WO2015174377A1 - 2-ピリドン化合物の製造方法 - Google Patents

2-ピリドン化合物の製造方法 Download PDF

Info

Publication number
WO2015174377A1
WO2015174377A1 PCT/JP2015/063509 JP2015063509W WO2015174377A1 WO 2015174377 A1 WO2015174377 A1 WO 2015174377A1 JP 2015063509 W JP2015063509 W JP 2015063509W WO 2015174377 A1 WO2015174377 A1 WO 2015174377A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
added
organic layer
mixture
difluoroethyl
Prior art date
Application number
PCT/JP2015/063509
Other languages
English (en)
French (fr)
Inventor
弘展 吉野
康広 梅田
準 武岡
昭裕 長屋
祐大 菅原
円香 吉野
Original Assignee
日産化学工業株式会社
大正製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 大正製薬株式会社 filed Critical 日産化学工業株式会社
Priority to US15/309,997 priority Critical patent/US20170267659A1/en
Priority to KR1020167025901A priority patent/KR20170003524A/ko
Priority to JP2016519247A priority patent/JPWO2015174377A1/ja
Priority to CN201580024710.0A priority patent/CN106573909A/zh
Priority to EP15793046.2A priority patent/EP3144305A4/en
Publication of WO2015174377A1 publication Critical patent/WO2015174377A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom

Definitions

  • the present invention relates to a method for producing a 2-pyridone compound.
  • the 2-pyridone compound (compound (2)) represented by the formula (2) is a compound included in the claims of a compound patent (Patent Document 1) for treating diabetes that claims a series of 2-pyridone compounds.
  • Patent Document 1 for treating diabetes that claims a series of 2-pyridone compounds.
  • the present invention provides a method for producing a 2-pyridone compound.
  • the present inventors constructed a synthetic route for the 6-benzoyl-2-pyridone compound, which is a key intermediate, and obtained the compound (1) using the intermediate as a raw material.
  • the present inventors tried to apply a general synthesis method described in Patent Document 1, and found that it was a Z-form as a target product.
  • a compound which is an E form is by-produced. Due to the by-product of the E-form compound, the yield of the target compound (1) was lowered, and it was necessary to use column chromatography for purification. .
  • the present inventors diligently studied in the production of the compound (1), and found a selective production method of the compound (1) in the Z form.
  • the present inventors found for the first time that the compound (1) obtained by the above method is crystallized by using a sodium salt, and established a purification method that does not require column chromatography.
  • the present inventors have found an industrially applicable production method for deriving the compound (1) of the following scheme into the compound (2), and completed the present invention.
  • the present invention is characterized by the following.
  • (I) 2-pyridone compound represented by formula (1) characterized by reacting a 6-benzoyl-2-pyridone compound represented by formula (3) with a sulfone compound represented by formula (4) Manufacturing method.
  • IV The compound represented by Formula (1).
  • (V) The compound represented by Formula (3).
  • (VII) The compound represented by Formula (6).
  • n is normal, “i” is iso, “s” and “sec” are secondary, “t” and “tert” are tertiary, “c” is cyclo, “o” “Represents ortho,” m “represents meta,” p “represents para,” Boc "represents t-butoxycarbonyl, and” Me “represents methyl.
  • (E)” means E body, and “(Z)” means Z body.
  • Halogen atom means fluorine atom, chlorine atom, bromine atom or iodine atom.
  • C 1-4 alkyl group means a linear or branched alkyl group having 1 to 4 carbon atoms, and includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group. I-butyl group, s-butyl group or t-butyl group.
  • Scheme 1 Method for producing compound (3) from compound (1-a).
  • G 1 represents a protecting group for a hydroxy group in the hydroxypyridyl group.
  • Compound (1-a) and compound (1-b) can be obtained by the method described in International Publication No. 2008/103185 or a method analogous thereto.
  • Compound (1-c) can be produced.
  • Examples of the “addition reaction” include n-butyllithium, sec-butyllithium, tert-butyllithium, diisopropyl using compound (1-b) as a substrate in an inert solvent at a temperature of ⁇ 78 ° C. to 100 ° C.
  • An anion generated by using an organic metal reagent such as magnesium bromide, a metal reagent such as magnesium, or a base such as lithium bis (trimethylsilyl) amide or potassium bis (trimethylsilyl) amide is reacted with a nitrile compound of compound (1-a).
  • An organic metal reagent such as magnesium bromide, a metal reagent such as magnesium, or a base such as lithium bis (trimethylsilyl) amide or potassium bis (trimethylsilyl) amide is reacted with a nitrile compound of compound (1-a).
  • a method is mentioned.
  • Examples of the “deprotection reaction” include (i) when the protecting group G 1 is an alkyl group or an allyl group, hydrolysis at a temperature of 0 ° C. to 200 ° C. in an inert solvent in the presence of an acid or a strong acid.
  • Examples of the deprotection reaction include a method of removing by reaction, a method using trimethylsilyl iodide, a method using aluminum chloride and alkylthiol, and (ii) a protecting group G 1 is a benzyl group, 4- In the case of a methoxybenzyl group, 2,4-dimethoxybenzyl group, benzyloxycarbonyl group, benzhydryl (diphenylmethyl) group, etc., at a temperature of 0 ° C.
  • G 1 is an alkyl group
  • G 1 represents a C 1-4 alkyl group, preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • Compound (6) can be produced.
  • addition reaction examples include the same reactions as the “addition reaction” in the steps (1-1) and (1-2) described above.
  • Step (2-3) Compound (7) can be produced by subjecting compound (6) to an “oxidation reaction” using an oxidizing agent.
  • oxidation reaction for example, a method of giving a compound (7) by reacting an “oxidant” with a compound (6) at ⁇ 20 ° C. to 60 ° C. in an inert solvent such as chloroform and water. Can be mentioned.
  • oxidant examples include peracids such as metachloroperbenzoic acid.
  • the peracid can also be generated and used in the system by a combination of hydrogen peroxide and an acid or acid anhydride.
  • Scheme 3 Method for producing compound (3) from compound (3-a) (In Scheme 3, X represents a halogen atom, and G 1 is the same as above.)
  • Compound (3-a) can be obtained by the method described in International Publication No. 2008/103185 or a method analogous thereto.
  • Step (3-1) Compound (3-b) can be produced by performing a “coupling reaction” with a cyclopropylmagnesium compound, cyclopropylzinc compound or cyclopropylboronic acid using compound (3-a) as a substrate.
  • the “coupling reaction” means, for example, at ⁇ 20 ° C. to 40 ° C., 1,2-dimethoxyethane, methylene chloride, acetonitrile, toluene, tetrahydrofuran, 2-methyltetrahydrofuran, N-methylpyrrolidone or 1,4-dioxane. And a method of reacting with a cyclopropylmagnesium compound, a cyclopropylzinc compound or a cyclopropylboronic acid in the presence of a palladium, nickel or iron catalyst in an inert solvent.
  • a palladium (0) catalyst in the system using palladium acetate (II) or palladium-activated carbon and triphenylphosphine and use it in the reaction.
  • nickel catalyst used for the “coupling reaction” include nickel catalysts known to those skilled in the art, such as bis (triphenylphosphine) nickel (II) dichloride.
  • a nickel catalyst can be generated in the system using nickel chloride (II) and triphenylphosphine and used for the reaction.
  • the iron catalyst used in the “coupling reaction” include iron catalysts known to those skilled in the art, such as tris (2,4-pentanedionato) iron (III). It is also possible to generate an iron catalyst in the system and use it in the reaction.
  • Compound (1-c) can be produced.
  • addition reaction examples include the addition reactions described in the step (1-1) and the step (1-2) in the above scheme 1.
  • Step (3-4) The compound (3) can be produced by carrying out the reaction of the step (1-3) in the above scheme 1.
  • Step (4-1) Compound (1) can be produced by performing a “coupling reaction” with compound (4) using compound (3) as a substrate and a base.
  • the compound (4) used in the “coupling reaction” can be obtained by the method described in International Publication No. 2008/103185.
  • the compound (1) obtained by the “coupling reaction” is obtained as a mixture with the E form.
  • the base used in the “coupling reaction” is not particularly limited, and may be used alone or in combination with a plurality of other bases.
  • the base is preferably an organic base or an organic metal base, more preferably an alkali metal base of an amine substituted with a silyl group substituted with alkyl, allyl, or both, and more preferably lithium bis (trimethylsilyl) amide.
  • the base is preferably used in an amount of 1.0 to 20.0 molar equivalents relative to compound (3), more preferably 3.0 to 10.0 molar equivalents.
  • Compound (4) is preferably used in an amount of 1.0 to 10.0 molar equivalents relative to compound (3), more preferably 1.0 to 3.0 molar equivalents.
  • the “coupling reaction” is preferably performed in the presence of a solvent, and the solvent used is not particularly limited as long as it does not inhibit the reaction.
  • solvents include aliphatic hydrocarbons (hexane, heptane, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, t-butyl methyl ether), halogenated aliphatic hydrocarbons (methylene chloride, chloroform, dichloroethane, etc.), nitriles (acetonitrile, propionitrile, etc.), amides (N, N-dimethylformamide, N, N—) Dimethylacetamide) and the like, more preferably aliphatic hydrocarbons and ethers, still more preferably hexane and tetrahydrofuran, and particularly
  • the solvent may be used alone or as a mixture of a plurality of solvents.
  • the amount of solvent used is generally affected by whether the substrate is crystalline or not, and can be arbitrarily set according to the type of substrate. Although it does not matter as long as it is within the range, the substrate concentration of the compound (3) is usually 1 to 50% by weight, preferably 2 to 20% by weight, more preferably 3 to 10% by weight.
  • the “coupling reaction” can be carried out at any temperature from ⁇ 78 ° C. to the boiling point of the reaction medium, but is usually ⁇ 40 ° C. or higher and 60 ° C. or lower, preferably ⁇ 30 ° C. or higher and 50 ° C., from the viewpoint of reaction operation and industrial viewpoint. In the following, it is more preferably performed at ⁇ 20 ° C. or more and 40 ° C. or less.
  • the “coupling reaction” may be performed in the presence of an additive.
  • an additive urea derivatives (1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, tetramethylurea, etc.) are preferable. 1,3-dimethyl-2-imidazolidinone is more preferred.
  • an additive When an additive is used, it may be used alone or a plurality of additives may be mixed and used.
  • the amount of the additive used when used can be arbitrarily set according to the type of the substrate, and is 0.1 to 100 times by weight, preferably 1 to 20 times by weight with respect to the compound (3) as the substrate. More preferably, it is 2 to 6 times by weight.
  • an acidic aqueous solution such as sulfuric acid is added to the reaction solution and stirred to decompose the organometallic compound, and the base-derived components are mainly removed by liquid separation, followed by sodium carbonate.
  • An alkaline solution such as an aqueous solution is added, and the mixture is separated to extract the target product.
  • the desired product can be obtained by performing purification operations such as column chromatography and crystallization on the obtained organic layer.
  • Step (5-1) The compound (5) can be produced by using the compound (1) as a substrate to form a sodium salt using sodium alkoxide.
  • Compound (5) can be crystallized to obtain high-purity compound (5).
  • a solvent for salt formation or crystallization an alcohol solvent or an ester solvent is preferable.
  • Sodium alkoxide is preferably used dissolved in an alcohol solvent, and compound (1) is preferably used dissolved in an ester solvent.
  • the sodium alkoxide used is an alkoxide having 1 to 4 carbon atoms, such as sodium methoxide, sodium ethoxide, sodium n-propoxide, sodium i-propoxide, sodium n-butoxide, sodium s-butoxide, sodium t-butoxide.
  • sodium methoxide As the sodium alkoxide, it is more preferable to use a solution of an alcohol corresponding to the alkoxide.
  • sodium alkoxides can be used by mixing with other sodium alkoxides in an arbitrary ratio.
  • sodium alkoxides are preferably used in an amount of 1.0 to 10.0 molar equivalents, more preferably 1.0 to 3.0 molar equivalents, relative to compound (1).
  • the alcohol solvent used is an alcohol having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, i-propanol, n-butanol, s-butanol, t-butanol, and preferably methanol. Alcohol may be added as a sodium alkoxide solution.
  • solvents can be used by mixing with other solvents at an arbitrary ratio.
  • the alcohol solvent may be used alone or in combination with a plurality of solvents. Further, the amount of the solvent used is affected by the solubility when dissolving the sodium alkoxide, and can be arbitrarily set according to the type of the sodium alkoxide, so long as it can be partially dissolved. Usually, the concentration of sodium alkoxide is 1 to 90% by weight, preferably 5 to 60% by weight, more preferably 10 to 40% by weight.
