WO2010095617A1 - 4-クロロアゼチジノン化合物の製造方法 - Google Patents

4-クロロアゼチジノン化合物の製造方法 Download PDF

Info

Publication number
WO2010095617A1
WO2010095617A1 PCT/JP2010/052285 JP2010052285W WO2010095617A1 WO 2010095617 A1 WO2010095617 A1 WO 2010095617A1 JP 2010052285 W JP2010052285 W JP 2010052285W WO 2010095617 A1 WO2010095617 A1 WO 2010095617A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound represented
group
compound
reaction
Prior art date
Application number
PCT/JP2010/052285
Other languages
English (en)
French (fr)
Inventor
秀雄 田中
学 黒星
治 伊東
宏昭 湯浅
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to JP2011500610A priority Critical patent/JP5791498B2/ja
Publication of WO2010095617A1 publication Critical patent/WO2010095617A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D499/21Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring with a nitrogen atom directly attached in position 6 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
    • C07D499/28Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring with a nitrogen atom directly attached in position 6 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 with modified 2-carboxyl group
    • C07D499/32Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/27Halogenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a 4-chloroazetidinone compound and a novel intermediate for producing a 4-chloroazetidinone compound.
  • the 4-chloroazetidinone compound represented by the general formula (1) is an important intermediate of a carbapenem antibiotic having a broad antibacterial spectrum and an excellent antibacterial action (Patent Document 1).
  • R 1 represents a hydrogen atom or a protecting group for a hydroxyl group.
  • R 3 ′ is a heteroaryl having 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur, with or without a substituent, and an alkyl moiety bonded to a C 1-6 heterocycle , Heteroaralkyl, heterocycloallyl, heterocycloaralkyl group and the like.
  • the above method is not industrially satisfactory because the yield of the step of producing the compound of the general formula (1) from the compound of the general formula (A) is low.
  • the 4-chloroazetidinone compound represented by the general formula (1) has an asymmetric carbon at the 3-position on the ⁇ -lactam ring having a hydroxyethyl group. Therefore, an excellent manufacturing method is required.
  • the monocyclic compound which consists only of (beta) lactam rings represented by General formula (1) will be obtained by a ring-opening reaction from the compound which has a penum ring. Therefore, the general formula (10)
  • R 2 represents a hydrogen atom or a carboxylic acid protecting group.
  • X 1 and X 2 are the same or different and each represents a halogen atom.
  • a method of deriving from a compound in which the 6-position of the penum skeleton, such as a penicillanic acid compound represented by formula (1), is substituted with a halogen atom has been studied.
  • Non-Patent Document 1 discloses a method using methylmagnesium bromide
  • Patent Document 2 discloses a method using ethylmagnesium bromide.
  • Patent Document 3 a method of using an amine compound for reacting a Grignard reagent and acetaldehyde with a penicillanic acid compound represented by the general formula (10) is also known (Patent Document 3).
  • the target compound can be obtained with a stereoselectivity of about 80 to 90%, but higher stereoselectivity is required.
  • An object of the present invention is to provide a method for efficiently producing a 4-chloroazetidinone compound represented by the general formula (1), which is useful as a synthetic intermediate for carbapenem antibiotics, in a high yield.
  • Another object of the present invention is to provide an intermediate for obtaining a 4-chloroazetidinone compound represented by the general formula (2).
  • Another object of the present invention is to produce an intermediate for obtaining a 4-chloroazetidinone compound represented by the general formula (8) from the compound represented by the general formula (9) with high stereoselectivity and high yield. Is to provide a way to do.
  • the 1-oxidepenicillanic acid compound represented by the general formula (8) is derived from the general formula (6-A) according to the following scheme 2, and the 4-chloroazetidinone compound represented by the general formula (1) Used as an intermediate to obtain.
  • the present invention has been completed based on such knowledge.
  • the present invention provides a method for producing a 4-chloroazetidinone compound shown in the following items 1 to 17 and a novel intermediate for producing the 4-chloroazetidinone compound.
  • R 1 represents a hydrogen atom or a protecting group for a hydroxyl group.
  • R 3 represents a heterocyclic group.
  • Item 2. The production method according to Item 1, wherein the chlorination is carried out by electrolytic oxidation.
  • Item 3. The production method according to Item 2, wherein electrolytic oxidation is performed in the presence of (1) an organic solvent, (2) water, and (3) hydrogen chloride.
  • Item 4. The method according to Item 3, wherein the electrolytic oxidation is performed in the presence of a mineral acid other than hydrochloric acid.
  • Item 5 The method according to Item 2, wherein electrolytic oxidation is performed in the presence of an organic solvent, (2) water, (4) chloride, and (5) mineral acid.
  • Item 6 The production method according to Item 1, wherein the chlorination is performed using a chlorinating agent.
  • R 1 and R 3 are the same as above.
  • R 2 represents a hydrogen atom or a carboxylic acid protecting group.
  • the present invention includes the following aspects.
  • Item 11 A method for producing a 4-dithioazetidinone compound represented by the general formula (2) by stirring the 4-dithioazetidinone compound represented by the general formula (3) in an alcohol or an alcohol aqueous solution.
  • Item 12 A method for producing a 4-dithioazetidinone compound represented by the general formula (3) by blowing ozone into an organic solvent solution of the 4-dithioazetidinone compound represented by the general formula (4).
  • Item 13 A method for producing a 4-dithioazetidinone compound represented by the general formula (4) by adding a base to a solution of the 4-dithioazetidinone compound represented by the general formula (5) and stirring the solution.
  • R 1 represents a hydrogen atom or a protecting group for a hydroxyl group.
  • R 2 represents a hydrogen atom or a carboxylic acid protecting group.
  • R 2 is the same as defined above.
  • X 1 and X 2 are the same or different and each represents a halogen atom.
  • the 1-oxidepenicillanic acid compound represented by the general formula (8) is reacted with a Grignard reagent, and the resulting compound is further reacted with acetaldehyde.
  • R 2 represents a hydrogen atom or a protecting group for carboxylic acid.
  • X 1 and X 2 are the same or different and each represents a halogen atom.
  • Examples of the protecting group for the hydroxyl group represented by R 1 in the compound of the present invention include, for example, Chapter 2 of “Protective Groups in Organic Synthesis, 1981 by John Wiley & Sons. Inc.” by Theodora W. Greene (No. 10- 118)).
  • Specific examples of preferred hydroxyl protecting groups include straight chain or branched alkyl groups such as methyl, ethyl, and tert-butyl groups; acetoxy groups, trifluoroacetoxy groups, and the like.
  • An acyloxy group which may have a substituent; a lower alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a dimethyl (tert-butyl) silyl group, a tri (tert-butyl) silyl group; a benzyl group, a p-dimethoxybenzyl group,
  • the substituent include a p-nitrobenzyl group, a diphenylmethyl group, a trityl group and the like, which may have 1 to 3 phenyl groups; a benzyloxycarbonyl group and the like.
  • these protecting groups a dimethyl (tert-butyl) silyl group is preferred.
  • Examples of the protecting group for the carboxylic acid represented by R 2 in the compound of the present invention include an alkyl group, an arylmethyl group, “Protective Groups in Organic Synthesis, 1981 by John Wiley & Sons. Inc.” by Theodora W. Greene. Protecting groups for carboxylic acids described in Chapter 5 (pages 224 to 276). Specific examples of preferred carboxylic acid protecting groups include, for example, methyl group, ethyl group, trichloroethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group.
  • a linear or branched alkyl group having 1 to 4 carbon atoms which may have a halogen atom such as tert-butyl group; benzyl group, p-methoxybenzyl group, p-nitrobenzyl group, diphenylmethyl group, etc.
  • a halogen atom such as tert-butyl group; benzyl group, p-methoxybenzyl group, p-nitrobenzyl group, diphenylmethyl group, etc.
  • Examples thereof include an arylmethyl group which may be substituted with an alkoxy group, a nitro group or the like on the phenyl ring.
  • the heterocyclic group represented by R 3 in the compound of the present invention may be monocyclic or polycyclic, and specific examples of such heterocyclic group include pyridyl group, quinolyl group, pyridazinyl group, pyrimidinyl.
  • pyrazinyl group triazinyl group, pyrrolyl group, furyl group, thienyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group, tetrazolyl group (preferably thiadiazolyl group) Group): pyrimidyl group, pyridazinyl group, pyrazinyl group, triazinyl group) and the like.
  • a linear or branched alkyl group such as a methyl group, an ethyl group or a tert-butyl group; a hydroxyl group; an alkoxy group such as a methoxy group or an ethoxy group; an amino group; a substituted amino group A carboxyl group; an ester group; a ketone group; an amide group; an ether group; a thiol group; a thioether group; a substituent such as a sulfonyl group may be substituted.
  • the heterocyclic group represented by R 3 is preferably a 5- to 6-membered monocycle containing at least one nitrogen atom, and this monocycle has a substituent such as an alkyl group such as a methyl group or an ethyl group. May be. More preferably, a monocycle containing two nitrogen atoms is preferable, and this monocycle may have a substituent such as an alkyl group such as a methyl group or an ethyl group. Particularly preferred heterocyclic groups are a 2-pyrimidyl group and a 5-methyl-1,3,4-thiadiazolyl group.
  • Chlorination is performed by electrolytic oxidation or using a chlorinating agent.
  • Electrolytic oxidation can be performed, for example, in the presence of (1) organic solvent, (2) water and (3) hydrogen chloride, or (1) organic solvent, (2) water, (4) chloride and (5) mineral acid. Done in the presence of.
  • organic solvent used in electrolytic oxidation examples include halogen solvents such as dichloromethane, dibromomethane, dichloroethane, chloroform, propylene dichloride; methyl formate, ethyl formate, n-propyl formate, n-butyl formate, methyl acetate, Alkyl esters of carboxylic acids such as ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate; acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, diethyl ketone, etc.
  • halogen solvents such as dichloromethane, dibromomethane, dichloroethane, chloroform, propylene dichloride
  • Ketones diethyl ether, ethyl n-propyl ether, ethyl n-butyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, methyl cellosolve, dimethoxyethane, dioxa Ethers such as cyclopentyl methyl ether; nitriles such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, anisole; n-pentane, n-hexane And aliphatic hydrocarbons such as n-heptane and n-octane; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and cyclooctan
  • halogen solvents alkyl esters of carboxylic acids or ketone solvents are preferable, and specifically, dichloromethane, dichloroethane, chloroform, methyl ethyl ketone, ethyl acetate, and the like can be particularly preferably used.
  • Water and hydrogen chloride are preferably used in the form of an aqueous solution (hydrochloric acid) by dissolving hydrogen chloride in water.
  • Mineral acids include nitric acid, sulfuric acid, phosphoric acid and the like.
  • the amount of the organic solvent used is usually about 2 to 2000 liters, preferably about 3 to 1500 liters per 1 kg of the 4-dithioazetidinone compound of the general formula (2).
  • the amount of water used is usually about 1 to 2000 liters, preferably about 1 to 1500 liters per kg of the 4-dithioazetidinone compound of the general formula (2).
  • the amount of hydrogen chloride used is usually about 0.01 to 300 mol, preferably about 0.1 to 50 mol, per mol of the 4-dithioazetidinone compound of the general formula (2).
  • the amount used is usually about 1 to 300 mol, preferably about 1 to 50 mol, per mol of the 4-dithioazetidinone compound of the general formula (2).
  • the organic solvent When performing electrolytic oxidation in the presence of (1) organic solvent, (2) water, (4) chloride and (5) mineral acid, the organic solvent should be the same organic solvent as described above, Moreover, the usage-amount of an organic solvent and water may be the same as the above.
  • chloride examples include alkali metal salts such as sodium chloride and potassium chloride; alkaline earth metal salts such as calcium chloride chloride; aluminum chloride; ammonium chloride; tetramethylammonium chloride, tetraethylammonium chloride, tetra (n-butyl) chloride Examples thereof include tetraalkylammonium salts such as ammonium.
  • Examples of the mineral acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • the amount of chloride used is usually about 1 to 2000 mol, preferably about 1 to 1500 mol, per mol of the 4-dithioazetidinone compound of the general formula (2).
  • the amount of mineral acid used is 0.01 to 50 moles, preferably about 0.1 to 5 moles per mole of chloride used.
  • Electrolytic oxidation is carried out in the presence of (1) organic solvent, (2) water and (3) hydrogen chloride, and (1) organic solvent, (2) water, (4) chloride and (5) mineral acid.
  • organic solvent (2) water and (3) hydrogen chloride
  • organic solvent (2) water, (4) chloride and (5) mineral acid.
  • a linear or branched alcohol having 3 to 8 carbon atoms such as isopropanol, isobutanol, tert-butanol, n-pentanol, isopentanol, etc.
