪拌した。攪拌終了後、2N塩酸400mLに反応液を添加し有機層と水層を分離した。水層をイソプロピルエーテル100mLで抽出して有機層に合わせ、これを無水硫酸マグネシウムで乾燥した。エバポレーターにて濃縮した後、蒸留にて23.0g、収率60%で1-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-3,5-ジブロモベンゼンを得た。
[1-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-3,5-ジブロモベンゼンの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=7.79(s,3H)。
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-76.0(s,6F,CF3)。
 [参考例5]5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸の製造
Figure JPOXMLDOC01-appb-C000095
 100mlオートクレーブに参考例4で得られた1-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-3,5-ジブロモベンゼン10.0g(26mmol)、酢酸パラジウム0.56g(2.5mmol)、トリフェニルホスフィン2.63g(10mmol)、トリエチルアミン10.1g(100mmol)、水5.0g、テトラヒドロフラン20gを投入した。その後、一酸化炭素圧2MPaにて100℃で17時間反応させた。反応終了後、反応液に2N塩酸50mLを加えた。続いて、イソプロピルエーテル50mLにて抽出し有機層を分離した。この有機層に7%水酸化ナトリウム水溶液60mL加え水層を分離した。水層をヘプタン30mLで洗浄後、6N塩酸60mLを加えた。析出した固体をろ過にて単離しヘプタン50mLで洗浄したところ、3.5g、収率41%で5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸を得た。
[5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸の物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=9.27(s,1H),8.58(m,1H),8.46(s,2H)。
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-73.5(s,6F,CF3)。
 [参考例6]カルボン酸クロリド1:[5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸クロリドの製造
 50mLのガラスフラスコに、参考例5で得られた5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸3.5g(10.5mmol)と塩化チオニル20mlを投入した。その後、攪拌しながら70℃で5時間反応させた。反応後、塩化チオニルを留去し、目的とするカルボン酸クロリド1である[5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸クロリドを3.8g、収率98%で得た。
[[5-[2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル]-1,3-ベンゼンジカルボン酸クロリドの物性]
1H NMR(測定溶媒:重クロロホルム,基準物質:テトラメチルシラン);δ=8.52(m,1H),8.41(s,2H)。
19F NMR(測定溶媒:重クロロホルム,基準物質:トリクロロフルオロメタン);δ=-72.7(s,6F,CF3)。
 [実施例13]ポリマー1の合成
Figure JPOXMLDOC01-appb-C000096
 攪拌機を備えた100mlの三口フラスコに、2,2-ビス(4-ヒドロキシフェニル)-プロパン(ビスフェノールA)2.28g(10.0mmol)とN-メチル-2-ピロリドン(NMP)20.0gを入れ、窒素雰囲気下、氷冷下で攪拌した。その中へ、実施例5で得られた酸塩化物(α,α4,β,β4テトラフルオロ-1,4-ベンゼンジアセチルクロリド)を純分換算で3.03g(10.0mmol)を約10分かけてゆっくりと添加した。さらに1時間攪拌した後、反応で発生した塩化水素を中和するために炭酸リチウム0.70g(9.5mmol)を添加し、次いで得られた粘ちょう溶液を500mLのメタノールに投入し、得られた沈殿をろ別回収後、80℃で真空乾燥した。その結果、4.13g(収率90%)のポリマー1を得た。得られたポリマー1は、97%濃硫酸を溶媒とし、キャピラリー粘度計を用いて30℃での比粘度を測定した(以下において同じ。)。比粘度測定の結果を表1に示す。
 ポリマー1(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。フィルム厚さは約10μmとして、JIS-K6911に準拠し、周波数100kHzで、ヒューレットパッカード社製HP-4284A Precision LCRメーターを用いてフィルムの容量測定を行い下記計算式により比誘電率を算出した(以下において同じ。)。フィルムの物性を表1に示す。
比誘電率=(容量測定値×フィルムの厚み)/(真空の誘電率×測定面積)
 [実施例14]ポリマー2の合成
Figure JPOXMLDOC01-appb-C000097
 実施例6で得られた酸塩化物(α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリド)を純分換算で3.03g(10.0mmol)、ビスフェノールAを2.28g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同一の方法にて、3.99g(収率87%)のポリマー2を得た。得られたポリマー2の比粘度測定の結果を表1に示す。
 ポリマー2(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例15]ポリマー3の合成
Figure JPOXMLDOC01-appb-C000098
 実施例9で得られた酸塩化物(5-メトキシ-α,α3,β,β3テトラフルオロ-1,3-ベンゼンジアセチルクロリド)を純分換算で3.33g(10.0mmol)、ビスフェノールAを2.28g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.21g(収率86%)のポリマー3を得た。得られたポリマー3の比粘度測定の結果を表1に示す。
 ポリマー3(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例16]ポリマー4の合成
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
 実施例5で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジオール1を3.36g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.64g(収率82%)のポリマー4を得た。得られたポリマー4の比粘度測定の結果を表1に示す。