  • the ester solvent used is formate ester (methyl formate, ethyl formate, n-propyl formate), or acetate ester (methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate). , T-butyl acetate), and preferably ethyl acetate.
  • solvents can be used by mixing with other solvents at an arbitrary ratio.
  • the ester solvent may be used alone or as a mixture of a plurality of solvents.
  • the amount of solvent used is generally affected by whether the substrate is crystalline or not, and can be arbitrarily set according to the type of substrate. Although it does not matter as long as it is within the range, the substrate concentration of compound (1) is usually 1 to 50% by weight, preferably 2 to 20% by weight, more preferably 3 to 10% by weight.
  • Compound (1) is crystallized by either mixing with sodium alkoxide, mixing with sodium alkoxide, heating, cooling, concentrating, dissolving and then adding a poorly soluble solvent (poor solvent), or a combination of these. To do.
  • the crystallization temperature is carried out in the range of ⁇ 20 ° C. to 80 ° C. unless otherwise specified, but is preferably ⁇ 10 ° C. to 50 ° C.
  • seed crystals can be used.
  • the seed crystal can be obtained by a method well known to those skilled in the art, such as rubbing the wall of a container containing the target solution with a spatula.
  • Compound (5) which is a sodium salt of compound (1), is a salt produced from compound (1) and sodium alkoxide, and is a salt composed of an anion of compound (1) and a sodium cation. Further, regarding the ratio of the composition of the salt, the ratio of the anion: sodium cation of the compound (1) is 1: 1.
  • the structure of the compound (5) may be a compound represented by the formula (5A), the formula (5B), or the formula (5C).
  • the compound (5) is represented by the formula (5A).
  • the characteristics of the crystal can be analyzed by powder X-ray diffraction measurement.
  • the peak position (peak value) obtained by powder X-ray diffraction measurement is represented by 2 ⁇ .
  • the peak value may change depending on the measurement conditions.
  • the difference in crystal form should be determined by comprehensively analyzing measurement conditions, peak values, diffraction patterns, and the like.
  • Scheme 6 Method for producing compound (2) from compound (5).
  • G 2 represents a protecting group for the nitrogen atom in the 2-pyridone group.
  • G 3 represents a protecting group for the nitrogen atom in the pyrrolidinyl group substituted with an oxo group.
  • Step (6-1) Compound (1) can be obtained by performing a liquid separation operation with an aqueous solution such as an acid or a salt in an organic solvent capable of separating Compound (5) from water.
  • the compound (6-b) can be produced by reduction with In this production, an acid or a base can be added as necessary.
  • Examples of the “deprotection reaction” include a method using an acid such as hydrochloric acid or trifluoroacetic acid.
  • silica gel column chromatography Kanto Chemical “silica gel 60” or Fuji Silysia “PSQ60B” or packed column (YAMAZEN Hi-Flash TM Column or MORITE Purif Pack or Biotage® SNAP KP-Sil Catridge) was used.
  • MS mass spectrum
  • LCMS-2010EV Shiadzu
  • LCMS-IT-TOF Shiadzu
  • Agilent 6150 Alignment
  • LCQ Deca XP Thermo Fisher Scientific
  • an ionization method an ESI (Electrospray Ionization) method or a dual ionization method of ESI and APCI (Atmospheric Pressure Chemical Ionization) method was used.
  • Powder X-ray diffraction measurement was carried out using Rigaku MiniFlex600 (line source: Cu, wavelength: 1.54 (10 ⁇ 10 m)), Panaritical X′PertPRO (line source: Cu, wavelength: 1.54 (10 ⁇ 10) m).
  • Compound name is ACD / Name ver. It was named using 12.01 (trade name) or the like.
  • reaction solution was raised to 0 ° C., and 1M hydrochloric acid (437 mL), tetrahydrofuran (365 mL), and 1M hydrochloric acid (146 mL) were added dropwise in this order.
  • the reaction solution was separated into an organic layer and an aqueous layer, and then the aqueous layer was extracted with ethyl acetate (1000 mL).
  • ethyl acetate 1000 mL
  • anhydrous magnesium sulfate was added and dried. After the desiccant was filtered off, the solvent was distilled off under reduced pressure.
  • a 10% aqueous sodium thiosulfate solution (349.82 g) was added to the organic layer and mixed, and the mixture was separated into an organic layer and an aqueous layer.
  • a 10% aqueous sodium thiosulfate solution (350.40 g) was added to the organic layer and mixed, and the mixture was separated into an organic layer and an aqueous layer.
  • a 10% aqueous sodium thiosulfate solution (353.05 g) and saturated brine (107.24 g) were added and mixed, and the mixture was separated into an organic layer and an aqueous layer.
  • the weight of the organic layer was 79.79 g, ethyl acetate (383.57 g) was added, the temperature was raised to 40 ° C., and then normal heptane (38 to 41 ° C.) 385.13 g) was added dropwise over 11 minutes, cooled to 5 ° C. over 42 minutes, and stirred for 15 minutes to form a suspension.
  • the obtained organic layer was mixed, an aqueous solution in which potassium hydrogen carbonate (1.35 g) and water (8.43 g) were mixed was added, stirred for 6 minutes, and then separated into an organic layer and an aqueous layer.
  • An aqueous solution in which sodium chloride (0.55 g) and water (8.43 g) were mixed was added to the obtained organic layer, stirred for 5 minutes, and then separated into an organic layer and an aqueous layer.
  • the solvent was distilled off from the obtained organic layer under reduced pressure.
  • metachloroperbenzoic acid (30%) was added to a solution of (5-cyclopropylpyridin-2-yl) [4- (1,1-difluoroethyl) phenyl] methanone (20.00 g) in chloroform (100.00 g). Water-containing product, 34.32 g) was added, and the mixture was washed with chloroform (10.02 g) and stirred at 25 ° C. for 4 hours.
  • An aqueous solution obtained by mixing chloroform (150.01 g), sodium thiosulfate (14.31 g) and water (60.01 g) and a 5% aqueous sodium hydrogen carbonate solution (60.01 g) were added to the reaction solution, and after mixing, the organic layer and The aqueous layer was separated.
  • a 5% aqueous sodium hydrogen carbonate solution (60.00 g) was added to the organic layer, and after mixing, the organic layer and the aqueous layer were separated.
  • a 5% aqueous sodium hydrogen carbonate solution (120.01 g) was added to the organic layer, and after mixing, the organic layer and the aqueous layer were separated.
  • a 5% aqueous sodium hydrogen carbonate solution (120.00 g) was added to the organic layer, and after mixing, the organic layer and the aqueous layer were separated.
  • Water (60.02 g) was added to the organic layer, and after mixing, the organic layer and the aqueous layer were separated.
  • the solvent was distilled off from the obtained organic layer under reduced pressure to obtain a pale yellow solid (25.33 g).
  • Ethyl acetate (5.02 g) was added to the obtained aqueous layer and mixed, and then the mixture was separated into an organic layer and an aqueous layer.
  • Ethyl acetate (5.01 g) was added to the obtained aqueous layer and mixed, and then the mixture was separated into an organic layer and an aqueous layer.
  • saturated brine (5.00 g) was added and mixed, and then the mixture was separated into an organic layer and an aqueous layer.
  • Anhydrous magnesium sulfate was added to the obtained organic layer for drying, and after removing the desiccant by filtration, the solvent was distilled off under reduced pressure.
  • a 5% aqueous hydrochloric acid solution (0.93 g) was added and stirred, then water and ethyl acetate were added and mixed, and the mixture was separated into an organic layer and an aqueous layer.
  • Ethyl acetate (4 mL) was added to the obtained aqueous layer and mixed, and then the mixture was separated into an organic layer and an aqueous layer. Both organic layers were mixed, 5% aqueous sodium hydrogen carbonate solution was added and mixed, and then separated into an organic layer and an aqueous layer.
  • Ethyl acetate (2 mL) was added to the obtained aqueous layer and mixed, and then the mixture was separated into an organic layer and an aqueous layer.
  • the solvent was distilled off from the obtained organic layer under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane, ethyl acetate) to obtain the title compound mixture (1.10 g) as a brown amorphous substance. It was.
  • Example 4 (R, Z) -3-cyclopropyl-6- ⁇ 1- [4- (1,1-difluoroethyl) phenyl] -2- [purified by silica gel column chromatography or the like was used.
  • Phenyl] -2- [5-oxopyrrolidin-2-yl] vinyl ⁇ pyridin-2 (1H) -one is a by-product (R, E) -3-cyclopropyl in quantitative yield 77.7% -6- ⁇ 1- [4- (1,1-difluoroethyl) phenyl] -2- [5-oxopyrrolidin-2-yl] vinyl ⁇ pyridin-2 (1H) -one has a quantitative yield of 9.2%. Met.
  • the reaction solution was quantified after warming to room temperature, and was the main product (target compound) (R, Z) -3-cyclopropyl-6- ⁇ 1- [4- (1,1-difluoroethyl).
  • Phenyl] -2- [5-oxopyrrolidin-2-yl] vinyl ⁇ pyridin-2 (1H) -one is a by-product of (R, E) -3-cyclopropyl-quantitative yield 66.2% 6- ⁇ 1- [4- (1,1-difluoroethyl) phenyl] -2- [5-oxopyrrolidin-2-yl] vinyl ⁇ pyridin-2 (1H) -one was obtained in a quantitative yield of 11.5%.
  • Table 1 shows the results of Reference Example 1, Example 4, and Example 5.
  • the additive represents 1,3-dimethyl-2-imidazolidinone.
  • Example 4 When comparing Reference Example 1 and Example 4, in Example 4, the selectivity and yield of the compound that was Z-form were improved. Further, when Example 4 and Example 5 were compared, the selectivity and yield of the compound in the Z form was improved more when 1,3-dimethyl-2-imidazolidinone was added.
  • the solvent was distilled off under reduced pressure with respect to the obtained organic layer, ethyl acetate (50 g) was added to the obtained residue, and the solvent was distilled off under reduced pressure.
  • Acetonitrile (50 g) was added to the obtained residue, and the solvent was distilled off under reduced pressure.
  • Acetonitrile (70 g), triethylamine (8.73 g), and N, N-dimethyl-4-aminopyridine (0.609 g) were mixed with the obtained residue, and then di-tert-butyl dicarbonate (16 .12 g) and acetonitrile (30 g) were added dropwise over 6 minutes. After heating up to 40 degreeC and stirring for 1 hour and 35 minutes, the solvent was distilled off under pressure reduction.
  • a 10% aqueous ammonium chloride solution (100 g) and ethyl acetate (100 g) were added to the resulting residue, and after mixing, the organic layer and the aqueous layer were separated.
  • Water (50 g) was added to the organic layer, and after mixing, the organic layer and the aqueous layer were separated.
  • Ethyl acetate (50 g) was added to the obtained aqueous layer and mixed, and the mixture was separated into an organic layer and an aqueous layer.
  • the solvent was distilled off under reduced pressure.
  • Toluene (30 g) was added to the obtained residue, and the solvent was distilled off under reduced pressure.
  • An aqueous solution in which sodium hydroxide (38.40 g) and water (150.10 g) were mixed was added dropwise thereto, and the mixture was stirred at 33 to 35 ° C. for 30 minutes, and then separated into an organic layer and an aqueous layer.
  • An aqueous solution obtained by mixing potassium hydrogen carbonate (29.88 g) and water (150.00 g) was added to the obtained organic layer, and after mixing, the organic layer and the aqueous layer were separated. Water (150.00 g) was added to the obtained organic layer, mixed, and then separated into an organic layer and an aqueous layer.
  • the present invention is useful in that 2-pyridone compounds useful as pharmaceuticals or pharmaceutical intermediates can be produced in a high yield from 6-benzoyl-2-pyridone compounds. It should be noted that the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-099755 filed on May 13, 2014 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