  • the 4-chloroazetidinone compound of the general formula (1) can be produced in a higher yield.
  • tert-butanol is preferably used.
  • the amount of the alcohol compound used is usually about 1 to 10% by weight, preferably 1 to 5% by weight, based on the water present in the reaction system.
  • Electrolytic oxidation is performed according to a usual method after adding hydrogen chloride and / or an aqueous solution of chloride and a mineral acid to an organic solvent solution of the 4-dithioazetidinone compound represented by the general formula (2).
  • the non-separation type electrolytic cell using two electrodes can be used.
  • the anode material and the cathode material may be the same as the anode material and the cathode material that are used in the usual electrolytic oxidation.
  • examples of the anode material include platinum, tin, aluminum, stainless steel, nickel, lead oxide, carbon, iron oxide, and titanium.
  • Preferred anode materials are platinum, stainless steel and carbon.
  • cathode material examples include platinum, tin, aluminum, stainless steel, zinc, lead, copper, and carbon.
  • Preferred cathode materials are platinum, tin, stainless steel and carbon.
  • the electrolytic reaction is carried out under cooling, at room temperature or under heating, but is usually about ⁇ 20 to 50 ° C., preferably about 0 to 10 ° C.
  • Either a known constant potential electrolysis method or a constant current electrolysis method may be applied to the electrolysis reaction. From the viewpoint of simplicity in operation, it is preferable to employ a constant current electrolysis method.
  • the current density during the electrolytic reaction is usually about 0.1 to 1000 mA / cm 2 , preferably about 1 to 100 mA / cm 2 .
  • the energization amount is usually about 2 to 100 F / mol, preferably about 2 to 50 F / mol, and the energization may be performed until the raw material disappears.
  • the energization time is appropriately determined depending on the current density, the energization amount, the amount of raw material used, and the like.
  • Chlorination with a chlorinating agent (hereinafter referred to as chlorination B)
  • the 4-chloroazetidinone compound represented by the general formula (1) can also be produced by allowing a chlorinating agent to act on the 4-dithioazetidinone compound represented by the general formula (2).
  • the reaction is usually performed in an organic solvent.
  • organic solvent in addition to the organic solvent used in the chlorination A, a linear or branched chain having 3 to 8 carbon atoms such as isopropanol, isobutanol, tert-butanol, n-pentanol, isopentanol and the like.
  • Alcohol can be used, and among them, halogen solvents such as dichloromethane, dichloroethane and chloroform and ether solvents such as dioxane are preferable.
  • halogen solvents such as dichloromethane, dichloroethane and chloroform and ether solvents such as dioxane are preferable.
  • These organic solvents are used individually by 1 type or in mixture of 2 or more types.
  • chlorinating agent examples include chlorine gas, hypochlorous acid, sodium hypochlorite, hypochlorite such as calcium hypochlorite, tert-butyl hypochloride, oxygen dichloride, N-chlorosuccinimide 1,3-dichloro-5,5-dimethylhydantoin, trichloroisocyanuric acid and the like can be used.
  • chlorine gas is preferred.
  • the reaction can be performed by blowing chlorine gas into an organic solvent solution of the 4-dithioazetidinone compound represented by the general formula (2).
  • the chlorinating agent is usually used in an amount of about 1 to 300 mol, preferably about 1 to 50 mol, per 1 mol of the 4-dithioazetidinone compound of the general formula (2).
  • the reaction temperature of this reaction is about ⁇ 80 to 25 ° C., preferably ⁇ 40 to 0 ° C.
  • the reaction may be performed until the compound represented by the general formula (2) as a starting material disappears, but is generally performed for 0.01 to 10 hours, preferably 0.1 to 5 hours.
  • the target compound (1) of the present invention obtained by chlorination A or chlorination B can be separated from the reaction system by ordinary separation means and further purified.
  • the separation and purification means for example, distillation method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction method and the like can be employed.
  • the 4-dithioazetidinone compound represented by the general formula (2) used as a starting material is a novel compound not described in any literature.
  • the 4-dithioazetidinone compound represented by the general formula (2) can be produced, for example, according to the method shown in the following reaction formula-2. Reaction formula-2
  • the substituted ⁇ -ketoester on the 1-position N of the 4-dithioazetidinone compound represented by the general formula (3) is subjected to solvolysis to represent the general formula (2).
  • 4-dithioazetidinone compounds can be prepared.
  • the 4-dithioazetidinone compound represented by the general formula (2) can be easily produced by stirring the 4-dithioazetidinone compound represented by the general formula (3) in an alcohol or an alcohol aqueous solution.
  • Examples of the alcohol used in the above reaction include straight-chain compounds having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n-pentanol, and isopentanol. Mention may be made of linear or branched alcohols. Among these, methanol is preferable. These alcohols are used individually by 1 type or in mixture of 2 or more types.
  • alcohol may be used alone, but it is preferably used as an aqueous alcohol solution.
  • alcohol is usually about 3 to 20 parts by weight, preferably about 1 to 20 parts by weight, preferably A mixture of 5 to 15 parts by weight is preferred.
  • the temperature of this reaction can usually be carried out at about 0 to 80 ° C., preferably 5 to 30 ° C.
  • the reaction time may be carried out until the compound represented by the general formula (3) as a starting material disappears, but is generally 0.5 to 24 hours, preferably 1 to 20 hours.
  • the 4-dithioazetidinone compound represented by the general formula (3) can be produced, for example, according to the method shown in the following reaction formula-3. Reaction formula-3
  • the olefin double bond portion of the substituent on the 1-position N of the 4-dithioazetidinone compound represented by the general formula (4) is subjected to ozonolysis, whereby the general formula (3)
  • the 4-dithioazetidinone compound represented by these can be manufactured.
  • the 4-dithioazetidinone compound represented by the general formula (3) can be produced by blowing ozone into an organic solvent solution of the 4-dithioazetidinone compound represented by the general formula (4).
  • organic solvent used in this reaction an organic solvent used in chlorination B can be widely used, and among them, ethyl acetate, dichloromethane, and acetone are preferable. These organic solvents are used individually by 1 type or in mixture of 2 or more types.
  • the amount of the organic solvent used is usually about 5 to 200 liters, preferably about 10 to 100 liters per 1 kg of the 4-dithioazetidinone compound of the general formula (4).
  • the temperature of this reaction is usually about -90 to 30 ° C, preferably -85 to 0 ° C.
  • the reaction time may be carried out until the compound represented by the general formula (4) as a starting material disappears, but is generally 10 minutes to 2 hours, preferably 15 minutes to 1 hour.
  • the 4-dithioazetidinone compound represented by the general formula (4) can be produced, for example, according to the method shown in the following reaction formula-4. Reaction formula-4
  • a 4-dithioazetidinone compound represented by the general formula (4) can be produced by adding a base to a solution of the 4-dithioazetidinone compound represented by the general formula (5) and stirring.
  • reaction solvent an organic solvent or a mixed solvent of an organic solvent and water can be used.
  • organic solvent an organic solvent used in chlorination B can be widely used. Of these, dichloromethane, toluene and ethyl acetate are preferred. These organic solvents are used individually by 1 type or in mixture of 2 or more types.
  • the amount of the organic solvent used is usually about 2 to 200 liters, preferably about 3 to 100 liters per 1 kg of the 4-dithioazetidinone compound of the general formula (5).
  • Examples of the organic base include N, N, N-tri-lower alkylamines such as trimethylamine, dimethylethylamine, triethylamine and diisopropylethylamine; N-lower alkylazacycloalkanes such as N-methylpiperidine and N-ethylpiperidine; N— N-lower alkylazaoxycycloalkanes such as methylmorpholine and N-ethylmorpholine; N-phenyl lower alkyl-N, N- such as N-benzyl-N, N-dimethylamine and N-benzyl-N, N-diethylamine Di-lower alkyl amines; N, N-dialkyl aromatic amines such as N, N-dimethylaniline; nitrogen-containing aromatic amines such as pyridine; bicyclic amines such as diazabicycloundecene and diazabicyclononene; A mixture etc.
  • Examples of the inorganic base include alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; alkaline earth metal salts such as beryllium carbonate, magnesium carbonate, and calcium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate Alkali metal carbonates such as lithium hydroxide, sodium hydroxide, potassium hydroxide; Alkali metal hydroxides such as magnesium hydroxide, calcium hydroxide; Lithium hydride, hydrogenation Examples thereof include alkali metal hydrides such as sodium and potassium hydride; alkaline earth metal hydrides such as calcium hydride; alkaline earth metal oxides such as magnesium oxide and calcium oxide, and mixtures thereof.
  • triethylamine is preferred.
  • the above organic base and inorganic base may be used in combination.
  • the amount of base used is usually 0.1 to 5 equivalents, preferably 0.5 to 2 equivalents, relative to the 4-dithioazetidinone compound of the general formula (5) to be treated.
  • the temperature of this reaction is usually about 0 to 100 ° C., preferably 5 to 40 ° C.
  • the reaction time may be carried out until the compound represented by the general formula (5) as a starting material disappears, but is generally 1 to 24 hours, preferably 2 to 20 hours.
  • the 4-dithioazetidinone compound represented by the general formula (5) can be produced, for example, according to the method shown in the following reaction formula-5. Reaction formula-5
  • the 4-dithioazetidinone compound represented by the general formula (5) is obtained by carrying out a ring-opening reaction of the 1-oxidepenicillanic acid compound represented by the general formula (6). Can be manufactured.
  • an organic solvent used in chlorination B can be widely used.
  • aromatic hydrocarbons, carboxylic acid esters, and ether solvents are preferable, and toluene, benzene, chlorobenzene, dioxane, and cyclopentyl methyl ether are particularly preferable.
  • These organic solvents are used individually by 1 type or in mixture of 2 or more types.
  • the amount of the organic solvent used is usually about 2 to 200 liters, preferably about 3 to 100 liters per 1 kg of the 1-oxidepenicillanic acid compound represented by the general formula (6).
  • the temperature of this reaction is usually about 80 to 150 ° C., preferably 90 to 130 ° C. What is necessary is just to perform reaction time until the compound represented by General formula (6) which is a starting material lose
  • the 1-oxidepenicillanic acid compound represented by the general formula (6) used as a starting material in the above reaction formula-5 is a known compound that is easily available, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 59-112989. It is manufactured by the manufacturing method currently made.
  • the compound represented by the general formula (6-A) which is one of the stereoisomers of the 1-oxidepenicillanic acid compound represented by the general formula (6), can be produced according to the following scheme 2. .
  • the 1-oxidepenicillanic acid compound represented by the general formula (6-A) can be produced, for example, according to the method shown in the following reaction formula-6. Reaction formula-6
  • the 1-oxidepenicillanic acid compound represented by the general formula (6-A) is obtained by protecting the hydroxyl group of the compound represented by the general formula (7) with an R 1 group. Manufactured.
  • reaction formula-7 the compound represented by the general formula (7) of the present invention can be produced, for example, according to the method shown in the following reaction formula-7.
  • the compound represented by the general formula (7) is produced by reducing the compound represented by the general formula (8).
  • the reduction reaction for example, various conditions described in Ishiwata A. et al., Organic Letters, s2000, Vol.2, ⁇ No.18, p.2889-2892 can be applied.
  • the reduction reaction can be performed by reacting the compound represented by the general formula (8) with a reducing agent used in a normal organic reaction.
  • Examples of the reducing agent used in Reaction Scheme-7 include catalytic hydrogen catalysts such as platinum, palladium, nickel, and rhodium, trivalent phosphorus compounds such as phosphite, tributylphosphine, and triphenylphosphine, dimethyl sulfide, and the like. Is mentioned. Among these, trivalent phosphorus compounds are preferable, and tributylphosphine is more preferable.
  • reaction shown in the above reaction formula-7 is generally carried out in an ordinary solvent used in the reduction reaction.
  • the 1-oxidepenicillanic acid compound represented by the general formula (8) used as a starting material in the above reaction formula-7 is a novel compound not described in any literature.
  • reaction formula-8 the compound represented by the general formula (8) of the present invention can be produced, for example, according to the method shown in the following reaction formula-8.
  • R 2 is the same as defined above.
  • X 1 and X 2 are the same or different and each represents a halogen atom.