 ポリマー3(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例17]ポリマー5の合成
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
 実施例6で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジオール1を3.36g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.81g(収率85%)のポリマー5を得た。得られたポリマー5の比粘度測定の結果を表1に示す。
 ポリマー5(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例18]ポリマー6の合成
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
 実施例5で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン1を2.26g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.24g(収率93%)のポリマー6を得た。得られたポリマー6の比粘度測定の結果を表1に示す。
 ポリマー6(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例19]ポリマー7の合成
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
 実施例6で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン1を2.26g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.154g(収率91%)のポリマー7を得た。得られたポリマー7の比粘度測定の結果を表1に示す。
 ポリマー7(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示した。
 [実施例20]ポリマー8の合成
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
 実施例5で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン2を3.34g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.81g(収率85%)のポリマー8を得た。得られたポリマー8の比粘度測定の結果を表1に示す。
 ポリマー8(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例21]ポリマー9の合成
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
 実施例6で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン2を3.34g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.47g(収率79%)のポリマー9を得た。得られたポリマー9の比粘度測定の結果を表1に示す。
 ポリマー9(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例22]ポリマー10の合成
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
 実施例5で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン3を3.20g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、4.52g(収率82%)のポリマー10を得た。得られたポリマー10の比粘度測定の結果を表1に示す。
 ポリマー10(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例23]ポリマー11の合成
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
 実施例6で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミノジフェノール1を3.66g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にてポリマー11を5.07g(収率85%)得た。得られたポリマー11の比粘度測定の結果を表1に示す。
 [実施例24]ポリマー12の合成
Figure JPOXMLDOC01-appb-C000115
 実施例20で得られたポリマー11(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。赤外吸収スペクトル(IR)分析から、得られたフィルムの構造はポリマー12であることが確認された。得られたフィルムの物性(比誘電率)を表1に示す。同様にして、さらに300℃で1時間の加熱処理を行い、同様の観察と測定を行ったところ、形状の保持されたフレキシブルな透明フィルムが得られ、比誘電率は追加の加熱処理をしない場合と変わらなかった。
 [実施例25]ポリマー13の合成
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
 実施例5で得られた酸塩化物を純分換算で3.03g(10.0mmol)、特開2007-119503号に記載の方法に従って合成したジアミノジオール1を5.30g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にてポリマー13を6.01g(収率79%)得た。得られたポリマー13の比粘度測定の結果を表1に示す。
 [実施例26]ポリマー14の合成
Figure JPOXMLDOC01-appb-C000118
 実施例22で得られたポリマー13(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。IR分析から、得られたフィルムの構造はポリマー14であることが確認された。得られたフィルムの物性(比誘電率)を表1に示す。同様にして、さらに300℃で1時間の加熱処理を行い、同様の観察と測定を行ったところ、形状の保持されたフレキシブルな透明フィルムが得られ、比誘電率は追加の加熱処理をしない場合と変わらなかった。
 [実施例27]ポリマー15の合成
Figure JPOXMLDOC01-appb-C000119
 攪拌機を備えた100mlの三口フラスコに、ビスフェノールA 2.28g(10.0mmol)とN-メチル-2-ピロリドン(NMP)20.0gを入れ、窒素雰囲気下、氷冷下で攪拌した。その中へ、テレフタル酸クロリド0.20g(1.0mmol)と実施例5で得られた酸塩化物を純分換算で2.73g(9.0mmol)を10分以上かけてゆっくりと添加した。さらに1時間攪拌した後、反応で発生した塩化水素を中和するために炭酸リチウム0.70g(9.5mmol)を添加し、次いで得られた粘ちょう溶液を500mLのメタノールに投入し、得られた沈殿をろ別回収後、80℃で真空乾燥した。その結果、4.08g(収率91%)のポリマー15を得た。得られたポリマー15の比粘度測定の結果を表1に示す。