 本発明は、医薬品または医薬品中間体として有用な2-ピリドン化合物である式(1)で表される化合物等を、高収率で製造する方法を提供することを課題とする。式(3)で表される6-ベンゾイル-2-ピリドン化合物と、式(4)で表されるスルホン化合物を反応させることを特徴とする、式(1)で表される、2-ピリドン化合物の製造方法。

Description

2-ピリドン化合物の製造方法
 本発明は、2-ピリドン化合物の製造方法に関する。
 式(2)で表される2-ピリドン化合物(化合物(2))は、一連の2-ピリドン化合物を請求する糖尿病治療薬の化合物特許(特許文献1)のクレームに含まれる化合物であり、医薬品としての使用の可能性が知られている。
Figure JPOXMLDOC01-appb-C000010
 そのため化合物(2)の具体的な製造方法が求められていた。
国際公開第2011/068211号
 本発明は、2-ピリドン化合物を製造する方法を提供する。
 上記課題に対し、本発明者らは鋭意検討を重ねた結果、鍵中間体である6-ベンゾイル-2-ピリドン化合物の合成ルートを構築し、その中間体を原料として、化合物(1)が得られることを見出した。
Figure JPOXMLDOC01-appb-C000011
 6-ベンゾイル-2-ピリドン化合物を原料とした化合物(1)の製造において、本発明者らが特許文献1に記載の一般的合成方法の応用を試みたところ、目的物とするZ体である化合物(1)の他に、E体である化合物が副生することが判明した。E体である化合物の副生により、目的とする化合物(1)の収率が低下し、さらにその精製にはカラムクロマトグラフィーを用いる必要があったため、工業的な製造法としては課題があった。そこで本発明者らは、化合物(1)の製造において、鋭意検討し、Z体である化合物(1)の選択的な製造方法を見出した。
Figure JPOXMLDOC01-appb-C000012
 また本発明者らは、上記方法により得られる化合物(1)をナトリウム塩とする事により結晶化することを初めて見出し、カラムクロマトグラフィーを必要としない精製方法を確立した。
 さらに、本発明者らは、下記のスキームの化合物(1)を、化合物(2)へと誘導する工業的に応用可能な製造方法を見出し、本発明を完成させた。
Figure JPOXMLDOC01-appb-C000013
 すなわち本発明は、以下を特徴とするものである。
(I)
 式(3)で表される6-ベンゾイル-2-ピリドン化合物と、式(4)で表されるスルホン化合物を反応させることを特徴とする、式(1)で表される、2-ピリドン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000014
(II)
 尿素誘導体存在下で反応させる、(I)に記載の製造方法。
(III)
 尿素誘導体が、1,3-ジメチル-2-イミダゾリジノンである、(II)に記載の製造方法。
(IV)
 式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000015
(V)
 式(3)で表される化合物。
Figure JPOXMLDOC01-appb-C000016
(VI)
 式(1)で表される化合物のナトリウム塩。
Figure JPOXMLDOC01-appb-C000017
(VII)
 式(6)で表される化合物。
Figure JPOXMLDOC01-appb-C000018
(VIII)
式(7)で表される化合物。
Figure JPOXMLDOC01-appb-C000019
(IX)
式(8)で表される化合物。
Figure JPOXMLDOC01-appb-C000020
(X)
式(9)で表される化合物。
Figure JPOXMLDOC01-appb-C000021
(XI)
式(10)で表される化合物。
Figure JPOXMLDOC01-appb-C000022
 本発明により、医薬品又はその中間体として有用な2-ピリドン化合物の製造法を提供することができた。
本発明のナトリウム(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2-オラートの結晶の粉末X線回折パターンを示す。
 以下に、本発明について詳細に説明する。
 本発明において、「n」はノルマルを、「i」はイソを、「s」及び「sec」はセカンダリーを、「t」及び「tert」はターシャリーを、「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを、「Boc」はt-ブトキシカルボニルを、「Me」はメチルを示す。又、「(E)」はE体を、「(Z)」はZ体を意味する。
 ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 C1-4アルキル基とは、炭素原子を1乃至4個有する直鎖又は分枝状のアルキル基を意味し、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基又はt-ブチル基を意味する。
 次に本発明における各製造ルートについて詳細に説明する。
1.化合物(3)の製造方法
 化合物(3)の一般的な製造法をスキーム1~3に示すが、一般的製造法例を示すものであり、製造法を限定するものではない。工程を実施する順番を変更する、ヒドロキシ基等に保護基を施して反応を実施し後の工程で脱保護を実施する、それぞれの工程途中において新たな工程を追加する等の当業者において周知の方法を用いる事でも化合物(3)は製造出来る。
 本発明化合物の製造において、出発原料又は中間体等に含まれる官能基の適当な保護及び脱保護の方法は、当業者に周知の方法、例えば、グリーンズ プロテクティブ グループス イン オーガニック シンセシス(Greene’s Protective Groups in Organic Synthesis) ジョン・ウィリー アンド サンズ(John Wily and Sons社)2006年刊等に記載の方法に準じて実施することができる。
スキーム1:化合物(1-a)から化合物(3)の製造方法。
Figure JPOXMLDOC01-appb-C000023
(スキーム1中、Gはヒドロキシピリジル基中のヒドロキシ基の保護基を示す。)
 化合物(1-a)および化合物(1-b)は、国際公開第2008/103185号に記載されている方法又はそれに準じる方法により入手することができる。
工程(1-1)及び工程(1-2):
 化合物(1-a)とヘテロアリールリチウム等のリチウム試薬、ヘテロアリールマグネシウムブロミド等のグリニャール試薬などのアニオンを用いた「付加反応」を行い、得られた化合物を塩酸等の酸で処理することにより化合物(1-c)を製造することができる。
 該「付加反応」としては、例えば、化合物(1-b)を基質とし、不活性溶媒中、-78℃乃至100℃の温度でn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ジイソプロピルマグネシウムブロミド等の有機金属試薬やマグネシウム等の金属試薬やリチウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド等の塩基を用いることにより発生したアニオンと化合物(1-a)のニトリル化合物を反応させる方法が挙げられる。
工程(1-3):
 化合物(1-c)が有する保護基Gの「脱保護反応」を行うことにより化合物(3)を製造することができる。
 該「脱保護反応」としては、例えば、(i)保護基Gがアルキル基又はアリル基である場合、0℃乃至200℃の温度で、不活性溶媒中、酸、又は強酸存在下加水分解反応により除去する方法や、トリメチルシリルヨージド等を用いた方法や塩化アルミニウムとアルキルチオールを用いた方法などの脱保護反応を挙げることができ、更に(ii)保護基Gがベンジル基、4-メトキシベンジル基、2,4-ジメトキシベンジル基、ベンジルオキシカルボニル基、又はベンズヒドリル(ジフェニルメチル)基等である場合、0℃乃至80℃の温度で、不活性溶媒中、酸存在下又は非存在下、パラジウム-活性炭素、又はロジウム-活性炭素等を触媒量用いた加水素分解反応により除去する方法、又は硝酸セリウム(IV)アンモニウムや2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン等の酸化剤を使用する方法が挙げられる。又、保護基Gがアルキル基である場合は、Gは、C1-4アルキル基を表し、好ましくはメチル基又はエチル基であり、より好ましくはメチル基である。
スキーム2:化合物(2-a)から化合物(3)の製造方法。
Figure JPOXMLDOC01-appb-C000024
 化合物(2-a)及び化合物(2-b)は、市販化合物として入手できる。
工程(2-1)及び工程(2-2):
 化合物(2-a)とフェニルアリールリチウム等のリチウム試薬、フェニルアリールマグネシウムブロミド等のグリニヤール試薬などのアニオンを用いた「付加反応」を行い、得られた化合物を塩酸等の酸で処理することにより化合物(6)を製造する事ができる。
 「付加反応」としては、既述である工程(1-1)及び工程(1-2)の「付加反応」と同様の反応が挙げられる。
工程(2-3):
 化合物(6)に対し、酸化剤を用いて「酸化反応」を行うことにより、化合物(7)を製造する事ができる。
 「酸化反応」としては、例えば、クロロホルム、水等の不活性溶媒中、「酸化剤」を、-20℃乃至60℃で化合物(6)と反応させることにより、化合物(7)を与える方法が挙げられる。
 該「酸化剤」としては、例えば、メタクロロ過安息香酸等の過酸が考えられる。過酸は過酸化水素と酸又は酸無水物との組み合わせにより系中で発生させて用いる事も出来る。
工程(2-4):
 化合物(7)に対し、酸無水物を用いて「転移反応」を行うことにより、化合物(3)を製造する事ができる。
 「転移反応」としては、例えば、クロロホルム、テトラヒドロフラン、2-メチルテトラヒドロフラン、メチルt-ブチルエーテル等の不活性溶媒中、無水トリフルオロ酢酸等の酸無水物を、-20℃乃至60℃で化合物(7)と反応させることにより、化合物(3)を与える方法が挙げられる。
スキーム3:化合物(3-a)から化合物(3)の製造方法。
Figure JPOXMLDOC01-appb-C000025
(スキーム3中、Xはハロゲン原子を示し、Gは上記に同じである。)
 化合物(3-a)は、国際公開第2008/103185号に記載されている方法又はそれに準じる方法により入手することができる。
工程(3-1):
 化合物(3-a)を基質として、シクロプロピルマグネシウム化合物、シクロプロピル亜鉛化合物又はシクロプロピルボロン酸との「カップリング反応」を行うことにより、化合物(3-b)を製造することができる。
 該「カップリング反応」とは、例えば、-20℃乃至40℃で、1,2-ジメトキシエタン、塩化メチレン、アセトニトリル、トルエン、テトラヒドロフラン、2-メチルテトラヒドロフラン、N-メチルピロリドン又は1,4-ジオキサン等の不活性溶媒中、パラジウム、ニッケル又は鉄触媒存在下、シクロプロピルマグネシウム化合物、シクロプロピル亜鉛化合物又はシクロプロピルボロン酸と反応させる方法が挙げられる。
 「カップリング反応」に用いるパラジウム触媒としては、テトラキストリフェニルホスフィンパラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリフェニルホスフィン)パラジウム(II)アセテート又は[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(1:1)等の当業者に公知のパラジウム触媒が挙げられる。また、酢酸パラジウム(II)又はパラジウム-活性炭素とトリフェニルホスフィンを用いて系中でパラジウム(0)触媒を発生させて反応に用いることもできる。
 「カップリング反応」に用いるニッケル触媒としては、ビス(トリフェニルホスフィン)ニッケル(II)ジクロリド等の当業者に公知のニッケル触媒が挙げられる。また、塩化ニッケル(II)とトリフェニルホスフィンを用いて系中でニッケル触媒を発生させて反応に用いることもできる。
 「カップリング反応」に用いる鉄触媒としては、トリス(2,4-ペンタンジオナト)鉄(III)等の当業者に公知の鉄触媒が挙げられる。また、系中で鉄触媒を発生させて反応に用いることもできる。
工程(3-2)及び工程(3-3):
 化合物(3-b)とフェニルアリールリチウム等のリチウム試薬、フェニルアリールマグネシウムブロミド等のグリニヤール試薬などのアニオンを用いた「付加反応」を行い、得られた化合物を塩酸等の酸で処理することにより、化合物(1-c)を製造する事ができる。
 「付加反応」としては、上記スキーム1における工程(1-1)及び工程(1-2)で記載した付加反応が挙げられる。
工程(3-4):
 上記スキーム1における工程(1-3)の反応を実施することにより、化合物(3)を製造することができる。
2.化合物(1)の製造方法
 化合物(1)の製造方法をスキーム4に示す。
スキーム4:化合物(3)から化合物(1)の製造方法。
Figure JPOXMLDOC01-appb-C000026
工程(4-1):
 化合物(3)を基質として、塩基を用いて化合物(4)との「カップリング反応」を行うことにより、化合物(1)を製造することができる。
 該「カップリング反応」に用いる化合物(4)は、国際公開第2008/103185号に記載されている方法により入手することができる。
 「カップリング反応」で得られる化合物(1)はE体との混合物として得られる。
 「カップリング反応」に使用する塩基は、特に種類は限定されず、単独で用いても、他に複数の塩基を混合して用いても良い。塩基としては有機塩基又は有機金属塩基が望ましく、アルキル、アリル又はその両方で置換されたシリル基が置換されているアミンのアルカリ金属塩基がより好ましく、リチウムビス(トリメチルシリル)アミドがさらに好ましい。
 塩基は、化合物(3)に対して、1.0~20.0モル当量用いるのが好ましく、3.0~10.0モル当量がより好ましい。
 化合物(4)は、化合物(3)に対して、1.0~10.0モル当量用いるのが好ましく、1.0~3.0モル当量がより好ましい。
 「カップリング反応」は、溶媒の存在下で行うのが好ましく、使用される溶媒としては反応を阻害しないものならば特に限定されない。好ましい溶媒の例としては、脂肪族炭化水素類(ヘキサン、ヘプタン等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、t-ブチルメチルエーテル等)、ハロゲン化脂肪族炭化水素類(塩化メチレン、クロロホルム、ジクロロエタン等)、ニトリル類(アセトニトリル、プロピオニトリル等)、アミド系(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)などが挙げられ、より好ましくは脂肪族炭化水素類、エーテル類であり、さらに好ましくはヘキサン、テトラヒドロフランであり、特に好ましくはテトラヒドロフランである。
 溶媒は、単独で用いても、複数の溶媒を混合して用いても良い。更に溶媒の使用量としては、一般的には基質が結晶か否か、粘性が高いか否か等によっても影響を受けるので、基質の種類に応じて任意に設定可能であり、一部でも溶解できる範囲であれば構わないが、攪拌効率、容積効率の影響等の点から、通常、化合物(3)の基質濃度として1~50重量%、好ましくは2~20重量%、より好ましくは3~10重量%である。
 「カップリング反応」は、-78℃から反応媒体の沸点までのいずれでも行なうことができるが、反応操作及び工業的観点から、通常-40℃以上60℃以下、好ましくは-30℃以上50℃以下、より好ましくは-20℃以上40℃以下で行なわれる。