  • halogen atom examples include a chlorine atom, a bromine atom, and an iodine atom.
  • a bromine atom is preferable for both X 1 and X 2 .
  • the compound represented by the general formula (8) is obtained by reacting the compound represented by the general formula (9) with a Grignard reagent and further reacting the resulting compound with acetaldehyde. Manufactured.
  • the target substance can be obtained with extremely high stereoselectivity.
  • any known Grignard reagent can be used. Specific examples thereof include methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium iodide, n-propylmagnesium chloride, n-propylmagnesium bromide, n-propylmagnesium iodide.
  • Grignard reagents C 1-2 alkylmagnesium halides are preferable, and ethylmagnesium chloride and ethylmagnesium bromide are particularly preferable.
  • the Grignard reagent is usually used in an amount of about 1 to 10 mol, preferably about 1 to 4 mol, per 1 mol of the compound represented by the general formula (9).
  • the reaction shown in the above reaction formula-8 is generally carried out in a usual solvent used in the Grignard reaction.
  • the solvent used include chain or cyclic ethers such as diethyl ether, tetrahydrofuran, dioxane, and cyclopentyl methyl ether; aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene, and anisole.
  • these solvents are used as main solvents, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, and octane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, and cyclooctane can be used in combination.
  • the proportion of the main solvent in the total solvent is usually 80% by volume or more, preferably 90% by volume or more.
  • solvents are usually used in an amount of about 0.5 to 200 liters, preferably about 1 to 50 liters per kg of the compound represented by the general formula (9).
  • the above reaction proceeds both under cooling and at room temperature, but it is preferable to carry out the reaction under cooling.
  • the reaction is usually carried out at ⁇ 100 to 30 ° C., preferably ⁇ 78 to 0 ° C., and is generally completed in about 0.1 to 3 hours, preferably about 0.5 to 1 hour.
  • an amine compound is preferably coordinated to a compound (hereinafter, this compound is sometimes referred to as “compound B”) produced by the reaction of the compound represented by the general formula (9) with a Grignard reagent. .
  • compound B may be isolated from the reaction system and then subjected to the next reaction, but from the viewpoint of work efficiency and the like, it is desirable to use it for the next reaction without isolation from the reaction mixture.
  • amine compounds include those represented by the general formula (11)
  • R 4 , R 5 and R 6 are the same or different and each represents a C 1-4 alkyl group, a C 3-8 cycloalkyl group or a phenyl group. R 5 and R 6 may combine with each other to represent a C 2-6 alkylene group.
  • R 7 , R 8 , R 9 and R 10 are the same or different and each represents a hydrogen atom or a C 1-4 alkyl group. R 7 and R 9 and R 8 and R 10 may be bonded to each other to represent a C 1-4 alkylene group. l represents an integer of 2 to 4. ]
  • R 11 , R 12 , R 13 , R 14 and R 15 each represent a C 1-4 alkyl group.
  • m and n represent an integer of 2 to 4.
  • the triamine compound etc. which are represented by these can be mentioned. These amine compounds are used alone or in combination of two or more. Among these amine compounds, the triamine compound represented by the general formula (13) is preferable.
  • Examples of the monoamine compound represented by the general formula (11) include trimethylamine, triethylamine, tributylamine, ethyldiisopropylamine, dicyclohexylmethylamine, N-methylpiperidine, triphenylamine and the like. Of the monoamine compounds, triethylamine and ethyldiisopropylamine are preferred.
  • Examples of the diamine compound represented by the general formula (12) include ethylenediamine, propylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, 1, 4-diazabicyclo [2.2.2] octane and the like can be mentioned.
  • the diamine compounds N, N, N ′, N′-tetramethylethylenediamine and 1,4-diazabicyclo [2.2.2] octane are preferable.
  • Examples of the triamine compound represented by the general formula (13) include N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentaethyldiethylenetriamine, and the like. Can be mentioned. Among the triamine compounds, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine is preferable.
  • amine compounds are known compounds that are easily available, or compounds that can be easily produced according to known methods.
  • the amine compound is usually used in an amount of about 1 to 10 mol, preferably about 1 to 4 mol, relative to 1 mol of the 1-oxidepenicillanic acid compound represented by the general formula (9) as a starting material.
  • the amine compound is usually used in an amount of about 1 to 10 moles, preferably about 1 to 3 moles per mole of Grignard reagent, but the amine compound is used in an approximately equimolar ratio with the Grignard reagent. desirable.
  • Coordination of the amine compound to Compound B proceeds both under cooling and at room temperature, but it is preferable to carry out the reaction under cooling. Specifically, the coordination is usually performed at ⁇ 80 to 20 ° C., preferably ⁇ 78 to ⁇ 40 ° C., and the reaction is generally performed for about 0.1 to 3 hours, preferably about 0.5 to 2 hours. Is completed.
  • compound C acetaldehyde is further reacted with a compound in which an amine compound is coordinated with compound B (hereinafter, this compound may be referred to as “compound C”).
  • compound C may be isolated from the reaction system and then subjected to the next reaction. However, from the viewpoint of work efficiency and the like, it is desirable to use it for the next reaction without isolation from the reaction mixture.
  • acetaldehyde is usually used in an amount of about 1.5 to 10 mol, preferably about 3 to 8 mol, per 1 mol of the compound represented by the general formula (9).
  • the reaction between Compound C and acetaldehyde proceeds both under cooling and at room temperature, but it is preferable to carry out the reaction under cooling.
  • the reaction is usually performed at ⁇ 80 to 20 ° C., preferably ⁇ 40 to 0 ° C., and the reaction is generally completed in about 1 to 10 hours, preferably about 1 to 6 hours.
  • the compound represented by the general formula (9) of the present invention is a known compound that can be easily obtained.
  • reaction formula-2 each reaction shown in the above reaction formula-2, reaction formula-3, reaction formula-4, reaction formula-5, reaction formula-6, reaction formula-7, and reaction formula-8 proceeds suitably,
  • the target compound can be obtained in good yield.
  • Each target compound produced by these reaction formulas can be separated from the reaction system by ordinary separation means and further purified.
  • separation and purification means for example, distillation method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction method and the like can be employed.
  • the azetidinone compound represented by the general formula (1) can be easily produced in a high yield, and thus industrially advantageous.
  • the 4-dithioazetidinone compound represented by the general formula (2) can be produced in good yield from a general-purpose 1-oxidepenicillanic acid compound.
  • An azetidinone compound represented by the formula (1) can be produced.
  • the target optical isomer can be obtained with high yield. Can be obtained at a rate.
  • the compound (9) as a raw material compound, it can be stereoselectively derived into the compound (8).
  • N, N, N ', N'',N''-pentamethyldiethylenetriamine (PMDTA) 0.1 mL, (0.48 mmol) was added to the reaction solution, and the temperature was gradually raised to -50 ° C.
  • the mixture was stirred at the same temperature for 1 hour.
  • a suspension of 0.08 mL (1.5 mmol) acetaldehyde and THF (2.0 mL) in molecular sieves 3A (powder) was added to this reaction solution, and the temperature of the reaction solution was gradually raised to 0 ° C. and stirred at that temperature for 5 hours. did.
  • the reaction mixture was poured into 3 mL of saturated aqueous NH 4 Cl.
  • Example 2 Production of compound represented by general formula (7) (R 2 : diphenylmethyl group) (hereinafter referred to as “compound 7-1”)
  • compound 7-1 compound represented by general formula (7) (R 2 : diphenylmethyl group)
  • MeOH MeOH
  • Bu 3 P Bu represents a butyl group
  • Example 3 Production of compound represented by general formula (6-A) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group) (hereinafter referred to as “compound 6-A-1”) under argon atmosphere
  • compound 6-A-1 compound represented by general formula (6-A) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group) (hereinafter referred to as “compound 6-A-1”) under argon atmosphere
  • TBDMSCl tert-butyldimethylchlorosilane
  • reaction mixture was poured into distilled water, and the organic layer and the aqueous layer were separated.
  • Example 4 Production formula of compound of general formula (5) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 2-pyrimidyl group) (hereinafter referred to as “compound 5-1”)
  • Example 5 Production Example of Compound of General Formula (5) (R 1 : Dimethyl (tert-butyl) silyl Group, R 2 : Diphenylmethyl Group, R 3 : 2-Pyrimidyl Group) (hereinafter referred to as “Compound 5-1”) 69 mg (0.13 mmol) of the compound 6-A-1 obtained in 3 was refluxed with a solution of 2-mercaptopyrimidine 16 mg, (0.14 mmol) in toluene (2.0 mL) under an argon atmosphere for 8 hours. After completion of the reaction, the reaction solution was cooled to room temperature and concentrated under reduced pressure.
  • Example 6 Compound of general formula (5) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 5-methyl-1,3,4-thiadiazolyl group) (hereinafter referred to as “compound 5-2 The reaction was carried out in the same manner as in Example 4 except that 2-mercapto-5-methyl-1,3,4-thiadiazole was used instead of 2-mercaptopyrimidine, and a colorless liquid compound 5-2 was obtained. (Yield 91%) was obtained.
  • Example 7 Production of compound of general formula (4) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 2-pyrimidyl group) (hereinafter referred to as “compound 4-1”)
  • compound 4-1 dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 2-pyrimidyl group
  • To 8 ml of a dichloromethane solution of 244.8 mg (0.38 mmol) of the compound 5-1 obtained in 4 was added 0.05 ml (0.38 mmol) of triethylamine under an argon atmosphere and stirred at room temperature for 4 hours.
  • the reaction mixture was poured into a saturated aqueous ammonium chloride solution.
  • Example 8 Compound of general formula (4) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 5-methyl-1,3,4-thiadiazolyl group) (hereinafter referred to as “compound 4-2 The reaction was carried out in the same manner as in Example 7 except that the compound 5-2 was used instead of the compound 5-1. Thus, a yellow liquid compound 4-2 was obtained (yield 95%).
  • Example 9 Production of compound of general formula (3) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 2-pyrimidyl group) (hereinafter referred to as “compound 3-1”)
  • Compound 4-1 obtained in 7 was reacted for 5 hours in a solution of 144.8 mg (0.23 mmol) of ethyl acetate in 5 ml of ethyl acetate at ⁇ 78 ° C. while swollen with ozone. After the reaction, nitrogen gas was swallowed to remove excess ozone, and then the reaction mixture was poured into a saturated aqueous sodium sulfite solution.
  • Example 10 Compound of general formula (3) (R 1 : dimethyl (tert-butyl) silyl group, R 2 : diphenylmethyl group, R 3 : 5-methyl-1,3,4-thiadiazolyl group) (hereinafter referred to as “compound 3-2 A compound 3-2 was obtained as a colorless liquid (yield 99%), except that compound 4-2 was used instead of compound 4-1.
  • Example 11 Production of Compound of General Formula (2) (R 1 : Dimethyl (tert-butyl) silyl Group, R 3 : 2-Pyrimidyl Group) (hereinafter referred to as “Compound 2-1”)
  • Compound 3 obtained in Example 9 -1 41.5 mg (0.068 mmol) was dissolved in a mixed solution in which the mixing ratio of methanol and water was 10 to 1, and the mixture was stirred at room temperature for 15 hours in an argon atmosphere to be reacted.
  • Example 12 Production of compound of general formula (2) (R 1 : dimethyl (tert-butyl) silyl group, R 3 : 5-methyl-1,3,4-thiadiazolyl group) (hereinafter referred to as “compound 2-2”) The same reaction as in Example 11 was carried out except that compound 3-2 was used instead of 3-1 to obtain colorless solid compound 2-2.
  • Example 13 Production of Compound of General Formula (1) (R 1 : Dimethyl (tert-butyl) silyl Group) (hereinafter referred to as “Compound 1-1”)
  • Compound 2-1 obtained in Example 11 was placed in a non-separable cell.
  • 5.0 ml of a 14.9 mg (0.040 mmol) dichloromethane solution was added, and 5 ml of a 6 mol / l aqueous hydrochloric acid solution was further added.
  • Two platinum electrodes (1.5 ⁇ 1.0 cm 2 ) were immersed in this solution, and an electrolytic reaction was carried out while maintaining a current at 30 mA at 0 ° C. with vigorous stirring. The platinum electrode was taken out and the reaction was terminated.
  • Example 14 Preparation of Compound of General Formula (1) (R 1 : Dimethyl (tert-butyl) silyl Group (Compound 1-1))
  • R 1 Dimethyl (tert-butyl) silyl Group (Compound 1-1)
  • 8.8 mg (0. 022 mmol) in dichloromethane 8.8 mg (0. 022 mmol) in dichloromethane, and concentrated sulfuric acid 0.016 ml, t-butyl alcohol 0.1 ml) and 6 mol / l hydrochloric acid aqueous solution 5 ml were added, and the same reaction as in Example 12 was carried out.
  • 5.2 mg (yield: 90%) of the compound 1-1 was obtained.
  • the NMR and IR spectra of the obtained compound 1-1 were consistent with those of the compound 1-1 obtained in Example 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明は、カルバペネム系抗生物質の合成中間体として有用な4-クロロアゼチジノン化合物を効率よく、高収率で製造する方法及び該方法に出発原料として使用する中間体を提供することを課題とする。 すなわち、一般式(2) [式中、Rは、水素原子又は水酸基の保護基を示す。Rは複素環基を示す。] で表される4-ジチオアゼチジノン化合物の4位を塩素化することにより、一般式 (1) [式中、Rは前記に同じ。] で表される4-クロロアゼチジノン化合物を製造する方法に関する。