 ポリマー1(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例28]ポリマー22の合成
Figure JPOXMLDOC01-appb-C000120
 実施例12で得られた2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)を純分換算で3.79g(10.0mmol)、ジオール1を3.36g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例13と同一の方法にて、5.78g(収率90%)のポリマー22を得た。得られたポリマー22の比粘度測定の結果を表1に示す。
 ポリマー22(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例29]ポリマー23の合成
Figure JPOXMLDOC01-appb-C000121
 実施例12で得られた2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)を純分換算で3.79g(10.0mmol)、ジアミン2を3.34g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同一の方法にて、5.64g(収率88%)のポリマー23を得た。得られたポリマー23の比粘度測定の結果を表1に示す。
 ポリマー23(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。得られたフィルムの物性を表1に示す。
 [実施例30]ポリマー24の合成
Figure JPOXMLDOC01-appb-C000122
 実施例12で得られた2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)を純分換算で3.79g(10.0mmol)、ジオールジフェノール1を3.66g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同一の方法にて、5.72g(収率85%)のポリマー24を得た。得られたポリマー24の比粘度測定の結果を表1に示す。
 [実施例31]ポリマー25の合成
Figure JPOXMLDOC01-appb-C000123
 得られたポリマー24(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。赤外吸収スペクトル(IR)分析から、得られたフィルムの構造はポリマー25であることが確認された。得られたフィルムの物性を表1に示す。
 [実施例32]ポリマー26の合成
Figure JPOXMLDOC01-appb-C000124
 実施例12で得られた2,2’-(ジフェニル-4,4’-ジイル)ビス(2,2-ジフルオロアセチルクロリド)を純分換算で3.79g(10.0mmol)、ジオールジオール1を5.30g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を30.0g使用して、実施例10と同一の方法にて、6.85g(収率82%)のポリマー26を得た。得られたポリマー26の比粘度測定の結果を表1に示す。
 [実施例33]ポリマー27の合成
Figure JPOXMLDOC01-appb-C000125
 得られたポリマー26(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。赤外吸収スペクトル(IR)分析から、得られたフィルムの構造はポリマー27であることが確認された。得られたフィルムの物性を表1に示す。
 [比較例1]ポリマー16の合成
Figure JPOXMLDOC01-appb-C000126
 実施例10において、実施例5で得られた酸塩化物の代わりにテレフタル酸クロリド2.0g(10.0mmol)を用いて、実施例10と同様の手法にてポリマー16を得た。得られたポリマー16の比粘度測定の結果を表1に示す。
 ポリマー16(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。重合度が低く、クラックが多く発生した。
 [比較例2]ポリマー17の合成
Figure JPOXMLDOC01-appb-C000127
 実施例15において、実施例5で得られた酸塩化物の代わりにテレフタル酸クロリド2.0g(10.0mmol)を用いて、実施例15と同様の手法にてポリマー17を得た。得られたポリマー17の比粘度測定の結果を表1に示す。
 ポリマー17(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。重合度が低く、クラックが多く発生した。
 [比較例3]ポリマー18の合成
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
 実施例20において、実施例6で得られた酸塩化物の代わりにカルボン酸クロリド1の3.69g(10.0mmol)を用いて、実施例20と同様の手法にて構造体18-1を得た。得られた構造体18-1の比粘度測定の結果を表1に示す。
 構造体18-1(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離し、形状の保持されたフレキシブルな透明フィルムを得た。IR分析から、得られたフィルムは構造体18-1と構造体18-2との混合したポリマー(ポリマー18)であることが確認された。また、クラックが多く発生し、フィルムとして得られなかった。
 [比較例4]ポリマー19およびポリマー20の合成
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 実施例22において、実施例5で得られた酸塩化物の代わりにテレフタル酸クロリドを用いて、実施例22と同一の手法にてポリマー19を得た。得られたポリマー19の比粘度測定の結果を表1に示す。
 ポリマー19(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片を剥離したが、フレキシビリティの乏しい透明フィルムを得た。IR分析から、得られたフィルムの構造はポリマー20であることが確認された。得られたフィルムの物性を表1に示す。
 [参考例7]ポリマー21の合成
Figure JPOXMLDOC01-appb-C000133
 参考例3で得られた酸塩化物を純分換算で3.03g(10.0mmol)、ジアミン1を2.26g(10.0mmol)、そしてN-メチル-2-ピロリドン(NMP)を20.0g使用して、実施例10と同様の方法にて、2.08g(収率46%)のポリマー21を得た。得られたポリマー21の比粘度測定の結果を表1に示す。
 ポリマー21(1.00g)と、N,N-ジメチルホルムアミド(DMF)(4.00g)を混合し、均一溶液を作成した。得られた溶液を濾過後、濾液をガラス基板上にスピンコート塗布し、窒素雰囲気下、80℃で30分、150℃で30分、250℃で1時間加熱処理した。ガラス基板上に作成したフィルム片は重合度が低いためかクラックが多く発生していた。
Figure JPOXMLDOC01-appb-T000134
 表1の結果から明らかなように、本発明の含フッ素ジカルボン酸誘導体から誘導した新規な高分子化合物は比較的低温で良好な強度と優れた電気特性を与えることが確認された。