 「カップリング反応」は、添加剤の存在下に行ってもよい。添加剤としては尿素誘導体(1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、テトラメチル尿素等)が好ましく、1,3-ジメチル-2-イミダゾリジノンがより好ましい。尿素誘導体の存在下にカップリング反応を行うことにより、生成する化合物のE体とZ体の生成割合が変化し、Z体である化合物(1)の選択性及び収率が向上する。
 添加剤を用いる場合、単独で用いても、複数の添加剤を混合して用いても良い。用いる場合の添加剤の使用量としては、基質の種類に応じて任意に設定可能であり、基質である化合物(3)に対して0.1~100重量倍、好ましくは1~20重量倍、より好ましくは2~6重量倍である。
 「カップリング反応」の終了後は、反応液に硫酸水等の酸性水溶液を添加し、攪拌することで、有機金属化合物を分解し、分液により主に塩基由来成分を除去した後、炭酸ナトリウム水溶液等のアルカリ性溶液を加え、分液して目的物を抽出する。得られた有機層をカラムクロマトグラフィーや晶析等の精製操作を行うことで目的物を得ることができる。
3.式(1)で表される化合物のナトリウム塩の製造方法
 式(1)で表される化合物のナトリウム塩(以下、化合物(5)ともいう)の製造方法をスキーム5に示す。
スキーム5:化合物(1)から化合物(5)の製造方法。
Figure JPOXMLDOC01-appb-C000027
工程(5-1):
 化合物(1)を基質として、ナトリウムアルコキシドを用いてナトリウム塩とすることにより化合物(5)を製造することができる。化合物(5)は結晶化して高純度の化合物(5)とすることができる。塩形成や結晶化における溶媒としてはアルコール溶媒やエステル溶媒が好ましい。ナトリウムアルコキシドはアルコール溶媒に溶解して使用し、化合物(1)はエステル溶媒に溶解して使用することが好ましい。
 使用するナトリウムアルコキシドは、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムn-プロポキシド、ナトリウムi-プロポキシド、ナトリウムn-ブトポキシド、ナトリウムs-ブトポキシド、ナトリウムt-ブトポキシド等の炭素数が1乃至4のアルコキシドであり、好ましくはナトリウムメトキシドである。
 ナトリウムアルコキシドはアルコキシドに対応するアルコールの溶液を用いるのがより好ましい。
 これらのナトリウムアルコキシドは、他のナトリウムアルコキシドと任意の割合で混合して使用することができる。
 また、これらのナトリウムアルコキシドは、化合物(1)に対して、1.0~10.0モル当量用いるのが好ましく、1.0~3.0モル当量がより好ましい。
 使用するアルコール溶媒は、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、s-ブタノール、t-ブタノール等の炭素数が1乃至4のアルコールであり、好ましくはメタノールである。ナトリウムアルコキシドの溶液としてアルコールを加えても良い。
 これらの溶媒は、他の溶媒と任意の割合で混合して使用することができる。
 アルコール溶媒は、単独で用いても、複数の溶媒を混合して用いても良い。更に溶媒の使用量としては、ナトリウムアルコキシドを溶解する場合はその溶解度によっても影響を受けるので、ナトリウムアルコキシドの種類に応じて任意に設定可能であり、一部でも溶解できる範囲であれば構わないが、通常、ナトリウムアルコキシドの濃度として1~90重量%、好ましくは5~60重量%、より好ましくは10~40重量%である。
 使用するエステル溶媒は、ギ酸エステル(ギ酸メチル、ギ酸エチル、ギ酸n-プロピル)、又は酢酸エステル(酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸t-ブチル)であり、好ましくは酢酸エチルである。
 これらの溶媒は、他の溶媒と任意の割合で混合して使用することができる。
 エステル溶媒は、単独で用いても、複数の溶媒を混合して用いても良い。更に溶媒の使用量としては、一般的には基質が結晶か否か、粘性が高いか否か等によっても影響を受けるので、基質の種類に応じて任意に設定可能であり、一部でも溶解できる範囲であれば構わないが、攪拌効率、容積効率の影響等の点から、通常、化合物(1)の基質濃度として1~50重量%、好ましくは2~20重量%、より好ましくは3~10重量%である。
 化合物(1)はナトリウムアルコキシドと混合させる事、ナトリウムアルコキシドと混合後に加熱、冷却、濃縮、溶解後溶解性の低い溶媒(貧溶媒)を加える方法のいずれか、もしくはこれらを組み合わせた方法で結晶化する。
 結晶化の温度は、特記ない限り、-20℃から80℃の範囲で行なわれるが、好ましくは-10℃から50℃である。
 結晶化に際しては、種晶を使用することができる。種晶は、目的物溶液の入った容器の壁をスパーテルでこするなど、当業者にとってよく知られた方法で取得しておくことができる。
 化合物(1)のナトリウム塩である化合物(5)は、化合物(1)とナトリウムアルコキシドから製造される塩であり、化合物(1)のアニオンとナトリウムカチオンから構成される塩である。更にかかる塩の構成の比率については、化合物(1)のアニオン:ナトリウムカチオンの比率は1:1で構成されている。
 なお、化合物(5)の構造については、式(5A)、式(5B)又は式(5C)で表される化合物の可能性があり、本発明では、化合物(5)は、式(5A)、式(5B)及び式(5C)で表される化合物の1種、又はそれらの2種以上の混合物を意味するものとする。
Figure JPOXMLDOC01-appb-C000028
 結晶の特徴は、粉末X線回折測定により分析できる。粉末X線回折測定により得られるピークの位置(ピーク値)は2θで表される。ピーク値は、測定条件などにより変化することがある。また結晶形の同異は、測定条件、ピーク値、回折パターンなどを総合的に解析して決定すべきである。
 粉末X線回折ピークの誤差としては通常±0.2を取り得るので、実施例6に記載した結晶の誤差を考慮したピーク値は通常
2θ=6.9±0.2,7.6±0.2,8.8±0.2,11.5±0.2,13.1±0.2,13.6±0.2,16.1±0.2,17.4±0.2,19.6±0.2,20.7±0.2,23.6±0.2である。
4.化合物(2)の製造方法
 化合物(5)及び化合物(1)は、化合物(2)へと誘導する事が出来る。その一般的な製造法をスキーム6に示すが、一般的製造法例を示すものであり、製造法を限定するものではない。工程を実施する順番を変更する、アミド基等に保護基を施して反応を実施し後の工程で脱保護を実施する、それぞれの工程途中において新たな工程を追加する等の当業者において周知の方法を用いる事でも化合物(2)は製造出来る。
 化合物(2)の合成において、出発原料又は中間体等に含まれる官能基の適当な保護及び脱保護の方法は、化合物(3)の一般的な製造法と同様に当業者に周知の方法に準じて実施することができる。
スキーム6:化合物(5)から化合物(2)の製造方法。
Figure JPOXMLDOC01-appb-C000029
(スキーム6中、Gは2-ピリドン基中の窒素原子の保護基を示す。Gはオキソ基で置換されたピロリジニル基中の窒素原子の保護基を示す。)
 工程(6-1):
 化合物(5)を水と分液可能な有機溶媒中、酸や塩等の水溶液との分液操作をする事により化合物(1)を得ることができる。
 工程(6-2):
 化合物(1)に二炭酸ジ-tert-ブチル等を作用させることにより、保護基G及び保護基Gを有する化合物(6-a)を製造することができる。
 工程(6-3):
 化合物(6-a)を基質とし、-20℃乃至80℃で、不活性溶媒中、パラジウム-活性炭素、ロジウム-活性炭素、又は白金-活性炭素等を触媒量用いた「接触水素添加反応」により還元することで、化合物(6-b)を製造することができる。この製造には必要に応じて酸又は塩基を添加する事ができる。
 工程(6-4):
 化合物(6-b)が有する保護基G、Gの「脱保護反応」を行うことにより化合物(2)を製造することができる。
 該「脱保護反応」としては、塩酸やトリフルオロ酢酸などの酸を用いた方法が挙げられる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 シリカゲルカラムクロマトグラフィーには、関東化学「シリカゲル60」または富士シリシア「PSQ60B」またはパックドカラム(YAMAZEN Hi-FlashTM Column または MORITEX Purif Pack または Biotage(登録商標)SNAP KP-Sil Catridge)を使用した。
 本明細書中で用いられている略語は下記の意味を示す。
s : シングレット(singlet)
d : ダブレット(doublet)
t : トリプレット(triplet)
q : クァルテット(quartet)
dd : ダブルダブレット(double doublet)
m : マルチプレット(multiplet)
br : ブロード(broad)
J : カップリング定数(coupling constant)
Hz : ヘルツ(Hertz)
CDCl : 重クロロホルム
V/V : 体積対体積を意味する
 H-NMRデータが記載してある場合は、テトラメチルシランを内部標準物質としたシグナルの化学シフトδ(単位:ppm)(分裂パターン、積分値)を表す。H-NMR(プロトン核磁気共鳴スペクトル)は下記のフーリエ変換型NMRで測定した。
300MHz: JNM-ECP300 (JEOL), JNM-ECX300 (JEOL)
600MHz: JNM-ECA600 (JEOL)
 解析にはACD/SpecManager ver.12.01(商品名)などを用いた。
 MS(マススペクトル)は以下の装置にて測定した。
micromass ZQ (Waters)
LTQ XL (Thermo Fisher Scientific)
LCMS-2010EV (Shimadzu)
LCMS-IT-TOF (Shimadzu)
Agilent 6150 (Agilent)
LCQ Deca XP (Thermo Fisher Scientific)
 イオン化法としては、ESI(Electrospray Ionization、エレクトロスプレーイオン化)法または、ESIとAPCI(Atmospheric Pressure Chemical Ionization、大気圧化学イオン化)法とのデュアルイオン化法を用いた。
 粉末X線回折測定は、リガク製MiniFlex600(線源:Cu、波長:1.54(10-10m)、パナリティカル社製X‘PertPRO(線源:Cu、波長:1.54(10-10m)を用いて行なった。
 化合物名はACD/Name ver.12.01(商品名)などを用いて命名した。
実施例1
化合物(3)の製造(その1)
(1)(5-シクロプロピル-6-メトキシピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン
Figure JPOXMLDOC01-appb-C000030
 窒素雰囲気下、-78℃において、6-ブロモ-3-シクロプロピル-2-メトキシピリジン(41.5g)のテトラヒドロフラン(273mL)溶液に1.6M n-ブチルリチウムのヘキサン溶液(127mL)を50分かけて滴下した後、-78℃で1時間攪拌した。続いて-78℃のまま反応溶液に4-(1,1-ジフルオロエチル)ベンゾニトリル(24.3g)のテトラヒドロフラン(137mL)溶液を75分かけて滴下し、さらに1時間攪拌した。反応溶液を0℃に昇温後、1M塩酸(437mL)、テトラヒドロフラン(365mL)、1M塩酸(146mL)の順に滴下した。
 反応液を有機層と水層に分離後、水層を酢酸エチル(1000mL)で抽出した。あわせた有機層に無水硫酸マグネシウムを加え乾燥させ、乾燥剤をろ別後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=100/0→19/1,V/V)で精製し、表題化合物(34.0g,収率74%)を無色油状物質として得た。
H NMR(300MHz,CDCl)δ ppm 0.72-0.81(m,2H),1.00-1.10(m,2H),1.96(t,J=18.2Hz,3H),2.10-2.25(m,1H),3.95(s,3H),7.24(d,J=6.9Hz,1H),7.59(d,J=9.0Hz,2H),7.67(d,J=7.8Hz,1H),8.21(d,J=8.6Hz,2H).
MS(+):318[M+H]
(2)化合物(3):3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン
 窒素雰囲気下、23~24℃において(5-シクロプロピル-6-メトキシピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン(76.31g)とヨウ化カリウム(146.97g)のアセトニトリル(656.07g)溶液にトリメチルシリルクロライド(104.36g)を5分かけて滴下した後、3時間32分かけて64℃まで昇温後、63~64℃で5時間14分攪拌した。室温まで冷却して14時間攪拌後に64℃まで加熱しながら1時間30分攪拌した。冷却後17~30℃において炭酸ナトリウム(50.97g)と水(201.34g)を混合させた水溶液を10分かけて滴下した後、水(102.93g)を加えて減圧下溶媒を留去して669.38gとした。得られた残渣に酢酸エチル(760.66g)を加えた後に混合後有機層と水層に分液した。有機層に10%チオ硫酸ナトリウム水溶液(349.82g)を加えて混合後有機層と水層に分液した。有機層に10%チオ硫酸ナトリウム水溶液(350.40g)を加えて混合後有機層と水層に分液した。有機層に対し減圧下溶媒を留去して116.49gとした後に、酢酸エチル(1496.40g)を加え、33℃まで昇温した。10%チオ硫酸ナトリウム水溶液(353.05g)と飽和食塩水(107.24g)を加えて混合後有機層と水層に分液した。
 有機層に対し減圧下溶媒を留去して、有機層の重量を79.79gとした後、酢酸エチル(383.57g)を加え、40℃まで昇温した後に38~41℃においてノルマルヘプタン(385.13g)を11分かけて滴下した後、42分かけて5℃まで冷却して15分攪拌することで懸濁液とした。得られた固体を濾過し、冷却した酢酸エチル(77.09g)とノルマルヘプタン(76.26g)の混合液で洗浄後、50℃で3時間減圧乾燥を行うことで表題化合物(67.95g、収率93.2%)を黄色固体として得た。
H NMR(300MHz,CDCl)δ ppm 0.78-0.83(m,2H),1.08-1.14(m,2H),1.96(t,J=18.2Hz,3H),2.25-2.35(m,1H),6.68(d,J=6.8Hz,1H),6.91(d,J=7.2Hz,1H),7.65(d,J=8.2Hz,2H),7.80(d,J=8.2Hz,2H),9.62(s,1H).
MS(+):304[M+H]
実施例2
化合物(3)の製造(その2)
(1)(5-シクロプロピルピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン
Figure JPOXMLDOC01-appb-C000031