Description

4-クロロアゼチジノン化合物の製造方法
 本発明は、4-クロロアゼチジノン化合物の製造方法及び4-クロロアゼチジノン化合物を製造するための新規な中間体に関する。
 一般式(1)で表される4-クロロアゼチジノン化合物は、広範な抗菌スペクトル及び優れた抗菌作用を有するカルバペネム系抗生物質の重要な中間体である(特許文献1)。
 一般式(1)で表される4-クロロアゼチジノン化合物の製造方法としては、例えば、一般式(A)で表される4-チオアゼチジノン化合物を、塩素ガスを用いて塩素化する技術(特許文献1)が知られている。
Figure JPOXMLDOC01-appb-C000016
[式中、Rは、水素原子又は水酸基の保護基を示す。R3’は、置換基を有しもしくは有しない、酸素、窒素及び硫黄より選ばれたヘテロ原子を1~4個有するヘテロ環とアルキル部分が炭素数1~6ヘテロ環と結合しているヘテロアリル、ヘテロアラルキル、ヘテロシクロアリル及びヘテロシクロアラルキル基等を示す。]
 しかしながら、上記の方法は、一般式(A)の化合物から一般式(1)の化合物を製造する工程の収率が低く、工業的に満足できるものではない。
一方、一般式(1)で表される4-クロロアゼチジノン化合物はヒドロキシエチル基を有するβ-ラクタム環上の3位に不斉炭素を有しているため、製造するにあたっては、立体選択性に優れた製造法が要求される。また、一般式(1)で表されるようなβラクタム環のみからなる単環化合物はペナム環を有する化合物より開環反応によって得られることが知られている。このため一般式(10)
Figure JPOXMLDOC01-appb-C000017
[式中、R2は水素原子又はカルボン酸保護基を示す。X及びXは、同一又は異なって、ハロゲン原子を示す。]
で表されるペニシラン酸化合物の様なペナム骨格の6位がハロゲン原子で置換された化合物から誘導する方法が研究されている。
 例えば、グリニャール試薬を用いる方法が提案されており、非特許文献1にはメチルマグネシウムブロミドを用いる方法が、特許文献2にはエチルマグネシウムブロミドを用いる方法が開示されている。
 しかしながらこれらの方法では目的化合物の立体選択性は充分満足できるものではない。例えば、非特許文献1による方法では、目的化合物の立体選択性が70%程度(目的物:副生成物=230:96.5)にとどまる。また、特許文献2による方法では、目的化合物の立体選択性が62%程度に過ぎない。
 また、一般式(10)で表されるペニシラン酸化合物にグリニャ-ル試薬及びアセトアルデヒドを反応させるにあたりアミン化合物を使用する方法も知られている(特許文献3)。特許文献3に記載の方法によれば約80~90%の立体選択性で目的化合物が得られるが、更なる高い立体選択性が求められている。
米国特許第4841043号明細書 特公平2-25914号公報 国際公開WO2008/111487
J. Org. Chem., 42, 2960 (1977)
 本発明の課題は、カルバペネム系抗生物質の合成中間体として有用な一般式(1)で表される4-クロロアゼチジノン化合物を効率よく、高収率で製造する方法を提供することである。
 また本発明の課題は、一般式(2)で表される4-クロロアゼチジノン化合物を得るための中間体を提供することである。
 また本発明の課題は、一般式(9)で表される化合物から一般式(8)で表される4-クロロアゼチジノン化合物を得る為の中間体を立体選択性良く、高収率で製造する方法を提供することである。
 本発明者は、上記課題を解決すべく鋭意研究を重ねてきた。その結果、本発明者が初めて合成した新規化合物である一般式(2)で表される4-ジチオアゼチジノン化合物を出発原料として用いることにより、効率よく、高収率で、一般式(1)で表される4-クロロアゼチジノン化合物を製造し得ることを見い出した。一般式(2)で表される4-ジチオアゼチジノン化合物は、下記スキーム1に従って、一般式(6)で表される化合物から誘導される。
Figure JPOXMLDOC01-appb-C000018
             スキーム 1
[式中、R、R及びRは前記に同じ。]
 また本発明者は特許文献3で使用される一般式(10)で表されるペニシラン酸化合物と類似の一般式(9)で表される1-オキシドペニシラン酸化合物を使用することによって、驚くべきことに極めて立体選択性良く一般式(8)で表される1-オキシドペニシラン酸化合物を製造し得ることを見出した。一般式(8)で表される1-オキシドペニシラン酸化合物は、下記スキーム2に従って、一般式(6-A)に誘導され、一般式(1)で表される4-クロロアゼチジノン化合物を得るための中間体として用いられる。
Figure JPOXMLDOC01-appb-C000019
              スキーム 2
[式中、R、R及びRは前記に同じ。]
 本発明は、斯かる知見に基づき完成されたものである。
 本発明は、下記に項1~項17に示す4-クロロアゼチジノン化合物の製造方法及び4-クロロアゼチジノン化合物を製造するための新規な中間体を提供する。
 項1.一般式(2)
Figure JPOXMLDOC01-appb-C000020
    