Claims (11)

  1. 一般式(M-1)で表される含フッ素ジカルボン酸誘導体または該含フッ素ジカルボン酸の酸無水物を、これらのカルボニル基部位の反応性に応答する2~4個の反応性基を有する多官能性化合物と重縮合させて得られる高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Qは置換基を有していてもよい芳香環を有する二価の有機基であって、-CF2COA及び-CF2COA’は芳香環炭素と結合し、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。AおよびA’はそれぞれ独立に、ヒドロキシル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であり、式中のCO基(カルボニル基)と共に活性エステル基を形成していてもよい。]
  2. 二価の有機基Qが、下記一般式(a)で表される二価の有機基であることを特徴とする、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Ar1はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y1はそれぞれ独立に単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基であって、pは0~3の整数を表す。二個の未結合手は、同一または異なる芳香環の異なる炭素原子に結合している。]
  3. 二価の有機基Qが、下記一般式(b)で表される二価の有機基であることを特徴とする、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Ar2はそれぞれ独立に置換基を有していてもよい芳香環であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。Y2はそれぞれ独立に単結合、CH2、CH2CH2、CH2CH2CH2、O、S、C(CH32、C(CF32、SO2、CO、NH、COO(エステル)、CONH基から選ばれた1種またはこれらの基から選ばれた同一または異なる2種以上の基が結合した二価の基である。]
  4. 二価の有機基Qが、下記式で表される二価の有機基のいずれかであることを特徴とする、請求項1~3のいずれか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
  5. 多官能性化合物を一般式(3)で表されるジアミンとして重縮合させて得られる一般式(7)で表される請求項1~4のいずれか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [式中、Qは一般式(M-1)におけるQと同義である。R2は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。]
  6. 多官能性化合物を一般式(4)で表されるジアミノジオールとして重縮合させて得られる一般式(8)で表される請求項1~4のいずれか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    [式中、Qは一般式(M-1)におけるQと同義である。R3は脂環、芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子、又は窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。]
  7. 請求項6に記載の一般式(8)で表される高分子化合物を脱水閉環することで得られる、下記一般式(9)で表される高分子化合物。
    Figure JPOXMLDOC01-appb-C000009
    [式中、Qは一般式(M-1)におけるQと同義である。R3は一般式(4)におけるR3と同義である。]
  8. 多官能性化合物を一般式(5)で表されるヘキサフルオロイソプロパノール部位が置換したジアミノジオールとして重縮合させて得られる一般式(10)で表される請求項1~4のいずれか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    [式中、Qは一般式(M-1)におけるQと同義である。R4は脂環、芳香環、複素環から選ばれた1種以上を含有した4価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子、又は窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。]
  9. 請求項8に記載の一般式(10)で表される高分子化合物を脱水閉環することで得られる、下記一般式(11)で表される高分子化合物。
    Figure JPOXMLDOC01-appb-C000012
    [式中、Qは一般式(M-1)におけるQと同義である。R4は一般式(5)におけるR4と同義である。]
  10. 多官能性化合物を一般式(2)で表されるジオールとして重縮合させて得られる一般式(6)で表される請求項1~4のいずれか1項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    [式中、Qは一般式(M-1)におけるQと同義である。R1は脂環、芳香環、複素環から選ばれた1種以上を含有した2価の有機基であり、フッ素原子、塩素原子、酸素原子、硫黄原子または窒素原子を含有してもよく、水素原子の一部がフッ素原子、塩素原子、アルキル基、フルオロアルキル基、カルボキシル基、ヒドロキシル基またはシアノ基で置換されていてもよく、炭素原子の一部が酸素原子、硫黄原子、窒素原子、カルボニル基、スルホニル基で置換されていてもよい。mは正の整数である。]
  11. 一般式(M-2)で表される含フッ素ジカルボン酸誘導体。
    Figure JPOXMLDOC01-appb-C000015
    [式中、Qは置換基を有していてもよい芳香環を有する二価の有機基であって、芳香環上の水素原子はフッ素原子、塩素原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、ヒドロキシカルボニル基、炭素数1~6の直鎖状、分岐状もしくは環状のアルキル基(ここで該アルキル基上の水素原子はヒドロキシル基もしくはフッ素原子で置換されていてもよい)、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシカルボニル基、または置換基を有していてもよい芳香環からなる一価の基で置換されていてもよい。但し、式中の2個のジフルオロメチレン基は互いに隣接する芳香環の炭素原子には結合しない。DおよびD‘はそれぞれ独立に、ヒドロキシル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6の直鎖状、分岐状もしくは環状のアルコキシ基、炭素数6~10の置換基を有することもあるアリールオキシ基であり、または式中のCO基(カルボニル基)と共に活性エステル基を形成することができる。]
PCT/JP2010/052425 2009-02-20 2010-02-18 含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物 WO2010095678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/201,766 US8809451B2 (en) 2009-02-20 2010-02-18 Fluorinated dicarboxylic acid derivative and polymer obtained therefrom
CN2010800087363A CN102325824B (zh) 2009-02-20 2010-02-18 含氟二羧酸衍生物以及使用其的高分子化合物
KR1020117021657A KR101290226B1 (ko) 2009-02-20 2010-02-18 함불소 디카르본산 유도체 및 그것을 사용한 고분자 화합물
EP10743804.6A EP2395040A4 (en) 2009-02-20 2010-02-18 FLUORINATED DICARBOXYLIC ACID DERIVATIVE AND POLYMER OBTAINED THEREFROM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009038347 2009-02-20
JP2009-038347 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095678A1 true WO2010095678A1 (ja) 2010-08-26