 窒素雰囲気下、-70℃以下にて1-ブロモ-4-(1,1-ジフルオロエチル)ベンゼン(5.54g)のテトラヒドロフラン(5.41g)溶液に1.6M n-ブチルリチウムのヘキサン溶液(13.9mL)を24分かけて滴下した後、テトラヒドロフラン(2.71g)で洗い込んだ。-70℃以下で1時間攪拌した後に-70℃以下にて5-シクロプロピルピコリノニトリル(2.77g)のテトラヒドロフラン(4.20g)溶液を15分かけて滴下し、テトラヒドロフラン(2.74g)で洗い込んだ。4時間19分撹拌後、室温まで昇温した。濃塩酸(4.48g)と水(5.43g)を加えて8分撹拌後に有機層と水層に分液した。得られた水層に酢酸エチル(11.08g)を加えて10分撹拌後に有機層と水層に分液した。得られた有機層を混合し、炭酸水素カリウム(1.35g)と水(8.43g)を混合した水溶液を加えて6分撹拌後有機層と水層に分液した。得られた有機層に塩化ナトリウム(0.55g)と水(8.43g)を混合した水溶液を加えて5分間撹拌後有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=19/1,V/V)で精製して油状物質(5.87g)を得た。
 得られた油状物質にヘキサン(10.19g)と酢酸エチル(1.03g)を加え、50℃に昇温後に冷却し、36℃にて酢酸エチル(0.51g)を加えた。その後氷冷して4分撹拌する事で懸濁液とした。得られた固体を濾過し、冷却した酢酸エチル(0.75g)とヘキサン(4.95g)の混合液で洗浄後、40℃で減圧乾燥を行うことで表題化合物(3.98g、収率72.1%)を白色固体として得た。
H NMR(300MHz,CDCl)δ ppm 0.80-0.94(m,2H),1.12-1.24(m,2H),1.84-2.07(m,4H),7.46(dd,J=2.4,8.2Hz,1H),7.60(d,J=8.6Hz,2H),8.00(d,J=8.2Hz,1H),8.10(d,J=8.2Hz,2H),8.49(d,J=2.0Hz,1H).
MS(+):288[M+H]
(2)5-シクロプロピル-2-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン1-オキサイド
Figure JPOXMLDOC01-appb-C000032
 窒素雰囲気下、(5-シクロプロピルピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン(20.00g)のクロロホルム(100.00g)溶液にメタクロロ過安息香酸(30%含水品、34.32g)を加え、クロロホルム(10.02g)で洗い込んだ後に25℃で4時間攪拌した。この反応液にクロロホルム(150.01g)とチオ硫酸ナトリウム(14.31g)と水(60.01g)を混合した水溶液と5%炭酸水素ナトリウム水溶液(60.01g)を加え、混合後有機層と水層に分液した。有機層に5%炭酸水素ナトリウム水溶液(60.00g)を加え、混合後有機層と水層に分液した。有機層に5%炭酸水素ナトリウム水溶液(120.01g)を加え、混合後有機層と水層に分液した。有機層に5%炭酸水素ナトリウム水溶液(120.00g)を加え、混合後有機層と水層に分液した。有機層に水(60.02g)を加え、混合後有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去し、淡黄色固体(25.33g)を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1,V/V)で精製し、表題化合物(18.05g,収率85.5%)を淡黄色固体として得た。
H NMR(300MHz,CDCl)δ ppm 0.81-0.92(m,2H),1.14-1.28(m,2H),1.91(t,J=18.2Hz,3H),1.87-2.04(m,1H),7.07(dd,J=1.7、8.3Hz,1H),7.34(d,J=8.3Hz,1H),7.59(d,J=8.3Hz,2H),7.86(d,J=8.3Hz,2H),7.99(d,J=1.4Hz,1H).
MS(+):304[M+H]
(3)化合物(3):3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン
 窒素雰囲気下、5-シクロプロピル-2-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン1-オキサイド(12.00g)の2-メチルテトラヒドロフラン(120.02g)溶液に無水トリフルオロ酢酸(59.82g)を加えて23~26℃にて7時間攪拌した。この反応液に水酸化ナトリウム(22.15g)と水(36.00g)を混合した水溶液を滴下後に炭酸水素カリウム(11.88g)と水(108.00g)を混合した水溶液を加え、クロロホルム(72.08g)を加えて混合後に有機層と水層に分液した。得られた水層にクロロホルム(60.00g)を加えて撹拌後に有機層と水層に分液した。得られた有機層を混合し、水(60.00g)を加えて撹拌後に有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去した後に室温で減圧乾燥する事により淡黄色固体(11.77g)を得た。
 得られた固体に酢酸エチル(47.08g)を加え、50~51℃にて30分懸濁状態で攪拌した。これを冷却して1℃にて30分攪拌した。得られた固体を濾過し、酢酸エチル(17.67g)で洗浄後、50℃で2時間減圧乾燥を行うことで表題化合物(9.07g、収率75.6%)を淡黄色固体として得た。
MS(+):304[M+H]
実施例3
化合物(3)の製造(その3)
(1)5-シクロプロピル-6-メトキシピコリノニトリル
Figure JPOXMLDOC01-appb-C000033
 窒素雰囲気下、6~7℃にて5-クロロ-6-メトキシピコリノニトリル(0.50g)のテトラヒドロフラン(2.51g)、N-メチルピロリドン(2.50g)溶液にトリス(2,4-ペンタンジオナト)鉄(III)(0.05g)を加えた後に0.7M シクロプロピルマグネシウムブロマイドのテトラヒドロフラン溶液(5.93mL)を加え、4~7℃にて1時間15分攪拌した。この反応液に水(5.00g)と酢酸エチル(5.00g)を加えて混合後に有機層と水層に分液した。得られた水層に酢酸エチル(5.02g)を加えて混合後に有機層と水層に分液した。得られた水層に酢酸エチル(5.01g)を加えて混合後に有機層と水層に分液した。得られた有機層を混合した後、飽和食塩水(5.00g)を加えて混合後に有機層と水層に分液した。得られた有機層に無水硫酸マグネシウムを加え乾燥させ、乾燥剤をろ別後に減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製し、表題化合物(0.29g,収率55.8%)を淡黄色固体として得た。
H NMR(600MHz,CDCl)δ ppm 0.69-0.75(m,2H),1.02-1.09(m,2H),2.10-2.16(m,1H),4.00(s,3H),7.10(d,J=7.4Hz,1H),7.20(d,J=7.4Hz,1H).
MS(+):175[M+H]
(2)(5-シクロプロピル-6-メトキシピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン
Figure JPOXMLDOC01-appb-C000034
 窒素雰囲気下、-60℃以下にて1-ブロモ-4-(1,1-ジフルオロエチル)ベンゼン(0.17g)のテトラヒドロフラン(0.61g)溶液に1.6M n-ブチルリチウムのヘキサン溶液(0.4mL)を滴下して1時間攪拌した後に、5-シクロプロピル-6-メトキシピコリノニトリル(0.10g)のテトラヒドロフラン(0.30g)溶液を4分かけて滴下した。2時間2分撹拌後、室温まで昇温した。5%塩酸水溶液(0.93g)を加えて攪拌した後に水と酢酸エチルを加えて混合後有機層と水層に分液した。得られた水層に酢酸エチル(4mL)を加えて混合後に有機層と水層に分液した。両方の有機層を混合し、5%炭酸水素ナトリウム水溶液を加えて混合後有機層と水層に分液した。得られた水層に酢酸エチル(2mL)を加えて混合後に有機層と水層に分液した。両方の有機層を混合し、水を加えて混合後有機層と水層に分液した。得られた水層に酢酸エチル(2mL)を加えて混合後に有機層と水層に分液した。両方の有機層を混合し、硫酸ナトリウムを加えて乾燥した後に乾燥剤をろ別後減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=49/1,V/V)で精製して表題化合物(0.14g、収率75.1%)を淡黄色油状物質として得た。
MS(+):318[M+H]
(3)化合物(3):3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン
 実施例1-(2)と同じ方法にて合成した。
参考例1(特許文献1に記載の製造方法を適用)
(5R)-5-{(Z)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オン(参考例1a)及び
(5R)-5-{(E)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オン(参考例1b)の製造
Figure JPOXMLDOC01-appb-C000035
 窒素雰囲気下、-17~-12℃にて、(5-シクロプロピル-6-メトキシピリジン-2-イル)[4-(1,1-ジフルオロエチル)フェニル]メタノン(1.00g)と(R)-5-[(ベンゾチアゾール-2-イルスルホニル)メチル]ピロリジン-2-オン(1.90g)のテトラヒドロフラン(6.00g)、1,3-ジメチル-2-イミダゾリジノン(4.02g)溶液に1M リチウムビス(トリメチルシリル)アミドのテトラヒドロフラン溶液(22.0mL)を30分かけて滴下した後に-17~-10℃で1時間50分攪拌した。これを22℃まで昇温後、水(10.10g)を加えた後に1時間4分攪拌した。次いで50%硫酸水溶液(4.78g)を加えた後に減圧下溶媒を留去した。得られた残渣に酢酸エチル(20.00g)と水(20.00g)を加えて混合後、有機層と水層に分液した。得られた有機層に飽和炭酸水素ナトリウム水溶液(20.00g)を加えて混合後有機層と水層に分液した。得られた有機層に食塩水を加えて混合後有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン、酢酸エチル)で精製して表題化合物の混合物(1.10g)を褐色アモルファス状物質として得た。H NMRデータによる特徴的なピークの面積比を用いた比率計算より、(5R)-5-{(Z)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オンは収率49.3%、(5R)-5-{(E)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オンは収率38.0%となった。
(5R)-5-{(Z)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オン(参考例1a)
H NMR(300MHz,CDCl)δ ppm 0.65-0.71(m,2H),0.96-1.02(m,2H),1.86-2.16(m,5H),2.28-2.49(m,3H),4.00(s,3H),4.65-4.72(m,1H),5.91(d,J=8.9Hz,1H),5.96(br,1H),6.54(d,J=7.7Hz,1H),7.05(d,J=7.0Hz,1H),7.30(d,J=8.6Hz,2H),7.44(d,J=8.6Hz,2H).
MS(+):399[M+H]
(5R)-5-{(E)-2-(5-シクロプロピル-6-メトキシピリジン-2-イル)-2-[4-(1,1-ジフルオロエチル)フェニル]エテニル}ピロリジン-2-オン(参考例1b)
H NMR(600MHz,CDCl)δ ppm 0.56-0.64(m,2H),0.90-0.97(m,2H),1.93-2.09(m,5H),2.20-2.34(m,2H),2.37-2.45(m,1H),4.04(s,3H),4.07-4.16(m,1H),5.73-5.75(br.s.,1H),6.23(d,J=7.4Hz,1H),6.90(d,J=9.9Hz,1H),6.92(d,J=7.8Hz,1H),7.24(d,J=8.3Hz,2H),7.57(d,J=7.8Hz,2H).
MS(+):399[M+H]
 実施例4及び実施例5では、シリカゲルカラムクロマトグラフィー等で精製した(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンと(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンを標準物質とし、フタル酸ジ(2-エチルヘキシル)エステルを内部標準物質として、高速液体クロマトグラフィーを用いた定量分析法にて反応収率を算出した。
カラム:L-ColumnODS(3.0×150mm,3μm)(財団法人化学物質評価研究機構製)
カラムオーブン温度:40℃
溶離液:アセトニトリル-0.01M 酢酸アンモニウム水溶液,22:78(0-15min),22:78-40:60(15-20min),40:60(20-30min),40:60-95:5(30-40min),95:5(40-55min),V/V
溶離液速度:0.4mL/min
検出波長:240nm
実施例4
(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例4a)及び
(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例4b)の製造
Figure JPOXMLDOC01-appb-C000036
 窒素雰囲気下、-12~―10℃において、3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン(1.00g)と(5R)-5-[(1,3-ベンゾチアゾール-2-イルスルホニル)メチル]ピロリジン-2-オン(1.95g)のテトラヒドロフラン(6.03g)と1,3-ジメチル-2-イミダゾリジノン(4.02g)の溶液に1M リチウムビス(トリメチルシリル)アミドのテトラヒドロフラン溶液(23.0mL)を30分かけて滴下した後に、-11~-10℃にて1時間30分攪拌した。この反応液を20℃まで昇温した後に定量した所、主生成物(目的化合物)である(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンは定量収率77.7%、副生成物である(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンは定量収率9.2%であった。
(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例4a)
H NMR(300MHz,CDCl)δ ppm 0.61-0.71(m,2H),0.90-1.03(m,1H),1.14-1.30(m,1H),1.92(t,J=18.4Hz,3H),1.87-2.00(m,1H),2.09-2.18(m,1H),2.28-2.50(m,3H),4.33-4.41(m,1H),6.05(d,J=7.4Hz,1H),6.16(d,J=10.2Hz,1H),7.03(d,J=7.0Hz,1H),7.35(d,J=8.6Hz,2H),7.46(d,J=8.6Hz,1H),7.81(br,1H),13.17(br,1H).
MS(+):385[M+H]