[式中、Rは、水素原子又は水酸基の保護基を示す。Rは複素環基を示す。]
で表される4-ジチオアゼチジノン化合物の4位を塩素化することにより、一般式(1)
Figure JPOXMLDOC01-appb-C000021
[式中、Rは前記に同じ。]
で表される4-クロロアゼチジノン化合物を得る、式(1)で表される4-クロロアゼチジノン化合物の製造方法。
 項2.塩素化を電解酸化により行う、項1に記載の製造方法。
 項3.(1)有機溶媒、(2)水及び(3)塩化水素の存在下に電解酸化を行う、項2に記載の製造方法。
 項4.塩酸以外の鉱酸共存下に電解酸化を行う、項3に記載の製造方法。
 項5.(1)有機溶媒、(2)水、(4)塩化物及び(5)鉱酸の存在下に電解酸化を行う、項2に記載の製造方法。
 項6.塩素化を塩素化剤を用いて行う、項1に記載の製造方法。
 項7.一般式(2)
Figure JPOXMLDOC01-appb-C000022
[式中、R及びRは前記に同じ。]
で表される4-ジチオアゼチジノン化合物。
 項8.一般式(3)
Figure JPOXMLDOC01-appb-C000023
[式中、R及びRは前記に同じ。Rは水素原子又はカルボン酸の保護基を示す。]で表される4-ジチオアゼチジノン化合物。
 項9.一般式(4)
Figure JPOXMLDOC01-appb-C000024
[式中、R、R及びRは前記に同じ。]
で表される4-ジチオアゼチジノン化合物。
 項10.一般式(5)
Figure JPOXMLDOC01-appb-C000025
[式中、R、R及びRは前記に同じ。]
で表される4-ジチオアゼチジノン化合物。
 更に、本発明は以下の態様も包含する。
 項11.上記一般式(3)で表される4-ジチオアゼチジノン化合物をアルコール又はアルコール水溶液中で撹拌することにより、一般式(2)で表される4-ジチオアゼチジノン化合物を製造する方法。
 項12.上記一般式(4)で表される4-ジチオアゼチジノン化合物の有機溶媒溶液にオゾンを吹き込むことにより、一般式(3)で表される4-ジチオアゼチジノン化合物を製造する方法。
 項13.上記一般式(5)で表される4-ジチオアゼチジノン化合物の溶液に塩基を加え、撹拌することにより、一般式(4)で表される4-ジチオアゼチジノン化合物を製造する方法。
 項14.一般式(6)
Figure JPOXMLDOC01-appb-C000026
[式中、R及びRは前記に同じ。]
で表される1-オキシドペニシラン酸化合物と一般式(14)
     HS-R    (14)
[式中、Rは前記に同じ。]
で表されるチオール化合物とを加温下で反応させることにより、一般式(5)
Figure JPOXMLDOC01-appb-C000027
で表される4-ジチオアゼチジノン化合物を製造する方法。
項15.一般式(6-A)
Figure JPOXMLDOC01-appb-C000028
[式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。]
で表される1-オキシドペニシラン酸化合物の製造方法であって、一般式(9)
Figure JPOXMLDOC01-appb-C000029
[式中、Rは前記に同じ。X及びXは、同一又は異なって、ハロゲン原子を示す。]で表される1-オキシドペニシラン酸化合物にグリニャール試薬を反応させ、更に生成する化合物にアセトアルデヒドを反応させることにより、一般式(8)
Figure JPOXMLDOC01-appb-C000030
[式中、Rは前記に同じ。Xは、ハロゲン原子を示す。]
で表される1-オキシドペニシラン酸化合物を得る工程、
前記工程で得られる一般式(8)で表される1-オキシドペニシラン酸化合物を還元することにより、一般式(7)
Figure JPOXMLDOC01-appb-C000031
[式中、Rは前記に同じ。]
で表される1-オキシドペニシラン酸化合物を得る工程、及び
前記工程で得られる一般式(7)で表される1-オキシドペニシラン酸化合物の水酸基を保護することにより、前記一般式(6-A)で表される1-オキシドペニシラン酸化合物を得る工程、
を備えた一般式(6-A)で表される1-オキシドペニシラン酸化合物の製造方法。
項16.一般式(8)
Figure JPOXMLDOC01-appb-C000032
[式中、Rは水素原子又はカルボン酸の保護基を示す。Xはハロゲン原子を示す。]
で表される1-オキシドペニシラン酸化合物。
項17.一般式(9)
Figure JPOXMLDOC01-appb-C000033
[式中、Rは水素原子又はカルボン酸の保護基を示す。X及びXは、同一又は異なって、ハロゲン原子を示す。]
で表される1-オキシドペニシラン酸化合物にグリニャール試薬を反応させ、更に生成する化合物にアセトアルデヒドを反応させることにより、一般式(8)
Figure JPOXMLDOC01-appb-C000034
[式中、Rは前記に同じ。Xはハロゲン原子を示す。]
で表される1-オキシドペニシラン酸化合物を製造する方法。
 本願発明の化合物におけるRで示される水酸基の保護基としては、例えば、Theodora W. Greene 著の "Protective Groups in Organic Synthesis, 1981 by John Wiley & Sons. Inc." の第2章(第10~118頁)に記載されている水酸基の保護基を挙げることができる。このような水酸基の保護基の好ましい基を具体的に示せば、例えば、メチル基、エチル基、tert-ブチル基等の直鎖又は分枝鎖状アルキル基;アセトキシ基、トリフルオロアセトキシ基等の置換基を有することのあるアシルオキシ基;トリメチルシリル基、トリエチルシリル基、ジメチル(tert-ブチル)シリル基、トリ(tert-ブチル)シリル基等の低級アルキルシリル基;ベンジル基、p-ジメトキシベンジル基、p-ニトロベンジル基、ジフェニルメチル基、トリチル基等の置換基としてフェニル基を1~3個有することのあるアルキル基;ベンジルオキシカルボニル基等が挙げられる。これら保護基の中でもジメチル(tert-ブチル)シリル基が好ましい。
 本願発明の化合物におけるRで示されるカルボン酸の保護基としては、例えば、アルキル基、アリールメチル基、Theodora W. Greene 著の "Protective Groups in Organic Synthesis, 1981 by John Wiley & Sons. Inc." の第5章(第224~276頁)に記載されているカルボン酸の保護基を挙げることができる。このようなカルボン酸の保護基の好ましい基を具体的に示せば、例えば、メチル基、エチル基、トリクロロエチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のハロゲン原子を有することのある炭素数1~4の直鎖又は分枝鎖状アルキル基;ベンジル基、p-メトキシベンジル基、p-ニトロベンジル基、ジフェニルメチル基等のフェニル環上にアルコキシ基、ニトロ基等が置換していてもよいアリールメチル基等を挙げることができる。
 本願発明の化合物におけるRで表される複素環基は、単環及び多環のいずれであってもよく、そのような複素環基の具体例として、ピリジル基、キノリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ピロリル基、フリル基、チエニル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基(好ましくはチアジアゾリル基、:ピリミジル基、ピリダジニル基、ピラジニル基、トリアジニル基)等を挙げることができる。
 これらの複素環基上には、メチル基、エチル基、tert-ブチル基等の直鎖又は分枝鎖状のアルキル基;水酸基;メトキシ基、エトキシ基等のアルコキシ基;アミノ基;置換アミノ基;カルボキシ基;エステル基;ケトン基;アミド基;エーテル基;チオール基;チオエーテル基;スルホニル基等の置換基が置換していてもよい。
 Rで表される複素環基としては少なくとも窒素原子を1つ以上含む5~6員の単環が好ましく、この単環はメチル基、エチル基等のアルキル基等の置換基を有していてもよい。より好ましくは窒素原子を2つ含む単環が好ましく、この単環はメチル基、エチル基等のアルキル基等の置換基を有していてもよい。特に好ましい複素環基は、2-ピリミジル基及び5-メチル-1,3,4-チアジアゾリル基である。
 一般式(1)で表される4-クロロアゼチジノン化合物は、下記の反応式-1に示す方法に従い製造することができる。
反応式-1
Figure JPOXMLDOC01-appb-C000035
[式中、R及びRは前記に同じ。]
 上記反応式-1によれば、一般式(1)で表される4-クロロアゼチジノン化合物は、一般式(2)で表される4-ジチオアゼチジノン化合物を塩素化することにより製造される。
 塩素化は、電解酸化により行うか、塩素化剤を用いて行われる。
 電解酸化による塩素化(以下、塩素化A)
 電解酸化は、例えば、(1)有機溶媒、(2)水及び(3)塩化水素の存在下に、或いは(1)有機溶媒、(2)水、(4)塩化物及び(5)鉱酸の存在下に行われる。
 電解酸化において、使用される有機溶媒としては、例えば、ジクロロメタン、ジブロモメタン、ジクロロエタン、クロロホルム、プロピレンジクロリド等のハロゲン系溶媒;蟻酸メチル、蟻酸エチル、蟻酸n-プロピル、蟻酸n-ブチル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル等のカルボン酸のアルキルエステル;アセトン、メチルエチルケトン、メチルn-プロピルケトン、メチルn-ブチルケトン、メチルイソブチルケトン、ジエチルケトン等のケトン;ジエチルエーテル、エチルn-プロピルエーテル、エチルn-ブチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、メチルセロソルブ、ジメトキシエタン、ジオキサン、シクロペンチルメチルエーテル等のエーテル;アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル等のニトリル、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール等の芳香族炭化水素;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂環式炭化水素等を挙げることができる。これらの有機溶媒は、1種単独で又は2種以上混合して使用される。
 これらの有機溶媒の中でも、ハロゲン系溶媒、カルボン酸のアルキルエステル又はケトン系溶媒が好ましく、具体的にはジクロロメタン、ジクロロエタン、クロロホルム、メチルエチルケトン、酢酸エチル等が特に好ましく使用できる。
 水及び塩化水素は、塩化水素を水に溶解して水溶液(塩酸)の形態で使用されるのが好ましい。
 (1)有機溶媒、(2)水及び(3)塩化水素の存在下に電解酸化を行う場合、反応系内に塩酸以外の鉱酸を共存させるのが特に好ましい。
 鉱酸としては、硝酸、硫酸、リン酸等が挙げられる。
 有機溶媒の使用量は、一般式(2)の4-ジチオアゼチジノン化合物1kg当たり、通常2~2000リットル程度、好ましくは3~1500リットル程度である。
 水の使用量は、一般式(2)の4-ジチオアゼチジノン化合物1kg当たり、通常1~2000リットル程度、好ましくは1~1500リットル程度である。
 塩化水素の使用量は、一般式(2)の4-ジチオアゼチジノン化合物1モル当たり、通常0.01~300モル程度、好ましくは0.1~50モル程度である。
 鉱酸を共存させる場合、その使用量は、一般式(2)の4-ジチオアゼチジノン化合物1モル当たり、通常1~300モル程度、好ましくは1~50モル程度である。
 (1)有機溶媒、(2)水、(4)塩化物及び(5)鉱酸の存在下に電解酸化を行う場合、有機溶媒は、上述したものと同じ有機溶媒を使用するのがよく、また有機溶媒及び水の使用量も上記と同じでよい。
 塩化物としては、例えば、塩化ナトリウム、塩化カリウム等のアルカリ金属塩; 塩化カルシウム等のアルカリ土類金属塩;塩化アルミニウム;塩化アンモニウム;塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラ(n-ブチル)アンモニウム等のテトラアルキルアンモニウム塩等を挙げることができる。
 鉱酸としては、塩酸、硝酸、硫酸、リン酸等が挙げられる。
 塩化物の使用量は、一般式(2)の4-ジチオアゼチジノン化合物1モル当たり、通常1~2000モル程度、好ましくは1~1500モル程度である。
 鉱酸の使用量は、使用する塩化物1モルに対して0.01~50モル 好ましくは0.1~5モル程度である。
 電解酸化を(1)有機溶媒、(2)水及び(3)塩化水素の存在下に、並びに(1)有機溶媒、(2)水、(4)塩化物及び(5)鉱酸の存在下に行う場合にいずれにおいても、イソプロパノール、イソブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール等の炭素数3~8の直鎖状又は分岐鎖状のアルコールを添加して行うと、目的とする一般式(1)の4-クロロアゼチジノン化合物をより高い収率で製造することができる。上記アルコールの中でも、tert-ブタノールを用いることが好ましい。
 このような場合、アルコール化合物の使用量は、反応系に存在する水に対して、通常1~10重量%程度、好ましくは1~5重量%がよい。
 電解酸化は、一般式(2)で表される4-ジチオアゼチジノン化合物の有機溶媒溶液に塩化水素及び/又は塩化物の水溶液並びに鉱酸を加えた後、通常の方法に従って行われる。電解装置に特に制限はないが、2枚の電極を用いた非分離型の電解槽を用いることができる。
 一般式(2)で表される4-ジチオアゼチジノン化合物の電解酸化には、公知の電解酸化の条件を広く適用することができる。
 電解酸化を行うに当たり、陽極材料及び陰極材料は、通常行われている電解酸化に使用されている陽極材料及び陰極材料と同じものでよい。
 例えば、陽極材料としては、白金、スズ、アルミニウム、ステンレス、ニッケル、酸化鉛、炭素、酸化鉄、チタン等が挙げられる。好ましい陽極材料は、白金、ステンレス及び炭素である。
 陰極材料としては、白金、スズ、アルミニウム、ステンレス、亜鉛、鉛、銅、炭素等が挙げられる。好ましい陰極材料は、白金、スズ、ステンレス及び炭素である。
 電解反応は、冷却下、室温下及び加温下のいずれでも行われるが、通常-20~50℃程度、好ましくは0~10℃程度である。
 電解反応には、公知の定電位電解法及び定電流電解法のいずれの方法を適用してもよい。操作上の簡便さの観点から、定電流電解法を採用するのが好ましい。
 電解反応の際の電流密度は、通常0.1~1000mA/cm程度、好ましくは1~100mA/cm程度である。
 通電量は、通常2~100F/モル程度、好ましくは2~50F/モル程度とすればよく、また、原料が消失するまで通電を行ってもよい。通電時間は、電流密度、通電量、原料の使用量等により適宜決定される。
 塩素化剤による塩素化(以下、塩素化B)
 また、一般式(1)で表される4-クロロアゼチジノン化合物は、一般式(2)で表される4-ジチオアゼチジノン化合物に塩素化剤を作用させることによっても製造される。該反応は、通常有機溶媒中で行われる。
 有機溶媒としては、上記塩素化Aで使用される有機溶媒の他、イソプロパノール、イソブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール等の炭素数3~8の直鎖状又は分枝鎖状のアルコール等を使用することができ、それらの中でも、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン系溶媒及びジオキサン等のエーテル系溶媒が好ましい。これらの有機溶媒は、1種単独で又は2種以上混合して使用される。
 塩素化剤としては、例えば、塩素ガス、次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等の次亜塩素酸塩、tert-ブチルハイポクロライド、二塩化酸素、N-クロロコハク酸イミド、1,3-ジクロロ-5,5-ジメチルヒダントイン、トリクロロイソシアヌル酸等が使用できる。
 これら塩素化剤の中でも、塩素ガスが好ましい。塩素ガスを用いる場合は、一般式(2)で表される4-ジチオアゼチジノン化合物の有機溶媒溶液に塩素ガスを吹き込むことによって反応を行うことができる。
 塩素化剤は、一般式(2)の4-ジチオアゼチジノン化合物1モルに対して、通常1~300モル程度、好ましくは1~50モル程度使用される。
 この反応の反応温度は、-80~25℃程度、好ましくは-40~0℃である。該反応は、出発物質である一般式(2)で表される化合物が消失するまで行えばよいが、一般的には0.01~10時間、好ましくは0.1~5時間行えばよい。
 上記塩素化A又は塩素化Bにより得られる本発明の目的化合物(1)は、通常の分離手段により反応系内より分離され、更に精製することができる。この分離及び精製手段としては、例えば蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、溶媒抽出法等を採用できる。
 上記反応式-1において、出発原料として用いられる一般式(2)で表される4-ジチオアゼチジノン化合物は、文献未記載の新規化合物である。
 一般式(2)で表される4-ジチオアゼチジノン化合物は、例えば、下記反応式-2に示す方法に従い製造することができる。
反応式-2
Figure JPOXMLDOC01-appb-C000036
[式中、R、R及びRは、前記に同じ。]
 上記反応式-2によれば、一般式(3)で表される4-ジチオアゼチジノン化合物の1位N上の置換αケトエステルを加溶媒分解することによって、一般式(2)で表される4-ジチオアゼチジノン化合物を製造することができる。
 例えば、一般式(3)で表される4-ジチオアゼチジノン化合物をアルコール又はアルコール水溶液中で撹拌することによって、一般式(2)で表される4-ジチオアゼチジノン化合物を容易に製造できる。
 上記反応で使用されるアルコールとしては、例えば、メタノール、エタノール、n―プロパノール、イソプロパノール、n―ブタノール、イソブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール等の炭素数1~8の直鎖状又は分枝鎖状のアルコールを挙げることができる。これらの中でも、メタノールが好ましい。これらのアルコールは、1種単独で又は2種以上混合して使用される。
 本反応では、アルコールを単独使用としてもよいが、アルコール水溶液として使用するのが好ましく、その場合、反応系に存在する水1重量部に対して、アルコールを通常3~20重量部程度、好ましくは5~15重量部を混合して使用するのがよい。
 本反応の温度は、通常0~80℃程度で行うことができ、好ましくは5~30℃である。反応時間は、出発物質である一般式(3)で表される化合物が消失するまで行えばよいが、一般的には0.5~24時間、好ましくは1~20時間である。
 上記反応式-2において、出発原料として用いられる一般式(3)で表される4-ジチオアゼチジノン化合物は、文献未記載の新規化合物である。
 一般式(3)で表される4-ジチオアゼチジノン化合物は、例えば、下記反応式-3に示す方法に従い製造することができる。
反応式-3
Figure JPOXMLDOC01-appb-C000037
[式中、R、R及びRは、前記に同じ。]
 上記反応式-3によれば、一般式(4)で表される4-ジチオアゼチジノン化合物の1位N上の置換基のオレフィン二重結合部分をオゾン分解することによって、一般式(3)で表される4-ジチオアゼチジノン化合物を製造することができる。
 例えば、一般式(4)で表される4-ジチオアゼチジノン化合物の有機溶媒溶液にオゾンを吹き込むことによって、一般式(3)で表される4-ジチオアゼチジノン化合物を製造できる。
 この反応で使用される有機溶媒としては、塩素化Bで使用される有機溶媒を広く使用することができ、それら中でも、酢酸エチル、ジクロロメタン、アセトンが好ましい。これらの有機溶媒は、1種単独で又は2種以上混合して使用される。
 有機溶媒の使用量は、一般式(4)の4-ジチオアゼチジノン化合物1kg当たり、通常5~200リットル程度、好ましくは10~100リットル程度である。
 本反応の温度は、通常-90~30℃程度、好ましくは-85~0℃である。反応時間は、出発物質である一般式(4)で表される化合物が消失するまで行えばよいが、一般的には10分~2時間、好ましくは15分~1時間である。
 上記反応式-3において、出発原料として用いられる一般式(4)で表される4-ジチオアゼチジノン化合物は、文献未記載の新規化合物である。
 一般式(4)で表される4-ジチオアゼチジノン化合物は、例えば、下記反応式-4に示す方法に従い製造できる。
反応式-4
Figure JPOXMLDOC01-appb-C000038
[式中、R、R及びRは、前記に同じ。]
 上記反応式-4によれば、一般式(5)で表される4-ジチオアゼチジノン化合物の1位N上の置換基の2重結合を異性化することによって、一般式(4)で表される4-ジチオアゼチジノン化合物を製造することができる。
 例えば、一般式(5)で表される4-ジチオアゼチジノン化合物の溶液に塩基を加え、撹拌することによって、一般式(4)で表される4-ジチオアゼチジノン化合物を製造できる。
 この反応の反応溶媒としては、有機溶媒、有機溶媒と水の混合溶媒を使用することができる。
 有機溶媒としては、塩素化Bで使用される有機溶媒を広く使用することができる。それら中でも、ジクロロメタン、トルエン及び酢酸エチルが好ましい。これらの有機溶媒は、1種単独で又は2種以上混合して使用される。
 有機溶媒の使用量は、一般式(5)の4-ジチオアゼチジノン化合物1kg当たり、通常2~200リットル程度、好ましくは3~100リットル程度である。
 塩基としては、公知の有機塩基及び無機塩基を広く使用できる。
 有機塩基としては、例えば、トリメチルアミン、ジメチルエチルアミン、トリエチルアミン、ジイソプロピルエチルアミン等のN,N,N-トリ低級アルキルアミン;N-メチルピペリジン、N-エチルピペリジン等のN-低級アルキルアザシクロアルカン;N-メチルモルホリン、N-エチルモルホリン等のN-低級アルキルアザオキシシクロアルカン;N-ベンジル-N,N-ジメチルアミン、N-ベンジル-N,N-ジエチルアミン等のN-フェニル低級アルキル-N,N-ジ低級アルキルアミン;N,N-ジメチルアニリン等のN,N-ジアルキル芳香族アミン;ピリジン等の含窒素芳香族アミン;ジアザビシクロウンデセン、ジアザビシクロノネン等の二環式アミンやこれらの混合物等が挙げられる。無機塩基としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属塩;炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム等の炭酸アルカリ土類金属塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素アルカリ金属塩;水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属塩;水酸化マグネシウム、水酸化カルシウム等の水酸化アルカリ土類金属塩;水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化アルカリ金属塩;水素化カルシウム等の水素化アルカリ土類金属塩;酸化マグネシウム、酸化カルシウム等のアルカリ土類金属酸化物等やこれらの混合物が挙げられる。
 これらの中でもトリエチルアミンが好ましい。
 上記有機塩基及び無機塩基は、混合して使用してもよい。
 塩基の使用量は、処理すべき一般式(5)の4-ジチオアゼチジノン化合物に対して、通常0.1~5当量、好ましくは0.5~2当量である。
 本反応の温度は、通常0~100℃程度、好ましくは5~40℃である。反応時間は、出発物質である一般式(5)で表される化合物が消失するまで行えばよいが、一般的には1~24時間、好ましくは2~20時間である。
 反応式-4において、出発原料として用いられる一般式(5)で表される4-ジチオアゼチジノン化合物は、文献未記載の新規化合物である。
 一般式(5)で表される4-ジチオアゼチジノン化合物は、例えば、下記反応式-5に示す方法に従い製造することができる。
反応式-5
Figure JPOXMLDOC01-appb-C000039
[式中、R、R及びRは、前記に同じ。]
 上記反応式-5によれば、一般式(6)で表される1-オキシドペニシラン酸化合物の開環反応を行うことによって、一般式(5)で表される4-ジチオアゼチジノン化合物を製造することができる。
 例えば、一般式(6)で表される1-オキシドペニシラン酸化合物と一般式(14)で表されるチオール化合物とを加温下反応させることにより、一般式(5)で表される4-ジチオアゼチジノン化合物を製造できる。
 この反応で用いられる溶媒としては、塩素化Bで使用される有機溶媒を広く使用することができる。それら中でも、芳香族炭化水素、カルボン酸エステル、エーテル系溶媒が好ましく、トルエン、ベンゼン、クロロベンゼン、ジオキサン、シクロペンチルメチルエーテルが特に好ましい。これらの有機溶媒は、1種単独で又は2種以上混合して使用される。
 有機溶媒の使用量は、一般式(6)で表される1-オキシドペニシラン酸化合物1kg当たり、通常2~200リットル程度、好ましくは3~100リットル程度である。
 本反応の温度は、通常80~150℃程度、好ましくは90~130℃である。反応時間は、出発物質である一般式(6)で表される化合物が消失するまで行えばよい。
 上記反応式-5において出発原料として用いられる一般式(6)で表される1-オキシドペニシラン酸化合物は、入手が容易な公知の化合物であり、例えば特開昭59-112989号公報に開示されている製造方法により製造される。
 また、一般式(6)で表される1-オキシドペニシラン酸化合物の立体異性体の1つである一般式(6-A)で表される化合物は、下記スキーム2に従って製造することができる。
Figure JPOXMLDOC01-appb-C000040
               スキーム 2
[式中、R、R、X、Xは、前記に同じ。]
 一般式(6-A)で表される1-オキシドペニシラン酸化合物は、例えば、下記の反応式-6に示す方法に従い製造することができる。
反応式-6
Figure JPOXMLDOC01-appb-C000041
 