Family

ID=42633958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052425 WO2010095678A1 (ja) 2009-02-20 2010-02-18 含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物

Country Status (6)

Country Link
US (1) US8809451B2 (ja)
EP (1) EP2395040A4 (ja)
JP (1) JP5768320B2 (ja)
KR (1) KR101290226B1 (ja)
CN (1) CN102325824B (ja)
WO (1) WO2010095678A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084188A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物
KR101606158B1 (ko) 2011-05-30 2016-03-24 샌트랄 글래스 컴퍼니 리미티드 함불소 중합성 단량체 및 그것을 사용한 고분자 화합물
JP2016059919A (ja) * 2014-09-12 2016-04-25 セントラル硝子株式会社 気体分離膜
WO2022030447A1 (ja) * 2020-08-05 2022-02-10 セントラル硝子株式会社 含フッ素ジアミンまたはその塩、含フッ素ジアミンまたはその塩の製造方法、ポリアミド、ポリアミドの製造方法、ポリアミド溶液、ポリアミド環化体、ポリアミド環化体の製造方法、高周波電子部品用絶縁材、高周波電子部品用絶縁材の製造方法、高周波電子部品、高周波機器および高周波電子部品製造用絶縁材料

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330272B2 (ja) * 2012-08-30 2018-05-30 セントラル硝子株式会社 感光性樹脂組成物およびそれを用いたパターン形成方法
JP6225659B2 (ja) * 2012-11-28 2017-11-08 セントラル硝子株式会社 ヘキサフルオロイソプロパノール基を含むジアミン、それを用いたポリイミドおよびポリアミド、その環化物、並びにその製造方法
US9793483B2 (en) 2012-11-28 2017-10-17 Central Glass Company, Limited Hexafluoroisopropanol group-containing diamine, polyimide and polyamide using same, cyclized product thereof, and method for producing same
CN109735930B (zh) * 2018-12-27 2020-10-16 江苏恒力化纤股份有限公司 全消光涤纶牵伸丝及其制备方法
CN109750369B (zh) * 2018-12-27 2020-05-22 江苏恒力化纤股份有限公司 仿羽毛纱聚酯纤维及其制备方法
CN109735925B (zh) * 2018-12-27 2020-11-06 江苏恒力化纤股份有限公司 易染色和降解的聚酯fdy丝及其制备方法
CN113004514B (zh) * 2021-04-15 2021-09-21 深圳市华盈新材料有限公司 一种低吸湿性pa5t及其合成方法
CN113831522A (zh) * 2021-09-29 2021-12-24 宁夏清研高分子新材料有限公司 一种低介电高粘度lcp材料的制备方法
CN115368568A (zh) * 2022-09-28 2022-11-22 国家电投集团氢能科技发展有限公司 全氟离子交换树脂及其制备方法和离子交换膜
CN117264202A (zh) * 2023-11-21 2023-12-22 黑龙江伊品新材料有限公司 基于尼龙56的低吸水共聚尼龙树脂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112635A (ja) 1991-10-23 1993-05-07 Hitachi Ltd 全フツ素化全芳香族ポリエステル及びそれを用いた光学部品
JP2003012601A (ja) * 2001-06-28 2003-01-15 Central Glass Co Ltd 脂環式含フッ素ジカルボン酸およびそれを用いた重合体または感光性材料用組成物
JP2003012596A (ja) * 2001-06-28 2003-01-15 Central Glass Co Ltd 含フッ素脂環式ジカルボン酸化合物の製造方法
JP2004143416A (ja) * 2002-08-29 2004-05-20 National Cardiovascular Center フッ素含有単量体およびその製造方法、並びに、フッ素含有重合体およびその製造方法
JP2006056939A (ja) * 2004-08-18 2006-03-02 Sumitomo Electric Ind Ltd 熱可塑性フッ素化ポリベンゾオキサゾール樹脂、その前駆体、成形体、これらの製造方法、及び樹脂組成物