(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例4b)
H NMR(300MHz,CDCl)δ ppm 0.50-0.65(m,2H),0.90-1.03(m,2H),1.91-2.46(m,8H),4.07-4.15(m,1H),5.63(d,J=7.4Hz,1H),6.63(d,J=9.2Hz,1H),6.80(dd,J=0.7,7.4Hz,1H),7.15(s,1H),7.25(d,J=9.2Hz,2H),7.56(d,J=8.5Hz,2H),12.46(br,1H).
MS(+):385[M+H]
実施例5
(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例5a)及び
(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例5b)の製造
Figure JPOXMLDOC01-appb-C000037
 窒素雰囲気下、-11~-9℃において、3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン(1.00g)と(5R)-5-[(1,3-ベンゾチアゾール-2-イルスルホニル)メチル]ピロリジン-2-オン(1.95g)のテトラヒドロフラン(10.00g)溶液に1M リチウムビス(トリメチルシリル)アミドのテトラヒドロフラン溶液(23.0mL)を30分かけて滴下した後に、-11~-9℃にて3時間35分攪拌した。この反応液を室温まで昇温した後に定量した所、主生成物(目的化合物)である(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンは定量収率66.2%、副生成物である(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オンは定量収率11.5%であった。
(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例5a)
MS(+):385[M+H]
(R,E)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2(1H)-オン(実施例5b)
MS(+):385[M+H]
 以下、参考例1、実施例4及び実施例5の結果を、表1に示す。表中、添加剤は1,3-ジメチル-2-イミダゾリジノンを示す。
Figure JPOXMLDOC01-appb-T000038
 参考例1と実施例4を比較すると、実施例4ではZ体である化合物の選択性及び収率が向上した。また、実施例4と実施例5を比較すると、1,3-ジメチル-2-イミダゾリジノンを添加する方が、よりZ体である化合物の選択性及び収率が向上した。
実施例6
ナトリウム(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2-オラートの製造
 窒素雰囲気下、-15~-13℃にてテトラヒドロフラン(80.1g)に対して3-シクロプロピル-6-[4-(1,1-ジフルオロエチル)ベンゾイル]ピリジン-2(1H)-オン(40.00g)と(5R)-5-[(1,3-ベンゾチアゾール-2-イルスルホニル)メチル]ピロリジン-2-オン(78.20g)のテトラヒドロフラン(160.12g)と1,3-ジメチル-2-イミダゾリジノン(160.10g)溶液並びに1M リチウムビス(トリメチルシリル)アミドのテトラヒドロフラン溶液(930mL)を1時間50分かけて同時に滴下し、テトラヒドロフラン(80.06g)を用いて洗い込んだ。-17~15℃にて1時間攪拌し、12℃まで昇温した後に水(400.19g)を加え、13~15℃にて2時間5分攪拌した。次に50%硫酸水(199.30g)を加えた後、減圧下溶媒を留去する事により857.01gとした。得られた残渣に酢酸エチル(400.81g)と水(600.22g)を加えて攪拌した後に有機層と水層に分液した。得られた有機層を炭酸ナトリウム(30.02g)と水(570.00g)を混合した水溶液を加えて混合した後に有機層と水層に分液した。得られた有機層に塩化ナトリウム(30.00g)と水(570.01g)を混合した水溶液を加えて混合した後に有機層と水層に分液した。得られた有機層を減圧下にて溶媒を留去した後に酢酸エチルを加えて800.12gとした。得られた溶液を攪拌しながら-1℃に冷却した後に28%ナトリウムメトキシドのメタノール溶液(43.26g)を1時間かけて滴下した後に-4~-2℃にて1時間攪拌後して懸濁液とした。得られた固体を濾過し、酢酸エチル(160.00g)で洗浄後、60℃で減圧乾燥を行うことで表題化合物(34.36g、収率67.8%)を白色固体として得た。
 実施例6で得られた固体の粉末X線回折測定を行ったところ、下記の特徴的なピークを認めた。
(特徴的なピーク)
2θ=6.8,7.5,8.6,11.4,13.1,13.5,16.0,17.3,19.5,20.6,23.5
 また同測定で得られた粉末X線回折パターンを、図1に示す。
実施例7
3-シクロプロピル-6-{(1R)-1-[4-(1,1-ジフルオロエチル)フェニル]-2-[(2R)-5-オキソピロリジン-2-イル]エチル}ピリジン-2(1H)-オンの製造
Figure JPOXMLDOC01-appb-C000039
(1)(R,Z)-tert-ブチル 6-{2-[1-(tert-ブトキシカルボニル)-5-オキソピロリジン-2-イル]-1-[4-(1,1-ジフルオロエチル)フェニル]ビニル}-3-シクロプロピル-2-オキソピリジン-1(2H)-カルボキシラート
Figure JPOXMLDOC01-appb-C000040
 ナトリウム(R,Z)-3-シクロプロピル-6-{1-[4-(1,1-ジフルオロエチル)フェニル]-2-[5-オキソピロリジン-2-イル]ビニル}ピリジン-2-オラート(10.00g)に10%塩化アンモニウム水溶液(100g)と酢酸エチル(100g)を加え、攪拌後に有機層と水層に分液した。
 有機層に水(50g)を加え、攪拌後に有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去し、得られた残渣に酢酸エチル(50g)を加え、減圧下溶媒を留去した。得られた残渣にアセトニトリル(50g)を加え、減圧下溶媒を留去した。得られた残渣にアセトニトリル(70g)とトリエチルアミン(8.73g)、N,N-ジメチル-4-アミノピリジン(0.609g)を混合した後に、24℃にて二炭酸ジ-tert-ブチル(16.12g)とアセトニトリル(30g)を混合した溶液を6分かけて滴下した。40℃に昇温して1時間35分攪拌した後に減圧下溶媒を留去した。得られた残渣に10%塩化アンモニウム水溶液(100g)及び酢酸エチル(100g)を加え、混合後有機層と水層に分液した。有機層に水(50g)を加え、混合後有機層と水層に分液した。得られた水層に酢酸エチル(50g)を加えて混合後有機層と水層に分液した。得られた有機層を混合後、減圧下溶媒を留去した。得られた残渣にトルエン(30g)を加え、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=77/23→73/27,V/V)で精製し、表題化合物(12.10g,収率84.1%)を淡黄色アモルファス状物質として得た。
H NMR(300MHz,CDCl)δ ppm 0.70-0.75(m,2H),1.01-1.07(m,2H),1.40(s,9H),1.58(s,9H),1.93(t,J=18.0Hz,3H),1.96-2.08(m,2H),2.44-2.62(m,3H),5.06-5.14(m,1H),6.04(d,J=9.0Hz,1H),6.91(d,J=7.8Hz,1H),7.26(d,J=7.3Hz,1H),7.28(d,J=7.0Hz,2H),7.46(d,J=8.2Hz,2H).
MS(+):585[M+H]
(2)tert-ブチル 6-{(R)-2-[(R)-1-(tert-ブトキシカルボニル)-5-オキソピロリジン-2-イル]-1-[4-(1,1-ジフルオロエチル)フェニル]エチル}-3-シクロプロピル-2-オキソピリジン-1(2H)-カルボキシラート
Figure JPOXMLDOC01-appb-C000041
 (R,Z)-tert-ブチル 6-{2-[1-(tert-ブトキシカルボニル)-5-オキソピロリジン-2-イル]-1-[4-(1,1-ジフルオロエチル)フェニル]ビニル}-3-シクロプロピル-2-オキソピリジン-1(2H)-カルボキシラート(7.00g)に酢酸エチル(35g)、5%パラジウム-活性炭素(1.40g、49.81%含水品)を混合し、水素雰囲気に置換した後に22~23℃にて3時間攪拌した。反応液を濾過後、酢酸エチル(70g)で濾過残渣を洗浄して濾過液に加え、減圧下溶媒を留去した後にトルエン(20g)を加え、減圧下溶媒を留去した。
 得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=71/29→65/35,V/V)で精製し、表題化合物(5.55g,収率79.1%)を白色アモルファス状物質として得た。
H NMR(300MHz,CDCl)δ ppm 0.61-0.66(m,2H),0.91-0.98(m,2H),1.47-1.65(m,1H),1.48(s,9H),1.56(s,9H),1.69-1.77(m,1H),1.86-2.17(m,2H),1.88(t,J=18.2Hz,3H),2.30-2.54(m,2H),2.79-2.87(m,1H),4.07-4.16(m,2H),7.00(d,J=7.8Hz,1H),7.24(d,J=7.0Hz,1H),7.36(d,J=8.6Hz,2H),7.42(d,J=8.6Hz,2H).
MS(+):587[M+H]
(3)3-シクロプロピル-6-{(1R)-1-[4-(1,1-ジフルオロエチル)フェニル]-2-[(2R)-5-オキソピロリジン-2-イル]エチル}ピリジン-2(1H)-オン
Figure JPOXMLDOC01-appb-C000042
 tert-ブチル 6-{(R)-2-[(R)-1-(tert-ブトキシカルボニル)-5-オキソピロリジン-2-イル]-1-[4-(1,1-ジフルオロエチル)フェニル]エチル}-3-シクロプロピル-2-オキソピリジン-1(2H)-カルボキシラート(39.95g)を含んだ酢酸エチル溶液(376.48g)に32~34℃にて35%塩酸(30.78g)を30分かけて滴下し、32~34℃にて4時間攪拌した。これに水酸化ナトリウム(38.40g)と水(150.10g)を混合した水溶液を滴下し、33~35℃にて30分攪拌した後に有機層と水層に分液した。得られた有機層に炭酸水素カリウム(29.88g)と水(150.00g)を混合した水溶液を加え、混合した後に有機層と水層に分液した。得られた有機層に水(150.00g)を加え、混合した後に有機層と水層に分液した。得られた有機層に対し減圧下溶媒を留去した後に、得られた残渣にエタノール(300.07g)を加えて減圧下溶媒を留去した。得られた残渣にエタノール(300.00g)を加えて減圧下溶媒を留去した。
 得られた残渣にエタノールを加えて210.02gとした、18~20℃にて1時間攪拌して懸濁液とした後に3時間かけて56℃まで昇温し、1時間攪拌した。次に-2℃まで冷却した後に103時間攪拌した。得られた固体を濾過し、エタノール(120.00g)で洗浄後、60℃で減圧乾燥を行うことで表題化合物(22.22g、収率84.5%)を白色固体として得た。
H NMR(300MHz,CDCl)δ ppm 0.56-0.67(m,2H),0.91-0.98(m,2H),1.66-1.78(m,1H),1.89(t,J=18.1Hz,3H),2.07-2.42(m,6H),3.44-3.53(m,1H),4.08(dd,J=6.0,9.6Hz,1H),5.97(d,J=7.4Hz,1H),6.91(d,J=7.0Hz,1H),7.44(s,4H),7.49(br,1H),12.36(br,1H).
MS(+):387[M+H]
 本発明は、6-ベンゾイル-2-ピリドン化合物より、医薬品又は医薬品中間体として有用な2-ピリドン化合物を、高収率に製造できる点で有用である。
 なお、2014年5月13日に出願された日本特許出願2014-099755号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  式(3)で表される6-ベンゾイル-2-ピリドン化合物と、式(4)で表されるスルホン化合物とを反応させることを特徴とする、式(1)で表される、2-ピリドン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  尿素誘導体存在下で反応させる、請求項1に記載の製造方法。
  3.  尿素誘導体が、1,3-ジメチル-2-イミダゾリジノンである、請求項2に記載の製造方法。
  4.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002
  5.  式(3)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
  6.  式(1)で表される化合物のナトリウム塩。
    Figure JPOXMLDOC01-appb-C000004
  7.  式(6)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
  8.  式(7)で表される化合物。
    Figure JPOXMLDOC01-appb-C000006
  9.  式(8)で表される化合物。
    Figure JPOXMLDOC01-appb-C000007
  10.  式(9)で表される化合物。
    Figure JPOXMLDOC01-appb-C000008
  11.  式(10)で表される化合物。
    Figure JPOXMLDOC01-appb-C000009
PCT/JP2015/063509 2014-05-13 2015-05-11 2-ピリドン化合物の製造方法 WO2015174377A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/309,997 US20170267659A1 (en) 2014-05-13 2015-05-11 Method for producing 2-pyridone compound
KR1020167025901A KR20170003524A (ko) 2014-05-13 2015-05-11 2-피리돈 화합물의 제조 방법
JP2016519247A JPWO2015174377A1 (ja) 2014-05-13 2015-05-11 2−ピリドン化合物の製造方法
CN201580024710.0A CN106573909A (zh) 2014-05-13 2015-05-11 2‑吡啶酮化合物的制造方法
EP15793046.2A EP3144305A4 (en) 2014-05-13 2015-05-11 Method for producing 2-pyridone compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014099755 2014-05-13
JP2014-099755 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015174377A1 true WO2015174377A1 (ja) 2015-11-19