 
[式中、R及びRは、前記に同じ。]
 上記反応式-6によれば、一般式(6-A)で表される1-オキシドペニシラン酸化合物は、一般式(7)で表される化合物の水酸基をR基で保護することにより製造される。
 水酸基を保護する方法としては、例えば、Theodora W. Greene 著の "Protective Groups in Organic Synthesis, 1981 by John Wiley & Sons. Inc." の第2章(第10~118頁)に記載されている各種条件を適用することができる。
 また、本発明の一般式(7)で表される化合物は、例えば、下記の反応式-7に示す方法に従い製造することができる。
反応式-7
Figure JPOXMLDOC01-appb-C000042
[式中、RおよびXは、前記に同じ。]
 上記反応式-7によれば、一般式(7)で表される化合物は、一般式(8)で表される化合物を還元することにより製造される。還元反応としては、例えば、Ishiwata A. et al., Organic Letters, 2000年, Vol.2, No.18, p.2889-2892に記載されている各種条件を適用することができる。
 還元反応は、一般式(8)で表される化合物を、通常の有機反応に用いられる還元剤と反応させることにより行うことができる。
 上記反応式-7で使用される還元剤としては、例えば白金、パラジウム、ニッケル、ロジウム等の接触水素触媒、亜リン酸エステル、トリブチルホスフィン、トリフェニルホスフィン等の三価のリン化合物、ジメチルスルフィド等が挙げられる。これらの中でも三価のリン化合物が好ましく、トリブチルホスフィンが更に好ましい。
 上記反応式-7に示される反応は、一般に還元反応で使用される通常の溶媒中で行われる。
 上記反応式-7において出発原料として用いられる一般式(8)で表される1-オキシドペニシラン酸化合物は、文献未記載の新規化合物である。
 また、本発明の一般式(8)で表される化合物は、例えば、下記の反応式-8に示す方法に従い製造することができる。
反応式-8
Figure JPOXMLDOC01-appb-C000043
[式中、Rは、前記に同じ。X及びXは、同一又は異なって、ハロゲン原子を示す。]
 ハロゲン原子としては、塩素原子、臭素原子及びヨウ素原子が挙げられる。これらの中でもX及びX何れも臭素原子が好ましい。
 上記反応式-8によれば、一般式(8)で表される化合物は、一般式(9)で表される化合物にグリニャール試薬を反応させ、更に生成する化合物にアセトアルデヒドを反応させることにより、製造される。一般式(9)で表される1-オキシドペニシラン酸化合物を使用することによって、極めて立体選択性良く目的物質を得ることが出来る。
 上記反応式-8においては、公知のグリニャール試薬をいずれも使用できる。その具体例としては、メチルマグネシウムクロリド、メチルマグネシウムブロミド、メチルマグネシウムヨージド、エチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムヨージド、n-プロピルマグネシウムクロリド、n-プロピルマグネシウムブロミド、n-プロピルマグネシウムヨージド、イソプロピルマグネシウムクロリド、イソプロピルマグネシウムブロミド、イソプロピルマグネシウムヨージド、n-ブチルマグネシウムクロリド、n-ブチルマグネシウムブロミド、n-ブチルマグネシウムヨージド、イソブチルマグネシウムクロリド、イソブチルマグネシウムブロミド、イソブチルマグネシウムヨージド、tert-ブチルマグネシウムクロリド、tert-ブチルマグネシウムブロミド、tert-ブチルマグネシウムヨージド等のC1-4アルキルマグネシウムハライドを例示できる。 
 これらグリニャール試薬の中でも、C1-2アルキルマグネシウムハライドが好ましく、エチルマグネシウムクロリド及びエチルマグネシウムブロミドが特に好ましい。
グリニャール試薬は、一般式(9)で表される化合物1モルに対して、通常1~10モル程度、好ましくは1~4モル程度使用される。
 上記反応式-8に示される反応は、一般にグリニャール反応で使用される通常の溶媒中で行われる。用いられる溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル等の鎖状もしくは環状のエーテル;ベンゼン、トルエン、キシレン、クロルベンゼン、アニソール等の芳香族炭化水素等が挙げられる。また、これら溶媒を主溶媒とし、例えば、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂環式炭化水素類等を併用することもできる。全溶媒中に占める主溶媒の割合は、通常80容量%以上、好ましくは90容量%以上である。
 これら溶媒は、一般式(9)で表される化合物1kg当たり、通常0.5~200リットル程度、好ましくは1~50リットル程度使用される。
 また、上記反応は、冷却下及び室温下のいずれでも進行するが、冷却下で反応を行うのが好ましい。該反応は、通常-100~30℃、好ましくは-78~0℃で行われ、一般に0.1~3時間程度、好ましくは0.5~1時間程度で完結する。
 本発明では、次に一般式(9)で表される化合物とグリニャール試薬との反応により生成する化合物(以下この化合物を「化合物B」ということもある)にアミン化合物を配位させるのが好ましい。本発明では、化合物Bを反応系内から単離した後、次の反応に供してもよいが、作業効率等の観点から、反応混合物から単離することなく次の反応に供するのが望ましい。 
 アミン化合物としては、例えば、一般式(11)
Figure JPOXMLDOC01-appb-C000044
[式中、R、R及びRは、同一又は異なって、C1-4アルキル基、C3-8シクロアルキル基又はフェニル基を示す。R及びRは、互いに結合してC2-6アルキレン基を示してもよい。]
で表されるモノアミン化合物、一般式(12)
Figure JPOXMLDOC01-appb-C000045
[式中、R、R、R及びR10は、同一又は異なって、水素原子又はC1-4アルキル基を示す。R及びR並びにR及びR10は、互いに結合してC1-4アルキレン基を示してもよい。lは2~4の整数を示す。]
で表されるジアミン化合物、一般式(13)
Figure JPOXMLDOC01-appb-C000046
[式中、R11、R12、R13、R14及びR15は、各々C1-4アルキル基を示す。m及びnは、2~4の整数を示す。]
で表されるトリアミン化合物等を挙げることができる。これらのアミン化合物は、1種単独で又は2種以上混合して使用される。これらのアミン化合物の中でも、一般式(13)で表されるトリアミン化合物が好ましい。 
 一般式(11)で表されるモノアミン化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジイソプロピルアミン、ジシクロへキシルメチルアミン、N-メチルピペリジン、トリフェニルアミン等を挙げることができる。モノアミン化合物の中では、トリエチルアミン及びエチルジイソプロピルアミンが好ましい。
 一般式(12)で表されるジアミン化合物としては、例えば、エチレンジアミン、プロピレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,4-ジアザビシクロ[2.2.2]オクタン等を挙げることができる。ジアミン化合物の中では、N,N,N’,N’-テトラメチルエチレンジアミン及び1,4-ジアザビシクロ[2.2.2]オクタンが好ましい。
 一般式(13)で表されるトリアミン化合物としては、例えば、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタエチルジエチレントリアミン等を挙げることができる。トリアミン化合物の中では、N,N,N’,N”,N”-ペンタメチルジエチレントリアミンが好ましい。 
 これらアミン化合物は、入手が容易な公知の化合物であるか、又は公知の方法に従って容易に製造できる化合物である。 
 上記アミン化合物は、出発原料である一般式(9)で表される1-オキシドペニシラン酸化合物1モルに対して、通常1~10モル程度、好ましくは1~4モル程度使用される。
 また、アミン化合物は、グリニャール試薬1モルに対して、通常1~10モル程度、好ましくは1~3モル程度使用されるが、アミン化合物は、グリニャール試薬とほぼ等モルの割合で使用するのが望ましい。
 化合物Bへのアミン化合物の配位は、冷却下及び室温下のいずれでも進行するが、冷却下で反応を行うのが好ましい。具体的には、該配位は、通常-80~20℃、好ましくは-78~-40℃で行われ、一般に0.1~3時間程度、好ましくは0.5~2時間程度で該反応は完結する。
 本発明では、更に化合物Bにアミン化合物が配位した化合物(以下この化合物を「化合物C」ということもある)にアセトアルデヒドを反応させる。本発明では、化合物Cを反応系内から単離した後、次の反応に供してもよいが、作業効率等の観点から、反応混合物から単離することなく次の反応に供するのが望ましい。 
 本発明において、アセトアルデヒドは、一般式(9)で表される化合物1モルに対して、通常1.5~10モル程度、好ましくは3~8モル程度使用される。
 化合物Cとアセトアルデヒドとの反応は、冷却下及び室温下のいずれでも進行するが、冷却下で反応を行うのが好ましい。具体的には、該反応は、通常-80~20℃、好ましくは-40~0℃で行われ、一般に1~10時間程度、好ましくは1~6時間程度で該反応は完結する。 
 本発明の一般式(9)で表される化合物は、入手が容易な公知の化合物であり、例えばTetrahedron, Vol.52, No.7 pp2343-2348,1996、Tetrahedron Letters, Vol.34, No.49, 997877-7880, 1993,  Heterocycles, Vol. 32, No. 8, 1991 に開示されている製造方法に従い製造することができる。
 上記反応式-2、反応式-3、反応式-4、反応式-5、反応式-6、反応式-7、及び反応式-8に示す各反応は、それぞれ好適に進行し、各々の目的化合物を好収率で得ることができる。
 これらの反応式で製造される各々の目的化合物は、通常の分離手段により反応系内より分離され、更に精製することができる。この分離及び精製手段としては、例えば蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、溶媒抽出法等を採用できる。
 本発明の方法によれば、一般式(1)で表されるアゼチジノン化合物を、簡便に且つ高収率で、従って工業的に有利に製造し得る。
 一般式(2)で表される4-ジチオアゼチジノン化合物は、汎用的に用いられる1-オキシドペニシラン酸化合物から収率よく製造することができ、結果的に優れた総収率で、一般式(1)で表されるアゼチジノン化合物を製造することができる。
 また、一般式(9)で表される化合物から化合物(8)、及び化合物(7)を経由して化合物(6-A)を製造する方法によれば、目的とする光学異性体を高収率で得ることができる。特に、化合物(9)を原料化合物として用いることによって、立体選択的に化合物(8)に誘導することができる。
 以下に実施例を挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例1
 一般式(8)で表される化合物(R:ジフェニルメチル基、X:Br)(以下「化合物8-1」とする)の製造
 アルゴン雰囲気下、一般式(9)の化合物(R:ジフェニルメチル基、X:Br、X2:Br)163 mg(0.30 mmol)のTHF(2.5mL)溶液に、EtMgBr(Etはエチル基を示す。)のTHF溶液0.5mL(0.98M, ,0.48mmol)を加え、-75℃で30分間攪拌した。反応終了後、この反応溶液にN,N,N',N'',N''-ペンタメチルジエチレントリアミン(PMDTA)0.1mL,(0.48mmol)を加えた後、徐々に-50℃まで昇温し、同温度で1時間攪拌した。アセトアルデヒド0.08mL(1.5mmol)とモレキュラーシーブス3A(粉末)のTHF(2.0mL)懸濁液をこの反応溶液に加え、反応溶液の温度を徐々に0℃まで昇温し、同温度で5時間攪拌した。反応終了後、反応混合物を飽和NH4Cl水溶液3mLに注いだ。得られた有機層をひとまとめにし、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮し、残渣をカラムクロマトグラフィー(SiO2, toluene/AcOEt=1/1)で精製し、目的の立体配置を有するカップリング体(化合物8-1)の無色固体143mg(0.28mmol, 収率94%)を得た。式8-1-Aで表される立体異性体は得られなかった。
H-NMR(300 MHz, CDCl3) δ ppm: 1.13 (s, 3H, 2-CH3), 1.50 (d, J = 6.0 Hz, 3H, 1′-CH3), 1.55 (s, 3H, 2-CH3), 3.05 (br, 1H, 1′-OH), 4.18-4.32 (m, 1H, 1′-H), 4.54 (s, 1H, 3-H), 4.90 (s, 1H, 5-H), 6.94 (s, 1H, 3-COCH), 7.29-7.40 (m, 10H, 3-COC-Ph2)。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 実施例2
 一般式(7)で表される化合物(R:ジフェニルメチル基)(以下「化合物7-1」とする)の製造
 アルゴン雰囲気下、実施例1で得られた化合物8-1 161mg, (0.32mmol)のMeOH(Meはメチル基を示す。)4.5mL溶液に、Bu3P(Buはブチル基を示す。)0.1mL(0.40mmol)を加え、0℃で30分間攪拌した。反応混合物を減圧下濃縮し、残渣をカラムクロマトグラフィー(SiO2, toluene/AcOEt=1/1)で精製したところ、目的の立体配置を有する化合物7-1の無色固体122mg(0.30mmol, 収率93%)を得た。
H-NMR(500 MHz, CDCl3) δ ppm: 1.13 (s, 3H, 2-CH3), 1.34 (d, J = 6.5 Hz, 3H, 1′-CH3), 1.52 (s, 3H, 2-CH3), 2.76 (br, 1H, 1′-OH), 3.58 (dd, J = 2.0, 6.5 Hz, 1H, 6-H), 4.19-4.27 (m, 1H, 1′-H), 4.50 (s, 1H, 3-H), 4.76 (d, J = 2.0 Hz, 1H, 5-H), 6.94 (s, 1H, 3-COCH), 7.27-7.39 (m, 10H, 3-COC-Ph2)。
 実施例3
 一般式(6-A)で表される化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基)(以下「化合物6-A-1」とする)の製造
 アルゴン雰囲気下、イミダゾール33mg, (0.48mmol)と実施例2で得られた化合物7-1 66mg, (0.16mmol)のCH2Cl2(0.8mL)溶液に、tert-ブチルジメチルクロロシラン(TBDMSCl)69mg, 0.46mmolのCH2Cl2(1.2mL)溶液を滴下して、0℃で30分間、その後室温で24時間攪拌した。反応終了後、反応混合物を蒸留水に注ぎ、有機層と水層とを分離した。水層をCH2Cl2(5mL×3)で抽出し、有機層をひとまとめにして、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮し、残渣をカラムクトマトグラフィー(SiO2, toluene/AcOEt=2/1)で精製し、無色液体の化合物6-A-1を87mg,( 0.16mmol, 収率ほぼ100%)得た。
H-NMR(200 MHz, CDCl3) δ ppm: 0.03 (s, 3H, Si-CH3), 0.06 (s, 3H, Si-CH3), 0.82 (s, 9H, Si-tBu), 1.16 (s, 3H, 2-CH3), 1.29 (d, J = 6.5 Hz, 3H, 1′-CH3), 1.50 (s, 3H, 2-CH3), 3.54 (dd, J = 2.0, 4.0 Hz, 1H, 6-H), 4.27-4.34 (m, 1H, 1′-H), 4.49 (s, 1H, 3-H), 4.72 (d, J = 2.0 Hz, 1H, 5-H), 6.95 (s, 1H, 3-COCH), 7.27-7.40 (m, 10H, 3-COC-Ph2)。
  実施例4
一般式(5)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:2-ピリミジル基)(以下「化合物5-1」とする)の製造
一般式(6)の化合物(R:ジメチル(tert-ブチル)シリル基)69.3mg(0.13mmol)と2-メルカプトピリミジン15.8mg(0.14mmol)の1,4-ジオキサン溶液(5ml)を、8時間加熱還流した。反応終了後、反応溶液を室温まで冷却し、飽和炭酸水素ナトリウム水溶液中に注いだ。有機層と水層とを分離し、水層を酢酸エチル(10ml×3回)で抽出した。酢酸エチル層と有機層とを合わせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮し、残渣をカラムクロマトグラフィー(SiO、トルエン/酢酸エチル=10/1)で精製し、無色液体の化合物5-1を78.6mg(収率96%)得た。
H-NMR(200MHz、CDCl)δppm:-0.04(s、3H)、0.03(s、3H)、0.78(s、9H)、1.23(d、J=6.2Hz,3H)、1.87(s、3H)、3.35(dd、J=2.4、2.4Hz、1H)、4.18-4.25(m、1H)、4.92(s、1H)、4.97-5.05(m、2H)、5.32(d、J=2.2Hz,1H)、6.86(s、1H)、6.99(t、J=4.8、1H)、7.26-7.36(m、10H)、8.47(d、J=5.0、2H)
13C-NMR(150MHz,CDCl)δppm:-4.85,-4.71,17.78,20.97,22.16,25.62,59.84,63.03,64.35,64.80,78.11,117.4l,118.19,127.11,127.16,127.94,127.99,128.40,128.43,138.26,139.38,139.50,157.66,166.40,167.19,170.67,212.69
IR(ニート):3064,3033,2966,2928,2889,2856,2360,1769,1744,1652,1556,1455,1379,1253,1169,1064,991,837,774,742,700cm-1
Rf=0.50(トルエン/酢酸エチル:10/1)。
 実施例5
一般式(5)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:2-ピリミジル基)(以下「化合物5-1」とする)の製造
実施例3で得られた化合物6-A-1 69mg, (0.13mmol)をアルゴン雰囲気下2-メルカプトピリミジン16mg, (0.14mmol)のトルエン溶液(2.0mL)溶液とを8時間加熱還流した。反応終了後、反応溶液を室温まで冷却し、減圧下濃縮した。残渣をカラムクトマトグラフィー(SiO2, toluene/AcOEt=10/1)で精製し、化合物5-1 78mg,(0.12mmol, 収率96%)を得た。
得られた化合物5-1のNMR及びIRスペクトルは、実施例4で得られた化合物5-1のそれらと一致した。
 実施例6
一般式(5)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:5-メチル-1,3,4-チアジアゾリル基)(以下「化合物5-2」とする)の製造
 2-メルカプトピリミジンの代わりに2-メルカプト-5-メチル-1,3,4-チアジアゾールを用いる以外は、実施例4と同様の反応を行い、無色液体の化合物5-2を得た(収率91%)。
H-NMR(200MHz、CDCl)δppm:-0.05(s、3H)、0.03(s、3H)、0.77(s、9H)、1.19(d、J=4.2Hz,3H)、1.86(s、3H)、2.70(s、3H),3.42(dd,J=1.6、3.8Hz、1H)、4.20-4.25(m、1H)、4.84(s、1H)、4.93-5.05(m、2H)、5.47(d、J=2.2Hz,1H)、6.91(s、1H)、7.28-7.35(m、10H)
13C-NMR(150MHz,CDCl)δppm:-4.97,-4.64,15.79,17.73,21.20,22.32,25.56,58.93,63.59,64.46,65.08,78.21,117.44,127.07,127.30,128.02,128.12,128.42,128.45,137.74,139.15,139.16,166.ll,167.13,167.31,169.46,212.67
IR(ニート):3091,3064,3031,2928,2893,2855,1769,1743,1455,1374,1252,1169,1063,956,837,778cm-1
Rf=0.23(トルエン/酢酸エチル:10/1)。
 実施例7
一般式(4)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:2-ピリミジル基)(以下「化合物4-1」とする)の製造
 実施例4で得た化合物5-1 244.8mg(0.38mmol)のジクロロメタン溶液8mlに、アルゴン雰囲気下、トリエチルアミン0.05ml(0.38mmol)を加え、室温下4時間攪拌した。反応混合物を飽和塩化アンモニウム水溶液中に注いだ。有機層と水層とを分離し、水層をジクロロメタン(10ml×3回)で抽出した。ジクロロメタン層と有機層とを合わせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下濃縮し、残渣をカラムクロマトグラフィー(SiO、トルエン/酢酸エチル=10/1)で精製し、無色液体の化合物4-1を238.0mg(収率98%)得た。
H-NMR(200MHz、CDCl)δppm:-0.04(s、3H)、0.03(s、3H)、0.82(s、9H)、1.26(d、J=2.4Hz,3H)、1.95(s、3H)、2.16(s、3H)、3.24(dd、J=1.0,2.0Hz,1H)、4.19-4.22(m、1H)、5.39(d、J=1.0Hz、1H)、6.89(s、1H)、7.02(t、J=2.4、1H)、7.26-7.36(m、10H)8.48(d、J=2.0、2H)
13C-NMR(150MHz,CDCl)δppm:-4.85,-4.61,17.94,22.03,22.31,24.40,25.73,64.29,65.07,65.91,78.13,118.12,119.54,127.06,127.45,127.80,127.93,128.40,128.45,139.71,139.77,152.29,157.64,162.51,164.66,170.62,212.67
IR(ニート):3063,3032,2971,2928,2855,2359,1769,1715,1625,1556,1455,1378,1252,1217,1058,973,834,774,743,699cm-1
Rf=0.37(トルエン/酢酸エチル:10/1)。
 実施例8
一般式(4)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:5-メチル-1,3,4-チアジアゾリル基)(以下「化合物4-2」とする)の製造
 化合物5-1の代わりに化合物5-2を用いる以外は実施例7と同様の反応を行い、黄色液体の化合物4-2を得た(収率95%)。
H-NMR(200MHz、CDCl)δppm:-0.04(s、3H)、0.03(s、3H)、0.82(s、9H)、1.22(d、J=6.2Hz,3H)、1.95(s、3H)、2.16(s、3H),2.67(s,3H),3.29(dd、J=2.4、5.0Hz、1H)、4.18-4.25(m、1H)、5.41(d、J=2.6Hz,1H)、6.92(s、1H)、7.26-7.38(m、10H)
13C-NMR(150MHz,CDCl)δppm:-4.84,-4.61,15.70,17.89,21.20,22.25,24.36,25.62,25.68,64.24,65.ll,66.40,78.22,119.26,127.17,127.36,127.95,128.00,128.44,128,54,139.53,139.64,153.75,162.33,164.08,167.18,169.86,212.68
IR(ニート):3066,3031,2961,2928,2856,2366,1770,1720,1455,1384,1252,1059,835,778,700cm-1
Rf=0.20(トルエン/酢酸エチル:10/1)。
 実施例9
一般式(3)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:2-ピリミジル基)(以下「化合物3-1」とする)の製造
 実施例7で得られた化合物4-1 144.8mg(0.23mmol)の酢酸エチル溶液5mlに-78℃にてオゾンをふきこみながら、0.5時間反応させた。反応後、窒素ガスをふきこみ、過剰量のオゾンを除去したのち、反応混合物を飽和亜硫酸ナトリウム水溶液中に注いだ。有機層と水層とを分離し、水層を酢酸エチル(10ml×3回)で抽出した。酢酸エチル層と有機層とを合わせ、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥し、減圧下濃縮し、無色液体の化合物3-1 141.5mg(収率ほぼ100%)を得た。
H-NMR(200MHz、CDCl)δppm:-0.02(s、3H)、0.05(s、3H)、0.79(s、9H)、1.24(d、J=2.6Hz,3H)、3.73(dd、J=1.2,1.2Hz,1H)、4.34-4.38(m、1H)、5.71(br、1H)、6.89(br、1H)、7.05(br、1H)、7.26-7.40(m、10H)、8.36(d、J=2.0,2H)
13C-NMR(150MHz,CDCl)δppm:-5.35,-4.35,17.70,21.93,25.52,64.46,79.95,118.61,127.17,127.56,128.40,128.46,128.53,128.63,138.26,138.33,157.83,212.71
IR(ニート):3072,3039,2961,2929,2895,2856,2359,1815,1748,1705,1556,1379,1238,1158,1116,1055,968,836,779,743,699cm-1
Rf=0.80(トルエン/酢酸エチル:10/1)。
 実施例10
一般式(3)の化合物(R:ジメチル(tert-ブチル)シリル基、R:ジフェニルメチル基、R:5-メチル-1,3,4-チアジアゾリル基)(以下「化合物3-2」とする)の製造
 化合物4-1の代わりに化合物4-2を用いる以外は実施例9と同様の反応を行い、無色液体の化合物3-2を得た(収率99%)。
H-NMR(200MHz、CDCl)δppm:-0.07(s、3H)、0.03(s、3H)、0.76(s、9H)、1.22(d、J=6.4Hz,3H)、2.62(s、3H),3.86(dd、J=2.8,2.8Hz,1H)、4.31-4.41(m、1H)、5.55(d、J=2.6Hz、1H),7.01(s,1H),7.29-7.38(m,10H)
13C-NMR(150MHz,CDCl)δppm:-5.40,-4.40,15.79,17.63,21.90,25.50,64.40,79.97,127.14,127.58,128.35,128.44,128.53,128.57,138.20,138.23,158.13,167.86,187.27,212.72
IR(ニート):3071,3033,2950,2929,2856,2360,2329,1823,1760,1715,1496,1455,1373,1229,1063,967,837,698cm-1
Rf=0.57(トルエン/酢酸エチル:10/1)。
 実施例11
一般式(2)の化合物(R:ジメチル(tert-ブチル)シリル基、R:2-ピリミジル基)(以下「化合物2-1」とする)の製造
 実施例9で得られた化合物3-1 41.5mg(0.068mmol)をメタノール及び水の混合比が10対1である混合溶液に溶かし、アルゴン雰囲気下、室温で15時間攪拌し、反応させた。反応後、減圧下濃縮し、残渣をカラムクロマトグラフィー(SiO、トルエン/酢酸エチル=10/1)で精製し、無色固体の化合物2-1 21.8mg(収率84%)を得た。
H-NMR(200MHz、CDCl)δppm:0.05(s、3H)、0.06(s、3H)、0.86(s、9H)、1.25(d、J=6.4 Hz,3H)、3.30-3.33(m、1H)、4.19-4.31(m、1H)、5.02(d、J=2.0Hz、1H)、6.34(br、1H)、7.14(t、J=5.0,1H)、8.60(d、J=5.0,2H)
Rf=0.57(トルエン/酢酸エチル:10/1)。
 実施例12
一般式(2)の化合物(R:ジメチル(tert-ブチル)シリル基、R:5-メチル-1,3,4-チアジアゾリル基)(以下「化合物2-2」とする)の製造
 化合物3-1の代わりに化合物3-2を用いる以外は実施例11と同様の反応を行い、無色固体の化合物2-2を得た。
H-NMR(200MHz、CDCl)δppm:0.06(s、3H)、0.07(s、3H)、0.87(s、9H)、1.23(d、J=6.4Hz,3H)、2.76(s、3H),3.25-3.29(m,1H)5.11(d,J=2.2Hz,1H),6.58(br、1H)
13C-NMR(150MHz,CDCl)δppm:-5.13,-4.31,15.93,17.93,22.36,25.70,59.30,64.40,66.44,165.80,167.75
IR(KBr):3205,3116,2961,2929,2894,2844,1757,1472,1394,1317,1251,1207,1146,1077,956,836cm-1
Rf=0.57(トルエン/酢酸エチル:10/1)。
実施例13
一般式(1)の化合物(R:ジメチル(tert-ブチル)シリル基)(以下「化合物1-1」とする)の製造
 非分離型セルに、実施例11で得られた化合物2-1 14.9mg(0.040mmol)のジクロロメタン溶液5.0mlを入れ、さらに6モル/lの塩酸水溶液5mlを加えた。この溶液に2枚の白金電極(1.5×1.0cm)を浸し、激しく撹拌しながら0℃にて電流を30mAに保ちながら電解反応を行い、通電量10F/モルに達した時点で白金電極を取り出し反応を終了させた。
 反応終了後、有機層と水層とを分離した。水層をジクロロメタン(10ml)で抽出した。ジクロロメタン層と有機層とを合わせて、飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残渣をペンタンで希釈し、不溶物を取り除き、溶液を5%塩酸に注ぎ、洗浄した。飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、減圧下濃縮して、無色固体の化合物1-1 9.4mg(収率;90%)を得た。
H-NMR(200MHz、CDCl)δppm:0.03(s、3H)、0.05(s、3H)、0.83(s、9H)、1.26(d、J=6.4 Hz,3H)、3.44(m、1H)、4.22(m、1H)、5.71(s、1H)、6.43(br、1H)
IR(KBr):3415,3343,2957,2929,2896,2857,1774,1686,1259,1104,836cm-1
 実施例14
一般式(1)の化合物(R:ジメチル(tert-ブチル)シリル基(化合物1-1)の製造
 非分離型セルに、実施例12で得られた化合物2-2 8.8mg(0.022mmol)のジクロロメタン溶液5.0mlを入れ、さらに濃硫酸0.016ml、t-ブチルアルコール0.1ml)及び6モル/lの塩酸水溶液5mlを加え、実施例12と同様の反応を行い、無色固体の化合物1-1を5.2mg(収率;90%)得た。
 得られた化合物1-1のNMR及びIRスペクトルは、実施例13で得られた化合物1-1のそれらと一致した。
 実施例15
一般式(1)の化合物(R:ジメチル(tert-ブチル)シリル基(化合物1-1)の製造
 実施例11で得られた化合物2-1 180mg(0.484mmol)のジクロロメタン溶液10mlを-20℃に冷却し、170mg(2.398mmol)の塩素ガスを気相吹き込みした。薄層クロマトグラフィーで原料の消失を確認した後、5%塩酸(10ml)を加え、有機層と水層とを分離した。水層をジクロロメタン(10ml)で抽出した。ジクロロメタン層と有機層とを合わせて、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残渣をペンタンで希釈し、不溶物を取り除き、溶液を5%塩酸に注ぎ、洗浄した。次いで、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した後、減圧下濃縮して、化合物1-1を110mg(収率;86%)得た。
 得られた化合物1-1のNMR及びIRスペクトルは、実施例13で得られた化合物1-1のそれらと一致した。
 

Claims (11)

  1.  一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは複素環基を示す。]
    で表される4-ジチオアゼチジノン化合物の4位を塩素化することにより、一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは前記に同じ。]
    で表される4-クロロアゼチジノン化合物を得る、式(1)で表される4-クロロアゼチジノン化合物の製造方法。
  2.  塩素化を電解酸化により行う、請求項1に記載の製造方法。
  3.  塩素化を塩素化剤を用いて行う、請求項1に記載の製造方法。
  4.  一般式(2)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは複素環基を示す。]
    で表される4-ジチオアゼチジノン化合物。
  5.  一般式(3)
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。Rは複素環基を示す。]
    で表される4-ジチオアゼチジノン化合物。
  6.  一般式(4)
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。Rは複素環基を示す。]
    で表される4-ジチオアゼチジノン化合物。
  7.  一般式(5)
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。Rは複素環基を示す。]
    で表される4-ジチオアゼチジノン化合物。
  8.  一般式(6)
    Figure JPOXMLDOC01-appb-C000007
     [式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。]
    で表される1-オキシドペニシラン酸化合物と一般式(14)
         HS-R    (14) 
    [式中、Rは複素環基を示す。]
    で表されるチオール化合物とを加温下で反応させることにより、一般式(5)
    Figure JPOXMLDOC01-appb-C000008
    [式中、R、R及びRは前記に同じ。]
    で表される4-ジチオアゼチジノン化合物を製造する方法。
  9.  一般式(6-A)
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは、水素原子又は水酸基の保護基を示す。Rは水素原子又はカルボン酸の保護基を示す。]
    で表される1-オキシドペニシラン酸化合物の製造方法であって、一般式(9)
    Figure JPOXMLDOC01-appb-C000010
     
    [式中、Rは前記に同じ。X及びXは、同一又は異なって、ハロゲン原子を示す。]
    で表される1-オキシドペニシラン酸化合物にグリニャール試薬を反応させ、更に生成する化合物にアセトアルデヒドを反応させることにより、一般式(8)
    Figure JPOXMLDOC01-appb-C000011
     [式中、Rは前記に同じ。Xは、ハロゲン原子を示す。]
    で表される1-オキシドペニシラン酸化合物を得る工程、
    前記工程で得られる一般式(8)で表される1-オキシドペニシラン酸化合物を還元することにより、一般式(7)
    Figure JPOXMLDOC01-appb-C000012
    [式中、Rは前記に同じ。]
    で表される1-オキシドペニシラン酸化合物を得る工程、及び
    前記工程で得られる一般式(7)で表される1-オキシドペニシラン酸化合物の水酸基を保護することにより、前記一般式(6-A)で表される1-オキシドペニシラン酸化合物を得る工程、
    を備えた一般式(6-A)で表される1-オキシドペニシラン酸化合物の製造方法。
  10. 一般式(8)
    Figure JPOXMLDOC01-appb-C000013
    [式中、Rは水素原子又はカルボン酸の保護基を示す。Xはハロゲン原子を示す。]
    で表される1-オキシドペニシラン酸化合物。
  11. 一般式(9)
    Figure JPOXMLDOC01-appb-C000014
    [式中、Rは水素原子又はカルボン酸の保護基を示す。X及びXは、同一又は異なって、ハロゲン原子を示す。]
    で表される1-オキシドペニシラン酸化合物にグリニャール試薬を反応させ、更に生成する化合物にアセトアルデヒドを反応させることにより、一般式(8)
    Figure JPOXMLDOC01-appb-C000015
    [式中、Rは前記に同じ。Xはハロゲン原子を示す。]
    で表される1-オキシドペニシラン酸化合物を製造する方法。
PCT/JP2010/052285 2009-02-19 2010-02-16 4-クロロアゼチジノン化合物の製造方法 WO2010095617A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500610A JP5791498B2 (ja) 2009-02-19 2010-02-16 4−クロロアゼチジノン化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009036616 2009-02-19
JP2009-036616 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010095617A1 true WO2010095617A1 (ja) 2010-08-26

Family

ID=42633897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052285 WO2010095617A1 (ja) 2009-02-19 2010-02-16 4-クロロアゼチジノン化合物の製造方法

Country Status (2)

Country Link
JP (1) JP5791498B2 (ja)
WO (1) WO2010095617A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524426A (ja) * 2012-07-25 2015-08-24 ジェ イル ファルマシューティカル シーオー., エルティーディー.Je Il Pharmaceutical Co., Ltd. 1−オキサセファロスポリン誘導体の新規な製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799589A (en) * 1980-12-13 1982-06-21 Sankyo Co Ltd Penicillin derivative and its preparation
JPS57183793A (en) * 1981-05-01 1982-11-12 Otsuka Chem Co Ltd Chlorinated thiazolinoazetidinone derivative and its preparation
JPS588084A (ja) * 1981-07-08 1983-01-18 Takeda Chem Ind Ltd (6r)−置換−(5r)−ペネム−3−カルボン酸誘導体およびその製造法
JPS63188684A (ja) * 1987-01-09 1988-08-04 ヘキスト、ユーケー、リミッテッド 7−オキソ−4−チア−1−アザビシクロ[3.2.0]ヘプト−2−エン誘導体の製造法
JPH0225914B2 (ja) * 1982-12-08 1990-06-06 Erba Farmitalia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE253070T1 (de) * 1995-02-17 2003-11-15 Daiichi Suntory Pharma Co Ltd Penem-derivate und sie enthaltende anti- mikrobische mittel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799589A (en) * 1980-12-13 1982-06-21 Sankyo Co Ltd Penicillin derivative and its preparation
JPS57183793A (en) * 1981-05-01 1982-11-12 Otsuka Chem Co Ltd Chlorinated thiazolinoazetidinone derivative and its preparation
JPS588084A (ja) * 1981-07-08 1983-01-18 Takeda Chem Ind Ltd (6r)−置換−(5r)−ペネム−3−カルボン酸誘導体およびその製造法
JPH0225914B2 (ja) * 1982-12-08 1990-06-06 Erba Farmitalia
JPS63188684A (ja) * 1987-01-09 1988-08-04 ヘキスト、ユーケー、リミッテッド 7−オキソ−4−チア−1−アザビシクロ[3.2.0]ヘプト−2−エン誘導体の製造法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARCO ALPEGIANI ET AL.: "DESULFURATIVE APPROACHES TO PENEM ANTIBIOTICS. II. 4-ACYLDITHIOAZETIDIN-2-ONES FROM PENICILLIN DERIVED SULFENIMIDES, THIOLSULFONATES AND DISULFIDES.", TETRAHEDRON LETTERS, vol. 24, no. 15, 1983, pages 1627 - 1630 *
MARCO ALPEGIANI ET AL.: "REARRANGEMENT OF unsym-AZETIDINONE DISULFIDES TO 2p-(THIO- SUBSTITUTED METHYL)PENAMS", TETRAHEDRON LETTERS, vol. 31, no. 24, 1990, pages 3509 - 3512 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524426A (ja) * 2012-07-25 2015-08-24 ジェ イル ファルマシューティカル シーオー., エルティーディー.Je Il Pharmaceutical Co., Ltd. 1−オキサセファロスポリン誘導体の新規な製造方法

Also Published As

Publication number Publication date
JP5791498B2 (ja) 2015-10-07
JPWO2010095617A1 (ja) 2012-08-23

Similar Documents

Publication Publication Date Title
CN106660959B (zh) 3-羟基吡啶甲酸的制备方法
JP6388065B2 (ja) ジフルオロエステル化合物の製造方法
US7563901B2 (en) Intermediates of 2-substituted carbapenem derivatives and process for production thereof
JP5791498B2 (ja) 4−クロロアゼチジノン化合物の製造方法
US10858353B2 (en) Intermediates useful for the synthesis of aminopyrimidine derivatives, process for preparing the same, and process for preparing aminopyrimidine derivatives using the same
JP4659110B2 (ja) セフェム化合物の製造方法
JP6321889B2 (ja) イブチニブ中間体化合物、その製造方法及び用途
JP4481829B2 (ja) 経口投与用カルバペネム化合物の新規合成中間体及びその製造方法
JP4526417B2 (ja) 4−置換アゼチジノン誘導体の製造法
JPWO2004043961A1 (ja) 経口投与用カルバペネム化合物の製造方法
JPWO2008020597A1 (ja) 1−メチルカルバペネム類製造中間体の製造方法
JP5300713B2 (ja) 6−ヒドロキシエチルペナム化合物の製造方法
JP2841132B2 (ja) アゼチジン−2−オン誘導体の製造方法
JP6868890B2 (ja) 環上に置換基を有する含窒素環状化合物の製造方法
CN108409678B (zh) 四唑啉酮化合物的制造方法
JP4491104B2 (ja) カルボニル化合物の製造方法
JP2013129616A (ja) 臭素化剤及びその利用
WO2015174377A1 (ja) 2-ピリドン化合物の製造方法
JP2009046401A (ja) ヒドラジン化合物の製造方法およびその製造中間体
JP2001335564A (ja) 1−アルキル−5−置換ピラゾール−3−カルボン酸エステルの製造法
JP2004131462A (ja) 光学活性アゾール誘導体およびその製造法
JP2001081080A (ja) 4(5)−クロロメチル−2−フェニル−1,2,3−トリアゾール誘導体の製造法
JPH06287197A (ja) キラル1−β−メチルカルバペネム中間体
JP2006117599A (ja) 5−アルコキシ−3−イソオキサゾリンカルボン酸およびそのエステル、並びに3−イソオキサゾールカルボン酸の製造方法
JPH07107009B2 (ja) 新規シクロデセン誘導体およびその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500610

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743743

Country of ref document: EP

Kind code of ref document: A1