JP2007119503A (ja) 2004-10-13 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2009041002A (ja) * 2007-07-17 2009-02-26 Central Glass Co Ltd 新規な含フッ素ジカルボン酸およびそれを用いた新規な高分子化合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143406A (ja) * 2002-08-28 2004-05-20 Sekisui Chem Co Ltd ポリエステル系樹脂微粒子及びポリエステル系樹脂微粒子の製造方法
EP1564237B1 (en) 2002-10-31 2013-12-25 Toray Industries, Inc. Alicyclic or aromatic polyamides, polyamide films, optical members made by using the same, and polyamide copolymers
JP5114938B2 (ja) * 2006-12-19 2013-01-09 セントラル硝子株式会社 含フッ素ジアミンおよびそれを用いた高分子化合物
US7806275B2 (en) * 2007-05-09 2010-10-05 The United States Of America As Represented By The Secretary Of The Interior, The Bureau Of Reclamation Chlorine resistant polyamides and membranes made from the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112635A (ja) 1991-10-23 1993-05-07 Hitachi Ltd 全フツ素化全芳香族ポリエステル及びそれを用いた光学部品
JP2003012601A (ja) * 2001-06-28 2003-01-15 Central Glass Co Ltd 脂環式含フッ素ジカルボン酸およびそれを用いた重合体または感光性材料用組成物
JP2003012596A (ja) * 2001-06-28 2003-01-15 Central Glass Co Ltd 含フッ素脂環式ジカルボン酸化合物の製造方法
JP2004143416A (ja) * 2002-08-29 2004-05-20 National Cardiovascular Center フッ素含有単量体およびその製造方法、並びに、フッ素含有重合体およびその製造方法
JP2006056939A (ja) * 2004-08-18 2006-03-02 Sumitomo Electric Ind Ltd 熱可塑性フッ素化ポリベンゾオキサゾール樹脂、その前駆体、成形体、これらの製造方法、及び樹脂組成物
JP2007119503A (ja) 2004-10-13 2007-05-17 Central Glass Co Ltd 含フッ素重合性単量体及びそれを用いた高分子化合物
JP2009041002A (ja) * 2007-07-17 2009-02-26 Central Glass Co Ltd 新規な含フッ素ジカルボン酸およびそれを用いた新規な高分子化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF FLUORINE CHEMISTRY, vol. 125, 2004, pages 509 - 515
JOURNAL OF FLUORINE CHEMISTRY, vol. 125, 2004, pages 763 - 765
JOURNAL OF FLUORINE CHEMISTRY, vol. 8, 1976, pages 11 - 22
See also references of EP2395040A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606158B1 (ko) 2011-05-30 2016-03-24 샌트랄 글래스 컴퍼니 리미티드 함불소 중합성 단량체 및 그것을 사용한 고분자 화합물
WO2014084188A1 (ja) * 2012-11-28 2014-06-05 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物
JP2016059919A (ja) * 2014-09-12 2016-04-25 セントラル硝子株式会社 気体分離膜
WO2022030447A1 (ja) * 2020-08-05 2022-02-10 セントラル硝子株式会社 含フッ素ジアミンまたはその塩、含フッ素ジアミンまたはその塩の製造方法、ポリアミド、ポリアミドの製造方法、ポリアミド溶液、ポリアミド環化体、ポリアミド環化体の製造方法、高周波電子部品用絶縁材、高周波電子部品用絶縁材の製造方法、高周波電子部品、高周波機器および高周波電子部品製造用絶縁材料

Also Published As

Publication number Publication date
EP2395040A1 (en) 2011-12-14
KR101290226B1 (ko) 2013-07-30
US8809451B2 (en) 2014-08-19
CN102325824A (zh) 2012-01-18
JP5768320B2 (ja) 2015-08-26
KR20110127226A (ko) 2011-11-24
US20110301305A1 (en) 2011-12-08
EP2395040A4 (en) 2013-08-28
CN102325824B (zh) 2013-05-01
JP2010215904A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5768320B2 (ja) 含フッ素ジカルボン酸誘導体およびそれを用いた高分子化合物
US7550553B2 (en) Fluorinated diamine and polymer made from the same
JP2012072121A (ja) アミド基含有脂環式テトラカルボン酸二無水物、並びにこれを用いた樹脂
JP2014129340A (ja) ヘキサフルオロイソプロパノール基を含むジアミン、それを用いたポリイミドおよびポリアミド、その環化物、並びにその製造方法
KR20020042733A (ko) 신규디아민, 신규산2무수물 및 그것으로 이루어지는신규폴리이미드조성물
JP3773445B2 (ja) 含フッ素脂環族ジアミンおよびこれを用いた重合体
WO2012165435A1 (ja) 含フッ素重合性単量体およびそれを用いた高分子化合物
JP5229719B2 (ja) 新規ジアミン化合物、それを使用して製造されるポリアミック酸及びイミド化重合体
JP4679357B2 (ja) 含フッ素ジアミンおよびそれを用いた重合体
JP2008163088A (ja) エステル基含有脂環式テトラカルボン酸無水物及びその製造方法
JP6268959B2 (ja) 含フッ素重合性単量体およびそれを用いた高分子化合物
JP2016196630A (ja) 新規なポリイミド共重合体
JP4957077B2 (ja) テトラカルボン酸類またはこれらから誘導されるポリエステルイミド及びその製造方法
JP2008163087A (ja) エステル基含有脂環式テトラカルボン酸二無水物の製造方法
JP2009067936A (ja) ポリアミック酸及びイミド化重合体
JP2008163090A (ja) テトラカルボン酸二無水物およびその製造方法並びに重合物
WO2020158523A1 (ja) 新規なジアミン類、それから誘導される新規なポリイミド及びその成形体
JP2009126824A (ja) ジアミン化合物、それを使用して製造されるポリアミック酸及びイミド化重合体
JP2008163089A (ja) 脂環式ポリエステルイミド単位と芳香族ポリイミド単位とを少なくとも含む共重合体、およびポリイミドフィルム
US6384182B2 (en) Fluorine-containing polybenzoxazole
WO2021033655A1 (ja) 樹脂原料用組成物
JP5011595B2 (ja) 新規ジアミン化合物、それを使用して製造されるポリアミック酸及びイミド化重合体
JP2002069182A (ja) 新規ジアミン及びそれからなるポリイミド、ポリイソイミドならびにその製造方法
JP2021161161A (ja) 樹脂原料用組成物
JP2019119829A (ja) ポリイミドフィルムおよびそれを用いた光学部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008736.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13201766

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010743804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010743804

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117021657

Country of ref document: KR

Kind code of ref document: A