Family

ID=54479916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063509 WO2015174377A1 (ja) 2014-05-13 2015-05-11 2-ピリドン化合物の製造方法

Country Status (7)

Country Link
US (1) US20170267659A1 (ja)
EP (1) EP3144305A4 (ja)
JP (1) JPWO2015174377A1 (ja)
KR (1) KR20170003524A (ja)
CN (1) CN106573909A (ja)
TW (1) TW201605826A (ja)
WO (1) WO2015174377A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068211A1 (ja) * 2009-12-04 2011-06-09 大正製薬株式会社 2-ピリドン化合物
JP2013010750A (ja) * 2011-06-02 2013-01-17 Taisho Pharmaceutical Co Ltd 2−ピリドン化合物を含有する医薬
WO2014077235A1 (ja) * 2012-11-13 2014-05-22 大正製薬株式会社 2-ピリドン化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068211A1 (ja) * 2009-12-04 2011-06-09 大正製薬株式会社 2-ピリドン化合物
JP2013010750A (ja) * 2011-06-02 2013-01-17 Taisho Pharmaceutical Co Ltd 2−ピリドン化合物を含有する医薬
WO2014077235A1 (ja) * 2012-11-13 2014-05-22 大正製薬株式会社 2-ピリドン化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEAN B. BAUDIN ET AL.: "A direct synthesis of olefins by reaction of carbonyl compounds with lithio derivatives of 2-[alkyl- or (2'- alkenyl)- or benzyl-sulufonyl]-benzothiazoles", TETRAHEDRON LETTERS, vol. 32, no. 9, 1991, pages 1175 - 1178, XP026648765 *
PAUL R. BLAKEMORE: "The modified Julia olefination: alkene synthesis via the condensation of metallated heteroarylalkylsulfones with carbonyl compounds", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS, vol. 1, 2002, pages 2563 - 2585, XP008157314 *

Also Published As

Publication number Publication date
JPWO2015174377A1 (ja) 2017-04-20
US20170267659A1 (en) 2017-09-21
CN106573909A (zh) 2017-04-19
KR20170003524A (ko) 2017-01-09
EP3144305A4 (en) 2017-12-27
TW201605826A (zh) 2016-02-16
EP3144305A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
EP3377482B1 (en) Modulators of ror-gamma
EP1891002B1 (en) Cyclohexanesulfonyl derivatives as glyt1 inhibitors to treat schizophrenia
KR102615234B1 (ko) Ccr6 억제제로서 유용한 n-치환된-디옥소시클로부테닐아미노-3-히드록시-피콜린아미드
ES2824698T3 (es) Procedimiento para preparar 3-alquilsulfanil-2-cloro-N-(1-alquil-1H-tetrazol-5-il)-4-trifluorometilbenzamidas
TW201609696A (zh) 用於製備3-(3-氯-1h-吡唑-1-基)吡啶的方法(三)
EA030032B1 (ru) 5,6-дизамещенные пиридин-2-карбоксамиды в качестве агонистов каннабиноидных рецепторов
KR20160072127A (ko) Pde4 억제제의 제조 방법
WO2014157653A1 (ja) 光学活性ジアミン誘導体の製造方法
EP2825538A1 (en) Positive allosteric modulators of mglur2
JP6454707B2 (ja) trans−8−クロロ−5−メチル−1−[4−(ピリジン−2−イルオキシ)−シクロヘキシル]−5,6−ジヒドロ−4H−2,3,5,10b−テトラアザ−ベンゾ[e]アズレン及びその結晶形態の合成
WO2015174377A1 (ja) 2-ピリドン化合物の製造方法
JP6368043B2 (ja) 三環式ラクタム化合物の製造法
CN110520411A (zh) 吡啶化合物的制造方法
JPWO2014051077A1 (ja) 高純度の含窒素複素環化合物の製造方法
JP4481829B2 (ja) 経口投与用カルバペネム化合物の新規合成中間体及びその製造方法
TW202208370A (zh) 嘧啶基-3,8-二氮雜雙環[3.2.1]辛烷基甲酮衍生物及其鹽之製備
JP2004525927A (ja) ランソプラゾール及びその中間体の製造方法
JP4152353B2 (ja) 殺菌性ピリジン化合物
JPWO2004043961A1 (ja) 経口投与用カルバペネム化合物の製造方法
JP6592521B2 (ja) ピラゾール誘導体の製造方法
Veitía et al. Ready Available Chiral Azapyridinomacrocycles N-Oxides; First Results as Lewis Base Catalysts in Asymmetric Allylation of p-Nitrobenzaldehyde
RU2784831C2 (ru) N-замещенные диоксоциклобутениламино-3-гидроксипиколинамиды, пригодные в качестве ингибиторов ccr6
JP2019501913A (ja) エフィナコナゾールの合成方法
JP2012521993A (ja) 縮合三環式スルホンアミドの製造プロセス
CA3155177A1 (en) Process for the production of 5-(4-((2s,5s)-5-(4-chlorobenzyl)-2-methylmorpholino)piperidin-1-yl)-1h-1,2,4-triazol-3-amine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025901

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016519247

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015793046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15309997

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE